WO2014071593A1 - 一种两亲性氨基菊糖及其制备 - Google Patents

一种两亲性氨基菊糖及其制备 Download PDF

Info

Publication number
WO2014071593A1
WO2014071593A1 PCT/CN2012/084311 CN2012084311W WO2014071593A1 WO 2014071593 A1 WO2014071593 A1 WO 2014071593A1 CN 2012084311 W CN2012084311 W CN 2012084311W WO 2014071593 A1 WO2014071593 A1 WO 2014071593A1
Authority
WO
WIPO (PCT)
Prior art keywords
inulin
amphiphilic
reaction
azide
cyhalose
Prior art date
Application number
PCT/CN2012/084311
Other languages
English (en)
French (fr)
Inventor
郭占勇
任剑明
董方
李青
冯艳
胡云霞
Original Assignee
中国科学院烟台海岸带研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院烟台海岸带研究所 filed Critical 中国科学院烟台海岸带研究所
Publication of WO2014071593A1 publication Critical patent/WO2014071593A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0051Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Fructofuranans, e.g. beta-2,6-D-fructofuranan, i.e. levan; Derivatives thereof
    • C08B37/0054Inulin, i.e. beta-2,1-D-fructofuranan; Derivatives thereof

Definitions

  • the invention relates to the field of daily chemical industry and the pharmaceutical industry, in particular to an amphiphilic amino inulin and its preparation, background technology
  • Inulin also known as inulin, is a biological polysaccharide.
  • the D-fructofuranose molecule is formed by ⁇ -(2, 1) glycosidic linkage, and each inulin molecule is linked to a glucose residue by a (-(1, 2) glycosidic bond, and the degree of polymerization is usually 2 to 60, and the average degree is 2 to 60.
  • the degree of polymerization is 10.
  • Inulin is widely found in some microorganisms and fungi in nature. However, it mainly exists in plants, such as Jerusalem artichoke, chicory, salsify, dahlia tubers, etc. Among them, Jerusalem artichoke is the main source of inulin production. Chrysanthemum, commonly known as Jerusalem artichoke and devil ginger, is native to North America and is a perennial herb. It is cultivated throughout the country. Its tubers are rich in inulin. The total inulin content is generally 14 ⁇ 17%. The source is abundant and the cost is low.
  • inulin As an energy storage material for plants such as Jerusalem artichoke, inulin is a safe, non-toxic and easily available plant polysaccharide. Its high value development and utilization will provide us with a large number of functional products, and its high value will enhance people. The enthusiasm of planting the coastal plant with the halophyte, which promotes the restoration of the coastal salt zone environment. However, there are very few reports on the use of this renewable resource. Especially when compared with other polysaccharides that have a better degree of utilization.
  • the object of the present invention is to provide an amphiphilic amino inulin which can be modified and utilized to a high degree and its preparation.
  • the technical scheme adopted by the present invention is as follows: 1. An amphiphilic aminoinulin characterized by: as shown in formula (1),
  • n has an average value ranging from 10 to 35.
  • the preparation method of the amphiphilic amino inulin is carried out by halogenating the primary hydroxyl group of inulin, and reacting with azide or lithium azide at 40-70 ° C for 8-24 hours, and purifying 6 azide -3,4-diacyl-6-deoxy chrysanthemum
  • the sugar, 6 azide-3,4-diacyl-6-deoxyinulin is reduced by triphenylphosphine to obtain an amphiphilic amino inulin;
  • the molar amount of the sodium azide or lithium azide is the molar amount of inulin 1 to 2 times;
  • the ratio of the molar amount of triphenylphosphine to 6 azide-3,4-diacyl-6-deoxy-inulin is 2-3:1.
  • the 6 azide-3,4-diacyl-6-deoxyinulin is reacted with triphenylphosphine at 10-25 ° C for 24-48 h, then 1-1 mL of water is added to continue the reaction for 24-48 h. Purification and freeze drying After the amphipathic amino inulin.
  • the purification is carried out by precipitating the product with acetone, followed by washing with diethyl ether, washing and lyophilizing in vacuo to obtain an amphiphilic cyhalose.
  • the primary hydroxyl group of inulin is halogenated to chlorinate, bromine or iodo the six primary hydroxyl groups of inulin, and the other hydroxyl groups are acylated with acetyl, propionyl, benzoyl, butyryl or isobutyryl groups. protection.
