WO2014073539A1 - 移動通信システム、基地局、プロセッサ及びユーザ端末 - Google Patents

移動通信システム、基地局、プロセッサ及びユーザ端末 Download PDF

Info

Publication number
WO2014073539A1
WO2014073539A1 PCT/JP2013/079926 JP2013079926W WO2014073539A1 WO 2014073539 A1 WO2014073539 A1 WO 2014073539A1 JP 2013079926 W JP2013079926 W JP 2013079926W WO 2014073539 A1 WO2014073539 A1 WO 2014073539A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
communication
base station
processor
enb
Prior art date
Application number
PCT/JP2013/079926
Other languages
English (en)
French (fr)
Inventor
童 方偉
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/439,431 priority Critical patent/US9661669B2/en
Priority to JP2014545714A priority patent/JP6028038B2/ja
Publication of WO2014073539A1 publication Critical patent/WO2014073539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to a mobile communication system, a base station, a processor, and a user terminal that support D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct wireless communication within a frequency band assigned to a mobile communication system.
  • the D2D communication may also be referred to as proximity service communication.
  • the current specification has a problem that D2D communication cannot be effectively used because there is no mechanism for appropriately controlling D2D communication.
  • the present invention provides a mobile communication system, a base station, a processor, and a user terminal that can effectively use D2D communication.
  • a base station a first user terminal that establishes a connection with the base station, and a second user terminal that communicates with the first user terminal via the base station, And a mobile communication system that supports D2D communication that is direct communication between terminals.
  • the base station transmits a discovery signal used for discovery of a communication partner terminal in the D2D communication Is transmitted to the first user terminal.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a data path in cellular communication.
  • FIG. 7 is a diagram illustrating a data path in D2D communication.
  • FIG. 8 is a diagram illustrating a positional relationship between the UE 100-1 and the UE 100-2 and the eNB 200.
  • FIG. 9 is a diagram showing a communication management table.
  • FIG. 10 is an example of a sequence diagram of the overall operation according to the first embodiment.
  • FIG. 10 is an example of a sequence diagram of the overall operation according to the first embodiment.
  • FIG. 11 is a flowchart of the position information acquisition operation and the D2D communication determination operation according to the first embodiment.
  • FIG. 12 is a flowchart of the switching operation from cellular communication to D2D communication of the eNB 200 according to the first embodiment.
  • FIG. 13 is a flowchart of the recording operation of the communication management table of the eNB 200 according to the first embodiment.
  • FIG. 14 is a flowchart showing an operation of the UE 100-1 according to the first embodiment.
  • FIG. 15 is a flowchart showing an operation of the UE 100-2 according to the first embodiment.
  • FIG. 16 is a sequence diagram of the position information acquisition operation and the D2D communication determination operation according to the second embodiment.
  • FIG. 17 is a diagram illustrating an example of a positional relationship between the UE 100-1 and the UE 100-2, the eNB 200, and the eNB 202 according to the third embodiment.
  • FIG. 18 is an example of a sequence diagram of the overall operation according to the third embodiment.
  • FIG. 19 is a flowchart of the position information acquisition operation and the D2D communication determination operation according to the third embodiment.
  • a mobile communication system includes: a base station; a first user terminal that establishes a connection with the base station; a second user terminal that communicates with the first user terminal via the base station; And supports D2D communication which is direct terminal-to-terminal communication.
  • the base station uses a discovery signal used for finding a communication partner terminal in the D2D communication. Is transmitted to the first user terminal. Accordingly, when the first user terminal and the second user terminal are communicating, the first user terminal is caused to transmit a discovery signal, and the D2D communication between the first user terminal and the second user terminal is promoted. Instead of communication performed via the base station, the load on the base station can be reduced by performing D2D communication between the first user terminal and the second user terminal. Therefore, D2D communication can be used effectively.
  • “discovering a communication partner terminal” includes not only discovery of a communication partner terminal (Discover) but also discovery from the communication partner terminal (Discoverable).
  • a determination unit that determines whether or not the D2D communication is performed by the first user terminal and the second user terminal is provided, and the determination unit includes each position of the first user terminal and the second user terminal.
  • the determination unit includes each position of the first user terminal and the second user terminal.
  • the determination unit is provided in the base station. Thereby, the base station can directly determine whether the D2D communication by the first user terminal and the second user terminal is possible.
  • the determination unit is provided in a host device of the base station. Thereby, even if it is a case where the 2nd user terminal has established the connection with the adjacent base station adjacent to a base station, the propriety of the said D2D communication by a 1st user terminal and a 2nd user terminal can be determined.
  • the location information includes direction information indicating directions of the first user terminal and the second user terminal with respect to the base station, and the first user terminal and the second user terminal. And distance information indicating a distance between each of the base stations and the base station.
  • the base station communicates with each of the first user terminal and the second user terminal by multi-antenna transmission, and the direction information corresponds to a directivity pattern in the multi-antenna transmission. Determined. Thereby, the base station can estimate each direction of a 1st user terminal and a 2nd user terminal using multi-antenna transmission.
  • the distance information is obtained from a timing at which the base station receives an uplink signal transmitted from each of the first user terminal and the second user terminal. It is determined according to the propagation delay time of each of the two user terminals. Thereby, the base station can estimate the distance between each of the first user terminal and the second user terminal and the base station by utilizing transmission timing adjustment processing (timing advance processing).
  • the distance information is received when the base station receives the transmission power of the uplink signal transmitted from each of the first user terminal and the second user terminal, and the uplink signal. It is determined according to the propagation loss of each of the first user terminal and the second user terminal obtained from power. Thereby, the base station can estimate the distance between each of the first user terminal and the second user terminal and the base station using information on uplink transmission power control.
  • the position information includes information indicating the positions of the first user terminal and the second user terminal obtained by the global positioning system.
  • the location information is information indicating each serving cell of the first user terminal and the second user terminal
  • the determination unit includes a cell in which the first user terminal is located, Alternatively, when the second user terminal is located in an adjacent cell adjacent to a cell where the first user terminal is located, it is determined that the D2D communication between the first user terminal and the second user terminal is possible. To do. Thereby, the base station determines whether or not D2D communication between the first user terminal and the second user terminal is possible without specifying the respective positions of the first user terminal and the second user terminal. Can do.
  • the instruction includes information specifying timing for transmitting the discovery signal.
  • the base station can control the timing at which the discovery signal is transmitted.
  • the base station has an adjacent base station adjacent to the base station, and the base station, when the second user terminal has established a connection with the adjacent base station, from the adjacent base station The position information of the second user terminal is acquired. Thereby, since the base station can acquire the position information of the second user terminal that has not established a connection with the base station, an area where it can be determined that D2D communication is possible is expanded.
  • the first user terminal when the first user terminal receives the instruction, the first user terminal stops data transmission to the base station. Thereby, during preparation for performing D2D communication, since the 1st user terminal does not need to transmit data to a base station, it can reduce the load of the 1st user terminal.
  • a base station in a mobile communication system that supports D2D communication that is direct inter-terminal communication, the first user terminal establishing a connection with the base station, and the base station via the base station
  • D2D communication that is direct inter-terminal communication
  • a control unit configured to transmit to the first user terminal
  • a processor provided in a base station in a mobile communication system that supports D2D communication that is direct inter-terminal communication, the first user terminal establishing a connection with the base station, and the base station
  • a discovery signal used for discovery of the communication partner terminal in the D2D communication is transmitted. For transmitting the instruction to the first user terminal.
  • a user terminal that establishes a connection with a base station, the user terminal and the user via the base station
  • a reception unit that receives an instruction transmitted from the base station when it is determined that the D2D communication with another user terminal that performs communication with the terminal is possible; and when the reception unit receives the instruction,
  • a control unit that transmits a discovery signal used for discovery of a communication partner terminal in the D2D communication, and the instruction is an instruction for causing the discovery signal to be transmitted.
  • a processor provided in a user terminal that establishes a connection with a base station, the user terminal and the base station via Then, when it is determined that the D2D communication with another user terminal that communicates with the user terminal is possible, a process of receiving an instruction transmitted from the base station is performed, and the receiving unit receives the instruction. When received, a process of transmitting a discovery signal used for discovery of a communication partner terminal in the D2D communication is executed, and the instruction is an instruction for transmitting the discovery signal.
  • LTE system cellular mobile communication system
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM 400 (Operation and Maintenance).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM 400 Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • Antenna 101 includes a plurality of antenna elements 101 # 1-101 # n.
  • the radio transceiver 110 performs signal processing on the baseband signal output from the processor 160, and then performs up-conversion and amplification, and transmits the radio signal from the antenna 101.
  • the wireless transceiver 110 performs amplification and down-conversion of the wireless signal received by the antenna 101, and then performs signal processing on the baseband signal and outputs the signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit. Further, the memory 230 and the processor 240 constitute a determination unit.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 '.
  • Antenna 201 includes a plurality of antenna elements 201 # 0 to 201 # 3.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 performs signal processing on the baseband signal output from the processor 240 and then performs up-conversion and amplification, and transmits the radio signal from the antenna 201.
  • the radio transceiver 210 performs amplification and down-conversion of the received signal, and then performs signal processing on the baseband signal and outputs it to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state, otherwise, the UE 100 is in an idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiplexing Access) for the downlink and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one subcarrier and one symbol is called a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CRS cell-specific reference signals
  • PDCCH carries a control signal.
  • the control signal is, for example, uplink SI (Scheduling Information), downlink SI, and TPC bits.
  • Uplink SI indicates allocation of uplink frequency / time resources
  • downlink SI indicates allocation of downlink frequency / time resources.
  • the TPC bit is a signal instructing increase / decrease in uplink transmission power.
  • the PDSCH carries control signals and / or user data.
  • the downlink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH). Further, a demodulation reference signal (DMRS) and a sounding reference signal (SRS) are arranged in each subframe.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the PUCCH carries a control signal.
  • the control signal is, for example, PMI (Precoding Matrix Indicator).
  • PUSCH is a physical channel that carries control signals and / or user data.
  • the uplink data area may be allocated only to user data, or may be allocated such that user data and control signals are multiplexed.
  • D2D communication Next, normal communication (cellular communication) of the LTE system and D2D communication will be compared and described.
  • FIG. 6 is a diagram showing a data path in cellular communication.
  • a data path means a transfer path of user data (user plane).
  • the data path of cellular communication goes through the network. Specifically, a data path passing through the eNB 200-1, the S-GW 300, and the eNB 200-2 is set.
  • FIG. 7 is a diagram showing a data path in D2D communication. Here, a case where D2D communication is performed between the UE 100-1 that has established a connection with the eNB 200-1 and the UE 100-2 that has established a connection with the eNB 200-2 is illustrated.
  • the data path of D2D communication does not go through the network. That is, direct radio communication is performed between UEs. As described above, if the UE 100-2 exists in the vicinity of the UE 100-1, the network traffic load and the battery consumption of the UE 100 are reduced by performing D2D communication between the UE 100-1 and the UE 100-2. The effect of doing etc. is acquired. Note that in the locally routed mode, the data path does not pass through the S-GW 300 but passes through the eNB 200.
  • D2D communication As a case where D2D communication is started, (a) a case where D2D communication is started after the partner terminal is discovered by performing an operation for discovering the partner terminal, and (b) a partner terminal is discovered. There is a case where D2D communication is started without performing the operation for.
  • D2D communication is started when one of the UEs 100-1 and 100-2 discovers the other UE 100 in the vicinity.
  • the UE 100 discovers another UE 100 existing in the vicinity of the UE 100 in order to discover the partner terminal (Discover), and / or the UE 100 is discovered from the other UE 100 (Discoverable). It has a function.
  • the UE 100 does not necessarily need to perform D2D communication even if it discovers the counterpart terminal.
  • the UE 100-1 and the UE 100-2 may negotiate each other and then perform D2D communication after discovering each other. It may be determined.
  • Each of the UE 100-1 and the UE 100-2 starts D2D communication when agreeing to perform D2D communication.
  • the UE 100 starts broadcasting a signal for D2D communication by broadcasting.
  • UE100 can start D2D communication irrespective of the presence or absence of a partner terminal's discovery.
  • FIG. 8 is a diagram illustrating a positional relationship between the UE 100-1 and the UE 100-2 and the eNB 200.
  • the UE 100-1 and the UE 100-2 exist in a cell 250 managed by the eNB 200. Further, the UE 100-1 and the UE 100-2 each establish a connection with the eNB 200. UE100-1 and UE100-2 perform cellular communication via eNB200.
  • FIG. 9 is a diagram showing a communication management table according to the present embodiment.
  • the communication management table is a table that records at least a determination result of whether or not a pair of UEs 100 (UE 100-1 and UE 100-2) performing cellular communication is capable of D2D communication.
  • the communication management table is managed by the eNB 200. That is, the communication management table is stored in the memory 230 of the eNB 200.
  • the communication management table includes “UE that is establishing a connection with eNB 200”, “UE that is a communication partner”, “UE that is establishing a connection with eNB 200, and UE that is a communication partner. "Distance between”, “D2D communication availability” and “D2D communication in progress” are recorded.
  • UE that is establishing connection with eNB 200 indicates identification information of each UE 100 that is establishing connection with eNB 200.
  • UE as a communication partner indicates identification information of a user terminal that is a communication partner of each user terminal that is establishing a connection with the eNB 200.
  • Distance between UE that is establishing connection with eNB 200 and communication partner UE is the distance between each user terminal that is establishing connection with eNB 200 and the user terminal that is the communication partner of each user terminal. Show. “Whether or not D2D communication is possible” indicates whether or not each user terminal establishing a connection with the eNB 200 can perform D2D communication.
  • D2D communication in progress indicates whether each user terminal establishing a connection with the eNB 200 is performing D2D communication.
  • FIG. 10 is an example of a sequence diagram of the overall operation according to the first embodiment.
