WO2014069070A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2014069070A1
WO2014069070A1 PCT/JP2013/071658 JP2013071658W WO2014069070A1 WO 2014069070 A1 WO2014069070 A1 WO 2014069070A1 JP 2013071658 W JP2013071658 W JP 2013071658W WO 2014069070 A1 WO2014069070 A1 WO 2014069070A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
mediator
biosensor
hydrophilic
Prior art date
Application number
PCT/JP2013/071658
Other languages
French (fr)
Japanese (ja)
Inventor
純 ▲高▼木
秀明 大江
淳典 平塚
典子 佐々木
憲二 横山
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014069070A1 publication Critical patent/WO2014069070A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode, a spacer layer in which a slit for forming a cavity is formed and stacked on the electrode layer, and an air hole communicating with the cavity.
  • the present invention relates to a biosensor comprising a cover layer laminated on a spacer layer and a reaction layer provided on a working electrode and a counter electrode.
  • a biosensor 500 shown in FIG. 11 is a sensor for quantifying glucose contained in a sample, and includes an electrode layer 510 formed by providing an electrode on an insulating substrate 504 such as polyethylene terephthalate or polyimide, and a cover layer. 506 and a spacer layer 505 disposed between the electrode layer 510 and the cover layer 506 are stacked.
  • the spacer layer 505 is provided with a slit for forming a cavity 507 to which a sample is supplied, and the cover layer 506 is laminated and bonded to the electrode layer 510 via the spacer layer 505.
  • a cavity 507 to which a sample is supplied is formed by the electrode layer 510, the slit portion of the spacer layer 505, and the cover layer 506.
  • the cover layer 506 has an air hole 506a communicating with the terminal portion of the cavity 507 in order to smoothly supply the sample to the cavity 507 by capillary action.
  • the electrode layer 510 is provided with a working electrode 501 and a counter electrode 502, and an electrode system is formed by providing electrode patterns electrically connected to the electrodes 501 and 502, respectively.
  • a reaction layer 503 is provided on the working electrode 501 and the counter electrode 502, and the working electrode 501 and the counter electrode 502 are provided on the insulating substrate 504 so as to be exposed to the cavity 507 formed in the biosensor 500. It has been.
  • the electrodes 501 and 502 exposed to the cavity 507 and the reaction layer 503 come into contact with the sample, and the reaction layer 503 is dissolved in the sample.
  • a reaction layer 503 provided on the working electrode 501 and the counter electrode 502 is provided on the electrode layer 510, and is laminated on the hydrophilic layer 503a including a hydrophilic polymer carboxymethylcellulose (CMC) and the hydrophilic layer 503a.
  • the reagent layer 503b contains glucose oxidase (enzyme) that specifically reacts with glucose contained in the sample and potassium ferricyanide as a mediator (electron acceptor).
  • the hydrophilic layer 503a provided on the electrode layer 510 protects the electrodes 501 and 502 and prevents the reagent layer 503b from peeling off.
  • Ferricyanide ion ionized by dissolving potassium ferricyanide in the sample is ferrocyanide ion (ferricyanide ion) due to electrons released when glucose is oxidized to gluconolactone by reacting with glucose oxidase. Reduced form). Therefore, when a sample containing glucose is supplied to the cavity 507 formed in the biosensor 500 from the sample introduction port, ferrocyanide ions are generated in an amount corresponding to the concentration of glucose contained in the sample.
  • the oxidation current obtained by oxidizing the reduced form of the mediator resulting from the enzyme reaction on the working electrode 501 has a magnitude depending on the glucose concentration in the sample.
  • the glucose contained in the sample can be quantified by measuring the oxidation current.
  • JP 2001-281202 A paragraphs 0017, 0018, FIG. 2, etc.
  • blood samples contain blood cells such as red blood cells, and it is known that the magnitude of the oxidation current described above is influenced by the size of the hematocrit value indicating the proportion of the volume of blood cells in the blood sample. Yes.
  • This influence on the oxidation current is caused by blood cells adhering to the working electrode, the surface of the counter electrode, and the like. Therefore, in the biosensor 500 described above, the blood sample is filtered by the hydrophilic layer 503a provided on the electrode layer 510 and containing CMC which is a hydrophilic polymer, and movement of blood cells in the direction of the electrode layer is suppressed. Therefore, the influence on the measurement accuracy due to the difference in hematocrit value is reduced.
  • a hydrophilic polymer such as CMC reduces the mediator contained in the reagent layer 503b. Therefore, for example, when the mediator is reduced by the hydrophilic polymer contained in the hydrophilic layer in a state where the biosensor 500 is stored, the mediator reduced by the hydrophilic polymer is measured when the above-described oxidation current is measured. Since the oxidation current resulting from the oxidation is also measured as the background current together with the oxidation current to be measured, the measurement accuracy deteriorates.
  • the hydrophilic layer 503a containing the hydrophilic polymer and the reagent layer 503b containing the mediator are stacked in a separated state, whereby the hydrophilic polymer contained in the hydrophilic layer 503a and the reagent Reaction with the mediator contained in the layer 503b is prevented.
  • This invention is made
  • the biosensor of the present invention comprises: An insulating substrate, and an electrode layer comprising an electrode system including a working electrode and a counter electrode on one surface of the insulating substrate; A spacer layer that is laminated on the electrode system side of the electrode layer so that the slit is located on the tip side of the working electrode and the counter electrode; A cavity formed by the electrode layer and the slit and supplied with a sample; A cover layer that has an air hole communicating with the cavity and is laminated on the spacer layer so as to cover the cavity;
  • the reaction layer is A hydrophilic layer comprising a hydrophilic polymer provided on the electrode layer and having a double bond of an oxygen atom; A water repellent formed on the surface of the hydrophilic layer, including a layer containing a surfactant, a layer containing a water-soluble gelling agent, a layer containing an amphiphilic polymer,
  • the hydrophilic layer containing the hydrophilic polymer having a double bond of oxygen atoms is provided on the electrode layer provided with the electrode system including the working electrode and the counter electrode.
  • a hydrophilic polymer having a double bond of an oxygen atom is highly effective in preventing the movement of blood cells contained in a blood sample. That is, for example, when a blood sample is supplied to the cavity, the blood sample is filtered by the hydrophilic layer to prevent blood cells from moving, and components other than blood cells (for example, glucose) contact each electrode of the electrode layer.
  • the hydrophilic polymer in the hydrophilic layer prevents blood cells in the blood sample from moving toward each electrode in the electrode layer, thus reducing the effect on measurement accuracy due to the difference in hematocrit values of the blood sample. can do.
  • the hydrophilic polymer has a double bond of oxygen atom
  • the mediator is reduced by the nucleophilic attack of the functional group having the double bond of oxygen atom on the mediator. Therefore, when a reagent layer is placed on a hydrophilic layer containing a hydrophilic polymer having a double bond of an oxygen atom, the reduction reaction of the mediator by the hydrophilic polymer gradually proceeds at the contact interface between both layers in the storage state. As described above, there arises a problem that the measurement accuracy of the oxidation current in the biosensor deteriorates.
  • a layer containing a surfactant, a water-soluble gelling agent is provided between a hydrophilic layer containing a hydrophilic polymer having a double bond of oxygen atoms and a reagent layer containing a mediator or the like. Since an intermediate layer including at least one of a layer including, a layer including an amphiphilic polymer, and a water-repellent layer formed by water-repellent treatment on the surface of the hydrophilic layer is disposed, The hydrophilic polymer in the hydrophilic layer and the mediator in the reagent layer can be prevented from coming into contact with each other, whereby the mediator can be prevented from being reduced.
  • the reagent layer may further contain a hydrophilic polymer having no oxygen atom double bond.
  • the mediator is surrounded by a hydrophilic polymer that does not have an oxygen atom double bond, that is, a hydrophilic polymer that is difficult to reduce the mediator.
  • the effect of preventing the contact between the hydrophilic polymer having a double bond of oxygen atoms contained in and the mediator of the reagent layer is further improved.
  • the hydrophilic polymer functions as a thickener, so that the adhesive strength between the reagent layer and the intermediate layer is increased, so that the reagent layer can be prevented from peeling off from the intermediate layer due to external stress or the like.
  • the reagent layer comprises an enzyme layer containing a hydrophilic polymer not having a double bond of the enzyme and the oxygen atom, and a hydrophilic polymer not having a double bond of the mediator and the oxygen atom. And a mediator layer that includes the mediator layer.
  • the mediator layer is laminated on the enzyme layer. If it does in this way, since the hydrophilic polymer and mediator of a hydrophilic layer will be arrange
  • the hydrophilic polymer having no oxygen atom double bond includes at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol. It may be. With this configuration, the mediator contained in the reagent layer can be prevented from being reduced, and the reagent layer can be prevented from peeling from the intermediate layer.
  • a sensor can be provided.
  • the hydrophilic polymer having a double bond of oxygen atoms may include at least carboxymethylcellulose.
  • the hydrophilic polymer having a double bond of oxygen atoms may include at least carboxymethylcellulose.
  • the surfactant is sodium di (2-ethylhexyl) sulfosuccinate, polyethylene glycol mono-4-nonylphenyl ether (n ⁇ 7.5), sorbitan monolaurate, sorbitan monooleate, sodium cholate,
  • the structure containing at least 1 of lecithin may be sufficient.
  • the water-soluble gelling agent may include at least one of carrageenan and sodium alginate.
  • amphiphilic polymer may include at least one of polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol.
  • the water repellent layer may be formed by etching the surface of the hydrophilic layer with plasma generated using a fluorine-based gas.
  • the mediator since the intermediate layer is provided between the hydrophilic layer containing a hydrophilic polymer having a double bond of oxygen atom and the reagent layer containing a mediator or the like, the mediator has a double bond of oxygen atom.
  • Contact with the hydrophilic polymer can be prevented, whereby the mediator can be prevented from being reduced by the hydrophilic polymer having a double bond of an oxygen atom in the storage state.
  • FIG. 2 is a diagram showing a method for manufacturing the biosensor of FIG. 1, wherein (a) to (c) show different processes. It is a figure which shows the relationship between the storage period and background current of the biosensor of FIG. It is a figure which shows the relationship between the storage period and background current of the biosensor concerning 2nd Embodiment of this invention.
  • FIG. 7 is a diagram showing a method for manufacturing a biosensor according to a third embodiment of the present invention, in which (a) to (d) show different processes. It is a figure which shows the relationship between the storage period of the biosensor manufactured by the manufacturing method of FIG. 6, and background current.
  • FIG. 9 is a diagram showing a method for manufacturing a biosensor according to a fourth embodiment of the present invention, in which (a) to (c) show different processes. It is a figure which shows the relationship between the storage period of the biosensor manufactured by the manufacturing method of FIG. 8, and background current. It is a cross-sectional view of the cavity part of the biosensor according to the fifth embodiment of the present invention. It is a figure which shows the conventional biosensor.
  • FIGS. 1A and 1B are diagrams showing a biosensor according to a first embodiment of the present invention, where FIG. 1A is an exploded perspective view and FIG. 1B is a perspective view.
  • FIG. 2 is a cross-sectional view of the cavity portion of the biosensor of FIG.
  • FIG. 3 is a diagram showing the biosensor manufacturing method according to the first embodiment of the present invention, wherein (a) to (c) show different steps.
  • a biosensor 100 includes an electrode system including a working electrode 101 and a counter electrode 102, and a reaction layer 106 including an enzyme that reacts with a mediator and a measurement target substance, and is attached to a measuring instrument (not shown). Used. Specifically, in a state where the biosensor 100 is mounted at a predetermined position of the measuring instrument, a sample such as blood is supplied to the cavity 103 provided on the tip side of the biosensor. The supplied sample comes into contact with the reaction layer 106 provided in the cavity 103, and the sample and the reaction layer 106 react to generate a reduced substance in which the substance contained in the reaction layer 106 is reduced.
  • glucose in the blood reacts with glucose oxidase (enzyme) contained in the reaction layer 106 to produce gluconolactone, which is a reactant obtained by oxidizing glucose.
  • glucose oxidase enzyme
  • the electrons released at this time reduce ferricyanide ions ionized from the potassium ferricyanide (mediator) contained in the reaction layer 106 to generate potassium ferrocyanide (reduced substance: reduced form of potassium ferricyanide).
  • a voltage is applied between the working electrode 101 and the counter electrode 102 to oxidize the reducing substance generated by this reaction, and the oxidation current obtained at that time is measured.
  • this oxidation current has a value that depends on the concentration of glucose contained in the blood. Therefore, by measuring the oxidation current obtained through each of the above reactions with the biosensor 100, Quantification of the measurement target substance contained in the sample (for example, glucose when the sample is blood) can be performed.
  • the biosensor 100 includes an insulating substrate 111 and an electrode layer including an electrode system including a working electrode 101 and a counter electrode 102 on one surface of the insulating substrate 111. 110, a slit 104, a spacer layer 120 stacked on the electrode system side of the electrode layer 110 so that the slit 104 is positioned on the tip side of the working electrode 101 and the counter electrode 102, and the electrode layer 110 and the spacer layer 120 A cavity 103 in which a sample is supplied, an air hole 105 communicating with the cavity 103, a cover layer 130 stacked on the spacer layer 120 so as to cover the cavity 103, and the cavity 103 A working electrode 101 exposed to the surface of the counter electrode 102 and a reaction layer 106 provided on the tip side of the counter electrode 102.
  • a spacer layer 120 disposed pinched in the cover layer 130 is formed by the sample introduction port 103a are bonded are laminated in a state where the top side is aligned provided.
  • the biosensor 100 is attached to the measuring instrument by being inserted into a predetermined insertion port of the measuring instrument from the rear end side.
  • the electrode layer 110 is formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, or biodegradable material. Further, a noble metal such as platinum, gold, and palladium, carbon, copper, aluminum, titanium, ITO (Indium Tin Oxide), ZnO (Zinc Oxide :) is formed on one surface of the insulating substrate 111 that forms the electrode layer 110. A conductive layer made of a conductive material such as zinc oxide) is formed by screen printing or sputtering deposition. When the conductive layer formed on one surface of the insulating substrate is subjected to patterning by laser processing or photolithography, the working electrode 101 and the counter electrode 102 and the biosensor 100 are mounted on the measuring instrument. In addition, an electrode system including electrode patterns 101a and 102a that electrically connect each of the working electrode 101 and the counter electrode 102 to the measuring instrument is formed.
  • a noble metal such as platinum, gold, and palladium, carbon, copper, aluminum, titanium
  • the working electrode 101 and the counter electrode 102 are arranged so that their respective tips are exposed to the cavity 103.
  • the electrode patterns 101a and 102a on the rear end side of the working electrode 101 and the counter electrode 102 are the edges of the electrode layer 110 on the opposite side to the sample introduction port 103a, and are the ends of the electrode layer 110 on which the spacer layer 120 is not stacked. It is stretched to the edge.
  • the spacer layer 120 is laminated on the electrode layer 110 formed as described above.
  • the spacer layer 120 is formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, or a biodegradable material, and is a slit for forming the cavity 103 at substantially the center of the front edge of the substrate. 104 is formed. Then, the slit 104 is disposed on the distal end side of the working electrode 101 and the counter electrode 102, and the spacer layer 120 is partially covered and laminated on one surface of the electrode layer 110, so that the electrode layer 110 and the slit 104 are stacked. A cavity 103 to which a sample is supplied is formed.
  • the reaction layer 106 is formed.
  • various plasmas used in metal activation treatment by plasma such as oxygen plasma, nitrogen plasma, and argon plasma can be used. Plasma may be used.
  • the reaction layer 106 is formed on the tip side of the working electrode 101 and the counter electrode 102 exposed to the cavity 103 before the cover layer 130 is laminated on the spacer layer 120.
  • a hydrophilizing agent such as a surfactant or phospholipid is applied to the inner wall of the cavity 103.
  • the reaction layer 106 is provided on the electrode layer 110 and is provided on the hydrophilic layer 106a including a hydrophilic polymer having a double bond of an oxygen atom, on the hydrophilic layer 106a, and included in the reagent layer 106c.
  • a predetermined amount of a reagent 201 containing CMC as a hydrophilic polymer having a double bond of an oxygen atom is dropped from the dropping device 200 into the cavity 103 and dried, thereby making the hydrophilic
  • the layer 106a is formed (hydrophilic layer forming step).
  • a predetermined amount of a reagent 202 containing sodium di (2-ethylhexyl) sulfosuccinate as a surfactant is dropped into the cavity 103 from the dropping device 200 and dried.
  • the intermediate layer 106b is formed (intermediate layer forming step).
  • the reagent 202 is obtained by dissolving a surfactant in acetone, isopropyl alcohol, or chloroform, and the intermediate layer 106b has a solution containing 0.01 to 5 wt% of the surfactant in an amount of 0.0%. It is formed by dropping 5 ⁇ L.
  • a mediator for example, potassium ferricyanide
  • an enzyme for example, glucose dehumanlogenase
  • a hydrophilic polymer for example, methylcellulose having no oxygen atom double bond.
  • Examples of the enzyme include glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, lactate dehydrogenase, alcohol dehydrogenase, hydroxybutyrate dehydrogenase, and cholesterol esterase.
  • Creatininase, creatinase, DNA polymerase, etc. can be used, and these enzymes should be selected according to the substance to be measured (glucose, lactic acid, cholesterol, alcohol, sarcosine, fructosylamine, pyruvic acid, hydroxybutyric acid)
  • Various sensors can be formed.
  • glucose oxidase or glucose dehydrogenase can be used to form a glucose sensor that detects glucose in a blood sample
  • alcohol oxidase or alcohol dehydrogenase can be used to form an alcohol sensor that detects ethanol in a blood sample.
  • a lactic acid sensor for detecting lactic acid in a blood sample can be formed, and a total cholesterol sensor can be formed by using a mixture of cholesterol esterase and cholesterol oxidase.
  • ferrocene As the mediator, ferrocene, ferrocene derivative, benzoquinone, quinone derivative, osmium complex, ruthenium complex, etc. can be used in addition to the above-mentioned potassium ferricyanide.
  • hydrophilic polymers having a double bond of oxygen atom include carbonyl group, acyl group, carboxyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, nitroso group, ester group, keto group.
  • a polymer having a group, a ketene group, or the like can be used.
  • hydrophilic polymer having no oxygen atom double bond it is possible to use hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polyethylene glycol, etc. in addition to the above-mentioned methylcellulose. it can.
  • the hydrophilic polymer which does not have the double bond of the oxygen atom mixed with the reagent 203 with an enzyme, a mediator, etc. functions as a thickener.
  • a hydrophilic polymer having a double bond of oxygen atom and a hydrophilic polymer having no double bond of oxygen atom may be used in combination of two or more.
  • the hydrophilizing agent polyethylene glycol mono-4-octylphenyl ether (n ⁇ 10) (Triton X100: manufactured by Sigma Aldrich), polyoxyethylene sorbitan monolaurate (Tween 20: manufactured by Tokyo Chemical Industry Co., Ltd.), bis ( Surfactants such as sodium 2-ethylhexyl) sulfosuccinate and phospholipids such as lecithin can be used.
  • the hydrophilizing agent may be mixed with the reagent 203 and dropped into the cavity 103, or may be dropped into the cavity 104 after the reagent layer 106c is formed.
  • a buffering agent such as phosphoric acid may be provided in order to reduce variation in the concentration of ions contained in the sample.
  • a cover layer 130 formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, biodegradable material is formed as a spacer layer.
  • the biosensor 100 is formed.
  • the cover layer 130 has an air hole 105 that communicates with the cavity 103 when laminated on the spacer layer 120, and the cover layer 130 has the cavity 103. And is laminated on the spacer layer 120.
  • the biosensor 100 is formed for the purpose of quantifying glucose in blood, and FAD (flavin adenine dinucleotide) is used as an enzyme that specifically reacts with glucose as a measurement target substance.
  • FAD flavin adenine dinucleotide
  • a mediator that contains GDH (glucose dehydrogenase) hereinafter referred to as FAD-GDH
  • FAD-GDH glycose dehydrogenase
  • the reaction layer 106 containing potassium ferricyanide is provided on the tip side of the working electrode 101 and the counter electrode 102 exposed to the cavity 103.
  • the sample introduction port 103a at the tip when a sample made of blood is brought into contact with the sample introduction port 103a at the tip, the sample is sucked toward the air hole 105 by capillary action and is then injected into the cavity 103. A sample is supplied. Then, when the reaction layer 106 (reagent layer 106c) is dissolved in the sample supplied to the cavity 103, electrons are released by the enzyme reaction between glucose, which is the measurement target substance in the sample, and FAD-GDH. Ferricyanide ions are reduced by electrons to produce ferrocyanide ions, which are reducing substances.
  • a voltage for example, 0.3 V
  • the glucose in the sample is quantified in the measuring instrument by measuring the oxidation current flowing between the working electrode 101 and the counter electrode 102 by oxidation.
  • a current value 3 to 5 seconds later is measured as an oxidation current.
  • FIG. 4 is a diagram illustrating the relationship between the storage period of the biosensor and the background current, where the horizontal axis indicates the storage period (h), and the vertical axis indicates the magnitude of the background current ( ⁇ A). Also, ⁇ (black rhombus) in the figure indicates the background current of the conventional biosensor in which the intermediate layer 106b is not provided between the reagent layer 106c and the hydrophilic layer 106a. A black square indicates a background current of the biosensor 100 of the present embodiment. The background current was measured by supplying a sample for measuring the background current to the cavity 103 and then measuring the oxidation current in the same manner as in a normal procedure.
  • the background current increases with time in the conventional biosensor, whereas in the biosensor 100 of the present embodiment, the background current increases. The increase is suppressed.
  • the hydrophilic layer 106a including a hydrophilic polymer having a double bond of oxygen atoms is provided on the electrode layer 110 provided with the electrode system including the working electrode 101 and the counter electrode 102.
  • the hydrophilic polymer having a double bond of oxygen atoms has an effect of preventing the movement of blood cells contained in the blood sample. For example, when the blood sample is supplied to the cavity, the hydrophilic sample 106a causes the blood sample to have a blood sample.
  • components other than blood cells for example, glucose
  • the hydrophilic polymer has an oxygen atom double bond
  • the functional group having the oxygen atom double bond is considered to reduce the mediator by nucleophilic attack on the mediator. Therefore, when the reagent layer 106c is arranged on the hydrophilic layer 106a, the reduction reaction of the mediator gradually proceeds at the contact interface between the two layers 106a and 106c in the storage state, and the measurement accuracy of the oxidation current in the biosensor 100 may deteriorate. There is.
  • a layer containing a surfactant is provided as the intermediate layer 106b between the hydrophilic layer 106a containing a hydrophilic polymer having a double bond of oxygen atoms and the reagent layer 106c containing a mediator or the like.
  • the mediator in the storage state of the biosensor 100, the mediator can be prevented from seeping out together with the moisture in the reagent layer 106c and coming into contact with the hydrophilic polymer of the hydrophilic layer 106a.
  • CMC hydrophilic polymer
  • the periphery of the mediator is a hydrophilic polymer that does not have an oxygen atom double bond, that is, a mediator. Is surrounded by a hydrophilic polymer that is difficult to reduce. Therefore, the effect of preventing contact between the hydrophilic polymer of the hydrophilic layer 106a and the mediator of the reagent layer 106c is further improved.
  • each hydrophilic polymer of the hydrophilic layer 106a and the reagent layer 106c functions as a thickener, the adhesive strength between the layers 106a, 106b, 106c constituting the reaction layer 106 is increased, and thus the layers 106a, 106b , 106c can be prevented from being peeled off by an external stress or the like on the bonding surface.
  • a highly reliable biosensor 100 can be provided.
  • FIG. 5 is a figure which shows the relationship between the storage period and background current of the biosensor concerning 2nd Embodiment.
  • This embodiment is different from the first embodiment described above in that the intermediate layer 106b of the biosensor 100 contains an amphiphilic polymer.
  • the intermediate layer 106b has a predetermined amount (for example, 0.5 ⁇ L) of a reagent in which an amphiphilic polymer is dissolved in acetone, isopropyl alcohol, chloroform, or the like at a ratio of 0.01 to 5 wt%. It is formed by being dropped and dried on 103.
  • polyvinyl pyrrolidone polyethylene glycol, polyvinyl alcohol, etc.
  • amphiphilic polymer polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, etc.
  • two or more of these amphiphilic polymers may be used in combination.
  • the increase in the background current is suppressed as in the first embodiment.
  • the background current shown in FIG. 5 is measured under the same conditions as the background current of the first embodiment described above.
  • the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
  • CMC hydrophilic polymer
  • FIG. 6 is a diagram showing a biosensor manufacturing method according to the third embodiment, and (a) to (d) show different processes.
  • FIG. 7 is a diagram showing the relationship between the storage period and the background current of the biosensor according to the third embodiment.
  • 6A is the same step as FIG. 3A showing the biosensor manufacturing method of the first embodiment
  • FIG. 6D is the same step as FIG. 3C.
  • This embodiment is different from the first embodiment described with reference to FIG. 2 in that the intermediate layer 106b contains a water-soluble gelling agent.
  • the intermediate layer 106b of the biosensor 100 is formed as follows. First, the hydrophilic layer 106a is formed in the same manner as in the first embodiment (see FIG. 6A). Next, as shown in FIG. 6B, a predetermined amount of a reagent 204 containing a water-soluble gelling agent that gels when mixed with a cation is dropped from the dropping device 200 into the cavity 103 and dried.
  • a predetermined amount of the cation-containing reagent 205 is dropped from the dropping device 200, whereby the water-soluble gelling agent is gelled to form the intermediate layer 106b.
  • the reagent layer 106c is formed in the same manner as in the first embodiment (see FIG. 6D).
  • water-soluble gelling agent a carrageenan or alginic acid compound
  • a ionic substance such as a ferricyanide compound, sodium chloride, potassium chloride, or calcium chloride can be used.
  • An aqueous solution in which either is dissolved can be used.
  • the increase in the background current is suppressed as in the first embodiment.
  • the background current shown in FIG. 7 is measured under the same conditions as the background current of the first embodiment described above.
  • the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
  • CMC hydrophilic polymer
  • FIG. 8 is a view showing a biosensor manufacturing method according to the fourth embodiment, and (a) to (c) show different processes.
  • FIG. 9 is a diagram showing the relationship between the storage period and the background current of the biosensor according to the fourth embodiment.
  • FIG. 8A is the same process as FIG. 3A showing the method of manufacturing the biosensor of the first embodiment
  • FIG. 8C is the same process as FIG. 3C.
  • This embodiment is different from the first embodiment described with reference to FIG. 2 in that the intermediate layer 106b is formed of a water repellent layer formed by subjecting the surface of the hydrophilic layer 106a to water repellent treatment. is there.
  • the intermediate layer 106b of the biosensor 100 is formed as follows. First, the hydrophilic layer 106a is formed in the same manner as in the first embodiment (see FIG. 8A). Next, as shown in FIG. 8B, the surface of the hydrophilic layer 106a is etched by plasma generated using a fluorine-based gas (for example, CHF 3 gas or CF 4 gas), so that the hydrophilic layer 106a. The surface is coated with fluorine to form a water repellent layer. Finally, the reagent layer 106c is formed in the same manner as in the first embodiment (see FIG. 8C).
  • the water repellent treatment is not limited to the above-described plasma etching of a fluorine-based gas, and various water repellent treatments such as dropping a water repellent on the hydrophilic layer 106a can be used.
  • the increase in the background current is suppressed as in the first embodiment.
  • the background current shown in FIG. 9 is measured under the same conditions as the background current of the first embodiment described above.
  • the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
  • CMC hydrophilic polymer
  • FIG. 10 is a cross-sectional view of the cavity portion of the biosensor according to the fifth embodiment.
  • the biosensor 100a differs from the biosensor 100 according to the first embodiment described with reference to FIG. 2 in that the reagent layer 106c has a double bond between a mediator and an oxygen atom as shown in FIG.
  • 106c1 is laminated. Since the other configuration is the same as that of the first embodiment, description thereof is omitted by attaching the same reference numerals.
  • hydrophilic polymer which does not have the double bond of the oxygen atom contained in each of the mediator layer 106c1 and the enzyme layer 106c2 can be the same as that in the first embodiment. Further, the order in which the mediator layer 106c1 and the enzyme layer 106c2 constituting the reagent layer 106c are stacked may be reversed.
  • the enzyme and the mediator are separated, so that the mediator can be prevented from being reduced by the enzyme in the storage state.
  • the hydrophilic polymer of the hydrophilic layer 106a and the mediator are arranged further apart from each other, so that the reduction effect of the mediator is further improved.
  • the mobility of the enzyme in the intermediate layer 106b and the hydrophilic layer 106a is smaller than the mobility of the mediator, the amount of enzyme / mediator in the vicinity of the electrodes 101 and 102 is larger than when the enzyme is disposed on the mediator.
  • the responsiveness and measurement accuracy of the sensor are improved.
  • the intermediate layer 106b is any one of a layer containing a surfactant, a layer containing an amphiphilic polymer, a layer containing a water-soluble gelling agent, and a water repellent layer.
  • the intermediate layer 106b may be formed as a multilayer structure, for example, by laminating a layer containing a water-soluble gelling agent on a layer containing a surfactant.
  • the intermediate layer 106b may be formed by dropping a reagent in which two or all of a surfactant, an amphiphilic polymer, and a water-soluble gelling agent are mixed onto the hydrophilic layer 106a. .
  • an ethanol sensor or a lactic acid sensor may be formed by changing the combination of the enzyme and the mediator included in the reaction layer 106 of the biosensor 100 described above.
  • the biosensor 100 is formed in a bipolar electrode structure having the working electrode 101 and the counter electrode 102.
  • the biosensor 100 is formed in a tripolar electrode structure by further providing a reference electrode. May be.
  • a predetermined potential based on the counter electrode 102 may be applied to the working electrode 101 in a state where the counter electrode 102 is grounded and a reference potential is applied to the reference electrode by the voltage output unit.
  • a blood sample is placed in the cavity 103 by monitoring a current flowing between the working electrode 101 and the counter electrode 102 by applying a predetermined voltage between the working electrode 101 and the counter electrode 102.
  • a detection electrode for detecting that the sample has been supplied to the cavity 103 may be further provided. In this case, by applying a predetermined voltage between the counter electrode 102 and the detection electrode, the current flowing between the counter electrode 102 and the detection electrode is monitored to detect that the sample is supplied to the cavity 103. do it.
  • the cover layer 130 is formed of a transparent member so that it can be visually recognized that the blood sample is supplied to the cavity 103. It is desirable to do.
  • the present invention can be applied to various biosensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