  • BP the six primary hydroxyl groups of inulin are subjected to chlorination, bromination or iodo reaction, and the halogenated product and the acid anhydride are reacted in dry pyridine at 0-25 ° C for 8-24 hours, and are used.
  • N-bromosuccinimide N-bromosuccinimide
  • triphenylphosphine 40-70 °C for 2-1 h, purified and lyophilized, dried with anhydride in dry pyridine at 0-25 ° C reaction 8-24h.
  • the respective amounts of N-bromosuccinimide (NBS) and triphenylphosphine are 2-4 times the molar amount of inulin, respectively.
  • the cis-amino-inulin obtained in the present invention means that both the hydrophilic group and the lipophilic group are present in the amphiphilic amino inulin molecule.
  • the compound of the present invention has the following advantages: After introduction of a hydroxyl group-active amino group, the reactivity of the amphiphilic amino inulin is greatly enhanced, for example, a hydrophilic quaternary ammonium salt, Schiff can be formed. Derivatives such as bases and amides increase the high availability of inulin.
  • the biological activity thereof is improved, for example, the bacteriostatic activity, the solubility is enhanced, and it can be dissolved in some ester-soluble solvents to expand the range of application.
  • Modified amino groups on polysaccharides are an important modified sugar, which is essential for organisms including humans. For example: they play a key role in the structure and function of biological glycoproteins; the antibacterial function of many antibiotics such as aminoglycosides and macrolides is inseparable from the function of amino groups in polysaccharides.
  • the amino group-containing polysaccharide plays an important role in the application. For example, the development of chitosan functional products mostly relies on their 2-position amino groups.
  • the synthesis method has the following advantages in the synthesis process:
  • the synthesis cost of the invention is low, and the required equipment and raw materials are readily available.
  • the compound obtained by the present invention has a high degree of substitution of up to 100%.
  • the yield of the product is high, and can reach more than 60%.
  • the present invention opens up a new way for the research and development of the high value of inulin by using a stable C-N bond to bond the amino group to the inulin.
  • the present invention obtains amphiphilic cyhalose by an effective synthesis method, and the primary hydroxyl group of inulin is replaced by a halogen to replace the primary hydroxyl group of inulin, and the other hydroxyl group of the inulin is protected by an acyl group, and an azide group is used.
  • the nucleophilic substitution of the six groups that are easy to leave, the obtained product is reduced to obtain a high-generation amphiphilic amino inulin.
  • the synthesis steps of the present invention are simple, easy to generalize, and the required equipment and raw materials are readily available.
  • the product obtained by the invention can be widely used in the fields of biology, medicine, food, chemical industry and the like.
  • 1 is an infrared spectrum diagram of inulin provided by an embodiment of the present invention.
  • 2 is an infrared spectrum diagram of Compound 1 according to an embodiment of the present invention.
  • Figure 3 is a chart showing the infrared spectrum of Compound 2 according to an embodiment of the present invention.
  • amphiphilic aminoinulin is a compound represented by the formula (1).
  • the target compound was synthesized according to the above synthetic route (1).
  • the precipitate was filtered with suction and acetone, and then transferred directly to 180 mL of dry pyridine. After stirring at room temperature until the precipitate was dissolved, 15 mL of acetic anhydride was added to the reaction mixture, and the reaction was stirred at room temperature for 8 hours. After the completion of the reaction, the reaction mixture was poured into a 750 mL ice-water mixture, and precipitated. The precipitate was washed with suction and deionized water, and then freeze-dried at -50 ° C to obtain 2.1 g of the product (Compound 1).