  • step 101 the UE 100-1 and the UE 100-2 perform cellular communication via the eNB 200.
  • the eNB 200 acquires location information of each of the UE 100-1 and the UE 100-2. Details of the operation for acquiring the position information will be described later. Further, the eNB 200 determines whether D2D communication between the UE 100-1 and the UE 100-2 is possible. Specifically, when the eNB 200 estimates that the UE 100-1 and the UE 100-2 are close to each other based on the location information of the UE 100-1 and the UE 100-2, the eNB 100-1 and the UE 100-2 It is determined that D2D communication is possible. The result of determining whether or not D2D communication between the UE 100-1 and the UE 100-2 is possible is recorded in the communication management table.
  • the description will be made assuming that the eNB 200 estimates that the UE 100-1 and the UE 100-2 are close to each other and determines that the D2D communication between the UE 100-1 and the UE 100-2 is possible.
  • the eNB 200 selects a pair capable of D2D communication from the communication management table.
  • the eNB 200 selects the UE 100-1 and the UE 100-2 as a pair capable of D2D communication.
  • the eNB 200 transmits a Discovery instruction signal which is an instruction for causing at least one of the pairs capable of D2D communication to transmit the Discovery signal.
  • the Discovery signal corresponds to a discovery signal used for discovery of a communication partner terminal in D2D communication.
  • the eNB 200 transmits a Discovery instruction signal to the UE 100-1.
  • the UE 100-1 receives the Discovery instruction signal.
  • Step 105 the UE 100-1 that has received the Discovery instruction signal transmits the Discovery signal.
  • the UE 100-2 receives the Discovery signal.
  • the UE 100-2 that has received the Discovery signal transmits a response signal to the Discovery signal (hereinafter referred to as Discovery response signal) to the UE 100-1.
  • the UE 100-1 receives the Discovery response signal.
  • Step 107 the UE 100-1 that has received the Discovery response signal reports to the eNB 200 that it has received the Discovery response signal from the UE 100-2.
  • step 108 the eNB 200 that has received the report performs scheduling. Specifically, radio resources used for communication (D2D communication) between UE 100-1 and UE 100-2 are allocated.
  • D2D communication radio resources used for communication
  • the eNB 200 transmits scheduling information to the UE 100-1.
  • the scheduling information is information indicating radio resources allocated to D2D communication between the UE 100-1 and the UE 100-2.
  • Step 110 the UE 100-1 and the UE 100-2 perform information exchange (negotiation) used for establishing the D2D link.
  • the information used for establishing the D2D link is, for example, scheduling information.
  • step 111 a D2D link is established between the UE 100-1 and the UE 100-2, and the UE 100-1 and the UE 100-2 perform D2D communication.
  • step 112 the UE 100-1 reports to the eNB 200 that the D2D link is established between the UE 100-1 and the UE 100-2.
  • step 113 the eNB 200 that has received the report records in the communication management table that the UE 100-1 and the UE 100-2 are in D2D communication. Also, the eNB 200 ends the cellular communication between the UE 100-1 and the UE 100-2.
  • FIG. 11 is a flowchart of the position information acquisition operation and D2D communication determination operation according to this embodiment. This operation corresponds to step 102 in FIG.
  • the position information includes direction information and distance information.
  • the direction information is information indicating the directions of the UE 100-1 and the UE 100-2 with respect to the eNB 200.
  • the distance information is information indicating the distance between each of the UE 100-1 and the UE 100-2 and the eNB 200.
  • the processor 240 acquires direction information.
  • the direction information is determined according to the directivity pattern in multi-antenna transmission.
  • the direction information of the UE 100-1 when beam forming is performed, information indicating the direction in which the beam is directed to the UE 100-1 is used as the direction information of the UE 100-1.
  • null steering information indicating the direction in which the null is directed to the UE 100-1 is set as direction information. The same applies to the direction information of the UE 100-2.
  • beam forming and / or null steering is performed based on the fed back PMI.
  • the processor 240 acquires direction information indicating the directions of the UE 100-1 and the UE 100-2.
  • the processor 240 acquires distance information.
  • the distance information is acquired using the following method (A) or (B).
  • (A) Reception timing The distance information is obtained for each of the UE 100-1 and the UE 100-2 obtained from the timing at which the eNB 200 receives an uplink signal (for example, DMRS or SRS) transmitted from each of the UE 100-1 and the UE 100-2. It is determined according to the propagation delay time.
  • an uplink signal for example, DMRS or SRS
  • the processor 240 calculates the propagation delay time from the timing advance value (TA) of the UE 100-1 used for adjusting the transmission timing in the uplink.
  • the processor 240 calculates the distance between the UE 100-1 and the eNB 200 based on the calculated propagation delay time of the UE 100-1 and the propagation speed of the uplink signal of the UE 100-1.
  • the memory 230 stores the calculated distance between the UE 100-1 and the eNB 200 as distance information of the UE 100-1.
  • the processor 240 calculates the distance between the UE 100-2 and the eNB 200, and the memory 230 stores the calculated distance between the UE 100-2 and the eNB 200 as distance information of the UE 100-2.
  • the distance information includes transmission power of an uplink signal (for example, DMRS or SRS) transmitted from each of the UE 100-1 and the UE 100-2, and received power when the eNB 200 receives the uplink signal. It is determined according to the propagation loss of each of UE 100-1 and UE 100-2 obtained from the above.
  • an uplink signal for example, DMRS or SRS
  • the processor 240 calculates the propagation loss from the uplink transmission power control information. Specifically, the processor 240 calculates the propagation loss of the UE 100-1 from the difference between the transmission power of the uplink signal transmitted from the UE 100-1 and the reception power when the eNB 200 receives the uplink signal. The distance between the UE 100-1 and the eNB 200 corresponding to the calculated propagation loss is calculated. The greater the propagation loss, the longer the distance between the UE 100-1 and the eNB 200.
  • the memory 230 stores the calculated distance between the UE 100-1 and the eNB 200 as distance information of the UE 100-1. Similarly, the memory 230 stores the distance between the UE 100-2 and the eNB 200 as distance information of the UE 100-2.
  • step 203 the processor 240 estimates the distance between the UE 100-1 and the UE 100-2.
  • the processor 240 estimates the position of the UE 100-1 from the direction information of the UE 100-1 calculated in Step 201 and the distance information of the UE 100-1 calculated in Step 202. Similarly, the processor 240 estimates the position of the UE 100-2.
  • the estimated positions of the UE 100-1 and the UE 100-2 may be recorded in the communication management table.
  • the processor 240 estimates the distance between the UE 100-1 and the UE 100-2 based on the estimated position of the UE 100-1 and the estimated position of the UE 100-2.
  • step 204 the processor 240 determines whether the distance between the UE 100-1 and the UE 100-2 is less than a predetermined threshold. If the distance between the UE 100-1 and the UE 100-2 is less than the predetermined threshold, the processor 240 performs the process of step 205, and the distance between the UE 100-1 and the UE 100-2 is equal to or greater than the predetermined threshold. If there is, the process of step 206 is performed.
  • the predetermined threshold value a value indicating a distance within a range in which the Discovery signal transmitted from one user terminal (UE 100-1) can be received by the other user terminal (UE 100-2) can be appropriately selected.
  • step 205 the processor 240 estimates that the UE 100-1 and the UE 100-2 are close to each other, and determines that the UE 100-1 and the UE 100-2 are capable of D2D communication.
  • step 206 the processor 240 estimates that the UE 100-1 and the UE 100-2 are not close to each other, and determines that the UE 100-1 and the UE 100-2 cannot perform D2D communication.
  • FIG. 12 is a flowchart of the switching operation from the cellular communication to the D2D communication by the eNB 200. This operation corresponds to step 103 to step 113 in FIG.
  • the processor 240 selects a UE pair capable of D2D communication from the communication management table.
  • the processor 240 may select a UE pair capable of D2D communication from the communication management table triggered by the determination that the D2D communication is possible.
  • the processor 240 may select a UE pair capable of D2D communication from the communication management table triggered by the traffic volume of the eNB 200 exceeding a predetermined threshold.
  • the description will proceed on the assumption that the processor 240 has selected the pair of UE 100-1 and UE 100-2 as the UE pair capable of D2D communication from the communication management table.
  • the processor 240 controls the radio transceiver 210 to transmit a Discovery instruction signal to the UE 100-1 of the pair of the UE 100-1 and the UE 100-2. Note that the processor 240 may control the wireless transceiver 210 to transmit the Discovery instruction signal to the UE 100-2, or may control the wireless transceiver 210 to transmit the Discovery instruction signal to both of the selected pairs. May be.
  • the Discovery instruction signal may include information for designating the timing for transmitting the Discovery signal.
  • the information may be information that causes the Discovery signal to be transmitted after a predetermined time has elapsed since the Discovery instruction signal was received. Further, the information may be information that periodically transmits a Discovery signal.
  • the Discovery instruction signal may include information for the UE 100-1 to stop data transmission to the eNB 200.
  • the Discovery instruction signal is information indicating that the UE 100-1 does not need to transmit a payload during a period from when the Discovery signal is transmitted until a Discovery response signal described later is received (when the Discovery operation is being performed). May be included.
  • the Discovery instruction signal may include information that prevents the UE 100-1 from decoding the PDCCH designated by the eNB 200 during the Discovery operation.
  • step 303 the processor 240 determines whether the UE 100-1 has been successfully discovered, that is, has successfully discovered the UE 100-2 that is the communication partner of the UE 100-1.
  • the radio transceiver 210 receives a report from the UE 100-1 that the Discovery response signal has been received from the UE 100-2, the processor 240 determines that the discovery has succeeded. In this case (“Yes” in step 303), the process proceeds to step 304.
  • the wireless transceiver 210 determines that the Discover has failed. In this case (“No” in step 303), the process proceeds to step 309.
  • step 304 the processor 240 performs scheduling of radio resources between the UE 100-1 and the UE 100-2. That is, the processor 240 allocates radio resources for D2D communication between the UE 100-1 and the UE 100-2.
  • step 305 the processor 240 controls the radio transceiver 210 to transmit scheduling information indicating radio resources allocated to D2D communication between the UE 100-1 and the UE 100-2.
  • step 306 the processor 240 determines whether the UE 100-1 and the UE 100-2 have established the D2D link.
  • the processor 240 determines that the D2D link has been established. In this case (in the case of “Yes” in step 306), the process proceeds to step 307.
  • the radio transceiver 210 does not receive a report from the UE 100-1 that the D2D link has been established before the predetermined time elapses, or has received a report from the UE 100-1 that the D2D link has not been established. If so, the processor 240 determines that the D2D link cannot be established. In this case (in the case of “No” in step 306), the process proceeds to step 309.
  • step 307 the processor 240 performs processing for terminating the cellular communication between the UE 100-1 and the UE 100-2.
  • step 308 the processor 240 records the pair of the UE 100-1 and the UE 100-2 in the communication management table as a pair in the D2D communication.
  • step 309 the processor 240 records the pair of the UE 100-1 and the UE 100-2 as a pair incapable of D2D communication in the communication management table.
  • FIG. 13 is a flowchart of the recording operation of the communication management table of the eNB 200.
  • the processor 240 determines whether the UE 100-1 that has established a connection with the eNB 200 is in cellular communication with another UE 100. Specifically, the processor 240 inquires of a higher-level device (for example, MME) whether or not the UE 100-1 is in cellular communication with another UE 100.
  • MME higher-level device
  • the processor 240 acquires information on the communication partner of the UE 100-1 from the MME. Alternatively, the processor 240 may request the UE 100-1 to transmit the identification information of the communication partner to the eNB 200.
  • processor 240 When the UE 100 and another UE 100 that have established a connection with the eNB 200 are in cellular communication, the processor 240 performs the process of step 402. On the other hand, when UE100 which has established connection with eNB200 is not in cellular communication with other UE100, processor 240 does not record the communication management table.
  • the processor 240 performs the process of step 402 because the UE 100-1 and the UE 100-2 are in cellular communication.
  • step 402 as described in “(2.1) Location information acquisition operation and D2D communication determination operation”, the processor 240 acquires the location information of the UE 100-1 and the UE 100-2, and the UE 100-1 And UE 100-2 determine whether or not D2D communication is possible.
  • step 403 the processor 240 records the determination result in step 402 in the communication management table.
  • step 404 the processor 240 determines whether the UE 100-1 and the UE 100-2 have established a D2D link. That is, step 404 corresponds to step 306 in FIG.
  • the processor 240 determines that the UE 100-1 and the UE 100-2 have established the D2D link, the processor 240 performs the process of step 405. On the other hand, when the processor 240 determines that the UE 100-1 and the UE 100-2 cannot establish the D2D link, the processor 240 performs the process of step 406.
  • step 405 the processor 240 records the pair of the UE 100-1 and the UE 100-2 as a pair in the D2D communication in the communication management table.
  • Step 405 corresponds to step 308 in FIG.
  • step 406 the processor 240 records the pair of the UE 100-1 and the UE 100-2 as a pair incapable of D2D communication in the communication management table. Step 406 corresponds to step 309 in FIG.
  • the processor 240 determines whether or not to periodically update the communication management table. For example, the processor 240 may determine to periodically update when a predetermined time comes, or a predetermined time has elapsed since the UE 100 (UE 100-1 and UE 100-2) in the cellular communication performed the cellular communication. If so, it may be determined that it is regularly updated.
  • the processor 240 determines to periodically update the communication management table, the processor 240 performs the process of step 401. On the other hand, if the processor 240 determines not to regularly update the communication management table, the processor 240 performs the process of step 404.
  • FIG. 14 is a flowchart showing an operation of the UE 100-1 according to the first embodiment.
  • the UE 100-1 is in cellular communication with the UE 100-2 via the eNB 200. As shown in FIG. 14, in step 501, the radio transceiver 110 of the UE 100-1 receives a Discovery instruction signal from the eNB 200.
  • the processor 160 controls the wireless transceiver 110 to transmit the Discovery signal.
  • the Discovery signal includes identification information for identifying the UE 100-1. Examples of the identification information include a telephone number and a fixed IP address. The identification information may include a country code or / and a random number in addition to the telephone number. Further, the Discovery signal may include identification information for identifying the UE 100-2 that is the communication partner.
  • the processor 160 is not connected to other processors due to radio resources, the hardware configuration of the UE 100-1, the processing load of the processor 160, and the like. May not be possible. For example, when the performance of the processor 160 is low, or when the processing load of other processing is large, the processor 160 may not be able to perform other processing. Therefore, for example, the processor 160 may not be able to control to simultaneously transmit the Discovery signal and data to the eNB 200. In such a case, the processor 160 does not have to perform other processing during the Discovery operation. For example, the processor 160 may stop data transmission to the eNB 200. Specifically, the processor 160 may control the wireless transceiver 110 so as not to transmit the payload during the Discovery operation. Further, the processor 160 may not decode a specific PDCCH (for example, a PDCCH designated from the eNB 200).
  • a specific PDCCH for example, a PDCCH designated from the eNB 200.
  • the processor 160 may not perform other processing when the processing load exceeds a predetermined threshold during the Discovery operation, or may not perform other processing based on an instruction from the eNB 200. Good.
  • a Discovery instruction signal including information that the UE 100-1 does not need to transmit the payload or information that the PDCCH designated by the eNB 200 does not need to be decoded may be included during the Discovery operation. Can be mentioned.
