WO2013073073A1 - Biosensor and biosensor production method - Google Patents

Biosensor and biosensor production method Download PDF

Info

Publication number
WO2013073073A1
WO2013073073A1 PCT/JP2012/004441 JP2012004441W WO2013073073A1 WO 2013073073 A1 WO2013073073 A1 WO 2013073073A1 JP 2012004441 W JP2012004441 W JP 2012004441W WO 2013073073 A1 WO2013073073 A1 WO 2013073073A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
cavity
biosensor
counter electrode
Prior art date
Application number
PCT/JP2012/004441
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 大江
高木 純
憲二 横山
淳典 平塚
吉田 信行
典子 佐々木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013073073A1 publication Critical patent/WO2013073073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Definitions

  • the present invention includes an electrode layer in which an electrode system including a working electrode and a counter electrode is provided on an insulating substrate, a reaction layer provided on the working electrode and the counter electrode, and a slit for forming a cavity to which a sample is supplied.
  • the present invention relates to a biosensor including a formed spacer layer and a cover layer in which air holes communicating with a cavity are formed, and a method for manufacturing the biosensor.
  • a biosensor having an electrode system including a working electrode 501 and a counter electrode 502 and a detection electrode 503, and a reaction layer 504 including an enzyme that specifically reacts with a measurement target substance. Oxidation obtained by applying a voltage between the working electrode 501 and the counter electrode 502 to oxidize the reducing substance produced by the reaction between the measurement target substance contained in the sample and the reaction layer 504 using 500.
  • a method for measuring a substance that quantifies a substance to be measured by measuring an electric current is known (see, for example, Patent Document 1).
  • a biosensor 500 shown in FIG. 7 is a sensor for quantifying glucose contained in a sample, and includes an electrode layer 505 formed by providing an electrode on an insulating substrate such as polyethylene terephthalate or polyimide, and a cover layer. 507 and a spacer layer 506 disposed between the electrode layer 505 and the cover layer 507 are stacked.
  • the spacer layer 506 is provided with a slit 506a for forming a cavity 508 to which a sample is supplied, and a cover layer 507 is laminated and bonded to the electrode layer 505 via the spacer layer 506.
  • a cavity 508 to which a sample is supplied is formed by the electrode layer 505, the slit 506a portion of the spacer layer 506, and the cover layer 507.
  • a sample is supplied to the cavity 508 from the sample inlet formed on the side surface of the biosensor 500 by the opening portion of the slit 506a.
  • the cover layer 507 is formed with an air hole 507a communicating with the terminal end of the cavity 508 in order to smoothly supply the sample to the cavity 508 by capillary action.
  • the electrode layer 505 is provided with a working electrode 501, a counter electrode 502, and a detection electrode 503, and an electrode pattern electrically connected to each of the electrodes 501 to 503 is provided, whereby an electrode system is provided in the electrode layer 505. Is formed.
  • a reaction layer 504 is provided on the working electrode 501 and the counter electrode 502, and the working electrode 501, the counter electrode 502, and the detection electrode 503 are each exposed to a cavity 508 formed in the biosensor 500.
  • Layer 505 is provided.
  • the electrodes 501 to 503 exposed to the cavity 508 and the reaction layer 504 come into contact with the sample, and the reaction layer 504 is dissolved in the sample. Further, when the sample contacts the detection electrode 503, it is detected that the sample is supplied to the cavity 508.
  • the reaction layer 504 provided on the working electrode 501 and the counter electrode 502 includes glucose oxidase that specifically reacts with glucose contained in the sample and potassium ferricyanide as a mediator (electron acceptor). .
  • the ferricyanide ions produced by the dissolution of potassium ferricyanide in the sample are reduced to ferrocyanide ions, which are reduced, by electrons released when glucose is oxidized to gluconolactone by reacting with glucose oxidase.
  • ferricyanide ions are reduced by electrons released by the oxidation of glucose.
  • Ferrocyanide ions, which are reduced forms of ferricyanide ions are generated in an amount corresponding to the concentration of glucose contained and oxidized by the enzymatic reaction.
  • the oxidation current obtained by oxidizing the reduced form of the mediator resulting from the enzyme reaction on the working electrode 501 has a magnitude depending on the glucose concentration in the sample. By measuring the current, glucose contained in the sample can be quantified.
  • the electrode layer 505 is formed by providing an electrode system including a working electrode 501, a counter electrode 502, and a detection electrode 503 on an insulating substrate such as polyethylene terephthalate, polycarbonate, or polyimide. That is, the electrode layer 505 has a line-shaped cut 505b formed by laser processing on a conductive layer 505a formed of a noble metal such as gold, platinum, palladium, or a conductive material such as carbon over the entire surface of the insulating substrate. It is formed by providing an electrode system.
  • the conductive layer 505a is provided up to the edge of the electrode layer 505 (biosensor 500). Therefore, in the conductive layer 505a provided on the electrode layer 505, the portion of the slit 506a in which the spacer layer 506 is not stacked and the conductive layer 505a at the rear end portion of the biosensor 500 inserted into the measuring instrument are When the sensor 500 is gripped or when the biosensor 500 is taken out from the wrapping paper, there is a possibility that the contact frictional force generated between the biosensor 500 and the contact object may peel off from the edge of the electrode layer 500.
  • the biosensor 500 generally includes a spacer layer 506 and a cover layer 507 formed on a large-area insulating substrate in which a plurality of electrode systems are provided by forming a line-shaped cut 505b in the conductive layer 505a.
  • a spacer layer 506 and a cover layer 507 formed on a large-area insulating substrate in which a plurality of electrode systems are provided by forming a line-shaped cut 505b in the conductive layer 505a.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of preventing the working electrode and the counter electrode from being peeled off from the insulating substrate forming the electrode layer.
  • the biosensor of the present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate, a slit, and the slit serving as the function.
  • a spacer layer disposed on one end of the electrode and the counter electrode and stacked on the one surface of the electrode layer; a cavity formed by the electrode layer and the slit and supplied with a sample; and air communicating with the cavity
  • a cover layer that is formed with a hole to cover the cavity and is laminated on the spacer layer, a sample introduction port that is formed by an opening of the slit and communicates with the cavity, the working electrode that is exposed to the cavity, and
  • the electrode system is provided over the entire surface of one surface of the electrode layer.
  • the cavity is formed between the one end side of the working electrode and the counter electrode and the sample introduction port at a portion of the conductive layer exposed to the cavity by forming a line-shaped cut in the conductive layer.
  • the notch is formed so as to cross the line (Claim 1).
  • the spacer layer is laminated so as to partially cover the one surface of the electrode layer, and the other end side of each of the working electrode and the counter electrode is the electrode layer opposite to the sample introduction port.
  • the cut is further formed so as to cross the other end side of each of the working electrode and the counter electrode (Claim 2).
  • the biosensor manufacturing method of the present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate, a slit, and the slit serving as the working electrode and the counter electrode.
  • a spacer layer disposed on one end of the electrode layer and stacked on the one surface of the electrode layer, a cavity formed by the electrode layer and the slit and supplied with a sample, and an air hole communicating with the cavity.
  • the electrode layer is a conductive layer over the entire surface of one side of the insulating substrate.
  • the biosensor manufacturing method wherein the spacer layer is laminated so as to partially cover one surface of the electrode layer, and the electrode layer includes the working electrode and the counter electrode, respectively.
  • An end side is formed to extend to an end edge of the electrode layer on the side opposite to the sample introduction port and the spacer layer is not laminated, and the working electrode and the counter electrode
  • the conductive layer at the edge portion of the electrode layer on which the other end side is formed is prepared by further forming the cut so as to cross the other end side of each of the working electrode and the counter electrode. (Claim 4).
  • the cut is formed in the conductive layer by laser processing (Claim 5).
  • the electrode system including the working electrode and the counter electrode provided on one surface of the insulating substrate forming the electrode layer is provided over the entire surface of the one surface of the insulating substrate. It is formed by forming a line-shaped cut in the conductive layer. In the portion of the conductive layer exposed to the cavity, a cut is formed in the conductive layer so as to cross the cavity between one end side of the working electrode and the counter electrode exposed to the cavity and the sample introduction port.
  • the conductive layer in the slit portion where the spacer layer is not stacked is peeled off from the edge of the insulating substrate on the sample inlet side in the cavity, the conductive layer is formed so as to cross the cavity. Therefore, the working electrode and the one end of the counter electrode exposed to the cavity can be prevented from being peeled off from the insulating substrate.
  • the spacer layer is laminated so as to partially cover one surface of the electrode layer, and the other end side of each of the working electrode and the counter electrode is opposite to the sample introduction port.
  • the electrode layer is formed to extend to the edge of the electrode layer on which the spacer layer is not stacked.
  • a cut is formed in the conductive layer at the edge portion of the electrode layer where the other end side of the working electrode and the counter electrode is formed so as to cross the other end side of each of the working electrode and the counter electrode.
  • the conductive layer forming the other end of each of the working electrode and the counter electrode on which the spacer layer is not laminated is peeled off from the edge of the insulating substrate, the conductive layer is not connected to the other end of each of the working electrode and the counter electrode. Since there is no possibility of peeling beyond the cut formed so as to cross, it is possible to prevent the working electrode on which the spacer layer is not stacked and the other end of the counter electrode from being peeled off from the insulating substrate.
  • FIGS. 1-10 A configuration of a biosensor according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
  • FIGS. 1 to 5 are diagrams showing a method of manufacturing a biosensor according to an embodiment of the present invention, in which FIG. 1 is a plan view of an insulating substrate and FIG. 2 is an entire surface of one surface of the insulating substrate.
  • 3 is a plan view showing a state where a conductive layer is provided
  • FIG. 3 is an enlarged view of a main part showing a state where a cut is formed in the conductive layer
  • FIG. 4 is a main part showing a state where a spacer layer is laminated on the electrode layer.
  • FIG. 5 is an enlarged view of a main part showing a state in which a reaction layer is provided in the cavity.
  • FIG. 6 is a plan view of the biosensor. 1 and FIG. 2 indicates a cutting line CL when the biosensor 100 is separated.
  • FIGS. 3 to 5 are enlarged views of essential parts showing regions surrounded by broken lines in FIGS.
  • the biosensor 100 of the present invention has substantially the same configuration as the conventional biosensor 500 described with reference to FIG. 7, and includes an electrode system including a working electrode 101, a counter electrode 102, and a detection electrode 103, and measurement. It has a reaction layer 107 containing an enzyme that reacts with a target substance, and is used by being attached to a measuring instrument (not shown).