  • step (3) Dissolve the product (compound 2) lg obtained in step (2) and 2.8 g of triphenylphosphine in 60 mL of dimethyl sulfoxide solution, react at 25 ° C for 24 h, and then add lm water to the reaction solution. The reaction was continued for 24 h at 25 °C. After completion of the reaction, the product was precipitated with 200 mL of diethyl ether. The product was washed with diethyl ether and filtered with suction, and then dried at -50 ° C under vacuum to give the product amphiphilic sucrose.
  • the obtained product is a milky white powder, which is easily soluble in water, and its infrared spectrum is shown in Fig. 4.
  • inulin is formed by linking D-fructofuranose molecules with ⁇ -(2, 1) glycosidic bonds, and each inulin molecule is terminated by a (-(1, 2) glycosidic bond to a glucose residue. It is 10 ⁇ 35, the average degree of polymerization is 10, and the average value of the molecule is slightly lower than that of starch, about 4000-5000.
  • the newly added 1735.62 cm-1 is a characteristic absorption peak of the acyl group compared with the inulin raw material
  • 2105.89 cm-1 in Fig. 3 is a strong vibration of the azide group, as shown in Fig. 4, compared with the inulin raw material.
  • the newly added characteristic absorption peak of the absorption peak primary amino group at 1588.06 cm-l, the newly added absorption peak at 1739.48 cm-l is the acyl characteristic vibration absorption peak.
  • the above analysis demonstrates the successful synthesis of amphiphilic amino inulin (Liu, C. and H. Baumann (2002). "Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without The use of protecting groups.” Carbohydrate Research 337(14): 1297-1307. ).
  • Embodiment 1 The difference from Embodiment 1 is that:
  • reaction solution was poured into a 750 mL ice-water mixture, and precipitated.
  • the precipitate was washed with suction and deionized water, and then freeze-dried at -50 ° C to obtain 2.2 g of the product (Compound 1).
  • step (3) Dissolve the product (compound 2) lg obtained in step (2) and 2.3 g of triphenylphosphine in 60 mL of dimethyl sulfoxide solution, react at 25 ° C for 24 h, and then add lm water to the reaction solution. The reaction was continued for 24 h at 25 °C. After completion of the reaction, the product was precipitated with 200 mL of diethyl ether. The product was washed with diethyl ether and filtered with suction, and then dried at -50 ° C under vacuum to give the product amphiphilic sucrose.
  • Embodiment 1 The difference from Embodiment 1 is that:
  • the reaction was carried out at 70 ° C for 3 hours, and then the reaction solution was poured into 250 mL of acetone. The precipitate precipitated. The precipitate was filtered with suction and washed with acetone, and then directly transferred to 180 mL of dry pyridine. After stirring at room temperature until the precipitate was dissolved, 20 mL of isobutyric anhydride was added to the reaction system, and the reaction was stirred at 20 ° C for 8 hours. After completion of the reaction, the reaction mixture was poured into a 750 mL ice-water mixture, and precipitated. The precipitate was filtered with suction and washed with deionized water, and then lyophilized at -50 ° C to obtain 1.7 g of the product (Compound 1).
  • the ability of the synthesized amphiphilic cyhalose and inulin to remove hydroxyl radicals was measured and compared:
  • the amphiphilic cyhalose prepared in Examples 1-3 and the experimental inulin were vacuum-dried to constant weight. After that, prepare the required concentration in Table 1, and separately take 1 mL of different concentration of sample solution and 1 mL of phosphate buffer prepared in Table 1 (Prepare phosphate buffer: 41.58g Na 2 HP0 4 .12H 2 0 , 5.2887gNaH respectively) 2 P0 4 .2H 2 0, add water to dissolve to 1000ml.), 360ug/m of reddish lml, 2mmol/L of EDTA-Fe0.5ml, 3% hydrogen peroxide 1ml, mix in test tube, at 37 degrees After reacting for 30 min in a water bath, the absorbance of the sample at 520 nm was measured, and 1 ml of distilled water in the blank group was used instead of the test sample,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种两亲性氨基菊糖及其制备方法。两亲性氨基菊糖如式(1)所示,其中,R为H、CH3、CH3CH2CH2、(CH32CH或C6H5,n的平均取值范围是10-35。两亲性氨基菊糖通过如下方法制备:将菊糖的伯羟基进行卤代反应,反应后与叠氮钠或叠氮锂在40-70°C条件下反应8-24h,经纯化得6叠氮-3,4-二酰基-6脱氧菊糖,6叠氮-3,4-二酰基-6脱氧菊糖经三苯基膦还原即得两亲性氨基菊糖。

