WO2014067426A1 - 自动检票方法及自动检票装置 - Google Patents

自动检票方法及自动检票装置 Download PDF

Info

Publication number
WO2014067426A1
WO2014067426A1 PCT/CN2013/085965 CN2013085965W WO2014067426A1 WO 2014067426 A1 WO2014067426 A1 WO 2014067426A1 CN 2013085965 W CN2013085965 W CN 2013085965W WO 2014067426 A1 WO2014067426 A1 WO 2014067426A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
passengers
ticket
ticket checking
data
Prior art date
Application number
PCT/CN2013/085965
Other languages
English (en)
French (fr)
Inventor
邢月启
李雪静
张连峰
谷长刚
龙军帅
Original Assignee
山东新北洋信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东新北洋信息技术股份有限公司 filed Critical 山东新北洋信息技术股份有限公司
Publication of WO2014067426A1 publication Critical patent/WO2014067426A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B11/00Apparatus for validating or cancelling issued tickets
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass

Definitions

  • the present invention relates to the field of ticket checking, and in particular to an automatic ticket checking method and an automatic ticket checking apparatus.
  • the automatic ticket checking apparatus generally includes a ticket checking mechanism, a passage, and a gate. The passenger moves to the gate through the passage after providing the ticket paper at the ticket checking institution.
  • the control gate When the ticket checking mechanism detects that the ticket paper is valid, the control gate is opened for the passenger to pass.
  • the automatic ticket checking device a plurality of photoelectric sensors are generally installed in a certain rule in the channel, and the controller of the automatic ticket checking device detects the state of the passenger passing through the passage through the output signal of the photoelectric sensor, and determines whether there is illegal trailing in the channel. The passenger, in turn, determines whether the gate is open to allow passengers to pass.
  • An automatic ticket gate is disclosed in Chinese Patent Application No. 201110099452.6. As shown in FIG.
  • the automatic ticket checking machine includes: a detecting system 1 and a first sensor group 2 and a second sensor group 3 connected thereto, and the first sensor group 2 and the second sensor group 3 acquire current according to an output signal of the photoelectric sensor.
  • the first sensor group 2 is configured to collect a first traffic state signal of the passenger.
  • the multi-body traffic state is determined.
  • the passenger carries the baggage in the form of towing, the passenger carries the child or has the following state of the passengers. Otherwise, it is in a single-pass state, that is, the state of a passenger who does not carry any baggage or carries the baggage in the form of a hug or a back. .
  • the second sensor group 3 is used to collect the second signal of the passenger, the sensor in the second sensor group 3 performs the "several leg” detection, and when one or several sensors are continuously blocked, it is judged that there is a "leg", when adjacent When there is an unoccluded sensor between the occluded sensors, it is judged that there are different "legs”.
  • the first sensor 2 detects that the passenger passing state is the trailing of other passengers in the multi-body passing state
  • the second sensor group 3 detects the "two legs”
  • the alarm system does not alarm, and the detecting system 1 controls the gate to open;
  • the two sensor groups 3 detect the "three legs", it is determined that there is a trailing over-detection, and the detecting system 1 controls the alarm system to perform an alarm.
  • the automatic ticket checking machine disclosed in the above patent can correctly detect whether there is a passenger trailing inspection under certain circumstances, but the automatic ticket checking machine judges the passage of passengers in the passage by detecting the state of the sensor at a certain moment. State, because the passengers or their carriers passing through the passage are in motion, and their movement state is uncertain. For example, a passenger in a single-pass state may swing his arm during walking.
  • the passenger passes the first sensor group 2
  • the body and the arm respectively block a sensor, and there is an unoccluded sensor between the two occluded sensors
  • the passenger in the single-pass state will be mistakenly judged to be in a multi-body state; for example, a passenger in a single-pass state carries a small item such as an umbrella or a handbag, and the passenger passes the second sensor group.
  • the carrier blocks a sensor, the two legs respectively block a sensor, and there is an unoccluded between the adjacent two occluded sensors.
  • a primary object of the present invention is to provide an automatic ticket checking method and an automatic ticket checking apparatus for solving the problem of inaccurate detection of a passenger passing state by an automatic ticket checking machine in the related art.
  • an automatic ticket checking method includes: recording the number of times that the first sensor, the second sensor, and the third sensor are continuously in the same state, wherein the first sensor, the second sensor, and the third sensor are sequentially set in the ticket checking manner in the passenger traveling direction.
  • calculating the number of passengers who need to purchase tickets in the ticket checking channel within the set time period according to the statistical result includes: first calculating, according to the statistical result, the passengers to be purchased, which are detected by the first sensor, the second sensor, and the third sensor respectively The number of people, then determine the number of passengers to be purchased in the ticket gate within the set time period according to any one or more of the following methods: When the first sensor, the second sensor and the third sensor detect the ticket purchase When the number of passengers is 0, it is determined that the number of passengers who need to purchase tickets in the ticket gate is 0; when the number of passengers to be purchased detected by the first sensor, the second sensor and the third sensor is the same, it is determined that the passengers need to purchase tickets in the ticket gate The number of people is the same; when there are two cases in which the number of passengers to be purchased is detected by the first sensor, the second sensor, and the third sensor, the number of people whose two test results are consistent is used as the ticket purchase channel.
  • respectively recording the number of times that the first sensor, the second sensor, and the third sensor are continuously in the same state includes: recording the first sensor, the second sensor, and the first time each time interval preset time The state of the three sensors; when the status of the two consecutive recordings of any sensor is the same, the number of consecutive states of the sensor is increased by one, and when the state of any two consecutive records of the sensor is different, the number of consecutive states of the sensor is Set to 1; and when the status of any two consecutive records of the sensor is different, the number of times the sensor is continuously in the previous state of the current state is stored in the first data set corresponding to the sensor, wherein, according to the statistical result
  • the number of passengers who need to purchase tickets in the ticket checking channel includes counting the number of passengers who need to purchase
  • the position in the set Cln also moves forward, and the positions of the last two serial numbers that are hollow out of the first data set Cln are filled with zeros, when the minimum data in the first data set Cln is not less than the preset threshold N or the first data.
  • n is the sensor serial number
  • the values are 1, 2, 3
  • m is the serial number of the data in the Cln
  • the second data set is stored.
  • the number of non-zero data indicating that each sensor is in an occluded state is the number of passengers who need to purchase tickets in the ticket gate detected by the sensor.
  • the third sensor detects the following result, determining that the position at which the passenger reaches the third sensor is detected: the state of the third sensor is recorded once every predetermined time interval; and the number of times the third sensor is continuously in the occluded state reaches When the threshold M is preset, it is determined that the position at which the passenger reaches the third sensor is detected.
  • the automatic ticket checking method further includes: detecting, when receiving a plurality of ticket papers, the number of valid ticket papers in the plurality of ticket papers, and calculating the number of passengers to be purchased in the ticket checking channel according to the statistical result, the automatic ticket checking The method further includes: determining whether the number of passengers to be purchased in the ticket checking passage is greater than the number of valid ticket papers, and determining that the number of passengers to be purchased in the ticket checking passage is not greater than the number of valid ticket papers, the control gate is opened to allow the passenger to be in the ticket checking passage In the middle of the line.
  • the automatic ticket checking method further includes: detecting whether a passenger exits the ticket checking channel; and detecting that one passenger exits the ticket checking channel, reducing the number of valid ticket papers by one to be effective for the detected plurality of ticket papers The number of ticket papers is updated, and the number of passengers who need to purchase tickets in the calculated ticket gate is reduced by one.
  • the operation is to update the number of passengers who need to purchase tickets in the calculated ticket gate; determine whether the number of valid ticket papers in the plurality of ticket papers increases, or determine whether the number of passengers who need to purchase tickets in the calculated ticket gate channel increases; And when it is judged that the number of valid ticket papers in the plurality of ticket papers is increased or the number of passengers who need to purchase tickets in the counted ticket passages is increased, it is judged again whether the number of passengers who need to purchase tickets in the ticket gate is larger than the number of valid ticket papers.
  • an automatic ticket checking apparatus is provided.
  • the automatic ticket checking apparatus includes: a recording unit, configured to respectively record the number of times that the first sensor, the second sensor, and the third sensor are continuously in the same state, wherein, in the direction of travel of the passenger, the first sensor, the second sensor, and the third The sensor is sequentially disposed in the ticket checking channel; and the statistical unit is configured to: when detecting the position of the passenger reaching the third sensor, counting that the first sensor, the second sensor, and the third sensor recorded in the set time period are continuously in the same state The number of times; and a calculation unit for calculating the number of passengers to be purchased in the ticket gate in the set time period based on the statistical result.
  • the calculating unit is configured to first calculate, according to the statistical result, the number of passengers to be purchased, which are detected by the first sensor, the second sensor, and the third sensor, respectively, and then determine the set time according to any one or more of the following methods: The number of passengers who need to purchase tickets in the ticket inspection channel, wherein the calculation unit includes any one or more of the following calculation units: a first calculation unit, configured to detect when any of the first sensor, the second sensor, and the third sensor When the number of passengers to be purchased is 0, the number of passengers who need to purchase tickets in the ticket gate is 0; the second calculation unit is used for the passengers who need to purchase tickets detected by the first sensor, the second sensor, and the third sensor.
  • the third calculating unit is used to detect the number of passengers who need to purchase tickets when the first sensor, the second sensor, and the third sensor are detected.
  • the number of the two test results is the same, the number of passengers who need to purchase tickets in the ticket gate; and a calculating unit, configured to use the median value of the detection results of the three sensors as the number of passengers to be purchased in the ticket checking channel when the number of passengers to be purchased for the first sensor, the second sensor, and the third sensor is different .
  • the recording unit includes: a recording module, configured to record the states of the first sensor, the second sensor, and the third sensor once every preset time interval; and an update unit, configured to be used when two consecutive records are recorded At the same time, the number of consecutive states of the sensor is increased by one, and when the status of two consecutive recordings of any sensor is different, the number of consecutive states of the sensor is set to 1; and the storage unit is used to continuously operate any sensor twice.
  • the calculating unit includes: a denoising module, configured to be in the first data set The data is denoised to obtain a second data set, wherein the denoising process comprises: searching for the first of the first data set Cln when the number of non-zero data stored in the first data set Cln is greater than three the minimum data dn m between the last non-zero and non-zero data and its data is determined, when less than a predetermined dn m When the threshold value N, dn m and (!
  • n is the sensor serial number, and the value is 1, 2 And 3
  • m is a sequence number of the data in the Cln; and a determining module, configured to use the number of non-zero data stored in the second data set indicating that each sensor is in an occluded state as the ticket purchase channel detected by the sensor The number of passengers on the ticket.
  • the automatic ticket checking apparatus further includes: a detecting unit, configured to detect a quantity of valid ticket papers in the plurality of ticket papers when receiving a plurality of ticket sheets; and a determining unit, configured to calculate a demand in the ticket checking channel according to the statistical result After the number of passengers purchased, it is judged whether the number of passengers to be purchased in the ticket gate is greater than the number of valid ticket papers; and the control unit is configured to determine when the number of passengers to be purchased in the ticket gate is not greater than the number of valid ticket papers, The control gate is opened to allow passengers to pass through the ticket gate.
  • FIG. 1 is a schematic diagram of the composition of an automatic ticket checking machine according to the related art
  • FIG. 2 is a schematic diagram of the composition of an automatic ticket checking apparatus according to a first embodiment of the present invention
  • FIG. 3a is an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Figure 3b is a side view of an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Figure 3b is a front view of an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Figure 4a is an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Figure 4b is a perspective view of an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Figure 5 is a flow chart of an automatic ticket checking method according to a first embodiment of the present invention
  • Figure 6 is a flowchart of an automatic ticket checking method according to a second embodiment of the present invention
  • Figure 7 is a flow chart of an automatic ticket checking method according to a third embodiment of the present invention
  • Figure 8 is an entry of a channel according to a first embodiment of the present invention.
  • FIG. 9 is a visual representation image of the state of the first three sensors in the entry zone of the channel for a period of time in accordance with the automatic ticket checking method of the present invention
  • FIG. 11 is a schematic diagram showing the composition of an automatic ticket checking apparatus according to a third embodiment of the present invention
  • FIG. 12 is a schematic diagram showing the composition of an automatic ticket checking apparatus according to a fourth embodiment of the present invention
  • the automatic ticket checking apparatus 100 includes a control unit 11, a communication unit 12, a flash memory 13, a RAM memory 14, a ticket checking unit 15, and a sensor unit. 16. Gate unit 17 and indicator unit 18.
  • the control unit 11 is configured to control other units to perform work. For example, the control unit 11 controls the communication unit 12 to perform data transmission with a host computer (such as a computer) connected to the automatic ticket checking apparatus 100, and the control unit 11 determines the sensor unit 16.
  • the number of passengers who need to purchase the ticket paper in the passage of the detected automatic ticket checking apparatus 100 (hereinafter referred to as the number of passengers who need to purchase tickets) is consistent with the number of valid ticket papers detected by the ticket checking unit 15, and is controlled to be turned on according to the judgment result.
  • the shutter 173 of the shutter unit 17 is closed.
  • the communication unit 12 is configured to complete the data transmission between the automatic ticket checking apparatus 100 and the upper computer, for example, the communication unit 12 uploads the ticket paper information read by the ticket checking unit 15 to the upper computer, and receives the information of whether the ticket paper returned by the upper computer is valid.
  • the communication unit 12 is usually a serial port and a network interface.
  • the flash memory 13 is configured to store a control program of the automatic ticket checking apparatus.
  • the flash memory 13 is further configured to store a first preset threshold M and a second preset threshold N, wherein the first preset threshold M determines whether to start counting one.
  • the state of the relevant sensor in the time period is set, and the second preset threshold value N is used to perform denoising processing on the first data set obtained by the relevant sensor state statistics.
  • the RAM memory 14 is used to provide a storage space for the control program operation of the automatic ticket checking apparatus. Meanwhile, the RAM memory 14 is also used to store variables required for controlling the running of the program. For example, the RAM memory 14 is used to store the reading by the ticket checking unit 15.
  • the information of the ticket paper, the RAM memory 14 is further configured to store the first data set Cln, the second data set C2n, and the sensor continuous state number SCnt_n, where n is the sensor serial number, and the value is 1, 2, 3, the first data set Cln
  • the second data set C2n includes data of related sensor state statistics in a set time period that satisfies the setting requirement, and the sensor continuous state number SCnt_n is used to record the number of times the nth sensor is continuously in the same state.
  • the ticket checking unit 15 is configured to read the information of the ticket paper provided by the passenger.
  • the ticket checking unit 15 may be a card reading module for reading the non-contact type IC card, such as a radio frequency module, or a card reading module for reading a contact type magnetic card.
  • the magnetic module can also be a hybrid card reader module that can read both the non-contact type IC card and the contact type magnetic card.
  • the sensor unit 16 is configured to detect the traffic state of the passengers and their carriers passing through the passage of the automatic ticket checking device, wherein the sensor unit 16 includes a plurality of sensors arranged according to a certain rule, and the plurality of sensors may be transmission sensors, It may be a reflective sensor, each of which includes a light generator and a light receiver. When the sensor is a reflective sensor, the light generator and the light receiver of each sensor are located on the same side of the channel of the automatic ticket checking apparatus 100, and there are passengers in the channel.
  • the sensor or the carrier When the carrier or its carrier passes, the sensor or the carrier is located at the position of the sensor, the sensor is in an occluded state, and the light receiver receives light generated by the light generator reflected by the passing passenger or its carrier.
