WO2014073551A1 - パワーショベルの流体圧制御装置 - Google Patents

パワーショベルの流体圧制御装置 Download PDF

Info

Publication number
WO2014073551A1
WO2014073551A1 PCT/JP2013/079972 JP2013079972W WO2014073551A1 WO 2014073551 A1 WO2014073551 A1 WO 2014073551A1 JP 2013079972 W JP2013079972 W JP 2013079972W WO 2014073551 A1 WO2014073551 A1 WO 2014073551A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
control valve
pilot pressure
merging
switching valve
Prior art date
Application number
PCT/JP2013/079972
Other languages
English (en)
French (fr)
Other versions
WO2014073551A9 (ja
Inventor
正成 小島
中村 雅之
剛 寺尾
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to US14/441,097 priority Critical patent/US9702380B2/en
Priority to CN201380058377.6A priority patent/CN104769286B/zh
Priority to DE112013005302.0T priority patent/DE112013005302T5/de
Priority to KR1020157011215A priority patent/KR101714284B1/ko
Publication of WO2014073551A1 publication Critical patent/WO2014073551A1/ja
Publication of WO2014073551A9 publication Critical patent/WO2014073551A9/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/167Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load using pilot pressure to sense the demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a fluid pressure control device for a power shovel.
  • a first to third circuit system is connected to each of the first to third pumps, and the discharged oil of the third pump is joined to the first and second circuit systems as necessary.
  • control circuit includes a speed increasing hydraulic valve for supplying the discharge oil of the third pump preferentially to the arm cylinder.
  • the speed increasing hydraulic valve includes both pilot chambers through which the pilot pressure of the boom switching valve and the pilot pressure of the arm switching valve are respectively guided, and a spring that applies a biasing force in the same direction as the pilot pressure of the arm switching valve.
  • the speed increasing hydraulic valve is configured to supply the discharge oil of the third pump to the boom cylinder by overcoming the biasing force of the spring by the pilot pressure of the boom switching valve.
  • the discharge oil of the third pump is switched to be supplied to the arm cylinder by the pilot pressure of the arm switching valve and the biasing force of the spring.
  • the resultant hydraulic valve for acceleration is the combined pressure of the pilot pressure of the arm switching valve and the biasing force of the spring.
  • the present invention aims to provide a fluid pressure control device for a power shovel that eliminates the need for complicated spring selection.
  • a fluid pressure control device for a power shovel a first pump that supplies a working fluid to a first actuator, a second pump that supplies a working fluid to a second actuator, A first switching valve for communicating or blocking between one pump and the first actuator; a second switching valve for communicating or blocking between the second pump and the second actuator; and a working fluid for the first and second actuators
  • a third pump that can supply the first pump, a tank communication position that communicates between the third pump and the tank, and a downstream communication position that communicates between the third pump and the downstream.
  • a first merging control valve for switching between the tank communication position and the downstream communication position; and provided on the downstream side of the first merging control valve; and the third pump and the first actuator.
  • a first actuator communication position that communicates with the first actuator, and a first actuator shut-off position that shuts off the third pump and the first actuator, and switches the first actuator communication position and the first actuator shut-off position.
  • Two merging control valves wherein the first merging control valve holds the tank communication position of the first merging control valve by the urging force of the urging member, and the first switching valve is connected to the first pump.
  • the first pilot pressure for communicating with the first actuator or the second pilot pressure for allowing the second switching valve to communicate with the second pump and the second actuator from the tank communicating position.
  • the second merging control valve holds the first actuator communication position by the urging force of the urging member, and the second The pilots pressure, wherein the first actuator communication position fluid pressure control device of the first power switch to the actuator shut-off position shovel is provided.
  • a fluid pressure control device for a power shovel, the first pump supplying working fluid to the first actuator, the second pump supplying working fluid to the second actuator, A first switching valve for communicating or blocking the first pump and the first actuator, a second switching valve for communicating or blocking the second pump and the second actuator, and the first and second actuators.
  • a third pump capable of supplying fluid; a first neutral position provided on the downstream side of the third pump and held by a biasing force of a biasing member; and the first switching valve including the first pump and the first switch
  • a first pilot pressure position held by a first pilot pressure for communicating with one actuator, and the communication state between the third pump and the downstream side is defined as the first neutral position and the first path.
  • a first merging control valve that switches according to the lot pressure position, a second neutral position that is provided on the downstream side of the first merging control valve and is held by the urging force of the urging member, and the second switching valve are the second A second pilot pressure position held by a second pilot pressure for communicating the pump and the second actuator, and the communication state between the first merging control valve and the tank or the first actuator is changed to the first pilot pressure position.
  • a second merging control valve that switches according to a neutral position and a second pilot pressure position, wherein the first merging control valve is in the first neutral position and the second merging control valve is in the second neutral position.
  • the third pump and the tank are communicated, and the third pump is used when the first merging control valve is at the first pilot pressure position and the second merging control valve is at the second neutral position.
  • the third pump and the first actuator are communicated with the first actuator.
  • the third pump and the first actuator are shut off.
  • a hydraulic pressure control device for a power shovel is provided.
  • a hydraulic pressure control device for a power shovel for a power shovel, the first pump for supplying the working fluid to the boom cylinder, the second pump for supplying the working fluid to the arm cylinder, and the first A switching valve for a boom to which a boom system pilot pressure introduction path for guiding a first pilot pressure for communicating or blocking the pump and the boom cylinder is connected, and the second pump and the arm cylinder are communicated or blocked.
  • a switching valve for an arm to which an arm system pilot pressure introduction path for guiding a second pilot pressure is connected, a third pump capable of supplying a working fluid to the boom cylinder and the arm cylinder, the third pump and a tank A center bypass passage that communicates with the boom, a boom junction passage that is in parallel with the center bypass passage and is connected to the boom switching valve;
  • a first merging control valve connected to the center bypass passage and the boom merging passage and having a first pilot chamber connected to the boom system pilot pressure introduction passage; and the center on the downstream side of the first merging control valve
  • An arm merging passage branched from the bypass passage and connected to the arm switching valve, connected to the center bypass passage, the boom merging passage, and the arm merging passage, and connected to the arm system pilot pressure introduction passage.
  • the second merging control valve communicates the third pump with the tank and the switching valve for the boom and is held by a biasing force of a biasing member; and A second pilot pressure position that shuts off the third pump and the boom switching valve when the arm pilot pressure is introduced into the second pilot chamber; and And when the second merging control valve is in the second neutral position, the third pump communicates with the tank, and the first merging control valve is in the first pilot pressure position.
  • the third pump communicates with the boom switching valve, the first merge control valve is in the first neutral position, and the second When the merging control valve is at the second pilot pressure position, 3 when the pump and the boom switching valve are shut off, and the first merging control valve is at the first pilot pressure position and the second merging control valve is at the second pilot pressure position.
  • a hydraulic pressure control device for a power shovel that shuts off a pump and the switching valve for the boom is provided.
  • FIG. 1 is a circuit diagram of a hydraulic pressure control device for a power shovel according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a fluid pressure control device for a power shovel according to the second embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a hydraulic pressure control device for a power shovel according to the third embodiment of the present invention.
  • the hydraulic pressure control device (hereinafter simply referred to as “fluid pressure control device”) of a power shovel according to the first to third embodiments shown in FIGS. 1 to 3 is a device that uses pressure oil as a working fluid. Thus, the operation of each actuator mounted on the power shovel is controlled.
  • the fluid pressure control apparatus 100 includes a first pump P1 that supplies hydraulic oil to the boom cylinder 40, a second pump P2 that supplies hydraulic oil to the arm cylinder 41, and a turning motor.
  • a third pump P3 that supplies hydraulic oil to the first pump, a boom switching valve 1 that is provided between the first pump P1 and the boom cylinder 40, and communicates or blocks the first pump P1 and the boom cylinder 40;
  • the arm switching valve 2 Provided between the second pump P2 and the arm cylinder 41 and provided between the third pump P3 and the turning motor, and the arm switching valve 2 for communicating or blocking between the second pump P2 and the arm cylinder 41.
  • a turning switching valve 3 for communicating or blocking the third pump P3 and the turning motor.
  • the boom cylinder 40 corresponds to the first cylinder
  • the boom switching valve 1 corresponds to the first switching valve
  • the arm cylinder 41 corresponds to the second cylinder
  • the arm switching valve 2 corresponds to the second switching valve.
  • the fluid pressure control device 100 further includes a first circuit system I connected to the first pump P1 and provided with the switching valve 1, and a second circuit system connected to the second pump P2 and provided with the switching valve 2. II, and a third circuit system III connected to the third pump P3 and provided with the switching valve 3.
  • the first circuit system I is provided with a left switching valve 4 and a bucket switching valve 5 to which the discharge oil of the first pump P1 is supplied.
  • the switching valve 1 and 5 is supplied with the discharge oil of the first pump P1 only when the traveling switching valve 4 is in the normal position (the state shown in FIG. 1).
  • the discharge oil of the first pump P1 is preferentially supplied to the switching valve 4 for traveling.
  • the right traveling switching valve 6 to which the discharge oil of the second pump P2 is supplied, the boom swing switching valve 7, and a spare actuator are provided.
  • a switching valve 8 is provided. Also in the second circuit system II, the discharge oil of the second pump P2 is preferentially supplied to the traveling switching valve 6.
  • a center bypass passage 12 is connected to the third pump P3. The center bypass passage 12 guides the oil discharged from the third pump P3 to the tank passage 30 connected to the tank T when the switching valves 10, 9, 3 provided in the third circuit system III are in the normal position.
  • the first merge control valve 10 is provided downstream of the third pump P3 and upstream of the center bypass passage 12 in the third circuit system III.
  • the second merge control valve 11 is provided between the first merge control valve 10 and the arm switching valve 2.
  • the passage connecting the third pump P3 and the first merging control valve 10 is connected to a parallel passage 21 connected in parallel to the switching valve 9 for dozer and the switching valve 3 for turning.
  • the discharge oil of the third pump P3 passes through the parallel passage 21 and the switching valve 9 for the dozer or the swivel Is supplied to the switching valve 3 for use.
  • a boom pilot pressure introduction path pb for guiding a first pilot pressure for switching the boom switching valve 1 and a second pilot for switching the arm switching valve 2 are provided in the pilot chamber 10a of the first merging control valve 10.