Description

一种两亲性氨基菊糖及其制备 技术领域
本发明涉及日化领域及医药行业,具体的说是一种两亲性氨基菊糖及其制备, 背景技术
菊糖 (Inulin)又称为菊粉, 是一种生物多糖。 由 D—呋喃果糖分子以 β— (2, 1) 糖苷键连接生成, 每个菊糖分子末尾以 (— (1, 2)糖苷键连接一个葡萄糖残基, 聚 合度通常为 2〜60, 平均聚合度为 10。
菊糖在自然界中广泛存在于一些微生物和真菌体内。 但是主要还是存在于植物 的体内, 如菊芋、 菊苣、 婆罗门参、 大丽花块茎等, 其中菊芋是菊糖生产的主要原 料来源。 菊芋俗称洋姜、 鬼子姜, 原产于北美洲, 为多年生草本植物, 我国各地普 遍栽培, 其块茎富含菊糖, 总菊糖含量一般为 14〜17%, 来源丰富, 成本较低。
菊糖作为菊芋等植物的能量储备物质,是一种安全无毒易得的植物多糖, 它的高 值化开发利用, 将为我们提供大量的功能性产品, 同时它的高值化将提高人们种植 海岸带盐生植物菊芋的积极性, 从而推动海岸盐生带环境的修复。 然而关于这一可 再生资源的利用的报道非常少。 特别是当与其他的有较好利用程度的多糖比较时。
比如: 壳聚糖。 造成这一可再生资源利用较少的原因之一就是菊糖的分子结 构上没有较为活泼的反应集团。 壳聚糖的多种功能产品的开发, 使我们认识到菊 糖分子上能有一个氨基是非常 有价值的一个化合物中间体, 同时两亲性分子可以 提高其生物活性, 增强其溶解性。 所以合成两亲性氨基菊糖有望等提高菊糖的高 值化利用度。 发明内容
本发明目的在于提供一种可修饰、利用程度较高的两亲性氨基菊糖及其制备。 为实现上述目的, 本发明所采用的技术方案为: 1.一种两亲性氨基菊糖, 其 特征在于: 如式 (1 ) 所示,
Figure imgf000002_0001
式 (1 )
其中, 1 为 11、 CH3、 CH3CH2CH2、 ( CH3 ) 2CH或 C6H5; n的平均取值范围 10— 35。
两亲性氨基菊糖的制备方法, 将菊糖的伯羟基进行卤代反应, 反应后与叠氮 或叠氮锂在 40-70°C条件下反应 8— 24 h, 经纯化得 6叠氮 -3,4-二酰基 -6脱氧菊 糖, 6叠氮 -3,4-二酰基 -6脱氧菊糖经三苯基膦还原即得两亲性氨基菊糖; 所述叠氮钠或叠氮锂的摩尔量为菊糖摩尔量的 1 -2倍;三苯基膦与 6叠氮 -3,4- 二酰基 -6脱氧菊糖摩尔量的比为 2-3 : 1。
所述 6叠氮 -3,4-二酰基 -6脱氧菊糖与三苯基膦在 10-25 °C反应 24-48h, 而后 加入 1 - l OmL水继续反应 24-48h经纯化和冷冻干燥后得两亲性氨基菊糖。
所述纯化将后产物用丙酮析出, 而后用乙醚洗涤, 洗涤后于真空冷冻干燥, 即得两亲性氨基菊糖。
菊糖的伯羟基进行卤代反应为将菊糖的六位伯羟基进行氯代、 溴代或碘代, 其它羟基利用乙酰基、 丙酰基、 苯甲酰基、 丁酰基或异丁酰基进行酰基化保护。 BP , 将菊糖的六位伯羟基进行氯代、 溴代或碘代反应, 卤代后产物与酸酐在干燥 的吡啶在 0-25 °C反应 8-24h, 待用。
具体为:
将菊糖与 N-溴代丁二酰亚胺 (NBS ) 和三苯基膦在 40-70 °C反应 2— 12h经纯 化和冷冻干燥, 干燥后与酸酐在干燥的吡啶在 0-25 °C反应 8-24h。 其中 N-溴代丁 二酰亚胺 (NBS ) 和三苯基膦的各自用量分别为菊糖摩尔量的 2-4倍。
本发明所得亲性氨基菊糖是指两亲性氨基菊糖分子中同时有亲水性集团和亲 酯性集团。
本发明所具有的优点:
( 1 )与菊糖相比本发明化合物有以下优点: 在引入较羟基活泼的氨基后, 两 亲性氨基菊糖的反应活性极大的提高, 比如可以形成亲水性的季铵盐、 Schiff碱, 酰胺等衍生物提高菊糖的高值化利用度。
( 2 ) 制备成两亲性氨基菊糖后, 其生物活性得以提高, 例如: 抑菌活性, 其 溶解性得以增强, 可以溶解在一些酯溶性溶剂中, 扩大其应用范围。
( 3 )多糖上修饰氨基是一种重要的修饰糖, 对生物体包括人类在内是至关重 要的。 比如: 它们在生物学上的糖蛋白的结构及功能中起关键作用; 许多抗生素 如氨基糖苷, 大环内酯类的抗菌功能的实现都与多糖中氨基的功能密不可分。 此 外含氨基的多糖在应用方面有重要作用。 比如壳聚糖功能产品的开发, 大都借助 其 2位的氨基。