  • the light receiver Outputting the first detection signal, such as high voltage, when the passenger or its carrier is not in the position of the sensor, the sensor is in an unobstructed state, and the light receiver cannot receive the light generated by the light generator.
  • the light receiver outputs Second detection signal, such as low voltage; when the sensor is a transmission sensor,
  • the light generator and the light receiver of the sensors are respectively located on both sides of the channel, and the two are oppositely disposed.
  • the sensor When the passenger or the carrier is not located at the position of the sensor, the sensor is in an unobstructed state, and the light receiver receives the light generator. Light, at this time, the light receiver outputs a first detection signal, such as a high voltage; when a passenger or a carrier in the passage passes, the passenger or his carrier is located at the position of the sensor, the sensor is in an occluded state, and the light receiver cannot Receiving light generated by the light generator, at this time, the light receiver outputs a second detection signal, such as a low voltage.
  • a first detection signal such as a high voltage
  • the control unit 11 can determine whether the sensor is in an occluded state at the current time by detecting the output signal of the optical receiver of the sensor, that is, whether there is a passing passenger or its carrier passing through the channel. The sensor.
  • the gate unit 17 is for allowing or prohibiting the passage of passengers in the passage, and the shutter unit 17 includes a gate motor driver 171, a gate motor 172, and a shutter 173, wherein the gate motor driver 171 receives the drive pulse output from the control unit 11 and outputs the gate motor 172.
  • the current required to rotate the output shaft, the output of the gate motor 172 The output shaft is connected to the gate 173.
  • the drive gate 173 is rotated by a predetermined angle, so that the shutter 173 is brought into an open or closed state.
  • the automatic ticket checking apparatus further includes an indicating unit 18 for outputting various information according to the ticket purchasing information and the traffic state of the passenger in the passage of the automatic ticket checking apparatus 100.
  • the indicating unit 18 includes a traffic guiding module 181, a ticket checking indicating module 182, and an alarm.
  • the module 183 wherein the traffic indication module 181 can be an indicator light, a liquid crystal display, or the like, for indicating whether the passenger is allowed to enter the channel of the automatic ticket checking apparatus 100, and the ticket checking instruction module 182 can be a liquid crystal display, a voice device, or the like.
  • the alarm module 183 can be a buzzer, a horn, a voice device, etc., for issuing an alarm message when the ticket paper is invalid or there are other passengers trailing the inspection.
  • FIG. 3a to 3c are views showing the structural composition of an automatic ticket checking apparatus according to a first embodiment of the present invention
  • Fig. 3a is a perspective view of an automatic ticket checking apparatus according to a first embodiment of the present invention.
  • the automatic ticket checking apparatus 100 is shown in Fig. 3a.
  • the two oppositely disposed bodies 21 are formed with a passage 22 for passengers to pass therethrough.
  • a gate 173 is mounted on a side of the body 21 facing the passage 22, and the gate 173 can be in an open or closed state, for example, a gate.
  • the door wing of the 173 can be rotated about a straight line 0 on the body 21, and rotates in a range of 0 to 180 degrees with respect to the passage direction of the passage 22, when the door wing of the gate 173 extends in the direction of the passenger of the passage 22.
  • the gate is closed, and the passenger cannot pass normally in the passage 22;
  • the door wing of the gate 173 extends in parallel with the passenger passage direction of the passage 22, the gate is opened, and the passenger can be in the passage. 22 is normal.
  • Figure 3b is a side view of the automatic ticket checking apparatus according to the first embodiment of the present invention.
  • the passage 22 is divided into three parts, namely, an entry area 23, a safety area 24, and an exit area 25, in the direction of the passenger's traffic, wherein
  • the safety zone 24 is the area through which the door wing passes in the passage 22 during the opening and closing of the gate 173, and the entry zone 23 refers to the area of the passage 22 between the passage entry opening and the safety zone 24, the exit zone 25 Refers to the area of the channel 22 that is between the safe zone 24 and the exit port.
  • 10 sensors A1 to A10 are sequentially mounted on the side of the body 21 facing the passage 22 in the direction of travel of the passenger (direction indicated by arrow A), and the side view of the automatic ticket checking apparatus 100 shown in FIG. 3b indicates the sensors A1 to A10.
  • the sensors A1 ⁇ A3 are respectively disposed at positions where the ground height is the first height ⁇ 1, the second height H2, and the third height H3, and the sensors A4 ⁇ A9 are disposed at a distance from the ground.
  • the sensor A10 is disposed at a position at a fifth height H5 from the ground, wherein the first height H1 ⁇ the third height 113 ⁇ the second height H2, the fourth height 1 « ⁇ a height HI, a fifth height 115 ⁇ second height H2, HI ranges from 450 mm to 550 mm, H2 ranges from 1000 mm to 1200 mm, H3 ranges from 650 mm to 750 mm, and H4 ranges from 150 mm to 250 mm.
  • the value of H5 ranges from 850 to 950 mm.
  • each sensor In the direction of travel of the passenger, between sensor A1 and sensor A2 and The distance between sensor A2 and sensor A3 is 115mm ⁇ 125mm, the distance between sensor A3 and sensor A4 is 265mm ⁇ 275mm, the distance between two adjacent sensors in sensor A4 ⁇ A9 and between sensor A9 and sensor A10 It is 145mm ⁇ 155mm.
  • the purpose of each sensor is as follows: The sensors A1 to A3 are located in the entry area 23 of the passage 22 for detecting the passage in a specific set time period.
  • the sensor A2 is also used for detecting the height of the passenger or the carrier passing through the entry area 23, and the height of the passenger or the carrier passing through the passage is lower than the height of the position of the sensor A2, that is, the second height H2.
  • the sensor A2 cannot be blocked, and by setting the sensor A2, it is possible to realize that the passenger whose height is lower than the second height H2 or his carrier does not need to purchase a ticket.
  • the sensors A4 ⁇ A9 are located in the safety zone 24 of the passage 22 for detecting the state of the passengers or their carriers passing through the safety zone 24 of the passage 22.
  • the control unit 11 controls the gate 173 according to whether the sensors A4 to A9 are in the occluded state. Rotating to prevent the door wing of the gate 173 from injuring the passenger passing through the safety zone 24, and setting the door wing of the gate 173 to the position of the 0 degree in the safe area 24 when the direction of the entry area 23 is fully opened, to the exit area 25
  • the position at the time of full opening is a position of 180 degrees
  • the position when the gate 173 is closed is a position of 90 degrees
  • the direction of passage of the passage 22 of the automatic ticket checking apparatus 100 is the direction indicated by the arrow A, when the sensors A4 to A6 are in an occluded state
  • the control unit 11 can only control the door wing of the gate 173 to rotate within a range of 90 degrees to 180 degrees.
  • the control unit 11 can only control the door wing of the gate 173 at the 0 degree position to Rotate within a 90 degree position.
  • Sensor A10 is located in the exit zone 25 of the passage 22 for detecting whether the passenger has left the safe zone 24 of the passage 22 into the exit zone 25 of the passage 22.
  • the control unit 11 can control the gate 173 to be closed.
  • the sensors A1 to A10 are transmission sensors, and the light generators of the 10 sensors are mounted on the body 21 on the side of the channel 22, and the light receiving of the 10 sensors is mounted on the body 21 on the other side of the channel 22.
  • the light generator of the same sensor is disposed opposite to the light receiver, and the automatic ticket checking device can determine whether the current time sensor is in an occluded state by detecting an output signal of the light receiver of each sensor, that is, whether there is a passage in the channel 22 The passing passenger or his carry is located at the location of the sensor.
  • the sensor included in the sensor unit 16 may be a reflective sensor disposed on the body 21 on the side of the channel 22.
  • 3c is a front view of the automatic ticket checking apparatus according to the first embodiment of the present invention. As shown in FIG. 3c, the front surface of the body 21 is provided with a traffic indicating module 181 for indicating whether to allow or prohibit passengers from entering the tunnel 22.
  • a top bevel of the body 21 corresponding to the entry area 23 a ticket checking unit 15 and a ticket checking instruction module 182 are installed, the ticket checking unit 15 is configured to read information of the ticket paper provided by the passenger, and the ticket checking instruction module 182 is configured to display Whether the ticket paper provided by the passenger is a valid ticket paper; an alarm module 183 is installed on the top plane of the body 21 corresponding to the safety zone 24, and the alarm module 183 is used to issue an alarm when the ticket paper is invalid or there is a passenger trailing inspection.
  • information. 4a is a side view of an automatic ticket checking apparatus according to a second embodiment of the present invention. As shown in FIG.
  • FIG. 4a is a perspective view of an automatic ticket checking apparatus according to a second embodiment of the present invention, as shown in FIG.
  • the direction of the direction is the direction of travel (hereinafter referred to as forward pass), and the direction opposite to the direction may be the direction of travel (hereinafter referred to as reverse pass).
  • forward pass the direction of travel
  • reverse pass the direction opposite to the direction
  • the sensors A12 ⁇ A14 are used to determine the number of passengers who need to purchase tickets in the entry area of the channel.
  • the sensor All is used to detect whether the passenger has left the safety zone of the channel, and the sensors A4 ⁇ A9 are still used in the safety zone of the detection channel. The status of the passing passenger or his or her belongings.
  • FIG. 5 is a flow chart of an automatic ticket checking method in accordance with a first embodiment of the present invention.
  • the method includes the following steps: Step S11, respectively recording the number of times that the first sensor, the second sensor, and the third sensor are continuously in the same state, wherein, in the direction of travel of the passenger, the first sensor, the second The sensor and the third sensor are sequentially disposed in the ticket checking channel.
  • the first sensor, the second sensor, and the third sensor may be the sensors A1 to A3 shown in FIG.
  • the state in this step may be an occluded state or an unoccluded state. Therefore, the number of consecutively in the same state refers to the number of times that any one of the sensors is continuously in the occluded state or the number of times that the first sensor is continuously occluded, for example, the number of times the first sensor is continuously in the occluded state is continuously recorded, and the second sensor is continuously being The number of occlusion states and the number of times the third sensor is continuously occluded.
  • the states of the first sensor, the second sensor, and the third sensor may be recorded once every preset time interval,
  • the number of consecutive states of the sensor is increased by one, and when the status of two consecutive recordings of any sensor is different, the number of consecutive states of the sensor is set to 1, The number of times the sensor is continuously in the previous state of the current state is then stored in the first data set corresponding to the sensor.
  • Step S12 when it is detected that the passenger reaches the position of the third sensor, the number of times that the first sensor, the second sensor, and the third sensor recorded in the set time period are continuously in the same state are counted.
  • the set period of time may be a period of time between the time when the position where the passenger arrives at the third sensor is detected twice in succession, or may be a period of time before the time when the position where the passenger arrives at the position of the third sensor is detected.
  • Step S13 calculating the number of passengers who need to purchase tickets in the ticket checking channel within the set time period according to the statistical result.
  • the number of passengers to be purchased in the ticket gate detected by the first sensor, the second sensor, and the third sensor may be separately calculated according to the statistics of the first sensor, the second sensor, and the third sensor, respectively. And determining, according to the number of passengers to be purchased in the ticket checking channel detected by the first sensor, the second sensor, and the third sensor, the number of passengers who need to purchase tickets in the finally detected ticket gate, or according to the first sensor and the second sensor. The results of the statistics separately from the third sensor directly calculate the number of passengers who need to purchase tickets in the ticket gate.
  • the number of times that the plurality of sensors are in the same state in the set time period is separately counted, and the number of passengers who need to purchase tickets in the ticket checking channel within the set time period is calculated according to the statistical result, thereby improving The accuracy and reliability of automatic ticket checking.
  • the number of passengers to be purchased in the ticket gate is determined according to the number of passengers to be purchased in the ticket gate detected by the first sensor, the second sensor, and the third sensor, any one or more of the following may be used.
  • the method determines the number of passengers to be purchased in the ticket gate in the set time period: when the number of passengers to be purchased detected by any of the first sensor, the second sensor and the third sensor is 0, the ticket checking channel is determined The number of passengers who purchase tickets for domestic demand is zero. When the number of passengers to be purchased detected by the first sensor, the second sensor, and the third sensor is the same, it is determined that the number of passengers who need to purchase tickets in the ticket gate is the same. When there are two cases in which the number of passengers to be purchased is detected by the first sensor, the second sensor, and the third sensor, the number of persons whose two detection results are consistent is used as the number of passengers who need to purchase tickets in the ticket gate.
  • the intermediate value of the detection results of the three sensors is used as the number of passengers who need to purchase tickets in the ticket gate.
  • the number of passengers to be purchased in the ticket gate detected by each sensor may be calculated according to the following method: Denoising the data in the first data set to obtain a second data set, wherein the denoising process comprises: searching for the first non-zero data and the last non in the first data set Cln when the number of non-zero data stored in the first data set Cln is greater than three The minimum data dn m between zero data is judged.
  • FIG. 6 is a flow chart of an automatic ticket checking method according to a second embodiment of the present invention, which is applicable to a ticket checking principle of a passenger passing the ticket checking apparatus in a one-person-one-vote order, the method comprising the following steps: Step S21 Judging whether the ticket paper provided by the passenger detected this time is valid.
  • the ticket checking unit detects that there is a ticket paper provided by the passenger, for example, when the ticket paper is an IC card, the ticket checking unit detects the passenger swiping the card, or the ticket paper is a magnetic ticket.
  • the ticket checking unit When the detecting unit detects that the passenger inserts the ticket paper, the ticket checking unit reads the record information of the ticket paper provided by the passenger (hereinafter referred to as ticket paper information), and uploads the read ticket paper information to the automatic ticket checking device through the communication unit.
  • the upper computer judges whether the ticket paper is valid, and returns the judgment result to the automatic ticket checking device, and the automatic ticket checking device communicates PC return element receives the information of the ticket is valid, the paper when the ticket is valid, step S23;. Otherwise, step S22 to step S22, alarm issuing of the ticket is invalid
  • the ticket paper invalidation alarm is performed.
  • control unit controls the ticket checking instruction module to issue the instruction information that the ticket paper is invalid, and at the same time controls the alarm module to issue the alarm information that the ticket paper is invalid.
  • Step S23 detecting the number of passengers who need to purchase tickets in the entry area of the passage.
  • the control unit detects the number of passengers who need to purchase tickets in the entry area of the passage.
  • the control unit records the state of the first three sensors A1 ⁇ A3 in the entry area of the channel every preset time interval.
  • the control unit determines that the passenger arrives at the position of the sensor A3, for example, when the sensor When the A3 is continuously in the occluded state for a set period of time, the control unit determines that the passenger arrives at the position of the sensor A3.
  • the control unit counts the sensor A1 recorded in the set time period. The state of A3, according to the statistical result, the number of passengers to be purchased in the entry area of the channel in the set time period is calculated, wherein the set time period may be between two times when the passenger arrives at the position where the sensor A3 is located.
  • the set time period may be the time between the power-on time of the automatic ticket checking device and the current time when the passenger arrives at the position where the sensor A3 is detected.
  • the first time there is a passenger arriving at the location of sensor A3 The set time period may be a period of time between when the control unit last detects that the passenger arrives at the position of the sensor A3 until the time when the passenger arrives at the position where the sensor A3 is detected; in addition, the set time period may also be detected.
  • a period of time before the passenger arrives at the position where the sensor A3 is located for example, Is or 2s.
  • Step S24 determining whether the number of passengers who need to purchase tickets in the entry area of the channel is greater than 1.
  • the reading step S23 has detected the number of passengers who need to purchase tickets in the entry area of the channel, and determines the purchase price of the entry area of the channel in the set time period. Whether the number of ticket passengers is greater than 1, if yes, step S25 is performed, otherwise, step S26 is performed.
  • Step S25 issuing an illegal trailing over-detection alarm.
  • the control unit determines the passage of the automatic ticket checking apparatus.
  • Step S26 opening the gate
  • the control unit controls the gate to rotate to a position of 180 degrees, which is open. , allowing passengers entering the zone to pass through the passage.
  • Step S27 detecting the state of the passenger in the safe area and the exit area of the passage.