  • An arm system pilot pressure introduction path pa for guiding pressure is connected.
  • the boom system pilot pressure introduction path pb is a path through which a first pilot pressure for switching the boom switching valve 1 is guided, and communicates with a path connected to both pilot chambers of the boom switching valve 1.
  • the arm pilot pressure introduction path pa is a path through which a second pilot pressure for switching the arm switching valve 2 is guided, and communicates with a path connected to both pilot chambers of the arm switching valve 2.
  • the first merging control valve 10 When neither the first pilot pressure nor the second pilot pressure is guided to the pilot chamber 10a, the first merging control valve 10 is moved to the normal position (the state shown in FIG. 1) by the urging force of the spring 10b as the urging member. ). When the first merging control valve 10 is in the normal position, the discharged oil supplied to the center bypass passage 12 is guided to the tank passage 30.
  • the first merging control valve 10 is switched to the switching position, and the discharged oil of the third pump P3 is discharged from the center bypass passage 12, the merging passage 31 and It is supplied to the parallel passage 15.
  • the third pump P3 communicates with the center bypass passage 12 through the throttle.
  • the throttle substantially blocks communication between the third pump P3 and the center bypass passage 12. Accordingly, at the switching position of the first merging control valve 10, the discharge oil of the third pump P 3 is preferentially supplied to the merging passage 31 and the parallel passage 15.
  • the normal position of the first merging control valve 10 corresponds to the tank communication position, and the switching position corresponds to the downstream communication position.
  • the first merging control valve 10 may be configured to completely block communication between the third pump P3 and the center bypass passage 12 at the switching position.
  • the merging passage 31 When the first merging control valve 10 is in the switching position, the merging passage 31 is connected in parallel with the center bypass passage 12 with respect to the third pump P3.
  • the joining passage 31 branches upstream of the second joining control valve 11 and is connected to the boom joining passage 14 and the arm joining passage 13 via the second joining control valve 11.
  • the boom junction passage 14 is a passage for supplying the discharge oil of the third pump P3 to the boom switching valve 1
  • the arm junction passage 13 is for supplying the discharge oil of the third pump P3 to the arm switching valve 2. It is a passage.
  • a passage formed by the joining passage 31 and the boom joining passage 14 corresponds to the boom joining passage.
  • the arm system pilot pressure introduction path pa is connected to the pilot chamber 11 a of the second merging control valve 11.
  • the second merging control valve 11 is maintained at the normal position (the state shown in FIG. 1) by the urging force of the spring 11b as the urging member.
  • the second pilot pressure is introduced to 11a, the position is switched to the switching position.
  • the normal position of the second merging control valve 11 corresponds to the first actuator communication position
  • the switching position corresponds to the first actuator cutoff position that shuts off the third pump P3 and the boom cylinder 40.
  • the arm merging passage 13 may be configured to be connected to the third pump P3 without passing through the second merging valve 11.
  • the discharge oil of the first pump P1 is supplied to the first circuit system I for the boom switching valve 1, the left travel motor switching valve 4, and the bucket.
  • the oil supplied to the switching valve 5 and discharged from the second pump P2 is the switching valve 2 for the arm provided in the second circuit system II, the switching valve 6 for the right traveling motor, the switching valve 7 for the boom swing, It is supplied to the spare switching valve 8.
  • the oil discharged from the third pump P3 is supplied to the switching valve 3 for turning and the switching valve 9 for dozer provided in the third circuit system III, but the switching valve 3 provided in the third circuit system III.
  • 9 and 10 are in the normal position, they are returned to the tank T through the center bypass passage 12 and the tank passage 30.
  • the first pilot pressure in the boom system pilot pressure introduction path pb acts on the pilot chamber 10a, and the first merging control valve 10 is switched to the switching position on the left side in the figure. Change.
  • the third pump P3 communicates with the joining passage 31, the parallel passage 15, and the center bypass passage 12 in addition to the parallel passage 21 that is always connected. Since the merging passage 31 communicates with the boom merging passage 14 in the second merging control valve 11, the discharge oil of the third pump P 3 passes through the merging passage 31, the boom merging passage 14, and the boom switching valve 1. It is supplied to the boom cylinder 40.
  • the third pump P3 also communicates with the bucket switching valve 5 connected in parallel with the boom switching valve 1 with respect to the boom junction passage 14, so that the discharge oil of the third pump P3 is It merges with the oil discharged from the first pump P1 and is also supplied to the bucket switching valve 5. Moreover, since the 3rd pump P3 is also connected also to the parallel channel
  • the second pilot pressure in the arm system pilot pressure introduction path pa acts on the pilot chamber 11a, and the second The merge control valve 11 is switched to the switching position on the left side in the figure.
  • the communication between the merging passage 31 and the boom merging passage 14 is blocked, and the merging passage 31 and the arm merging passage 13 are communicated. Accordingly, the discharge oil from the third pump P3 is not supplied to the boom switching valve 1, but is supplied to the arm cylinder 41 through the arm switching valve 2.
  • the third pump P3 communicates with the parallel passage 15 through the first merging control valve 10, not only the arm merging passage 13 but also the parallel passage 15, the passage 16 and the discharge oil of the third pump P3. It is supplied to the arm cylinder 41 through the arm switching valve 2.
  • the switching valve 1 for the boom is switched. Regardless of the operation, that is, whether or not the first pump P1 and the boom cylinder 40 communicate with each other, the communication between the third pump P3 and the boom junction passage 14 is blocked. That is, the merged discharge oil discharged from the third pump P3 is preferentially supplied to the arm cylinder 41 rather than the boom cylinder 40.
  • the second merging control valve 11 is switched only by the pilot pressure of the arm system pilot pressure introduction passage pa, it is not necessary to select a spring that satisfies a predetermined relationship with the pilot pressure as in the conventional control circuit.
  • the discharge oil of the third pump can be preferentially supplied to the arm cylinder 41 only by switching the arm switching valve 2.
  • the fluid pressure control apparatus 200 is similar to the first embodiment shown in FIG. 1 in that the first, second, and third pumps P1, P2, and P3 are connected to each other. 1, 2, and 3 circuit systems I, II, and III are provided.
  • the configuration of the switching valve provided in each circuit system is the same as in the first embodiment.
  • the same reference numerals as those in FIG. 1 are used for the same components as those in the first embodiment, and detailed description of each component is omitted.
  • the boom cylinder 40 corresponds to the first actuator
  • the boom switching valve 1 corresponds to the first switching valve
  • the arm cylinder 41 corresponds to the second actuator
  • the second switching valve corresponds to the second switching valve.
  • the center bypass passage 12 is connected to the third pump P3.
  • the center bypass passage 12 is a tank passage in which the discharge oil of the third pump P3 is connected to the tank T when all the switching valves 17, 9, 3, 18 provided in the third circuit system III are in the normal position. Lead to 30.
  • the first merging control valve 17 is provided downstream of the third pump P3 and in the uppermost stream of the center bypass passage 12 in the third circuit system III.
  • the second merge control valve 18 is provided on the most downstream side of the center bypass passage 12 and between the first merge control valve 17 and the arm switching valve 2.
  • the passage connecting the third pump P3 and the first merging control valve 17 is connected to a parallel passage 21 connected in parallel to the switching valve 9 for dozer and the switching valve 3 for turning.
  • the discharge oil of the third pump P3 passes through the parallel passage 21 and the switching valve 9 for the dozer or the swivel Is supplied to the switching valve 3 for use.
  • the boom system pilot pressure introduction path pb for guiding the first pilot pressure for switching the boom switching valve 1 is connected to the pilot chamber 17a of the first merging control valve 17.
  • the first merging control valve 17 maintains the normal position (the state shown in FIG. 2) by the urging force of the spring 17b as the urging member.
  • the first merging control valve 17 When the first merging control valve 17 is in the normal position, the oil discharged from the third pump P3 is supplied to the center bypass passage 12 and the merging passage 31. On the other hand, when the first pilot pressure is guided to the pilot chamber 17a, the first merging control valve 17 is switched to the switching position, and the discharge oil of the third pump P3 is supplied to the center bypass passage 12, the merging passage 31 and the parallel passage 15. Is done.
  • the third pump P3 communicates with the center bypass passage 12 through the throttle.
  • the throttle substantially blocks communication between the third pump P3 and the center bypass passage 12. Therefore, at the switching position of the first merging control valve 17, the discharge oil of the third pump P ⁇ b> 3 is preferentially supplied not to the center bypass passage 12 but to the merging passage 31 and the parallel passage 15.
  • the normal position of the first merging control valve 17 corresponds to the first neutral position, and the switching position corresponds to the first pilot pressure position.
  • the first merging control valve 17 may be configured to completely block communication between the third pump P3 and the center bypass passage 12 at the switching position.
  • the merging passage 31 When the first merging control valve 17 is in the switching position, the merging passage 31 is connected in parallel with the center bypass passage 12 with respect to the third pump P3.
  • the joining passage 31 branches upstream of the second joining control valve 18 and is connected to the boom joining passage 14 and the arm joining passage 13 via the second joining control valve 18.
  • the boom junction passage 14 is a passage for supplying the discharge oil of the third pump P3 to the boom switching valve 1
  • the arm junction passage 13 is a passage for supplying the discharge oil of the third pump P3 to the arm switching valve 2. It is.
  • a passage formed by the joining passage 31 and the boom joining passage 14 corresponds to the boom joining passage.
  • the pilot chamber 18a of the second merging control valve 18 is connected to an arm system pilot pressure introduction path pa for introducing a second pilot pressure for switching the arm switching valve 2.
  • the second merging control valve 18 is maintained at the normal position (the state shown in FIG. 2) by the urging force of the spring 18b as the urging member.
  • the second pilot pressure is introduced to 18a, the position is switched to the switching position.
  • the normal position of the second merging control valve 18 corresponds to the second neutral position
  • the switching position corresponds to the second pilot pressure position.
  • the discharge oil of the first pump P1 is supplied to the first circuit system I for the boom switching valve 1, the left travel motor switching valve 4, and the bucket.
  • the oil supplied to the switching valve 5 and discharged from the second pump P2 is the switching valve 2 for the arm provided in the second circuit system II, the switching valve 6 for the right traveling motor, the switching valve 7 for the boom swing, It is supplied to the spare switching valve 8.
  • the oil discharged from the third pump P3 is supplied to the switching valve 3 for turning provided in the third circuit system III and the switching valve 9 for dozer, but all the switching valves provided in the third circuit system III.
  • 3, 9, 17, 18 are in the normal position, they are returned to the tank T through the center bypass passage 12 and the tank passage 30.
  • the turning switching valve 3 or the dozer switching valve 9 provided in the third circuit system III is switched, the communication between the center bypass passage 12 and the tank passage 30 is cut off.