( 4 )在合成工艺上本合成方法有以下优点: 本发明合成成本较低、 所需设备 及原料易得。 本发明所得化合物的取代度高, 可达 100%。 而且本产品产率高, 可 达 60%以上, 同时本发明通过稳定的 C一 N键将氨基接于菊糖上, 为菊糖高值化 利用修饰的研发开辟了一条新路。
( 5 )本发明通过有效的合成手段得到两亲性氨基菊糖, 使用卤素取代菊糖的 伯羟基造成菊糖六位易离去集团, 用酰基保护菊糖其他位裸露的羟基, 叠氮基亲 核取代易离去的六位集团, 所得产物经还原后得取高代度的两亲氨基菊糖。 本发 明合成步骤简单, 易于推广, 所需设备及原料易得。 本发明所得产品可广泛用于 生物、 医药、 食品、 化工等领域。 附图说明
图 1为本发明实施例提供的菊糖的红外光谱图。 图 2为本发明实施例提供的化合物 1的红外光谱图。
图 3为本发明实施例提供的化合物 2的红外光谱图。
图 4为本发明实施例提供的两亲氨基菊糖的红外光谱图。 具体实施方式
实施例 1
两亲性氨基菊糖为式 (1 ) 所示的化合物。
1
2
Figure imgf000004_0001
R=H,或 CH3,或 CH3CH2CH2等 R=H,或 CH3,或 CH3CH2CH2
本实施例按以上合成路线 (一) 合成目标化物。
1 ) 化合 1的合成: 菊糖经真空 100°C过夜干燥。 取 1.62 g菊糖在氮气的保护 下加到 50 mL纯化后的氮氮二甲基甲酰胺中, 升温至菊糖完全溶解, 待溶解液温 度降至室温时加入 3.5g N-溴代丁二酰亚胺 (NBS ) ; 而后再将溶解在 30 mL氮氮 二甲基甲酰胺中的 5.2g三苯基膦在室温下滴加在其中; 在室温下反应 30min后将 反应温度升温至 70°C, 并反应 3h; 反应后将反应液倾入 250 mL 丙酮中, 析出沉 淀。 沉淀经抽滤、 丙酮洗涤后, 直接转入 180mL干燥吡啶中, 室温下搅拌至沉淀 溶解后, 向反应体系中加入 15mL乙酸酐, 室温下搅拌反应 8小时。 反应结束后, 将反应液倾入 750mL的冰水混合物中,沉淀析出,沉淀经抽滤、去离子水洗涤后, -50°C真空冷冻干燥后得产品 (化合物 1 ) 2.1g, 备用。
2 )将步骤(1 )所得的产品 (化合物 1 ) 2g与 1.3g 叠氮钠溶解至 50 mL二甲 亚砜中并在 50°C下反应 15h。 反应结束后用 200mL冰水混合物将产物析出, 分别 用乙醚、 去离子水洗涤产物后, -50°C真空干燥得产品 (化合物 2 ) 1.2g,备用。
3 ) 将步骤 (2 ) 所得产品 (化合物 2 ) lg与三苯基膦 2.8g溶解至 60 mL二甲 基亚砜溶液中, 在 25 °C反应 24h, 之后向反应液中加入 lm水, 在 25 °C条件下继 续反应 24h。 反应结束后用 200 mL乙醚将产物析出, 用乙醚洗涤产物并抽滤后, -50°C真空干燥即得产品两亲性氨基菊糖。
所得产品为乳白色粉末, 易溶于水, 其红外谱图参图 4。
其中菊糖 (Inulin)由 D—呋喃果糖分子以 β— (2, 1)糖苷键连接生成, 每个菊糖 分子末尾以 (— (1, 2)糖苷键连接一个葡萄糖残基, 聚合度通常为 10〜35, 平均 聚合度为 10, 分子的平均值比淀粉略低, 4000— 5000左右。
从图 2可知与菊糖原料相比, 新增加的 1735.62 cm-1为酰基的特征吸收峰, 图 3中 2105.89 cm-1为叠氮基的强振动, 从图 4可知与菊糖原料相比, 新增加的 1589.06cm-l处的吸收峰伯氨基的特征吸收峰, 新增加的 1739.48cm-l处的吸收峰 为酰基特征振动吸收峰。以上分析数据证明两亲氨基菊糖成功合成(Liu, C. and H. Baumann (2002). "Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups." Carbohydrate Research 337(14): 1297-1307. )。
实施例 2
与实施例 1不同之处在于:
1 ) 化合 1的合成: 菊糖经真空 100°C过夜干燥。 取 1.62 g菊糖在氮气的保护 下加到 50 mL纯化后的氮氮二甲基甲酰胺中而后升温至菊糖完全溶解, 待反应液 温度降至室温时加 3.5g N-溴代丁二酰亚胺 (NBS ) 至上述反应液中。 在将溶解至 30 mL氮氮二甲基甲酰胺中的 5.2g三苯基膦室温下滴加至上述反应液中, 而后于 室温下反应 30min后将反应体系温度升温至 70°C, 并在此温度下反应 3h, 反应后 将反应液倾入 250 mL 丙酮中, 析出沉淀。 沉淀经抽滤、 丙酮洗涤后, 直接转入 180mL干燥吡啶中, 室温下搅拌至沉淀溶解后, 向反应体系中加入 25mL丁酸酐, 在 10°C下搅拌反应 15小时。反应结束后, 将反应液倾入 750mL的冰水混合物中, 沉淀析出, 沉淀经抽滤、 去离子水洗涤后, -50°C真空冷冻干燥后得产品 (化合物 1 ) 2.2 g, 备用。
