WO2014065577A1 - 록소프로펜 (2s, 1'r, 2's) 트랜스-알코올의 제조방법 - Google Patents

록소프로펜 (2s, 1'r, 2's) 트랜스-알코올의 제조방법 Download PDF

Info

Publication number
WO2014065577A1
WO2014065577A1 PCT/KR2013/009451 KR2013009451W WO2014065577A1 WO 2014065577 A1 WO2014065577 A1 WO 2014065577A1 KR 2013009451 W KR2013009451 W KR 2013009451W WO 2014065577 A1 WO2014065577 A1 WO 2014065577A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
trans
alcohol
mixture
roxofene
Prior art date
Application number
PCT/KR2013/009451
Other languages
English (en)
French (fr)
Inventor
최원경
홍은표
김지혜
이윤석
조영범
이재구
주준호
정지원
장영길
Original Assignee
한미정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미정밀화학 주식회사 filed Critical 한미정밀화학 주식회사
Publication of WO2014065577A1 publication Critical patent/WO2014065577A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/06Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/132Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen containing rings
    • C07C53/134Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen containing rings monocyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/004Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of alcohol- or thiol groups in the enantiomers or the inverse reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids

Definitions

  • the present invention is an active metabolite of xoprofen (Loxoprofen) which is used as an anti-inflammatory analgesic agent. 2'S) trans-alcohol].
  • loxoprofen (2- [4- (2-oxocyclopentyl) phenyl] propionic acid) is widely used as a propionic acid nonsteroidal anti-inflammatory drug (NSAID). . It is mainly used for chronic arthritis, deformed arthrosis, low back pain, periarthritis, etc., and is also effective for pain relief after surgery or after trauma and extraction.
  • NSAID propionic acid nonsteroidal anti-inflammatory drug
  • Roxopropene of the following [Formula 2] structurally has two chiral centers, and the orientation of (2R, 1'R), (2S, 1'R), (2R, 1'S), (2S, 1'S) Four isomers are possible, and substantially each of roxofene is contained in a proportion of about 25%.
  • This loxopropene is a kind of pro-drug. According to its metabolic route, after oral administration of loxoprofen, the ketone of cyclopentanone is directly reduced to alcohol by the enzymatic reduction reaction of cyclopentane and cyclopenta. Converted to knol, this metabolite is the actual active substance. This active substance is known to have a therapeutic effect by inhibiting the biosynthesis of the prostaglandin, a pain-causing substance.
  • U.S. Patent No. 4,400,534 discloses a preparation method represented by the following [Scheme 1] to prepare roxofene (2S, 1'R, 2'S) trans-alcohol of [Formula 1].
  • erythro is mixed with (2S, 1'R) -loxopropene and (2R, 1'S) -loxopropene by recrystallization several times with ethyl acetate or hexane.
  • a mixture (A) was obtained, which was then subjected to a coupling reaction with a chiral resolving agent (S) -methylbenzylamine to prepare a diastereomer of 1- ⁇ -phenylamide derivative.
  • Column chromatography is used to separate the (2S, 1'R) -phenylamide derivative (B).
  • the yield is low as 32%, and there is a problem in that impurities are generated in the same amount as the final product during the reduction reaction.
  • both the final product and the impurities are very high polarity is not suitable for industrial production because it is difficult to separate the desired final product with high purity.
  • Yuichi Kobayashi et al. (Org. Lett., 2009 , 11, 1103-1106) is prepared by the following [Scheme 2] to prepare the lysopropene (2S, 1'R, 2'S) trans-alcohol of [Formula 1] Disclosed is a manufacturing method indicated by.
  • a cyclopentanol derivative (E) is prepared in eight steps using a derivative (D) of cyclopentene diol as a starting material, and reacted with picolinate (F), followed by ozone decomposition and reduction.
  • a derivative (D) of cyclopentene diol as a starting material
  • picolinate (F) followed by ozone decomposition and reduction.
  • the above method is difficult in the synthesis process to obtain a derivative (D) of the cyclopentene diol starting material, it is necessary to use a very expensive reagent cis-4-cyclopentene-1,3-diol during synthesis.
  • the ozone decomposition reaction is not a suitable reaction for industrial mass production, and has a complicated manufacturing step of 15 steps, thereby resulting in low yield and high manufacturing cost.
  • 1- [alpha] -phenylamide derivative (G) is prepared by coupling roxofene to a chiral resolving agent (S) -methylbenzyl amine to prepare a cyclopentanone.
  • the ketone is reduced to prepare a cyclopentanol amide mixture, which is then separated into trans-mixture using column chromatography.
  • the separated trans-mixture is removed by acetate only with the (1'S, 2'R) -trans-alcohol mixture using lipase, to yield a (1'R, 2'S) -trans-alcohol mixture (H).
  • the present invention is a.
  • R is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or an S-ethyl lactate group.
  • the organic solvent may be alcohol, acetone, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran or ethylene glycol, 1,4-butanediol, 1,3-propanediol, 1,5 -At least one selected from the group consisting of diols such as pentanediol, bisphenol A, and the like.
  • the organic solvent may be added 0.1 to 1 parts by weight per 1 part by weight of water.
  • N-methyl-D-glucamine or N-ethyl-D-glucamine may be reacted by adding 0.1 to 1.0 equivalents to 1 equivalent of Roxoprofen in [Formula 2].
  • the esterification reaction is carried out in the presence of a reaction medium, the reaction medium is dicyclohexyl carbodiimide
  • 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide may include at least one selected from the group consisting of.
  • the reduction reaction is performed using a reducing agent, and the reducing agent may include at least one selected from the group consisting of sodium borohydride and sodium cyanoborohydride.
  • the reducing agent may be reacted by adding 1 to 3 equivalents based on 1 equivalent of (2R, 1'S) and (2S, 1'R) -ester mixture of [Formula 4a] and [Formula 4b].
  • step of preparing the compound of Formula 1 may further comprise the step of recrystallization in ethyl acetate and hexane.
  • the compound of [Formula 1] may have a purity of 90% or more.
  • the remaining filtrate may be heated to 90 to 100 ° C. in the presence of water, stirred, cooled, and adjusted to pH 4 to 5.5 to recover roxofene of [Formula 2].
  • the method for preparing roxofene (2S, 1'R, 2'S) trans-alcohol according to the present invention can produce the compound represented by [Formula 1] in high yield and high purity.
  • the roxofene (2S, 1'R, 2'S) trans-alcohol represented by [Formula 1] prepared by the method of the present invention has a purity of 90% or more, and may be usefully used for preparing a pharmaceutical. .
  • the present invention provides a mixture of 35% or more of the intermediates (2R, 1'S) and (2S, 1'R) -loxopropene in a solid acid mixture, not in the form of a salt.