  • a substance to be measured such as glucose contained in a sample such as blood supplied to a cavity 104 provided on the distal end side of the biosensor 100 attached to the measuring instrument, and a reaction layer 107 provided on the biosensor 100
  • a substance to be measured such as glucose contained in a sample such as blood supplied to a cavity 104 provided on the distal end side of the biosensor 100 attached to the measuring instrument
  • a reaction layer 107 provided on the biosensor 100
  • the biosensor 100 includes a working electrode 101 and a counter electrode 102 formed of an insulating material such as ceramic, glass, plastic, paper, biodegradable material, and polyethylene terephthalate, respectively.
  • an electrode layer 110 provided with an electrode system including the detection electrode 103, a cover layer 130 in which an air hole 106 communicating with the cavity 104 is formed, and a slit 105 for forming the cavity 104 are formed.
  • 110 and the spacer layer 120 disposed between the cover layers 130 are laminated and bonded together with the tip side where the sample inlet 104a is provided aligned. Further, as shown in FIG.
  • a reaction layer 107 including an enzyme that reacts with a measurement target substance such as glucose contained in a sample is provided on the working electrode 101 and the counter electrode 102. Then, the biosensor 100 is attached to the measuring device 2 by being inserted and attached to a predetermined insertion port of the measuring device 2 from the rear end side.
  • the electrode layer 110 is prepared as follows.
  • an insulating substrate 111 made of an insulating material such as polyethylene terephthalate
  • noble metals such as platinum, gold, and palladium are formed by screen printing or sputtering deposition.
  • the conductive layer 112 is patterned by laser processing or photolithography to form a cut 113, thereby including the working electrode 101, the counter electrode 102, and the detection electrode 103.
  • An electrode system is formed.
  • the working electrode 101, the counter electrode 102, and the detection electrode 103 are arranged so that one end sides thereof are exposed to the cavity 104. Further, the other end side of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 is an edge of the electrode layer 110 on the side opposite to the sample introduction port 104a, and is an end of the electrode layer 110 on which the spacer layer 120 is not laminated. It is stretched to the edge.
  • the conductive layer 112 includes a working electrode 101, a counter electrode 102, and a detection electrode in a portion exposed to the cavity 104 when the spacer layer 120 is laminated on the electrode layer 110.
  • a notch 113a is formed between one end side of 103 and the sample introduction port 104a so as to cross the cavity 104.
  • the conductive layer 112 at the edge of the electrode layer 110 on which the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 is formed has the other end of each of the working electrode 101, the counter electrode 102 and the detection electrode 103.
  • a cut 113b is formed so as to cross the side.
  • a plurality of electrode systems for forming the biosensor 100 are formed on one surface of the insulating substrate 111 and cut after the cover layer 130 is laminated as will be described later.
  • the individual biosensors 110 are separated. Therefore, the distance from the front end of the electrode layer 110 to the notch 113a and the distance from the rear end of the electrode layer 110 to the notch 113b are the cutting position accuracy when the assembly of the biosensor 100 is cut along the cutting line CL. It is better to make it larger.
  • the spacer layer 120 is laminated on the electrode layer 110 prepared as described above.
  • the spacer layer 120 is formed of a substrate made of an insulating material such as polyethylene terephthalate, and a slit 105 for forming the cavity 104 is formed in the approximate center of the front edge of the substrate. ing.
  • the slit 105 is disposed on one end side of the working electrode 101, the counter electrode 102, and the detection electrode 103, and the spacer layer 120 is partially covered and laminated on one surface of the electrode layer 110, whereby the electrode layer 110 is stacked.
  • a cavity 104 to which a sample is supplied is formed by the slit 105.
  • the reaction layer 107 is formed after the cavity 104 formed by laminating the spacer layer 120 on the electrode layer 110 is cleaned with plasma.
  • plasma used in the plasma cleaning process
  • various plasmas used in metal activation treatment by plasma such as oxygen plasma, nitrogen plasma, and argon plasma can be used. Plasma may be used.
  • the reaction layer 107 is formed on one end side of the working electrode 101 and the counter electrode 102 exposed to the cavity 104 and the detection electrode 103 with carboxymethylcellulose or the like. It is formed by dropping a reagent containing a thickener such as gelatin, an enzyme, a mediator, an additive such as an amino acid or an organic acid.
  • a hydrophilic agent such as a surfactant or phospholipid is applied to the inner wall of the cavity 104 in order to smoothly supply a sample such as blood to the cavity 104.
  • Enzymes include glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, glucose dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, hydroxybutyrate dehydrogenase, cholesterol esterase, creatininase, creatinase DNA polymerase or the like can be used, and various sensors can be formed by selecting these enzymes according to the substance to be measured.
  • glucose oxidase or glucose dehydrogenase can be used to form a glucose sensor that detects glucose in a blood sample
  • alcohol oxidase or alcohol dehydrogenase can be used to form an alcohol sensor that detects ethanol in a blood sample.
  • a lactic acid sensor for detecting lactic acid in a blood sample can be formed, and a total cholesterol sensor can be formed by using a mixture of cholesterol esterase and cholesterol oxidase.
  • potassium ferricyanide As the mediator, potassium ferricyanide, ferrocene, ferrocene derivatives, benzoquinone, quinone derivatives, osmium complexes, ruthenium complexes and the like can be used.
  • carboxymethyl cellulose carboxyethyl cellulose, polyethyleneimine DEAE cellulose dimethylaminoethyl dextran carrageenan sodium alginate dextran and the like can be used.
  • hydrophilizing agent surfactants such as Triton X100 (manufactured by Sigma Aldrich), Tween 20 (manufactured by Tokyo Chemical Industry Co., Ltd.), sodium bis (2-ethylhexyl) sulfosuccinate, and phospholipids such as lecithin can be used.
  • a buffer such as phosphoric acid may be provided in order to reduce the variation in the concentration of ions contained in the sample.
  • a cover layer 130 formed of a substrate made of an insulating material such as polyethylene terephthalate is laminated on the spacer layer 120. As shown in FIG. 6, the cover layer 130 has an air hole 106 communicating with the cavity 104 when laminated on the spacer layer 120. The cover layer 130 covers the cavity 104 and covers the spacer layer 120. Is laminated.
  • the assembly of biosensors 110 formed by laminating the cover layer 130 is cut along the cutting line CL, and the biosensor 100 is separated into individual pieces, thereby forming the openings of the slits 105.
  • the biosensor 100 having the sample introduction port 104 a communicating with the cavity 104 at the tip is formed.
  • the biosensor 100 is formed for the purpose of quantifying glucose in blood, and FAD (flavin adenine dinucleotide) is used as an enzyme that specifically reacts with glucose as a measurement target substance.
  • FAD flavin adenine dinucleotide
  • a mediator that contains GDH (glucose dehydrogenase) hereinafter referred to as FAD-GDH
  • FAD-GDH glycose dehydrogenase
  • the reaction layer 107 containing potassium ferricyanide is provided on one end side of the working electrode 101 and the counter electrode 102 exposed to the cavity 104.
  • the biosensor 100 configured as described above, by bringing a sample made of blood into contact with the sample introduction port 104a at the tip, the sample is sucked toward the air hole 106 by capillary action, and the sample is supplied to the cavity 104. . Then, when the reaction layer 107 is dissolved in the sample supplied to the cavity 104, electrons are released by an enzymatic reaction between glucose and FAD-GDH as a measurement target substance in the sample, and ferricyanization is performed by the emitted electrons. The ions are reduced to produce ferrocyanide ions, which are reducing substances.
  • the electrode system including the working electrode 101, the counter electrode 102, and the detection electrode 103 provided on one surface of the insulating substrate 111 that forms the electrode layer 110 is the insulating substrate 111.
  • This is formed by forming a line-shaped cut 113 in the conductive layer 112 provided over the entire surface of one side. Then, in the portion exposed to the cavity 104 of the conductive layer 112, the conductive electrode 101 and the counter electrode 102 exposed to the cavity 104 and the one end side of the detection electrode 103 and the sample introduction port 104 a are traversed across the cavity 104.
  • a cut 103 a is formed in the layer 112.
  • the spacer layer 120 is laminated so as to partially cover one surface of the electrode layer 110, and the other end side of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 is opposite to the sample introduction port 104a.
  • the electrode layer 110 is extended to the edge of the electrode layer 110 on which the spacer layer 120 is not stacked.
  • the conductive layer 112 at the edge of the electrode layer 110 on which the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 is formed has the other end of each of the working electrode 101, the counter electrode 102 and the detection electrode 103.
  • a cut 103b is formed so as to cross the side.
  • the biosensor 500 is packaged.
  • the conductive layer 112 in the portion of the slit 105 where the spacer layer 120 is not stacked is formed in the cavity 104 from the edge of the electrode layer 110 (insulating substrate 111) on the sample inlet 104a side.
  • the conductive layer 112 is peeled off, the conductive layer 112 is not likely to peel off beyond the notch 113 a formed so as to cross the cavity 104, so that one end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 exposed to the cavity 104 is The peeling from the electrode layer 110 can be prevented.
  • the conductive layer 112 that forms the other end of each of the working electrode 101 and the counter electrode 102 and the detection electrode 103 on which the spacer layer 120 is not laminated is the edge of the electrode layer 110 (insulating substrate 111).
  • the conductive layer 112 is not likely to be peeled beyond the notch 103b formed so as to cross the other end of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 even if the spacer layer 120 is peeled off. It is possible to prevent the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 that are not stacked from being peeled off from the electrode layer 110.
  • the cuts 113, 113a, 113b can be formed in the conductive layer 112 by laser processing or photolithography as described above.
  • the cuts 113, 113a, 113b are formed in the conductive layer 112 by laser processing.
  • the cuts 113, 113a, 113b can be formed in the conductive layer 112 at low cost and with high accuracy.
  • the reaction of the above-described biosensor 100 is possible.
  • An ethanol sensor, a lactic acid sensor, or the like may be formed by changing the combination of the enzyme and the mediator included in the layer 107.
  • the reaction layer 107 does not necessarily include a mediator.
  • an oxidation current generated by oxidation of a reducing substance such as hydrogen peroxide or a reduced form of the enzyme generated by an enzyme reaction of a measurement target substance such as glucose is generated. Just measure.
  • the biosensor 100 is formed in a bipolar electrode structure having the working electrode 101 and the counter electrode 102.
  • the biosensor 100 is formed in a tripolar electrode structure by further providing a reference electrode. May be.
  • a predetermined potential based on the counter electrode 102 may be applied to the working electrode 101 in a state where the counter electrode 102 is grounded and a reference potential is applied to the reference electrode by the voltage output unit.
  • the detection electrode 103 is not necessarily provided. In this case, by applying a predetermined voltage between the working electrode 101 and the counter electrode 102, the current flowing between the working electrode 101 and the counter electrode 102 is monitored to confirm that the blood sample has been supplied to the cavity 104. What is necessary is just to detect.
  • the cover layer 130 is formed of a transparent member so that it can be visually recognized that the blood sample is supplied to the cavity 104. Is desirable.
  • the present invention can be applied to various biosensors and methods for manufacturing the biosensors.