  • the first pilot pressure in the boom system pilot pressure introduction path pb acts on the pilot chamber 17a, and the first merging control valve 17 is switched to the switching position on the left side in the figure. Change.
  • the third pump P3 communicates with the center bypass passage 12, the joining passage 31, and the parallel passage 15. Since the merging passage 31 communicates with the boom merging passage 14 in the second merging control valve 18, the discharge oil of the third pump P3 passes through the merging passage 31, the boom merging passage 14, and the boom switching valve 1. It is supplied to the boom cylinder 40.
  • the third pump P3 also communicates with the bucket switching valve 5 connected in parallel with the boom switching valve 1 with respect to the boom junction passage 14, so that the discharge oil of the third pump P3 is It merges with the oil discharged from the first pump P1 and is also supplied to the bucket switching valve 5. Further, since the third pump P3 is also communicated with the parallel passage 15 through the first merge control valve 17, the discharge oil of the third pump P3 merges with the discharge oil from the second pump P2, and the parallel passage 15 Are also supplied to the switching valves 7 and 8 of the second circuit system II connected to.
  • the second pilot pressure in the arm system pilot pressure introduction path pa acts on the pilot chamber 18a, and the second The merge control valve 18 is switched to the switching position on the left side in the figure.
  • the center bypass passage 12 is blocked, the communication between the merging passage 31 and the boom merging passage 14 is blocked, and only the merging passage 31 and the arm merging passage 13 are communicated. Accordingly, the oil discharged from the third pump P3 is not supplied to the boom switching valve 1, but is supplied to the arm cylinder 41 through the arm junction passage 13 and the arm switching valve 2.
  • the third pump P3 communicates with the parallel passage 15 through the first junction control valve 17, not only the arm junction passage 13 but also the parallel passage 15, the passage 16 and the discharge oil of the third pump P3 are discharged. It is supplied to the arm cylinder 41 through the arm switching valve 2.
  • the switching valve 1 for the boom is switched. Regardless of the operation, that is, whether or not the first pump P1 and the boom cylinder 40 communicate with each other, the communication between the third pump P3 and the boom junction passage 14 is blocked. That is, the merged discharge oil discharged from the third pump P3 is preferentially supplied to the arm cylinder 41 rather than the boom cylinder 40.
  • the second merging control valve 18 is switched only by the pilot pressure in the arm system pilot pressure introduction passage pa, it is not necessary to select a spring that satisfies a predetermined relationship with the pilot pressure as in the conventional control circuit.
  • the discharge oil of the third pump can be preferentially supplied to the arm cylinder 41 only by switching the arm switching valve 2.
  • the boom cylinder 40 is used as the first actuator and the arm cylinder 41 is used as the second actuator.
  • the fluid pressure control device according to the first and second embodiments is 1. Regardless of what the second actuator is, the discharge fluid of the third pump can be preferentially supplied to the second actuator. Therefore, by changing the combination of the first and second actuators, various actuators can be used as actuators that preferentially supply the fluid discharged from the third pump.
  • the fluid pressure control device 300 according to the third embodiment shown in FIG. 3 is similar to the first embodiment shown in FIG. 1 in that the first, second, and third pumps P1, P2, and P3 are connected to each other.
  • the first, second and third circuit systems I, II and III are provided.
  • the configuration of the switching valve provided in each circuit system is the same as in the first embodiment.
  • the same reference numerals as those in FIG. 1 are used for the same components as those in the first embodiment, and detailed description of each component is omitted.
  • the center bypass passage 12 is connected to the third pump P3.
  • the center bypass passage 12 is a tank passage in which the discharge oil of the third pump P3 is connected to the tank T when all the switching valves 19, 9, 3, 20 provided in the third circuit system III are in the normal position. Lead to 30.
  • the first merging control valve 19 is provided downstream of the third pump P3 and upstream of the center bypass passage 12 in the third circuit system III.
  • a parallel passage 15 and a boom junction passage 14 are connected to the first junction control valve 19.
  • the second merging control valve 20 is provided on the most downstream side of the center bypass passage 12 and between the first merging control valve 19 and the arm switching valve 2.
  • the passage connecting the third pump P3 and the first merging control valve 19 is connected to a parallel passage 21 connected in parallel to the switching valve 9 for dozer and the switching valve 3 for turning.
  • the boom system pilot pressure introduction path pb for guiding the first pilot pressure for switching the boom switching valve 1 is connected to the pilot chamber 19a of the first merging control valve 19.
  • the first merging control valve 19 maintains the normal position (the state shown in FIG. 3) by the urging force of the spring 19b as the urging member.
  • the normal position of the first merging control valve 19 corresponds to the first neutral position
  • the switching position corresponds to the first pilot pressure position.
  • the first merging control valve 19 When the first merging control valve 19 is in the normal position, the oil discharged from the third pump P3 is guided to the center bypass passage 12. On the other hand, when the first pilot pressure is guided to the pilot chamber 19a, the first merging control valve 19 is switched to the switching position, and the oil discharged from the third pump P3 is transferred to the center bypass passage 12, the boom merging passage 14, and the parallel passage 15. Supplied.
  • the third pump P3 communicates with the center bypass passage 12 through the throttle.
  • the throttle substantially blocks communication between the third pump P3 and the center bypass passage 12. Accordingly, at the switching position of the first merging control valve 19, the discharge oil of the third pump P 3 is preferentially supplied to the boom merging passage 14 and the parallel passage 15.
  • the first merging control valve 19 may be configured to completely block communication between the third pump P3 and the center bypass passage 12 at the switching position.
  • the boom merging passage 14 When the first merging control valve 19 is in the switching position, the boom merging passage 14 is connected in parallel with the center bypass passage 12 with respect to the third pump P3.
  • the boom junction passage 14 is a passage that communicates with the boom switching valve 1 via the second junction control valve 20. Therefore, when the switching valve 1 for the boom is switched and the first pump P1 and the boom cylinder 40 communicate with each other, the first merging control valve 19 is also switched, so that the discharge oil of the third pump P3 is supplied to the merging passage for the boom. 14 and the boom switching valve 1 are supplied to the boom cylinder 40.
  • the arm pilot pressure introduction path pa is connected to the pilot chamber 20a of the second merging control valve 20.
  • the second merging control valve 20 is maintained at the normal position (the state shown in FIG. 3) by the urging force of the spring 20b as the urging member.
  • the second pilot pressure is introduced to 20a, the position is switched to the switching position.
  • the normal position of the second merging control valve 20 corresponds to the second neutral position
  • the switching position corresponds to the second pilot pressure position.
  • the second merging control valve 20 is connected to an arm merging passage 13 branched from the center bypass passage 12 on the upstream side of the second merging control valve 20 and connected to the arm switching valve 2 on the downstream side.
  • the center bypass passage 12 the boom merging passage 14, and the arm merging passage 13 are simultaneously communicated.
  • the boom joining passage 14 and the center bypass passage 12 are blocked, and only the arm joining passage 13 communicates.
  • the discharge oil of the first pump P1 is supplied to the first circuit system I for the boom switching valve 1, the left travel motor switching valve 4 and the bucket.
  • the oil supplied to the switching valve 5 and discharged from the second pump P2 is the switching valve 2 for the arm provided in the second circuit system II, the switching valve 6 for the right traveling motor, the switching valve 7 for the boom swing, It is supplied to the spare switching valve 8.
  • the oil discharged from the third pump P3 is supplied to the switching valve 3 for turning provided in the third circuit system III and the switching valve 9 for dozer, but all the switching valves provided in the third circuit system III.
  • 3, 9, 19, and 20 are in the normal position, they are returned to the tank T through the center bypass passage 12 and the tank passage 30.
  • the first pilot pressure in the boom system pilot pressure introduction path pb acts on the pilot chamber 19a, and the first merging control valve 19 is switched to the switching position on the left side in the figure. Change.
  • the third pump P3 communicates with the boom junction passage 14, the parallel passage 15, and the center bypass passage 12. Since the boom merging passage 14 communicates with the second merging control valve 20, the discharge oil of the third pump P3 is supplied to the boom cylinder 40 through the boom merging passage 14 and the boom switching valve 1.
  • the third pump P3 also communicates with the bucket switching valve 5 connected in parallel with the boom switching valve 1 with respect to the boom junction passage 14, so that the discharge oil of the third pump P3 is Also supplied to the bucket switching valve 5. Further, since the third pump P3 is also communicated with the parallel passage 15 through the first merging control valve 19, the discharge oil of the third pump P3 is switched in each second circuit system II connected to the parallel passage 15. Valves 7 and 8 are also supplied.
  • the center bypass passage 12 communicates with the tank passage 30 via the second merge control valve 20 in the normal position.
  • the center bypass passage 12 is throttled by the throttle provided in the first merging control valve 19. Therefore, the discharge oil of the third pump P3 is preferentially supplied to the boom junction passage 14 and the parallel passage 15.
  • the second pilot pressure acts on the pilot chamber 20a of the second merging control valve 20, and the second merging control valve 19 is switched.
  • the control valve 20 switches to the left switching position in the figure.
  • the center bypass passage 12 and the boom merging passage 14 are blocked, and only the arm merging passage 13 communicates. Accordingly, the oil discharged from the third pump P3 is not supplied to the boom switching valve 1, but is supplied to the arm cylinder 41 through the arm junction passage 13 and the arm switching valve 2.
  • the third pump P3 communicates with the parallel passage 15 through the first junction control valve 19, not only the arm junction passage 13 but also the parallel passage 15, the passage 16 and the discharge oil of the third pump P3 are discharged. It is supplied to the arm cylinder 41 through the arm switching valve 2.
  • a passage composed of the parallel passage 15 and the passage 16 corresponds to the second arm joining passage.
  • the switching valve 1 for the boom is switched. Regardless of the operation, that is, whether or not the first pump P1 and the boom cylinder 40 communicate with each other, the communication between the third pump P3 and the boom junction passage 14 is blocked. That is, the merged discharge oil discharged from the third pump P3 is preferentially supplied to the arm cylinder 41 rather than the boom cylinder 40.
  • the second merging control valve 20 is switched only by the pilot pressure in the arm system pilot pressure introduction passage pa, it is not necessary to select a spring that satisfies a predetermined relationship with the pilot pressure as in the conventional control circuit.
  • the discharge oil of the third pump can be preferentially supplied to the arm cylinder 41 only by switching the arm switching valve 2.
  • the example in which the pressure oil is used as the working fluid has been described.
  • the working fluid not only oil but also other liquids such as water and gases such as air can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 第1、第2、第3ポンプと、第1ポンプに接続した第1切換弁と、第2ポンプに接続した第2切換弁と、第3ポンプに接続した第1合流制御弁と、第1合流制御弁の下流に設けられた第2合流制御弁とを備え、第1合流制御弁は第1切換弁又は第2切換弁のパイロット圧で切り換わって第3ポンプと下流側とを連通し、第2合流制御弁は第2切換弁のパイロット圧で切り換わって、第3ポンプと第1切換弁との連通を遮断する。