  • the neutralization process is not necessary.
  • a significant amount of (2R, 1'R) -loxopropene was removed in the optical splitting reaction of step 1, thereby making it difficult to remove the (2R, 1'R, 2'S) trans-
  • the hydrolysis reaction may be directly performed without separating the chromatography in step 5, which will be described later. Therefore, mass production of the compound of [Formula 1] is possible, and manufacturing cost can be reduced.
  • alkyl refers to a linear or branched hydrocarbon having 1 to 10 carbon atoms.
  • alkyl include methyl (Me), ethyl (Et), n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, hexyl, heptyl, octyl, nonyl, tequil and the like.
  • cycloalkyl refers to a cyclic hydrocarbon having 3 to 6 carbon atoms.
  • examples of cycloalkyl include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • step 1 A mixture of chlorosopropene of the following [Formula 2] and N-methyl-D-glucamine or N-ethyl-D-glucamine and water alone or an organic solvent mixed with water The resulting crystals were heated to dissolve and react in the presence of a solvent, and then cooled to filter the precipitated crystals. Obtaining a solid phase mixture containing at least% (hereinafter referred to as "step 1")
  • step 3 the ester mixture prepared above was subjected to reduction reaction, and then the cis-mixture of [Formula 6a] and [Formula 6b] was removed by column chromatography, and the trans-alcohol ester mixture of [Formula 5a] and [Formula 5b] was removed.
  • step 3 the ester mixture prepared above was subjected to reduction reaction, and then the cis-mixture of [Formula 6a] and [Formula 6b] was removed by column chromatography, and the trans-alcohol ester mixture of [Formula 5a] and [Formula 5b] was removed.
  • step 4 Obtaining a trans-alcohol ester and (hereinafter referred to as "step 4")
  • step 5 It is to provide a process for the preparation of roxofene (2S, 1'R, 2'S) trans-alcohol.
  • step 1 loxoprofen and N-methyl-D-glucamine or N- which are starting materials of the following [Formula 2] as shown in [Scheme 5]
  • the mixture of ethyl-D-glucamine and N-ethyl-D-glucamine was mixed with water alone or in the presence of a solvent in which an organic solvent miscible with water was heated to dissolve and react, and then cooled to filter the precipitated crystals.
  • Solid phase mixtures containing 35% or more of (2R, 1'S) and (2S, 1'R) -loxopropene of Formula 3a] may be obtained.
  • the starting material, loxoprofen has structurally two chiral centers, (2R, 1'R), (2S, 1'R,), (2R, 1'S), (2S, 1'S). Four enantiomers with an orientation of are possible.
  • N-methyl-D-glucamine or N-ethyl-D-glucamine was added to the loxopropene, followed by water alone or water.
  • the organic solvent to be mixed is heated in the presence of a mixed solvent to dissolve and react. Then, when the temperature is lowered, 50 to 70% of the enantiomers having the orientations of (2R, 1'S) and (2S, 1'R) are precipitated as free acid without forming salts with glucamine. Most of the enantiomers having the orientations of (2R, 1'S) and (2S, 1'R) of the remaining 30-50% and the orientations of (2R, 1'R), (2S, 1'S) Forms salts with glucamine and dissolves in the liquid .
  • the content of enantiomers having the orientations of (2R, 1'R), (2S, 1'S) in the free acid state is minimized, and the content of (2R, 1'S), (2S, 1'R) in the free acid state is minimized.
  • the above process may be repeated.
  • the N-methyl-D-glucamine or N-ethyl-D-glucamine is a chiral resolving agent, which is added in an amount of 0.1 to 1.0 equivalents based on 1 equivalent of roxofene in [Formula 2]. It is preferable and it is especially preferable that it is 0.3-0.7 equivalent.
  • the amount of N-methyl-D-glucamine or N-ethyl-D-glucamine added is less than 0.1 equivalent, optical splitting does not occur well, resulting in a drop in purity.
  • the amount is greater than 1.0 equivalent, the yield is decreased. The problem of raising the unit price may occur.
  • optical split reaction with N-methyl-D-glucamine or N-ethyl-D-glucamine is carried out by dissolving in a solvent in an elevated temperature.
  • the solvent may be used further including water alone or an organic solvent miscible with water.
  • the N-methyl-D-glucamine or N-ethyl-D-glucamine may be completely dissolved in a small amount of water, and the purity and yield of the solid phase mixture may be improved by adding an organic solvent mixed with water. You can get it.
  • the organic solvent may include at least one selected from the group consisting of alcohols, acetone, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran and diols.
  • diols examples include ethylene glycol, 1,4-butanediol, 1,3-propanediol, 1,5-pentanediol, bisphenol A, and the like.
  • the organic solvent is preferably added in an amount of 0.1 to 1 parts by weight per 1 part by weight of water, and particularly preferably 0.2 to 0.5 parts by weight.
  • the temperature it is preferable to increase the temperature to about 40 to 70 °C in order to easily occur the optical split reaction.
  • reaction solution dissolved by heating up is cooled to a temperature of 30 to 50 ° C., and then stirred for 1 hour or more, preferably 4 hours or more, to precipitate crystals.
  • the precipitated crystals were filtered, washed with purified water, hexane, alcohol, and the like, and then dried to enantiomer pairs containing (2R, 1'S) and (2S, 1'R) -loxpropene, ie, solid phase. A mixture can be obtained.
  • the solid phase mixture containing (2R, 1'S) and (2S, 1'R) -loxopropene prepared as described above can be obtained as a solid acid mixture containing not less than 35% of the salt form of glucamine, respectively. have. Therefore, since a separate neutralization step is not necessary, the reaction time can be greatly shortened.
  • the hydrolysis reaction may be directly performed without separating the chromatography in step 5 to be described later.
  • hydrochloric acid to the reaction solution to maintain the pH of the reaction solution to 4 to 5.5.
  • the recovery process may be performed several times in order to increase the recovery rate of the loxopropene.
  • step 2 esterification reaction of the solid-phase mixture obtained in step 1 as shown in [Scheme 6] below (2R, 1'S) of [Formula 4a] and (2S, 1 'of [Formula 4b] R) -ester mixtures can be prepared.
  • the esterification reaction can be carried out in the presence of a reaction medium.
  • the reaction medium may convert the hydroxy group of the carboxylic acid into an ester group by esterifying the solid mixture. That is, the reaction medium removes H in the hydroxy group, forms an urea-type intermediate, and then reacts with an alcohol, followed by esterification of (2R, 1'S) and (2S) of [Formula 4b]. , 1'R) -ester mixtures can be prepared.