In a biosensor according to the present invention, a reaction layer (106) in the biosensor (100) has such a constitution that an intermediate layer (106b) containing a surfactant is provided between a hydrophilic layer (106a) containing a hydrophilic polymer having a double bond of an oxygen atom and a reagent layer (106c) containing a mediator or the like. According to the constitution, the contact of the mediator with the hydrophilic polymer having a double bond of an oxygen atom can be prevented, and therefore the mediator can be prevented from being reduced during the storage of the biosensor (100).

Description

バイオセンサBiosensor
 本発明は、作用極および対極を含む電極系が設けられた電極層と、キャビティを形成するためのスリットが形成されて電極層に積層されるスペーサ層と、キャビティに連通する空気穴が形成されてスペーサ層に積層されるカバー層と、作用極および対極に設けられた反応層とを備えるバイオセンサに関する。 The present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode, a spacer layer in which a slit for forming a cavity is formed and stacked on the electrode layer, and an air hole communicating with the cavity. The present invention relates to a biosensor comprising a cover layer laminated on a spacer layer and a reaction layer provided on a working electrode and a counter electrode.
 図11の従来のバイオセンサに示すように、作用極501および対極502を含む電極系と、測定対象物質と特異的に反応する酵素を含む反応層503とを有するバイオセンサ500を用いて、試料に含まれる測定対象物質と反応層503とが反応することで生成される還元物質を作用極501と対極502との間に電圧を印加して酸化することにより得られる酸化電流を計測することで測定対象物質の定量を行う物質の測定方法が知られている(例えば、特許文献1:特開2001-281202号公報参照)。 As shown in the conventional biosensor of FIG. 11, using a biosensor 500 having an electrode system including a working electrode 501 and a counter electrode 502 and a reaction layer 503 including an enzyme that specifically reacts with a measurement target substance, By measuring the oxidation current obtained by applying a voltage between the working electrode 501 and the counter electrode 502 to oxidize the reducing substance produced by the reaction between the measurement target substance contained in the reaction layer 503 and the reaction layer 503. A method for measuring a substance for quantifying a substance to be measured is known (for example, see Patent Document 1: Japanese Patent Laid-Open No. 2001-281202).
 図11に示すバイオセンサ500は、試料に含まれるグルコースを定量するためのセンサであって、ポリエチレンテレフタレートやポリイミドなどの絶縁性基板504に電極が設けられて形成された電極層510と、カバー層506と、電極層510とカバー層506とに挟まれて配置されるスペーサ層505とが積層されて形成される。また、スペーサ層505には、試料が供給されるキャビティ507を形成するためのスリットが設けられており、電極層510にスペーサ層505を介してカバー層506が積層されて接着されることで、電極層510と、スペーサ層505のスリットの部分と、カバー層506とにより試料が供給されるキャビティ507が形成される。そして、スリットの開口部分によりバイオセンサ500の側面に形成される試料導入口からキャビティ507に試料が供給される。また、カバー層506には、毛細管現象による試料のキャビティ507への供給を円滑に行うために、キャビティ507の終端部と連通する空気穴506aが形成されている。 A biosensor 500 shown in FIG. 11 is a sensor for quantifying glucose contained in a sample, and includes an electrode layer 510 formed by providing an electrode on an insulating substrate 504 such as polyethylene terephthalate or polyimide, and a cover layer. 506 and a spacer layer 505 disposed between the electrode layer 510 and the cover layer 506 are stacked. The spacer layer 505 is provided with a slit for forming a cavity 507 to which a sample is supplied, and the cover layer 506 is laminated and bonded to the electrode layer 510 via the spacer layer 505. A cavity 507 to which a sample is supplied is formed by the electrode layer 510, the slit portion of the spacer layer 505, and the cover layer 506. Then, a sample is supplied to the cavity 507 from the sample inlet formed on the side surface of the biosensor 500 by the opening portion of the slit. The cover layer 506 has an air hole 506a communicating with the terminal portion of the cavity 507 in order to smoothly supply the sample to the cavity 507 by capillary action.
 また、電極層510には、作用極501および対極502が設けられ、これらの電極501,502にそれぞれ電気接続される電極パターンが設けられることにより電極系が形成されている。また、作用極501および対極502上には反応層503が設けられており、作用極501および対極502は、それぞれバイオセンサ500に形成されたキャビティ507に露出するように絶縁性基板504上に設けられている。 Further, the electrode layer 510 is provided with a working electrode 501 and a counter electrode 502, and an electrode system is formed by providing electrode patterns electrically connected to the electrodes 501 and 502, respectively. A reaction layer 503 is provided on the working electrode 501 and the counter electrode 502, and the working electrode 501 and the counter electrode 502 are provided on the insulating substrate 504 so as to be exposed to the cavity 507 formed in the biosensor 500. It has been.
 したがって、液体から成る試料がキャビティ507に試料導入口から供給されると、キャビティ507に露出する各電極501,502と反応層503とが試料に接触すると共に、反応層503が試料に溶解する。 Therefore, when a liquid sample is supplied to the cavity 507 from the sample inlet, the electrodes 501 and 502 exposed to the cavity 507 and the reaction layer 503 come into contact with the sample, and the reaction layer 503 is dissolved in the sample.
 また、作用極501および対極502上に設けられた反応層503は、電極層510上に設けられ、親水性高分子であるカルボキシメチルセルロース(CMC)を含む親水層503aと、親水層503aに積層され、試料に含まれるグルコースと特異的に反応するグルコースオキシダーゼ(酵素)およびメディエータ(電子受容体)としてのフェリシアン化カリウムを含む試薬層503bとにより形成されている。そして、電極層510上に設けられた親水層503aにより、各電極501,502が保護されると共に、試薬層503bの剥離が防止されている。 A reaction layer 503 provided on the working electrode 501 and the counter electrode 502 is provided on the electrode layer 510, and is laminated on the hydrophilic layer 503a including a hydrophilic polymer carboxymethylcellulose (CMC) and the hydrophilic layer 503a. The reagent layer 503b contains glucose oxidase (enzyme) that specifically reacts with glucose contained in the sample and potassium ferricyanide as a mediator (electron acceptor). The hydrophilic layer 503a provided on the electrode layer 510 protects the electrodes 501 and 502 and prevents the reagent layer 503b from peeling off.
 また、フェリシアン化カリウムが試料に溶解することで電離したフェリシアン化イオンは、グルコースがグルコースオキシダーゼと反応してグルコノラクトンに酸化される際に放出される電子によりフェロシアン化イオン(フェリシアン化イオンの還元体)に還元される。したがって、バイオセンサ500に形成されたキャビティ507にグルコースを含む試料が試料導入口から供給されると、試料に含まれるグルコースの濃度に応じた量だけフェロシアン化イオンが生成される。 Ferricyanide ion ionized by dissolving potassium ferricyanide in the sample is ferrocyanide ion (ferricyanide ion) due to electrons released when glucose is oxidized to gluconolactone by reacting with glucose oxidase. Reduced form). Therefore, when a sample containing glucose is supplied to the cavity 507 formed in the biosensor 500 from the sample introduction port, ferrocyanide ions are generated in an amount corresponding to the concentration of glucose contained in the sample.
 このよう構成されたバイオセンサ500では、酵素反応の結果生じたメディエータの還元体を作用極501上で酸化することにより得られる酸化電流が、試料中のグルコース濃度に依存した大きさとなるため、この酸化電流を計測することにより試料に含まれるグルコースの定量を行うことができる。 In the biosensor 500 configured as described above, the oxidation current obtained by oxidizing the reduced form of the mediator resulting from the enzyme reaction on the working electrode 501 has a magnitude depending on the glucose concentration in the sample. The glucose contained in the sample can be quantified by measuring the oxidation current.
特開2001-281202号公報(段落0017,0018、図2など)JP 2001-281202 A (paragraphs 0017, 0018, FIG. 2, etc.)
 ところで、血液試料には赤血球などの血球が含まれており、上記した酸化電流の大きさは、血液試料中の血球の容積の割合を示すヘマトクリット値の大きさに影響されることが知られている。この酸化電流への影響は、血球が作用極や対極の表面等に付着することに起因する。そこで、上記したバイオセンサ500では、電極層510上に設けられ、親水性高分子であるCMCを含む親水層503aにより、血液試料が濾過されて血球の電極層方向への移動が抑制されることで、ヘマトクリット値の差異に伴う測定精度への影響の低減が図られている。 By the way, blood samples contain blood cells such as red blood cells, and it is known that the magnitude of the oxidation current described above is influenced by the size of the hematocrit value indicating the proportion of the volume of blood cells in the blood sample. Yes. This influence on the oxidation current is caused by blood cells adhering to the working electrode, the surface of the counter electrode, and the like. Therefore, in the biosensor 500 described above, the blood sample is filtered by the hydrophilic layer 503a provided on the electrode layer 510 and containing CMC which is a hydrophilic polymer, and movement of blood cells in the direction of the electrode layer is suppressed. Therefore, the influence on the measurement accuracy due to the difference in hematocrit value is reduced.
 ところが、CMCなどの親水性高分子は、試薬層503bに含まれるメディエータを還元することが知られている。したがって、例えばバイオセンサ500が保管された状態において、親水層に含まれる親水性高分子によりメディエータが還元されると、上記した酸化電流を計測する際に、親水性高分子により還元されたメディエータが酸化することによる酸化電流もバックグランド電流として、計測対象である酸化電流と一緒に計測されるので、測定精度が劣化する。そこで、バイオセンサ500では、親水性高分子を含む親水層503aと、メディエータを含む試薬層503bとが分離された状態で積層されることにより、親水層503aに含まれる親水性高分子と、試薬層503bに含まれるメディエータとの反応が防止されている。 However, it is known that a hydrophilic polymer such as CMC reduces the mediator contained in the reagent layer 503b. Therefore, for example, when the mediator is reduced by the hydrophilic polymer contained in the hydrophilic layer in a state where the biosensor 500 is stored, the mediator reduced by the hydrophilic polymer is measured when the above-described oxidation current is measured. Since the oxidation current resulting from the oxidation is also measured as the background current together with the oxidation current to be measured, the measurement accuracy deteriorates. Therefore, in the biosensor 500, the hydrophilic layer 503a containing the hydrophilic polymer and the reagent layer 503b containing the mediator are stacked in a separated state, whereby the hydrophilic polymer contained in the hydrophilic layer 503a and the reagent Reaction with the mediator contained in the layer 503b is prevented.
 しかしながら、上記したように、親水層503aおよび試薬層503bが分離された状態で積層されていても、親水層503aおよび試薬層503bが接触する界面から、親水性高分子とメディエータとの反応が徐々に進むことにより、酸化電流の測定精度が劣化するので、劣化防止の改善策が求められていた。 However, as described above, even when the hydrophilic layer 503a and the reagent layer 503b are separated from each other, the reaction between the hydrophilic polymer and the mediator is gradually performed from the interface where the hydrophilic layer 503a and the reagent layer 503b are in contact with each other. Since the measurement accuracy of the oxidation current is deteriorated by proceeding to, improvement measures for preventing the deterioration have been demanded.
 本発明は、上記課題に鑑みてなされたものであり、保管状態においてメディエータが還元されるのを防止することができる技術を提供することを目的とする。 This invention is made | formed in view of the said subject, and it aims at providing the technique which can prevent that a mediator reduces in a storage state.
 上記した目的を達成するために、本発明のバイオセンサは、
 絶縁性基板、ならびに、前記絶縁性基板の一方面に作用極および対極を含む電極系を備える電極層と、
 スリットを有し、前記スリットが前記作用極および前記対極の先端側に位置するように前記電極層の前記電極系側に積層されるスペーサ層と、
 前記電極層および前記スリットにより形成され、試料が供給されるキャビティと、
 前記キャビティに連通する空気穴を有し、前記キャビティを被覆するように前記スペーサ層に積層されるカバー層と、
 前記キャビティに露出する前記作用極および前記対極の先端側に設けられた反応層とを備えるバイオセンサにおいて、
 前記反応層は、
 前記電極層上に設けられ、酸素原子の二重結合を有する親水性高分子を含む親水層と、
 前記親水層上に設けられ、界面活性剤を含む層、水溶性ゲル化剤を含む層、両親媒性高分子を含む層、および前記親水層の表面が撥水処理されて形成された撥水層のうちの少なくとも1つを含む中間層と、
 前記中間層上に設けられ、測定対象物質と反応する酵素およびメディエータを含む試薬層と
 を備えることを特徴としている。
In order to achieve the above object, the biosensor of the present invention comprises:
An insulating substrate, and an electrode layer comprising an electrode system including a working electrode and a counter electrode on one surface of the insulating substrate;
A spacer layer that is laminated on the electrode system side of the electrode layer so that the slit is located on the tip side of the working electrode and the counter electrode;
A cavity formed by the electrode layer and the slit and supplied with a sample;
A cover layer that has an air hole communicating with the cavity and is laminated on the spacer layer so as to cover the cavity;
In a biosensor comprising the working electrode exposed in the cavity and a reaction layer provided on the tip side of the counter electrode,
The reaction layer is
A hydrophilic layer comprising a hydrophilic polymer provided on the electrode layer and having a double bond of an oxygen atom;
A water repellent formed on the surface of the hydrophilic layer, including a layer containing a surfactant, a layer containing a water-soluble gelling agent, a layer containing an amphiphilic polymer, and a surface of the hydrophilic layer. An intermediate layer comprising at least one of the layers;
A reagent layer provided on the intermediate layer and containing an enzyme and a mediator that reacts with the substance to be measured.
 このような構成によれば、作用極および対極を含む電極系が設けられた電極層上に酸素原子の二重結合を有する親水性高分子を含む親水層が設けられている。一般的に、酸素原子の二重結合を有する親水性高分子は血液試料に含まれる血球の移動を阻止する効果が高い。すなわち、例えば、血液試料がキャビティに供給されると、当該親水層により血液試料が濾過されて血球の移動が阻止され、血球を除く成分(例えば、グルコース)が電極層の各電極に接触する。このように、親水層の親水性高分子により血液試料の血球が電極層の各電極に向かって移動するのが防止されるため、血液試料のヘマトクリット値の差異に伴う測定精度への影響を低減することができる。 According to such a configuration, the hydrophilic layer containing the hydrophilic polymer having a double bond of oxygen atoms is provided on the electrode layer provided with the electrode system including the working electrode and the counter electrode. In general, a hydrophilic polymer having a double bond of an oxygen atom is highly effective in preventing the movement of blood cells contained in a blood sample. That is, for example, when a blood sample is supplied to the cavity, the blood sample is filtered by the hydrophilic layer to prevent blood cells from moving, and components other than blood cells (for example, glucose) contact each electrode of the electrode layer. In this way, the hydrophilic polymer in the hydrophilic layer prevents blood cells in the blood sample from moving toward each electrode in the electrode layer, thus reducing the effect on measurement accuracy due to the difference in hematocrit values of the blood sample. can do.
 また、親水性高分子が酸素原子の二重結合を有する場合、酸素原子の二重結合を有する官能基がメディエータに対して求核攻撃することによりメディエータが還元されると考えられる。したがって、酸素原子の二重結合を有する親水性高分子を含む親水層上に試薬層を配置すると、保管状態において、両層の接触界面で、親水性高分子によるメディエータの還元反応が徐々に進み、上記したように、バイオセンサにおける酸化電流の測定精度が劣化するという問題が生じる。 Further, when the hydrophilic polymer has a double bond of oxygen atom, it is considered that the mediator is reduced by the nucleophilic attack of the functional group having the double bond of oxygen atom on the mediator. Therefore, when a reagent layer is placed on a hydrophilic layer containing a hydrophilic polymer having a double bond of an oxygen atom, the reduction reaction of the mediator by the hydrophilic polymer gradually proceeds at the contact interface between both layers in the storage state. As described above, there arises a problem that the measurement accuracy of the oxidation current in the biosensor deteriorates.