  • the closing gate control unit When detecting that the passenger has left the safe area of the passage, the closing gate control unit detects the state of the sensors A4 ⁇ A10 located in the safe area and the exit area of the passage. When the control unit detects that the sensor A10 is in the occluded state and the sensors A4 ⁇ A9 are in the unobstructed state, the control unit determines that the passenger has left the safety zone of the passage into the exit zone of the passage. At this time, the control unit controls the gate to rotate, so that the control unit controls the gate to rotate. It reaches the 90 degree position and is off. Preferably, in order to prevent the latter passenger from entering the passage when the previous passenger has not left the gate, the detection result is confused.
  • Step S31 determining that the current detecting is Whether the ticket paper provided by the passenger is valid.
  • step S33 the ticket paper invalidation alarm is issued in the same manner as step S22.
  • step S33 the number of passengers who need to purchase tickets in the entry area of the detection channel is the same as step S23.
  • Step S34 determining whether the number of passengers to be purchased in the entry area of the channel is greater than 1. determining whether the number of passengers to be purchased in the entry area of the channel in the set time period is greater than the number of valid ticket papers that have been detected by the ticket checking unit, If yes, go to step S35, otherwise, go to step S36.
  • Step S35 issuing an illegal trailing over-detection alarm Same as step S25.
  • Step S36 determining whether the gate is an open state control unit detecting the gate state, determining whether the current gate is in an open state, and if yes, executing step S38; otherwise, executing step S37.
  • step S37 the gate control unit is turned on to control the gate to rotate to a position of 180 degrees, and is in an open state.
  • step S38 detecting the state of the passenger in the safe area and the exit area of the passage. When detecting that the passenger has left the safe area of the passage, closing the gate is the same as step S27. In this embodiment, the latter passenger is allowed to enter the access zone of the passage when the previous passenger does not leave the passage.
  • the control unit does not The gate is closed again to directly determine whether the latter passenger meets the requirements of the inspection.
  • the passenger is allowed to pass through the passage.
  • the detection method provided by the embodiment can improve the ticket checking efficiency of the automatic ticket checking apparatus when the passenger flow is large.
  • the automatic ticket checking apparatus provided by the present invention can also check the ticket according to the principle that a plurality of ticket papers are provided by the first passenger among the plurality of passengers, and then multiple passengers sequentially enter the passage with the passenger.
  • the specific implementation method is as follows: a) Detecting the number of valid ticket papers, wherein the control unit adds 1 to the number of valid ticket papers stored in the RAM memory after detecting a valid ticket paper; b) detecting the passengers who need to purchase tickets in the entry area of the channel The number of people, the control unit records the state of the first three sensors A1 ⁇ A3 in the entry area of the channel every preset time interval, and detects that a passenger arrives at the position of the sensor A3, detects the entry area of the channel within a set time period.
  • the number of passengers who need to purchase tickets, and the number of passengers who need to purchase tickets stored in the RAM memory is added to the number of passengers who need to purchase tickets in the entry area of the channel detected this time; c) The number of passengers who need to purchase tickets is determined by the control unit Whether it is greater than the number of valid ticket papers, when the number of passengers to be purchased is not more than the number of valid ticket papers, the control gate is opened to allow passengers to pass through the passage; d) detection channel The number of tickets required to withdraw from the security zone of the passenger, the control unit detects the passage of state security zone and exit zone of passengers, when every passenger is detected to leave the safe zone exit channel into the channel area, control The system divides the number of valid ticket papers stored in the RAM memory and the number of passengers who need to purchase tickets by one.
  • step a) and step b) are continuously executed, so that the control program can ensure the valid ticket in the process of performing step c) and step d).
  • the number of passengers and the number of passengers who need to purchase tickets in the entry area of the passage can be updated in real time, so that the number of valid ticket papers or the number of passengers who need to purchase tickets in the entry area of the passage can be increased before the automatic ticket checking device closes the gate.
  • the control program can directly execute step c) without closing the gate.
  • FIG. 8 is a flow chart showing a method of detecting the number of passengers to be purchased in the entry area of the passage according to the first embodiment of the present invention, the method comprising the following steps: Step S51, detecting and recording the first three sensors in the entry area of the passage The state, at the same time, records the number of times each sensor is continuously in the same state.
  • the control unit outputs the output signals of the first three sensors in the entry area of the preset time interval, for example, the control unit is preset for 10 ms every interval. Detecting the output signal of the light receiver of each sensor, determining and recording the state of the current time sensor according to the output signal of the light receiver of the sensor, and setting the state when the sensor is blocked by a binary "1", when the sensor is not blocked The status is indicated by a binary "0". Before the state of the current sensor is recorded, the control unit determines whether the current sensor state is consistent with the state of the sensor recorded last time.
  • FIG. 9 shows a visual representation of the state of the first three sensors over a period of time. As shown in Figure 9, all pixels of each row represent the state of the corresponding sensor during that time, and the pixel is black for detection.
  • the time sensor is in an occluded state, and the pixel is white to indicate that the detection time sensor is in an unobstructed state.
  • the direction indicated by the arrow t is the order in which the time occurs, and the previous pixel in the direction of the arrow is the state of the sensor detected before the pixel point.
  • the data dn m stored in the first data set Cln (n is the sensor serial number, and the value is 1, 2, 3, m is the serial number of the data in the Cln, and the value is a positive integer) If a certain number of rules are used for emissions, for example, the data with an odd number is the number of times the sensor is continuously in an unoccluded state, and the serial number is even.
  • the data is the number of times the sensor is continuously in the occluded state.
  • the first data of the first data set Cln corresponding to the sensor may be set to 0, that is, the sensor is continuous.
  • the number of times in the unoccluded state is 0, and the sensor continuous state number SCnt_n, that is, the number of times the sensor is continuously in the occluded state, is stored as the second data of the first data set Cln when the sensor state changes for the first time.
  • Step S52 determining whether the number of times the third sensor in the entering zone is continuously in the occluded state reaches the first preset threshold M.
  • step S53 When the current state of the sensor A3 is occluded, that is, the state of "1", the control unit will be The three sensor continuous state counts SCnt_3 are compared with the first preset threshold value M, and it is judged whether the number of times the sensor A3 is continuously in the occluded state reaches M times. If yes, step S53 is performed, otherwise, step S51 is performed.
  • the first preset threshold M be 10
  • the timings of T 2 and T 3 illustrated in FIG. 9 are the times when the third sensor is continuously in the occluded state for a number of times. Step S53, performing denoising processing on the first data set Cln of each sensor.
  • the first data set Cln is stored in the set time period.
  • the data is subjected to denoising processing, wherein, when the number of times that the sensor A3 is continuously in the occluded state after the automatic ticket checking apparatus is powered on reaches the first preset threshold value M for the first time, the set time period is the power-on time of the automatic ticket checking apparatus to the current time.
  • the set time period is that the number of times the sensor A3 is continuously in the occlusion state reaches the first preset ⁇ threshold time to the current number of times in successive A3 sensor is shielded state reaches a first predetermined threshold time period between ⁇ , for example, in Figure 9 a schematic ⁇ 2 Î ⁇ time period between the time point 3.
  • the control unit performs denoising processing on the data stored in the set time period in the first data set Cln by using the following rules: When the number of non-zero data stored in the first data set Cln is greater than three, the search first The minimum data dn m between the first non-zero data and the last non-zero data in the data set Cln is judged.
  • the number of times that the corresponding sensor is continuously in the occluded state and/or the number of times the sensor is continuously in the occluded state is obtained by denoising the data stored in the second data set C2n for the first data set Cln.
  • La table according to a state before the three sensors illustrated in FIG. 9 at the time period between the first data set the time T 2 in the data Cln. Table la
  • Table 2a is data in a time period-data set Cln between the time T 2 and the time ⁇ 3 according to the state of the first three sensors illustrated in FIG. Table 2a
  • the control unit sets the first data set Cln.
  • the first data set Cln may continue to be used to store the number of times that the corresponding sensor of the subsequent statistics is continuously in the occluded state and/or the number of times the sensor is continuously in the unoccluded state.
  • the non-zero data in the first data set Cln smaller than the second preset threshold N is combined with the non-zero data in front of the data, so that the sensor can be in a shorter time. The unstable state in the time is filtered out.
  • the state of the sensor is recorded every 10 ms in step S51.
  • the state is continuously occluded or unobstructed during the set time period.
  • This state is considered to be an unstable state of the sensor, such as the state of the sensor due to the swing of the passenger's arm, the movement of the luggage pole of the passenger carrying the luggage, and the like.
  • this step filters the unstable state of the sensor by combining non-zero data, so that the non-zero data stored in the newly generated second data set C2n can indicate that the corresponding sensor is in a stable state for a period of time.
  • Step S54 the number of passengers who need to purchase tickets in the entry area of the statistical channel Since the non-zero data stored in the second data set C2n indicates that the corresponding sensor is in a stable occlusion state and/or an occlusion state in a period of time, the representation sensor stored in the second data set C2n is continuously
  • the non-zero data of the occlusion state can indicate that a passenger passes the location of the sensor in a time period, and the control unit determines each sensor detection according to the number of non-zero data indicating that the sensor is continuously occluded in the second data set C2n.
  • the number of non-zero data stored in the second data set C2n corresponding to the nth sensor indicating that the sensor is continuously in the occluded state is the number of passengers who need to purchase tickets in the entry area of the channel within the set time period.
  • the number of passengers who need to purchase tickets in the entry area of the channel detected by the sensor during the set time period for example, the second data set C21, C22, C23 shown in Table lb indicates that the sensor is continuously in the occluded state.
  • the number of passengers who need to purchase tickets detected by the first three sensors is calculated by a certain rule to determine the number of passengers who need to purchase tickets in the entry area of the channel within the set time period.
  • the calculation rule is: When the number of passengers who need to purchase tickets is 0, the number of passengers who need to purchase tickets in the channel is 0; when the number of passengers purchased by the three sensors is not 0, if three sensors If the number of passengers to be purchased is the same, it is determined that the number of passengers is the number of passengers who need to purchase tickets in the channel; if the number of passengers required to purchase tickets is detected by three sensors, then the number of passengers is determined.
  • the number of passengers who need to purchase tickets detected by the two sensors with the same test result is the number of passengers who need to purchase tickets in the channel; if the number of passengers to be purchased for the three sensors is different, then three The sensor's test results are sorted and the median value is taken as the number of passengers who need to purchase the ticket in the channel.
  • the control unit determines that the time is up to ⁇ 2
  • the number of passengers who need to purchase tickets in the entry area of the channel is one during the time period; for example, in the time zone between ⁇ 2 and ⁇ 3 , the access zone of the channel detected by the sensors A1, ⁇ 2
  • the number of passengers who need to purchase tickets is one.
  • the number of passengers who need to purchase tickets in the entry area of the channel detected by sensor A3 is two. Therefore, the control unit determines that the time between ⁇ 2 and ⁇ 3 is within the time interval.
  • the number of passengers who need to purchase tickets in the entry area of the passage is one.
  • the calculation rule of the present invention for the number of passengers who ultimately need to purchase tickets in the passage entry area is not limited to the above rules.
  • the automatic ticket checking apparatus and the automatic ticket checking method provided by the embodiments of the present invention determine the number of passengers who need to purchase tickets in the entry area of the start channel when the third sensor is in a relatively stable occlusion state, and detect the time before the determination time.
  • the present invention detects the set time by detecting the set time.
  • the steady state of the sensor in the segment determines the number of passengers who need to purchase tickets for each sensor during the set time period, and further determines the number of passengers who need to purchase tickets in the entry area of the channel during the set time period, and can accurately and reliably The number of passengers who need to purchase tickets in the entry area of the passage during the time period is detected, thereby improving the accuracy and reliability of the automatic ticket checking.
  • an embodiment of the present invention further provides an automatic ticket checking apparatus.
  • the automatic ticket checking apparatus can perform the automatic ticket checking method provided by the embodiment of the present invention.
  • the ticket checking method of the embodiment of the present invention can also be performed by the automatic ticket checking apparatus provided by the embodiment of the present invention.
  • the automatic ticket checking apparatus will be described below with reference to Figs. 10 to 12:
  • Fig. 10 is a schematic diagram of an automatic ticket checking apparatus according to a second embodiment of the present invention.
  • the automatic ticket checking apparatus includes: a recording unit 10 configured to respectively record the number of times that the first sensor, the second sensor, and the third sensor are continuously in the same state, wherein, in the passenger traveling direction, the first sensor, the second sensor, and the first The three sensors are sequentially disposed in the ticket checking channel; the statistical unit 20 is configured to: when detecting the position of the passenger reaching the third sensor, counting that the first sensor, the second sensor, and the third sensor recorded in the set time period are consecutively the same The number of times.
  • the calculating unit 30 is configured to calculate, according to the statistical result, the number of passengers who need to purchase tickets in the ticket checking channel within the set time period.
  • the calculating unit 10 is configured to first calculate the number of passengers to be purchased, which are detected by the first sensor, the second sensor, and the third sensor, respectively according to the statistical result, and then determine the setting according to any one or more of the following methods.
  • the number of passengers who need to purchase tickets in the ticket gate in the time period wherein the calculation unit 10 includes any one or more of the following calculation units (not shown).
  • the first calculating unit is configured to determine that the number of passengers to be purchased in the ticket checking channel is 0 when the number of passengers to be purchased detected by any one of the first sensor, the second sensor, and the third sensor is zero.
  • the second calculating unit is configured to determine, when the number of passengers to be purchased, that the first sensor, the second sensor, and the third sensor are consistent, determine the number of passengers who need to purchase tickets in the ticket checking channel.
  • a third calculating unit configured to: when the first sensor, the second sensor, and the third sensor detect the number of passengers to be purchased, there are two cases, and the number of the two detection results is the same as the ticket purchase channel The number of passengers.
  • a fourth calculating unit configured to use the median value of the detection results of the three sensors as the ticket purchase passengers in the ticket checking channel when the number of passengers to be purchased for the first sensor, the second sensor, and the third sensor is different Number of people.
  • FIG. 11 is a schematic illustration of an automatic ticket checking apparatus in accordance with a third embodiment of the present invention.
  • the automatic ticket checking apparatus of this embodiment can be used as a preferred embodiment of the automatic ticket checking apparatus of the embodiment shown in FIG. 10.
  • the recording unit 10 includes: a recording module 101, configured to record the first sensor once every preset time interval And a state of the second sensor and the third sensor; the updating unit 102 is configured to: when the state of the two sensors is recorded twice consecutively, the number of consecutive states of the sensor is increased by one, when any sensor records twice consecutively When the state of the sensor is different, the number of consecutive states of the sensor is set to 1; and the storage unit 103 is configured to store the number of times the sensor is continuously in the previous state of the current state when the state of the two consecutive recordings is different
  • FIG. 12 is a schematic illustration of an automatic ticket checking apparatus in accordance with a fourth embodiment of the present invention.
  • the automatic ticket checking apparatus of this embodiment includes: in addition to the various parts of the automatic ticket checking apparatus shown in FIG.
  • the detecting unit 40 is configured to detect the valid ticket paper of the plurality of ticket papers when receiving the plurality of ticket papers. Quantity.
  • the determining unit 50 is configured to determine, after calculating the number of passengers to be purchased in the ticket checking channel according to the statistical result, whether the number of passengers to be purchased in the ticket checking channel is greater than the number of valid ticket papers.
  • the control unit 60 is configured to: when it is determined that the number of passengers to be purchased in the ticket checking passage is not greater than the number of valid ticket papers, the control gate is opened to allow the passenger to pass through the ticket checking passage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