  • the reaction mediator is from the group consisting of dicyclohexylcarbodiimide or 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDCI) It may include at least one selected.
  • esterification reaction may be carried out using an alcohol, cycloalcohol or chiral alcohol of S-ethyllactate, preferably methanol or S-ethyllactate. good.
  • the methanol or S-ethyllactate (S-ethyllactate) can be easily deprotected at the low temperature because the ester group of [Formula 5a] can be easily deprotected during the five-step hydrolysis reaction to be described later.
  • the (2R, 1'S) of [Formula 4a] and (2S, 1'R of [Formula 4b] R of the) -ester mixture is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, or a S-ethyllactate group which is a chiral alcohol.
  • the esterification reaction may be performed by dissolving the obtained solid phase mixture in a solvent such as dichloromethane and sequentially adding a reaction medium and an alcohol thereto.
  • reaction solution is stirred at room temperature for at least 30 minutes, preferably at least 1 hour, extracted by addition of water, and washed with sodium chloride solution. Then, the organic layer of the washed reaction solution was dried over anhydrous sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure to give (2R, 1'S) and (2S, 1 ') of the esterified [Formula 4a] and [Formula 4b].
  • R) -ester mixtures can be prepared.
  • step 3 the (2S, 1'R) -ester mixture of (2R, 1'S) and [Formula 4b] of [Formula 4a] prepared in Step 2, as shown in the following [Scheme 7] and [Scheme 8]
  • the cis-mixture of [Formula 6a] and [Formula 6b] was removed by column chromatography, thereby obtaining a trans-alcohol ester mixture of [Formula 5a] and [Formula 5b].
  • the reduction reaction can be carried out using a reducing agent.
  • the reducing agent may be converted to cyclopentanol by reducing the ketone group of cyclopentanone in the compounds of Formulas 4a and 4b by alcohol by reducing the ester mixture.
  • the reducing agent may include at least one selected from the group consisting of sodium borohydride or sodium cyanoborohydride.
  • the reducing agent is preferably added in an amount of 1 to 3 equivalents, particularly 1 to 2 equivalents based on 1 equivalent of (2R, 1'S) and (2S, 1'R) -ester mixture of [Formula 4a] desirable.
  • the reducing agent is used in the above range, the reduction reaction sufficiently occurs, it is possible to efficiently reduce the ketone group of the compounds [Formula 4a] and [Formula 4b].
  • the reduction reaction produces a cis-alcohol ester mixture of [Formula 6a] and [Formula 6b] together with a desired trans-alcohol ester mixture of [Formula 5a] and [Formula 5b].
  • chromatography can be used to remove the cis-alcohol ester mixture and to separate the trans-alcohol ester mixture. It is preferable that the chromatography uses column chromatography that can easily separate a liquid mixture.
  • the reduction reaction with the (2R, 1'S) and [2S, 1'R) -ester mixture of [Formula 4a] and [Formula 4b] may be performed by dissolving in a solvent such as methanol or tetrahydrofuran and adding a reducing agent. have.
  • the reduction reaction may be carried out stirring, concentration under reduced pressure and separation under cooling conditions.
  • a reducing agent was gradually added while the reaction solution in which the solvent was added to the (2R, 1'S) and [2S, 1'R) -ester mixture of [Formula 4a] was cooled to 0 ° C. Then, the mixture is stirred for 30 minutes or more, preferably 1 hour or more.
  • re-stirring may be performed at room temperature for 10 hours or more, preferably 16 hours or more.
  • step 4 the trans-alcohol ester mixture of [Formula 5a] and [Formula 5b] separated in Step 3 is reacted with Lipase and Vinyl acetate, as shown in Scheme 9 below.
  • roxofene (2S, 1'R, 2'S) trans-alcohol ester of [Formula 5a] can be obtained.
  • the acetylation reaction using the lipase as a catalyst may be performed using a known method ( Synlett , 2000 , 6, 862-864).
  • the lipase may be used Amano Lipase PS and the like.
  • the lipase is preferably added 5 to 15% by weight, particularly preferably 8 to 12% by weight, based on 100% by weight of the trans-alcohol ester mixture of [Formula 5a] and [Formula 5b] .
  • the lipase is used in the above range, sufficient selective acetylation reaction of the compound [Formula 5b] can be made.
  • chromatography may be used to separate the acetylated [Formula 7] and [Formula 5a].
  • the chromatography is preferably using column chromatography that can easily separate the liquid mixture.
  • the acetylation reaction of the trans-alcohol ester mixtures of [Formula 5a] and [Formula 5b] may be performed by dissolving with toluene as a solvent and adding lipase and vinyl acetate.
  • the acetylation reaction may be carried out under agitation, concentration under reduced pressure and purification.
  • a solvent is added to the trans-alcohol ester mixture of Formulas 5a and 5b to dissolve, followed by sequential addition of lipase, molecular sieve and vinyl acetate, followed by at least 15 hours at room temperature, preferably The reaction is stirred for 20 hours or more.
  • the reaction solution was then filtrated, the filtrate was concentrated under reduced pressure, and the residue was separated using column chromatography, thereby dissolving the lysopropene (2S, 1'R, 2'S) trans-alcohol of [Formula 5a]. Ester can be obtained.
  • step 5 hydrolysis of the roxofene (2S, 1'R, 2'S) trans-alcohol ester of [Formula 5a] isolated in step 4 as shown in [Scheme 10] is given in [Formula 1] ] Roxofene (2S, 1'R, 2'S) trans-alcohol can be prepared.
  • [Scheme 10] is a trans-alcohol ester compound of [Chemical Formula 5a] can be converted to a hydroxyl group ester group of carboxylic acid in the [Chemical Formula 5a] compound by a hydrolysis reaction.
  • the hydrolysis reaction of the roxofene (2S, 1'R, 2'S) trans-alcohol ester compound of Formula 5a is preferably carried out in the presence of an acid or a base to increase the reaction rate.
  • the acid may be an organic acid such as hydrochloric acid, sulfuric acid or hydrogen bromide or an inorganic acid such as formic acid, acetic acid or p-toluenesulfonic acid.
  • the base may be used lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • the hydrolysis reaction may be dissolved in a solvent such as acetonitrile and subjected to stirring, extraction and concentration under reduced pressure under cooling conditions.
  • hydrochloric acid to the separated aqueous layer in order to adjust the pH to 3 to 3.5, and then extract twice or more using dichloromethane.
  • the compound of [Formula 1] prepared above may be further purified by further recrystallization under an organic solvent in order to increase the purity.
  • the recrystallization may be carried out using an organic solvent of ethyl acetate and hexane.