  • step 503 the processor 160 determines whether a response signal (Discovery response signal) indicating that the UE 100-2 has received the Discovery signal has been received before a predetermined time has elapsed since the Discovery signal was transmitted. If the wireless transceiver 110 can receive the Discovery response signal before the predetermined time elapses, the processor 160 performs the process of step 504. On the other hand, if the wireless transceiver 110 fails to receive the Discovery response signal before the predetermined time has elapsed, the processor 160 performs the process of step 510.
  • a response signal Discovery response signal
  • step 504 the processor 160 controls the radio transceiver 110 to report to the eNB 200 that the Discovery response signal has been received.
  • step 505 the radio transceiver 110 receives scheduling information from the eNB 200.
  • the processor 160 exchanges information used for establishing the D2D link with the UE 100-2, and establishes the D2D link. Specifically, first, the processor 160 controls the radio transceiver 110 to receive a signal indicating that communication is performed from the UE 100-2. Second, the processor 160 controls the wireless transceiver 110 to transmit and receive data necessary to establish a D2D link. Third, the processor 160 establishes a D2D link according to the allocated radio resource using the scheduling information.
  • step 507 the processor 160 determines whether or not the D2D link with the UE 100-2 is established.
  • the processor 160 performs the process of step 508.
  • the processor 160 performs the process of step 510.
  • step 508 the processor 160 controls the radio transceiver 110 to report to the eNB 200 that the D2D link has been established.
  • step 509 the processor 160 performs D2D communication with the UE 100-2 instead of the cellular communication.
  • step 510 if the Discovery response signal cannot be received in step 503, and if the D2D link cannot be established in step 507, the processor 160 reports to the eNB 200 that the D2D communication cannot be performed. 110 is controlled. In addition, the processor 160 controls to perform cellular communication with the UE 100-2.
  • FIG. 15 is a flowchart showing an operation of the UE 100-2 according to the first embodiment.
  • step 601 the radio transceiver 110 of the UE 100-2 receives a Discovery signal from the UE 100-1.
  • step 602 the processor 160 of the UE 100-2 controls the radio transceiver 110 to transmit a Discovery response signal to the UE 100-1.
  • step 603 the processor 160 exchanges information used for establishing the D2D link with the UE 100-1, and establishes the D2D link. Specifically, first, the processor 160 controls the wireless transceiver 110 to transmit a signal indicating that D2D communication is performed. Second, the processor 160 controls the wireless transceiver 110 to transmit and receive data necessary to establish D2D communication. Third, the processor 160 establishes a D2D link according to the allocated radio resource using the scheduling information.
  • step 604 the processor 160 determines whether or not the D2D link with the UE 100-1 is established.
  • the processor 160 performs the process of step 605.
  • the processor 160 controls to perform cellular communication with the UE 100-1.
  • step 605 the processor 160 performs D2D communication with the UE 100-1 instead of the cellular communication.
  • the eNB 200 When it is determined that the D2D communication between the UE 100-1 and the UE 100-2 is possible, the eNB 200 according to the present embodiment transmits a Discovery instruction signal for transmitting the Discovery signal to the UE 100-1. As a result, when the UE 100-1 and the UE 100-2 are communicating, the UE 100-1 transmits a Discovery signal to prompt the D2D communication between the UE 100-1 and the UE 100-2. Instead of cellular communication performed via the eNB 200, the load on the eNB 200 can be reduced by performing D2D communication between the UE 100-1 and the UE 100-2. Therefore, D2D communication can be used effectively.
  • the eNB 200 includes a processor 240 that determines whether or not D2D communication is possible between the UE 100-1 and the UE 100-2.
  • the processor 240 is based on the location information of each of the UE 100-1 and the UE 100-2. ⁇ 1 and UE 100-2 are estimated to be close to each other, it is determined that D2D communication between UE 100-1 and UE 100-2 is possible.
  • the UE 100-2 since there is a high possibility that the UE 100-1 and the UE 100-2 are close to each other, the UE 100-2 is highly likely to receive the discovery signal from the UE 100-1, and the UE 100-1 has a wasteful discovery. No need to send a signal.
  • the position information includes direction information indicating the directions of the UE 100-1 and the UE 100-2 based on the eNB 200, and a distance indicating the distance between each of the UE 100-1 and the UE 100-2 and the eNB 200. Information.
  • the respective positions of the UE 100-1 and the UE 100-2 can be specified, so that it is possible to improve the accuracy of determination as to whether or not D2D communication is possible between the UE 100-1 and the UE 100-2.
  • the determination unit is provided in the eNB 200.
  • the eNB 200 can directly determine whether or not D2D communication between the UE 100-1 and the UE 100-2 is possible.
  • the eNB 200 communicates with each of the UE 100-1 and the UE 100-2 by multi-antenna transmission, and the direction information is determined according to the directivity pattern in the multi-antenna transmission. Thereby, eNB200 can estimate each direction of UE100-1 and UE100-2 using multi-antenna transmission.
  • the distance information corresponds to the propagation delay times of the UE 100-1 and the UE 100-2 obtained from the timing at which the eNB 200 receives the uplink signal transmitted from each of the UE 100-1 and the UE 100-2. Determined. Thereby, eNB200 can estimate the distance between each of UE100-1 and UE100-2, and eNB200 using the adjustment process (timing advance process) of a transmission timing.
  • the distance information is obtained from the transmission power of the uplink signal transmitted from each of the UE 100-1 and the UE 100-2 and the received power when the eNB 200 receives the uplink signal, It is determined according to each propagation loss of the UE 100-2.
  • eNB200 can estimate the distance between each of UE100-1 and UE100-2, and eNB200 using the information of uplink transmission power control.
  • the Discovery instruction signal may include information for designating the timing for transmitting the Discovery signal.
  • eNB200 can control the timing which transmits a Discovery signal.
  • the UE 100-1 stops data transmission to the eNB 200 when receiving the Discovery instruction signal.
  • the UE 100-1 does not need to transmit data to the eNB 200, and thus the load on the UE 100-1 can be reduced.
  • the second embodiment differs from the first embodiment in the position information acquisition operation and the D2D communication determination operation. Therefore, the position information acquisition operation and the D2D communication determination operation according to the second embodiment will be described with reference to FIG.
  • FIG. 16 is a sequence diagram of the position information acquisition operation and the D2D communication determination operation according to the second embodiment.
  • the eNB 200 transmits a GNSS information request signal including information requesting the GNSS information of the UE 100-1 to the UE 100-1. Similarly, the eNB 200 transmits the GNSS information request signal of the UE 100-2 to the UE 100-2.
  • step 702 the UE 100-1 obtains the position of the UE 100-1 by the global positioning system (GNSS).
  • GNSS global positioning system
  • step 703 as in step 702, the UE 100-2 obtains the position of the UE 100-1.
  • step 704 the UE 100-1 transmits GNSS information indicating the position of the UE 100-1 obtained by the GNSS to the eNB 200. Thereby, eNB200 acquires the positional information on UE100-1.
  • step 705 as in step 704, the UE 100-2 transmits the GNSS information of the UE 100-2 to the eNB 200, and the eNB 200 acquires the location information of the UE 100-2.
  • step 706 based on the acquired location information, the eNB 200 determines whether the distance between the UE 100-1 and the UE 100-2 is less than a predetermined threshold. Step 706 corresponds to step 204 in FIG.
  • Step 707 corresponds to step 205 in FIG. 11, and step 708 corresponds to step 206 in FIG.
  • the position information includes information indicating the positions of the UE 100-1 and the UE 100-2 obtained by the GNSS.
  • the UE 100-1 and the UE 100-2 have established a connection with the same eNB 200.
  • the UE 100-1 and the UE 100-2 may each establish a connection with different base stations (eNB 200 and eNB 202).
  • FIG. 17 is a diagram illustrating an example of a positional relationship between the UE 100-1 and the UE 100-2, the eNB 200, and the eNB 202 according to the third embodiment.
  • the UE 100-1 exists in a cell 250 managed by the eNB 200. Also, the UE 100-1 has established a connection with the eNB 200. On the other hand, the UE 100-2 exists in the cell 252 managed by the eNB 202. Further, the UE 100-2 has established a connection with the eNB 202. The eNB 200 and the eNB 202 are adjacent to each other. The cell 250 and the cell 252 are adjacent cells adjacent to each other. The UE 100-1 and the UE 100-2 perform cellular communication via the eNB 200 and the eNB 202.
  • FIG. 18 is an example of a sequence diagram of the overall operation according to the third embodiment.
  • step 801 the UE 100-1 and the UE 100-2 perform cellular communication via the eNB 200 and the eNB 202.
  • the eNB 200 acquires location information of each of the UE 100-1 and the UE 100-2. Further, the eNB 200 determines whether D2D communication between the UE 100-1 and the UE 100-2 is possible.
  • the location information is information indicating the serving cell of each of the UE 100-1 and the UE 100-2, as will be described later.
  • the determination result of whether or not the D2D communication between the UE 100-1 and the UE 100-2 is possible is recorded in the communication management table.
  • Step 803 to Step 807 correspond to Step 103 to Step 107 in FIG.
  • Step 808 the eNB 200 that has received the report from the UE 100-1 that it has received the Discovery response signal from the UE 100-2 reports the report content to the eNB 202.
  • Step 809 to Step 813 correspond to Step 108 to Step 112 in FIG.
  • step 814 the eNB 200 that has received a report from the UE 100-1 that the D2D link has been established between the UE 100-1 and the UE 100-2 reports the report content to the eNB 202.
  • step 815 the eNB 200 that has received the report records in the communication management table that the UE 100-1 and the UE 100-2 are in D2D communication. Also, the eNB 200 ends the cellular communication between the UE 100-1 and the UE 100-2.
  • step 816 as in step 815, the eNB 202 that has received the report records in the communication management table that the UE 100-1 and the UE 100-2 are in D2D communication, and the cellular communication between the UE 100-1 and the UE 100-2 is performed. End communication.
  • FIG. 19 is a flowchart of the position information acquisition operation and the D2D communication determination operation according to the third embodiment. This operation corresponds to step 802 in FIG.
  • step 901 the processor 240 of the eNB 200 determines whether or not the serving cell information indicating the cell where the UE 100-2 is located is recorded in the communication management table. Specifically, first, the processor 240 acquires the identification information of the UE 100-2 from the MME, similarly to step 201 in FIG. Next, the processor 240 determines whether the serving cell information is recorded in the communication management table based on the acquired identification information of the UE 100-2.
  • the eNB 200 and the eNB 202 may periodically exchange the communication management table via the X2 interface or the S1 interface.
  • the serving cell information is recorded in the communication management table of the eNB 200.
  • the processor 240 When the serving cell information of the UE 100-2 is recorded in the communication management table, the processor 240 performs the process of step 902. On the other hand, when the serving cell information of the UE 100-2 is not recorded in the communication management table, the processor 240 performs the process of step 903.
  • the serving cell information of the UE 100-1 since the eNB 200 has established a connection with the UE 100-1, the serving cell information of the UE 100-1 is recorded in the communication management table of the eNB 200. .
  • the processor 240 determines whether the UE 100-1 and the UE 100-2 are in the same cell. Specifically, the processor 240 determines whether the cell where the UE 100-1 is located matches the cell where the UE 100-2 is located.
  • the processor 240 When the UE 100-1 and the UE 100-2 are in the same cell, the processor 240 performs the process of step 906. When the UE 100-1 and the UE 100-2 are not located in the same cell, the processor 240 performs the process of step 905.
  • step 903 the processor 240 controls the X2 interface or the S1 interface so as to request the serving cell information of the UE 100-2 from the eNB 202 which is an adjacent base station.
  • the request includes identification information for identifying the UE 100-2 that is the communication partner of the UE 100-1.
  • the processor 240 acquires the serving cell information of the UE 100-2.
  • the processor 240 may acquire the serving cell information of the UE 100-2 from the eNB 202, or may acquire a communication management table included in the eNB 202 in which the serving cell information of the UE 100-2 is recorded. Further, when acquiring the communication management table of the eNB 202, the processor 240 may send the communication management table of the eNB 200 to the eNB 202. That is, the eNB 200 and the eNB 202 may exchange the communication management table via the X2 interface or the backhaul.
  • step 905 the processor 240 determines whether the UE 100-1 and the UE 100-2 are in the neighboring cell. Specifically, the processor 240 determines whether the UE 100-2 is in a neighboring cell adjacent to the cell in which the UE 100-1 is located.
  • the processor 240 performs the process of step 906. On the other hand, when determining that the UE 100-2 is not located in the adjacent cell, the processor 240 performs the process of step 907.
  • step 906 If it is determined in step 906 that the UE 100-1 and the UE 100-2 are in the same cell, or if it is determined that the UE 100-2 is in an adjacent cell, the processor 240, the UE 100-1 and the UE 100-2 Are determined to be capable of D2D communication.
  • step 907 if it is determined in step 907 that the UE 100-2 is not located in the adjacent cell, the processor 240 determines that the UE 100-1 and the UE 100-2 are not capable of D2D communication.
  • the location information is information indicating the serving cell of each of the UE 100-1 and the UE 100-2
  • the processor 240 is the cell where the UE 100-1 is located or the UE 100-1 is located.
  • UE 100-2 is located in an adjacent cell adjacent to the cell, it is determined that D2D communication between UE 100-1 and UE 100-2 is possible.
  • the eNB 200 can determine whether or not D2D communication between the UE 100-1 and the UE 100-2 is possible without specifying the positions of the UE 100-1 and the UE 100-2.
  • the eNB 200 can acquire the serving cell information of the UE 100-2 from the eNB 202. As a result, the eNB 200 can acquire the location information (located cell information) of the UE 100-2 that has not established a connection with the eNB 200, and thus an area where it can be determined that D2D communication is possible is expanded.
  • the determination unit is provided in the eNB 200 (that is, the processor 240 of the eNB 200 determines), but is not limited thereto.
  • the determination unit may be provided in an MME that is a higher-level device of the eNB 200.
  • the MME requests the eNB 200 to transmit the Discovery instruction signal when it is determined that the D2D communication between the UE 100-1 and the UE 100-2 is possible.
  • the eNB 200 that has received the request transmits a Discovery instruction signal to the UE 100-1.
  • the MME may have a communication management table.
  • the eNB 200 that has been notified that the D2D link is established from the UE 100-1 reports to the MME that the UE 100-1 and the UE 100-2 have established the D2D link.
  • the MME records in the communication management table that the UE 100-1 and the UE 100-2 are in D2D communication.
  • the UE 100-1 and the UE 100-2 are performing cellular communication.
  • the eNB 200 may select a UE group capable of D2D communication from the communication management table.
  • the communication management table may include an item “D2D communication possibility”.
  • “D2D communication possibility” indicates the possibility of D2D communication. For example, the shorter the distance between the UE that is establishing the connection with the eNB 200 and the UE of the communication partner, the higher the possibility of D2D communication, and the longer the distance, the lower the possibility of D2D communication.
  • Ranking may be performed according to the D2D communication possibility.
  • the processor 240 may select a UE pair having a higher rank.
  • the UE 100-2 when the UE 100-2 is located in a cell where the UE 100-1 is located, or an adjacent cell adjacent to the cell where the UE 100-2 is located, the UE 100-1 and the UE 100-2 However, it may be determined that D2D communication between the UE 100-1 and the UE 100-2 is possible only when the UE 100-2 is located in the cell where the UE 100-1 is located. .
  • the eNB 200 manages the cell 250 and the eNB 202 manages the cell 252, but each of the eNB 200 and the eNB 202 may manage a plurality of cells.
  • the eNB 200 may determine whether or not D2D communication is possible in consideration of a plurality of pieces of position information (for example, information indicating a serving cell, direction information, and distance information). Thereby, the accuracy of the determination of whether or not D2D communication is possible can be improved.
  • a plurality of pieces of position information for example, information indicating a serving cell, direction information, and distance information.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the mobile communication system, the base station, the processor, and the user terminal according to the present invention can effectively use D2D communication, they are useful in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局と、前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末と、を有し、直接的な端末間通信であるD2D通信をサポートする移動通信システムであって、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記基地局は、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する。