本发明公开了一种自动检票方法及自动检票装置。该自动检票方法包括:分别记录第一传感器、第二传感器和第三传感器连续处于相同状态的次数,其中,在乘客的通行方向上,第一传感器、第二传感器和第三传感器依次设置在检票通道中;当检测到乘客到达第三传感器的位置时,统计在设定时间段内记录的第一传感器、第二传感器和第三传感器连续处于相同状态的次数;以及根据统计的结果计算在设定时间段内检票通道内需购票乘客的人数。通过本发明,提高了自动检票的准确性和可靠性。

Description

自动检票方法及自动检票装置
本申请要求 2012 年 10 月 29 日提交至中国知识产权局的, 申请号为 201210421075.8, 名称为 "自动检票方法及自动检票装置" 的中国发明专利申请的优 先权, 其全部公开内容结合于此作为参考。 技术领域 本发明涉及检票领域, 具体而言, 涉及一种自动检票方法及自动检票装置。 背景技术 为了提高检票效率、 降低人工劳动强度, 自动检票装置已经越来越多的应用于铁 路、 公路、 地铁的检票大厅用于取代人工检票。 自动检票装置通常包括检票机构、 通 道以及闸门, 其中, 乘客在检票机构处提供票纸后经通道运动至闸门, 当检票机构检 测票纸有效后控制闸门开启, 以便乘客通过。 自动检票装置中, 一般都在其通道中按 一定规则安装有多个光电传感器, 自动检票装置的控制器通过光电传感器的输出信号 检测通道中通行的乘客的状态, 判断通道内是否存在非法尾随的乘客, 进而确定是否 开启闸门允许乘客通行。 申请号为 201110099452.6的中国专利公开了一种自动检票机。 如图 1所示, 该自 动检票机包括: 检测系统 1 以及与其连接的第一传感器组 2和第二传感器组 3, 第一 传感器组 2和第二传感器组 3根据光电传感器的输出信号获取当前乘客的通行状态。 其中, 第一传感器组 2用于采集乘客的第一通行状态信号, 当第一传感器组 2中相邻 被遮挡的传感器之间存在有未被遮挡的传感器时, 判定为多体通行状态, 即乘客以拖 拽等形式携带行李、 乘客携带儿童或有其他乘客尾随的通行状态, 否则, 为单体通行 状态, 即不携带任何行李或是以抱、 背等形式携带行李的一个乘客的通行状态。 第二 传感器组 3用于采集乘客的第二信号, 第二传感器组 3中的传感器进行"数腿"检测, 当一个或几个传感器被连续遮挡时判为存在一条"腿", 当相邻被遮挡的传感器之间存 在有未被遮挡的传感器时判为存在不同的"腿"。 当第一传感器 2检测到乘客通行状态 为多体通行状态中其他乘客尾随的情况时, 则当第二传感器组 3检测到 "两条腿"时不 报警, 检测系统 1控制闸门打开; 当第二传感器组 3检测到 "三条腿"时判定存在尾随 过检的情况, 检测系统 1控制报警系统进行报警。 上述专利公开的自动检票机在一定情况下能正确检测是否存在乘客尾随过检的情 况, 但是, 该自动检票机通过检测在某一时刻传感器的状态来判断通道中乘客的通行 状态, 由于通道中通行的乘客或其携带物为运动状态, 且其运动状态存在不确定性, 比如, 某一位处于单体通行状态的乘客在行走过程中其胳膊可能会发生摆动, 当该乘 客通过第一传感器组 2时, 如果在判断时刻, 该乘客的胳膊处于摆动状态, 其身体和 胳膊分别遮挡住一个传感器, 且两个被遮挡的传感器之间存在有未被遮挡的传感器, 则该处于单体通行状态的乘客就会被误判断为多体通行状态; 再比如, 某一位处于单 体通行状态的乘客携带雨伞、 手提包等小件物品, 当该乘客通过第二传感器组 3时, 如果在判断时刻, 该乘客的胳膊处于摆动状态, 其携带物遮挡住一个传感器、 其两条 腿分别遮挡住一个传感器, 且相邻两个被遮挡的传感器之间存在有未被遮挡的传感器 时, 则该乘客的携带物和两条腿被判断为"三条腿"; 在第一传感器组 2误判断乘客为 多体通行状态中其他乘客尾随情况, 第二传感器组 3误检测到"三条腿 "时, 自动检票 机误判断存在尾随过检情况, 检测系统 1控制报警系统进行报警。 由此可见, 相关专 利公开的自动检票机的检测方法存在检测不准确的问题。 针对相关技术中自动检票机对乘客通行状态的检测不准确的问题, 目前尚未提出 有效的解决方案。 发明内容 本发明的主要目的在于提供一种自动检票方法及自动检票装置, 以解决相关技术 中自动检票机对乘客通行状态的检测不准确的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种自动检票方法。 该自动 检票方法包括: 分别记录第一传感器、 第二传感器和第三传感器连续处于相同状态的 次数, 其中, 在乘客的通行方向上, 第一传感器、 第二传感器和第三传感器依次设置 在检票通道中; 当检测到乘客到达第三传感器的位置时, 统计在设定时间段内记录的 第一传感器、 第二传感器和第三传感器连续处于相同状态的次数; 以及根据统计的结 果计算在设定时间段内检票通道内需购票乘客的人数。 进一步地, 根据统计的结果计算在设定时间段内检票通道内需购票乘客的人数包 括: 首先根据统计的结果分别计算第一传感器、 第二传感器和第三传感器检测到的需 购票乘客的人数, 然后按照以下任意一种或者多种方法确定在设定时间段内检票通道 内需购票乘客的人数: 当第一传感器、 第二传感器和第三传感器中任一传感器检测到 的需购票乘客的人数为 0时, 判定检票通道内需购票乘客的人数为 0; 当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的人数一致时, 判定检票通道内需购票 乘客的人数为一致的人数; 当第一传感器、 第二传感器和第三传感器检测到的需购票 乘客的人数存在两种情况时, 将其中的两个检测结果一致的人数作为检票通道内需购 票乘客的人数; 以及当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的 人数各不相同时, 将三个传感器的检测结果的中间值作为检票通道内需购票乘客的人 数。 进一步地, 在本发明的自动检票方法中, 分别记录第一传感器、 第二传感器和第 三传感器连续处于相同状态的次数包括: 每间隔预设时间分别记录一次第一传感器、 第二传感器和第三传感器的状态; 当任一传感器连续两次记录的状态相同时, 将该传 感器的连续状态次数进行加 1操作, 当任一传感器连续两次记录的状态不同时, 将该 传感器的连续状态次数置 1 ; 以及当任一传感器连续两次记录的状态不同时, 将该传 感器连续处于当前状态的上一状态的次数存储至与该传感器对应的第一数据集合中, 其中, 根据统计的结果计算检票通道内需购票乘客的人数包括按照以下方法统计每个 传感器检测到的检票通道内需购票乘客的人数: 对第一数据集合中的数据进行去噪处 理, 得到第二数据集合, 其中, 去噪处理包括: 当第一数据集合 Cln中所存储的非零 数据的个数大于三个时, 搜索第一数据集合 Cln中第一个非零数据和最后一个非零数 据之间的最小数据 dnm并对其进行判断, 当 dnm小于预设阈值 N时, dnm及 dnm+1被累 加到 dtim^上, dnm+2在第一数据集合 Cln中的位置向前移动, 其序号变为 m, dnm+2 后面的数据在第一数据集合 Cln中的位置也依次向前移动,第一数据集合 Cln中空出 的最后两个序号的位置用零进行填充, 当第一数据集合 Cln内的最小数据不小于预设 阈值 N或第一数据集合 Cln内只剩余三个非零数据时, 停止进行数据搜索及判断, n 为传感器序号, 取值为 1、 2、 3, m为 Cln内数据的序号; 以及将第二数据集合中存 储的表示每个传感器处于被遮挡状态的非零数据的个数作为该传感器检测到的检票通 道内需购票乘客的人数。 进一步地, 当第三传感器检测到以下结果时, 确定检测到乘客到达第三传感器的 位置: 每间隔预设时间记录一次第三传感器的状态; 以及当第三传感器连续处于被遮 挡状态的次数达到预设阈值 M时, 确定检测到乘客到达第三传感器的位置。 进一步地, 该自动检票方法还包括: 在接收到多张票纸时, 检测多张票纸中有效 票纸的数量, 在根据统计的结果计算检票通道内需购票乘客的人数之后, 该自动检票 方法还包括: 判断检票通道内需购票乘客的人数是否大于有效票纸的数量, 当判断出 检票通道内需购票乘客的人数不大于有效票纸的数量时, 控制闸门打开以允许乘客在 检票通道中通行。 进一步地, 该自动检票方法还包括: 检测是否有乘客退出检票通道; 每检测到有 一个乘客退出检票通道, 将有效票纸的数量进行减 1操作以对所检测到的多张票纸中 有效票纸的数量进行更新, 同时将计算得到的检票通道内需购票乘客的人数进行减 1 操作以对计算到的检票通道内需购票乘客的人数进行更新; 判断多张票纸中有效票纸 的数量是否有增加, 或者, 判断计算到的检票通道内需购票乘客的人数是否有增加; 以及当判断出多张票纸中有效票纸的数量有增加或者计算到的检票通道内需购票乘客 的人数有增加时, 再次判断检票通道内需购票乘客的人数是否大于有效票纸的数量。 为了实现上述目的, 根据本发明的另一方面, 提供了一种自动检票装置。 该自动 检票装置包括: 记录单元, 用于分别记录第一传感器、 第二传感器和第三传感器连续 处于相同状态的次数, 其中, 在乘客的通行方向上, 第一传感器、 第二传感器和第三 传感器依次设置在检票通道中; 统计单元, 用于当检测到乘客到达第三传感器的位置 时, 统计在设定时间段内记录的第一传感器、 第二传感器和第三传感器连续处于相同 状态的次数; 以及计算单元, 用于根据统计的结果计算设定时间段内检票通道内需购 票乘客的人数。 进一步地, 计算单元用于首先根据统计的结果分别计算第一传感器、 第二传感器 和第三传感器检测到的需购票乘客的人数, 然后按照以下任意一种或者多种方法确定 在设定时间段内检票通道内需购票乘客的人数, 其中, 计算单元包括以下任意一个或 多个计算单元: 第一计算单元, 用于当第一传感器、 第二传感器和第三传感器中任一 传感器检测到的需购票乘客的人数为 0时, 判定检票通道内需购票乘客的人数为 0; 第二计算单元, 用于当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的 人数一致时, 判定检票通道内需购票乘客的人数为一致的人数; 第三计算单元, 用于 当第一传感器、第二传感器和第三传感器检测到的需购票乘客的人数存在两种情况时, 将其中的两个检测结果一致的人数作为检票通道内需购票乘客的人数; 以及第四计算 单元, 用于当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的人数各不 相同时, 将三个传感器的检测结果的中间值作为检票通道内需购票乘客的人数。 进一步地, 记录单元包括: 记录模块, 用于每间隔预设时间分别记录一次第一传 感器、 第二传感器和第三传感器的状态; 更新单元, 用于当任一传感器连续两次记录 的状态相同时, 将该传感器的连续状态次数进行加 1操作, 当任一传感器连续两次记 录的状态不同时, 将该传感器的连续状态次数置 1 ; 以及存储单元, 用于当任一传感 器连续两次记录的状态不同时, 将该传感器连续处于当前状态的上一状态的次数存储 至与该传感器对应的第一数据集合中, 其中, 计算单元包括: 去噪模块, 用于对第一 数据集合中的数据进行去噪处理, 得到第二数据集合, 其中, 去噪处理包括: 当第一 数据集合 Cln中所存储的非零数据的个数大于三个时,搜索第一数据集合 Cln中第一 个非零数据和最后一个非零数据之间的最小数据 dnm并对其进行判断, 当 dnm小于预 设阈值 N时, dnm及(!^^被累加到 dn^上, dnm+2在第一数据集合 Cln中的位置向 前移动, 其序号变为 m, dnm+2后面的数据在第一数据集合 Cln中的位置也依次向前 移动, 第一数据集合 Cln中空出的最后两个序号的位置用零进行填充, 当第一数据集 合 Cln内的最小数据不小于预设阈值 N或第一数据集合 Cln内只剩余三个非零数据 时, 停止进行数据搜索及判断, n为传感器序号, 取值为 1、 2、 3, m为 Cln内数据 的序号; 以及确定模块, 用于将第二数据集合中存储的表示每个传感器处于被遮挡状 态的非零数据的个数作为该传感器检测到的检票通道内需购票乘客的人数。 进一步地, 该自动检票装置还包括: 检测单元, 用于在接收到多张票纸时, 检测 多张票纸中有效票纸的数量; 判断单元, 用于在根据统计的结果计算检票通道内需购 票乘客的人数之后, 判断检票通道内需购票乘客的人数是否大于有效票纸的数量; 以 及控制单元, 用于当判断出检票通道内需购票乘客的人数不大于有效票纸的数量时, 控制闸门打开以允许乘客在检票通道中通行。 通过本发明, 由于对多个传感器在设定时间段内处于相同状态的次数分别进行统 计, 并根据统计的结果计算在设定时间段内检票通道内需购票乘客的人数, 解决了相 关技术中自动检票机对乘客通行状态的检测不准确的问题, 进而达到了提高自动检票 的准确性和可靠性的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据相关技术的自动检票机的组成示意图; 图 2是根据本发明第一实施例的自动检票装置的组成示意图; 图 3a是根据本发明第 实施例的自动检票装置的立体图; 图 3b是根据本发明第 实施例的自动检票装置的侧视图; 图 3c是根据本发明第 实施例的自动检票装置的主视图; 图 4a是根据本发明第 实施例的自动检票装置的侧视图; 图 4b是根据本发明第 实施例的自动检票装置的立体图; 图 5是根据本发明第一实施例的自动检票方法的流程图; 图 6是根据本发明第二实施例的自动检票方法的流程图; 图 7是根据本发明第三实施例的自动检票方法的流程图; 图 8是根据本发明第一实施例的通道的进入区中需购票乘客的人数的检测方法的 流程图; 以及 图 9是根据本发明的自动检票方法的对于一段时间内通道的进入区中前三个传感 器状态的直观表示图像; 图 10是根据本发明第二实施例的自动检票装置的组成示意图; 图 11是根据本发明第三实施例的自动检票装置的组成示意图; 以及 图 12是根据本发明第四实施例的自动检票装置的组成示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 图 2是根据本发明第一实施例的自动检票装置的组成示意图, 如图所示, 自动检 票装置 100包括控制单元 11、 通信单元 12、 Flash存储器 13、 RAM存储器 14、 检票 单元 15、 传感器单元 16、 闸门单元 17、 以及指示单元 18。 其中, 控制单元 11用于控制其他各单元执行工作, 比如, 控制单元 11控制通信单元 12 与和自动检票装置 100 连接的上位机 (如计算机) 之间进行数据传输, 控制单元 11 判断传感器单元 16检测到的自动检票装置 100的通道中需要购买票纸的乘客的人数 (以下简称需购票乘客的人数)与检票单元 15检测到的有效票纸的数量是否一致, 并 根据判断结果控制打开或关闭闸门单元 17的闸门 173。 通信单元 12用于完成自动检票装置 100与上位机之间的数据传输, 如通信单元 12将检票单元 15读取的票纸信息上传到上位机, 并接收上位机返回的票纸是否有效 的信息, 通信单元 12通常为串口、 网络接口。