  • a compound of Formula 1 is a soft rock with a pen (2S, 1'R, 2'S) trans-alcohol as a, and its chemical name is (2 S) -2- [4 - ((1 R , 2S ) -2-hydroxycyclopentylmethyl) phenyl] propionic acid.
  • the roxofene (2S, 1'R, 2'S) trans-alcohol of [Formula 1] may be prepared with a purity of 90% or more.
  • the purity of the compounds was determined by chiral high performance liquid chromatography (CHIRAL HPLC).
  • CHIRAL HPLC chiral high performance liquid chromatography
  • step 1 according to Method F using water as a solvent, the solid phase mixture containing [Formula 3a] and [Formula 3b] has a yield of about 23%, but in the form of a mixed solvent further comprising an organic solvent in addition to water as a solvent. It can be seen that for the methods A to E used, the yield is more improved than the method F.
  • the separated aqueous layer was adjusted to about pH 3 with 6N hydrochloric acid, extracted twice with 135 ml of dichloromethane, and dried over anhydrous magnesium sulfate. Then, the dried reaction solution was filtered, concentrated under reduced pressure, and 41 ml of ethyl acetate was added to dissolve it. Then 272 mL n-hexane was slowly added and stirred at room temperature for 1 hour and then filtered. The filtrate was dried in vacuo at 25 ° C. to prepare 11.0 g (yield 88%) of chlorosopropene (2S, 1′R, 2 ′S) trans-alcohol of the desired compound as a solid phase.
  • reaction solution was extracted with 1055 ml of ethyl acetate and re-extracted with 280 ml of ethyl acetate.
  • the separated aqueous layer was adjusted to about pH 3 with 6N hydrochloric acid, extracted twice with 290 ml of dichloromethane, and dried over anhydrous magnesium sulfate. Then, the dried reaction solution was filtered, concentrated under reduced pressure, and 88 ml of ethyl acetate was added to dissolve it. Then 586 ml of n-hexane was slowly added and stirred at room temperature for 1 hour and then filtered. The filtrate was dried in vacuo at 25 ° C. to prepare 17.9 g (yield 85%) of roxofone (2S, 1′R, 2 ′S) trans-alcohol of [Formula 1].
  • the unreacted roxofene can be recovered by the following method.
  • Example 2 To the vessel was prepared a solid mixture in methods A and B of Example 1 and the remaining filtrate and 360 ml of water were added. Then, the mixture was adjusted to pH 5.5 using 2N-HCl at room temperature, and continuously adjusted to pH 5.5 using 2N-HCl for about 30 minutes when the pH rose as crystals precipitated. When the crystals were sufficiently precipitated, the pH was again adjusted to pH 5.0 with 2N-HCl, and the pH was continuously adjusted to pH 5.0 for about 30 minutes. Then, the mixture was slowly adjusted to pH 4.0 using 2N-HCl, stirred for 1 hour, and the precipitated crystals were filtered out. The precipitated crystals were washed with 200 ml of water and dried at about 40 ° C. to recover 34 g of loxoprofen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 수율 및 순도를 향상시킬 수 있는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법에 관한 것으로서, 보다 상세하게는 록소프로펜에 N-메틸-D-글루카민 또는 N-에틸-D-글루카민을 첨가하여 광학분할 반응시켜 (2R, 1'S) 및 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물을 얻는 단계, 상기에서 얻어진 고체상 혼합물을 에스테르화 반응시켜 (2R, 1'S) 및 (2S, 1'R)-에스테르 혼합물을 제조하는 단계, 상기에서 제조된 에스테르 혼합물을 환원 반응시킨 다음 컬럼크로마토그래피로 (2S, 1'R, 2'S) 및 (2S, 1'S, 2'R) 트랜스-알코올 에스테르 혼합물을 수득하는 단계, 상기에서 트랜스-알코올 에스테르 혼합물을 리파아제 및 비닐 아세테이트와 반응시킨 다음 컬럼크로마토그래피로 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 수득하는 단계 및 상기에서 얻어진 트랜스-알코올 에스테르를 가수분해 반응시키는 단계를 포함하여 이루어진다.

Description

록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법
본 발명은 소염 진통제로 사용되고 있는 록소프로펜(Loxoprofen)의 활성 대사체인 하기 [화학식 1]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올[Loxopreofen(2S, 1'R, 2'S) trans-alcohol]의 효율적인 제조방법에 관한 것이다.
[화학식 1]
Figure PCTKR2013009451-appb-I000001
일반적으로 록소프로펜(Loxoprofen, 2-[4-(2-옥소사이클렌펜틸)페닐] 프로피온산)은 프로피온산계 비스테로이드성 항소염제 (NSAID: Non-steroidal anti-inflammatory drug)로 널리 알려져 사용되고 있다. 이것은 만성 관절류마티즘, 변형성 관절증, 요통증, 견관절 주위염 등에 주로 사용되며, 이외에도 수술 후 또는 외상 후 및 발치 후 통증 개선에 효과적이다.
하기 [화학식 2]의 록소프로펜은 구조적으로 2개의 키랄 센터를 가지고 있고, (2R, 1'R), (2S, 1'R), (2R, 1'S), (2S, 1'S)의 배향을 갖는 4 개의 이성체가 가능하며, 실질적으로 록소프로펜은 그 각각이 25% 정도의 비율로 함유되어 있다.
[화학식 2]
Figure PCTKR2013009451-appb-I000002
이러한 록소프로펜은 일종의 프로-드럭(Pro-drug)으로서, 그의 대사 경로에 따르면, 록소프로펜 경구 투여 후 시클로펜타논의 케톤이 체내에서 효소의 환원반응에 의해 바로 알코올로 환원되어 시클로펜타놀로 전환되며, 이 대사체가 실질적인 활성 물질이다. 이 활성물질은 통증 유발물질인 프로스타글란딘의 생합성을 저해함으로써 치료효과를 나타낸다고 알려졌다.
특히, 시클로펜타논이 시클로펜타놀로 전환됨에 따라 8개의 이성질체가 가능한데, 이 중에서도 (2S, 1'R, 2'S)의 배향을 갖는 트랜스(trans) 형태의 하기 [화학식 1]로 표현되는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올이 가장 강력한 활성을 갖는 것으로 알려졌다. (참고문헌: Jpn. J. Inflamm. 1982, 2, 263 ; J. Med. Chem. 1984, 27, 212 ; Chem. Pharm. Bull. (Tokyo) 1984, 32, 258 ; Chem. Pharm. Bull. 1983, 31, 4319)
[화학식 1]
Figure PCTKR2013009451-appb-I000003
따라서, 록소프로펜의 실질적인 활성 대사체인 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조하기 위해 다양한 방법들이 제시되고 있다.