 しかしながら、上記した構成によれば、酸素原子の二重結合を有する親水性高分子を含む親水層とメディエータ等を含む試薬層との間に、界面活性剤を含む層、水溶性ゲル化剤を含む層、両親媒性高分子を含む層、および親水層の表面が撥水処理されて形成された撥水層のうちの少なくとも1つを含む中間層が配置されるため、当該中間層により、親水層の親水性高分子と試薬層のメディエータとが接触するのを防止することができ、これにより、メディエータが還元されるのを防止することができる。 However, according to the configuration described above, a layer containing a surfactant, a water-soluble gelling agent is provided between a hydrophilic layer containing a hydrophilic polymer having a double bond of oxygen atoms and a reagent layer containing a mediator or the like. Since an intermediate layer including at least one of a layer including, a layer including an amphiphilic polymer, and a water-repellent layer formed by water-repellent treatment on the surface of the hydrophilic layer is disposed, The hydrophilic polymer in the hydrophilic layer and the mediator in the reagent layer can be prevented from coming into contact with each other, whereby the mediator can be prevented from being reduced.
 したがって、メディエータの還元防止とヘマトクリット値の差異に伴う測定精度への影響低減を両立することが可能となり、正確で信頼性の高いバイオセンサを提供することができる。 Therefore, it becomes possible to achieve both the prevention of reduction of the mediator and the reduction of the influence on the measurement accuracy due to the difference in hematocrit value, and an accurate and highly reliable biosensor can be provided.
 また、前記試薬層は、酸素原子の二重結合を有さない親水性高分子をさらに含んでいてもよい。このように構成することにより、メディエータの周囲が、酸素原子の二重結合を有さない親水性高分子、すなわち、メディエータが還元されにくい親水性高分子により囲まれた状態になるため、親水層に含まれる酸素原子の二重結合を有する親水性高分子と試薬層のメディエータとの接触を防止する効果がさらに向上する。 The reagent layer may further contain a hydrophilic polymer having no oxygen atom double bond. With this configuration, the mediator is surrounded by a hydrophilic polymer that does not have an oxygen atom double bond, that is, a hydrophilic polymer that is difficult to reduce the mediator. The effect of preventing the contact between the hydrophilic polymer having a double bond of oxygen atoms contained in and the mediator of the reagent layer is further improved.
 また、親水性高分子が増粘剤として機能することにより、試薬層と中間層との接着強度が増加するため、外部応力等により試薬層が中間層から剥離するのを防止することができる。 Also, since the hydrophilic polymer functions as a thickener, the adhesive strength between the reagent layer and the intermediate layer is increased, so that the reagent layer can be prevented from peeling off from the intermediate layer due to external stress or the like.
 また、前記試薬層は、前記酵素および前記酸素原子の二重結合を有さない親水性高分子を含む酵素層と、前記メディエータおよび前記酸素原子の二重結合を有さない親水性高分子を含むメディエータ層とを備えていてもよい。このように構成することにより、酵素およびメディエータが分離された状態となるため、保管状態においてメディエータが酵素により還元されるのを防止することができる。 The reagent layer comprises an enzyme layer containing a hydrophilic polymer not having a double bond of the enzyme and the oxygen atom, and a hydrophilic polymer not having a double bond of the mediator and the oxygen atom. And a mediator layer that includes the mediator layer. By comprising in this way, since it will be in the state from which the enzyme and the mediator were isolate | separated, it can prevent that a mediator reduces by an enzyme in a storage state.
 また、前記酵素層上に前記メディエータ層が積層されていることが好ましい。このようにすると、親水層の親水性高分子とメディエータとがさらに離れて配置されることになるため、メディエータの還元防止効果がさらに向上する。また、中間層および親水層中の酵素の移動度は、メディエータの移動度より小さいので、電極近傍での酵素・メディエータ量が、メディエータの上に酵素が配置された場合より多くなり、センサの応答性と測定精度が向上する。 Further, it is preferable that the mediator layer is laminated on the enzyme layer. If it does in this way, since the hydrophilic polymer and mediator of a hydrophilic layer will be arrange | positioned further apart, the reduction prevention effect of a mediator will further improve. In addition, since the mobility of the enzyme in the intermediate layer and the hydrophilic layer is smaller than the mobility of the mediator, the amount of enzyme / mediator near the electrode is larger than when the enzyme is placed on the mediator, and the sensor response And measurement accuracy are improved.
 また、前記酸素原子の二重結合を有さない親水性高分子は、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールのうちの少なくとも1つを含む構成であってもよい。このように構成することにより、試薬層に含まれるメディエータが還元されるのを防止することができるとともに、試薬層が中間層から剥離するのを防止することができるため、実用的な構成のバイオセンサを提供することができる。 The hydrophilic polymer having no oxygen atom double bond includes at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol. It may be. With this configuration, the mediator contained in the reagent layer can be prevented from being reduced, and the reagent layer can be prevented from peeling from the intermediate layer. A sensor can be provided.
 また、前記酸素原子の二重結合を有する親水性高分子は、少なくともカルボキシメチルセルロースを含む構成であってもよい。このように構成することにより、親水層上に設けられる中間層が剥離するのを防止することができる。また、バイオセンサのキャビティに、例えば血液試料が供給された場合に、親水層の親水性高分子により血液試料が濾過されて血球の各電極への移動が阻止されるので、血液試料のヘマトクリット値の差異に伴う酸化電流の測定精度への影響を低減することができる。 Further, the hydrophilic polymer having a double bond of oxygen atoms may include at least carboxymethylcellulose. By comprising in this way, it can prevent that the intermediate | middle layer provided on a hydrophilic layer peels. In addition, for example, when a blood sample is supplied to the cavity of the biosensor, the blood sample is filtered by the hydrophilic polymer of the hydrophilic layer and the movement of the blood cell to each electrode is prevented, so the hematocrit value of the blood sample Therefore, the influence on the measurement accuracy of the oxidation current due to the difference in the above can be reduced.
 また、前記界面活性剤が、ジ(2-エチルヘキシル)スルホこはく酸ナトリウム、ポリエチレングリコールモノ-4-ノニルフェニルエーテル(n≒7.5)、ソルビタンモノラウラート、ソルビタンモノオレエート、コール酸ナトリウム、レシチンのうちの少なくとも1つを含む構成であってもよい。このように構成することにより、中間層上に設けられた試薬層のメディエータが親水層の親水性高分子と接触するのを防止することができ、これにより、メディエータが親水層の親水性高分子により還元されるのを防止することができる。 The surfactant is sodium di (2-ethylhexyl) sulfosuccinate, polyethylene glycol mono-4-nonylphenyl ether (n≈7.5), sorbitan monolaurate, sorbitan monooleate, sodium cholate, The structure containing at least 1 of lecithin may be sufficient. By comprising in this way, it can prevent that the mediator of the reagent layer provided on the intermediate | middle layer contacts the hydrophilic polymer of a hydrophilic layer, and, thereby, a mediator becomes hydrophilic polymer of a hydrophilic layer. Can be prevented from being reduced.
 また、前記水溶性ゲル化剤が、カラギーナンおよびアルギン酸ナトリウムのうちの少なくとも1つを含む構成であってもよい。このように構成することにより、中間層上に設けられた試薬層のメディエータが親水層の親水性高分子と接触するのを防止することができ、これにより、メディエータが親水層の親水性高分子により還元されるのを防止することができる。 In addition, the water-soluble gelling agent may include at least one of carrageenan and sodium alginate. By comprising in this way, it can prevent that the mediator of the reagent layer provided on the intermediate | middle layer contacts the hydrophilic polymer of a hydrophilic layer, and, thereby, a mediator becomes hydrophilic polymer of a hydrophilic layer. Can be prevented from being reduced.
 また、前記両親媒性高分子が、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールのうちの少なくとも1つを含む構成であってもよい。このように構成することにより、中間層上に設けられた試薬層のメディエータが親水層の親水性高分子と接触するのを防止することができ、これにより、メディエータが親水層の親水性高分子により還元されるのを防止することができる。 Further, the amphiphilic polymer may include at least one of polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol. By comprising in this way, it can prevent that the mediator of the reagent layer provided on the intermediate | middle layer contacts the hydrophilic polymer of a hydrophilic layer, and, thereby, a mediator becomes hydrophilic polymer of a hydrophilic layer. Can be prevented from being reduced.
 また、前記撥水層は、前記親水層の表面が、フッ素系ガスを用いて生成されたプラズマによりエッチングされて形成されていてもよい。このように構成することにより、中間層上に設けられた試薬層のメディエータが親水層の親水性高分子と接触するのを防止することができ、これにより、メディエータが親水層の親水性高分子により還元されるのを防止することができる。 In addition, the water repellent layer may be formed by etching the surface of the hydrophilic layer with plasma generated using a fluorine-based gas. By comprising in this way, it can prevent that the mediator of the reagent layer provided on the intermediate | middle layer contacts the hydrophilic polymer of a hydrophilic layer, and, thereby, a mediator becomes hydrophilic polymer of a hydrophilic layer. Can be prevented from being reduced.
 本発明によれば、酸素原子の二重結合を有する親水性高分子を含む親水層と、メディエータ等を含む試薬層との間に中間層を設けるため、メディエータが酸素原子の二重結合を有する親水性高分子と接触するのを防止することができ、これにより、保管状態において、酸素原子の二重結合を有する親水性高分子によりメディエータが還元されるのを防止することができる。 According to the present invention, since the intermediate layer is provided between the hydrophilic layer containing a hydrophilic polymer having a double bond of oxygen atom and the reagent layer containing a mediator or the like, the mediator has a double bond of oxygen atom. Contact with the hydrophilic polymer can be prevented, whereby the mediator can be prevented from being reduced by the hydrophilic polymer having a double bond of an oxygen atom in the storage state.
本発明の第1実施形態にかかるバイオセンサを示す図であって、(a)は分解斜視図、(b)は斜視図である。It is a figure which shows the biosensor concerning 1st Embodiment of this invention, Comprising: (a) is a disassembled perspective view, (b) is a perspective view. 図1のバイオセンサのキャビティ部分の横断面図である。It is a cross-sectional view of the cavity part of the biosensor of FIG. 図1のバイオセンサの製造方法を示す図であって、(a)~(c)はそれぞれ異なる工程を示す。FIG. 2 is a diagram showing a method for manufacturing the biosensor of FIG. 1, wherein (a) to (c) show different processes. 図1のバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。It is a figure which shows the relationship between the storage period and background current of the biosensor of FIG. 本発明の第2実施形態にかかるバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。It is a figure which shows the relationship between the storage period and background current of the biosensor concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかるバイオセンサの製造方法を示す図であって、(a)~(d)はそれぞれ異なる工程を示す。FIG. 7 is a diagram showing a method for manufacturing a biosensor according to a third embodiment of the present invention, in which (a) to (d) show different processes. 図6の製造方法により製造されたバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。It is a figure which shows the relationship between the storage period of the biosensor manufactured by the manufacturing method of FIG. 6, and background current. 本発明の第4実施形態にかかるバイオセンサの製造方法を示す図であって、(a)~(c)はそれぞれ異なる工程を示す。FIG. 9 is a diagram showing a method for manufacturing a biosensor according to a fourth embodiment of the present invention, in which (a) to (c) show different processes. 図8の製造方法により製造されたバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。It is a figure which shows the relationship between the storage period of the biosensor manufactured by the manufacturing method of FIG. 8, and background current. 本発明の第5実施形態にかかるバイオセンサのキャビティ部分の横断面図である。It is a cross-sectional view of the cavity part of the biosensor according to the fifth embodiment of the present invention. 従来のバイオセンサを示す図である。It is a figure which shows the conventional biosensor.
 <第1実施形態>
 本発明の第1実施形態にかかるバイオセンサおよびこのバイオセンサの製造方法について図1~図4を参照して説明する。なお、図1は本発明の第1実施形態にかかるバイオセンサを示す図であって、(a)は分解斜視図、(b)は斜視図である。図2は図1のバイオセンサのキャビティ部分の横断面図である。図3は本発明の第1実施形態にかかるバイオセンサの製造方法を示す図であって、(a)~(c)はそれぞれ異なる工程を示す。
<First Embodiment>
A biosensor according to a first embodiment of the present invention and a method for manufacturing the biosensor will be described with reference to FIGS. 1A and 1B are diagrams showing a biosensor according to a first embodiment of the present invention, where FIG. 1A is an exploded perspective view and FIG. 1B is a perspective view. FIG. 2 is a cross-sectional view of the cavity portion of the biosensor of FIG. FIG. 3 is a diagram showing the biosensor manufacturing method according to the first embodiment of the present invention, wherein (a) to (c) show different steps.
 (バイオセンサの構成および製造方法)
 本実施形態にかかるバイオセンサ100は、作用極101および対極102を含む電極系と、メディエータおよび測定対象物質と反応する酵素を含む反応層106とを有し、測定器(図示省略)に装着されて使用されるものである。具体的には、バイオセンサ100が測定器の所定の位置に装着された状態で、当該バイオセンサの先端側に設けられたキャビティ103に血液などの試料が供給される。供給された試料はキャビティ103内に設けられた反応層106と接触するとともに、試料と反応層106とが反応し、反応層106に含まれる物質が還元された還元物質が生成される。
(Configuration and manufacturing method of biosensor)
A biosensor 100 according to this embodiment includes an electrode system including a working electrode 101 and a counter electrode 102, and a reaction layer 106 including an enzyme that reacts with a mediator and a measurement target substance, and is attached to a measuring instrument (not shown). Used. Specifically, in a state where the biosensor 100 is mounted at a predetermined position of the measuring instrument, a sample such as blood is supplied to the cavity 103 provided on the tip side of the biosensor. The supplied sample comes into contact with the reaction layer 106 provided in the cavity 103, and the sample and the reaction layer 106 react to generate a reduced substance in which the substance contained in the reaction layer 106 is reduced.
 例えば、試料が血液である場合、血液中のグルコースと反応層106に含まれるグルコースオキシターゼ(酵素)とが反応し、グルコースが酸化された反応物質であるグルコノラクトンが生成される。その際に放出された電子により、反応層106に含まれるフェリシアン化カリウム(メディエータ)が電離したフェリシアン化イオンが還元され、フェロシアン化カリウム(還元物質:フェリシアン化カリウムの還元体)が生成される。 For example, when the sample is blood, glucose in the blood reacts with glucose oxidase (enzyme) contained in the reaction layer 106 to produce gluconolactone, which is a reactant obtained by oxidizing glucose. The electrons released at this time reduce ferricyanide ions ionized from the potassium ferricyanide (mediator) contained in the reaction layer 106 to generate potassium ferrocyanide (reduced substance: reduced form of potassium ferricyanide).