2 )将步骤(1 )所得的产品 (化合物 1 ) 2g与 l .Og 叠氮钠溶解至 50 mL二甲 亚砜中并在 60°C下反应 12h。 反应结束后用 200mL冰水混合物将产物析出, 分别 用乙醚、 去离子水洗涤产物后, -50°C真空干燥得产品 (化合物 2 ) 1.6g,备用。
3 ) 将步骤 (2 ) 所得产品 (化合物 2 ) lg与三苯基膦 2.3g溶解至 60 mL二甲 基亚砜溶液中, 在 25 °C反应 24h, 之后向反应液中加入 lm水, 在 25 °C条件下继 续反应 24h。 反应结束后用 200 mL乙醚将产物析出, 用乙醚洗涤产物并抽滤后, -50°C真空干燥即得产品两亲性氨基菊糖。
实施例 3
与实施例 1不同之处在于:
1 ) 化合 1的合成: 菊糖经真空 100°C过夜干燥。 取 1.62 g菊糖在氮气的保护 下加至 50 mL纯化后的氮氮二甲基甲酰胺中, 升温至菊糖完全溶解, 待反应液温 度降至室温时加 3.5g N-溴代丁二酰亚胺 (NBS )至上述反应液中。 称取 5.2g三苯 基膦溶解至 30 mL氮氮二甲基甲酰胺中。将此溶液在室温下滴加至反应液中.在室 温下反应液反应 30min后将反应体系温度升温至 70°C . 反应在 70°C下进行 3h后 将反应液倾入 250 mL 丙酮中, 析出沉淀。 沉淀经抽滤、 丙酮洗涤后, 直接转入 180mL干燥吡啶中, 室温下搅拌至沉淀溶解后, 向反应体系中加入 20mL异丁酸 酐, 在 20°C下搅拌反应 8小时。 反应结束后, 将反应液倾入 750mL的冰水混合物 中, 沉淀析出, 沉淀经抽滤、 去离子水洗涤后, -50°C真空冷冻干燥后得产品 (化 合物 1 ) 1.7 g, 备用。
2 ) 将步骤 (1 ) 所得的产品 (化合物 1 ) 1.5g与 l .Og 叠氮钠溶解至 50 mL二 甲亚砜中并在 80°C下反应 4h。 反应结束后用 200mL冰水混合物将产物析出, 分 别用乙醚、 和去离子洗涤产物后, -50°C真空干燥得产品 (化合物 2 ) 1.6g,备用。
3 ) 将步骤 (2 ) 所得产品 (化合物 2 ) lg与三苯基膦 2.5g溶解至 60 mL二甲 基亚砜溶液中, 在 35 °C反应 24h, 之后向反应液中加入 lm水, 在 35 °C条件下继 续反应 24h。 反应结束后用 200 mL乙醚将产物析出, 用乙醚洗涤产物并抽滤后, -50°C真空干燥即得产品两亲性氨基菊糖。
上述实施例为本发明较佳的实施方式, 但本发明均不受上述实施例的限制, 其他任何与本发明本质、 原理一致的情况下所做的改变、 修饰、 替代、 组合均应 为等效置换方式, 都包含在本发明的保护范围之内。
应用例
去除羟自由基抗氧化能力的测定:
分别测定所合成的两亲性氨基菊糖与菊糖的去除羟自由基的能力并做对比: 将实施例 1-3 制备的两亲性氨基菊糖和实验用菊糖真空冷冻干燥至恒重后, 分别 配制表一中所需浓度,并分别取表 1所配制的不同浓度的样品溶液 lmL、磷酸缓冲 液 lmL ( 配 制 磷 酸 缓 冲 液 : 分 别 取 41.58gNa2HP04.12H20 、 5.2887gNaH2P04.2H20, 加水定溶至 1000ml。), 360ug/m的番红 lml,2mmol/L的 EDTA-Fe0.5ml, 3%过氧化氢 1ml,于试管中混匀,在 37度水浴中反应 30min后,测定 样品在 520nm处的吸光度,空白组 1ml蒸馏水替代供试样品, 对照组 1.0ml蒸馏水 和 1ml磷酸缓冲液替代样品和过氧化氢 (注:被测样品均测两次,取平均值)。
去除羟自由基能力(%)[ (A样品 520nm-A 空白 520nm) / ( A对照 520nm-A 空 白 520nm) ]x l00
实验结果:本发明所合成的两亲性氨基菊糖与菊糖的去除羟自由基能力如表 一所示, 本发明所合成两亲性氨基菊糖的去除羟自由基能力明显优于菊糖。
表 1, 两亲性氨基菊糖与菊糖的去除羟自由基的能力 (%)
Figure imgf000006_0001