이와 관련하여 미국특허 제 4,400,534호에는 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조하기 위하여 하기 [반응식 1]로 나타낸 제조방법이 개시되었다.
[반응식 1]
Figure PCTKR2013009451-appb-I000004
상기 방법에 의하면, 록소프로펜을 에틸 아세테이트 또는 헥산에 의해 여러 번 재결정하여 (2S, 1'R)-록소프로펜과 (2R, 1'S)-록소프로펜이 혼합된 에리트로 (erythro) 혼합물(A)을 수득하고, 이를 키랄 광학분할제 (chiral resolving agent)인 (S)-메틸벤질아민과 커플링 반응시켜 1-α-페닐아미드 유도체의 다이아스테레오머(diastereomer)을 제조한 다음, 컬럼 크로마토그래피를 이용하여 (2S, 1'R)-페닐아미드 유도체(B)로 분리한다. 상기 분리된 (2S, 1'R)-페닐아미드 유도체(B)를 가수분해 반응시켜 (2S, 1'R)-카르복실산(C)을 수득하고, 이를 다시 한번 컬럼 크로마토그래피로 분리하면 최종 생성물인 상기 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조할 수 있다.
그러나 상기의 방법으로 최종 생성물을 제조하는 경우 수율이32%로 낮을 뿐만 아니라 환원 반응시 최종 생성물과 거의 동량으로 불순물이 생성되는 문제점이 있다. 또한, 상기 불순물을 제거하기 위해 컬럼크로마토그래피로 정제하는 경우, 최종 생성물과 불순물 모두 극성이 매우 높아서 원하는 최종 생성물을 고순도로 분리하는 것이 어렵기 때문에 산업적인 생산에 적용하기에는 부적합하다.
한편, Yuichi Kobayashi 등 (Org. Lett., 2009, 11, 1103-1106)은 상기 [화학식1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조하기 위하여 하기 [반응식 2]로 나타낸 제조방법이 개시되었다.
[반응식 2]
Figure PCTKR2013009451-appb-I000005
상기 방법에 의하면, 시클로펜텐 다이올의 유도체(D)를 출발물질로 하여 8단계를 거쳐, 시클로펜타놀 유도체(E)를 제조하고, 이것을 피콜리네이트 (F)와 반응시킨 다음 오존 분해, 환원 등의 과정을 거쳐 최종 생성물인 상기 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조할 수 있다.
그러나 상기의 방법은 출발물질인 시클로펜텐 다이올의 유도체(D)을 얻기 위해서 그 합성과정이 어려우며, 합성시 매우 고가의 시약인cis-4-시클로펜텐-1,3-다이올을 사용해야 한다. 또한, 상기 오존 분해반응은 산업적인 대량 생산에 적합한 반응이 아니며, 15단계의 복잡한 제조단계를 거치므로 이에 따른 낮은 수율 및 제조단가가 높은 문제가 있다.
또한, Tomio Yamakawab 등 (Synlett, 2000, 6, 862-864) 은 상기 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조하기 위하여 하기 [반응식 3]으로 나타낸 제조방법이 개시되었다.
[반응식 3]
Figure PCTKR2013009451-appb-I000006
상기 방법에 의하면, 록소프로펜을 키랄 광학분할제 (chiral resolving agent)인 (S)-메틸벤질 아민과 커플링 반응시켜 1-α-페닐아마이드 유도체(G)를 제조한 다음, 시클로펜타논의 케톤을 환원시켜 시클로펜타놀 아미드 혼합물을 제조한 다음, 이를 컬럼크로마토그래피를 이용하여 trans-혼합물로 분리한다. 상기 분리된 trans-혼합물을 리파아제를 이용하여 (1'S, 2'R)-trans-알코올 혼합물만을 아세테이트화하여 제거하고, (1'R, 2'S)-trans-알코올 혼합물(H)을 수득한다. 상기 수득한 (1'R, 2'S)-trans-알코올 혼합물(H)의 히드록시기 (hydroxy)를 아세틸화한 다음, (2R, 1R', 2'S)-에피머(epimer)을 제거하고, (2S, 1R', 2'S)-아미드 유도체(I)를 수득한 다음, 이를 가수분해 반응시키면 최종 생성물인 상기 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조할 수 있다.
그러나 상기 (2S, 1R', 2'S)-아미드 유도체(I)를 수득하기 위해 박막크로마토그래피를 이용하는 데, 이 때 (2R, 1R', 2'S)-에피머의 Rf(Retention factor) 위치가 (2S, 1R', 2'S)-아미드 유도체(I)와 매우 근접해 있어 두 물질이 겹치는 부분(fraction)이 많기 때문에 소량의 분리에만 가능할 뿐 대량 생산에는 매우 부적합하다. 또한, (2S, 1R', 2'S)-아미드 유도체(I)의 2급 아미드를 가수분해 해야 하는데, 니트로실황산(nitrosylsulfuric acid) 등의 다양한 반응 매개체를 사용하여도 부산물만 주로 생성될 뿐 최종 생성물을 얻기가 어렵다.
상술한 바와 같이, 록소프로펜의 활성 대사체인 [화학식 1]로 표현되는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조하기 위하여 많은 노력을 했음에도 불구하고, 산업적인 생산이 가능한 방법은 지금까지 개발하지 못하였다.
이에 본 연구자들은 종래의 방법보다 수율 및 순도가 향상되고, 대량 생산이 가능한 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법을 찾고자 다양한 연구를 수행한 결과, 본 발명을 완성하게 되었다.
본 발명은
(1)하기 [화학식 2]의 록소프로펜과 N-메틸-D-글루카민 또는 N-에틸-D-글루카민을 혼합하고 물 단독 또는 물과 혼화되는 유기용매를 혼합한 용매 존재 하에서 승온시켜 용해 및 반응시킨 다음 냉각시켜 석출된 결정을 여과하여 하기 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 각각 35% 이상 함유된 고체상 혼합물을 얻는 단계,
(2)상기에서 얻어진 고체상 혼합물을 에스테르화 반응시켜 하기 [화학식 4a]의(2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 제조하는 단계,
(3)상기에서 제조된 에스테르 혼합물을 환원 반응시킨 다음 [화학식6a]및 [화학식 6b]의 시스-혼합물을 컬럼크로마토그래피로 제거하고 [화학식 5a] 및 [화학식5b]의 트랜스-알코올 에스테르 혼합물을 수득하는 단계,
(4)상기에서 얻어진 [화학식 5a]및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 리파아제 및 비닐 아세테이트와 반응시킨 후 컬럼크로마토그래피로 분리하여 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 수득하는 단계 및
(5) 상기에서 얻어진 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 가수분해 반응시키는 단계를 포함하는 하기 [화학식1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법을 제공하기 위한 것이다.