 そして、バイオセンサ100において、作用極101および対極102との間に電圧を印加することにより、この反応により生成された還元物質を酸化し、その際に得られる酸化電流を計測する。この酸化電流は、例えば、試料が血液である場合、その血液に含まれるグルコースの濃度に依存した値となるため、上記した各反応を経て得られた酸化電流をバイオセンサ100で計測することにより、試料に含まれる測定対象物質(例えば、試料が血液である場合のグルコース)の定量を行うことができる。 In the biosensor 100, a voltage is applied between the working electrode 101 and the counter electrode 102 to oxidize the reducing substance generated by this reaction, and the oxidation current obtained at that time is measured. For example, when the sample is blood, this oxidation current has a value that depends on the concentration of glucose contained in the blood. Therefore, by measuring the oxidation current obtained through each of the above reactions with the biosensor 100, Quantification of the measurement target substance contained in the sample (for example, glucose when the sample is blood) can be performed.
 より具体的には、バイオセンサ100は、図1および図2に示すように、絶縁性基板111、ならびに、絶縁性基板111の一方面に作用極101および対極102を含む電極系を備える電極層110と、スリット104を有し、該スリット104が作用極101および対極102の先端側に位置するように電極層110の電極系側に積層されるスペーサ層120と、電極層110およびスペーサ層120のスリット104により形成され、試料が供給されるキャビティ103と、該キャビティ103に連通する空気穴105を有し、キャビティ103を被覆するようにスペーサ層120に積層されるカバー層130と、キャビティ103に露出する作用極101および対極102の先端側に設けられた反応層106とを備え、電極層110およびカバー層130に挟まれて配置されるスペーサ層120とが、試料導入口103aが設けられる先端側が揃った状態で積層されて接着されることにより形成される。そして、バイオセンサ100は、その後端側から測定器の所定の挿入口に挿入されることで測定器に装着される。 More specifically, as shown in FIGS. 1 and 2, the biosensor 100 includes an insulating substrate 111 and an electrode layer including an electrode system including a working electrode 101 and a counter electrode 102 on one surface of the insulating substrate 111. 110, a slit 104, a spacer layer 120 stacked on the electrode system side of the electrode layer 110 so that the slit 104 is positioned on the tip side of the working electrode 101 and the counter electrode 102, and the electrode layer 110 and the spacer layer 120 A cavity 103 in which a sample is supplied, an air hole 105 communicating with the cavity 103, a cover layer 130 stacked on the spacer layer 120 so as to cover the cavity 103, and the cavity 103 A working electrode 101 exposed to the surface of the counter electrode 102 and a reaction layer 106 provided on the tip side of the counter electrode 102. And a spacer layer 120 disposed pinched in the cover layer 130 is formed by the sample introduction port 103a are bonded are laminated in a state where the top side is aligned provided. The biosensor 100 is attached to the measuring instrument by being inserted into a predetermined insertion port of the measuring instrument from the rear end side.
 電極層110は、ポリエチレンテレフタレート、セラミック、ガラス、プラスチック、紙、生分解性材料などの絶縁材料からなる絶縁性基板により形成される。また、電極層110を形成する絶縁性基板111の一方面に、白金、金、パラジウムなどの貴金属やカーボン、銅、アルミニウム、チタン、ITO(Indium Tin Oxide:酸化インジウム錫)、ZnO(Zinc Oxide:酸化亜鉛)などの導電性物質からなる導電層が、スクリーン印刷やスパッタリング蒸着法により形成される。そして、絶縁性基板の一方面に形成された導電層に、レーザ加工やフォトリソグラフィによるパターン形成が施されることにより、作用極101および対極102と、バイオセンサ100が測定器に装着されたときに、作用極101および対極102のそれぞれと測定器とを電気的に接続する電極パターン101a,102aとを含む電極系が形成される。 The electrode layer 110 is formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, or biodegradable material. Further, a noble metal such as platinum, gold, and palladium, carbon, copper, aluminum, titanium, ITO (Indium Tin Oxide), ZnO (Zinc Oxide :) is formed on one surface of the insulating substrate 111 that forms the electrode layer 110. A conductive layer made of a conductive material such as zinc oxide) is formed by screen printing or sputtering deposition. When the conductive layer formed on one surface of the insulating substrate is subjected to patterning by laser processing or photolithography, the working electrode 101 and the counter electrode 102 and the biosensor 100 are mounted on the measuring instrument. In addition, an electrode system including electrode patterns 101a and 102a that electrically connect each of the working electrode 101 and the counter electrode 102 to the measuring instrument is formed.
 また、作用極101および対極102は、それぞれの先端が、キャビティ103に露出するように配置される。また、作用極101および対極102それぞれの後端側の電極パターン101a,102aは、試料導入口103aと反対側の電極層110の端縁であって、スペーサ層120が積層されない電極層110の端縁まで延伸されて形成される。 In addition, the working electrode 101 and the counter electrode 102 are arranged so that their respective tips are exposed to the cavity 103. Further, the electrode patterns 101a and 102a on the rear end side of the working electrode 101 and the counter electrode 102 are the edges of the electrode layer 110 on the opposite side to the sample introduction port 103a, and are the ends of the electrode layer 110 on which the spacer layer 120 is not stacked. It is stretched to the edge.
 次に、上記したようにして形成された電極層110にスペーサ層120が積層される。スペーサ層120は、ポリエチレンテレフタレート、セラミック、ガラス、プラスチック、紙、生分解性材料などの絶縁材料からなる絶縁性基板により形成され、基板の先端縁部のほぼ中央にキャビティ103を形成するためのスリット104が形成されている。そして、スリット104が、作用極101および対極102の先端側に配置されて、スペーサ層120が電極層110の一方面を部分的に被覆して積層されることにより、電極層110およびスリット104により試料が供給されるキャビティ103が形成される。 Next, the spacer layer 120 is laminated on the electrode layer 110 formed as described above. The spacer layer 120 is formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, or a biodegradable material, and is a slit for forming the cavity 103 at substantially the center of the front edge of the substrate. 104 is formed. Then, the slit 104 is disposed on the distal end side of the working electrode 101 and the counter electrode 102, and the spacer layer 120 is partially covered and laminated on one surface of the electrode layer 110, so that the electrode layer 110 and the slit 104 are stacked. A cavity 103 to which a sample is supplied is formed.
 続いて、キャビティ103部分がプラズマにより洗浄処理された後に、反応層106が形成される。なお、プラズマ洗浄工程において使用されるプラズマは、酸素プラズマ、窒素プラズマ、アルゴンプラズマなど、プラズマによる金属活性化処理において使用される種々のプラズマを使用することができ、減圧プラズマであっても大気圧プラズマであってもよい。 Subsequently, after the cavity 103 is cleaned with plasma, the reaction layer 106 is formed. As the plasma used in the plasma cleaning process, various plasmas used in metal activation treatment by plasma such as oxygen plasma, nitrogen plasma, and argon plasma can be used. Plasma may be used.
 反応層106は、図3(a)~(c)に示すように、カバー層130がスペーサ層120に積層される前に、キャビティ103に露出する作用極101および対極102の先端側に、カルボキシメチルセルロース(CMC)などの酸素原子の二重結合を有する親水性高分子を含有する試薬201と、ジ(2-エチルヘキシル)スルホこはく酸ナトリウムなどの界面活性剤を含有する試薬202と、メディエータ、酵素、酸素原子の二重結合を有さない親水性高分子などを含有する試薬203とを順番に滴下することにより形成される。また、キャビティ104への血液などの試料の供給を円滑にするために、界面活性剤やリン脂質などの親水化剤がキャビティ103内壁に塗布される。 As shown in FIGS. 3A to 3C, the reaction layer 106 is formed on the tip side of the working electrode 101 and the counter electrode 102 exposed to the cavity 103 before the cover layer 130 is laminated on the spacer layer 120. A reagent 201 containing a hydrophilic polymer having a double bond of an oxygen atom such as methylcellulose (CMC), a reagent 202 containing a surfactant such as sodium di (2-ethylhexyl) sulfosuccinate, a mediator, an enzyme And a reagent 203 containing a hydrophilic polymer or the like that does not have a double bond of an oxygen atom, and is formed by dropping them in order. Further, in order to smoothly supply a sample such as blood to the cavity 104, a hydrophilizing agent such as a surfactant or phospholipid is applied to the inner wall of the cavity 103.
 具体的には、反応層106は、電極層110上に設けられ、酸素原子の二重結合を有する親水性高分子を含む親水層106aと、親水層106a上に設けられ、試薬層106cに含まれるメディエータが親水層106aの親水性高分子に接触するのを防止するための界面活性剤を含む中間層106bと、中間層106b上に設けられ、測定対象物質と反応する酵素、メディエータ(電子受容体)、酸素原子の二重結合を有さない親水性高分子を含む試薬層106cとを備え、次のように形成される。 Specifically, the reaction layer 106 is provided on the electrode layer 110 and is provided on the hydrophilic layer 106a including a hydrophilic polymer having a double bond of an oxygen atom, on the hydrophilic layer 106a, and included in the reagent layer 106c. An intermediate layer 106b containing a surfactant for preventing the mediator from contacting the hydrophilic polymer of the hydrophilic layer 106a, and an enzyme and a mediator (electron acceptor) that are provided on the intermediate layer 106b and react with the substance to be measured. And a reagent layer 106c containing a hydrophilic polymer that does not have a double bond of an oxygen atom, and is formed as follows.
 すなわち、図3(a)に示すように、酸素原子の二重結合を有する親水性高分子としてCMCを含有する試薬201が滴下装置200からキャビティ103に所定量滴下されて乾燥されることにより親水層106aが形成される(親水層形成工程)。次に、図3(b)に示すように、界面活性剤としてジ(2-エチルヘキシル)スルホこはく酸ナトリウムを含有する試薬202が滴下装置200からキャビティ103に所定量滴下されて乾燥されることにより中間層106bが形成される(中間層形成工程)。なお、この実施形態における試薬202は、界面活性剤をアセトンやイソプロピルアルコール、あるいはクロロホルムに溶解させたものであり、中間層106bは、界面活性剤を0.01~5wt%含有した溶液が0.5μL滴下されることにより形成される。 That is, as shown in FIG. 3A, a predetermined amount of a reagent 201 containing CMC as a hydrophilic polymer having a double bond of an oxygen atom is dropped from the dropping device 200 into the cavity 103 and dried, thereby making the hydrophilic The layer 106a is formed (hydrophilic layer forming step). Next, as shown in FIG. 3B, a predetermined amount of a reagent 202 containing sodium di (2-ethylhexyl) sulfosuccinate as a surfactant is dropped into the cavity 103 from the dropping device 200 and dried. The intermediate layer 106b is formed (intermediate layer forming step). In this embodiment, the reagent 202 is obtained by dissolving a surfactant in acetone, isopropyl alcohol, or chloroform, and the intermediate layer 106b has a solution containing 0.01 to 5 wt% of the surfactant in an amount of 0.0%. It is formed by dropping 5 μL.
 続いて、図3(c)に示すように、メディエータ(例えば、フェリシアン化カリウム)、酵素(例えば、グルコースデヒトロゲナーゼ)、酸素原子の二重結合を有さない親水性高分子(例えば、メチルセルロース)を含有する試薬203が滴下装置200からキャビティ103に所定量滴下されて乾燥されることにより試薬層106cが形成され(試薬層形成工程)、これらの各工程により反応層106が形成される。この場合、試薬203中に含まれる酸素原子の二重結合を有さない親水性高分子はなくてもかまわない。また、試薬203中に、酸素原子の二重結合を有さない親水性高分子の代わりに、またはこの親水性高分子とともに両親媒性高分子を含有させる構成であってもよい。 Subsequently, as shown in FIG. 3 (c), a mediator (for example, potassium ferricyanide), an enzyme (for example, glucose dehumanlogenase), and a hydrophilic polymer (for example, methylcellulose) having no oxygen atom double bond. ) Is dropped into the cavity 103 by a predetermined amount from the dropping device 200 and dried to form the reagent layer 106c (reagent layer forming step), and the reaction layer 106 is formed by these steps. In this case, there may be no hydrophilic polymer that does not have an oxygen atom double bond contained in the reagent 203. In addition, the reagent 203 may include an amphiphilic polymer in place of the hydrophilic polymer having no oxygen atom double bond or together with the hydrophilic polymer.
 なお、酵素としては、上記したグルコースデヒドロゲナーゼの他、グルコースオキシターゼ、乳酸オキシターゼ、コレステロールオキシターゼ、アルコールオキシターゼ、ザルコシンオキシターゼ、フルクトシルアミンオキシターゼ、ピルビン酸オキシターゼ、乳酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、ヒドロキシ酪酸デヒドロゲナーゼ、コレステロールエステラーゼ、クレアチニナーゼ、クレアチナーゼ、DNAポリメラーゼなどを用いることができ、これらの酵素を測定対象物質(グルコース、乳酸、コレステロール、アルコール、ザルコシン、フルクトシルアミン、ピルビン酸、ヒドロキシ酪酸)に応じて選択することで種々のセンサを形成することができる。 Examples of the enzyme include glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, lactate dehydrogenase, alcohol dehydrogenase, hydroxybutyrate dehydrogenase, and cholesterol esterase. , Creatininase, creatinase, DNA polymerase, etc. can be used, and these enzymes should be selected according to the substance to be measured (glucose, lactic acid, cholesterol, alcohol, sarcosine, fructosylamine, pyruvic acid, hydroxybutyric acid) Various sensors can be formed.
 例えば、グルコースオキシダーゼまたはグルコースデヒドロゲナーゼを用いれば血液試料中のグルコースを検出するグルコースセンサを形成でき、アルコールオキシダーゼまたはアルコールデヒドロゲナーゼを用いれば血液試料中のエタノールを検出するアルコールセンサを形成でき、乳酸オキシダーゼを用いれば血液試料中の乳酸を検出する乳酸センサを形成でき、コレステロールエステラーゼとコレステロールオキシダーゼとの混合物を用いれば総コレステロールセンサを形成できる。 For example, glucose oxidase or glucose dehydrogenase can be used to form a glucose sensor that detects glucose in a blood sample, and alcohol oxidase or alcohol dehydrogenase can be used to form an alcohol sensor that detects ethanol in a blood sample. For example, a lactic acid sensor for detecting lactic acid in a blood sample can be formed, and a total cholesterol sensor can be formed by using a mixture of cholesterol esterase and cholesterol oxidase.
 また、メディエータとしては、上記したフェリシアン化カリウムの他、フェロセン、フェロセン誘導体、ベンゾキノン、キノン誘導体、オスミウム錯体、ルテニウム錯体などを用いることができる。 As the mediator, ferrocene, ferrocene derivative, benzoquinone, quinone derivative, osmium complex, ruthenium complex, etc. can be used in addition to the above-mentioned potassium ferricyanide.
 また、酸素原子の二重結合を有する親水性高分子として、カルボニル基、アシル基、カルボキシル基、アルデヒド基、スルホ基、スルホニル基、スルホキシド基、トシル基、ニトロ基、ニトロソ基、エステル基、ケト基、ケテン基などを有するポリマーを用いることができる。 In addition, hydrophilic polymers having a double bond of oxygen atom include carbonyl group, acyl group, carboxyl group, aldehyde group, sulfo group, sulfonyl group, sulfoxide group, tosyl group, nitro group, nitroso group, ester group, keto group. A polymer having a group, a ketene group, or the like can be used.
 また、酸素原子の二重結合を有さない親水性高分子としては、上記したメチルセルロースの他、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールなどを用いることができる。なお、試薬203に、酵素およびメディエータ等と一緒に混合される酸素原子の二重結合を有さない親水性高分子は増粘剤として機能する。また、酸素原子の二重結合を有する親水性高分子および酸素原子の二重結合を有さない親水性高分子は、それぞれ、2種類以上を組み合わせて用いてもよい。 Further, as the hydrophilic polymer having no oxygen atom double bond, it is possible to use hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polyethylene glycol, etc. in addition to the above-mentioned methylcellulose. it can. In addition, the hydrophilic polymer which does not have the double bond of the oxygen atom mixed with the reagent 203 with an enzyme, a mediator, etc. functions as a thickener. In addition, a hydrophilic polymer having a double bond of oxygen atom and a hydrophilic polymer having no double bond of oxygen atom may be used in combination of two or more.
 また、界面活性剤としては、上記したジ(2-エチルヘキシル)スルホこはく酸ナトリウム(エーロゾルOT:和光純薬工業株式会社)の他、ポリエチレングリコールモノ-4-ノニルフェニルエーテル(n≒7.5)(Igepal CO-210:ローヌ・プーラン社)、ソルビタンモノラウラート(Span20:東京化成工業株式会社)、ソルビタンモノオレエート(Span80:東京化成工業株式会社)、コール酸ナトリウム、レシチンなどを用いることができる。 In addition to the above-mentioned sodium di (2-ethylhexyl) sulfosuccinate (Aerosol OT: Wako Pure Chemical Industries, Ltd.), polyethylene glycol mono-4-nonylphenyl ether (n≈7.5) (Igepal CO-210: Rhone-Poulenc), sorbitan monolaurate (Span20: Tokyo Chemical Industry Co., Ltd.), sorbitan monooleate (Span80: Tokyo Chemical Industry Co., Ltd.), sodium cholate, lecithin, etc. it can.