Abstract

Provided is a technology that prevents a working electrode and a counter electrode from peeling off an insulating substrate, upon which an electrode layer is formed. In an area exposed by a cavity (104) in a conductive layer (112), notches (113a) are formed in the conductive layer (112) in such a manner as to cross the cavity (104) between one end of a working electrode (101), a counter electrode (102) and a sensing electrode (103), which are exposed by the cavity (104), and a sample introduction port (104a). Consequently, even if the conductive layer (112) in the area of a slit (105) where a spacer layer (120) is not laminated peels off the edge on the sample introduction port (104a) side of an electrode layer (110) (insulating substrate (111)) inside the cavity (104), there is no risk of the conductive layer (112) peeling beyond the notches (113a) formed in such a manner as to cross the cavity (104); thus, one end of the working electrode (101), the counter electrode (102) and the sensing electrode (103), which are exposed by the cavity (104), can be prevented from peeling off the electrode layer (110).

Description

バイオセンサおよびバイオセンサの製造方法Biosensor and biosensor manufacturing method
 本発明は、絶縁性基板に作用極および対極を含む電極系が設けられた電極層と、作用極および対極上に設けられた反応層と、試料が供給されるキャビティを形成するためのスリットが形成されたスペーサ層と、キャビティに連通する空気穴が形成されたカバー層とを備えるバイオセンサおよびバイオセンサの製造方法に関する。 The present invention includes an electrode layer in which an electrode system including a working electrode and a counter electrode is provided on an insulating substrate, a reaction layer provided on the working electrode and the counter electrode, and a slit for forming a cavity to which a sample is supplied. The present invention relates to a biosensor including a formed spacer layer and a cover layer in which air holes communicating with a cavity are formed, and a method for manufacturing the biosensor.
 図7の従来のバイオセンサの一例に示すように、作用極501および対極502と検知電極503を含む電極系と、測定対象物質と特異的に反応する酵素を含む反応層504とを有するバイオセンサ500を用いて、試料に含まれる測定対象物質と反応層504とが反応することで生成される還元物質を作用極501と対極502との間に電圧を印加して酸化することにより得られる酸化電流を計測することで測定対象物質の定量を行う物質の測定方法が知られている(例えば特許文献1参照)。 As shown in an example of the conventional biosensor in FIG. 7, a biosensor having an electrode system including a working electrode 501 and a counter electrode 502 and a detection electrode 503, and a reaction layer 504 including an enzyme that specifically reacts with a measurement target substance. Oxidation obtained by applying a voltage between the working electrode 501 and the counter electrode 502 to oxidize the reducing substance produced by the reaction between the measurement target substance contained in the sample and the reaction layer 504 using 500. A method for measuring a substance that quantifies a substance to be measured by measuring an electric current is known (see, for example, Patent Document 1).
 図7に示すバイオセンサ500は、試料に含まれるグルコースを定量するためのセンサであって、ポリエチレンテレフタレーやポリイミドなどの絶縁性基板に電極が設けられて形成された電極層505と、カバー層507と、電極層505とカバー層507とに挟まれて配置されるスペーサ層506とが積層されて形成される。また、スペーサ層506には、試料が供給されるキャビティ508を形成するためのスリット506aが設けられており、電極層505にスペーサ層506を介してカバー層507が積層されて接着されることで、電極層505と、スペーサ層506のスリット506aの部分と、カバー層507とにより試料が供給されるキャビティ508が形成される。そして、スリット506aの開口部分によりバイオセンサ500の側面に形成される試料導入口からキャビティ508に試料が供給される。また、カバー層507には、毛細管現象による試料のキャビティ508への供給を円滑に行うために、キャビティ508の終端部と連通する空気穴507aが形成されている。 A biosensor 500 shown in FIG. 7 is a sensor for quantifying glucose contained in a sample, and includes an electrode layer 505 formed by providing an electrode on an insulating substrate such as polyethylene terephthalate or polyimide, and a cover layer. 507 and a spacer layer 506 disposed between the electrode layer 505 and the cover layer 507 are stacked. In addition, the spacer layer 506 is provided with a slit 506a for forming a cavity 508 to which a sample is supplied, and a cover layer 507 is laminated and bonded to the electrode layer 505 via the spacer layer 506. A cavity 508 to which a sample is supplied is formed by the electrode layer 505, the slit 506a portion of the spacer layer 506, and the cover layer 507. Then, a sample is supplied to the cavity 508 from the sample inlet formed on the side surface of the biosensor 500 by the opening portion of the slit 506a. The cover layer 507 is formed with an air hole 507a communicating with the terminal end of the cavity 508 in order to smoothly supply the sample to the cavity 508 by capillary action.
 また、電極層505には、作用極501および対極502と検知用電極503とが設けられ、これらの電極501~503にそれぞれ電気接続される電極パターンが設けられることにより電極層505に電極系が形成されている。また、作用極501および対極502上には反応層504が設けられており、作用極501および対極502と検知用電極503とは、それぞれバイオセンサ500に形成されたキャビティ508に露出するように電極層505に設けられている。 The electrode layer 505 is provided with a working electrode 501, a counter electrode 502, and a detection electrode 503, and an electrode pattern electrically connected to each of the electrodes 501 to 503 is provided, whereby an electrode system is provided in the electrode layer 505. Is formed. A reaction layer 504 is provided on the working electrode 501 and the counter electrode 502, and the working electrode 501, the counter electrode 502, and the detection electrode 503 are each exposed to a cavity 508 formed in the biosensor 500. Layer 505 is provided.
 したがって、液体から成る試料がキャビティ508に試料導入口から供給されると、キャビティ508に露出する各電極501~503と反応層504とが試料に接触すると共に、反応層504は試料に溶解する。また、検知用電極503に試料が接触することにより、キャビティ508に試料が供給されたことが検知される。 Therefore, when a sample made of liquid is supplied to the cavity 508 from the sample introduction port, the electrodes 501 to 503 exposed to the cavity 508 and the reaction layer 504 come into contact with the sample, and the reaction layer 504 is dissolved in the sample. Further, when the sample contacts the detection electrode 503, it is detected that the sample is supplied to the cavity 508.
 また、作用極501および対極502上に設けられた反応層504には、試料に含まれるグルコースに特異的に反応するグルコースオキシダーゼと、メディエータ(電子受容体)としてのフェリシアン化カリウムとが含まれている。そして、フェリシアン化カリウムが試料に溶解することによるフェリシアン化イオンは、グルコースオキシダーゼと反応してグルコースがグルコノラクトンに酸化される際に放出される電子により還元体であるフェロシアン化イオンに還元される。したがって、バイオセンサ500に形成されたキャビティ508にグルコースを含む試料が試料導入口から供給されると、フェリシアン化イオンはグルコースが酸化されることにより放出される電子により還元されるため、試料に含まれて酵素反応により酸化されるグルコースの濃度に応じた量だけフェリシアン化イオンの還元体であるフェロシアン化イオンが生成される。 The reaction layer 504 provided on the working electrode 501 and the counter electrode 502 includes glucose oxidase that specifically reacts with glucose contained in the sample and potassium ferricyanide as a mediator (electron acceptor). . The ferricyanide ions produced by the dissolution of potassium ferricyanide in the sample are reduced to ferrocyanide ions, which are reduced, by electrons released when glucose is oxidized to gluconolactone by reacting with glucose oxidase. The Accordingly, when a sample containing glucose is supplied to the cavity 508 formed in the biosensor 500 from the sample introduction port, ferricyanide ions are reduced by electrons released by the oxidation of glucose. Ferrocyanide ions, which are reduced forms of ferricyanide ions, are generated in an amount corresponding to the concentration of glucose contained and oxidized by the enzymatic reaction.
 このよう構成されたバイオセンサ500では、酵素反応の結果生じたメディエータの還元体を作用極501上で酸化することにより得られる酸化電流が試料中のグルコース濃度に依存した大きさとなるため、この酸化電流を計測することにより試料に含まれるグルコースの定量を行うことができる。 In the biosensor 500 configured as described above, the oxidation current obtained by oxidizing the reduced form of the mediator resulting from the enzyme reaction on the working electrode 501 has a magnitude depending on the glucose concentration in the sample. By measuring the current, glucose contained in the sample can be quantified.
特開2001-305093号公報(段落0016~0025、図1など)Japanese Unexamined Patent Publication No. 2001-305093 (paragraphs 0016 to 0025, FIG. 1, etc.)
 ところで、電極層505は、ポリエチレンテレフタレートやポリカーボネート、ポリイミドなどの絶縁性基板に、作用極501および対極502と検知用電極503とを含む電極系が設けられることにより形成される。すなわち、電極層505は、絶縁性基板の全面に渡って、金、白金、パラジウムなどの貴金属やカーボンなどの導電性材料により形成された導電層505aに、レーザ加工によりライン状の切込505bが形成されて電極系が設けられることにより形成される。 Incidentally, the electrode layer 505 is formed by providing an electrode system including a working electrode 501, a counter electrode 502, and a detection electrode 503 on an insulating substrate such as polyethylene terephthalate, polycarbonate, or polyimide. That is, the electrode layer 505 has a line-shaped cut 505b formed by laser processing on a conductive layer 505a formed of a noble metal such as gold, platinum, palladium, or a conductive material such as carbon over the entire surface of the insulating substrate. It is formed by providing an electrode system.
 したがって、導電層505aは、電極層505(バイオセンサ500)の端縁まで設けられている。そのため、電極層505に設けられた導電層505aのうち、スペーサ層506が積層されていない、スリット506aの部分や、測定器に挿入されるバイオセンサ500の後端部分の導電層505aが、バイオセンサ500を把持したときや、バイオセンサ500を包装紙から取出すときなどに、バイオセンサ500と接触物との間に生じる接触摩擦力により電極層500の端縁から剥がれるおそれがある。 Therefore, the conductive layer 505a is provided up to the edge of the electrode layer 505 (biosensor 500). Therefore, in the conductive layer 505a provided on the electrode layer 505, the portion of the slit 506a in which the spacer layer 506 is not stacked and the conductive layer 505a at the rear end portion of the biosensor 500 inserted into the measuring instrument are When the sensor 500 is gripped or when the biosensor 500 is taken out from the wrapping paper, there is a possibility that the contact frictional force generated between the biosensor 500 and the contact object may peel off from the edge of the electrode layer 500.
 また、バイオセンサ500は、一般的に、導電層505aにライン状の切込505bが形成されることにより複数の電極系が設けられた大面積の絶縁性基板に、スペーサ層506およびカバー層507を積層することでバイオセンサ500の集合体を形成し、バイオセンサ500の集合体をカッターで個片化することで形成される。したがって、バイオセンサ500の集合体が個片化されるときに、絶縁性基板がカッターで切断されるときに生じる応力により、スペーサ層506が積層されていないスリット506aの部分や、測定器に挿入されるバイオセンサ500の後端部分において、導電層500aが、電極層500のカッターにより切断された端縁から剥がれるおそれがある。 In addition, the biosensor 500 generally includes a spacer layer 506 and a cover layer 507 formed on a large-area insulating substrate in which a plurality of electrode systems are provided by forming a line-shaped cut 505b in the conductive layer 505a. Are formed by stacking the biosensors 500 into individual pieces with a cutter. Therefore, when the assembly of biosensors 500 is separated into pieces, it is inserted into a slit 506a portion where the spacer layer 506 is not laminated or a measuring instrument due to stress generated when the insulating substrate is cut with a cutter. In the rear end portion of the biosensor 500, the conductive layer 500a may be peeled off from the edge of the electrode layer 500 cut by the cutter.
 本発明は、上記課題に鑑みてなされたものであり、作用極および対極が電極層を形成する絶縁性基板から剥がれるのを防止することができる技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of preventing the working electrode and the counter electrode from being peeled off from the insulating substrate forming the electrode layer.