[화학식 1]
Figure PCTKR2013009451-appb-I000007
[화학식 2]
Figure PCTKR2013009451-appb-I000008
[화학식 3]
Figure PCTKR2013009451-appb-I000009
[화학식 4]
Figure PCTKR2013009451-appb-I000010
[화학식 5]
Figure PCTKR2013009451-appb-I000011
[화학식 6]
Figure PCTKR2013009451-appb-I000012
(상기 화학식 4a, 4b, 5a, 5b, 6a 및 6b에서, R은 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 6의 시클로알킬기 또는 S-에틸락테이트기(S-ethyl lactate)이다.).
상기 유기용매는 알코올, 아세톤, 아세토니트릴, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 테트라히드로퓨란 또는 에틸렌글리콜, 1,4-부탄디올, 1,3-프로판디올, 1,5-펜탄디올, 비스페놀 A등과 같은 디올류로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 유기용매는 물 1중량부당 0.1 내지 1중량부 첨가할 수 있다.
상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민은 상기 [화학식 2] 의 록소프로펜 1당량에 대하여 0.1 내지 1.0당량 첨가하여 반응시킬 수 있다.
상기 에스테르화 반응은 반응 매개체 존재하에서 실시하며, 상기 반응 매개체는 디사이클로헥실카보디이미드 및 1-에틸-3-(3-디메틸아미노프로필)카보디이미드로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 환원 반응은 환원제를 사용하여 실시되며, 상기 환원제는 소듐 보로하이드라이드 및 소듐 시아노보로하이드라이드로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 환원제는 [화학식 4a] 및 [화학식 4b]의 (2R, 1'S) 및 (2S, 1'R)-에스테르 혼합물 1당량에 대하여 1 내지 3당량 첨가하여 반응시킬 수 있다.
상기 [화학식1]의 화합물을 제조하는 단계 이후 에틸 아세테이트 및 헥산 중에서 재결정하는 단계를 더 포함할 수 있다.
상기 [화학식 1]의 화합물은 순도가 90% 이상인 것일 수 있다.
상기 고체상 혼합물을 수득하고 남은 여액은 물 존재하에서 90내지 100℃ 승온 및 교반하고 냉각시킨 다음 pH 4 내지 5.5로 조절하여 [화학식 2]의 록소프로펜을 회수할 수도 있다.
상기한 본 발명에 따른 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법은 [화학식 1]로 표현되는 화합물을 높은 수율과 고순도로 제조할 수 있다. 특히, 본 발명에서 제시한 방법으로 제조되는 [화학식 1]로 표현되는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올은 순도가 90% 이상으로서, 의약품 제조에 유용하게 사용될 수 있다.
또한, 본 발명은 중간체인 (2R, 1'S) 및 (2S, 1'R)-록소프로펜이 각각 35% 이상 함유된 혼합물을 염의 형태가 아닌 고체상의 산 혼합물로 수득할 수 있기 때문에 별도의 중화 공정이 필요하지 않게 된다. 특히, 단계 1의 광학분할 반응에서 (2R, 1'R)-록소프로펜을 상당량 제거함으로써, 이후 단계 진행 후 제거가 어려운 에피머(Epimer)인 (2R, 1'R, 2'S) trans-화합물을 소량 함유됨에 따라 후술할 단계 5에서 크로마토그래피의 분리과정 없이 바로 가수분해 반응을 실시할 수 있다. 따라서, [화학식 1]화합물의 대량 생산이 가능하고, 제조단가를 감소시킬 수 있다.
본 명세서에서 사용되는 ‘알킬'이라는 용어는 탄소 원자수가 1 내지 10개인 선형 또는 분지형의 탄화수소를 말한다. 알킬의 예에는 메틸(Me), 에틸(Et), n-프로필, 아이소프로필, n-부틸, t-부틸, n-펜틸, 헥실, 헵틸, 옥틸, 노닐, 테킬 등을 들 수 있다.
또한, ‘시클로알킬'이라는 용어는 탄소 원자수가 3 내지 6개인 환형의 탄화수소를 말한다. 시클로알킬의 예에는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 등을 들 수 있다.
본 발명에 따른 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법은
(1)하기 [화학식 2]의 록소프로펜과 N-메틸-D-글루카민 또는 N-에틸-D-글루카민을 혼합하고 물 단독 또는 물과 혼화되는 유기용매를 혼합한 용매 존재하에서 승온시켜 용해 및 반응시킨 다음 냉각시켜 석출된 결정을 여과하여 하기 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 각각 35% 이상 함유된 고체상 혼합물을 얻는 단계, (이하 "단계 1"이라 한다.)
(2)상기에서 얻어진 고체상 혼합물을 에스테르화 반응시켜 하기 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 제조하는 단계, (이하 "단계 2"이라 한다.)
(3)상기에서 제조된 에스테르 혼합물을 환원 반응시킨 다음 [화학식 6a] 및 [화학식 6b]의 시스-혼합물을 컬럼크로마토그래피로 제거하고 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 수득하는 단계, (이하 "단계 3"이라 한다.)
(4)[화학식 5a]및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 리파아제 및 비닐 아세테이트와 반응시킨 후 컬럼크로마토그래피로 분리하여 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 수득하는 단계 및 (이하 "단계 4"라 한다.)
(5)[화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 가수분해 반응시키는 단계(이하 "단계 5"라 한다.)를 포함하는 하기 [화학식1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법을 제공하기 위한 것이다.
상기 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법은 하기 [반응식 4]에 나타낸 바와 같은 반응 공정을 거치며 각각의 단계를 상세히 설명하면 다음과 같다.
[반응식 4]
Figure PCTKR2013009451-appb-I000013
단계 1; [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물의 수득
단계 1에서는, 하기 [반응식 5]에 나타낸 바와 같이 하기 [화학식 2]의 출발물질인 록소프로펜(Loxoprofen)과 N-메틸-D-글루카민(N-methyl-D-glucamine) 또는 N-에틸-D-글루카민(N-ethyl-D-glucamine)을 혼합하고 물 단독 또는 물과 혼화되는 유기용매를 혼합한 용매 존재하에서 승온시켜 용해 및 반응시킨 다음 냉각시켜 석출된 결정을 여과함으로써 하기 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b] (2S, 1'R)-록소프로펜이 각각 35% 이상 함유된 고체상 혼합물을 얻을 수 있다.
[반응식 5]
Figure PCTKR2013009451-appb-I000014
출발물질인 록소프로펜은 구조적으로 2개의 키랄 센터(Chiral center)를 가지고 있으며, (2R, 1'R), (2S, 1'R,), (2R, 1'S), (2S, 1'S)의 배향을 갖는 4 개의 에난티오머가 가능하다.