 また、親水化剤としては、ポリエチレングリコールモノ-4-オクチルフェニルエーテル(n≒10)(TritonX100:シグマアルドリッチ社製)、ポリオキシエチレンソルビタンモノラウラート(Tween20:東京化成工業社製)、ビス(2-エチルヘキシル)スルホコハク酸ナトリウムなどの界面活性剤、レシチンなどのリン脂質を用いることができる。また、親水化剤は、上記したようにキャビティ103に塗布する以外に、試薬203に混合してキャビティ103に滴下したり、試薬層106cが形成された後にキャビティ104に滴下してもよい。また、カバー層130のスペーサ層側の面に塗布してもよい。また、試料に含まれるイオン濃度のばらつきを低減するために、リン酸などの緩衝剤を設けてもよい。 Further, as the hydrophilizing agent, polyethylene glycol mono-4-octylphenyl ether (n≈10) (Triton X100: manufactured by Sigma Aldrich), polyoxyethylene sorbitan monolaurate (Tween 20: manufactured by Tokyo Chemical Industry Co., Ltd.), bis ( Surfactants such as sodium 2-ethylhexyl) sulfosuccinate and phospholipids such as lecithin can be used. In addition to applying to the cavity 103 as described above, the hydrophilizing agent may be mixed with the reagent 203 and dropped into the cavity 103, or may be dropped into the cavity 104 after the reagent layer 106c is formed. Moreover, you may apply | coat to the surface at the side of the spacer layer of the cover layer 130. FIG. Further, a buffering agent such as phosphoric acid may be provided in order to reduce variation in the concentration of ions contained in the sample.
 次に、反応層106がキャビティ103に形成された後に、ポリエチレンテレフタレート、セラミック、ガラス、プラスチック、紙、生分解性材料などの絶縁材料からなる絶縁性基板により形成されたカバー層130が、スペーサ層120に積層されることにより、バイオセンサ100が形成される。図1(a),(b)に示すように、カバー層130には、スペーサ層120に積層されたときにキャビティ103と連通する空気穴105が形成されており、カバー層130は、キャビティ103を被覆してスペーサ層120に積層される。 Next, after the reaction layer 106 is formed in the cavity 103, a cover layer 130 formed of an insulating substrate made of an insulating material such as polyethylene terephthalate, ceramic, glass, plastic, paper, biodegradable material is formed as a spacer layer. By being laminated on 120, the biosensor 100 is formed. As shown in FIGS. 1A and 1B, the cover layer 130 has an air hole 105 that communicates with the cavity 103 when laminated on the spacer layer 120, and the cover layer 130 has the cavity 103. And is laminated on the spacer layer 120.
 なお、この実施形態では、バイオセンサ100は、血液中のグルコースの定量を行うことを目的に形成されており、測定対象物質としてのグルコースと特異的に反応する酵素としてFAD(フラビンアデニンジヌクレオチド)を補酵素とするGDH(グルコースデヒドロゲナーゼ)(以下、FAD-GDHと表記する)を含み、測定対象物であるグルコースとFAD-GDHとの反応により生成される電子により還元されて還元物質と成るメディエータとしてフェリシアン化カリウムを含む反応層106がキャビティ103に露出する作用極101および対極102の先端側に設けられている。 In this embodiment, the biosensor 100 is formed for the purpose of quantifying glucose in blood, and FAD (flavin adenine dinucleotide) is used as an enzyme that specifically reacts with glucose as a measurement target substance. A mediator that contains GDH (glucose dehydrogenase) (hereinafter referred to as FAD-GDH), which is a coenzyme, and is reduced by electrons generated by the reaction of glucose as a measurement object with FAD-GDH to become a reducing substance The reaction layer 106 containing potassium ferricyanide is provided on the tip side of the working electrode 101 and the counter electrode 102 exposed to the cavity 103.
 このように構成されたバイオセンサ100では、上記したように、先端の試料導入口103aに血液から成る試料を接触させることにより、毛細管現象により試料が空気穴105に向かって吸引されてキャビティ103に試料が供給される。そして、キャビティ103に供給された試料に反応層106(試薬層106c)が溶解することにより、試料中の測定対象物質であるグルコースとFAD-GDHとの酵素反応により電子が放出され、放出された電子によりフェリシアン化イオンが還元されて還元物質であるフェロシアン化イオンが生成される。そして、反応層106が試料に溶解することによる酸化還元反応により生成された還元物質を、バイオセンサ100の作用極101と対極102との間に電圧(例えば0.3V)を印加して電気化学的に酸化することにより、作用極101と対極102との間に流れる酸化電流を計測することで試料中のグルコースの定量が測定器において行われる。なお、バイオセンサ100の作用極101と対極102との間に電圧が印加された後、3~5秒後の電流値が酸化電流として計測される。 In the biosensor 100 configured as described above, as described above, when a sample made of blood is brought into contact with the sample introduction port 103a at the tip, the sample is sucked toward the air hole 105 by capillary action and is then injected into the cavity 103. A sample is supplied. Then, when the reaction layer 106 (reagent layer 106c) is dissolved in the sample supplied to the cavity 103, electrons are released by the enzyme reaction between glucose, which is the measurement target substance in the sample, and FAD-GDH. Ferricyanide ions are reduced by electrons to produce ferrocyanide ions, which are reducing substances. Then, a voltage (for example, 0.3 V) is applied between the working electrode 101 and the counter electrode 102 of the biosensor 100 with respect to the reducing substance generated by the oxidation-reduction reaction caused by the reaction layer 106 dissolving in the sample. The glucose in the sample is quantified in the measuring instrument by measuring the oxidation current flowing between the working electrode 101 and the counter electrode 102 by oxidation. In addition, after a voltage is applied between the working electrode 101 and the counter electrode 102 of the biosensor 100, a current value 3 to 5 seconds later is measured as an oxidation current.
 (バックグランド電流の比較例)
 図4はバイオセンサの保管期間とバックグランド電流との関係を示す図であり、横軸が保管期間(h)を示し、縦軸がバックグランド電流の大きさ(μA)を示す。また、同図中の◆(黒色のひし形)は、試薬層106cと親水層106aとの間に中間層106bが設けられていない従来のバイオセンサのバックグランド電流を示し、同図中の■(黒色の四角)は、本実施形態のバイオセンサ100のバックグランド電流を示す。なお、バックグランド電流の測定は、バックグランド電流測定用の試料をキャビティ103に供給した後、通常の手順と同様に酸化電流を計測することにより行った。
(Comparison example of background current)
FIG. 4 is a diagram illustrating the relationship between the storage period of the biosensor and the background current, where the horizontal axis indicates the storage period (h), and the vertical axis indicates the magnitude of the background current (μA). Also, ◆ (black rhombus) in the figure indicates the background current of the conventional biosensor in which the intermediate layer 106b is not provided between the reagent layer 106c and the hydrophilic layer 106a. A black square indicates a background current of the biosensor 100 of the present embodiment. The background current was measured by supplying a sample for measuring the background current to the cavity 103 and then measuring the oxidation current in the same manner as in a normal procedure.
 図4に示すように、バイオセンサの保管期間が長くなるのに伴い、従来のバイオセンサでは経時的にバックグランド電流が増大するのに対して、本実施形態のバイオセンサ100ではバックグランド電流の増大が抑制されている。 As shown in FIG. 4, as the storage period of the biosensor becomes longer, the background current increases with time in the conventional biosensor, whereas in the biosensor 100 of the present embodiment, the background current increases. The increase is suppressed.
 したがって、本実施形態では、作用極101および対極102を含む電極系が設けられた電極層110上に酸素原子の二重結合を有する親水性高分子を含む親水層106aが設けられるが、一般的に、酸素原子の二重結合を有する親水性高分子は血液試料に含まれる血球の移動を阻止する効果を有し、例えば、血液試料がキャビティに供給されると、当該親水層106aにより血液試料が濾過されて血球の移動が阻止され、血球を除く成分(例えば、グルコース)が電極層110の各電極101,102に接触することから、血液試料のヘマトクリット値の差異に伴う測定精度への影響を低減することができる。 Therefore, in this embodiment, the hydrophilic layer 106a including a hydrophilic polymer having a double bond of oxygen atoms is provided on the electrode layer 110 provided with the electrode system including the working electrode 101 and the counter electrode 102. In addition, the hydrophilic polymer having a double bond of oxygen atoms has an effect of preventing the movement of blood cells contained in the blood sample. For example, when the blood sample is supplied to the cavity, the hydrophilic sample 106a causes the blood sample to have a blood sample. Is filtered to block the movement of blood cells, and components other than blood cells (for example, glucose) come into contact with the electrodes 101 and 102 of the electrode layer 110, so that the influence on the measurement accuracy due to the difference in the hematocrit value of the blood sample Can be reduced.
 ところで、親水性高分子が酸素原子の二重結合を有する場合、酸素原子の二重結合を有する官能基がメディエータに対して求核攻撃することによりメディエータが還元されると考えられる。そのため、親水層106a上に試薬層106cを配置すると、保管状態において、両層106a,106cの接触界面でこのメディエータの還元反応が徐々に進み、バイオセンサ100における酸化電流の測定精度が劣化するおそれがある。 By the way, when the hydrophilic polymer has an oxygen atom double bond, the functional group having the oxygen atom double bond is considered to reduce the mediator by nucleophilic attack on the mediator. Therefore, when the reagent layer 106c is arranged on the hydrophilic layer 106a, the reduction reaction of the mediator gradually proceeds at the contact interface between the two layers 106a and 106c in the storage state, and the measurement accuracy of the oxidation current in the biosensor 100 may deteriorate. There is.
 そこで、本実施形態では、酸素原子の二重結合を有する親水性高分子を含む親水層106aとメディエータ等を含む試薬層106cとの間に、中間層106bとして、界面活性剤を含む層を設けることにより、バイオセンサ100の保管状態において、メディエータが試薬層106c中の水分と一緒に染み出して、親水層106aの親水性高分子と接触するのを防止することができるように構成した。このように構成することにより、バイオセンサ100の保管状態において、メディエータが、親水層106aに含まれる酸素原子の二重結合を有する親水性高分子(CMC)により還元されるのを防止することができるとともに、CMCによるメディエータの還元に伴うバックグラウンド電流の増加を抑制することができる。 Therefore, in this embodiment, a layer containing a surfactant is provided as the intermediate layer 106b between the hydrophilic layer 106a containing a hydrophilic polymer having a double bond of oxygen atoms and the reagent layer 106c containing a mediator or the like. Thus, in the storage state of the biosensor 100, the mediator can be prevented from seeping out together with the moisture in the reagent layer 106c and coming into contact with the hydrophilic polymer of the hydrophilic layer 106a. By configuring in this way, it is possible to prevent the mediator from being reduced by the hydrophilic polymer (CMC) having a double bond of oxygen atoms contained in the hydrophilic layer 106a in the storage state of the biosensor 100. In addition, it is possible to suppress an increase in background current accompanying the reduction of the mediator by CMC.
 また、試薬層106cは、酸素原子の二重結合を有さない親水性高分子を含んでいるため、メディエータの周囲が、酸素原子の二重結合を有さない親水性高分子、すなわち、メディエータが還元されにくい親水性高分子により囲まれた状態になる。そのため、親水層106aの親水性高分子と試薬層106cのメディエータとの接触を防止する効果がさらに向上する。 In addition, since the reagent layer 106c includes a hydrophilic polymer that does not have an oxygen atom double bond, the periphery of the mediator is a hydrophilic polymer that does not have an oxygen atom double bond, that is, a mediator. Is surrounded by a hydrophilic polymer that is difficult to reduce. Therefore, the effect of preventing contact between the hydrophilic polymer of the hydrophilic layer 106a and the mediator of the reagent layer 106c is further improved.
 また、親水層106aおよび試薬層106cの各親水性高分子が増粘剤として機能することにより、反応層106を構成する各層106a,106b,106c間の接着強度が増加するため、各層106a,106b,106cそれぞれの接着面での外部応力等による剥離を防止することができる。 Further, since each hydrophilic polymer of the hydrophilic layer 106a and the reagent layer 106c functions as a thickener, the adhesive strength between the layers 106a, 106b, 106c constituting the reaction layer 106 is increased, and thus the layers 106a, 106b , 106c can be prevented from being peeled off by an external stress or the like on the bonding surface.
 以上のように、本実施形態の構成により、CMCによるメディエータの還元に伴うバックグラウンド電流増加の抑制とヘマトクリット値の差異に伴う測定精度への影響低減を両立することが可能となるため、正確で信頼性の高いバイオセンサ100を提供することができる。 As described above, according to the configuration of the present embodiment, it is possible to achieve both the suppression of the increase in the background current accompanying the reduction of the mediator by CMC and the reduction in the influence on the measurement accuracy due to the difference in the hematocrit value. A highly reliable biosensor 100 can be provided.
 <第2実施形態>
 本発明の第2実施形態にかかるバイオセンサについて図2および図5を参照して説明する。なお、図5は第2実施形態にかかるバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。
Second Embodiment
A biosensor according to a second embodiment of the present invention will be described with reference to FIGS. In addition, FIG. 5 is a figure which shows the relationship between the storage period and background current of the biosensor concerning 2nd Embodiment.
 この実施形態が上記した第1実施形態と異なるのは、バイオセンサ100の中間層106bが、両親媒性高分子を含有している点である。 This embodiment is different from the first embodiment described above in that the intermediate layer 106b of the biosensor 100 contains an amphiphilic polymer.
 この場合、中間層106bは、両親媒性高分子を0.01~5wt%の割合で、アセトンやイソプロピルアルコール、あるいは、クロロホルムなどに溶解させた試薬が所定量(例えば、0.5μL)、キャビティ103に滴下・乾燥されることにより形成される。 In this case, the intermediate layer 106b has a predetermined amount (for example, 0.5 μL) of a reagent in which an amphiphilic polymer is dissolved in acetone, isopropyl alcohol, chloroform, or the like at a ratio of 0.01 to 5 wt%. It is formed by being dropped and dried on 103.
 なお、両親媒性高分子として、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールなどを用いることができる。また、これらの両親媒性高分子を、それぞれ2種類以上を組み合わせて用いてもよい。 In addition, polyvinyl pyrrolidone, polyethylene glycol, polyvinyl alcohol, etc. can be used as the amphiphilic polymer. Further, two or more of these amphiphilic polymers may be used in combination.
 また、この実施形態におけるバイオセンサ100の保管期間とバックグラウンド電流との関係については、図5に示すように、第1実施形態と同様、バックグラウンド電流の増大が抑制されている。なお、図5に示すバックグラウンド電流は、上記した第1実施形態のバックグラウンド電流と同じ条件で計測されたものである。 In addition, regarding the relationship between the storage period of the biosensor 100 and the background current in this embodiment, as shown in FIG. 5, the increase in the background current is suppressed as in the first embodiment. The background current shown in FIG. 5 is measured under the same conditions as the background current of the first embodiment described above.
 したがって、本実施形態によれば、中間層106bを両親媒性高分子で構成した場合であっても、保管状態において、試薬層106cのメディエータが親水層106aの親水性高分子(CMC)に接触するのを防止することができるため、CMCによるメディエータの還元に伴うバックグラウンド電流の増加を抑制することができる。 Therefore, according to the present embodiment, even when the intermediate layer 106b is composed of an amphiphilic polymer, the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
 <第3実施形態>
 本発明の第3実施形態にかかるバイオセンサについて図2、図6、図7を参照して説明する。なお、図6は第3実施形態にかかるバイオセンサの製造方法を示す図であり、(a)~(d)はそれぞれ異なる工程を示す。図7は第3実施形態にかかるバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。なお、図6(a)は、第1実施形態のバイオセンサの製造方法を示した図3(a)と同じ工程であり、図6(d)は図3(c)と同じ工程である。
<Third Embodiment>
A biosensor according to a third embodiment of the present invention will be described with reference to FIG. 2, FIG. 6, and FIG. FIG. 6 is a diagram showing a biosensor manufacturing method according to the third embodiment, and (a) to (d) show different processes. FIG. 7 is a diagram showing the relationship between the storage period and the background current of the biosensor according to the third embodiment. 6A is the same step as FIG. 3A showing the biosensor manufacturing method of the first embodiment, and FIG. 6D is the same step as FIG. 3C.