Claims

权 利 要 求 书
1 . 一种两亲性氨基菊糖, 其特征在于: 如式 (1 ) 所示,
Figure imgf000007_0001
式 (1 )
其中, R为 H、 CH3 CH3CH2CH2、 ( CH3 ) CH或 C6H5 ; n的平均取值范围 是 10— 35。
2. 一种权利要求 1所述的两亲性氨基菊糖的制备方法, 其特征在于: 将菊糖 锂在 40-70°C条件下反应 8— 24 h, 经纯化得 6叠氮 -3,4-二酰基 -6脱氧菊糖, 6叠氮 -3,4-二酰基 -6脱氧菊糖经三苯基 膦还原即得两亲性氨基菊糖;
所述叠氮钠或叠氮锂的摩尔量为菊糖摩尔量的 1-2倍;三苯基膦与 6叠氮 -3,4- 二酰基 -6脱氧菊糖摩尔量的比为 2-3 : 1。
3. 按权利要求 2所述的两亲性氨基菊糖的制备方法, 其特征在于: 所述 6叠 氮 -3,4-二酰基 -6脱氧菊糖与三苯基膦在 10-25 °C反应 24-48h, 而后加入 1-lOmL水 继续反应 24-48h经纯化和冷冻干燥后得两亲性氨基菊糖。
4. 按权利要求 2或 3所述的两亲性氨基菊糖的制备方法, 其特征在于: 所述 纯化将后产物用丙酮析出, 而后用乙醚洗涤, 洗涤后于真空冷冻干燥, 即得两亲
5. 按权利要求 2所述的两亲性氨基菊糖的制备方法, 其特征在于: 菊糖的伯 羟基进行卤代反应为将菊糖的六位伯羟基进行氯代、 溴代或碘代, 其它羟基利用 乙酰基、 丙酰基、 苯甲酰基、 丁酰基或异丁酰基进行酰基化保护。
6. 按权利要求 5所述的两亲性氨基菊糖的制备方法, 其特征在于: 将菊糖的 六位伯羟基进行氯代、溴代或碘代反应,卤代后产物与酸酐在干燥的吡啶在 0-25 °C 反应 8-24h, 待用。
PCT/CN2012/084311 2012-11-06 2012-11-08 一种两亲性氨基菊糖及其制备 WO2014071593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210438228.X 2012-11-06
CN201210438228.XA CN102952208B (zh) 2012-11-06 2012-11-06 一种两亲性氨基菊糖及其制备

Publications (1)

Publication Number Publication Date
WO2014071593A1 true WO2014071593A1 (zh) 2014-05-15

Family

ID=47761641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084311 WO2014071593A1 (zh) 2012-11-06 2012-11-08 一种两亲性氨基菊糖及其制备

Country Status (2)