상기 록소프로펜에 N-메틸-D-글루카민(N-methyl-D-glucamine) 또는 N-에틸-D-글루카민(N-ethyl-D-glucamine)을 첨가한 후 물 단독 또는 물과 혼화되는 유기용매를 혼합한 용매 존재하에서 승온시켜 용해 및 반응시킨다. 그리고 나서, 온도를 낮추면 (2R, 1'S), (2S, 1'R)의 배향을 갖는 에난티오머의 50~70%는 글루카민과 염을 형성하지 않고 유리산(free acid) 상태로 석출되고, 나머지 30~50%의 (2R, 1'S), (2S, 1'R)의 배향을 갖는 에난티오머와 (2R, 1'R), (2S, 1'S) 의 배향을 갖는 에난티오머의 대부분은 글루카민과 염을 형성하여 액 중에 녹아 들어간 상태로 된다.
이때, 상기 (2R, 1'R), (2S, 1'S)의 배향을 갖는 에난티오머도 유리산 상태로 일부 같이 석출된다.
따라서, 유리산 상태의 (2R, 1'R), (2S, 1'S)의 배향을 갖는 에난티오머의 함량을 최소화하고, 유리산 상태의 (2R, 1'S), (2S, 1'R)의 배향을 갖는 에난티오머의 수율 및 순도를 증가시키기 위해서는 상기 과정을 반복하여 수행할 수 있다.
상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민은 키랄 광학분할제(Chiral resolving agent)로서, [화학식 2]의 록소프로펜1당량에 대하여 0.1 내지 1.0 당량 첨가하는 것이 바람직하고, 특히 0.3내지 0.7 당량인 것이 바람직하다. 상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민 첨가량이 0.1당량 미만인 경우에는 광학분할이 잘 일어나지 않아 순도가 떨어지게 되는 문제점이 있고, 1.0당량 초과인 경우에는 수율이 떨어지고, 제조 단가를 상승시키는 문제점이 발생할 수 있다.
상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민과의 광학분할 반응은 용매 존재하에서, 승온시켜 용해시킴으로써 수행된다.
상기 용매는 물 단독 또는 물과 혼화되는 유기용매를 더 포함하여 사용될 수 있다.
상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민은 소량의 물로도 완전히 용해될 수 있으며, 물과 혼화되는 유기용매를 더 넣음으로써 고체상 혼합물의 순도 및 수율이 향상되는 효과를 얻을 수 있다.
상기 유기용매는 알코올, 아세톤, 아세토니트릴, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 테트라히드로퓨란 및 디올류로 이루어진 군으로부터 선택된 적어도 하나를 포함할 수 있다.
상기 디올류는 에틸렌글리콜, 1,4-부탄디올, 1,3-프로판디올, 1,5-펜탄디올, 비스페놀 A 등을 들 수 있다.
상기 유기용매는 물 1중량부당 0.1 내지 1중량부 첨가하는 것이 바람직하고, 특히, 0.2 내지 0.5중량부인 것이 바람직하며, 1중량부 이상이 되면 수율이 떨어지는 문제가 있다.
또한, 상기 광학분할 반응을 잘 일어나기 위해서 약 40 내지 70℃까지 승온시키는 것이 바람직하다.
이렇게 승온시켜 용해된 반응액을 30 내지 50℃의 온도까지 냉각시킨 상태에서1시간 이상, 바람직하게는 4 시간 이상 교반하여 결정으로 석출시킬 수 있다. 상기 석출된 결정은 여과시키고, 정제수, 헥산, 알코올 등을 이용하여 세척한 다음 건조시키면 (2R, 1'S) 및 (2S, 1'R)-록소프로펜을 함유하는 에난티오머 쌍, 즉 고체상 혼합물을 얻을 수 있다.
상기 과정을 거쳐 제조된 (2R, 1'S) 및 (2S, 1'R)-록소프로펜을 함유하는 고체상 혼합물은 글루카민의 염 형태가 아닌 각각 35%이상 함유된 고체상의 산 혼합물로 얻을 수 있다. 따라서, 별도의 중화 공정이 필요하지 않으므로, 반응시간을 크게 단축시킬 수 있다.
또한, 상기 광학분할 반응에서 (2R, 1'R)의 배향을 갖는 에난티오머를 상당량 제거함으로써, 이후 단계 진행 후 제거가 어려운 에피머((Epimer)인 (2R, 1'R, 2'S) trans-알코올 에스테르 화합물을 소량 함유됨에 따라 후술할 단계 5에서 크로마토그래피의 분리과정 없이 바로 가수분해 반응을 실시할 수 있다.
한편, 상기 고체상 혼합물을 수득하고 남은 여액을 물 존재하에서 90 내지 100℃로 승온 및 교반하고 냉각시킨 다음 pH 4 내지 5.5로 조절함으로써 록소프로펜을 회수할 수 있다.
즉, 상기 여액에 물을 첨가하고 90 내지 100℃로 승온시키고, 교반한 다음 실온까지 냉각시켜 석출된 결정을 여과 및 건조시키면 록소프로펜을 얻을 수 있다.
이때,반응액에 염산을 첨가하여 반응액의 pH를 4 내지 5.5로 유지하는 것이 바람직하다.
또한, 상기 록소프로펜의 회수율을 증가시키기 위해 상기 회수 공정은 여러 번 수행할 수 있다. 이러한 상기 여액의 회수 공정을 통해 록소프로펜을 수득함으로써 제조단가를 감소시키고 경제성을 향상시킬 수 있다.
단계 2. [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼 합물의 제조
단계 2에서는, 하기 [반응식6]에 나타낸 바와 같이 상기 단계 1에서 얻어진 고체상 혼합물을 에스테르화(Esterification) 반응시키면 하기 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 제조할 수 있다.
[반응식 6]
Figure PCTKR2013009451-appb-I000015
상기 에스테르화 반응은 반응 매개체 존재하에서 실시할 수 있다. 상기 반응 매개체는 고체상 혼합물을 에스테르화 반응시킴으로써 카르복시산의 히드록시기를 에스테르기로 변환할 수 있다. 즉, 상기 반응 매개체가 히드록시기에 있는 H를 떼어내고, 우레아(urea) 타입의 중간체를 만든 후, 알코올과 반응함으로써 에스테르화된 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 제조할 수 있다.