Flash存储器 13用于存储自动检票装置的控制程序, 同时, Flash存储器 13中还 用于存储第一预设阈值 M和第二预设阈值 N, 其中, 第一预设阈值 M判断是否开始 统计一个设定时间段内相关传感器的状态, 第二预设阈值 N用于对相关传感器状态统 计所得到的第一数据集合进行去噪处理。 RAM存储器 14用于为自动检票装置的控制程序运行提供存储空间, 同时, RAM 存储器 14还用于存储控制程序运行过程中所需要的变量, 比如, RAM存储器 14用于 存储检票单元 15读取的票纸的信息, RAM存储器 14还用于存储第一数据集合 Cln、 第二数据集合 C2n以及传感器连续状态次数 SCnt_n,其中 n为传感器序号,取值为 1、 2、 3, 第一数据集合 Cln、 第二数据集合 C2n中均包括在满足设定要求的设定时间段 内相关传感器状态统计的数据,传感器连续状态次数 SCnt_n用于记录第 n个传感器连 续处于同一状态的次数。 检票单元 15用于读取乘客所提供的票纸的信息, 检票单元 15可以为读取非接触 型 IC卡的读卡模块,如射频模块,也可以为读取接触型磁卡的读卡模块,如读磁模块, 还可以为既可以读取非接触型 IC卡又可以读取接触型磁卡的混合型读卡模块。 传感器单元 16 用于检测自动检票装置的通道中通行的乘客及其携带物的通行状 态, 其中, 传感器单元 16包括有按一定规则排布的多个传感器, 该多个传感器可以是 透射传感器, 也可以是反射传感器, 每个传感器都包括有光发生器和光接收器, 当传 感器为反射传感器时, 每个传感器的光发生器和光接收器位于自动检票装置 100的通 道同一侧, 当通道中有乘客或其携带物经过,乘客或其携带物位于传感器所在位置时, 传感器处于被遮挡状态, 光接收器接收由通行的乘客或其携带物反射的光发生器发生 的光, 此时, 光接收器输出第一检测信号, 如高电压, 当乘客或其携带物没有位于传 感器所在位置时, 传感器处于不被遮挡状态, 光接收器不能接收光发生器发生的光, 此时, 光接收器输出第二检测信号, 如低电压; 当传感器为透射传感器时, 每个传感 器的光发生器和光接收器分别位于通道的两侧, 二者相对设置, 当乘客或其携带物没 有位于传感器所在位置时, 传感器处于不被遮挡状态, 光接收器接收光发生器发生的 光, 此时, 光接收器输出第一检测信号, 如高电压; 当通道中有乘客或其携带物经过, 乘客或其携带物位于传感器所在位置时, 传感器处于被遮挡状态, 光接收器不能接收 光发生器发生的光, 此时, 光接收器输出第二检测信号, 如低电压。 由此可见, 对于 传感器单元 16中的每个传感器,当传感器被通道中经过的乘客或其携带物遮挡和不被 通道中经过的乘客或其携带物遮挡时, 其光接收器接收的光强度不同, 因此, 输出的 检测信号也不同,控制单元 11通过检测传感器的光接收器的输出信号即可判断当前时 刻该传感器是否处于被遮挡状态, 即判断通道中是否有通行乘客或其携带物经过该传 感器。 闸门单元 17用于允许或禁止通道中的乘客通行, 闸门单元 17包括闸门电机驱动 器 171、 闸门电机 172、 以及闸门 173, 其中, 闸门电机驱动器 171接收控制单元 11 输出的驱动脉冲并输出闸门电机 172的输出轴转动所需要的电流, 闸门电机 172的输 出轴与闸门 173传动连接,闸门电机 172的输出轴转动时驱动闸门 173转动预设角度, 从而使闸门 173达到打开或关闭状态。 自动检票装置还包括指示单元 18, 指示单元 18用于根据自动检票装置 100的通 道中乘客的购票信息及通行状态输出各种信息, 指示单元 18包括通行指示模块 181、 检票指示模块 182以及报警模块 183, 其中, 通行指示模块 181可为一指示灯、 液晶 显示屏等, 用于指示是否允许乘客进入自动检票装置 100的通道, 检票指示模块 182 可为一液晶显示屏、 语音装置等, 用于指示通行乘客所提供的票纸是否为有效票纸, 报警模块 183可为一蜂鸣器、 喇叭、 语音装置等, 用于在票纸无效或有其他乘客尾随 过检时发出报警信息。 图 3a至图 3c示意出了根据本发明第一实施例的自动检票装置的结构组成, 图 3a 是根据本发明第一实施例的自动检票装置的立体图, 如图 3a所示, 自动检票装置 100 包括两个相对设置的本体 21, 二者之间形成用于供乘客通行的通道 22, 本体 21的面 向通道 22的一侧上安装有闸门 173, 闸门 173可以处于打开或者闭合状态, 例如, 闸 门 173的门翼可以以本体 21的上的直线 0为轴心, 在与通道 22的通行方向呈 0~180 度角度的范围内转动,当闸门 173的门翼的延伸方向与通道 22的乘客通行方向垂直时, 闸门为关闭状态,此时乘客不能在通道 22中正常通行; 当闸门 173的门翼的延伸方向 与通道 22的乘客通行方向平行时, 闸门为打开状态, 此时乘客可以在通道 22中正常 通行。 图 3b是根据本发明第一实施例的自动检票装置的侧视图, 如图所示, 通道 22沿 乘客的通行方向依次被划分为进入区 23、 安全区 24以及退出区 25三部分, 其中, 安 全区 24为闸门 173在打开及闭合的过程中其门翼在通道 22中所经过的区域, 进入区 23是指通道 22中处于通道进入口和安全区 24的之间的区域, 退出区 25是指通道 22 中处于安全区 24和退出口之间的区域。 本体 21面向通道 22的侧面上沿乘客的通行方向 (箭头 A所示方向)依次安装有 10个传感器 A1~A10,图 3b所示的自动检票装置 100的侧视图上示意了传感器 A1~A10 的排布情况,在垂直于乘客的通行方向上,传感器 A1~A3分别设置在距离地面高度为 第一高度 Η1、第二高度 H2以及第三高度 H3的位置上, 传感器 A4~A9设置在距离地 面高度为第四高度 H4的位置上, 传感器 A10设置在距离地面高度为第五高度 H5的 位置上, 其中, 第一高度 Hl <第三高度 113<第二高度 H2, 第四高度 1«<第一高度 HI , 第五高度 115<第二高度 H2, HI 取值范围为 450mm~550mm, H2取值范围为 1000mm~1200mm, H3取值范围为 650mm~750mm, H4取值范围为 150mm~250mm, H5取值范围为 850~950mm。 在乘客的通行方向上, 传感器 A1与传感器 A2之间以及 传感器 A2与传感器 A3之间的间距为 115mm~125mm, 传感器 A3与传感器 A4之间 的间距为 265mm~275mm, 传感器 A4~A9中相邻两个传感器之间以及传感器 A9与传 感器 A10之间的间距为 145mm~155mm。 当乘客在通道 22中沿箭头 A所示方向通行时, 各传感器的用途如下: 传感器 A1~A3位于通道 22的进入区 23中, 用于检测特定的设定时间段内通道
22的进入区 23中通行的需购票乘客的人数。 其中, 传感器 A2还用于进行进入区 23 中通行的乘客或其携带物的高度的检测, 当通道中通行的乘客或其携带物的高度低于 传感器 A2所在位置的高度, 即第二高度 H2时, 在乘客或其携带物位于传感器 A2所 在位置时, 传感器 A2不能被遮挡, 通过设置传感器 A2, 可以实现高度低于第二高度 H2的乘客或其携带物无需购票。 传感器 A4~A9位于通道 22的安全区 24中,用于检测通道 22的安全区 24中通行 的乘客或其携带物的状态, 控制单元 11根据传感器 A4~A9是否处于被遮挡状态控制 闸门 173的转动, 防止闸门 173的门翼将安全区 24中通行的乘客打伤, 设闸门 173 的门翼在安全区 24中向进入区 23方向完全打开时的位置为 0度位置, 向退出区 25 方向完全打开时的位置为 180度位置, 闸门 173闭合时的位置为 90度位置,在自动检 票装置 100的通道 22的通行方向为箭头 A所示方向时, 当传感器 A4~A6处于被遮挡 状态时控制单元 11只能控制闸门 173的门翼在 90度位置至 180度位置的范围内转动, 当传感器 A7~A9处于被遮挡状态时控制单元 11只能控制闸门 173的门翼在 0度位置 至 90度位置的范围内转动。 传感器 A10位于通道 22的退出区 25中, 用于检测乘客是否已离开通道 22的安 全区 24进入通道 22的退出区 25。当传感器 A10被遮挡、而安全区 24内的传感器 A4~A9 均不被遮挡时, 表示通道 22中的乘客已经离开安全区 24进入退出区 25, 此时, 控制 单元 11可以控制闸门 173关闭。 本实施例中, 传感器 A1~A10为透射传感器, 通道 22—侧的本体 21上安装有这 10个传感器的光发生器, 通道 22另一侧的本体 21上安装有这 10个传感器的光接收 器, 同一传感器的光发生器与光接收器相对设置, 自动检票装置通过检测每个传感器 的光接收器的输出信号即可判断当前时刻传感器是否处于被遮挡状态,即通道 22中是 否有经过的通行乘客或其携带物位于该传感器所在位置。 需要说明的是, 在本发明的 其他实施例中, 传感器单元 16所包括的传感器可以是设置在通道 22—侧的本体 21 上的反射传感器。 图 3c是根据本发明第一实施例的自动检票装置的主视图, 如图 3c所示, 本体 21 的正面安装有通行指示模块 181, 通行指示模块 181用于指示允许或禁止乘客进入通 道 22的信息; 本体 21与进入区 23相对应部分的顶部斜面上, 安装有检票单元 15和 检票指示模块 182,检票单元 15用于读取乘客所提供的票纸的信息,检票指示模块 182 用于显示乘客所提供的票纸是否为有效票纸; 本体 21与安全区 24相对应部分的顶部 平面上, 安装有报警模块 183, 报警模块 183用于在票纸无效或存在乘客尾随过检时 发出报警信息。 图 4a是根据本发明第二实施例的自动检票装置的侧视图, 如图 4a所示, 本实施 例与第一实施例的区别在于, 在本体 21 的侧面上增加了传感器 A11~A14, 其中, 传 感器 A12与传感器 A3、 传感器 A13与传感器 A2、 传感器 A14与传感器 A1、 以及传 感器 All与传感器 A10分别以直线 0为对称轴对称安装在本体 21的面向通道 22的 侧面上。 进一步地, 图 4b是根据本发明第二实施例的自动检票装置的立体图, 如图 4b所 示,在本体 21的在与通道的进入区和退出区分别对应的两侧的顶部斜面上,各安装有 一组检票单元 15和检票指示模块 182, 同时, 在本体 21的与图中所示的通行指示模 块 181所在面相对的背面上, 安装有另一通行指示模块(图中未标出), 因此, 当本体 21面向通道 22的侧面上安装有如图 4a所示的 14个传感器 A1~A14时, 根据本发明 第二实施例的自动检票装置 200既可以以图 4a及图 4b中箭头 A所示方向为通行方向 (以下简称正向通行), 也可以以与该方向相反的方向为通行方向 (以下简称反向通 行)。 当自动检票装置 200的通行方向为反向通行时, 通道 22的在正向通行时的进入 区变为反向通行时的退出区, 正向通行时的退出区变为反向通行时的进入区; 传感器 A12~A14用于判断通道的进入区中通行的需购票乘客的人数,传感器 All用于检测乘 客是否已离开通道的安全区,传感器 A4~A9仍用于检测通道的安全区中通行的乘客或 其携带物的状态。 下面以图 3a〜图 3c所示的根据本发明第一实施例的自动检票装置为例, 对自动检 票装置的检票方法进行说明。 图 5是根据本发明第一实施例的自动检票方法的流程图。 如图 5所示, 该方法包 括以下步骤: 步骤 Sll, 分别记录第一传感器、 第二传感器和第三传感器连续处于相同状态的 次数, 其中, 在乘客的通行方向上, 第一传感器、 第二传感器和第三传感器依次设置 在检票通道中。 第一传感器、 第二传感器和第三传感器可以为图 3所示的传感器 A1~A3。 该步骤中的状态可以是被遮挡状态, 也可以是不被遮挡状态。 因此, 连续处于相 同状态的次数是指任意一传感器连续处于被遮挡状态的次数或连续处于不被遮挡的次 数, 例如, 分别记录第一传感器连续处于被遮挡状态的次数, 第二传感器连续处于被 遮挡状态的次数和第三传感器连续处于被遮挡状态的次数。 优选地, 在对第一传感器、 第二传感器和第三传感器连续处于相同状态的次数分 别记录时, 可以是每间隔预设时间分别记录一次第一传感器、 第二传感器和第三传感 器的状态, 当任一传感器连续两次记录的状态相同时, 将该传感器的连续状态次数进 行加 1操作, 当任一传感器连续两次记录的状态不同时, 将该传感器的连续状态次数 进行置 1操作, 然后将该传感器连续处于当前状态的上一状态的次数存储至与该传感 器对应的第一数据集合中。 步骤 S12, 当检测到乘客到达第三传感器的位置时, 统计在设定时间段内记录的 第一传感器、 第二传感器和第三传感器连续处于相同状态的次数。 设定时间段可以为连续两次检测到有乘客到达第三传感器的位置的时刻之间的时 间段, 也可以为检测到乘客到达第三传感器的位置的时刻之前预设长度的时间段。 步骤 S13, 根据统计的结果计算在设定时间段内检票通道内需购票乘客的人数。 在该步骤中, 可以是根据对第一传感器、 第二传感器和第三传感器分别统计的结 果先分别计算第一传感器、 第二传感器和第三传感器检测到的检票通道内需购票乘客 的人数, 再根据第一传感器、 第二传感器和第三传感器检测到的检票通道内需购票乘 客的人数确定最终检测到的检票通道内需购票乘客的人数, 也可以是根据对第一传感 器、第二传感器和第三传感器分别统计的结果直接计算检票通道内需购票乘客的人数。 在该实施例中, 由于对多个传感器在设定时间段内处于相同状态的次数分别进行 统计, 并根据统计的结果计算在设定时间段内检票通道内需购票乘客的人数, 因而提 高了自动检票的准确性和可靠性。 优选地, 在根据第一传感器、 第二传感器和第三传感器检测到的检票通道内需购 票乘客的人数确定最终检测到的检票通道内需购票乘客的人数时, 可以按照以下任意 一种或者多种方法确定在设定时间段内检票通道内需购票乘客的人数: 当第一传感器、 第二传感器和第三传感器中任一传感器检测到的需购票乘客的人 数为 0时, 判定检票通道内需购票乘客的人数为 0。 当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的人数一致时, 判 定检票通道内需购票乘客的人数为一致的人数。 当第一传感器、 第二传感器和第三传感器检测到的需购票乘客的人数存在两种情 况时, 将其中的两个检测结果一致的人数作为检票通道内需购票乘客的人数。 当第一传感器、第二传感器和第三传感器检测到的需购票乘客的人数各不相同时, 将三个传感器的检测结果的中间值作为检票通道内需购票乘客的人数。 在根据统计的结果计算检票通道内需购票乘客的人数时, 可以按照以下方法统计 每个传感器检测到的检票通道内需购票乘客的人数: 对第一数据集合中的数据进行去噪处理, 得到第二数据集合, 其中, 去噪处理包 括: 当第一数据集合 Cln中所存储的非零数据的个数大于三个时, 搜索第一数据集合 Cln中第一个非零数据和最后一个非零数据之间的最小数据 dnm并对其进行判断, 当 dnm小于第二预设阈值 N时, dnm及 (!^^被累加到 dn^上, dnm+2在第一数据集合 Cln 中的位置向前移动, 其序号变为 m, dnm+2后面的数据在第一数据集合 Cln中的位置 也依次向前移动, 第一数据集合 Cln中空出的最后两个序号的位置用零进行填充, 当 第一数据集合 Cln内的最小数据不小于第二预设阈值 N或第一数据集合 Cln内只剩余 三个非零数据时, 停止进行数据搜索及判断, n为传感器序号, 取值为 1、 2、 3, m为 Cln内数据的序号。 将第二数据集合中存储的表示每个传感器处于被遮挡状态的非零数据的个数作为 该传感器检测到的检票通道内需购票乘客的人数。 图 6是根据本发明的第二实施例的自动检票方法的流程图, 该方法适用于乘客按 照一人一票顺序通过检票装置的检票原则, 该方法包括以下步骤: 步骤 S21, 判断本次检测到的乘客提供的票纸是否有效 当检票单元检测到有乘客提供票纸时, 比如, 当票纸为 IC卡时, 检票单元检测到 乘客刷卡, 或者票纸为磁性票时, 检测单元检测到乘客插入票纸时, 检票单元读取乘 客提供的票纸的记录信息(以下简称票纸信息), 并通过通信单元将所读取的票纸信息 上传到与自动检票装置连接的上位机, 上位机判断该票纸是否有效, 并将判断结果返 回给自动检票装置, 自动检票装置的通信单元接收上位机返回的该票纸是否有效的信 息, 当票纸有效时, 执行步骤 S23 ; 否则, 执行步骤 S22。 步骤 S22, 发出票纸无效报警 当检票单元检测到的乘客提供的票纸无效时, 进行票纸无效报警, 比如, 控制单 元控制检票指示模块发出票纸无效的指示信息, 同时控制报警模块发出票纸无效的报 警信息。 