Description

移動通信システム、基地局、プロセッサ及びユーザ端末
 本発明は、D2D通信をサポートする移動通信システム、基地局、プロセッサ及びユーザ端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信は、近接する複数のユーザ端末が、移動通信システムに割り当てられた周波数帯域内で直接的な無線通信を行うものである。なお、D2D通信は、近傍サービス(Proximity Service)通信と称されることもある。
3GPP技術報告 「TR 22.803 V0.3.0」 2012年5月
 現状の仕様においては、D2D通信を適切に制御するための仕組みが存在しないため、D2D通信を有効活用できないという問題がある。
 そこで、本発明は、D2D通信を有効活用できる移動通信システム、基地局、プロセッサ及びユーザ端末を提供する。
 一実施形態によれば、基地局と、前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末と、を有し、直接的な端末間通信であるD2D通信をサポートする移動通信システムである。前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記基地局は、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、セルラ通信におけるデータパスを示す図である。 図7は、D2D通信におけるデータパスを示す図である。 図8は、UE100-1及びUE100-2とeNB200との位置関係を示す図である。 図9は、通信管理テーブルを示す図である。 図10は、第1実施形態に係る全体動作のシーケンス図の一例である。 図11は、第1実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のフローチャートである。 図12は、第1実施形態に係るeNB200のセルラ通信からD2D通信への切り替え動作のフローチャートである。 図13は、第1実施形態に係るeNB200の通信管理テーブルの記録動作のフローチャートである。 図14は、第1実施形態に係るUE100-1の動作を示すフローチャートである。 図15は、第1実施形態に係るUE100-2の動作を示すフローチャートである。 図16は、第2実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のシーケンス図である。 図17は、第3実施形態に係るUE100-1及びUE100-2とeNB200及びeNB202との位置関係の一例を示す図である。 図18は、第3実施形態に係る全体動作のシーケンス図の一例である。 図19は、第3実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のフローチャートである。
 [実施形態の概要]
 実施形態に係る移動通信システムは、基地局と、前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末と、を有し、直接的な端末間通信であるD2D通信をサポートする。
 実施形態において、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記基地局は、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する。これにより、第1ユーザ端末と第2ユーザ端末とが通信を行っている場合に、第1ユーザ端末に発見用信号を送信させ、第1ユーザ端末と第2ユーザ端末とによるD2D通信を促す。基地局を介して行われる通信に代えて、第1ユーザ端末と第2ユーザ端末とによるD2D通信を行うことにより、基地局の負荷を低減させることができる。したがって、D2D通信を有効活用できる。なお、「通信相手端末の発見」とは、通信相手端末を発見すること(Discover)に限らず、通信相手端末から発見されること(Discoverable)も含む。
 実施形態において、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信の可否を判定する判定部を備え、前記判定部は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの位置情報に基づいて、前記第1ユーザ端末と前記第2ユーザ端末とが近接していると推定する場合に、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定する。これにより、第1ユーザ端末と第2ユーザ端末とが近接している可能性が高いため、第2ユーザ端末は、第1ユーザ端末からの発見用信号を受信できる可能性が高く、第1ユーザ端末が無駄な発見用信号を送信せずにすむ。
 実施形態において、前記判定部は、前記基地局に設けられる。これにより、基地局が第1ユーザ端末と第2ユーザ端末とによる前記D2D通信の可否を直接判定できる。
 その他の実施形態において、前記判定部は、前記基地局の上位装置に設けられる。これにより、第2ユーザ端末が基地局に隣接する隣接基地局と接続を確立している場合であっても、第1ユーザ端末と第2ユーザ端末とによる前記D2D通信の可否を判定できる。
 第1実施形態において、前記位置情報は、前記基地局を基準とした前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの方向を示す方向情報と、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれと前記基地局との間の距離を示す距離情報と、を含む。これにより、第1ユーザ端末及び第2ユーザ端末のそれぞれの位置を特定することができるため、第1ユーザ端末と第2ユーザ端末とによるD2D通信が可能か否かの判定の精度を向上できる。
 第1実施形態において、前記基地局は、マルチアンテナ伝送により前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれと通信を行っており、前記方向情報は、前記マルチアンテナ伝送における指向性パターンに応じて定められる。これにより、基地局は、マルチアンテナ伝送を活用して、第1ユーザ端末及び第2ユーザ端末のそれぞれの方向を推定することができる。
 第1実施形態において、前記距離情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれから送信された上りリンク信号を前記基地局が受信するタイミングから求められる前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの伝搬遅延時間に応じて定められる。これにより、基地局は、送信タイミングの調整処理(タイミングアドバンス処理)を活用して、第1ユーザ端末及び第2ユーザ端末のそれぞれと基地局との間の距離を推定することができる。
 第1実施形態において、前記距離情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれから送信された上りリンク信号の送信電力と、前記上りリンク信号を前記基地局が受信する際の受信電力とから求められる前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの伝搬損失に応じて定められる。これにより、基地局は、上りリンクの送信電力制御の情報を活用して、第1ユーザ端末及び第2ユーザ端末のそれぞれと基地局との間の距離を推定することができる。
 第2実施形態において、位置情報は、全地球測位システムによって求められた前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの位置を示す情報を含む。これにより、第1ユーザ端末及び前記第2ユーザ端末のそれぞれの位置が正確に求まるため、第1ユーザ端末と第2ユーザ端末とによるD2D通信が可能か否かの判定の精度を向上できる。
 第3実施形態において、前記位置情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの在圏セルを示す情報であり、前記判定部は、前記第1ユーザ端末が在圏するセル、又は、前記第1ユーザ端末が在圏するセルに隣接する隣接セルに前記第2ユーザ端末が在圏する場合に、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定する。これにより、基地局は、第1ユーザ端末及び第2ユーザ端末のそれぞれの位置を特定しなくても、第1ユーザ端末と第2ユーザ端末とによるD2D通信が可能か否かの判定をすることができる。
 実施形態において、前記指示は、前記発見用信号を送信させるタイミングを指定する情報を含む。これにより、基地局は、発見用信号を送信させるタイミングを制御できる。
 第3実施形態において、前記基地局に隣接する隣接基地局を有し、前記基地局は、前記第2ユーザ端末が前記隣接基地局と接続を確立している場合に、前記隣接基地局から前記第2ユーザ端末の前記位置情報を取得する。これにより、基地局は、基地局と接続を確立していない第2ユーザ端末の位置情報を取得できるため、D2D通信が可能と判定できるエリアが広がる。
 実施形態において、前記第1ユーザ端末は、前記指示を受信した場合に、前記基地局へのデータ送信を停止する。これにより、D2D通信を行うための準備中に、第1ユーザ端末は、基地局へデータを送信せずにすむため、第1ユーザ端末の負荷を低減できる。
 実施形態において、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおける基地局であって、前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する制御部を有する。
 実施形態において、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおける基地局に備えられるプロセッサであって、前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する処理を実行する。
 実施形態において、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、基地局との接続を確立するユーザ端末であって、前記ユーザ端末と、前記基地局を経由して前記ユーザ端末との通信を行う他のユーザ端末とによる前記D2D通信が可能と判定された場合に前記基地局から送信された指示を受信する受信部と、前記受信部が前記指示を受信した場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信する制御部と、を有し、前記指示は、前記発見用信号を送信させるための指示である。
 実施形態において、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、基地局との接続を確立するユーザ端末に備えられるプロセッサであって、前記ユーザ端末と、前記基地局を経由して前記ユーザ端末との通信を行う他のユーザ端末とによる前記D2D通信が可能と判定された場合に前記基地局から送信された指示を受信する処理を実行し、前記受信部が前記指示を受信した場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信する処理を実行し、前記指示は、前記発見用信号を送信させるための指示である。
 以下、図面を参照して、3GPP規格に準拠して構成されるセルラ移動通信システム(以下、「LTEシステム」)にD2D通信を導入する場合の各実施形態を説明する。
 [第1実施形態]
 以下、第1実施形態について、説明する。
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM400(Operation and Maintenance)と、を含む。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子101♯1~101♯nを含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を信号処理した後、アップコンバート及び増幅などを行ってアンテナ101から無線信号を送信する。また、無線送受信機110は、アンテナ101が受信する無線信号の増幅及びダウンコンバートを行った後、ベースバンド信号を信号処理してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。また、メモリ230及びプロセッサ240は、判定部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサ240’としてもよい。
 アンテナ201は、複数のアンテナ素子201♯0~201♯3を含む。アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号を信号処理した後、アップコンバート及び増幅などを行って無線信号をアンテナ201から送信する。また、無線送受信機210は、受信信号の増幅及びダウンコンバートなどを行った後、ベースバンド信号を信号処理してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割り当てリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態であり、そうでない場合、UE100はアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルにより構成される無線リソース単位はリソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。さらに、各サブフレームには、セル固有参照信号(CRS)が分散して配置される。
 PDCCHは、制御信号を搬送する。制御信号は、例えば、上りリンクSI(Scheduling Information)、下りリンクSI、TPCビットである。上りリンクSIは上りリンクの周波数・時間リソースの割当てを示し、下りリンクSIは、下りリンクの周波数・時間リソースの割当てを示す。TPCビットは、上りリンクの送信電力の増減を指示する信号である。
 PDSCHは、制御信号及び/又はユーザデータを搬送する。例えば、下りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。さらに、各サブフレームには、復調参照信号(DMRS)及びサウンディング参照信号(SRS)が配置される。
 PUCCHは、制御信号を搬送する。制御信号は、例えば、PMI(Precoding Matrix Indicator)である。
 PUSCHは、制御信号及び/又はユーザデータを搬送する物理チャネルである。例えば、上りリンクのデータ領域は、ユーザデータにのみ割当てられてもよく、ユーザデータ及び制御信号が多重されるように割当てられてもよい。
 (D2D通信)
 次に、LTEシステムの通常の通信(セルラ通信)とD2D通信とを比較して説明する。
 図6は、セルラ通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)の転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワークを経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定される。