 上記した目的を達成するために、本発明のバイオセンサは、絶縁性基板の一方面に作用極および対極を含む電極系が設けられた電極層と、スリットが形成されて、前記スリットが前記作用極および前記対極の一端側に配置されて前記電極層の前記一方面に積層されるスペーサ層と、前記電極層および前記スリットにより形成されて試料が供給されるキャビティと、前記キャビティに連通する空気穴が形成されて前記キャビティを被覆して前記スペーサ層に積層されるカバー層と、前記スリットの開口部分により形成されて前記キャビティに連通する試料導入口と、前記キャビティに露出する前記作用極および前記対極の一端側に設けられた反応層とを備えるバイオセンサにおいて、前記電極系は、前記電極層の一方面の全面に渡って設けられた導電層にライン状の切込が形成されることにより形成され、前記導電層の前記キャビティに露出する部分において、前記作用極および前記対極の一端側と前記試料導入口との間に前記キャビティを横断するように前記切込が形成されていることを特徴としている(請求項1)。 In order to achieve the above-described object, the biosensor of the present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate, a slit, and the slit serving as the function. A spacer layer disposed on one end of the electrode and the counter electrode and stacked on the one surface of the electrode layer; a cavity formed by the electrode layer and the slit and supplied with a sample; and air communicating with the cavity A cover layer that is formed with a hole to cover the cavity and is laminated on the spacer layer, a sample introduction port that is formed by an opening of the slit and communicates with the cavity, the working electrode that is exposed to the cavity, and In a biosensor comprising a reaction layer provided on one end of the counter electrode, the electrode system is provided over the entire surface of one surface of the electrode layer. The cavity is formed between the one end side of the working electrode and the counter electrode and the sample introduction port at a portion of the conductive layer exposed to the cavity by forming a line-shaped cut in the conductive layer. The notch is formed so as to cross the line (Claim 1).
 また、前記スペーサ層は、前記電極層の前記一方面を部分的に被覆して積層されており、前記作用極および前記対極それぞれの他端側は、前記試料導入口と反対側の前記電極層の端縁であって、前記スペーサ層が積層されていない前記電極層の端縁まで延伸されて形成され、前記作用極および前記対極の他端側が形成されている前記電極層の端縁部分の前記導電層には、前記作用極および前記対極それぞれの他端側を横断するように前記切込がさらに形成されていることを特徴としている(請求項2)。 The spacer layer is laminated so as to partially cover the one surface of the electrode layer, and the other end side of each of the working electrode and the counter electrode is the electrode layer opposite to the sample introduction port. Of the edge portion of the electrode layer that is formed to extend to the edge of the electrode layer on which the spacer layer is not laminated, and on which the other end side of the working electrode and the counter electrode is formed. In the conductive layer, the cut is further formed so as to cross the other end side of each of the working electrode and the counter electrode (Claim 2).
 また、本発明のバイオセンサの製造方法は、絶縁性基板の一方面に作用極および対極を含む電極系が設けられた電極層と、スリットが形成されて、前記スリットが前記作用極および前記対極の一端側に配置されて前記電極層の前記一方面に積層されるスペーサ層と、前記電極層および前記スリットにより形成されて試料が供給されるキャビティと、前記キャビティに連通する空気穴が形成されて前記キャビティを被覆して前記スペーサ層に積層されるカバー層と、前記スリットの開口部分により形成されて前記キャビティに連通する試料導入口と、前記キャビティに露出する前記作用極および前記対極の一端側に設けられた反応層とを備えるバイオセンサの製造方法において、前記電極層は、前記絶縁性基板の一方面の全面に渡って導電層を形成し、前記導電層にライン状の切込を形成して前記電極系を形成する際に、前記導電層の前記キャビティに露出する部分に、前作用極および前記対極の一端側と前記試料導入口との間に前記キャビティを横断するように前記切込を形成して用意されることを特徴としている(請求項3)。 Further, the biosensor manufacturing method of the present invention includes an electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate, a slit, and the slit serving as the working electrode and the counter electrode. A spacer layer disposed on one end of the electrode layer and stacked on the one surface of the electrode layer, a cavity formed by the electrode layer and the slit and supplied with a sample, and an air hole communicating with the cavity. A cover layer that covers the cavity and is laminated on the spacer layer, a sample introduction port that is formed by the opening of the slit and communicates with the cavity, and one end of the working electrode and the counter electrode that are exposed to the cavity In the manufacturing method of a biosensor comprising a reaction layer provided on the side, the electrode layer is a conductive layer over the entire surface of one side of the insulating substrate. When the electrode system is formed by forming a line-shaped notch in the conductive layer, a portion of the conductive layer exposed to the cavity is exposed to one end side of the front working electrode and the counter electrode, and the sample introduction The notch is prepared so as to cross the cavity between the mouth and the mouth (claim 3).
 また、前記スペーサ層が、前記電極層の一方面を部分的に被覆して積層される請求項4に記載のバイオセンサの製造方法において、前記電極層は、前記作用極および前記対極それぞれの他端側を、前記試料導入口と反対側の前記電極層の端縁であって、前記スペーサ層が積層されていない前記電極層の端縁まで延伸して形成し、前記作用極および前記対極の他端側が形成されている前記電極層の端縁部分の前記導電層に、前記作用極および前記対極それぞれの他端側を横断するように前記切込をさらに形成して用意されることを特徴としている(請求項4)。 The biosensor manufacturing method according to claim 4, wherein the spacer layer is laminated so as to partially cover one surface of the electrode layer, and the electrode layer includes the working electrode and the counter electrode, respectively. An end side is formed to extend to an end edge of the electrode layer on the side opposite to the sample introduction port and the spacer layer is not laminated, and the working electrode and the counter electrode The conductive layer at the edge portion of the electrode layer on which the other end side is formed is prepared by further forming the cut so as to cross the other end side of each of the working electrode and the counter electrode. (Claim 4).
 また、前記切込は、レーザ加工により前記導電層に形成されることを特徴としている(請求項5)。 Further, the cut is formed in the conductive layer by laser processing (Claim 5).
 請求項1,3の発明によれば、電極層を形成する絶縁性基板の一方面に設けられた作用極および対極を含む電極系は、絶縁性基板の一方面の全面に渡って設けられた導電層にライン状の切込が形成されることにより形成されている。そして、導電層のキャビティに露出する部分において、キャビティに露出する作用極および対極の一端側と試料導入口との間にキャビティを横断するように導電層に切込が形成されている。 According to the first and third aspects of the invention, the electrode system including the working electrode and the counter electrode provided on one surface of the insulating substrate forming the electrode layer is provided over the entire surface of the one surface of the insulating substrate. It is formed by forming a line-shaped cut in the conductive layer. In the portion of the conductive layer exposed to the cavity, a cut is formed in the conductive layer so as to cross the cavity between one end side of the working electrode and the counter electrode exposed to the cavity and the sample introduction port.
 したがって、スペーサ層が積層されていないスリットの部分の導電層が、キャビティ内において絶縁性基板の試料導入口側の端縁から剥がれても、導電層は、キャビティを横断するように形成された切込を越えて剥がれるおそれがないため、キャビティに露出する作用極および対極の一端側が絶縁性基板から剥がれるのを防止することができる。 Therefore, even if the conductive layer in the slit portion where the spacer layer is not stacked is peeled off from the edge of the insulating substrate on the sample inlet side in the cavity, the conductive layer is formed so as to cross the cavity. Therefore, the working electrode and the one end of the counter electrode exposed to the cavity can be prevented from being peeled off from the insulating substrate.
 請求項2,4の発明によれば、スペーサ層は、電極層の一方面を部分的に被覆して積層されており、作用極および対極それぞれの他端側は、試料導入口と反対側の電極層の端縁であって、スペーサ層が積層されていない電極層の端縁まで延伸されて形成されている。そして、作用極および対極の他端側が形成されている電極層の端縁部分の導電層には、作用極および対極それぞれの他端側を横断するように切込が形成されている。 According to the second and fourth aspects of the present invention, the spacer layer is laminated so as to partially cover one surface of the electrode layer, and the other end side of each of the working electrode and the counter electrode is opposite to the sample introduction port. The electrode layer is formed to extend to the edge of the electrode layer on which the spacer layer is not stacked. A cut is formed in the conductive layer at the edge portion of the electrode layer where the other end side of the working electrode and the counter electrode is formed so as to cross the other end side of each of the working electrode and the counter electrode.
 したがって、スペーサ層が積層されていない作用極および対極それぞれの他端側を形成する導電層が、絶縁性基板の端縁から剥がれても、導電層は、作用極および対極それぞれの他端側を横断するように形成された切込を越えて剥がれるおそれがないため、スペーサ層が積層されていない作用極および対極の他端側が絶縁性基板から剥がれるのを防止することができる。 Therefore, even if the conductive layer forming the other end of each of the working electrode and the counter electrode on which the spacer layer is not laminated is peeled off from the edge of the insulating substrate, the conductive layer is not connected to the other end of each of the working electrode and the counter electrode. Since there is no possibility of peeling beyond the cut formed so as to cross, it is possible to prevent the working electrode on which the spacer layer is not stacked and the other end of the counter electrode from being peeled off from the insulating substrate.
 請求項5の発明によれば、レーザ加工により導電層に切込を容易に精度よく形成することができる。 According to the invention of claim 5, it is possible to easily and accurately form the cut in the conductive layer by laser processing.
本発明の一実施形態にかかるバイオセンサのある製造工程における絶縁性基板の平面図である。It is a top view of the insulating substrate in a certain manufacturing process of the biosensor concerning one Embodiment of this invention. 本発明の一実施形態にかかるバイオセンサの異なる製造工程における絶縁性基板の一方面の全面に渡って導電層が設けられた状態を示す平面図である。It is a top view which shows the state in which the conductive layer was provided over the whole one surface of the insulating board | substrate in the manufacturing process from which the biosensor concerning one Embodiment of this invention differs. 本発明の一実施形態にかかるバイオセンサのさらに異なる製造工程を示す図であって、導電層に切込が形成された状態を示す要部拡大図である。It is a figure which shows the further different manufacturing process of the biosensor concerning one Embodiment of this invention, Comprising: It is a principal part enlarged view which shows the state by which the cut was formed in the conductive layer. 本発明の一実施形態にかかるバイオセンサのさらに異なる製造工程を示す図であって、電極層にスペーサ層が積層された状態を示す要部拡大図である。It is a figure which shows the further different manufacturing process of the biosensor concerning one Embodiment of this invention, Comprising: It is a principal part enlarged view which shows the state by which the spacer layer was laminated | stacked on the electrode layer. 本発明の一実施形態にかかるバイオセンサのさらに異なる製造工程を示す図であって、キャビティに反応層が設けられた状態を示す要部拡大図である。It is a figure which shows the further different manufacturing process of the biosensor concerning one Embodiment of this invention, Comprising: It is a principal part enlarged view which shows the state by which the reaction layer was provided in the cavity. 本発明の一実施形態にかかるバイオセンサを示す平面図である。It is a top view which shows the biosensor concerning one Embodiment of this invention. 従来のバイオセンサを示す図である。It is a figure which shows the conventional biosensor.
 本発明の一実施形態にかかるバイオセンサの構成およびその製法について、図1~図6を参照して説明する。 A configuration of a biosensor according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
 図1~図5はそれぞれ本発明の一実施形態にかかるバイオセンサの製造方法を示す図であって、図1は絶縁性基板の平面図、図2は絶縁性基板の一方面の全面に渡って導電層が設けられた状態を示す平面図、図3は導電層に切込が形成された状態を示す要部拡大図、図4は電極層にスペーサ層が積層された状態を示す要部拡大図、図5はキャビティに反応層が設けられた状態を示す要部拡大図である。図6はバイオセンサの平面図である。なお、図1および図2中の破線は、バイオセンサ100を個片化する際の切断線CLを示す。また、図3~図5は、図1および図2中の破線に囲まれた領域を示す要部拡大図である。 FIGS. 1 to 5 are diagrams showing a method of manufacturing a biosensor according to an embodiment of the present invention, in which FIG. 1 is a plan view of an insulating substrate and FIG. 2 is an entire surface of one surface of the insulating substrate. 3 is a plan view showing a state where a conductive layer is provided, FIG. 3 is an enlarged view of a main part showing a state where a cut is formed in the conductive layer, and FIG. 4 is a main part showing a state where a spacer layer is laminated on the electrode layer. FIG. 5 is an enlarged view of a main part showing a state in which a reaction layer is provided in the cavity. FIG. 6 is a plan view of the biosensor. 1 and FIG. 2 indicates a cutting line CL when the biosensor 100 is separated. FIGS. 3 to 5 are enlarged views of essential parts showing regions surrounded by broken lines in FIGS.