步骤 S23, 检测通道的进入区中需购票乘客的人数 当检测到的乘客提供的票纸有效时, 控制单元检测通道的进入区中需购票乘客的 人数。 控制单元每间隔预设时间记录一次通道的进入区中前三个传感器 A1~A3 的状 态,当传感器 A3连续多次处于被遮挡状态时控制单元判定有乘客到达传感器 A3所在 位置, 例如, 当传感器 A3在一段设定时间内连续处于被遮挡状态时控制单元判定有 乘客到达传感器 A3所在位置,当检测到有乘客到达传感器 A3所在位置时控制单元统 计在设定时间段内所记录的传感器 A1~A3的状态,根据统计结果计算该设定时间段内 通道的进入区中需购票乘客的人数, 其中, 设定时间段可以为连续两次检测到有乘客 到达传感器 A3所在位置的时刻之间的时间段, 当自动检票装置上电后首次有乘客到 达传感器 A3所在位置时, 该设定时间段可以为自动检票装置上电时刻到当前检测到 有乘客到达传感器 A3所在位置时刻之间的时间段, 当自动检票装置上电后非首次有 乘客到达传感器 A3所在位置时, 该设定时间段可以为控制单元上次检测到有乘客到 达传感器 A3所在位置到当前检测到有乘客到达传感器 A3所在位置时刻之间的时间 段; 另外, 该设定时间段也可以为检测到有乘客到达传感器 A3所在位置时刻之前预 设长度的时间段, 例如, Is或 2s。 步骤 S24, 判断通道的进入区中需购票乘客的人数是否大于 1 读取步骤 S23已经检测到通道的进入区中需购票乘客的人数, 判断设定时间段内 通道的进入区中需购票乘客的人数是否大于 1, 如果是, 执行步骤 S25, 否则, 执行步 骤 S26。 步骤 S25, 发出非法尾随过检报警 当在设定时间段内通道的进入区中需购票乘客的人数大于检票单元已经检测到的 有效票纸的数量 1时, 控制单元判定自动检票装置的通道的进入区中存在需要购买票 纸但没有提供有效票纸的乘客, 即通道的进入区中存在非法尾随过检的乘客, 控制单 元控制报警模块发出报警信息, 提示非法尾随过检的乘客需要提供有效票纸。 步骤 S26, 打开闸门 当在设定时间段内通道的进入区中需购票乘客的人数不大于检票单元已经检测到 的有效票纸的数量 1时, 控制单元控制闸门转动, 使其达到 180度位置, 处于打开状 态, 允许进入区中的乘客在通道中通行。 步骤 S27, 检测通道的安全区及退出区中乘客的状态, 当检测到乘客已离开通道 的安全区时, 关闭闸门 控制单元检测位于通道的安全区及退出区中的传感器 A4~A10的状态, 当控制单 元检测到传感器 A10处于被遮挡状态且传感器 A4~A9处于不被遮挡状态时, 控制单 元判定乘客已经离开通道的安全区进入通道的退出区,此时,控制单元控制闸门转动, 使其达到 90度位置, 处于关闭状态。 优选地, 为了避免前一乘客尚未离开闸门时后一乘客已进入通道, 造成检测结果 混淆, 当检票单元检测到有效票纸时, 控制单元禁止检票单元的检票功能直至打开的 闸门被关闭, 闸门被关闭后检票单元的检票功能被使能, 后续乘客可以继续提供有效 票纸, 在自动检票装置的通道中通行。 图 7是根据本发明的第三实施例的自动检票方法的流程图, 该方法适用于乘客按 照一人一票顺序通过检票装置的检票原则, 该方法包括以下步骤: 步骤 S31, 判断本次检测到的乘客提供的票纸是否有效 当检票单元检测到有乘客提供票纸时, 控制单元判断本次检测到的乘客提供的票 纸是否有效, 当票纸有效时, 执行步骤 S33 ; 否则, 执行步骤 S32。 步骤 S32, 发出票纸无效报警 同步骤 S22。 步骤 S33, 检测通道的进入区中需购票乘客的人数 同步骤 S23。 步骤 S34, 判断通道的进入区中需购票乘客的人数是否大于 1 判断设定时间段内通道的进入区中需购票乘客的人数是否大于检票单元已经检测 到的有效票纸的数量 1, 如果是, 执行步骤 S35, 否则, 执行步骤 S36。 步骤 S35, 发出非法尾随过检报警 同步骤 S25。 步骤 S36, 判断闸门是否为打开状态 控制单元检测闸门状态, 判断当前闸门是否为打开状态, 如果是, 执行步骤 S38; 否则, 执行步骤 S37。 步骤 S37, 打开闸门 控制单元控制闸门转动, 使其达到 180度位置, 处于打开状态。 步骤 S38, 检测通道的安全区及退出区中乘客的状态, 当检测到乘客已离开通道 的安全区时, 关闭闸门 同步骤 S27。 本实施例中, 允许后一乘客在前一乘客没有离开通道时进入通道的进入区, 如果 前一位乘客离开通道的安全区时后一位乘客已经进入通道的进入区, 此时控制单元不 再控制闸门关闭, 直接判断后一位乘客是否满足过检的要求, 当该乘客满足过检的要 求时, 允许乘客在通道中通行。 本实施例提供的检测方法在客流量较大的时候可以提 高自动检票装置的检票效率。 进一步地, 本发明提供的自动检票装置也可以按照由多位乘客中的首位乘客提供 多张票纸、 其后多位乘客顺次随该乘客进入通道的原则检票, 具体实现方法为: a)检测有效票纸的数量, 其中, 检票单元每检测到一张有效票纸后控制单元将存 储在 RAM存储器中的有效票纸数量进行加 1操作; b)检测通道的进入区中需购票乘客的人数,控制单元每间隔预设时间记录通道的 进入区中前三个传感器 A1~A3的状态, 当检测到有乘客到达传感器 A3所在位置时, 检测一设定时间段内通道的进入区中需购票乘客的人数, 并将存储在 RAM存储器中 的需购票乘客的人数累加本次检测到的通道的进入区中需购票乘客的人数; c)控制单元判断需购票乘客的人数是否大于有效票纸数量, 当需购票乘客人数不 大于有效票纸数量时, 控制闸门打开允许乘客在通道中通行; d)检测通道中退出安全区的需购票乘客的人数,控制单元检测通道的安全区及退 出区中乘客的状态, 当每检测到一位乘客离开通道的安全区进入通道的退出区时, 控 制单元将存储在 RAM存储器中的有效票纸数量及需购票乘客的人数分别进行减 1操 作。 需要说明的是, 在自动检票装置上电后的工作过程中, 步骤 a)和步骤 b)—直持 续被执行, 这样可以保证控制程序在执行步骤 c)及步骤 d)的过程中有效票纸的数量 及通道的进入区中需购票乘客的人数可以实时地被更新, 从而可以使自动检票装置关 闭闸门前如果检测到有效票纸的数量或通道的进入区中需购票乘客的人数增加时, 控 制程序可以不关闭闸门, 直接执行步骤 c)。 自动检票装置通过使用该自动检票方法, 在乘客提供的有效票纸的数量与需购票乘客的人数一致时, 允许乘客以任意形式在自 动检票装置的通道中通行, 提高了自动检票装置的检票效率, 同时, 使乘客的通行更 加便利。 图 8是根据本发明第一实施例的通道的进入区中需购票乘客的人数的检测方法的 流程图, 该方法包括以下步骤: 步骤 S51, 检测并记录通道的进入区中前三个传感器的状态, 同时记录每个传感 器连续处于同一状态的次数 控制单元每间隔预设时间检测通道的进入区中前三个传感器的光接收器的输出信 号, 比如, 控制单元每间隔预设时间 10ms, 检测每个传感器的光接收器的输出信号, 根据传感器的光接收器的输出信号确定并记录当前时刻传感器的状态, 设传感器被遮 挡时的状态用二进制 "1"表示, 传感器不被遮挡时的状态用二进制 "0"表示。 控制单元 每次记录当前传感器的状态前, 判断当前传感器状态与上一次记录的该传感器的状态 是否一致,如果相邻两次检测到的传感器的状态一致,传感器连续状态次数 SCnt_n (n 为传感器序号, 取值为 1、 2、 3 ) 进行加 1操作; 否则, 控制单元将传感器连续处于 上一状态的传感器连续状态次数 SCnt_n存储在与该传感器对应的第一数据集合 Cln (n为传感器序号, 取值为 1、 2、 3 ) 中, 并将传感器连续状态次数 SCnt_n置为" 1"。 图 9中示意了在一段时间内前三个传感器的状态的直观表示图像, 如图 9所示, 每一行的所有像素点表示相应的传感器在该段时间内的状态, 像素点为黑色表示检测 时刻传感器处于被遮挡状态, 像素点为白色表示检测时刻传感器处于不被遮挡状态。 箭头 t所示方向为时间发生的先后顺序, 沿箭头方向的前一个的像素点为先于其后的 像素点而检测的传感器的状态。 进一步地, 为便于统计, 第一数据集合 Cln中所存储的数据 dnm (n为传感器序 号, 取值为 1、 2、 3, m为 Cln内数据的序号, 取值为正整数) 是按一定规则进行排 放的, 比如, 序号为奇数的数据为传感器连续处于不被遮挡状态的次数, 序号为偶数 的数据为传感器连续处于被遮挡状态的次数, 当第一次记录的传感器的状态为被遮挡 状态时, 可设置该传感器相对应的第一数据集合 Cln的第一个数据为 0, 即传感器连 续处于不被遮挡状态的次数为 0, 在传感器状态首次发生变化时将传感器连续状态次 数 SCnt_n,即传感器连续处于被遮挡状态的次数存储为第一数据集合 Cln的第二个数 据。 步骤 S52, 判断进入区中第三个传感器连续处于被遮挡状态的次数是否达到第一 预设阈值 M 当传感器 A3当前次的状态为被遮挡状态, 即为" 1"状态时, 控制单元将第三个传 感器连续状态次数 SCnt_3进行加 1操作后与第一预设阈值 M进行比较, 判断传感器 A3连续处于被遮挡状态的次数是否达到 M次, 如果是, 执行步骤 S53, 否则, 执行 步骤 S51。 设第一预设阈值 M为 10, 图 9中所示意的 T2和 T3时刻均为第三个传感器 连续处于被遮挡状态的次数达到 Μ次的时刻。 步骤 S53, 对每个传感器的第一数据集合 Cln进行去噪处理 当传感器 A3连续处于被遮挡状态的次数达到第一预设阈值 M时, 对设定时间段 内第一数据集合 Cln中所存储的数据进行去噪处理, 其中, 当自动检票装置上电后传 感器 A3连续处于被遮挡状态的次数首次达到第一预设阈值 M时, 所述设定时间段为 自动检票装置上电时刻到当前时刻之间的时间段, 如图 9中所示意的 时刻到 T2时 刻之间的时间段; 否则, 所述设定时间段为上次传感器 A3连续处于被遮挡状态的次 数达到第一预设阈值 Μ时刻到当前次传感器 A3连续处于被遮挡状态的次数达到第一 预设阈值 Μ时刻之间的时间段, 比如, 图 9中所示意 Τ2时刻到 Τ3时刻之间的时间段。 控制单元对第一数据集合 Cln中设定时间段内所存储的数据采用如下规则进行去 噪处理: 当第一数据集合 Cln中所存储的非零数据的个数大于三个时, 搜索第一数据 集合 Cln 中第一个非零数据和最后一个非零数据之间的最小数据 dnm并对其进行判 断, 当 dnm小于第二预设阈值 N时, dnm及 (!^^被累加到 dtim^上, dnm+2在第一数据 集合 Cln中的位置向前移动, 其序号变为 m, dnm+2后面的数据在第一数据集合 Cln 中的位置也依次向前移动, 第一数据集合 Cln中空出的最后两个序号的位置用零进行 填充, 当第一数据集合 Cln内的最小数据不小于第二预设阈值 N或第一数据集合 Cln 内只剩余三个非零数据时, 停止进行数据搜索及判断。 对每个传感器的第一数据集合 Cln进行数据处理后得到的一组新的数据, 该组数 据被存储在与该传感器相对应的第二数据集合 C2n (n为传感器序号,取值为 1、 2、 3 ) 中, 即第二数据集合 C2n中存储数据的为第一数据集合 Cln进行去噪处理后得到相应 传感器连续处于被遮挡状态的次数和 /或传感器连续处于不被遮挡状态的次数。 表 la为根据图 9所示意的前三个传感器的状态在 时刻到 T2时刻之间的时间段 内第一数据集合 Cln中的数据。 表 la
Figure imgf000020_0001
设第二预设阈值 N=30,对表 la所示的第一数据集合 Cln中的数据进行去噪处理, 由于 C11中所存储的非零数据的个数为两个, 因此, C11中的数据不需要进行去噪处 理; C12中对应的序号为 1~6的 6个数据分别为 {14、 8、 20、 32、 2、 0} , 其中, 第一 个非零数据 (12^14, 最后一个非零数据为 d25=2, 对 (121与(125之间的最小数据进行搜 索, 得到最小数据为 d22=8, 且 d22小于第二预设阈值 N, 因此, 将 d22、 d 合并到 上, 得到 (12^42, C12的 d23之后的数据依次向前移动两个位置, 空出的最后两个 序号的位置用 0进行填充, 即对 C12中的数据进行去噪处理后得到对应的第二数据集 合 C22中对应的序号为 1~6的 6个数据分别为 {42、 32、 2、 0、 0、 0}。 按照上述方法 对 C13中的数据进行去噪, 得到表 lb所示的第二数据集合 C2n。 表 lb
Figure imgf000020_0002
表 2a为根据图 9所示意的前三个传感器的状态在 T2时刻到 Τ3时刻之间的时间段 一数据集合 Cln中的数据。 表 2a
Figure imgf000021_0001
设第二预设阈值 N=30,对表 2a所示的第一数据集合 Cln中的数据进行去噪处理, 得到表 2b所示的第二数据集合 C2n。 表 2b
Figure imgf000021_0002
需要说明的是, 在完成对第一数据集合 Cln的去噪处理后, 每个传感器对应的新 生成的数据存储与其对应的第二数据集合 C2n中,此时,控制单元将第一数据集合 Cln 清空, 第一数据集合 Cln可以继续用于存储后续统计的相应传感器连续处于被遮挡状 态的次数和 /或传感器连续处于不被遮挡状态的次数。 本步骤通过对第一数据集合 Cln进行去噪处理,将第一数据集合 Cln中小于第二 预设阈值 N的非零数据与该数据前面的非零数据合并, 就可以将传感器在一个较短时 间内的不稳定状态过滤掉, 比如, 在步骤 S51中每间隔 10ms记录一次传感器的状态, 当第二预设阈值 N=30时, 被合并的非零数据表示相应的传感器在一个小于 300ms的 设定时间段内连续处于被遮挡状态或不被遮挡状态, 这种状态被认为是传感器的不稳 定状态, 比如由于乘客胳膊的摆动、 乘客携带行李箱的行李杆的移动等造成的传感器 的状态变化, 本步骤通过合并非零数据过滤传感器的不稳定状态, 因此, 新生成的第 二数据集合 C2n中存储的非零数据可以表示相应传感器在一个时间段内处于一个稳定 的状态。 步骤 S54, 统计通道的进入区中需购票乘客的人数 由于第二数据集合 C2n中存储的非零数据表示相应传感器在一个时间段内处于一 个稳定的被遮挡状态和 /或不被遮挡状态, 因此, 第二数据集合 C2n中存储的表示传感 器连续处于被遮挡状态的非零数据即可表示在一个时间段内有一位乘客经过该传感器 所在位置, 控制单元根据第二数据集合 C2n中表示传感器连续处于被遮挡状态的非零 数据的数量判断每一个传感器检测到在设定时间段内通道的进入区中需购票乘客的人 数, 第 n个传感器对应的第二数据集合 C2n中存储的表示传感器连续处于被遮挡状态 的非零数据的个数即为该传感器所检测到的在该设定时间段内通道的进入区中需购票 乘客的人数, 比如, 表 lb所示的第二数据集合 C21、 C22、 C23中表示传感器连续处 于被遮挡状态的非零数据的个数均为 1, 即数据集合 C21中 dl2=49, 数据集合 C22中 d22=43, 数据集合 C23中 d32=10, 因此, 在 时刻到 T2时刻之间的时间段内, 传感 器 Α1~Α3检测到的通道的进入区中需购票乘客的人数均为 1个; 同理, 从表 2b中可 以得知, 在 T2时刻到 T3时刻之间的时间段内, 传感器 Al、 Α2检测到的通道的进入 区中需购票乘客的人数均为 1个, 传感器 A3检测到的通道的进入区中需购票乘客的 人数为 2个。 对前三个传感器检测到的需购票乘客的人数采用一定的规则进行计算, 确定在设 定时间段内通道的进入区中的最终需购票乘客的人数, 计算规则为: 当任一个传感器 检测到的需购票乘客的人数为 0时, 判定通道内的最终需购票乘客的人数为 0; 当三 个传感器检测到的需购票乘客的人数均不为 0时, 若三个传感器检测到的需购票乘客 的人数一致, 则判定该乘客人数为通道内的最终需购票乘客的人数; 若三个传感器检 测到的需购票乘客的人数有两种情况, 则判定其中的两个检测结果一致的传感器检测 到的需购票乘客的人数为通道内的最终需购票乘客的人数; 若三个传感器的检测到的 需购票乘客的人数各不相同, 则对三个传感器的检测结果进行排序, 取中间值作为通 道内的最终需购票乘客的人数。 