 図7は、D2D通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でD2D通信を行う場合を例示している。
 図7に示すように、D2D通信のデータパスはネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE100-1の近傍にUE100-2が存在するのであれば、UE100-1とUE100-2との間でD2D通信を行うことによって、ネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。なお、Locally Routedというモードでは、データパスがS-GW300を経由せずにeNB200を経由する。
 なお、D2D通信が開始されるケースとして、(a)相手端末を発見するための動作を行うことによって相手端末を発見した後に、D2D通信が開始されるケースと、(b)相手端末を発見するための動作を行わずにD2D通信が開始されるケースがある。
 例えば、上記(a)のケースでは、UE100-1及びUE100-2のうち一方のUE100が、近傍に存在する他方のUE100を発見することで、D2D通信が開始される。
 このケースの場合、UE100は、相手端末を発見するために、自身の近傍に存在する他のUE100を発見する(Discover)機能、及び/又は、UE100は、他のUE100から発見される(Discoverable)機能を有する。
 なお、UE100は、相手端末を発見しても必ずしもD2D通信を行う必要はなく、例えば、UE100-1及びUE100-2は、互いに相手を発見した後に、ネゴシエーションを行って、D2D通信を行うか否かを判定してもよい。UE100-1及びUE100-2のそれぞれは、D2D通信を行うことに同意した場合に、D2D通信を開始する。
 一方、上記(b)のケースでは、例えば、UE100は、ブロードキャストによってD2D通信用の信号の報知を開始する。これにより、UE100は、相手端末の発見の有無にかかわらず、D2D通信を開始できる。
 (第1実施形態に係る移動通信システムの動作)
 次に、第1実施形態に係る移動通信システムの動作について、(1)全体動作、(2)eNB200の動作、(3)UE100-1の動作、(4)UE100-2の動作の順に説明する。
 (1)全体動作
 図8及び図9を参照しながら、全体動作について説明する。
 図8は、UE100-1及びUE100-2とeNB200との位置関係を示す図である。
 図8に示すように、UE100-1及びUE100-2は、eNB200が管理するセル250に存在する。また、UE100-1及びUE100-2は、それぞれeNB200との接続を確立している。UE100-1及びUE100-2は、eNB200を経由してセルラ通信を行う。
 図9は、本実施形態に係る通信管理テーブルを示す図である。ここで、通信管理テーブルは、セルラ通信を行っているUE100のペア(UE100-1及びUE100-2)がD2D通信を可能か否かの判定結果を少なくとも記録したテーブルである。通信管理テーブルは、eNB200によって管理されている。すなわち、通信管理テーブルは、eNB200のメモリ230に記憶されている。
 図9に示すように、本実施形態において、通信管理テーブルは、「eNB200と接続を確立中のUE」、「通信相手のUE」、「eNB200と接続を確立中のUEと通信相手のUEとの間の距離」、「D2D通信の可否」及び「D2D通信中」を記録している。
 「eNB200と接続を確立中のUE」は、eNB200と接続を確立中の各UE100の識別情報を示す。「通信相手のUE」は、eNB200と接続を確立中の各ユーザ端末の通信相手であるユーザ端末の識別情報を示す。「eNB200と接続を確立中のUEと通信相手のUEとの間の距離」は、eNB200と接続を確立中の各ユーザ端末と当該各ユーザ端末の通信相手であるユーザ端末との間の距離を示す。「D2D通信の可否」は、eNB200と接続を確立中の各ユーザ端末がD2D通信が可能か否かを示す。「D2D通信中」は、eNB200と接続を確立中の各ユーザ端末がD2D通信を行っているか否かを示す。
 図10は、第1実施形態に係る全体動作のシーケンス図の一例である。
 図10に示すように、ステップ101において、UE100-1及びUE100-2は、eNB200を経由してセルラ通信を行う。
 ステップ102において、eNB200は、UE100-1及びUE100-2のそれぞれの位置情報を取得する。位置情報を取得する動作の詳細については、後述する。さらに、eNB200は、UE100-1とUE100-2とによるD2D通信が可能か判定する。具体的には、eNB200は、UE100-1及びUE100-2のそれぞれの位置情報に基づいて、UE100-1とUE100-2とが近接していると推定する場合に、UE100-1とUE100-2とによるD2D通信が可能と判定する。UE100-1とUE100-2とによるD2D通信が可能か否かを判定した結果は、通信管理テーブルに記録される。
 ここでは、eNB200が、UE100-1とUE100-2とが近接していると推定し、UE100-1とUE100-2とによるD2D通信が可能と判定したと仮定して説明を進める。
 ステップ103において、eNB200は、通信管理テーブルからD2D通信可能なペアを選択する。本実施形態では、eNB200は、D2D通信可能なペアとして、UE100-1及びUE100-2を選択する。
 ステップ104において、eNB200は、D2D通信可能なペアの少なくとも1つにDiscovery信号を送信させるための指示であるDiscovery指示信号を送信する。なお、Discovery信号は、D2D通信における通信相手端末の発見に使用される発見用信号に相当する。
 本実施形態では、eNB200は、UE100-1にDiscovery指示信号を送信する。UE100-1は、Discovery指示信号を受信する。
 ステップ105において、Discovery指示信号を受信したUE100-1は、Discovery信号を送信する。UE100-2は、Discovery信号を受信する。
 ステップ106において、Discovery信号を受信したUE100-2は、Discovery信号に対する応答信号(以下、Discovery応答信号)をUE100-1に送信する。UE100-1は、Discovery応答信号を受信する。
 ステップ107において、Discovery応答信号を受信したUE100-1は、UE100-2からDiscovery応答信号を受信したことをeNB200へ報告する。
 ステップ108において、報告を受けたeNB200は、スケジューリングを行う。具体的には、UE100-1とUE100-2との間の通信(D2D通信)に使用する無線リソースの割り当てを行う。
 ステップ109において、eNB200は、スケジューリング情報をUE100-1に送信する。スケジューリング情報は、UE100-1とUE100-2との間のD2D通信に割り当てた無線リソースを示す情報である。
 ステップ110において、UE100-1とUE100-2とは、D2Dリンクを確立するために用いられる情報の交換(negotiation)を行う。D2Dリンクを確立するために用いられる情報とは、例えば、スケジューリング情報である。
 ステップ111において、UE100-1とUE100-2との間に、D2Dリンクが確立され、UE100-1とUE100-2とは、D2D通信を行う。
 ステップ112において、UE100-1は、UE100-1とUE100-2との間にD2Dリンクが確立されたことをeNB200へ報告する。
 ステップ113において、報告を受けたeNB200は、UE100-1とUE100-2とがD2D通信中であることを通信管理テーブルへ記録する。また、eNB200は、UE100-1とUE100-2とのセルラ通信を終了する。
 (2)eNB200の動作
 次に、eNB200の動作について、(2.1)位置情報の取得動作及びD2D通信の可否の判定動作、(2.2)セルラ通信からD2D通信への切り替え動作、(2.3)通信管理テーブルの記録動作の順に説明する。
 (2.1)位置情報の取得動作及びD2D通信の可否の判定動作
 図11は、本実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のフローチャートである。本動作は、図10におけるステップ102に対応する。
 本実施形態において、位置情報は、方向情報と距離情報とを含む。方向情報は、eNB200を基準としたUE100-1及びUE100-2のそれぞれの方向を示す情報である。距離情報は、UE100-1及びUE100-2のそれぞれとeNB200との間の距離を示す情報である。
 図11に示すように、ステップ201において、プロセッサ240は、方向情報を取得する。本実施形態において、方向情報は、マルチアンテナ伝送における指向性パターンに応じて定められる。
 具体的には、ビームフォーミングが行われる場合は、UE100-1にビームが向く方向を示す情報をUE100-1の方向情報とする。ヌルステアリングが行われる場合は、UE100-1にヌルが向く方向を示す情報を方向情報とする。UE100-2の方向情報についても同様である。なお、UE100-1及びUE100-2のそれぞれからPMIがフィードバックされる場合、フィードバックされたPMIに基づいて、ビームフォーミング及び/又はヌルステアリングが行われる。
 以上の処理により、プロセッサ240は、UE100-1及びUE100-2のそれぞれの方向を示す方向情報を取得する。
 次に、図11に示すように、ステップ202において、プロセッサ240は、距離情報を取得する。本実施形態において、距離情報は、以下の(A)又は(B)の方法を用いて取得される。
 (A)受信タイミング
 距離情報は、UE100-1及びUE100-2のそれぞれから送信された上りリンク信号(例えば、DMRS又はSRS)をeNB200が受信するタイミングから求められるUE100-1及びUE100-2のそれぞれの伝搬遅延時間に応じて定められる。
 具体的には、プロセッサ240は、上りリンクにおける送信タイミングの調整に使用されるUE100-1のタイミングアドバンス値(TA)から伝搬遅延時間を算出する。プロセッサ240は、算出したUE100-1の伝搬遅延時間とUE100-1の上りリンク信号の伝搬速度とによって、UE100-1とeNB200との間の距離を算出する。メモリ230は、算出されたUE100-1とeNB200との間の距離をUE100-1の距離情報として記憶する。同様にして、プロセッサ240は、UE100-2とeNB200との間の距離を算出し、メモリ230は、算出されたUE100-2とeNB200との間の距離をUE100-2の距離情報として記憶する。
 (B)受信電力
 距離情報は、UE100-1及びUE100-2のそれぞれから送信された上りリンク信号(例えば、DMRS又はSRS)の送信電力と、上りリンク信号をeNB200が受信する際の受信電力とから求められるUE100-1及びUE100-2のそれぞれの伝搬損失に応じて定められる。
 プロセッサ240は、上りリンクの送信電力制御の情報から伝搬損失を算出する。具体的には、プロセッサ240は、UE100-1から送信された上りリンク信号の送信電力と上りリンク信号をeNB200が受信する際の受信電力との差から、UE100-1の伝搬損失を算出する。算出された伝搬損失に応じたUE100-1とeNB200との間の距離を算出する。伝搬損失が大きいほど、UE100-1とeNB200との間の距離が長くなる。メモリ230は、算出されたUE100-1とeNB200との間の距離をUE100-1の距離情報として記憶する。同様にして、メモリ230は、UE100-2とeNB200との間の距離をUE100-2の距離情報として記憶する。
 次に、図11に示すように、ステップ203において、プロセッサ240は、UE100-1とUE100-2との間の距離を推定する。
 具体的には、プロセッサ240は、ステップ201において算出されたUE100-1の方向情報と、ステップ202において算出されたUE100-1の距離情報とから、UE100-1の位置を推定する。同様にして、プロセッサ240は、UE100-2の位置を推定する。
 なお、推定したUE100-1及びUE100-2のそれぞれの位置を通信管理テーブルに記録してもよい。
 推定したUE100-1の位置と、推定したUE100-2との位置とによって、プロセッサ240は、UE100-1とUE100-2との間の距離を推定する。
 ステップ204において、プロセッサ240は、UE100-1とUE100-2との間の距離が、所定の閾値未満であるか判定する。プロセッサ240は、UE100-1とUE100-2との間の距離が所定の閾値未満であれば、ステップ205の処理を行い、UE100-1とUE100-2との間の距離が所定の閾値以上であれば、ステップ206の処理を行う。
 ここで、所定の閾値として、一方のユーザ端末(UE100-1)から送信されたDiscovery信号を他方のユーザ端末(UE100-2)が受信できる範囲の距離を示す値を適宜選択できる。
 ステップ205において、プロセッサ240は、UE100-1とUE100-2とが近接していると推定し、UE100-1とUE100-2とがD2D通信可能と判定する。
 ステップ206において、プロセッサ240は、UE100-1とUE100-2とが近接していないと推定し、UE100-1とUE100-2とがD2D通信不可能と判定する。
 (2.2)セルラ通信からD2D通信への切り替え動作
 図12は、eNB200のセルラ通信からD2D通信への切り替え動作のフローチャートである。本動作は、図10におけるステップ103からステップ113に対応する。
 図12に示すように、ステップ301において、プロセッサ240は、通信管理テーブルからD2D通信可能なUEペアを選択する。プロセッサ240は、D2D通信可能と判定したことをトリガーとして通信管理テーブルからD2D通信可能なUEペアを選択してもよい。または、プロセッサ240は、eNB200のトラフィック量が所定の閾値を超えたことをトリガーとして通信管理テーブルからD2D通信可能なUEペアを選択してもよい。
 ここでは、プロセッサ240が、通信管理テーブルからD2D通信可能なUEペアとして、UE100-1及びUE100-2のペアを選択したと仮定して説明を進める。
 図12に示すように、ステップ302において、プロセッサ240は、UE100-1及びUE100-2のペアのうち、UE100-1にDiscovery指示信号を送信するように無線送受信機210を制御する。なお、プロセッサ240は、UE100-2にDiscovery指示信号を送信するように無線送受信機210を制御してもよいし、選択したペアの両方にDiscovery指示信号を送信するように無線送受信機210を制御してもよい。
 また、Discovery指示信号は、Discovery信号を送信させるタイミングを指定する情報を含んでいてもよい。当該情報として、例えば、Discovery指示信号を受信してから所定時間経過した後に、Discovery信号を送信させる情報であってもよい。また、当該情報として、Discovery信号を定期的に送信させる情報であってもよい。