 この実施形態が図2を参照して説明した第1実施形態と異なるところは、中間層106bが水溶性ゲル化剤を含有している点である。 This embodiment is different from the first embodiment described with reference to FIG. 2 in that the intermediate layer 106b contains a water-soluble gelling agent.
 この実施形態では、バイオセンサ100の中間層106bは次のように形成される。まず、第1実施形態と同じ要領で親水層106aが形成される(図6(a)参照)。次に、図6(b)に示すように、カチオンと混合されるとゲル化する水溶性ゲル化剤を含有する試薬204が滴下装置200からキャビティ103に所定量滴下されて乾燥される。 In this embodiment, the intermediate layer 106b of the biosensor 100 is formed as follows. First, the hydrophilic layer 106a is formed in the same manner as in the first embodiment (see FIG. 6A). Next, as shown in FIG. 6B, a predetermined amount of a reagent 204 containing a water-soluble gelling agent that gels when mixed with a cation is dropped from the dropping device 200 into the cavity 103 and dried.
 続いて、図6(c)に示すように、カチオンを含有する試薬205が滴下装置200から所定量滴下されることにより水溶性ゲル化剤がゲル化されて中間層106bが形成される。最後に、第1実施形態と同じ要領で試薬層106cが形成される(図6(d)参照)。 Subsequently, as shown in FIG. 6C, a predetermined amount of the cation-containing reagent 205 is dropped from the dropping device 200, whereby the water-soluble gelling agent is gelled to form the intermediate layer 106b. Finally, the reagent layer 106c is formed in the same manner as in the first embodiment (see FIG. 6D).
 なお、水溶性ゲル化剤としては、カラギーナンやアルギン酸化合物を用いることができ、カチオンを含有した試薬205としては、フェリシアン化化合物、塩化ナトリウム、塩化カリウム、塩化カルシウム等のイオン性物質のうちのいずれかを溶かした水溶液を用いることができる。また、これらの水溶性ゲル化剤を、それぞれ2種類以上を組み合わせて用いてもよい。 As the water-soluble gelling agent, a carrageenan or alginic acid compound can be used, and as the reagent 205 containing a cation, an ionic substance such as a ferricyanide compound, sodium chloride, potassium chloride, or calcium chloride can be used. An aqueous solution in which either is dissolved can be used. Moreover, you may use these water-soluble gelling agents in combination of 2 or more types, respectively.
 また、この実施形態におけるバイオセンサ100の保管期間とバックグラウンド電流との関係については、図7に示すように、第1実施形態と同様、バックグラウンド電流の増大が抑制されている。なお、図7に示すバックグラウンド電流は、上記した第1実施形態のバックグラウンド電流と同じ条件で計測されたものである。 Further, regarding the relationship between the storage period of the biosensor 100 and the background current in this embodiment, as shown in FIG. 7, the increase in the background current is suppressed as in the first embodiment. Note that the background current shown in FIG. 7 is measured under the same conditions as the background current of the first embodiment described above.
 したがって、本実施形態によれば、中間層106bを水溶性ゲル化剤で構成した場合であっても、保管状態において、試薬層106cのメディエータが親水層106aの親水性高分子(CMC)に接触するのを防止することができるため、CMCによるメディエータの還元に伴うバックグラウンド電流の増加を抑制することができる。 Therefore, according to the present embodiment, even when the intermediate layer 106b is composed of a water-soluble gelling agent, the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
 <第4実施形態>
 本発明の第4実施形態にかかるバイオセンサについて図2、図8、図9を参照して説明する。なお、図8は第4実施形態にかかるバイオセンサの製造方法を示す図であり、(a)~(c)はそれぞれ異なる工程を示す。図9は第4実施形態にかかるバイオセンサの保管期間とバックグラウンド電流との関係を示す図である。なお、図8(a)は、第1実施形態のバイオセンサの製造方法を示した図3(a)と同じ工程であり、図8(c)は図3(c)と同じ工程である。
<Fourth embodiment>
A biosensor according to a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a view showing a biosensor manufacturing method according to the fourth embodiment, and (a) to (c) show different processes. FIG. 9 is a diagram showing the relationship between the storage period and the background current of the biosensor according to the fourth embodiment. FIG. 8A is the same process as FIG. 3A showing the method of manufacturing the biosensor of the first embodiment, and FIG. 8C is the same process as FIG. 3C.
 この実施形態が図2を参照して説明した第1実施形態と異なるところは、中間層106bが、親水層106aの表面が撥水処理されて形成された撥水層で形成されている点である。 This embodiment is different from the first embodiment described with reference to FIG. 2 in that the intermediate layer 106b is formed of a water repellent layer formed by subjecting the surface of the hydrophilic layer 106a to water repellent treatment. is there.
 この実施形態では、バイオセンサ100の中間層106bは、次のように形成される。まず、第1実施形態と同じ要領で親水層106aが形成される(図8(a)参照)。次に、図8(b)に示すように、親水層106aの表面がフッ素系ガス(例えば、CHFガスやCFガス)を用いて生成されたプラズマによりエッチングされることで、親水層106aの表面がフッ素コーティングされ、撥水層が形成される。最後に、第1実施形態と同じ要領で試薬層106cが形成される(図8(c)参照)。なお、撥水処理については、上記したフッ素系ガスのプラズマエッチングに限らず、親水層106a上に撥水剤を滴下するなど、種々の撥水処理を用いることができる。 In this embodiment, the intermediate layer 106b of the biosensor 100 is formed as follows. First, the hydrophilic layer 106a is formed in the same manner as in the first embodiment (see FIG. 8A). Next, as shown in FIG. 8B, the surface of the hydrophilic layer 106a is etched by plasma generated using a fluorine-based gas (for example, CHF 3 gas or CF 4 gas), so that the hydrophilic layer 106a. The surface is coated with fluorine to form a water repellent layer. Finally, the reagent layer 106c is formed in the same manner as in the first embodiment (see FIG. 8C). The water repellent treatment is not limited to the above-described plasma etching of a fluorine-based gas, and various water repellent treatments such as dropping a water repellent on the hydrophilic layer 106a can be used.
 また、この実施形態におけるバイオセンサ100の保管期間とバックグラウンド電流との関係については、図9に示すように、第1実施形態と同様、バックグラウンド電流の増大が抑制されている。なお、図9に示すバックグラウンド電流は、上記した第1実施形態のバックグラウンド電流と同じ条件で計測されたものである。 Further, regarding the relationship between the storage period of the biosensor 100 and the background current in this embodiment, as shown in FIG. 9, the increase in the background current is suppressed as in the first embodiment. Note that the background current shown in FIG. 9 is measured under the same conditions as the background current of the first embodiment described above.
 したがって、本実施形態によれば、中間層106bを撥水層で構成した場合であっても、保管状態において、試薬層106cのメディエータが親水層106aの親水性高分子(CMC)に接触するのを防止することができるため、CMCによるメディエータの還元に伴うバックグラウンド電流の増加を抑制することができる。 Therefore, according to the present embodiment, even when the intermediate layer 106b is formed of a water repellent layer, the mediator of the reagent layer 106c contacts the hydrophilic polymer (CMC) of the hydrophilic layer 106a in the storage state. Therefore, an increase in the background current associated with the reduction of the mediator by CMC can be suppressed.
 <第5実施形態>
 本発明の第5実施形態にかかるバイオセンサについて図10を参照して説明する。なお、図10は第5実施形態にかかるバイオセンサのキャビティ部分の横断面図である。
<Fifth Embodiment>
A biosensor according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a cross-sectional view of the cavity portion of the biosensor according to the fifth embodiment.
 この実施形態にかかるバイオセンサ100aが、図2を用いて説明した第1実施形態のバイオセンサ100と異なるところは、図10に示すように、試薬層106cが、メディエータおよび酸素原子の二重結合を有さない親水性高分子を含むメディエータ層106c1と、酵素および酸素原子の二重結合を有さない親水性高分子を含む酵素層106c2とで構成され、かつ、酵素層106c2上にメディエータ層106c1が積層されている点である。その他の構成は第1実施形態と同じであるため、同一符号を付すことにより説明を省略する。なお、メディエータ層106c1および酵素層106c2それぞれに含まれる酸素原子の二重結合を有さない親水性高分子は、上記した第1実施形態を同じものを用いることができる。また、試薬層106cを構成するメディエータ層106c1および酵素層106c2の積層される順番は、逆であってもかまわない。 The biosensor 100a according to this embodiment differs from the biosensor 100 according to the first embodiment described with reference to FIG. 2 in that the reagent layer 106c has a double bond between a mediator and an oxygen atom as shown in FIG. A mediator layer 106c1 containing a hydrophilic polymer not containing oxygen and an enzyme layer 106c2 containing a hydrophilic polymer not containing a double bond between an enzyme and an oxygen atom, and a mediator layer on the enzyme layer 106c2. 106c1 is laminated. Since the other configuration is the same as that of the first embodiment, description thereof is omitted by attaching the same reference numerals. In addition, the hydrophilic polymer which does not have the double bond of the oxygen atom contained in each of the mediator layer 106c1 and the enzyme layer 106c2 can be the same as that in the first embodiment. Further, the order in which the mediator layer 106c1 and the enzyme layer 106c2 constituting the reagent layer 106c are stacked may be reversed.
 このように構成することにより、酵素およびメディエータが分離された状態となるため、保管状態においてメディエータが酵素により還元されるのを防止することができる。また、酵素層106c2上に前記メディエータ層106c1が積層されることにより、親水層106aの親水性高分子とメディエータとがさらに離れて配置されることになるため、メディエータの還元防止効果がさらに向上する。また、中間層106bおよび親水層106a中の酵素の移動度は、メディエータの移動度より小さいので、電極101,102近傍での酵素・メディエータ量が、メディエータの上に酵素が配置された場合より多くなり、センサの応答性と測定精度が向上する。 With such a configuration, the enzyme and the mediator are separated, so that the mediator can be prevented from being reduced by the enzyme in the storage state. In addition, by laminating the mediator layer 106c1 on the enzyme layer 106c2, the hydrophilic polymer of the hydrophilic layer 106a and the mediator are arranged further apart from each other, so that the reduction effect of the mediator is further improved. . In addition, since the mobility of the enzyme in the intermediate layer 106b and the hydrophilic layer 106a is smaller than the mobility of the mediator, the amount of enzyme / mediator in the vicinity of the electrodes 101 and 102 is larger than when the enzyme is disposed on the mediator. Thus, the responsiveness and measurement accuracy of the sensor are improved.
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。 The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention.
 例えば、上記した各実施形態では、中間層106bが界面活性剤を含む層、両親媒性高分子を含む層、水溶性ゲル化剤を含む層、撥水層の内のいずれか一つの層で形成されているが、例えば、界面活性剤を含む層上に水溶性ゲル化剤を含む層を積層するなど、多層構造として中間層106bを形成してもよい。また、界面活性剤、両親媒性高分子、水溶性ゲル化剤のうちの2つ、あるいは全てが混合された試薬を親水層106a上に滴下することにより、中間層106bを形成してもよい。 For example, in each of the above-described embodiments, the intermediate layer 106b is any one of a layer containing a surfactant, a layer containing an amphiphilic polymer, a layer containing a water-soluble gelling agent, and a water repellent layer. Although formed, the intermediate layer 106b may be formed as a multilayer structure, for example, by laminating a layer containing a water-soluble gelling agent on a layer containing a surfactant. Alternatively, the intermediate layer 106b may be formed by dropping a reagent in which two or all of a surfactant, an amphiphilic polymer, and a water-soluble gelling agent are mixed onto the hydrophilic layer 106a. .
 また、酸素原子の二重結合を有さない親水性高分子を、複数種類組み合わせて試薬層106cに適切に混合することにより、血液試料中の血球の移動を効果的に阻止したり、酵素層およびメディエータ層の拡散、混合が低減されてメディエータの還元を防止する防止効果を向上することができる。 In addition, by combining a plurality of hydrophilic polymers having no oxygen atom double bond and appropriately mixing them in the reagent layer 106c, it is possible to effectively prevent the movement of blood cells in the blood sample, In addition, diffusion and mixing of the mediator layer are reduced, and the prevention effect of preventing reduction of the mediator can be improved.
 また、上記したバイオセンサ100の反応層106に含まれる酵素およびメディエータの組合せを変更することによりエタノールセンサや乳酸センサなどを形成してもよい。 Further, an ethanol sensor or a lactic acid sensor may be formed by changing the combination of the enzyme and the mediator included in the reaction layer 106 of the biosensor 100 described above.
 また、上記した各実施形態では、バイオセンサ100は、作用極101および対極102を有する二極電極構造に形成されているが、参照極をさらに設けることによりバイオセンサ100を三極電極構造に形成してもよい。この場合、対極102を接地して電圧出力部により参照極に参照電位を印加した状態で、作用極101に対極102を基準とする所定電位を印加すればよい。 In each of the embodiments described above, the biosensor 100 is formed in a bipolar electrode structure having the working electrode 101 and the counter electrode 102. However, the biosensor 100 is formed in a tripolar electrode structure by further providing a reference electrode. May be. In this case, a predetermined potential based on the counter electrode 102 may be applied to the working electrode 101 in a state where the counter electrode 102 is grounded and a reference potential is applied to the reference electrode by the voltage output unit.
 また、上記した実施形態では、作用極101と対極102との間に所定電圧を印加することにより、作用極101と対極102との間に流れる電流を監視することで、キャビティ103に血液試料が供給されたことが検出されるが、キャビティ103に試料が供給されたことを検知するための検知用電極をさらに設けてもよい。この場合、対極102と検知用電極との間に所定電圧を印加することにより、対極102と検知用電極との間に流れる電流を監視することで、キャビティ103に試料が供給されたことを検出すればよい。  In the above-described embodiment, a blood sample is placed in the cavity 103 by monitoring a current flowing between the working electrode 101 and the counter electrode 102 by applying a predetermined voltage between the working electrode 101 and the counter electrode 102. Although it is detected that the sample has been supplied, a detection electrode for detecting that the sample has been supplied to the cavity 103 may be further provided. In this case, by applying a predetermined voltage between the counter electrode 102 and the detection electrode, the current flowing between the counter electrode 102 and the detection electrode is monitored to detect that the sample is supplied to the cavity 103. do it. *
 また、バイオセンサ100,100aを形成する電極層110、スペーサ層120およびカバー層130のうち、少なくともカバー層130は、キャビティ103に血液試料が供給されたことを視認できるように透明な部材で形成するのが望ましい。 Of the electrode layer 110, the spacer layer 120, and the cover layer 130 that form the biosensors 100 and 100a, at least the cover layer 130 is formed of a transparent member so that it can be visually recognized that the blood sample is supplied to the cavity 103. It is desirable to do.
 また、本発明は、種々のバイオセンサに適用することができる。 Moreover, the present invention can be applied to various biosensors.
 100,100a,500 バイオセンサ
 101,501 作用極
 102,502 対極
 101a,102a 電極パターン
 103,104,507 キャビティ
 103a 試料導入口
 104 スリット
 105,506a 空気穴
 106,503 反応層
 106a,503a 親水層
 106b 中間層
 106c,503b 試薬層
 106c1 メディエータ層
 106c2 酵素層
 110,510 電極層
 111,504 絶縁性基板
 120,505 スぺーサ層
 130,506 カバー層
 200 滴下装置
 201,202,203,204,205 試薬
100, 100a, 500 Biosensor 101, 501 Working electrode 102, 502 Counter electrode 101a, 102a Electrode pattern 103, 104, 507 Cavity 103a Sample inlet 104 Slit 105, 506a Air hole 106, 503 Reaction layer 106a, 503a Hydrophilic layer 106b Middle Layer 106c, 503b Reagent layer 106c1 Mediator layer 106c2 Enzyme layer 110, 510 Electrode layer 111, 504 Insulating substrate 120, 505 Spacer layer 130, 506 Cover layer 200 Dropping device 201, 202, 203, 204, 205 Reagent