Description

パワーショベルの流体圧制御装置
 本発明は、パワーショベルの流体圧制御装置に関するものである。
 パワーショベル油圧制御回路として、第1~第3ポンプそれぞれに第1~第3回路系統を接続すると共に、必要に応じて第3ポンプの吐出油を第1、第2回路系統に合流させるものが知られている。
 JP1998-88627Aに開示の制御回路は、第1回路系統に設けられたブーム用切換弁のみを切り換えたときには、第3ポンプの吐出油がブームシリンダに供給され、アーム用切換弁のみを切り換えたときには、第3ポンプの吐出油がアームシリンダに供給され、ブーム用切換弁とアーム用切換弁とを同時に切り換えたときには、第3ポンプの吐出油がアームシリンダに優先的に供給されるように構成される。
 具体的には、上記制御回路は、アームシリンダに優先的に第3ポンプの吐出油を供給するための増速用油圧バルブを備える。増速用油圧バルブは、ブーム用切換弁のパイロット圧とアーム用切換弁のパイロット圧とがそれぞれ導かれる両パイロット室と、アーム用切換弁のパイロット圧と同方向に付勢力を付与するスプリングと、を有する。
 増速用油圧バルブは、ブーム用切換弁のパイロット圧のみが作用したときには、ブーム用切換弁のパイロット圧がスプリングの付勢力に打ち勝つことによって、第3ポンプの吐出油をブームシリンダに供給するように切り換わり、アーム用切換弁のパイロット圧のみが作用したときには、アーム用切換弁のパイロット圧とスプリングの付勢力とによって、第3ポンプの吐出油をアームシリンダに供給するように切り換わる。また、増速用油圧バルブは、ブーム用切換弁とアーム用切換弁の両パイロット圧が作用したときには、アーム用切換弁のパイロット圧とスプリングの付勢力との合力がブーム用切換弁のパイロット圧に打ち勝つことによって、第3ポンプの吐出油をアームシリンダに供給するように切り換わる。
 JP1998-88627Aに開示の制御回路では、増速用油圧バルブのスプリングの付勢力を、ブーム用切換弁のパイロット圧よりも小さく、かつ、両パイロット圧の差圧に打ち勝つ大きさに設定する必要があるため、スプリングの選定が難しいという問題がある。
 本発明は、煩雑なスプリングの選定が不要となるパワーショベルの流体圧制御装置を提供することを目的とする。
 本発明のある態様によれば、パワーショベルの流体圧制御装置であって、第1アクチュエータに作動流体を供給する第1ポンプと、第2アクチュエータに作動流体を供給する第2ポンプと、前記第1ポンプと前記第1アクチュエータとを連通又は遮断する第1切換弁と、前記第2ポンプと前記第2アクチュエータとを連通又は遮断する第2切換弁と、前記第1及び第2アクチュエータに作動流体を供給可能な第3ポンプと、前記第3ポンプの下流側に設けられ、前記第3ポンプとタンクとを連通するタンク連通位置及び前記第3ポンプと下流側とを連通する下流側連通位置を有し、前記タンク連通位置及び前記下流側連通位置を切り換える第1合流制御弁と、前記第1合流制御弁の下流側に設けられ、前記第3ポンプと前記第1アクチュエータとを連通する第1アクチュエータ連通位置と、前記第3ポンプと前記第1アクチュエータとを遮断する第1アクチュエータ遮断位置とを有し、前記第1アクチュエータ連通位置及び第1アクチュエータ遮断位置を切り換える第2合流制御弁と、を備え、前記第1合流制御弁は、付勢部材の付勢力によって前記第1合流制御弁の前記タンク連通位置を保持し、前記第1切換弁が前記第1ポンプと前記第1アクチュエータとを連通するための第1パイロット圧、又は、前記第2切換弁が前記第2ポンプと前記第2アクチュエータとを連通するための第2パイロット圧によって、前記タンク連通位置から前記下流側連通位置に切り換わり、前記第2合流制御弁は、付勢部材の付勢力によって前記第1アクチュエータ連通位置を保持し、前記第2パイロット圧によって、前記第1アクチュエータ連通位置から前記第1アクチュエータ遮断位置に切り換わるパワーショベルの流体圧制御装置が提供される。
 本発明の別の態様によれば、パワーショベルの流体圧制御装置であって、第1アクチュエータに作動流体を供給する第1ポンプと、第2アクチュエータに作動流体を供給する第2ポンプと、前記第1ポンプと前記第1アクチュエータとを連通又は遮断する第1切換弁と、前記第2ポンプと前記第2アクチュエータとを連通又は遮断する第2切換弁と、前記第1及び第2アクチュエータに作動流体を供給可能な第3ポンプと、前記第3ポンプの下流側に設けられ、付勢部材の付勢力によって保持される第1中立位置、及び前記第1切換弁が前記第1ポンプと前記第1アクチュエータとを連通するための第1パイロット圧により保持される第1パイロット圧位置を有し、前記第3ポンプと下流側との連通状態を前記第1中立位置及び前記第1パイロット圧位置によって切り換える第1合流制御弁と、前記第1合流制御弁の下流側に設けられ、付勢部材の付勢力によって保持される第2中立位置、及び前記第2切換弁が前記第2ポンプと前記第2アクチュエータとを連通するための第2パイロット圧により保持される第2パイロット圧位置とを有し、前記第1合流制御弁とタンク又は前記第1アクチュエータとの連通状態を前記第2中立位置及び前記第2パイロット圧位置によって切り換える第2合流制御弁と、を備え、前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプとタンクとを連通し、前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記第1アクチュエータとを連通し、前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記第1アクチュエータとを遮断し、前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記第1アクチュエータとを遮断するパワーショベルの流体圧制御装置が提供される。
 本発明の別の態様によれば、パワーショベルの流体圧制御装置であって、ブームシリンダに作動流体を供給する第1ポンプと、アームシリンダに作動流体を供給する第2ポンプと、前記第1ポンプと前記ブームシリンダとを連通又は遮断するための第1パイロット圧を導くブーム系パイロット圧導入路が接続されたブーム用の切換弁と、前記第2ポンプと前記アームシリンダとを連通又は遮断するための第2パイロット圧を導くアーム系パイロット圧導入路が接続されたアーム用の切換弁と、前記ブームシリンダ及び前記アームシリンダに作動流体を供給可能な第3ポンプと、前記第3ポンプとタンクとを連通させるセンターバイパス通路と、前記センターバイパス通路と並列であり、前記ブーム用の切換弁に接続されるブーム合流通路と、前記センターバイパス通路と前記ブーム合流通路とに接続され、前記ブーム系パイロット圧導入路に接続される第1パイロット室を有する第1合流制御弁と、前記第1合流制御弁の下流側で前記センターバイパス通路から分岐され前記アーム用の切換弁に接続されるアーム合流通路と、前記センターバイパス通路と前記ブーム合流通路と前記アーム合流通路とに接続され、前記アーム系パイロット圧導入路に接続される第2パイロット室を有する第2合流制御弁と、を備え、前記第1合流制御弁は、前記第3ポンプと前記タンクとを連通させ、付勢部材の付勢力によって保持される第1中立位置と、前記第1パイロット室に前記ブーム系パイロット圧が導かれた際に前記第3ポンプと前記ブーム用の切換弁とを連通させる第1パイロット圧位置とを有し、前記第2合流制御弁は、前記第3ポンプと前記タンク及び前記ブーム用の切換弁とを連通させ、付勢部材の付勢力によって保持される第2中立位置と、前記第2パイロット室に前記アーム系パイロット圧が導かれた際に前記第3ポンプと前記ブーム用の切換弁とを遮断させる第2パイロット圧位置とを有し、前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記タンクとを連通し、前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを連通し、前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを遮断し、前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを遮断するパワーショベルの流体圧制御装置が提供される。
図1は、本発明の第1実施形態に係るパワーショベルの流体圧制御装置の回路図である。 図2は、本発明の第2実施形態に係るパワーショベルの流体圧制御装置の回路図である。 図3は、本発明の第3実施形態に係るパワーショベルの流体圧制御装置の回路図である。
 図面を参照して、本発明の実施形態について説明する。図1~図3に示す第1~第3実施形態に係るパワーショベルの流体圧制御装置(以下では、単に「流体圧制御装置」と称する。)は、作動流体として圧油を利用する装置であって、パワーショベルに搭載される各アクチュエータの動作を制御するものである。
 図1に示す第1実施形態に係る流体圧制御装置100は、ブームシリンダ40に作動油を供給する第1ポンプP1と、アームシリンダ41に作動油を供給する第2ポンプP2と、旋回用モータに作動油を供給する第3ポンプP3と、第1ポンプP1とブームシリンダ40との間に設けられて第1ポンプP1とブームシリンダ40とを連通又は遮断するブーム用の切換弁1と、第2ポンプP2とアームシリンダ41との間に設けられて第2ポンプP2とアームシリンダ41とを連通又は遮断するアーム用の切換弁2と、第3ポンプP3と旋回用モータとの間に設けられて第3ポンプP3と旋回用モータとを連通又は遮断する旋回用の切換弁3と、を備える。
 第1実施形態において、ブームシリンダ40が第1シリンダに該当し、ブーム用の切換弁1が第1切換弁に該当する。また、アームシリンダ41が第2シリンダに該当し、アーム用の切換弁2が第2切換弁に該当する。
 流体圧制御装置100は、さらに、第1ポンプP1に接続されると共に切換弁1が設けられる第1回路系統Iと、第2ポンプP2に接続されると共に切換弁2が設けられる第2回路系統IIと、第3ポンプP3に接続されると共に切換弁3が設けられる第3回路系統IIIと、を備える。
 第1回路系統Iには、ブーム用の切換弁1の他に、第1ポンプP1の吐出油が供給される左側の走行用の切換弁4及びバケット用の切換弁5が設けられる。切換弁1,5には、走行用の切換弁4がノーマル位置(図1に示す状態)であるときのみに第1ポンプP1の吐出油が供給される。このように、第1回路系統Iにおいては、第1ポンプP1の吐出油は走行用の切換弁4に優先的に供給される。
 第2回路系統IIには、アーム用の切換弁2の他に、第2ポンプP2の吐出油が供給される右側の走行用の切換弁6、ブームスイング用の切換弁7、及び予備のアクチュエータ用の切換弁8が設けられる。第2回路系統IIにおいても、第2ポンプP2の吐出油は走行用の切換弁6に優先的に供給される。
 第3回路系統IIIには、旋回用の切換弁3の他に、第3ポンプP3の吐出油が供給されるドーザ用の切換弁9、第1合流制御弁10、及び第2合流制御弁11が設けられる。第3ポンプP3には、センターバイパス通路12が接続される。センターバイパス通路12は、第3回路系統IIIに設けられた切換弁10,9,3がノーマル位置であるときに、第3ポンプP3の吐出油をタンクTに接続されたタンク通路30へ導く。
 第1合流制御弁10は、第3ポンプP3の下流であって、第3回路系統IIIにおけるセンターバイパス通路12の最上流に設けられる。第2合流制御弁11は、第1合流制御弁10とアーム用の切換弁2との間に設けられる。
 第3ポンプP3と第1合流制御弁10とを接続する通路には、ドーザ用の切換弁9及び旋回用の切換弁3に並列に接続された並列通路21が接続される。切換弁3,9のいずれかが切り換えられ、センターバイパス通路12とタンク通路30との連通が遮断されたとき、第3ポンプP3の吐出油は、並列通路21を通じてドーザ用の切換弁9あるいは旋回用の切換弁3に供給される。
 第1合流制御弁10のパイロット室10aには、ブーム用の切換弁1を切り換えるための第1パイロット圧を導くブーム系パイロット圧導入路pb及びアーム用の切換弁2を切り換えるための第2パイロット圧を導くアーム系パイロット圧導入路paが接続される。
 ブーム系パイロット圧導入路pbは、ブーム用の切換弁1を切り換えるための第1パイロット圧が導かれる通路であり、ブーム用の切換弁1の両パイロット室に接続した通路と連通している。アーム系パイロット圧導入路paは、アーム用の切換弁2を切り換えるための第2パイロット圧が導かれる通路であり、アーム用の切換弁2の両パイロット室に接続した通路と連通している。