Country Link
CN (1) CN102952208B (zh)
WO (1) WO2014071593A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755840B (zh) * 2014-01-02 2016-05-04 中国科学院烟台海岸带研究所 一种含1,2,3-三氮唑的菊糖衍生物及其制备方法
CN103755841B (zh) * 2014-01-02 2016-03-16 中国科学院烟台海岸带研究所 一种氨基吡啶类乙酰菊糖及其制备方法
CN108383928B (zh) * 2018-03-30 2020-06-19 中国科学院烟台海岸带研究所 一种四丁铵基菊糖氨酯及其制备方法和应用
CN108623713A (zh) * 2018-06-05 2018-10-09 中国科学院烟台海岸带研究所 一种吡啶席夫碱类菊糖衍生物的制备方法及应用
CN108676040A (zh) * 2018-06-28 2018-10-19 中国科学院烟台海岸带研究所 一种1,2,3-三氮唑磷酸二苯酯菊糖衍生物的制备方法及应用
CN110003364B (zh) * 2019-04-10 2021-03-30 中国科学院烟台海岸带研究所 一种含希夫碱的菊糖衍生物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060006A (ja) * 1996-08-27 1998-03-03 Kikkoman Corp 非還元末端アジド化アセチルマルトオリゴシルブロマイドの製造法
US5877144A (en) * 1996-03-01 1999-03-02 Sudzucker Aktiengesellschaft Mannheim/Ochsenfurt Aliphatic carboxylate esters of inulin
CN101824102A (zh) * 2010-04-27 2010-09-08 中国科学院烟台海岸带研究所 一种n-(乙基氨基)菊糖及其制备和应用
CN102060942A (zh) * 2010-11-22 2011-05-18 中国科学院烟台海岸带研究所 一种6-氨基-6-脱氧菊糖及其制备和应用
JP2012180480A (ja) * 2011-03-02 2012-09-20 Toyo Univ イヌリン誘導体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877144A (en) * 1996-03-01 1999-03-02 Sudzucker Aktiengesellschaft Mannheim/Ochsenfurt Aliphatic carboxylate esters of inulin
JPH1060006A (ja) * 1996-08-27 1998-03-03 Kikkoman Corp 非還元末端アジド化アセチルマルトオリゴシルブロマイドの製造法
CN101824102A (zh) * 2010-04-27 2010-09-08 中国科学院烟台海岸带研究所 一种n-(乙基氨基)菊糖及其制备和应用
CN102060942A (zh) * 2010-11-22 2011-05-18 中国科学院烟台海岸带研究所 一种6-氨基-6-脱氧菊糖及其制备和应用
JP2012180480A (ja) * 2011-03-02 2012-09-20 Toyo Univ イヌリン誘導体およびその製造方法

Also Published As

Publication number Publication date
CN102952208A (zh) 2013-03-06
CN102952208B (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2014071593A1 (zh) 一种两亲性氨基菊糖及其制备
JP6389470B2 (ja) ポリα−1,3−グルカンエーテルの調製
Bo et al. Sulfation and biological activities of konjac glucomannan
JP5945504B2 (ja) ヒアルロン酸の酸化誘導体,その調製方法及びその修飾方法
JP4256475B2 (ja) 抗増殖活性を有する新規な酪酸エステルおよびこれを含む薬剤組成物
CN102060942B (zh) 一种6-氨基-6-脱氧菊糖及其制备和应用
WO2004024799A1 (ja) オルガノポリシロキサン変性多糖類およびその製造方法
WO2017016022A1 (zh) 一种壳寡糖-o-曲酸-曼尼希碱衍生物抗菌剂及其制备方法
CN103483592A (zh) 环糊精接枝聚赖氨酸聚合物及其制备方法
JPS6328434B2 (zh)
JPH05112601A (ja) β−シクロデキストリン誘導体のポリ硫酸エステル及びその製法
Zhang et al. Regioselective sulfation of β-glucan from Ganoderma lucidum and structure-anticoagulant activity relationship of sulfated derivatives
JP2010001397A (ja) セルロース誘導体
Niu et al. Preparation and sulfation of an α-glucan from Actinidia chinensis roots and their potential activities
Borjihan et al. Synthesis and anti‐HIV activity of 6‐amino‐6‐deoxy‐(1→ 3)‐β‐d‐curdlan sulfate
Katsuraya et al. Synthesis of sulfated alkyl malto-oligosaccharides with potent inhibitory effects on AIDS virus infection
CN113278094A (zh) 一种环糊精衍生物及其制备方法和应用
CN105713104B (zh) 一种硒化葫芦巴多糖的合成及其应用
CN101824102B (zh) 一种n-(乙基氨基)菊糖及其制备和应用
EP0375174A2 (en) Lentinan and curdlan sulfates for anti-retroviral use
JP2000351790A (ja) フコース含有オリゴ糖又はその組成物の製造法及びフコース含有オリゴ糖又はその組成物
CN108676105A (zh) 一种菊糖三唑鎓盐及其制备方法和应用
CN103694377A (zh) 一种两亲性c-6-(4-(甲基氨基)-1,2,3-三氮唑)脱氧菊糖衍生物及其制备和应用
CN113754788A (zh) 一种海蒿子岩藻聚糖及其制备方法和应用
JP4395573B2 (ja) 酸化キトサン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887967

Country of ref document: EP

Kind code of ref document: A1