Claims (10)

  1.  絶縁性基板、ならびに、前記絶縁性基板の一方面に作用極および対極を含む電極系を備える電極層と、
     スリットを有し、前記スリットが前記作用極および前記対極の先端側に位置するように前記電極層の前記電極系側に積層されるスペーサ層と、
     前記電極層および前記スリットにより形成され、試料が供給されるキャビティと、
     前記キャビティに連通する空気穴を有し、前記キャビティを被覆するように前記スペーサ層に積層されるカバー層と、
     前記キャビティに露出する前記作用極および前記対極の先端側に設けられた反応層とを備えるバイオセンサにおいて、
     前記反応層は、
     前記電極層上に設けられ、酸素原子の二重結合を有する親水性高分子を含む親水層と、
     前記親水層上に設けられ、界面活性剤を含む層、水溶性ゲル化剤を含む層、両親媒性高分子を含む層、および前記親水層の表面が撥水処理されて形成された撥水層のうちの少なくとも1つを含む中間層と、
     前記中間層上に設けられ、測定対象物質と反応する酵素およびメディエータを含む試薬層と
     を備えることを特徴とするバイオセンサ。
    An insulating substrate, and an electrode layer comprising an electrode system including a working electrode and a counter electrode on one surface of the insulating substrate;
    A spacer layer that is laminated on the electrode system side of the electrode layer so that the slit is located on the tip side of the working electrode and the counter electrode;
    A cavity formed by the electrode layer and the slit and supplied with a sample;
    A cover layer that has an air hole communicating with the cavity and is laminated on the spacer layer so as to cover the cavity;
    In a biosensor comprising the working electrode exposed in the cavity and a reaction layer provided on the tip side of the counter electrode,
    The reaction layer is
    A hydrophilic layer comprising a hydrophilic polymer provided on the electrode layer and having a double bond of an oxygen atom;
    A water repellent formed on the surface of the hydrophilic layer, including a layer containing a surfactant, a layer containing a water-soluble gelling agent, a layer containing an amphiphilic polymer, and a surface of the hydrophilic layer. An intermediate layer comprising at least one of the layers;
    A biosensor comprising: a reagent layer provided on the intermediate layer and containing an enzyme and a mediator that reacts with a substance to be measured.
  2.  前記試薬層は、酸素原子の二重結合を有さない親水性高分子をさらに含む、請求項1に記載のバイオセンサ。 The biosensor according to claim 1, wherein the reagent layer further includes a hydrophilic polymer having no oxygen atom double bond.
  3.  前記試薬層は、
     前記酵素および前記酸素原子の二重結合を有さない親水性高分子を含む酵素層と、
     前記メディエータおよび前記酸素原子の二重結合を有さない親水性高分子を含むメディエータ層と
     を備える、請求項2に記載のバイオセンサ。
    The reagent layer is
    An enzyme layer comprising a hydrophilic polymer having no double bond of the enzyme and the oxygen atom;
    The biosensor according to claim 2, further comprising: a mediator layer including a hydrophilic polymer not having a double bond of the mediator and the oxygen atom.
  4.  前記酵素層上に前記メディエータ層が積層されている、請求項3に記載のバイオセンサ。 The biosensor according to claim 3, wherein the mediator layer is laminated on the enzyme layer.
  5.  前記酸素原子の二重結合を有さない親水性高分子は、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリエチレングリコールのうちの少なくとも1つを含む、請求項2~4のいずれか1項に記載のバイオセンサ。 The hydrophilic polymer having no oxygen atom double bond includes at least one of hydroxypropylmethylcellulose, hydroxypropylcellulose, methylcellulose, hydroxyethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, and polyethylene glycol. The biosensor according to any one of 2 to 4.
  6.  前記酸素原子の二重結合を有する親水性高分子は、少なくともカルボキシメチルセルロースを含む、請求項1~5のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 5, wherein the hydrophilic polymer having a double bond of an oxygen atom contains at least carboxymethylcellulose.
  7.  前記界面活性剤が、ジ(2-エチルヘキシル)スルホこはく酸ナトリウム、ポリエチレングリコールモノ-4-ノニルフェニルエーテル(n≒7.5)、ソルビタンモノラウラート、ソルビタンモノオレエート、コール酸ナトリウム、レシチンのうちの少なくとも1つを含む、請求項1~6のいずれか1項に記載のバイオセンサ。 The surfactant is sodium di (2-ethylhexyl) sulfosuccinate, polyethylene glycol mono-4-nonylphenyl ether (n≈7.5), sorbitan monolaurate, sorbitan monooleate, sodium cholate, lecithin. The biosensor according to any one of claims 1 to 6, comprising at least one of them.
  8.  前記水溶性ゲル化剤が、カラギーナンおよびアルギン酸ナトリウムのうちの少なくとも1つを含む、請求項1~7のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 7, wherein the water-soluble gelling agent contains at least one of carrageenan and sodium alginate.
  9.  前記両親媒性高分子が、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコールのうちの少なくとも1つを含む、請求項1~8のいずれか1項に記載のバイオセンサ。 The biosensor according to any one of claims 1 to 8, wherein the amphiphilic polymer contains at least one of polyvinyl pyrrolidone, polyethylene glycol, and polyvinyl alcohol.
  10.  前記撥水層は、前記親水層の表面が、フッ素系ガスを用いて生成されたプラズマによりエッチングされて形成されている、請求項1~9のいずれか1項に記載のバイオセンサ。 10. The biosensor according to claim 1, wherein the water repellent layer is formed by etching the surface of the hydrophilic layer with plasma generated using a fluorine-based gas.
PCT/JP2013/071658 2012-10-30 2013-08-09 Biosensor WO2014069070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-238608 2012-10-30
JP2012238608A JP2014089096A (en) 2012-10-30 2012-10-30 Biosensor