 また、Discovery指示信号は、UE100-1がeNB200へのデータ送信を停止する情報を含んでいてもよい。具体的には、Discovery指示信号は、Discovery信号を送信してから後述のDiscovery応答信号を受信するまでの間(Discover動作中)は、UE100-1がペイロードを送信しなくてもよいという情報を含んでいてもよい。または、Discovery指示信号は、UE100-1が、Discover動作中は、eNB200が指定したPDCCHをデコードしないようにする情報を含んでいてもよい。
 ステップ303において、プロセッサ240は、UE100-1がDiscover成功したか、すなわち、UE100-1の通信相手であるUE100-2の発見に成功したかを判定する。
 具体的には、無線送受信機210が、UE100-2からDiscovery応答信号を受信したことの報告をUE100-1から受信した場合、プロセッサ240は、Discover成功と判定する。この場合(ステップ303において、「Yes」の場合)、ステップ304の処理に進む。
 一方、無線送受信機210が、所定時間経過するまでにDiscovery応答信号を受信したことの報告を受信しない場合、又は、UE100-2からDiscovery応答信号を受信できなかったことの報告をUE100-1から受信した場合、プロセッサ240は、Discover失敗と判定する。この場合(ステップ303において、「No」の場合)、ステップ309の処理に進む。
 ステップ304において、プロセッサ240は、UE100-1とUE100-2との間の無線リソースのスケジューリングを行う。すなわち、プロセッサ240は、UE100-1とUE100-2との間のD2D通信に無線リソースを割り当てる。
 ステップ305において、プロセッサ240は、UE100-1とUE100-2との間のD2D通信に割り当てた無線リソースを示すスケジューリング情報を送信するように無線送受信機210を制御する。
 ステップ306において、プロセッサ240は、UE100-1とUE100-2とがD2Dリンクを確立したか判定する。
 具体的には、無線送受信機210が、D2Dリンクを確立したことの報告をUE100-1から受信した場合、プロセッサ240は、D2Dリンクを確立したと判定する。この場合(ステップ306において、「Yes」の場合)、ステップ307の処理に進む。
 一方、無線送受信機210が、所定時間経過するまでにD2Dリンクを確立したことの報告をUE100-1から受信しない場合、又は、D2Dリンクを確立できなかったことの報告をUE100-1から受信した場合、プロセッサ240は、D2Dリンクを確立できないと判定する。この場合(ステップ306において、「No」の場合)、ステップ309の処理に進む。
 ステップ307において、プロセッサ240は、UE100-1とUE100-2とのセルラ通信を終了する処理を行う。
 ステップ308において、プロセッサ240は、UE100-1及びUE100-2のペアをD2D通信中のペアとして、通信管理テーブルに記録する。
 一方、ステップ309において、プロセッサ240は、UE100-1及びUE100-2のペアをD2D通信不可能なペアとして、通信管理テーブルに記録する。
 (2.3)通信管理テーブルの記録
 図13を参照しながらeNB200の通信管理テーブルの記録・更新動作を説明する。図13は、eNB200の通信管理テーブルの記録動作のフローチャートである。
 図13に示すように、ステップ401において、プロセッサ240は、eNB200と接続を確立しているUE100-1が他のUE100とセルラ通信中であるか判定する。具体的には、プロセッサ240は、UE100-1が他のUE100とセルラ通信中であるか否かを上位装置(例えば、MME)に問い合わせる。以下、上位装置がMMEであると仮定して説明を進める。
 UE100-1が他のUE100とセルラ通信中であるか判定するため、プロセッサ240は、MMEからUE100-1の通信相手の情報を取得する。または、プロセッサ240は、UE100-1に通信相手の識別情報をeNB200へ送信するように要求してもよい。
 eNB200と接続を確立している他のUE100とUE100がセルラ通信中である場合、プロセッサ240は、ステップ402の処理を行う。一方、eNB200と接続を確立しているUE100が他のUE100とセルラ通信中でない場合、プロセッサ240は、通信管理テーブルの記録を行わない。
 本実施形態において、プロセッサ240は、UE100-1及びUE100-2がセルラ通信中であるため、ステップ402の処理を行う。
 ステップ402において、上述の「(2.1)位置情報の取得動作及びD2D通信の可否の判定動作」の通り、プロセッサ240は、UE100-1及びUE100-2の位置情報を取得し、UE100-1とUE100-2とがD2D通信可能か否かの判定を行う。
 ステップ403において、プロセッサ240は、ステップ402における判定結果を通信管理テーブルに記録する。
 ステップ404において、プロセッサ240は、UE100-1とUE100-2とがD2Dリンクを確立したか判定する。すなわち、ステップ404は、図12におけるステップ306に対応する。
 プロセッサ240は、UE100-1とUE100-2とがD2Dリンクを確立したと判定した場合、ステップ405の処理を行う。一方、プロセッサ240は、UE100-1とUE100-2とがD2Dリンクを確立できないと判定した場合、ステップ406の処理を行う。
 ステップ405において、プロセッサ240は、UE100-1及びUE100-2のペアをD2D通信中のペアとして、通信管理テーブルに記録する。ステップ405は、図12のステップ308に対応する。
 一方、ステップ406において、プロセッサ240は、UE100-1及びUE100-2のペアをD2D通信不可能なペアとして、通信管理テーブルに記録する。ステップ406は、図12のステップ309に対応する。
 ステップ407において、プロセッサ240は、通信管理テーブルを定期更新するか否かを判定する。プロセッサ240は、例えば、所定の時刻になった場合に、定期更新すると判定してもよいし、セルラ通信中のUE100(UE100-1及びUE100-2)がセルラ通信してから所定時間経過していれば、定期更新すると判定してもよい。
 プロセッサ240は、通信管理テーブルを定期更新すると判定した場合、ステップ401の処理を行う。一方、プロセッサ240は、通信管理テーブルを定期更新しないと判定した場合、ステップ404の処理を行う。
 (3)UE100-1の動作
 次に、図14を参照しながら、UE100-1の動作を説明する。図14は、第1実施形態に係るUE100-1の動作を示すフローチャートである。
 UE100-1は、eNB200を経由してUE100-2とセルラ通信中である。図14に示すように、ステップ501において、UE100-1の無線送受信機110は、eNB200からDiscovery指示信号を受信する。
 ステップ502において、プロセッサ160は、Discovery信号を送信するよう無線送受信機110を制御する。なお、Discovery信号は、UE100-1を識別するための識別情報を含む。識別情報として、例えば、電話番号、固定IPアドレスが挙げられる。識別情報は、電話番号に加えて、国番号又は/及び乱数を含んでいてもよい。また、Discovery信号は、通信相手であるUE100-2を識別するための識別情報を含んでもよい。
 なお、UE100-1が、Discovery信号を送信している間(Discovery動作中)は、無線リソース、UE100-1のハードウェア構成、及び、プロセッサ160の処理負荷等が原因で、プロセッサ160は、他の処理ができない場合がある。例えば、プロセッサ160の性能が低い場合、又は、他の処理の処理負荷が大きい場合に、プロセッサ160は、他の処理ができない可能性がある。したがって、例えば、プロセッサ160は、Discovery信号とeNB200へのデータとを同時に送信するように制御できない可能性がある。このような場合、プロセッサ160は、Discovery動作中は、他の処理を行わなくてもよい。例えば、プロセッサ160は、eNB200へのデータ送信を停止してもよい。具体的には、プロセッサ160は、Discovery動作中は、ペイロードを送信しないように無線送受信機110を制御してもよい。また、プロセッサ160は、特定のPDCCH(例えば、eNB200から指定されたPDCCH)をデコードしなくてもよい。
 例えば、プロセッサ160は、Discovery動作中に処理負荷が所定の閾値以上になった場合に、他の処理を行わなくてもよいし、eNB200からの指示に基づいて、他の処理を行わなくてもよい。eNB200からの指示として、例えば、Discover動作中は、UE100-1がペイロードを送信しなくてもよいという情報又はeNB200が指定したPDCCHをデコードしなくてもよいという情報が含まれたDiscovery指示信号が挙げられる。
 ステップ503において、プロセッサ160は、Discovery信号を送信してから所定時間経過する前に、UE100-2がDiscovery信号を受信したことを示す応答信号(Discovery応答信号)を受信したか判定する。所定時間経過する前に、無線送受信機110がDiscovery応答信号を受信できた場合、プロセッサ160は、ステップ504の処理を行う。一方、所定時間経過する前に、無線送受信機110がDiscovery応答信号を受信できなかった場合、プロセッサ160は、ステップ510の処理を行う。
 ステップ504において、プロセッサ160は、Discovery応答信号を受信したことをeNB200へ報告するように無線送受信機110を制御する。
 ステップ505において、無線送受信機110は、スケジューリング情報をeNB200から受信する。
 ステップ506において、プロセッサ160は、UE100-2とD2Dリンクを確立するために用いられる情報の交換(negotiation)を行い、D2Dリンクを確立する。具体的には、第1に、プロセッサ160は、UE100-2から通信を行うことを示す信号を受信するよう無線送受信機110を制御する。第2に、プロセッサ160は、D2Dリンクを確立するために必要なデータを送受信するよう無線送受信機110を制御する。第3に、プロセッサ160は、スケジューリング情報を用いて割り当てられた無線リソースに応じたD2Dリンクを確立する。
 ステップ507において、プロセッサ160は、UE100-2とのD2Dリンクが確立したか否かを判定する。D2Dリンクが確立した場合、プロセッサ160は、ステップ508の処理を行う。一方、D2Dリンクが確立できなかった場合、プロセッサ160は、ステップ510の処理を行う。
 ステップ508において、プロセッサ160は、D2Dリンクを確立したことをeNB200へ報告するよう無線送受信機110を制御する。
 ステップ509において、プロセッサ160は、セルラ通信に代えて、UE100-2とD2D通信を行う。
 一方、ステップ510において、ステップ503においてDiscovery応答信号を受信できなかった場合、及び、ステップ507においてD2Dリンクを確立できなかった場合、プロセッサ160は、D2D通信できないことをeNB200へ報告するよう無線送受信機110を制御する。また、プロセッサ160は、UE100-2とセルラ通信を行うように制御する。
 (4)UE100-2の動作
 図15を参照しながら、UE100-2の動作を説明する。図15は、第1実施形態に係るUE100-2の動作を示すフローチャートである。
 図15に示すように、ステップ601において、UE100-2の無線送受信機110は、UE100-1からDiscovery信号を受信する。
 ステップ602において、UE100-2のプロセッサ160は、Discovery応答信号をUE100-1へ送信するように無線送受信機110を制御する。
 ステップ603において、プロセッサ160は、UE100-1とD2Dリンクを確立するために用いられる情報の交換(negotiation)を行い、D2Dリンクを確立する。具体的には、第1に、プロセッサ160は、D2D通信を行うことを示す信号を送信するよう無線送受信機110を制御する。第2に、プロセッサ160は、D2D通信を確立するために必要なデータを送受信するよう無線送受信機110を制御する。第3に、プロセッサ160は、スケジューリング情報を用いて割り当てられた無線リソースに応じたD2Dリンクを確立する。
 ステップ604において、プロセッサ160は、UE100-1とのD2Dリンクが確立したか否かを判定する。D2Dリンクを確立した場合、プロセッサ160は、ステップ605の処理を行う。一方、D2Dリンクを確立できなかった場合、プロセッサ160は、UE100-1とセルラ通信を行うように制御する。
 ステップ605において、プロセッサ160は、セルラ通信に代えて、UE100-1とD2D通信を行う。
 (第1実施形態のまとめ)
 本実施形態に係るeNB200は、UE100-1とUE100-2とによるD2D通信が可能と判定された場合に、eNB200は、Discovery信号を送信させるためのDiscovery指示信号をUE100-1に送信する。これにより、UE100-1とUE100-2とが通信を行っている場合に、UE100-1にDiscovery信号を送信させ、UE100-1とUE100-2とによるD2D通信を促す。eNB200を介して行われるセルラ通信に代えて、UE100-1とUE100-2とによるD2D通信を行うことにより、eNB200の負荷を低減させることができる。したがって、D2D通信を有効活用できる。
 本実施形態に係るeNB200は、UE100-1とUE100-2とによるD2D通信の可否を判定するプロセッサ240を備え、プロセッサ240は、UE100-1及びUE100-2のそれぞれの位置情報に基づいて、UE100-1とUE100-2とが近接していると推定する場合に、UE100-1とUE100-2とによるD2D通信が可能と判定する。これにより、UE100-1とUE100-2とが近接している可能性が高いため、UE100-2は、UE100-1からの発見用信号を受信できる可能性が高く、UE100-1が無駄なDiscovery信号を送信せずにすむ。
 本実施形態では、位置情報は、eNB200を基準としたUE100-1及びUE100-2のそれぞれの方向を示す方向情報と、UE100-1及びUE100-2のそれぞれとeNB200との間の距離を示す距離情報と、を含む。これにより、UE100-1及びUE100-2のそれぞれの位置を特定することができるため、UE100-1とUE100-2とによるD2D通信が可能か否かの判定の精度を向上できる。
 本実施形態では、判定部は、eNB200に設けられる。eNB200がUE100-1とUE100-2とによるD2D通信の可否を直接判定できる。
 本実施形態に係るeNB200は、マルチアンテナ伝送によりUE100-1及びUE100-2のそれぞれと通信を行っており、方向情報は、マルチアンテナ伝送における指向性パターンに応じて定められる。これにより、eNB200は、マルチアンテナ伝送を活用して、UE100-1及びUE100-2のそれぞれの方向を推定することができる。