 この発明のバイオセンサ100は、図7を参照して説明した従来のバイオセンサ500とほぼ同様の構成を有しており、作用極101および対極102と検知用電極103を含む電極系と、測定対象物質と反応する酵素を含む反応層107とを有し、測定器(図示省略)に装着されて使用されるものである。すなわち、測定器に装着されたバイオセンサ100の先端側に設けられたキャビティ104に供給された血液などの試料に含まれるグルコースなどの測定対象物質と、バイオセンサ100に設けられた反応層107とが反応することで生成される還元物質を、作用極101と対極102との間に電圧を印加して酸化することにより得られる酸化電流を計測することで、試料に含まれる測定対象物質の定量が行われる。 The biosensor 100 of the present invention has substantially the same configuration as the conventional biosensor 500 described with reference to FIG. 7, and includes an electrode system including a working electrode 101, a counter electrode 102, and a detection electrode 103, and measurement. It has a reaction layer 107 containing an enzyme that reacts with a target substance, and is used by being attached to a measuring instrument (not shown). That is, a substance to be measured such as glucose contained in a sample such as blood supplied to a cavity 104 provided on the distal end side of the biosensor 100 attached to the measuring instrument, and a reaction layer 107 provided on the biosensor 100 By measuring the oxidation current obtained by applying a voltage between the working electrode 101 and the counter electrode 102 to oxidize the reducing substance produced by the reaction of the reaction, the quantitative determination of the measurement target substance contained in the sample Is done.
 すなわち、バイオセンサ100は、図3~図6に示すように、それぞれ、セラミック、ガラス、プラスチック、紙、生分解性材料、ポリエチレンテレフタレートなどの絶縁性材料により形成された、作用極101および対極102並びに検知用電極103を含む電極系が設けられた電極層110と、キャビティ104に連通する空気穴106が形成されたカバー層130と、キャビティ104を形成するためのスリット105が形成され、電極層110およびカバー層130に挟まれて配置されるスペーサ層120とが、試料導入口104aが設けられる先端側が揃った状態で積層されて接着されることにより形成される。また、図5に示すように、作用極101および対極102上には、試料に含まれるグルコースなどの測定対象物質と反応する酵素を含む反応層107が設けられている。そして、後端側から測定器2の所定の挿入口に挿入されて装着されることで、バイオセンサ100は測定器2に装着される。 That is, as shown in FIGS. 3 to 6, the biosensor 100 includes a working electrode 101 and a counter electrode 102 formed of an insulating material such as ceramic, glass, plastic, paper, biodegradable material, and polyethylene terephthalate, respectively. In addition, an electrode layer 110 provided with an electrode system including the detection electrode 103, a cover layer 130 in which an air hole 106 communicating with the cavity 104 is formed, and a slit 105 for forming the cavity 104 are formed. 110 and the spacer layer 120 disposed between the cover layers 130 are laminated and bonded together with the tip side where the sample inlet 104a is provided aligned. Further, as shown in FIG. 5, a reaction layer 107 including an enzyme that reacts with a measurement target substance such as glucose contained in a sample is provided on the working electrode 101 and the counter electrode 102. Then, the biosensor 100 is attached to the measuring device 2 by being inserted and attached to a predetermined insertion port of the measuring device 2 from the rear end side.
 この実施形態では、電極層110は、次のようにして用意される。 In this embodiment, the electrode layer 110 is prepared as follows.
 すなわち、最初に、図1および図2に示すように、ポリエチレンテレフタレートなどの絶縁性材料から成る絶縁性基板111の一方面に、スクリーン印刷やスパッタリング蒸着法により、白金、金、パラジウムなどの貴金属やカーボン、銅、アルミニウム、チタン、ITO、ZnOなどの導電性物質から成る導電層112が形成される。次に、図3に示すように、導電層112に、レーザ加工やフォトリソグラフィによるパターン形成が施されて切込113が形成されることにより、作用極101および対極102並びに検知用電極103を含む電極系が形成される。 That is, first, as shown in FIGS. 1 and 2, on one surface of an insulating substrate 111 made of an insulating material such as polyethylene terephthalate, noble metals such as platinum, gold, and palladium are formed by screen printing or sputtering deposition. A conductive layer 112 made of a conductive material such as carbon, copper, aluminum, titanium, ITO, or ZnO is formed. Next, as shown in FIG. 3, the conductive layer 112 is patterned by laser processing or photolithography to form a cut 113, thereby including the working electrode 101, the counter electrode 102, and the detection electrode 103. An electrode system is formed.
 また、図4および図5に示すように、作用極101および対極102並びに検知用電極103は、それぞれの一端側が、キャビティ104に露出するように配置される。また、作用極101および対極102並びに検知用電極103のそれぞれの他端側は、試料導入口104aと反対側の電極層110の端縁であって、スペーサ層120が積層されない電極層110の端縁まで延伸されて形成される。 4 and FIG. 5, the working electrode 101, the counter electrode 102, and the detection electrode 103 are arranged so that one end sides thereof are exposed to the cavity 104. Further, the other end side of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 is an edge of the electrode layer 110 on the side opposite to the sample introduction port 104a, and is an end of the electrode layer 110 on which the spacer layer 120 is not laminated. It is stretched to the edge.
 このとき、図3~図5に示すように、導電層112には、スペーサ層120が電極層110に積層された際にキャビティ104に露出する部分に、作用極101および対極102並びに検知用電極103の一端側と試料導入口104aとの間に、キャビティ104を横断するように切込113aが形成される。また、作用極101および対極102並びに検知用電極103の他端側が形成されている電極層110の端縁部分の導電層112には、作用極101および対極102並びに検知用電極103それぞれの他端側を横断するように切込113bが形成される。 At this time, as shown in FIGS. 3 to 5, the conductive layer 112 includes a working electrode 101, a counter electrode 102, and a detection electrode in a portion exposed to the cavity 104 when the spacer layer 120 is laminated on the electrode layer 110. A notch 113a is formed between one end side of 103 and the sample introduction port 104a so as to cross the cavity 104. In addition, the conductive layer 112 at the edge of the electrode layer 110 on which the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 is formed has the other end of each of the working electrode 101, the counter electrode 102 and the detection electrode 103. A cut 113b is formed so as to cross the side.
 なお、図1および図2に示すように、絶縁性基板111の一方面には、バイオセンサ100を形成する複数の電極系が形成され、後述するように、カバー層130が積層された後に切断線CLで切断されることにより、個々のバイオセンサ110に個片化される。したがって、電極層110の先端から切込113aまでの間隔と、電極層110の後端から切込113bまでの間隔とは、バイオセンサ100の集合体を切断線CLで切断するときの切断位置精度よりも大きくするとよい。 As shown in FIGS. 1 and 2, a plurality of electrode systems for forming the biosensor 100 are formed on one surface of the insulating substrate 111 and cut after the cover layer 130 is laminated as will be described later. By being cut along the line CL, the individual biosensors 110 are separated. Therefore, the distance from the front end of the electrode layer 110 to the notch 113a and the distance from the rear end of the electrode layer 110 to the notch 113b are the cutting position accuracy when the assembly of the biosensor 100 is cut along the cutting line CL. It is better to make it larger.
 次に、上記したようにして用意された電極層110にスペーサ層120が積層される。スペーサ層120は、図4および図5に示すように、ポリエチレンテレフタレートなどの絶縁性材料から成る基板により形成され、基板の先端縁部のほぼ中央にキャビティ104を形成するためのスリット105が形成されている。そして、スリット105が作用極101および対極102並びに検知用電極103の一端側に配置されて、スペーサ層120が電極層110の一方面を部分的に被覆して積層されることにより、電極層110およびスリット105により試料が供給されるキャビティ104が形成される。 Next, the spacer layer 120 is laminated on the electrode layer 110 prepared as described above. As shown in FIGS. 4 and 5, the spacer layer 120 is formed of a substrate made of an insulating material such as polyethylene terephthalate, and a slit 105 for forming the cavity 104 is formed in the approximate center of the front edge of the substrate. ing. The slit 105 is disposed on one end side of the working electrode 101, the counter electrode 102, and the detection electrode 103, and the spacer layer 120 is partially covered and laminated on one surface of the electrode layer 110, whereby the electrode layer 110 is stacked. A cavity 104 to which a sample is supplied is formed by the slit 105.
 続いて、電極層110にスペーサ層120が積層されて形成されるキャビティ104部分が、プラズマにより洗浄処理された後に、反応層107が形成される。なお、プラズマ洗浄工程において使用されるプラズマは、酸素プラズマ、窒素プラズマ、アルゴンプラズマなど、プラズマによる金属活性化処理において使用される種々のプラズマを使用することができ、減圧プラズマであっても大気圧プラズマであってもよい。 Subsequently, the reaction layer 107 is formed after the cavity 104 formed by laminating the spacer layer 120 on the electrode layer 110 is cleaned with plasma. As the plasma used in the plasma cleaning process, various plasmas used in metal activation treatment by plasma such as oxygen plasma, nitrogen plasma, and argon plasma can be used. Plasma may be used.
 図5に示すように、反応層107は、カバー層130がスペーサ層120に積層される前に、キャビティ104に露出する作用極101および対極102並びに検知用電極103の一端側に、カルボキシメチルセルロースやゼラチンなどの増粘剤、酵素、メディエータ、アミノ酸や有機酸などの添加物を含有する試薬を滴下することにより形成される。また、キャビティ104への血液などの試料の供給を円滑にするために、界面活性剤やリン脂質などの親水化剤がキャビティ104内壁に塗布される。 As shown in FIG. 5, before the cover layer 130 is laminated on the spacer layer 120, the reaction layer 107 is formed on one end side of the working electrode 101 and the counter electrode 102 exposed to the cavity 104 and the detection electrode 103 with carboxymethylcellulose or the like. It is formed by dropping a reagent containing a thickener such as gelatin, an enzyme, a mediator, an additive such as an amino acid or an organic acid. In addition, a hydrophilic agent such as a surfactant or phospholipid is applied to the inner wall of the cavity 104 in order to smoothly supply a sample such as blood to the cavity 104.
 酵素としては、グルコースオキシダーゼ、乳酸オキシダーゼ、コレステロールオキシダーゼ、アルコールオキシダーゼ、ザルコシンオキシダーゼ、フルクトシルアミンオキシダーゼ、ピルビン酸オキシダーゼ、グルコースデヒドロゲナーゼ、乳酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、ヒドロキシ酪酸デヒドロゲナーゼ、コレステロールエステラーゼ、クレアチニナーゼ、クレアチナーゼ、DNAポリメラーゼなどを用いることができ、これらの酵素を検出したい測定対象物質に応じて選択することで種々のセンサを形成することができる。 Enzymes include glucose oxidase, lactate oxidase, cholesterol oxidase, alcohol oxidase, sarcosine oxidase, fructosylamine oxidase, pyruvate oxidase, glucose dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, hydroxybutyrate dehydrogenase, cholesterol esterase, creatininase, creatinase DNA polymerase or the like can be used, and various sensors can be formed by selecting these enzymes according to the substance to be measured.
 例えば、グルコースオキシダーゼまたはグルコースデヒドロゲナーゼを用いれば血液試料中のグルコースを検出するグルコースセンサを形成でき、アルコールオキシダーゼまたはアルコールデヒドロゲナーゼを用いれば血液試料中のエタノールを検出するアルコールセンサを形成でき、乳酸オキシダーゼを用いれば血液試料中の乳酸を検出する乳酸センサを形成でき、コレステロールエステラーゼとコレステロールオキシダーゼとの混合物を用いれば総コレステロールセンサを形成できる。 For example, glucose oxidase or glucose dehydrogenase can be used to form a glucose sensor that detects glucose in a blood sample, and alcohol oxidase or alcohol dehydrogenase can be used to form an alcohol sensor that detects ethanol in a blood sample. For example, a lactic acid sensor for detecting lactic acid in a blood sample can be formed, and a total cholesterol sensor can be formed by using a mixture of cholesterol esterase and cholesterol oxidase.
 メディエータとしては、フェリシアン化カリウム、フェロセン、フェロセン誘導体、ベンゾキノン、キノン誘導体、オスミウム錯体、ルテニウム錯体などを用いることができる。 As the mediator, potassium ferricyanide, ferrocene, ferrocene derivatives, benzoquinone, quinone derivatives, osmium complexes, ruthenium complexes and the like can be used.
 増粘剤としては、カルボキシメチルセルロース、カルボキシエチルセルロース、ポリエチレンイミン DEAEセルロース ジメチルアミノエチルデキストラン カラギーナン アルギン酸ナトリウム
デキストランなどを用いることができる。親水化剤としては、TritonX100(シグマアルドリッチ社製)、Tween20(東京化成工業社製)、ビス(2-エチルヘキシル)スルホコハク酸ナトリウムなどの界面活性剤、レシチンなどのリン脂質を用いることができる。
As the thickener, carboxymethyl cellulose, carboxyethyl cellulose, polyethyleneimine DEAE cellulose dimethylaminoethyl dextran carrageenan sodium alginate dextran and the like can be used. As the hydrophilizing agent, surfactants such as Triton X100 (manufactured by Sigma Aldrich), Tween 20 (manufactured by Tokyo Chemical Industry Co., Ltd.), sodium bis (2-ethylhexyl) sulfosuccinate, and phospholipids such as lecithin can be used.
 また、試料に含まれるイオン濃度のばらつきを低減するために、リン酸などの緩衝剤を設けてもよい。 Also, a buffer such as phosphoric acid may be provided in order to reduce the variation in the concentration of ions contained in the sample.