比如, 在 时刻到 τ2时刻之间的时间段内, 传感器 Α1~Α3检测到的通道的进入区中需购票乘客的人数均为 1个, 因此, 控制单元判定在 时刻到 Τ2时刻之间的时间段内通道的进入区中需购票乘客的人数为 1个; 再比如, 在 Τ2时刻到 Τ3时刻之间的时间段内, 传感器 Al、 Α2检测到的通道的进入区中需购 票乘客的人数均为 1个, 传感器 A3检测到的通道的进入区中需购票乘客的人数为 2 个, 因此, 控制单元判定在 Τ2时刻到 Τ3时刻之间的时间段内通道的进入区中需购票 乘客的人数为 1个。 本发明对于通道进入区中最终需购票乘客的人数的计算规则不局 限于上述规则。 本发明实施例提供的自动检票装置及自动检票方法, 在第三个传感器处于一个比 较稳定的被遮挡状态时启动通道的进入区中需购票乘客的人数的判断, 通过检测在该 判定时刻前的一个满足设定要求的设定时间段内前三个传感器的稳定状态确定该设定 时间段内通道的进入区中需购票乘客的人数, 由于乘客或其携带物在该设定时间段内 连续移动时必定会依次经过传感器的安装位置, 因此, 本发明通过检测该设定时间段 内传感器的稳定状态判断该设定时间段内经过每个传感器的需购票乘客的人数, 进而 判断该设定时间段内通道的进入区中需购票乘客的人数, 能够准确、 可靠地检测出该 时间段内通道的进入区中需购票乘客的人数,进而提高了自动检票的准确性和可靠性。 相应于上述的自动检票方法, 本发明实施例还提供了一种自动检票装置。 需要说 明的是, 该自动检票装置可以执行本发明实施例所提供的自动检票方法, 本发明实施 例的检票方法也可以通过本发明实施例所提供的自动检票装置来执行。 以下结合图 10 至图 12对该种自动检票装置进行描述: 图 10是根据本发明第二实施例的自动检票装置的示意图。 该自动检票装置包括: 记录单元 10, 用于分别记录第一传感器、 第二传感器和第三传感器连续处于相同 状态的次数, 其中, 在乘客的通行方向上, 第一传感器、 第二传感器和第三传感器依 次设置在检票通道中; 统计单元 20, 用于当检测到乘客到达第三传感器的位置时, 统计在设定时间段内 记录的第一传感器、 第二传感器和第三传感器连续处于相同状态的次数。 计算单元 30, 用于根据统计的结果计算设定时间段内检票通道内需购票乘客的人 数。 优选地,计算单元 10用于首先根据统计的结果分别计算第一传感器、第二传感器 和第三传感器检测到的需购票乘客的人数, 然后按照以下任意一种或者多种方法确定 在设定时间段内检票通道内需购票乘客的人数,其中,计算单元 10包括以下任意一个 或多个计算单元 (图上未示出)。 第一计算单元, 用于当第一传感器、 第二传感器和第三传感器中任一传感器检测 到的需购票乘客的人数为 0时, 判定检票通道内需购票乘客的人数为 0。 第二计算单元, 用于当第一传感器、 第二传感器和第三传感器检测到的需购票乘 客的人数一致时, 判定检票通道内需购票乘客的人数为一致的人数。 第三计算单元, 用于当第一传感器、 第二传感器和第三传感器检测到的需购票乘 客的人数存在两种情况时, 将其中的两个检测结果一致的人数作为检票通道内需购票 乘客的人数。 第四计算单元, 用于当第一传感器、 第二传感器和第三传感器检测到的需购票乘 客的人数各不相同时, 将三个传感器的检测结果的中间值作为检票通道内需购票乘客 的人数。 图 11是根据本发明第三实施例的自动检票装置的示意图。该实施例的自动检票装 置可以作为图 10所示实施例的自动检票装置的一种优选实施方式: 其中, 记录单元 10包括: 记录模块 101, 用于每间隔预设时间分别记录一次第一传感器、 第二传感器和第 三传感器的状态; 更新单元 102, 用于当任一传感器连续两次记录的状态相同时, 将该传感器的连 续状态次数进行加 1操作, 当任一传感器连续两次记录的状态不同时, 将该传感器的 连续状态次数置 1 ; 以及 存储单元 103, 用于当任一传感器连续两次记录的状态不同时, 将该传感器连续 处于当前状态的上一状态的次数存储至与该传感器对应的第一数据集合中, 其中, 计算单元 30包括: 去噪模块 301, 用于对第一数据集合中的数据进行去噪处理, 得到第二数据集合, 其中, 去噪处理包括: 当第一数据集合 Cln中所存储的非零数据的个数大于三个时, 搜索第一数据集合 Cln中第一个非零数据和最后一个非零数据之间的最小数据 dnm并 对其进行判断, 当 dnm小于第二预设阈值 N时, dnm及 dnm+1被累加到 dn^上, dnm+2 在第一数据集合 Cln中的位置向前移动, 其序号变为 m, dnm+2后面的数据在第一数 据集合 Cln中的位置也依次向前移动,第一数据集合 Cln中空出的最后两个序号的位 置用零进行填充,当第一数据集合 Cln内的最小数据不小于第二预设阈值 N或第一数 据集合 Cln内只剩余三个非零数据时, 停止进行数据搜索及判断, n为传感器序号, 取值为 1、 2、 3, m为 Cln内数据的序号。 确定模块 302, 用于将第二数据集合中存储的表示每个传感器处于被遮挡状态的 非零数据的个数作为该传感器检测到的检票通道内需购票乘客的人数。 图 12是根据本发明第四实施例的自动检票装置的示意图。该实施例的自动检票装 置除了包括图 10所示自动检票装置的各个部分之外, 还包括: 检测单元 40, 用于在接收到多张票纸时, 检测多张票纸中有效票纸的数量。 判断单元 50, 用于在根据统计的结果计算检票通道内需购票乘客的人数之后, 判 断检票通道内需购票乘客的人数是否大于有效票纸的数量。 控制单元 60, 用于当判断出检票通道内需购票乘客的人数不大于有效票纸的数量 时, 控制闸门打开以允许乘客在检票通道中通行。 显然, 本领域的技术人员应该明白, 上述的本发明的各单元、 模块或各步骤可以 用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算 装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电 路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本 发明不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种自动检票方法, 其特征在于, 包括:
分别记录第一传感器、第二传感器和第三传感器连续处于相同状态的次数, 其中, 在乘客的通行方向上, 所述第一传感器、 所述第二传感器和所述第三传 感器依次设置在检票通道中,其中,所述状态包括被遮挡状态和不被遮挡状态; 当检测到乘客到达所述第三传感器的位置时, 统计在设定时间段内记录的 所述第一传感器、所述第二传感器和所述第三传感器连续处于相同状态的次数; 以及
根据统计的结果计算在所述设定时间段内所述检票通道内需购票乘客的人 数。
2. 根据权利要求 1所述的自动检票方法, 其特征在于, 根据统计的结果计算在所 述设定时间段内所述检票通道内需购票乘客的人数包括: 首先根据所述统计的 结果分别计算所述第一传感器、 所述第二传感器和所述第三传感器检测到的需 购票乘客的人数, 然后按照以下任意一种或者多种方法确定在所述设定时间段 内所述检票通道内需购票乘客的人数:
当所述第一传感器、 所述第二传感器和所述第三传感器中任一传感器检测 到的需购票乘客的人数为 0时, 判定所述检票通道内需购票乘客的人数为 0; 当所述第一传感器、 所述第二传感器和所述第三传感器检测到的需购票乘 客的人数一致时, 判定所述检票通道内需购票乘客的人数为一致的人数;
当所述第一传感器、 所述第二传感器和所述第三传感器检测到的需购票乘 客的人数存在两种情况时, 将其中的两个检测结果一致的人数作为所述检票通 道内需购票乘客的人数; 以及
当所述第一传感器、 所述第二传感器和所述第三传感器检测到的需购票乘 客的人数各不相同时, 将三个传感器的检测结果的中间值作为所述检票通道内 需购票乘客的人数。
3. 根据权利要求 1所述的自动检票方法, 其特征在于,
其中, 分别记录所述第一传感器、 所述第二传感器和所述第三传感器连续 处于相同状态的次数包括: 每间隔预设时间分别记录一次所述第一传感器、 所述第二传感器和所述第 三传感器的状态;
当任一传感器连续两次记录的状态相同时, 将该传感器的连续状态次数进 行加 1操作, 当任一传感器连续两次记录的状态不同时, 将该传感器的连续状 态次数置 1 ; 以及
当任一传感器连续两次记录的状态不同时, 将该传感器连续处于当前状态 的上一状态的次数存储至与该传感器对应的第一数据集合中,
其中, 根据统计的结果计算所述检票通道内需购票乘客的人数包括按照以 下方法统计每个传感器检测到的所述检票通道内需购票乘客的人数:
对所述第一数据集合中的数据进行去噪处理, 得到第二数据集合, 其中, 所述去噪处理包括: 当所述第一数据集合 Cln中所存储的非零数据的个数大于 三个时, 搜索所述第一数据集合 Cln中第一个非零数据和最后一个非零数据之 间的最小数据 dnm并对其进行判断,当所述 dnm小于预设阈值 N时, dnm及 dnm+1 被累加到 dtim^上, dnm+2在第一数据集合 Cln中的位置向前移动, 其序号变为 m, dnm+2后面的数据在第一数据集合 Cln中的位置也依次向前移动, 第一数据 集合 Cln中空出的最后两个序号的位置用零进行填充,当第一数据集合 Cln内 的最小数据不小于预设阈值 N或第一数据集合 Cln内只剩余三个非零数据时, 停止进行数据搜索及判断, n为传感器序号, 取值为 1、 2、 3, m为 Cln内数 据的序号; 以及
将所述第二数据集合中存储的表示每个传感器处于被遮挡状态的非零数据 的个数作为该传感器检测到的所述检票通道内需购票乘客的人数。
4. 根据权利要求 1所述的自动检票方法, 其特征在于, 当所述第三传感器检测到 以下结果时, 确定检测到乘客到达所述第三传感器的位置:
每间隔预设时间记录一次所述第三传感器的状态; 以及
当所述第三传感器连续处于被遮挡状态的次数达到预设阈值 M时,确定检 测到乘客到达所述第三传感器的位置。
5. 根据权利要求 1所述的自动检票方法, 其特征在于,
所述方法还包括:
在接收到多张票纸时, 检测所述多张票纸中有效票纸的数量, 在根据统计的结果计算所述检票通道内需购票乘客的人数之后, 所述方法 还包括:
判断所述检票通道内需购票乘客的人数是否大于所述有效票纸的数量, 当判断出所述检票通道内需购票乘客的人数不大于所述有效票纸的数量 时, 控制闸门打开以允许乘客在所述检票通道中通行。 根据权利要求 5所述的自动检票方法, 其特征在于, 所述方法还包括: 检测是否有乘客退出所述检票通道;
每检测到有一个乘客退出所述检票通道, 将有效票纸的数量进行减 1操作 以对所检测到的所述多张票纸中有效票纸的数量进行更新, 同时将计算得到的 所述检票通道内需购票乘客的人数进行减 1操作以对计算到的所述检票通道内 需购票乘客的人数进行更新;
判断所述多张票纸中有效票纸的数量是否有增加, 或者, 判断计算到的所 述检票通道内需购票乘客的人数是否有增加; 以及
当判断出所述多张票纸中有效票纸的数量有增加或者计算到的所述检票通 道内需购票乘客的人数有增加时, 再次判断所述检票通道内需购票乘客的人数 是否大于所述有效票纸的数量。 一种自动检票装置, 其特征在于,
记录单元, 用于分别记录第一传感器、 第二传感器和第三传感器连续处于 相同状态的次数, 其中, 在乘客的通行方向上, 所述第一传感器、 所述第二传 感器和所述第三传感器依次设置在检票通道中;
统计单元, 用于当检测到乘客到达所述第三传感器的位置时, 统计在设定 时间段内记录的所述第一传感器、 所述第二传感器和所述第三传感器连续处于 相同状态的次数; 以及
计算单元, 用于根据统计的结果计算所述设定时间段内所述检票通道内需 购票乘客的人数。 根据权利要求 7所述的自动检票装置, 其特征在于, 所述计算单元用于首先根 据所述统计的结果分别计算所述第一传感器、 所述第二传感器和所述第三传感 器检测到的需购票乘客的人数, 然后按照以下任意一种或者多种方法确定在所 述设定时间段内所述检票通道内需购票乘客的人数, 其中, 所述计算单元包括 以下任意一个或多个计算单元: 第一计算单元, 用于当所述第一传感器、 所述第二传感器和所述第三传感 器中任一传感器检测到的需购票乘客的人数为 0时, 判定所述检票通道内需购 票乘客的人数为 0;
第二计算单元, 用于当所述第一传感器、 所述第二传感器和所述第三传感 器检测到的需购票乘客的人数一致时, 判定所述检票通道内需购票乘客的人数 为一致的人数;
第三计算单元, 用于当所述第一传感器、 所述第二传感器和所述第三传感 器检测到的需购票乘客的人数存在两种情况时, 将其中的两个检测结果一致的 人数作为所述检票通道内需购票乘客的人数; 以及
第四计算单元, 用于当所述第一传感器、 所述第二传感器和所述第三传感 器检测到的乘客的人数各不相同时, 将三个传感器的检测结果的中间值作为所 述检票通道内需购票乘客的人数。
9. 根据权利要求 7所述的自动检票装置, 其特征在于,
其中, 所述记录单元包括:
记录模块, 用于每间隔预设时间分别记录一次所述第一传感器、 所述第二 传感器和所述第三传感器的状态;
更新单元, 用于当任一传感器连续两次记录的状态相同时, 将该传感器的 连续状态次数进行加 1操作, 当任一传感器连续两次记录的状态不同时, 将该 传感器的连续状态次数置 1 ; 以及
存储单元, 用于当任一传感器连续两次记录的状态不同时, 将该传感器连 续处于当前状态的上一状态的次数存储至与该传感器对应的第一数据集合中, 其中, 所述计算单元包括- 去噪模块, 用于对所述第一数据集合中的数据进行去噪处理, 得到第二数 据集合, 其中, 所述去噪处理包括: 当所述第一数据集合 Cln中所存储的非零 数据的个数大于三个时, 搜索所述第一数据集合 Cln中第一个非零数据和最后 一个非零数据之间的最小数据 dnm并对其进行判断, 当所述 dnm小于预设阈值 N时, dnm及 (!!!^被累加到 dtim^上, dnm+2在第一数据集合 Cln中的位置向前 移动, 其序号变为 m, dnm+2后面的数据在第一数据集合 Cln中的位置也依次 向前移动, 第一数据集合 Cln中空出的最后两个序号的位置用零进行填充, 当 第一数据集合 Cln内的最小数据不小于预设阈值 N或第一数据集合 Cln内只 剩余三个非零数据时, 停止进行数据搜索及判断, n为传感器序号, 取值为 1、 2、 3, m为 Cln内数据的序号; 以及 确定模块, 用于将所述第二数据集合中存储的表示每个传感器处于被遮挡 状态的非零数据的个数作为该传感器检测到的所述检票通道内需购票乘客的人 数。
10. 根据权利要求 7所述的自动检票装置, 其特征在于, 还包括:
检测单元, 用于在接收到多张票纸时, 检测所述多张票纸中有效票纸的数 判断单元, 用于在根据统计的结果计算所述检票通道内需购票乘客的人数 之后, 判断所述检票通道内需购票乘客的人数是否大于所述有效票纸的数量; 以及
控制单元, 用于当判断出所述检票通道内需购票乘客的人数不大于所述有 效票纸的数量时, 控制闸门打开以允许乘客在所述检票通道中通行。
PCT/CN2013/085965 2012-10-29 2013-10-25 自动检票方法及自动检票装置 WO2014067426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210421075.8 2012-10-29
CN201210421075.8A CN103793958B (zh) 2012-10-29 2012-10-29 自动检票方法及自动检票装置