 パイロット室10aに第1パイロット圧及び第2パイロット圧のいずれも導かれていないときには、付勢部材としてのスプリング10bの付勢力によって、第1合流制御弁10は、ノーマル位置(図1に示す状態)を保つ。第1合流制御弁10がノーマル位置にあるとき、センターバイパス通路12に供給された吐出油はタンク通路30へ導かれる。
 一方、パイロット室10aに第1あるいは第2パイロット圧が導かれると、第1合流制御弁10は切換位置に切り換わり、第3ポンプP3の吐出油は、センターバイパス通路12、合流用通路31及び並列通路15に供給される。
 第1合流制御弁10の切換位置で、第3ポンプP3は、絞りを介してセンターバイパス通路12にも連通する。しかし、その絞りは、第3ポンプP3とセンターバイパス通路12との連通をほぼ遮断するものである。従って、第1合流制御弁10の切換位置において、第3ポンプP3の吐出油は、合流用通路31及び並列通路15に優先的に供給される。
 第1実施形態において、第1合流制御弁10のノーマル位置がタンク連通位置に該当し、切換位置が下流側連通位置に該当する。第1合流制御弁10は、切換位置において、第3ポンプP3とセンターバイパス通路12との連通を完全に遮断するように構成してもよい。
 第1合流制御弁10が切換位置にあるとき、合流用通路31は、第3ポンプP3に対して、センターバイパス通路12と並列に接続される。合流用通路31は、第2合流制御弁11の上流で分岐し、第2合流制御弁11を介してブーム合流通路14とアーム合流通路13とに接続される。ブーム合流通路14は、ブーム用の切換弁1に第3ポンプP3の吐出油を供給する通路であり、アーム合流通路13は、アーム用の切換弁2に第3ポンプP3の吐出油を供給する通路である。第1実施形態において、合流用通路31とブーム合流通路14とからなる通路がブーム合流通路に該当する。
 第2合流制御弁11のパイロット室11aには、アーム系パイロット圧導入路paが接続される。第2合流制御弁11は、パイロット室11aに第2パイロット圧が導かれていないときに、付勢部材としてのスプリング11bの付勢力によってノーマル位置(図1に示す状態)に保たれ、パイロット室11aに第2パイロット圧が導かれたときには切換位置に切り換わる。
 第2合流制御弁11のノーマル位置では、ブーム合流通路14及びアーム合流通路13が同時に連通する。一方、切換位置では、ブーム合流通路14は遮断され、アーム合流通路13のみが連通する。
 第1実施形態において、第2合流制御弁11のノーマル位置が、第1アクチュエータ連通位置に該当し、切換位置が第3ポンプP3とブームシリンダ40とを遮断する第1アクチュエータ遮断位置に該当する。アーム合流通路13は、第2合流弁11を介さずに第3ポンプP3と接続するように構成してもよい。
 第1実施形態に係る流体圧制御装置において、第1ポンプP1の吐出油は、第1回路系統Iに設けられたブーム用の切換弁1、左側の走行モータ用の切換弁4及びバケット用の切換弁5に供給され、第2ポンプP2の吐出油は、第2回路系統IIに設けられたアーム用の切換弁2、右側の走行モータ用の切換弁6、ブームスイング用の切換弁7及び予備用の切換弁8に供給される。
 第3ポンプP3の吐出油は、第3回路系統IIIに設けられた旋回用の切換弁3、ドーザ用の切換弁9に供給されるが、第3回路系統IIIに設けられた切換弁3,9,10がノーマル位置にあるときは、センターバイパス通路12とタンク通路30を通じてタンクTへ戻される。
 次に、第3ポンプP3の吐出油が、第2ポンプP2の吐出油と合流してアーム用の切換弁2に供給される場合、あるいは第1ポンプP1の吐出油と合流してブーム用の切換弁1に供給される場合について説明する。
 アームシリンダ41を動作させない場合、つまりアーム用の切換弁2がノーマル位置を保っていれば、第2合流制御弁11のパイロット室11aには第2パイロット圧が導かれず、第2合流制御弁11はノーマル位置を保つ。このとき、ブーム合流通路14及びアーム合流通路13は、第2合流制御弁11を介して合流用通路31と連通している。
 この状態で、ブーム用の切換弁1が切り換えられると、ブーム系パイロット圧導入路pbの第1パイロット圧がパイロット室10aに作用し、第1合流制御弁10が図中左側の切換位置に切り換わる。この切換位置では、第3ポンプP3は、常時接続している並列通路21のほか、合流用通路31、並列通路15及びセンターバイパス通路12と連通する。合流用通路31は、第2合流制御弁11においてブーム合流通路14と連通しているので、第3ポンプP3の吐出油は、合流用通路31、ブーム合流通路14及びブーム用の切換弁1を通じてブームシリンダ40へ供給される。
 このとき、第3ポンプP3は、ブーム合流通路14に対してブーム用の切換弁1と並列に接続されているバケット用の切換弁5にも連通するので、第3ポンプP3の吐出油は、第1ポンプP1からの吐出油に合流してバケット用の切換弁5にも供給される。また、第3ポンプP3は、第1合流制御弁10を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、第2ポンプP2からの吐出油に合流して並列通路15に接続された第2回路系統IIの各切換弁7,8にも供給される。
 この状態で第3回路系統IIIの切換弁3,9がノーマル位置(図1に示す状態)であるときには、センターバイパス通路12はタンク通路30に連通するが、第1合流制御弁10の絞りによってセンターバイパス通路12が絞られるので、第3ポンプP3の吐出油は、合流用通路31及び並列通路15へ優先的に供給される。
 一方、第1合流制御弁10が切換位置を維持した状態で、アーム用の切換弁2が切り換えられると、アーム系パイロット圧導入路paの第2パイロット圧がパイロット室11aに作用し、第2合流制御弁11が図中左側の切換位置に切り換わる。第2合流制御弁11の切換位置では、合流用通路31とブーム合流通路14との連通が遮断され、合流用通路31とアーム合流通路13とが連通する。従って、第3ポンプP3からの吐出油は、ブーム用の切換弁1には供給されず、アーム用の切換弁2を通じてアームシリンダ41へ供給される。
 また、第3ポンプP3は、第1合流制御弁10を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、アーム合流通路13だけではなく、並列通路15、通路16及びアーム用の切換弁2を通じてアームシリンダ41へ供給される。
 以上のように、第1実施形態に係る流体圧制御装置では、アームが動作しているとき、つまり第2ポンプP2とアームシリンダ41とが連通しているときには、ブーム用の切換弁1の切り換え動作、つまり第1ポンプP1とブームシリンダ40とが連通されるか否かにかかわらず、第3ポンプP3とブーム合流通路14との連通が遮断される。つまり、第3ポンプP3から吐出される合流用の吐出油は、ブームシリンダ40よりもアームシリンダ41に優先的に供給される。
 そのため、アーム用の切換弁2に第3ポンプP3の吐出油が合流している際に、ブーム用の切換弁1が切り換わったとしても、その切り換えによってアームシリンダ41へ供給される流量が減少してしまうことがない。したがって、例えば、パワーショベルにおいて、水平引き作業など、アームの速度を速くしたい作業に適した制御が可能となる。
 しかも、第2合流制御弁11は、アーム系パイロット圧導入通路paのパイロット圧のみで切り換わるため、従来の制御回路のようにパイロット圧と所定の関係を満足するスプリングを選定する必要もない。
 以上の実施形態によれば、以下に示す効果を奏する。
 アーム用の切換弁2が切り換えられたときには、ブーム用の切換弁1が切り換えられたか否かにかかわらず、第3ポンプP3とブーム用の切換弁1との連通が遮断される。そのため、第3ポンプP3から吐出される作動油を、アーム用の切換弁2を通じてアームシリンダ41へ優先的に供給することができる。
 また、ブーム用の切換弁1が切り換えられたか否かにかかわらず、アーム用の切換弁2の切り換えのみで、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 このように、従来のような煩雑なスプリングの選定を不要にしながら、ブームシリンダ40とアームシリンダ41の同時操作時に、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 図2に示す第2実施形態に係る流体圧制御装置200は、図1に示す第1実施形態と同様に、それぞれ、第1、第2、第3ポンプP1,P2,P3が接続された第1、第2、第3回路系統I,II、IIIを備える。各回路系統に設けた切換弁の構成は、第1実施形態と同じである。第1実施形態と同じ構成要素には図1と同じ符号を用い、各構成要素の詳細な説明は省略するものとする。
 第2実施形態においても、ブームシリンダ40が第1アクチュエータに該当し、ブーム用の切換弁1が第1切換弁に該当し、アームシリンダ41が第2アクチュエータに該当し、アーム用の切換弁2が第2切換弁に該当する。
 第3ポンプP3には、センターバイパス通路12が接続される。センターバイパス通路12は、第3回路系統IIIに設けられた全ての切換弁17,9,3,18がノーマル位置であるときに、第3ポンプP3の吐出油をタンクTに接続されたタンク通路30へ導く。
 第1合流制御弁17は、第3ポンプP3の下流であって第3回路系統IIIにおけるセンターバイパス通路12の最上流に設けられる。第2合流制御弁18は、センターバイパス通路12の最下流であって、第1合流制御弁17とアーム用の切換弁2との間に設けられる。
 第3ポンプP3と第1合流制御弁17とを接続する通路には、ドーザ用の切換弁9及び旋回用の切換弁3に並列に接続された並列通路21が接続される。切換弁3,9のいずれかが切り換えられ、センターバイパス通路12とタンク通路30との連通が遮断されたとき、第3ポンプP3の吐出油は、並列通路21を通じてドーザ用の切換弁9あるいは旋回用の切換弁3に供給される。
 第1合流制御弁17のパイロット室17aには、ブーム用の切換弁1を切り換えるための第1パイロット圧を導くブーム系パイロット圧導入路pbが接続される。パイロット室17aに第1パイロット圧が導かれていないときには、付勢部材としてのスプリング17bの付勢力によって第1合流制御弁17は、ノーマル位置(図2に示す状態)を保つ。
 第1合流制御弁17がノーマル位置にあるとき、第3ポンプP3の吐出油は、センターバイパス通路12及び合流用通路31へ供給される。一方、パイロット室17aに第1パイロット圧が導かれると第1合流制御弁17は切換位置に切り換わり、第3ポンプP3の吐出油はセンターバイパス通路12、合流用通路31及び並列通路15に供給される。
 第1合流制御弁17の切換位置では、第3ポンプP3は、絞りを介してセンターバイパス通路12にも連通する。しかし、その絞りは、第3ポンプP3とセンターバイパス通路12との連通をほぼ遮断するものである。従って、第1合流制御弁17の切換位置では第3ポンプP3の吐出油は、センターバイパス通路12ではなく、合流用通路31及び並列通路15に優先的に供給される。
 第2実施形態において、第1合流制御弁17のノーマル位置が第1中立位置に該当し、切換位置が第1パイロット圧位置に該当する。第1合流制御弁17は、切換位置において、第3ポンプP3とセンターバイパス通路12との連通を完全に遮断するように構成してもよい。
 第1合流制御弁17が切換位置にあるとき、合流用通路31は、第3ポンプP3に対して、センターバイパス通路12と並列に接続される。合流用通路31は、第2合流制御弁18の上流で分岐し、第2合流制御弁18を介してブーム合流通路14とアーム合流通路13とに接続される。ブーム合流通路14は、ブーム用の切換弁1に第3ポンプP3の吐出油を供給する通路であり、アーム合流通路13はアーム用の切換弁2に第3ポンプP3の吐出油を供給する通路である。第2実施形態において、合流用通路31とブーム合流通路14とからなる通路がブーム合流通路に該当する。
 第2合流制御弁18のパイロット室18aには、アーム用の切換弁2を切り換えるための第2パイロット圧を導入するアーム系パイロット圧導入路paが接続される。第2合流制御弁18は、パイロット室18aに第2パイロット圧が導かれていないときに、付勢部材としてのスプリング18bの付勢力によってノーマル位置(図2に示す状態)に保たれ、パイロット室18aに第2パイロット圧が導かれたときには切換位置に切り換わる。第2実施形態において、第2合流制御弁18のノーマル位置が第2中立位置に該当し、切換位置が第2パイロット圧位置に該当する。