 次に、反応層107がキャビティ104に形成された後に、ポリエチレンテレフタレートなどの絶縁性材料から成る基板により形成されたカバー層130が、スペーサ層120に積層される。図6に示すように、カバー層130には、スペーサ層120に積層されたときにキャビティ104と連通する空気穴106が形成されており、カバー層130は、キャビティ104を被覆してスペーサ層120に積層される。 Next, after the reaction layer 107 is formed in the cavity 104, a cover layer 130 formed of a substrate made of an insulating material such as polyethylene terephthalate is laminated on the spacer layer 120. As shown in FIG. 6, the cover layer 130 has an air hole 106 communicating with the cavity 104 when laminated on the spacer layer 120. The cover layer 130 covers the cavity 104 and covers the spacer layer 120. Is laminated.
 そして、カバー層130が積層されることにより形成されたバイオセンサ110の集合体が切断線CLに沿って切断されて、バイオセンサ100が個片化されることにより、スリット105の開口部分により形成されてキャビティ104に連通する試料導入口104aが先端に設けられたバイオセンサ100が形成される。 Then, the assembly of biosensors 110 formed by laminating the cover layer 130 is cut along the cutting line CL, and the biosensor 100 is separated into individual pieces, thereby forming the openings of the slits 105. Thus, the biosensor 100 having the sample introduction port 104 a communicating with the cavity 104 at the tip is formed.
 なお、この実施形態では、バイオセンサ100は、血液中のグルコースの定量を行うことを目的に形成されており、測定対象物質としてのグルコースと特異的に反応する酵素としてFAD(フラビンアデニンジヌクレオチド)を補酵素として含むGDH(グルコースデヒドロゲナーゼ)(以下、FAD-GDHと表記する)を含み、測定対象物であるグルコースとFAD-GDHとの反応により生成される電子により還元されて還元物質と成るメディエータとしてフェリシアン化カリウムを含む反応層107がキャビティ104に露出する作用極101および対極102の一端側に設けられている。 In this embodiment, the biosensor 100 is formed for the purpose of quantifying glucose in blood, and FAD (flavin adenine dinucleotide) is used as an enzyme that specifically reacts with glucose as a measurement target substance. A mediator that contains GDH (glucose dehydrogenase) (hereinafter referred to as FAD-GDH), which is reduced by electrons generated by the reaction of glucose as a measurement object and FAD-GDH, and becomes a reducing substance The reaction layer 107 containing potassium ferricyanide is provided on one end side of the working electrode 101 and the counter electrode 102 exposed to the cavity 104.
 このように構成されたバイオセンサ100では、先端の試料導入口104aに血液から成る試料を接触させることにより、毛細管現象により試料が空気穴106に向かって吸引されてキャビティ104に試料が供給される。そして、キャビティ104に供給された試料に反応層107が溶解することにより、試料中の測定対象物質であるグルコースとFAD-GDHとの酵素反応により電子が放出され、放出された電子によりフェリシアン化イオンが還元されて還元物質であるフェロシアン化イオンが生成される。そして、反応層107が試料に溶解することによる酸化還元反応により生成された還元物質を、バイオセンサ100の作用極101と対極102との間に電圧を印加して電気化学的に酸化することにより、作用極101と対極102との間に流れる酸化電流を計測することで試料中のグルコースの定量が測定器において行われる。 In the biosensor 100 configured as described above, by bringing a sample made of blood into contact with the sample introduction port 104a at the tip, the sample is sucked toward the air hole 106 by capillary action, and the sample is supplied to the cavity 104. . Then, when the reaction layer 107 is dissolved in the sample supplied to the cavity 104, electrons are released by an enzymatic reaction between glucose and FAD-GDH as a measurement target substance in the sample, and ferricyanization is performed by the emitted electrons. The ions are reduced to produce ferrocyanide ions, which are reducing substances. Then, by applying a voltage between the working electrode 101 and the counter electrode 102 of the biosensor 100 to electrochemically oxidize the reducing substance generated by the redox reaction caused by the reaction layer 107 dissolving in the sample. By measuring the oxidation current flowing between the working electrode 101 and the counter electrode 102, glucose in the sample is quantified in the measuring device.
 以上のように、この実施形態によれば、電極層110を形成する絶縁性基板111の一方面に設けられた作用極101および対極102並びに検知用電極103を含む電極系は、絶縁性基板111の一方面の全面に渡って設けられた導電層112にライン状の切込113が形成されることにより形成されている。そして、導電層112のキャビティ104に露出する部分において、キャビティ104に露出する作用極101および対極102並びに検知用電極103の一端側と試料導入口104aとの間にキャビティ104を横断するように導電層112に切込103aが形成されている。 As described above, according to this embodiment, the electrode system including the working electrode 101, the counter electrode 102, and the detection electrode 103 provided on one surface of the insulating substrate 111 that forms the electrode layer 110 is the insulating substrate 111. This is formed by forming a line-shaped cut 113 in the conductive layer 112 provided over the entire surface of one side. Then, in the portion exposed to the cavity 104 of the conductive layer 112, the conductive electrode 101 and the counter electrode 102 exposed to the cavity 104 and the one end side of the detection electrode 103 and the sample introduction port 104 a are traversed across the cavity 104. A cut 103 a is formed in the layer 112.
 また、スペーサ層120は、電極層110の一方面を部分的に被覆して積層されており、作用極101および対極102並びに検知用電極103それぞれの他端側は、試料導入口104aと反対側の電極層110の端縁であって、スペーサ層120が積層されていない電極層110の端縁まで延伸されて形成されている。そして、作用極101および対極102並びに検知用電極103の他端側が形成されている電極層110の端縁部分の導電層112には、作用極101および対極102並びに検知用電極103それぞれの他端側を横断するように切込103bが形成されている。 The spacer layer 120 is laminated so as to partially cover one surface of the electrode layer 110, and the other end side of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 is opposite to the sample introduction port 104a. The electrode layer 110 is extended to the edge of the electrode layer 110 on which the spacer layer 120 is not stacked. The conductive layer 112 at the edge of the electrode layer 110 on which the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 is formed has the other end of each of the working electrode 101, the counter electrode 102 and the detection electrode 103. A cut 103b is formed so as to cross the side.
 したがって、バイオセンサ100の集合体が個片化される際に、絶縁性基板111が切断線CLに沿ってカッターで切断されるときや、バイオセンサ500が把持されたとき、バイオセンサ500が包装紙から取出されたときなどに、スペーサ層120が積層されていないスリット105の部分の導電層112が、キャビティ104内において電極層110(絶縁性基板111)の試料導入口104a側の端縁から剥がれても、導電層112は、キャビティ104を横断するように形成された切込113aを越えて剥がれるおそれがないため、キャビティ104に露出する作用極101および対極102並びに検知用電極103の一端側が電極層110から剥がれるのを防止することができる。 Therefore, when the aggregate of the biosensors 100 is separated into pieces, when the insulating substrate 111 is cut with a cutter along the cutting line CL, or when the biosensor 500 is gripped, the biosensor 500 is packaged. When taken out from paper, the conductive layer 112 in the portion of the slit 105 where the spacer layer 120 is not stacked is formed in the cavity 104 from the edge of the electrode layer 110 (insulating substrate 111) on the sample inlet 104a side. Even if the conductive layer 112 is peeled off, the conductive layer 112 is not likely to peel off beyond the notch 113 a formed so as to cross the cavity 104, so that one end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 exposed to the cavity 104 is The peeling from the electrode layer 110 can be prevented.
 また、同様にして、スペーサ層120が積層されていない作用極101および対極102並びに検知用電極103それぞれの他端側を形成する導電層112が、電極層110(絶縁性基板111)の端縁から剥がれても、導電層112は、作用極101および対極102並びに検知用電極103それぞれの他端側を横断するように形成された切込103bを越えて剥がれるおそれがないため、スペーサ層120が積層されていない作用極101および対極102並びに検知用電極103の他端側が電極層110から剥がれるのを防止することができる。 Similarly, the conductive layer 112 that forms the other end of each of the working electrode 101 and the counter electrode 102 and the detection electrode 103 on which the spacer layer 120 is not laminated is the edge of the electrode layer 110 (insulating substrate 111). The conductive layer 112 is not likely to be peeled beyond the notch 103b formed so as to cross the other end of each of the working electrode 101, the counter electrode 102, and the detection electrode 103 even if the spacer layer 120 is peeled off. It is possible to prevent the other end side of the working electrode 101 and the counter electrode 102 and the detection electrode 103 that are not stacked from being peeled off from the electrode layer 110.
 また、切込113,113a,113bは、上記したようにレーザ加工やフォトリソグラフィにより導電層112に形成することができるが、特に、レーザ加工により切込113,113a,113bを導電層112に形成すれば、切込113,113a,113bを導電層112に、安価で容易に精度よく形成することができる。 Further, the cuts 113, 113a, 113b can be formed in the conductive layer 112 by laser processing or photolithography as described above. In particular, the cuts 113, 113a, 113b are formed in the conductive layer 112 by laser processing. In this case, the cuts 113, 113a, 113b can be formed in the conductive layer 112 at low cost and with high accuracy.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能であり、例えば、上記したバイオセンサ100の反応層107に含まれる酵素およびメディエータの組合せを変更することによりエタノールセンサや乳酸センサなどを形成してもよい。また、反応層107にはメディエータを必ずしも含まなくともよく、この場合、グルコースなどの測定対象物質の酵素反応により生じる過酸化水素や酵素の還元体などの還元物質が酸化されることによる酸化電流を計測すればよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the reaction of the above-described biosensor 100 is possible. An ethanol sensor, a lactic acid sensor, or the like may be formed by changing the combination of the enzyme and the mediator included in the layer 107. In addition, the reaction layer 107 does not necessarily include a mediator. In this case, an oxidation current generated by oxidation of a reducing substance such as hydrogen peroxide or a reduced form of the enzyme generated by an enzyme reaction of a measurement target substance such as glucose is generated. Just measure.
 また、上記した実施形態では、バイオセンサ100は、作用極101および対極102を有する二極電極構造に形成されているが、参照極をさらに設けることによりバイオセンサ100を三極電極構造に形成してもよい。この場合、対極102を接地して電圧出力部により参照極に参照電位を印加した状態で、作用極101に対極102を基準とする所定電位を印加すればよい。 In the above-described embodiment, the biosensor 100 is formed in a bipolar electrode structure having the working electrode 101 and the counter electrode 102. However, the biosensor 100 is formed in a tripolar electrode structure by further providing a reference electrode. May be. In this case, a predetermined potential based on the counter electrode 102 may be applied to the working electrode 101 in a state where the counter electrode 102 is grounded and a reference potential is applied to the reference electrode by the voltage output unit.
 また、上記した実施形態では、対極102と検知用電極103との間に所定電圧を印加することにより、対極102と検知用電極103との間に流れる電流を監視することで、キャビティ104に血液試料が供給されたことを検出するように構成されているが、検知用電極103は必ずしも設けなくてもよい。この場合、作用極101と対極102との間に所定電圧を印加することにより、作用極101と対極102との間に流れる電流を監視することで、キャビティ104に血液試料が供給されたことを検出すればよい。 Further, in the above-described embodiment, by applying a predetermined voltage between the counter electrode 102 and the detection electrode 103, the current flowing between the counter electrode 102 and the detection electrode 103 is monitored, thereby allowing blood to enter the cavity 104. Although it is configured to detect that the sample has been supplied, the detection electrode 103 is not necessarily provided. In this case, by applying a predetermined voltage between the working electrode 101 and the counter electrode 102, the current flowing between the working electrode 101 and the counter electrode 102 is monitored to confirm that the blood sample has been supplied to the cavity 104. What is necessary is just to detect.
 また、バイオセンサ100を形成する電極層110、スペーサ層120およびカバー層130のうち、少なくともカバー層130は、キャビティ104に血液試料が供給されたことを視認できるように透明な部材で形成するのが望ましい。 In addition, of the electrode layer 110, the spacer layer 120, and the cover layer 130 that form the biosensor 100, at least the cover layer 130 is formed of a transparent member so that it can be visually recognized that the blood sample is supplied to the cavity 104. Is desirable.
 本発明は、種々のバイオセンサおよびこのバイオセンサの製造方法に適用することができる。 The present invention can be applied to various biosensors and methods for manufacturing the biosensors.
 100  バイオセンサ
 101  作用極
 102  対極
 104  キャビティ
 104a  試料導入口
 105  スリット
 106  空気穴
 107  反応層
 110  電極層
 111  絶縁性基板
 112  導電層
 113a,113b  切込
 120  スペーサ層
 130  カバー層
DESCRIPTION OF SYMBOLS 100 Biosensor 101 Working electrode 102 Counter electrode 104 Cavity 104a Sample inlet 105 Slit 106 Air hole 107 Reaction layer 110 Electrode layer 111 Insulating substrate 112 Conductive layer 113a, 113b Cut 120 Spacer layer 130 Cover layer