Publications (1)

Publication Number Publication Date
WO2014069070A1 true WO2014069070A1 (en) 2014-05-08

Family

ID=50626992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071658 WO2014069070A1 (en) 2012-10-30 2013-08-09 Biosensor

Country Status (2)

Country Link
JP (1) JP2014089096A (en)
WO (1) WO2014069070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395244A (en) * 2018-10-25 2019-03-01 成都碳原时代科技有限公司 Based on bioelectric wound repair paste

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101694982B1 (en) 2014-12-31 2017-01-10 주식회사 아이센스 Electrochemical biosensor
KR102464005B1 (en) * 2017-04-25 2022-11-07 한국전자기술연구원 Electrochemical sensor for detecting biomarker and method for detecting biomarker using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113262A (en) * 1990-09-04 1992-04-14 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH10232219A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Cholesterol sensor and its manufacture
JP2000039416A (en) * 1998-05-21 2000-02-08 Matsushita Electric Ind Co Ltd Biosensor
WO2002093151A1 (en) * 2001-05-15 2002-11-21 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor
WO2006104077A1 (en) * 2005-03-29 2006-10-05 Cci Corporation Biosensor
JP2012208101A (en) * 2011-03-30 2012-10-25 Cci Corp Biosensor with multilayer structure
WO2013137172A1 (en) * 2012-03-15 2013-09-19 株式会社村田製作所 Biosensor
WO2013137173A1 (en) * 2012-03-15 2013-09-19 株式会社村田製作所 Method for manufacturing biosensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113262A (en) * 1990-09-04 1992-04-14 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH10232219A (en) * 1996-12-20 1998-09-02 Matsushita Electric Ind Co Ltd Cholesterol sensor and its manufacture
JP2000039416A (en) * 1998-05-21 2000-02-08 Matsushita Electric Ind Co Ltd Biosensor
WO2002093151A1 (en) * 2001-05-15 2002-11-21 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2004264247A (en) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd Biosensor
WO2006104077A1 (en) * 2005-03-29 2006-10-05 Cci Corporation Biosensor
JP2012208101A (en) * 2011-03-30 2012-10-25 Cci Corp Biosensor with multilayer structure
WO2013137172A1 (en) * 2012-03-15 2013-09-19 株式会社村田製作所 Biosensor
WO2013137173A1 (en) * 2012-03-15 2013-09-19 株式会社村田製作所 Method for manufacturing biosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395244A (en) * 2018-10-25 2019-03-01 成都碳原时代科技有限公司 Based on bioelectric wound repair paste

Also Published As

Publication number Publication date
JP2014089096A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP5708878B2 (en) Biosensor and manufacturing method thereof
JP5655977B2 (en) Biosensor
JP2001330581A (en) Substrate concentration determination method
WO2014069070A1 (en) Biosensor
JP3267933B2 (en) Substrate quantification method
US20140246336A1 (en) Substance determination method
JP2014089097A (en) Biosensor
JP2017009550A (en) Biosensor
WO2013073073A1 (en) Biosensor and biosensor production method
JP3437016B2 (en) Biosensor and method of quantifying substrate using the same
JP4601809B2 (en) Biosensor and substrate measurement method
JP2000180399A (en) Determination method of substrate
WO2015002184A1 (en) Biosensor
JPH10232219A (en) Cholesterol sensor and its manufacture
Takagi et al. BIOSENSOR
WO2014064978A1 (en) Biosensor and manufacturing method therefor
JPH10197473A (en) Biosensor and manufacture thereof
WO2011151953A1 (en) Method for measuring substance
JP5472066B2 (en) Biosensor manufacturing method
JP2013108791A (en) Method for manufacturing biosensor, and biosensor
JP6610025B2 (en) Biosensor
JP2015155841A (en) biosensor
JPH0943190A (en) Biosensor and its manufacturing method
JPH11174058A (en) Lipid quantitative reference solution
JPH08338824A (en) Biosensor, manufacture for biosensor and method for determining specific compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13852208

Country of ref document: EP

Kind code of ref document: A1