 第2合流制御弁18のノーマル位置では、センターバイパス通路12、ブーム合流通路14及びアーム合流通路13が同時に連通する。一方、切換位置では、センターバイパス通路12及びブーム合流通路14が遮断され、アーム合流通路13のみが連通する。
 第2実施形態に係る流体圧制御装置において、第1ポンプP1の吐出油は、第1回路系統Iに設けられたブーム用の切換弁1、左側の走行モータ用の切換弁4及びバケット用の切換弁5に供給され、第2ポンプP2の吐出油は、第2回路系統IIに設けられたアーム用の切換弁2、右側の走行モータ用の切換弁6、ブームスイング用の切換弁7及び予備用の切換弁8に供給される。
 第3ポンプP3の吐出油は、第3回路系統IIIに設けられた旋回用の切換弁3、ドーザ用の切換弁9に供給されるが、第3回路系統IIIに設けられた全ての切換弁3,9,17,18がノーマル位置にあるときは、センターバイパス通路12とタンク通路30を通じてタンクTへ戻される。第3回路系統IIIに設けられた旋回用の切換弁3あるいはドーザ用の切換弁9のいずれかが切り換えられたときには、センターバイパス通路12とタンク通路30との連通は遮断される。
 次に、第3ポンプP3の吐出油が、第2ポンプP2の吐出油と合流してアーム用の切換弁2に供給される場合、あるいは第1ポンプP1の吐出油と合流してブーム用の切換弁1に供給される場合について説明する。
 アームシリンダ41を動作させない場合、つまりアーム用の切換弁2がノーマル位置を保っていれば、第2合流制御弁18のパイロット室18aには第2パイロット圧が導かれず、第2合流制御弁18はノーマル位置を保つ。このとき、ブーム合流通路14及びアーム合流通路13は、第2合流制御弁18を介して合流用通路31と連通している。
 この状態で、ブーム用の切換弁1が切り換えられると、ブーム系パイロット圧導入路pbの第1パイロット圧がパイロット室17aに作用し、第1合流制御弁17が図中左側の切換位置に切り換わる。この切換位置では、第3ポンプP3は、センターバイパス通路12、合流用通路31及び並列通路15と連通する。合流用通路31は、第2合流制御弁18においてブーム合流通路14と連通しているので、第3ポンプP3の吐出油は、合流用通路31、ブーム合流通路14及びブーム用の切換弁1を通じてブームシリンダ40へ供給される。
 このとき、第3ポンプP3は、ブーム合流通路14に対してブーム用の切換弁1と並列に接続されているバケット用の切換弁5にも連通するので、第3ポンプP3の吐出油は、第1ポンプP1からの吐出油に合流してバケット用の切換弁5にも供給される。また、第3ポンプP3は、第1合流制御弁17を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、第2ポンプP2からの吐出油に合流して並列通路15に接続された第2回路系統IIの各切換弁7,8にも供給される。
 一方、第1合流制御弁17が切換位置を維持した状態で、アーム用の切換弁2が切り換えられると、アーム系パイロット圧導入路paの第2パイロット圧がパイロット室18aに作用し、第2合流制御弁18が図中左側の切換位置に切り換わる。第2合流制御弁18の切換位置では、センターバイパス通路12が遮断されるとともに、合流用通路31とブーム合流通路14との連通が遮断され、合流通路31とアーム合流通路13のみが連通する。従って、第3ポンプP3の吐出油は、ブーム用の切換弁1には供給されず、アーム合流通路13及びアーム用の切換弁2を通じてアームシリンダ41へ供給される。
 また、第3ポンプP3は、第1合流制御弁17を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、アーム合流通路13だけではなく、並列通路15、通路16及びアーム用の切換弁2を通じてアームシリンダ41へ供給される。
 以上のように、第2実施形態に係る流体圧制御装置では、アームが動作しているとき、つまり第2ポンプP2とアームシリンダ41とが連通しているときには、ブーム用の切換弁1の切り換え動作、つまり第1ポンプP1とブームシリンダ40とが連通されるか否かにかかわらず、第3ポンプP3とブーム合流通路14との連通が遮断される。つまり、第3ポンプP3から吐出される合流用の吐出油は、ブームシリンダ40よりもアームシリンダ41に優先的に供給される。
 そのため、アーム用の切換弁2に第3ポンプP3の吐出油が合流している際に、ブーム用の切換弁1が切り換わったとしても、その切り換えによってアームシリンダ41へ供給される流量が減少してしまうことがない。したがって、例えば、パワーショベルにおいて、水平引き作業など、アームの速度を速くしたい作業に適した制御が可能となる。
 しかも、第2合流制御弁18は、アーム系パイロット圧導入通路paのパイロット圧のみで切り換わるため、従来の制御回路のようにパイロット圧と所定の関係を満足するスプリングを選定する必要もない。
 以上の実施形態によれば、以下に示す効果を奏する。
 アーム用の切換弁2が切り換えられたときには、ブーム用の切換弁1が切り換えられたか否かにかかわらず、第3ポンプP3とブーム用の切換弁1との連通が遮断される。そのため、第3ポンプP3から吐出される作動油を、アーム用の切換弁2を通じてアームシリンダ41へ優先的に供給することができる。
 また、ブーム用の切換弁1が切り換えられたか否かにかかわらず、アーム用の切換弁2の切り換えのみで、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 このように、従来のような煩雑なスプリングの選定を不要にしながら、ブームシリンダ40とアームシリンダ41の同時操作時に、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 第1、第2実施形態では、第1アクチュエータとしてブームシリンダ40を用いており、第2アクチュエータとしてアームシリンダ41を用いているが、第1、第2実施形態に係る流体圧制御装置は、第1、第2アクチュエータがどのようなアクチュエータであっても、第2アクチュエータに優先的に第3ポンプの吐出流体を供給することができる。従って、第1、第2アクチュエータの組み合わせを変えることで、様々なアクチュエータを、第3ポンプの吐出流体を優先的に供給するアクチュエータとすることができる。
 図3に示す第3実施形態に係る流体圧制御装置300は、図1に示す第1実施形態と同様に、それぞれ、第1、第2、第3ポンプP1,P2,P3が接続された第1、第2、第3回路系統I,II、IIIを備える。各回路系統に設けた切換弁の構成は、第1実施形態と同じである。第1実施形態と同じ構成要素には図1と同じ符号を用い、各構成要素の詳細な説明は省略するものとする。
 第3ポンプP3には、センターバイパス通路12が接続される。センターバイパス通路12は、第3回路系統IIIに設けられた全ての切換弁19,9,3,20がノーマル位置であるときに、第3ポンプP3の吐出油をタンクTに接続されたタンク通路30へ導く。
 第1合流制御弁19は、第3ポンプP3の下流であって第3回路系統IIIにおけるセンターバイパス通路12の最上流に設けられる。第1合流制御弁19には、並列通路15及びブーム合流通路14が接続されている。第2合流制御弁20は、センターバイパス通路12の最下流であって、第1合流制御弁19とアーム用の切換弁2との間に設けられる。
 第3ポンプP3と第1合流制御弁19とを接続する通路には、ドーザ用の切換弁9及び旋回用の切換弁3に並列に接続された並列通路21が接続される。切換弁3,9のいずれかが切り換えられ、センターバイパス通路12とタンク通路30との連通が遮断されたとき、第3ポンプP3の吐出油は、並列通路21を通じてドーザ用の切換弁9あるいは旋回用の切換弁3に供給される。
 第1合流制御弁19のパイロット室19aには、ブーム用の切換弁1を切り換えるための第1パイロット圧を導くブーム系パイロット圧導入路pbが接続される。パイロット室19aに第1パイロット圧が導かれていないときには、付勢部材としてのスプリング19bの付勢力によって、第1合流制御弁19は、ノーマル位置(図3に示す状態)を保つ。第3実施形態において、第1合流制御弁19のノーマル位置が第1中立位置に該当し、切換位置が第1パイロット圧位置に該当する。
 第1合流制御弁19がノーマル位置にあるとき、第3ポンプP3の吐出油は、センターバイパス通路12へ導かれる。一方、パイロット室19aに第1パイロット圧が導かれると第1合流制御弁19は切換位置に切り換わり、第3ポンプP3の吐出油は、センターバイパス通路12、ブーム合流通路14及び並列通路15に供給される。
 第1合流制御弁19の切換位置では、第3ポンプP3は、絞りを介してセンターバイパス通路12にも連通する。しかし、その絞りは、第3ポンプP3とセンターバイパス通路12との連通をほぼ遮断するものである。従って、第1合流制御弁19の切換位置では、第3ポンプP3の吐出油は、ブーム合流通路14及び並列通路15に優先的に供給される。第1合流制御弁19は、切換位置において、第3ポンプP3とセンターバイパス通路12との連通を完全に遮断するように構成してもよい。
 第1合流制御弁19が切換位置にあるとき、ブーム合流通路14は、第3ポンプP3に対し、センターバイパス通路12と並列に接続される。ブーム合流通路14は、第2合流制御弁20を介してブーム用の切換弁1に連通する通路である。従って、ブーム用の切換弁1を切り換えて、第1ポンプP1とブームシリンダ40とが連通したときには、第1合流制御弁19も切り換わるので、第3ポンプP3の吐出油は、ブーム用合流通路14及びブーム用の切換弁1を通じてブームシリンダ40へ供給される。
 第2合流制御弁20のパイロット室20aには、アーム系パイロット圧導入路paが接続される。第2合流制御弁20は、パイロット室20aに第2パイロット圧が導かれていないときに、付勢部材としてのスプリング20bの付勢力によってノーマル位置(図3に示す状態)に保たれ、パイロット室20aに第2パイロット圧が導かれたときには切換位置に切り換わる。第3実施形態において、第2合流制御弁20のノーマル位置が第2中立位置に該当し、切換位置が第2パイロット圧位置に該当する。
 第2合流制御弁20には、第2合流制御弁20の上流側でセンターバイパス通路12から分岐し、下流側においてアーム用の切換弁2に接続されるアーム合流通路13が接続している。第2合流制御弁20のノーマル位置では、センターバイパス通路12、ブーム合流通路14及びアーム合流通路13が同時に連通する。一方、切換位置では、ブーム合流通路14とセンターバイパス通路12が遮断され、アーム合流通路13のみが連通する。
 第3実施形態に係る流体圧制御装置において、第1ポンプP1の吐出油は、第1回路系統Iに設けられたブーム用の切換弁1、左側の走行モータ用の切換弁4及びバケット用の切換弁5に供給され、第2ポンプP2の吐出油は、第2回路系統IIに設けられたアーム用の切換弁2、右側の走行モータ用の切換弁6、ブームスイング用の切換弁7及び予備用の切換弁8に供給される。
 第3ポンプP3の吐出油は、第3回路系統IIIに設けられた旋回用の切換弁3、ドーザ用の切換弁9に供給されるが、第3回路系統IIIに設けられた全ての切換弁3,9,19,20がノーマル位置にあるときは、センターバイパス通路12とタンク通路30を通じてタンクTへ戻される。
 次に、第3ポンプP3の吐出油が、第2ポンプP2の吐出油と合流してアーム用の切換弁2に供給される場合、あるいは第1ポンプP1の吐出油と合流してブーム用の切換弁1に供給される場合について説明する。
 アームシリンダ41を動作させない場合、つまりアーム用の切換弁2がノーマル位置を保っていれば、第2合流制御弁20のパイロット室20aには第2パイロット圧が導かれず、第2合流制御弁20はノーマル位置を保つ。このとき、ブーム合流通路14は連通している。
 この状態で、ブーム用の切換弁1が切り換えられると、ブーム系パイロット圧導入路pbの第1パイロット圧がパイロット室19aに作用し、第1合流制御弁19が図中左側の切換位置に切り換わる。この切換位置では、第3ポンプP3は、ブーム合流通路14、並列通路15及びセンターバイパス通路12と連通する。ブーム合流通路14は第2合流制御弁20において連通しているので、第3ポンプP3の吐出油は、ブーム合流通路14及びブーム用の切換弁1を通じてブームシリンダ40へ供給される。