 本実施形態では、距離情報は、UE100-1及びUE100-2のそれぞれから送信された上りリンク信号をeNB200が受信するタイミングから求められるUE100-1及びUE100-2のそれぞれの伝搬遅延時間に応じて定められる。これにより、eNB200は、送信タイミングの調整処理(タイミングアドバンス処理)を活用して、UE100-1及びUE100-2のそれぞれとeNB200との間の距離を推定することができる。
 本実施形態では、距離情報は、UE100-1及びUE100-2のそれぞれから送信された上りリンク信号の送信電力と、上りリンク信号をeNB200が受信する際の受信電力とから求められるUE100-1及びUE100-2のそれぞれの伝搬損失に応じて定められる。これにより、eNB200は、上りリンクの送信電力制御の情報を活用して、UE100-1及びUE100-2のそれぞれとeNB200との間の距離を推定することができる。
 本実施形態では、Discovery指示信号は、Discovery信号を送信させるタイミングを指定する情報を含んでいてもよい。これにより、eNB200は、Discovery信号を送信させるタイミングを制御できる。
 本実施形態では、UE100-1は、Discovery指示信号を受信した場合に、eNB200へのデータ送信を停止する。これにより、D2D通信を行うための準備中に、UE100-1は、eNB200へデータを送信せずにすむため、UE100-1の負荷を低減できる。
 [第2実施形態]
 以下、第2実施形態について、第1実施形態との相違点を主として説明する。
 第2実施形態は、第1実施形態と位置情報の取得動作及びD2D通信の可否の判定動作が異なる。したがって、第2実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作について、図16を参照しながら説明する。
 (位置情報の取得動作及びD2D通信の可否の判定動作)
 図16は、第2実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のシーケンス図である。
 図16に示すように、ステップ701において、eNB200は、UE100-1のGNSS情報を要求する情報を含むGNSS情報要求信号をUE100-1へ送信する。同様に、eNB200は、UE100-2のGNSS情報要求信号をUE100-2へ送信する。
 ステップ702において、UE100-1は、全地球測位システム(GNSS)によってUE100-1の位置を求める。
 ステップ703において、ステップ702と同様に、UE100-2は、UE100-1の位置を求める。
 ステップ704において、UE100-1は、GNSSによって求められたUE100-1の位置を示すGNSS情報をeNB200へ送信する。これにより、eNB200は、UE100-1の位置情報を取得する。
 ステップ705において、ステップ704と同様に、UE100-2は、UE100-2のGNSS情報をeNB200へ送信し、eNB200は、UE100-2の位置情報を取得する。
 ステップ706において、取得した位置情報に基づいて、eNB200は、UE100-1とUE100-2との間の距離が、所定の閾値未満であるか判定する。ステップ706は、図11におけるステップ204に対応する。
 ステップ707は、図11におけるステップ205に対応し、ステップ708は、図11におけるステップ206に対応する。
 (第2実施形態のまとめ)
 本実施形態では、位置情報は、GNSSによって求められたUE100-1及びUE100-2のそれぞれの位置を示す情報を含む。これにより、UE100-1及びUE100-2のそれぞれの位置が正確に求まるため、UE100-1とUE100-2とによるD2D通信が可能か否かの判定の精度を向上できる。
 [第3実施形態]
 以下、第3実施形態について、第1実施形態との相違点を主として説明する。
 第1実施形態では、UE100-1とUE100-2とが、同一のeNB200と接続を確立している場合であった。第3実施形態では、UE100-1とUE100-2とがそれぞれ、互いに異なる基地局(eNB200及びeNB202)と接続を確立していてもよい。
 (第3実施形態に係る移動通信システムの動作)
 第3実施形態に係る移動通信システムの動作について、(1)全体動作、(2)位置情報の取得動作及びD2D通信の可否の判定動作の順に説明する。
 (1)全体動作
 図17及び図18を参照しながら、全体動作について説明する。
 図17は、第3実施形態に係るUE100-1及びUE100-2とeNB200及びeNB202との位置関係の一例を示す図である。
 図17に示すように、UE100-1は、eNB200が管理するセル250に存在する。また、UE100-1は、eNB200との接続を確立している。一方、UE100-2は、eNB202が管理するセル252に存在する。また、UE100-2は、eNB202との接続を確立している。eNB200とeNB202とは、互いに隣接している。また、セル250及びセル252は、互いに隣接する隣接セルである。UE100-1及びUE100-2は、eNB200及びeNB202を経由してセルラ通信を行う。
 図18は、第3実施形態に係る全体動作のシーケンス図の一例である。
 図18に示すように、ステップ801において、UE100-1及びUE100-2は、eNB200及びeNB202を経由してセルラ通信を行う。
 ステップ802において、eNB200は、UE100-1及びUE100-2のそれぞれの位置情報を取得する。さらに、eNB200は、UE100-1とUE100-2とによるD2D通信が可能か判定する。本実施形態において、位置情報は、後述するように、UE100-1及びUE100-2のそれぞれの在圏セルを示す情報である。
 UE100-1とUE100-2とによるD2D通信が可能か否かの判定結果は、通信管理テーブルに記録される。
 ステップ803からステップ807はそれぞれ、図10におけるステップ103からステップ107に対応する。
 ステップ808において、UE100-2からDiscovery応答信号を受信したことをUE100-1から報告を受けたeNB200は、当該報告内容をeNB202へ報告する。
 ステップ809からステップ813はそれぞれ、図10におけるステップ108からステップ112に対応する。
 ステップ814において、UE100-1とUE100-2との間にD2Dリンクが確立されたことをUE100-1から報告を受けたeNB200は、当該報告内容をeNB202へ報告する。
 ステップ815において、報告を受けたeNB200は、UE100-1とUE100-2とがD2D通信中であることを通信管理テーブルへ記録する。また、eNB200は、UE100-1とUE100-2とのセルラ通信を終了する。
 ステップ816において、ステップ815と同様に、報告を受けたeNB202は、UE100-1とUE100-2とがD2D通信中であることを通信管理テーブルへ記録し、UE100-1とUE100-2とのセルラ通信を終了する。
 (2)位置情報の取得動作及びD2D通信の可否の判定動作
 図19を参照しながら、位置情報の取得動作及びD2D通信の可否の判定動作について説明する。
 図19は、第3実施形態に係る位置情報の取得動作及びD2D通信の可否の判定動作のフローチャートである。本動作は、図18におけるステップ802に対応する。
 図19に示すように、ステップ901において、eNB200のプロセッサ240は、UE100-2が在圏するセルを示す在圏セル情報を通信管理テーブルに記録しているかを判定する。具体的には、まず、プロセッサ240は、図13におけるステップ201と同様に、UE100-2の識別情報をMMEから取得する。次に、プロセッサ240は、取得したUE100-2の識別情報に基づいて、通信管理テーブルに在圏セル情報が記録されているか判定する。
 eNB200とeNB202とは、X2インターフェイス又はS1インターフェイスを介して、定期的に通信管理テーブルを交換していてもよい。eNB200とeNB202とが通信管理テーブルを交換していた場合、eNB200の通信管理テーブルに在圏セル情報が記録される。
 UE100-2の在圏セル情報が通信管理テーブルに記録されている場合、プロセッサ240は、ステップ902の処理を行う。一方、UE100-2の在圏セル情報が通信管理テーブルに記録されていない場合、プロセッサ240は、ステップ903の処理を行う。
 なお、UE100-1の在圏セル情報については、eNB200は、UE100-1との接続を確立しているため、eNB200の通信管理テーブルには、UE100-1の在圏セル情報が記録されている。
 ステップ902において、プロセッサ240は、UE100-1とUE100-2とが同一セルに在圏するか判定する。具体的には、プロセッサ240は、UE100-1が在圏するセルとUE100-2が在圏するセルとが一致するか判定する。
 UE100-1とUE100-2とが同一セルに在圏する場合、プロセッサ240は、ステップ906の処理を行う。UE100-1とUE100-2とが同一セルに在圏しない場合、プロセッサ240は、ステップ905の処理を行う。
 ステップ903において、プロセッサ240は、UE100-2の在圏セル情報を隣接する基地局であるeNB202に要求するようにX2インターフェイス又はS1インターフェイスを制御する。
 なお、当該要求にはUE100-1の通信相手であるUE100-2を識別するための識別情報を含む。
 ステップ904において、プロセッサ240は、UE100-2の在圏セル情報を取得する。プロセッサ240は、eNB202からUE100-2の在圏セル情報を取得してもよいし、UE100-2の在圏セル情報が記録されたeNB202が有する通信管理テーブルを取得してもよい。また、eNB202の通信管理テーブルを取得する際に、プロセッサ240は、eNB200の通信管理テーブルをeNB202に送ってもよい。すなわち、eNB200とeNB202とは、X2インターフェイス又はバックホールを介して、通信管理テーブルを交換していてもよい。
 ステップ905において、プロセッサ240は、UE100-1とUE100-2とが隣接セルに在圏するか判定する。具体的には、プロセッサ240は、UE100-1が在圏するセルに隣接する隣接セルにUE100-2が在圏するか判定する。
 UE100-2が隣接セルに在圏すると判定した場合、プロセッサ240は、ステップ906の処理を行う。一方、UE100-2が隣接セルに在圏しないと判定した場合、プロセッサ240は、ステップ907の処理を行う。
 ステップ906において、UE100-1とUE100-2とが同一セルに在圏すると判定した場合、又は、UE100-2が隣接セルに在圏すると判定した場合、プロセッサ240は、UE100-1とUE100-2とがD2D通信可能であると判定する。
 一方、ステップ907において、UE100-2が隣接セルに在圏しないと判定した場合、プロセッサ240は、UE100-1とUE100-2とがD2D通信不可能であると判定する。
 (第3実施形態のまとめ)
 本実施形態において、位置情報は、UE100-1及びUE100-2のそれぞれの在圏セルを示す情報であり、プロセッサ240は、UE100-1が在圏するセル、又は、UE100-1が在圏するセルに隣接する隣接セルにUE100-2が在圏する場合に、UE100-1とUE100-2とによるD2D通信が可能と判定する。これにより、eNB200は、UE100-1及びUE100-2のそれぞれの位置を特定しなくても、UE100-1とUE100-2とによるD2D通信が可能か否かの判定をすることができる。
 本実施形態に係るeNB200は、eNB202からUE100-2の在圏セル情報を取得することができる。これにより、eNB200は、eNB200との接続を確立していないUE100-2の位置情報(在圏セル情報)を取得できるため、D2D通信が可能と判定できるエリアが広がる。
 [その他の実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、上述した実施形態では、eNB200に判定部が設けられていた(すなわち、eNB200のプロセッサ240が判定していた)が、これに限られない。例えば、判定部は、eNB200の上位装置であるMMEに設けられていてもよい。判定部がMMEに設けられた場合、MMEは、UE100-1とUE100-2とによるD2D通信が可能と判定した場合、Discovery指示信号を送信するようにeNB200へ要求する。要求を受けたeNB200は、UE100-1へDiscovery指示信号を送信する。
 判定部がMMEに設けられた場合、MMEが通信管理テーブルを有していてもよい。MMEが通信管理テーブルを有する場合、UE100-1からD2Dリンクが確立されたことを報告されたeNB200は、UE100-1とUE100-2とがD2Dリンクを確立したことをMMEに報告する。MMEは、UE100-1とUE100-2とがD2D通信中であることを通信管理テーブルへ記録する。
 また、上述した実施形態では、UE100-1とUE100-2とがセルラ通信を行っている場合であったが、3つ以上のUE100(UEグループ)がセルラ通信を行っている場合であってもよい。この場合、eNB200は、通信管理テーブルからD2D通信可能なUEグループを選択してもよい。
 また、第1実施形態において、通信管理テーブルは、「D2D通信可能性」の項目を有してもよい。「D2D通信可能性」は、D2D通信できる可能性を示す。例えば、eNB200と接続を確立中のUEと通信相手のUEとの間の距離が短いほど、D2D通信できる可能性が高く、当該距離が長いほどD2D通信できる可能性が低いとしてもよい。このD2D通信可能性に応じて、順位付けをしてもよい。プロセッサ240は、順位の高いUEペアを選択するようにしてもよい。
 また、第3実施形態では、UE100-1が在圏するセル、又は、UE100-2が在圏するセルに隣接する隣接セルにUE100-2が在圏する場合に、UE100-1とUE100-2とによるD2D通信が可能と判定したが、UE100-1が在圏するセルにUE100-2が在圏する場合のみに、UE100-1とUE100-2とによるD2D通信が可能と判定してもよい。
 また、第3実施形態では、eNB200は、セル250を管理し、eNB202は、セル252を管理していたが、eNB200及びeNB202のそれぞれが、複数のセルを管理していてもよい。
 また、第1実施形態から第3実施形態の構成を適宜組み合わせて実施してもよい。例えば、D2D通信の可否の判定について、eNB200は、複数の位置情報(例えば、在圏セルを示す情報と方向情報及び距離情報など)を考慮して、判定してもよい。これにより、D2D通信が可能か否かの判定の精度を向上できる。
 上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、米国仮出願第61/723415号(2012年11月7日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る移動通信システム、基地局、プロセッサ及びユーザ端末は、D2D通信を有効活用できるため、移動通信分野において有用である。