Claims (5)

  1.  絶縁性基板の一方面に作用極および対極を含む電極系が設けられた電極層と、
     スリットが形成されて、前記スリットが前記作用極および前記対極の一端側に配置されて前記電極層の前記一方面に積層されるスペーサ層と、
     前記電極層および前記スリットにより形成されて試料が供給されるキャビティと、
     前記キャビティに連通する空気穴が形成されて前記キャビティを被覆して前記スペーサ層に積層されるカバー層と、
     前記スリットの開口部分により形成されて前記キャビティに連通する試料導入口と、
     前記キャビティに露出する前記作用極および前記対極の一端側に設けられた反応層とを備えるバイオセンサにおいて、
     前記電極系は、前記電極層の一方面の全面に渡って設けられた導電層にライン状の切込が形成されることにより形成され、
     前記導電層の前記キャビティに露出する部分において、前記作用極および前記対極の一端側と前記試料導入口との間に前記キャビティを横断するように前記切込が形成されている
     ことを特徴とするバイオセンサ。
    An electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate;
    A spacer layer formed on the one surface of the electrode layer, the slit being disposed on one end side of the working electrode and the counter electrode;
    A cavity formed by the electrode layer and the slit and supplied with a sample;
    An air hole communicating with the cavity to cover the cavity and be laminated on the spacer layer;
    A sample introduction port formed by the opening portion of the slit and communicating with the cavity;
    In a biosensor comprising the working electrode exposed in the cavity and a reaction layer provided on one end side of the counter electrode,
    The electrode system is formed by forming a line-shaped cut in a conductive layer provided over the entire surface of one side of the electrode layer,
    In the portion of the conductive layer exposed to the cavity, the cut is formed so as to cross the cavity between one end side of the working electrode and the counter electrode and the sample introduction port. Biosensor.
  2.  前記スペーサ層は、前記電極層の前記一方面を部分的に被覆して積層されており、
     前記作用極および前記対極それぞれの他端側は、前記試料導入口と反対側の前記電極層の端縁であって、前記スペーサ層が積層されていない前記電極層の端縁まで延伸されて形成され、前記作用極および前記対極の他端側が形成されている前記電極層の端縁部分の前記導電層には、前記作用極および前記対極それぞれの他端側を横断するように前記切込がさらに形成されていることを特徴とする請求項1に記載のバイオセンサ。
    The spacer layer is laminated so as to partially cover the one surface of the electrode layer,
    The other end side of each of the working electrode and the counter electrode is an edge of the electrode layer opposite to the sample introduction port, and is extended to the edge of the electrode layer on which the spacer layer is not stacked. In the conductive layer at the edge portion of the electrode layer on which the other end side of the working electrode and the counter electrode is formed, the cut is made so as to cross the other end side of each of the working electrode and the counter electrode. The biosensor according to claim 1, further formed.
  3.  絶縁性基板の一方面に作用極および対極を含む電極系が設けられた電極層と、
     スリットが形成されて、前記スリットが前記作用極および前記対極の一端側に配置されて前記電極層の前記一方面に積層されるスペーサ層と、
     前記電極層および前記スリットにより形成されて試料が供給されるキャビティと、
     前記キャビティに連通する空気穴が形成されて前記キャビティを被覆して前記スペーサ層に積層されるカバー層と、
     前記スリットの開口部分により形成されて前記キャビティに連通する試料導入口と、
     前記キャビティに露出する前記作用極および前記対極の一端側に設けられた反応層とを備えるバイオセンサの製造方法において、
     前記電極層は、
     前記絶縁性基板の一方面の全面に渡って導電層を形成し、前記導電層にライン状の切込を形成して前記電極系を形成する際に、前記導電層の前記キャビティに露出する部分に、前作用極および前記対極の一端側と前記試料導入口との間に前記キャビティを横断するように前記切込を形成して用意される
     ことを特徴とするバイオセンサの製造方法。
    An electrode layer provided with an electrode system including a working electrode and a counter electrode on one surface of an insulating substrate;
    A spacer layer formed on the one surface of the electrode layer, the slit being disposed on one end side of the working electrode and the counter electrode;
    A cavity formed by the electrode layer and the slit and supplied with a sample;
    An air hole communicating with the cavity to cover the cavity and be laminated on the spacer layer;
    A sample introduction port formed by the opening portion of the slit and communicating with the cavity;
    In a manufacturing method of a biosensor comprising the working electrode exposed in the cavity and a reaction layer provided on one end side of the counter electrode,
    The electrode layer is
    A portion of the conductive layer exposed to the cavity when forming the electrode system by forming a conductive layer over the entire surface of one side of the insulating substrate and forming a line-shaped cut in the conductive layer. A method of manufacturing a biosensor, comprising: preparing a notch so as to cross the cavity between one end side of the front working electrode and the counter electrode and the sample introduction port.
  4.  前記スペーサ層が、前記電極層の一方面を部分的に被覆して積層される請求項3に記載のバイオセンサの製造方法において、
     前記電極層は、
     前記作用極および前記対極それぞれの他端側を、前記試料導入口と反対側の前記電極層の端縁であって、前記スペーサ層が積層されていない前記電極層の端縁まで延伸して形成し、前記作用極および前記対極の他端側が形成されている前記電極層の端縁部分の前記導電層に、前記作用極および前記対極それぞれの他端側を横断するように前記切込をさらに形成して用意される
     ことを特徴とするバイオセンサの製造方法。
    The biosensor manufacturing method according to claim 3, wherein the spacer layer is partially covered and laminated on one surface of the electrode layer.
    The electrode layer is
    The other end side of each of the working electrode and the counter electrode is formed by extending to the edge of the electrode layer on the side opposite to the sample introduction port, where the spacer layer is not stacked. And further cutting the cut into the conductive layer at the edge portion of the electrode layer where the other end of the working electrode and the counter electrode is formed so as to cross the other end of each of the working electrode and the counter electrode. A method for manufacturing a biosensor, characterized by being prepared.
  5.  前記切込は、レーザ加工により前記導電層に形成されることを特徴とする請求項4に記載のバイオセンサの製造方法。 The biosensor manufacturing method according to claim 4, wherein the cut is formed in the conductive layer by laser processing.
PCT/JP2012/004441 2011-11-18 2012-07-10 Biosensor and biosensor production method WO2013073073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011252764 2011-11-18
JP2011-252764 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073073A1 true WO2013073073A1 (en) 2013-05-23