 このとき、第3ポンプP3は、ブーム合流通路14に対してブーム用の切換弁1と並列に接続されているバケット用の切換弁5にも連通するので、第3ポンプP3の吐出油は、バケット用の切換弁5にも供給される。また、第3ポンプP3は、第1合流制御弁19を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、並列通路15に接続された第2回路系統IIの各切換弁7,8にも供給される。
 この状態でセンターバイパス通路12はノーマル位置の第2合流制御弁20を介してタンク通路30に連通する。例えば、第3回路系統IIIの他の切換弁が全てノーマル位置となりセンターバイパス通路12がタンク通路30と連通しても、第1合流制御弁19に設けられた絞りによってセンターバイパス通路12が絞られるので、第3ポンプP3の吐出油は、ブーム合流通路14及び並列通路15へ優先的に供給される。
 一方、第1合流制御弁19が切換位置を維持した状態で、アーム用の切換弁2が切り換えられると、第2パイロット圧が第2合流制御弁20のパイロット室20aに作用し、第2合流制御弁20が図中左側の切換位置に切り換わる。第2合流制御弁20の切換位置では、センターバイパス通路12及びブーム合流通路14が遮断され、アーム合流通路13のみが連通する。従って、第3ポンプP3の吐出油は、ブーム用の切換弁1には供給されず、アーム合流通路13及びアーム用の切換弁2を通じてアームシリンダ41に供給される。
 また、第3ポンプP3は、第1合流制御弁19を通じて並列通路15にも連通しているので、第3ポンプP3の吐出油は、アーム合流通路13だけではなく、並列通路15、通路16及びアーム用の切換弁2を通じてアームシリンダ41へ供給される。第3の実施形態において、並列通路15と通路16とからなる通路が第2のアーム合流通路に該当する。
 以上のように、第3実施形態に係る流体圧制御装置では、アームが動作しているとき、つまり第2ポンプP2とアームシリンダ41とが連通しているときには、ブーム用の切換弁1の切り換え動作、つまり第1ポンプP1とブームシリンダ40とが連通されるか否かにかかわらず、第3ポンプP3とブーム合流通路14との連通が遮断される。つまり、第3ポンプP3から吐出される合流用の吐出油は、ブームシリンダ40よりもアームシリンダ41に優先的に供給される。
 そのため、アーム用の切換弁2に第3ポンプP3の吐出油が合流している際に、ブーム用の切換弁1が切り換わったとしても、その切り換えによってアームシリンダ41へ供給される流量が減少してしまうことがない。したがって、例えば、パワーショベルにおいて、水平引き作業など、アームの速度を速くしたい作業に適した制御が可能となる。
 しかも、第2合流制御弁20は、アーム系パイロット圧導入通路paのパイロット圧のみで切り換わるため、従来の制御回路のようにパイロット圧と所定の関係を満足するスプリングを選定する必要もない。
 以上の実施形態によれば、以下に示す効果を奏する。
 アーム用の切換弁2が切り換えられたときには、ブーム用の切換弁1が切り換えられたか否かにかかわらず、第3ポンプP3とブーム用の切換弁1との連通が遮断される。そのため、第3ポンプP3から吐出される作動油を、アーム用の切換弁2を通じてアームシリンダ41へ優先的に供給することができる。
 また、ブーム用の切換弁1が切り換えられたか否かにかかわらず、アーム用の切換弁2の切り換えのみで、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 このように、従来のような煩雑なスプリングの選定を不要にしながら、ブームシリンダ40とアームシリンダ41の同時操作時に、第3ポンプの吐出油をアームシリンダ41へ優先的に供給することができる。
 第1~3実施形態では作動流体として圧油を用いる例を説明したが、作動流体としては、油だけでなく、水など他の液体や、空気などの気体を用いることもできる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年11月7日に日本国特許庁に出願された特願2012-245070に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  パワーショベルの流体圧制御装置であって、
     第1アクチュエータに作動流体を供給する第1ポンプと、
     第2アクチュエータに作動流体を供給する第2ポンプと、
     前記第1ポンプと前記第1アクチュエータとを連通又は遮断する第1切換弁と、
     前記第2ポンプと前記第2アクチュエータとを連通又は遮断する第2切換弁と、
     前記第1及び第2アクチュエータに作動流体を供給可能な第3ポンプと、
     前記第3ポンプの下流側に設けられ、前記第3ポンプとタンクとを連通するタンク連通位置及び前記第3ポンプと下流側とを連通する下流側連通位置を有し、前記タンク連通位置及び前記下流側連通位置を切り換える第1合流制御弁と、
     前記第1合流制御弁の下流側に設けられ、前記第3ポンプと前記第1アクチュエータとを連通する第1アクチュエータ連通位置と、前記第3ポンプと前記第1アクチュエータとを遮断する第1アクチュエータ遮断位置とを有し、前記第1アクチュエータ連通位置及び第1アクチュエータ遮断位置を切り換える第2合流制御弁と、を備え、
     前記第1合流制御弁は、
     付勢部材の付勢力によって前記第1合流制御弁の前記タンク連通位置を保持し、
     前記第1切換弁が前記第1ポンプと前記第1アクチュエータとを連通するための第1パイロット圧、又は、前記第2切換弁が前記第2ポンプと前記第2アクチュエータとを連通するための第2パイロット圧によって、前記タンク連通位置から前記下流側連通位置に切り換わり、
     前記第2合流制御弁は、
     付勢部材の付勢力によって前記第1アクチュエータ連通位置を保持し、
     前記第2パイロット圧によって、前記第1アクチュエータ連通位置から前記第1アクチュエータ遮断位置に切り換わるパワーショベルの流体圧制御装置。
  2.  パワーショベルの流体圧制御装置であって、
     第1アクチュエータに作動流体を供給する第1ポンプと、
     第2アクチュエータに作動流体を供給する第2ポンプと、
     前記第1ポンプと前記第1アクチュエータとを連通又は遮断する第1切換弁と、
     前記第2ポンプと前記第2アクチュエータとを連通又は遮断する第2切換弁と、
     前記第1及び第2アクチュエータに作動流体を供給可能な第3ポンプと、
     前記第3ポンプの下流側に設けられ、付勢部材の付勢力によって保持される第1中立位置、及び前記第1切換弁が前記第1ポンプと前記第1アクチュエータとを連通するための第1パイロット圧により保持される第1パイロット圧位置を有し、前記第3ポンプと下流側との連通状態を前記第1中立位置及び前記第1パイロット圧位置によって切り換える第1合流制御弁と、
     前記第1合流制御弁の下流側に設けられ、付勢部材の付勢力によって保持される第2中立位置、及び前記第2切換弁が前記第2ポンプと前記第2アクチュエータとを連通するための第2パイロット圧により保持される第2パイロット圧位置とを有し、前記第1合流制御弁とタンク又は前記第1アクチュエータとの連通状態を前記第2中立位置及び前記第2パイロット圧位置によって切り換える第2合流制御弁と、を備え、
     前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプとタンクとを連通し、
     前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記第1アクチュエータとを連通し、
     前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記第1アクチュエータとを遮断し、
     前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記第1アクチュエータとを遮断するパワーショベルの流体圧制御装置。
  3.  パワーショベルの流体圧制御装置であって、
     ブームシリンダに作動流体を供給する第1ポンプと、
     アームシリンダに作動流体を供給する第2ポンプと、
     前記第1ポンプと前記ブームシリンダとを連通又は遮断するための第1パイロット圧を導くブーム系パイロット圧導入路が接続されたブーム用の切換弁と、
     前記第2ポンプと前記アームシリンダとを連通又は遮断するための第2パイロット圧を導くアーム系パイロット圧導入路が接続されたアーム用の切換弁と、
     前記ブームシリンダ及び前記アームシリンダに作動流体を供給可能な第3ポンプと、
     前記第3ポンプとタンクとを連通させるセンターバイパス通路と、
     前記センターバイパス通路と並列であり、前記ブーム用の切換弁に接続されるブーム合流通路と、
     前記センターバイパス通路と前記ブーム合流通路とに接続され、前記ブーム系パイロット圧導入路に接続される第1パイロット室を有する第1合流制御弁と、
     前記第1合流制御弁の下流側で前記センターバイパス通路から分岐され前記アーム用の切換弁に接続されるアーム合流通路と、
     前記センターバイパス通路と前記ブーム合流通路と前記アーム合流通路とに接続され、前記アーム系パイロット圧導入路に接続される第2パイロット室を有する第2合流制御弁と、を備え、
     前記第1合流制御弁は、
     前記第3ポンプと前記タンクとを連通させ、付勢部材の付勢力によって保持される第1中立位置と、
     前記第1パイロット室に前記ブーム系パイロット圧が導かれた際に前記第3ポンプと前記ブーム用の切換弁とを連通させる第1パイロット圧位置とを有し、
     前記第2合流制御弁は、
     前記第3ポンプと前記タンク及び前記ブーム用の切換弁とを連通させ、付勢部材の付勢力によって保持される第2中立位置と、
     前記第2パイロット室に前記アーム系パイロット圧が導かれた際に前記第3ポンプと前記ブーム用の切換弁とを遮断させる第2パイロット圧位置とを有し、
     前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記タンクとを連通し、
     前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2中立位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを連通し、
     前記第1合流制御弁が前記第1中立位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを遮断し、
     前記第1合流制御弁が前記第1パイロット圧位置であって前記第2合流制御弁が前記第2パイロット圧位置の場合に、前記第3ポンプと前記ブーム用の切換弁とを遮断するパワーショベルの流体圧制御装置。
  4.  請求項3に記載のパワーショベルの流体圧制御装置であって、
     前記第1合流制御弁には、前記第3ポンプと前記アーム用の切換弁とを連通させる第2のアーム合流通路がさらに接続され、
     前記第2のアーム合流通路は、前記第1合流制御弁が前記第1パイロット圧位置の場合に前記第3ポンプと前記アーム用の切換弁とを連通するパワーショベルの流体圧制御装置。
PCT/JP2013/079972 2012-11-07 2013-11-06 パワーショベルの流体圧制御装置 WO2014073551A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/441,097 US9702380B2 (en) 2012-11-07 2013-11-06 Fluid pressure control device for power shovel
CN201380058377.6A CN104769286B (zh) 2012-11-07 2013-11-06 铲土机的流体压控制装置
DE112013005302.0T DE112013005302T5 (de) 2012-11-07 2013-11-06 Fluiddruck-Steuervorrichtung für einen Hydraulikbagger
KR1020157011215A KR101714284B1 (ko) 2012-11-07 2013-11-06 파워 셔블의 유체압 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-245070 2012-11-07
JP2012245070A JP6012021B2 (ja) 2012-11-07 2012-11-07 パワーショベルの流体圧制御装置