Publications (1)

Publication Number Publication Date
WO2014067426A1 true WO2014067426A1 (zh) 2014-05-08

Family

ID=50626478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085965 WO2014067426A1 (zh) 2012-10-29 2013-10-25 自动检票方法及自动检票装置

Country Status (2)

Country Link
CN (1) CN103793958B (zh)
WO (1) WO2014067426A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957155A (zh) * 2016-06-27 2016-09-21 金华 一种智能售、检票系统
KR20170098238A (ko) 2014-12-25 2017-08-29 미츠비시 가스 가가쿠 가부시키가이샤 옥시메틸렌 공중합체의 제조 방법
KR20190077344A (ko) 2016-11-07 2019-07-03 미츠비시 가스 가가쿠 가부시키가이샤 옥시메틸렌 공중합체의 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914330B (zh) * 2015-05-25 2018-01-16 李巍 一种检票机压力测试系统
CN105913521A (zh) * 2016-04-15 2016-08-31 中交上海三航科学研究院有限公司 一种人员进出管理方法、系统及具有该系统的终端设备
CN105951635B (zh) * 2016-06-29 2019-01-29 北京明生宏达科技有限公司 左右检票通行的通道管理设备及左右检票通行方法
CN107945288A (zh) * 2017-11-24 2018-04-20 大连奇辉计算机网络有限公司 车票识别验票系统
CN108961519A (zh) * 2018-09-17 2018-12-07 青岛帝安爱斯智能化电子工程有限公司 一种智能速通门及其操作方法
CN111354111B (zh) * 2018-12-20 2021-05-14 天地融科技股份有限公司 一种红外门禁判断方法和红外门禁设备
CN111127672A (zh) * 2019-12-05 2020-05-08 中国铁道科学研究院集团有限公司电子计算技术研究所 车站的检票方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573815A (zh) * 2003-06-09 2005-02-02 欧姆龙株式会社 自动检票装置
JP2007241407A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 自動改札装置
CN102184573A (zh) * 2011-04-20 2011-09-14 铁道部运输局 自动检票机
JP2012084182A (ja) * 2012-01-30 2012-04-26 Toshiba Corp 自動改札装置
CN102622797A (zh) * 2012-02-22 2012-08-01 易程(苏州)电子科技股份有限公司 应用于检票闸机的监控方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008258A1 (en) * 1992-10-07 1994-04-14 Octrooibureau Kisch N.V. Apparatus and a method for classifying movement of objects along a passage
FR2848708B1 (fr) * 2002-12-11 2005-04-01 Etude Et Realisation Electroni Systeme de controle d'acces
CN101893853A (zh) * 2010-08-05 2010-11-24 新太科技股份有限公司 一种基于智能模型的自学习型人体闸机通道判断算法
CN102005069A (zh) * 2010-11-17 2011-04-06 永泰软件有限公司 基于步态模式追踪的多人检测算法的防尾随系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1573815A (zh) * 2003-06-09 2005-02-02 欧姆龙株式会社 自动检票装置
JP2007241407A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 自動改札装置
CN102184573A (zh) * 2011-04-20 2011-09-14 铁道部运输局 自动检票机
JP2012084182A (ja) * 2012-01-30 2012-04-26 Toshiba Corp 自動改札装置
CN102622797A (zh) * 2012-02-22 2012-08-01 易程(苏州)电子科技股份有限公司 应用于检票闸机的监控方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170098238A (ko) 2014-12-25 2017-08-29 미츠비시 가스 가가쿠 가부시키가이샤 옥시메틸렌 공중합체의 제조 방법
CN105957155A (zh) * 2016-06-27 2016-09-21 金华 一种智能售、检票系统
KR20190077344A (ko) 2016-11-07 2019-07-03 미츠비시 가스 가가쿠 가부시키가이샤 옥시메틸렌 공중합체의 제조 방법

Also Published As

Publication number Publication date
CN103793958A (zh) 2014-05-14
CN103793958B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2014067426A1 (zh) 自动检票方法及自动检票装置
CN208225167U (zh) 人证票自动核验闸机
CN102779359B (zh) 基于深度图像进行通行检测的自动检票装置
CN104574954B (zh) 一种基于自由流系统的车辆稽查方法、控制设备及系统
CN101402428A (zh) 人数检测装置以及电梯
CN107119595B (zh) 基于图像处理的控制方法
CN109472900A (zh) 闸机通过行为检测装置
CN104239905A (zh) 运动目标识别方法及具有该功能的电梯智能计费系统
CN110874551A (zh) 用于门禁闸机通行逻辑控制的图像处理方法
CN108004972A (zh) 一种停车场道闸系统
CN110189460A (zh) 一种防尾随快速通行闸机及控制方法
CN115497181B (zh) 高速公路通行卡投卡整理装置以及投卡式自助缴费机
CN107221056B (zh) 基于人体识别来进行阻挡的方法
CN205983603U (zh) 超市货物止损系统
JP7108115B2 (ja) 車両扉開閉検知装置
CN209168229U (zh) 可切换人脸识别与刷卡通行功能的闸机
CN208284064U (zh) 一种地铁闸机防尾随装置
CN209494503U (zh) 一种防盗检测门
CN207924748U (zh) 一种适用于半开放式brt站台的逃票提醒装置
KR20080023178A (ko) 자동주차관리시스템
CN103279994A (zh) 一种闸机检票装置及其判断方法
CN202495154U (zh) 小区车辆联网自动管理装置
CN109448262A (zh) 一种通道式智能物品借还管理系统
JP3952999B2 (ja) 自動改札装置
CN113611025A (zh) 一种新型轨道交通快速检人系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13850961

Country of ref document: EP

Kind code of ref document: A1