Family

ID=48429178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004441 WO2013073073A1 (en) 2011-11-18 2012-07-10 Biosensor and biosensor production method

Country Status (2)

Country Link
JP (1) JPWO2013073073A1 (en)
WO (1) WO2013073073A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155841A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 biosensor
JP2015200570A (en) * 2014-04-08 2015-11-12 株式会社村田製作所 Biosensor and manufacturing method of biosensor
WO2023222052A1 (en) * 2022-05-18 2023-11-23 利多(香港)有限公司 Biosensor and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305096A (en) * 2000-04-27 2001-10-31 Matsushita Electric Ind Co Ltd Biosensor
JP2001311711A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Biosensor
WO2008013224A1 (en) * 2006-07-26 2008-01-31 Panasonic Corporation Biosensor measuring system, and measuring method
JP2009533686A (en) * 2006-04-11 2009-09-17 ホーム ダイアグナスティックス,インコーポレーテッド Biosensor manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305096A (en) * 2000-04-27 2001-10-31 Matsushita Electric Ind Co Ltd Biosensor
JP2001311711A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Biosensor
JP2009533686A (en) * 2006-04-11 2009-09-17 ホーム ダイアグナスティックス,インコーポレーテッド Biosensor manufacturing method
WO2008013224A1 (en) * 2006-07-26 2008-01-31 Panasonic Corporation Biosensor measuring system, and measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155841A (en) * 2014-02-20 2015-08-27 株式会社村田製作所 biosensor
JP2015200570A (en) * 2014-04-08 2015-11-12 株式会社村田製作所 Biosensor and manufacturing method of biosensor
WO2023222052A1 (en) * 2022-05-18 2023-11-23 利多(香港)有限公司 Biosensor and manufacturing method therefor
WO2023222100A1 (en) * 2022-05-18 2023-11-23 利多(香港)有限公司 Biosensor and preparation method therefor
WO2023222059A1 (en) * 2022-05-18 2023-11-23 利多(香港)有限公司 Biosensor and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2013073073A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5708878B2 (en) Biosensor and manufacturing method thereof
KR100293873B1 (en) Biosensor
WO2006134518A2 (en) Disposable oxygen sensor and method for correcting oxygen effect on oxidase-based analytical devices
JP5655977B2 (en) Biosensor
WO2013073073A1 (en) Biosensor and biosensor production method
JP5001240B2 (en) Biosensor, its manufacturing method, and its use
US20040251132A1 (en) Reduced volume strip
JPWO2013073072A1 (en) Hematocrit value measuring method, quantitative analysis method using the measuring method, and sensor chip
WO2014069070A1 (en) Biosensor
JP5509969B2 (en) Measuring apparatus and measuring method
WO2014064978A1 (en) Biosensor and manufacturing method therefor
WO2013073074A1 (en) Method for measuring substances
JP2014089097A (en) Biosensor
WO2015002184A1 (en) Biosensor
JP5472066B2 (en) Biosensor manufacturing method
JPH0943189A (en) Biosensor and method for determining substrate using it
JP4856017B2 (en) Biosensor
JP2013108791A (en) Method for manufacturing biosensor, and biosensor
Takagi et al. BIOSENSOR
WO2011151953A1 (en) Method for measuring substance
JP2009085926A (en) Biosensor
JP6610025B2 (en) Biosensor
JP5381936B2 (en) Biosensor
JP2015155841A (en) biosensor
JP2017009431A (en) Sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850090

Country of ref document: EP

Kind code of ref document: A1