Claims (17)

  1.  基地局と、
     前記基地局との接続を確立する第1ユーザ端末と、
     前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末と、を有し、直接的な端末間通信であるD2D通信をサポートする移動通信システムであって、
     前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記基地局は、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信することを特徴とする移動通信システム。
  2.  前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信の可否を判定する判定部を備え、
     前記判定部は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの位置情報に基づいて、前記第1ユーザ端末と前記第2ユーザ端末とが近接していると推定する場合に、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定することを特徴とする請求項1に記載の移動通信システム。
  3.  前記判定部は、前記基地局に設けられることを特徴とする請求項2に記載の移動通信システム。
  4.  前記判定部は、前記基地局の上位装置に設けられることを特徴とする請求項2に記載の移動通信システム。
  5.  前記位置情報は、
     前記基地局を基準とした前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの方向を示す方向情報と、
     前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれと前記基地局との間の距離を示す距離情報と、を含むことを特徴とする請求項2に記載の移動通信システム。
  6.  前記基地局は、マルチアンテナ伝送により前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれと通信を行っており、
     前記方向情報は、前記マルチアンテナ伝送における指向性パターンに応じて定められることを特徴とする請求項5に記載の移動通信システム。
  7.  前記距離情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれから送信された上りリンク信号を前記基地局が受信するタイミングから求められる前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの伝搬遅延時間に応じて定められることを特徴とする請求項5に記載の移動通信システム。
  8.  前記距離情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれから送信された上りリンク信号の送信電力と、前記上りリンク信号を前記基地局が受信する際の受信電力とから求められる前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの伝搬損失に応じて定められることを特徴とする請求項5に記載の移動通信システム。
  9.  前記位置情報は、全地球測位システムによって求められた前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの位置を示す情報を含むことを特徴とする請求項2に記載の移動通信システム。
  10.  前記位置情報は、前記第1ユーザ端末及び前記第2ユーザ端末のそれぞれの在圏セルを示す情報であり、
     前記判定部は、前記第1ユーザ端末が在圏するセル、又は、前記第1ユーザ端末が在圏するセルに隣接する隣接セルに前記第2ユーザ端末が在圏する場合に、前記第1ユーザ端末と前記第2ユーザ端末とによる前記D2D通信が可能と判定することを特徴とする請求項2に記載の移動通信システム。
  11.  前記指示は、前記発見用信号を送信させるタイミングを指定する情報を含むことを特徴とする請求項1に記載の移動通信システム。
  12.  前記基地局に隣接する隣接基地局を有し、
     前記基地局は、前記第2ユーザ端末が前記隣接基地局と接続を確立している場合に、前記隣接基地局から前記第2ユーザ端末の前記位置情報を取得することを特徴とする請求項2に記載の移動通信システム。
  13.  前記第1ユーザ端末は、前記指示を受信した場合に、前記基地局へのデータ送信を停止することを特徴とする請求項1に記載の移動通信システム。
  14.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおける基地局であって、
     前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する制御部を有することを特徴とする基地局。
  15.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおける基地局に備えられるプロセッサであって、
     前記基地局との接続を確立する第1ユーザ端末と、前記基地局を経由して前記第1ユーザ端末との通信を行う第2ユーザ端末とによる前記D2D通信が可能と判定された場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信させるための指示を前記第1ユーザ端末に送信する処理を実行することを特徴とするプロセッサ。
  16.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、基地局との接続を確立するユーザ端末であって、
     前記ユーザ端末と、前記基地局を経由して前記ユーザ端末との通信を行う他のユーザ端末とによる前記D2D通信が可能と判定された場合に前記基地局から送信された指示を受信する受信部と、
     前記受信部が前記指示を受信した場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信する制御部と、を有し、
     前記指示は、前記発見用信号を送信させるための指示であることを特徴とするユーザ端末。
  17.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて、基地局との接続を確立するユーザ端末に備えられるプロセッサであって、
     前記ユーザ端末と、前記基地局を経由して前記ユーザ端末との通信を行う他のユーザ端末とによる前記D2D通信が可能と判定された場合に前記基地局から送信された指示を受信する処理を実行し、
     前記受信部が前記指示を受信した場合に、前記D2D通信における通信相手端末の発見に使用される発見用信号を送信する処理を実行し、
     前記指示は、前記発見用信号を送信させるための指示であることを特徴とするプロセッサ。
PCT/JP2013/079926 2012-11-07 2013-11-05 移動通信システム、基地局、プロセッサ及びユーザ端末 WO2014073539A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/439,431 US9661669B2 (en) 2012-11-07 2013-11-05 Mobile communication system, base station, processor, and user terminal
JP2014545714A JP6028038B2 (ja) 2012-11-07 2013-11-05 移動通信システム、基地局、プロセッサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261723415P 2012-11-07 2012-11-07
US61/723,415 2012-11-07

Publications (1)

Publication Number Publication Date
WO2014073539A1 true WO2014073539A1 (ja) 2014-05-15

Family

ID=50684642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079926 WO2014073539A1 (ja) 2012-11-07 2013-11-05 移動通信システム、基地局、プロセッサ及びユーザ端末

Country Status (3)

Country Link
US (1) US9661669B2 (ja)
JP (1) JP6028038B2 (ja)
WO (1) WO2014073539A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135790A1 (ja) * 2015-02-26 2016-09-01 日本電気株式会社 近接サービス通信のための装置及び方法
JP2017523705A (ja) * 2014-08-07 2017-08-17 インテル アイピー コーポレーション マルチキャリア対応の携帯デバイスを目的とした近接サービスのためのシステム、方法、及びデバイス
JP2017531944A (ja) * 2014-10-03 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated EPCレベル近接サービス(ProSe)発見のためのトランスポートプロトコルとしてのHTTP実装を最適化するための技法
WO2018143317A1 (ja) * 2017-02-01 2018-08-09 株式会社Nttドコモ ユーザ端末及び無線通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2629430C2 (ru) * 2013-01-16 2017-08-29 Интердиджитал Пэйтент Холдингз, Инк. Генерация и прием сигнала обнаружения
CN104349421B (zh) * 2013-08-08 2020-03-17 中兴通讯股份有限公司 设备发现方法和用户设备、网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016901A2 (en) * 2006-08-01 2008-02-07 Qualcomm Incorporated System and/or method for providing information updates to a location server
JP2011166674A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 基地局、端末、基地局の送信制御方法及び端末の送信制御方法
WO2011130623A2 (en) * 2010-04-15 2011-10-20 Qualcomm Incorporated Network-assisted peer discovery
JP2011215019A (ja) * 2010-03-31 2011-10-27 Ntt Docomo Inc ナビゲーション装置及びナビゲーション方法
WO2012006446A1 (en) * 2010-07-07 2012-01-12 Qualcomm Incorporated Hybrid modes for peer discovery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9036603B2 (en) * 2012-08-03 2015-05-19 Intel Corporation Network assistance for device-to-device discovery
JP6031610B2 (ja) * 2012-08-23 2016-11-24 インターデイジタル パテント ホールディングス インコーポレイテッド デバイスツーデバイス発見を行うための方法および装置
US10028123B2 (en) * 2012-11-05 2018-07-17 Nokia Technologies Oy Method and apparatus for network-controlled proximity device to device discovery and communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016901A2 (en) * 2006-08-01 2008-02-07 Qualcomm Incorporated System and/or method for providing information updates to a location server
JP2011166674A (ja) * 2010-02-15 2011-08-25 Panasonic Corp 基地局、端末、基地局の送信制御方法及び端末の送信制御方法
JP2011215019A (ja) * 2010-03-31 2011-10-27 Ntt Docomo Inc ナビゲーション装置及びナビゲーション方法
WO2011130623A2 (en) * 2010-04-15 2011-10-20 Qualcomm Incorporated Network-assisted peer discovery
WO2012006446A1 (en) * 2010-07-07 2012-01-12 Qualcomm Incorporated Hybrid modes for peer discovery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523705A (ja) * 2014-08-07 2017-08-17 インテル アイピー コーポレーション マルチキャリア対応の携帯デバイスを目的とした近接サービスのためのシステム、方法、及びデバイス
US10805926B2 (en) 2014-08-07 2020-10-13 Apple Inc. Systems, methods, and devices for proximity services for multi-carrier capable mobile devices
JP2017531944A (ja) * 2014-10-03 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated EPCレベル近接サービス(ProSe)発見のためのトランスポートプロトコルとしてのHTTP実装を最適化するための技法
WO2016135790A1 (ja) * 2015-02-26 2016-09-01 日本電気株式会社 近接サービス通信のための装置及び方法
WO2018143317A1 (ja) * 2017-02-01 2018-08-09 株式会社Nttドコモ ユーザ端末及び無線通信方法

Also Published As

Publication number Publication date
JP6028038B2 (ja) 2016-11-16
US20150289305A1 (en) 2015-10-08
US9661669B2 (en) 2017-05-23
JPWO2014073539A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5893141B2 (ja) 移動通信システム、ユーザ端末、プロセッサ及び基地局
US9629057B2 (en) Mobile communication system, base station, processor, and communication control method
JP6174213B2 (ja) ユーザ端末、プロセッサ及び基地局
JP5969155B1 (ja) ユーザ端末、プロセッサ及び通信制御方法
US20160309316A1 (en) Mobile communication system, base station, user terminal, and processor
JP6147844B2 (ja) 移動通信システム、基地局、ユーザ端末及びプロセッサ
JP6169109B2 (ja) ユーザ端末、プロセッサ、セルラ基地局及び移動通信システム
WO2014050557A1 (ja) 移動通信システム、基地局及びユーザ端末
JP6028038B2 (ja) 移動通信システム、基地局、プロセッサ
WO2014208559A1 (ja) 通信制御方法、基地局及びユーザ端末
JP6174141B2 (ja) 通信制御方法及び基地局
WO2015045860A1 (ja) ユーザ端末及びネットワーク装置
US9560688B2 (en) Mobile communication system, user terminal, communication control apparatus, and communication control method
US9986369B2 (en) Base station, user terminal, and processor
US9456463B2 (en) Mobile communication system, user terminal, and communication control method
JP6382429B2 (ja) 基地局、ユーザ端末、プロセッサ、及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13853828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545714

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439431

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13853828

Country of ref document: EP

Kind code of ref document: A1