Publications (2)

Publication Number Publication Date
WO2014073551A1 true WO2014073551A1 (ja) 2014-05-15
WO2014073551A9 WO2014073551A9 (ja) 2015-01-08

Family

ID=50684653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079972 WO2014073551A1 (ja) 2012-11-07 2013-11-06 パワーショベルの流体圧制御装置

Country Status (6)

Country Link
US (1) US9702380B2 (ja)
JP (1) JP6012021B2 (ja)
KR (1) KR101714284B1 (ja)
CN (1) CN104769286B (ja)
DE (1) DE112013005302T5 (ja)
WO (1) WO2014073551A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600386B1 (ja) * 2018-07-06 2019-10-30 Kyb株式会社 弁装置
WO2021222532A1 (en) * 2020-05-01 2021-11-04 Cummins Inc. Distributed pump architecture for multifunctional machines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164391U (ja) * 1978-05-11 1979-11-17
JP2005121043A (ja) * 2003-10-14 2005-05-12 Nabtesco Corp 油圧回路及びその合流弁
JP2006328765A (ja) * 2005-05-25 2006-12-07 Kobelco Contstruction Machinery Ltd 油圧ショベルの油圧供給装置
JP2012036909A (ja) * 2010-08-03 2012-02-23 Kobelco Contstruction Machinery Ltd 建設機械の油圧回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643260Y2 (ja) * 1988-02-29 1994-11-09 川崎重工業株式会社 建設機械の油圧装置
JP3681833B2 (ja) 1996-09-19 2005-08-10 ヤンマー株式会社 掘削旋回作業機の油圧回路
JP4137431B2 (ja) * 2001-11-09 2008-08-20 ナブテスコ株式会社 油圧回路
JP4139352B2 (ja) * 2004-05-19 2008-08-27 カヤバ工業株式会社 油圧制御装置
JP2006329248A (ja) * 2005-05-24 2006-12-07 Kobelco Contstruction Machinery Ltd 作業機械の油圧供給装置
JP4825765B2 (ja) * 2007-09-25 2011-11-30 株式会社クボタ バックホーの油圧システム
KR100974283B1 (ko) * 2008-08-08 2010-08-06 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭 및 파이프 레잉 작업을 위한 유량 분배 시스템
JP4768002B2 (ja) * 2008-09-08 2011-09-07 ナブテスコ株式会社 建設機械の油圧回路
KR101517240B1 (ko) * 2008-12-23 2015-05-06 두산인프라코어 주식회사 건설기계의 유압회로
CN101886405B (zh) * 2010-07-21 2012-01-11 山河智能装备股份有限公司 挖掘节能及平地高效的小型液压挖掘机主阀
EP2602491B1 (en) * 2010-08-03 2021-03-31 Kobelco Construction Machinery Co., Ltd. Construction machine having hydraulic circuit
JP5429098B2 (ja) * 2010-08-03 2014-02-26 コベルコ建機株式会社 建設機械の油圧回路
JP5803587B2 (ja) * 2011-11-09 2015-11-04 コベルコ建機株式会社 建設機械の油圧回路
JP6043260B2 (ja) 2013-09-11 2016-12-14 日本電信電話株式会社 通信システム及び光信号伝送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164391U (ja) * 1978-05-11 1979-11-17
JP2005121043A (ja) * 2003-10-14 2005-05-12 Nabtesco Corp 油圧回路及びその合流弁
JP2006328765A (ja) * 2005-05-25 2006-12-07 Kobelco Contstruction Machinery Ltd 油圧ショベルの油圧供給装置
JP2012036909A (ja) * 2010-08-03 2012-02-23 Kobelco Contstruction Machinery Ltd 建設機械の油圧回路

Also Published As

Publication number Publication date
US9702380B2 (en) 2017-07-11
KR20150063518A (ko) 2015-06-09
JP2014092260A (ja) 2014-05-19
DE112013005302T5 (de) 2015-07-30
WO2014073551A9 (ja) 2015-01-08
KR101714284B1 (ko) 2017-03-08
JP6012021B2 (ja) 2016-10-25
US20150285274A1 (en) 2015-10-08
CN104769286B (zh) 2016-02-24
CN104769286A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
KR101820324B1 (ko) 파이프 레이어용 유압회로
WO2014073515A1 (ja) パワーショベルの流体圧制御装置
JP5367895B2 (ja) ホイールローダのステアリング装置
US20100043420A1 (en) Hydraulic system for construction equipment
JP5302560B2 (ja) 建設装備用油圧回路
EP3037676B1 (en) Multidirectional switching valve for construction machine
JP6196567B2 (ja) 建設機械の油圧駆動システム
CN107532619B (zh) 流体压控制装置
WO2014073551A1 (ja) パワーショベルの流体圧制御装置
KR101807980B1 (ko) 작업기의 제어 시스템 및 저압 선택 회로
KR101844170B1 (ko) 건설 기계의 유체압 제어 장치
KR101728596B1 (ko) 파워 셔블의 제어 밸브 장치
JP2008286264A (ja) 油圧制御装置
JP5455563B2 (ja) 油圧回路装置
JP4020878B2 (ja) 油圧制御装置
JP5036486B2 (ja) 油圧回路および建設機械用油圧制御装置
KR20150068087A (ko) 건설기계용 유압회로
JP2011075025A (ja) 走行直進制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380058377.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011215

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441097

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130053020

Country of ref document: DE

Ref document number: 112013005302

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852590

Country of ref document: EP

Kind code of ref document: A1