상기 반응 매개체는 디사이클로헥실카보디이미드(Dicyclohexylcarbodiimide) 또는 1-에틸-3-(3-디메틸아미노프로필)카보디이미드(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDCI)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
또한, 상기 에스테르화 반응은 알코올, 사이클로알코올 또는 S-에틸락테이트(S-ethyllactate)의 키랄 알코올을 사용하여 수행될 수 있으며, 바람직하게는 메탄올 또는S-에틸락테이트(S-ethyllactate) 인 것이 좋다. 상기 메탄올 또는 S-에틸락테이트(S-ethyllactate)은 후술할 5단계의 가수분해 반응시 [화학식 5a]의 에스테르기를 용이하게 탈보호할 수 있기 때문에 저온에서도 반응을 진행시킬 수 있다.
따라서, 상기 알코올, 사이클로알코올 또는 S-에틸락테이트(S-ethyllactate)의 키랄 알코올을 첨가하여 반응시킴으로써, 상기 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물의 R은 탄소수 1 내지 10의 알킬기, 탄소수 4 내지 6의 시클로알킬기 또는 키랄 알코올인 S-에틸락테이트(S-ethyllactate)기가 된다.
상기 에스테르화 반응은 상기 얻은 고체상 혼합물을 디클로로메탄(Dichloromethane) 등의 용매로 용해시키고, 여기에 반응 매개체 및 알코올을 순차적으로 첨가함으로써 이루어질 수 있다.
즉, 고체상 혼합물에 용매, 반응 매개체 및 알코올을 첨가한 반응액을 실온 조건하에서 교반, 추출 및 감압 농축시켜 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 얻을 수 있다.
예를 들어 상기 반응액을 실온에서 30분 이상, 바람직하게는 1시간 이상 교반시키고, 물을 첨가하여 추출한 다음 염화나트륨 용액으로 세척시킨다. 그리고 나서 세척한 반응액의 유기층을 무수황산나트륨으로 건조시키고 여과한 다음, 그 여액을 감압 농축시켜 오일상의 에스테르화된 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물을 제조할 수 있다.
단계 3. [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물의 수
단계 3에서는, 하기 [반응식7] 및 [반응식 8]에서 나타낸 바와 같이 상기 단계 2에서 제조된 [화학식4a]의 (2R, 1'S) 및 [화학식4b]의 (2S, 1'R)-에스테르 혼합물을 환원 반응시킨 다음 [화학식6a] 및 [화학식 6b]의 시스-혼합물을 컬럼크로마토그래피로 제거시키면 [화학식5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 얻을 수 있다.
[반응식 7]
Figure PCTKR2013009451-appb-I000016
[반응식 8]
Figure PCTKR2013009451-appb-I000017
상기 환원 반응은 환원제를 사용하여 실시할 수 있다. 상기 환원제는 에스테르 혼합물을 환원 반응시킴으로써 [화학식 4a] 및 [화학식 4b] 화합물에 있는 시클로펜타논의 케톤기를 알코올로 환원시켜 시클로펜타놀로 변환시킬 수 있다.
상기 환원 반응은 [화학식 4a] 및 [화학식 4b] 화합물에 있는 카르복실기와는 반응하지 않고 케톤기만이 환원시키기 위해서 하이드라이드계열의 환원제를 사용하는 것이 바람직하다. 구체적으로 상기 환원제는 소듐보로하이드라이드(Sodium borohydride) 또는 소듐시아노보로하이드라이드(Sodium cyanoborohydride)로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.
상기 환원제는 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물 1당량에 대하여 1 내지 3당량 첨가하는 것이 바람직하고, 특히1 내지 2당량인 것이 바람직하다. 상기 환원제가 상기 범위로 사용될 경우 환원 반응이 충분히 일어나, [화학식 4a] 및 [화학식 4b] 화합물의 케톤기를 효율적으로 환원시킬 수 있다.
또한, 상기 환원 반응은 원하는 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물 이외에 [화학식 6a] 및 [화학식 6b] 의 시스-알코올 에스테르 혼합물이 함께 생성된다.
따라서, 상기 시스-알코올 에스테르 혼합물을 제거하고 트랜스-알코올 에스테르 혼합물을 분리하기 위해 크로마토그래피를 이용할 수 있다. 상기 크로마토그래피는 액상의 혼합물을 용이하게 분리할 수 있는 컬럼 크로마토그래피를 이용하는 것이 바람직하다.
상기 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물과의 환원 반응은 메탄올, 테트라히드로퓨란 등의 용매로 용해시키고, 환원제를 첨가함으로써 이루어질 수 있다.
또한, 상기 환원 반응은 냉각 조건하에서 교반, 감압 농축 및 분리과정을 실시할 수 있다.
예를 들어, [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물에 용매를 첨가한 반응액을 0℃까지 냉각시킨 상태에서 환원제를 서서히 첨가한 다음, 30분 이상, 바람직하게는 1시간 이상 교반시켜 반응시킨다.
이때, 반응을 완전히 진행시키기 위해 실온에서 10시간 이상, 바람직하게는 16시간 이상 재교반을 실시할 수 있다.
그리고 나서, 반응이 완료되면 상기 반응액을 감압 농축하고 오일상의 잔류물은 디클로로메탄 또는 헥산을 이용하여 용매분획한 다음 물 또는 염화나트륨으로 세척시킨다. 상기 세척한 반응액의 유기층을 무수황산나트륨으로 건조시키고 감압 농축함으로써 트랜스-알코올 에스테르 혼합물 및 시스-알코올 에스테르 혼합물이 생성되고, 이를 컬럼크로마토그래피를 이용하여 분리함으로써 [화학식 5a] 및 [화학식5b]의 트랜스-알코올 에스테르 혼합물을 얻을 수 있다.
단계 4. [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르의 수득
단계 4에서는, 하기 [반응식9]에서 나타낸 바와 같이 상기 단계 3에서 분리된 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 리파아제(Lipase) 및 비닐 아세테이트(Vinyl acetate)와 반응시킨 다음 컬럼크로마토그래피로 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 얻을 수 있다.
[반응식 9]
Figure PCTKR2013009451-appb-I000018
상기 [반응식 9]에서 보는 바와 같이 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물에 리파아제 및 비닐 아세테이트를 첨가하여 반응시키면 [화학식 5b]의 화합물만 선택적으로 아세틸화(Acetylation) 반응이 일어나 [화학식 7]의 화합물 형태로 제조된다. 즉, [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 리파아제 및 비닐 아세테이트와 반응시키면 [화학식 5b]화합물의 히드록시기만 입체 선택적으로 아세틸화 된다. 반면에, [화학식 5a]화합물은 아세틸화되지 않으므로, 아세틸화된 [화학식 7]과 [화학식 5a] 화합물을 컬럼크로마토그래피를 이용하여 분리할 수 있다.
상기 리파아제를 촉매로 한 아세틸화 반응은 공지된 문헌(Synlett, 2000, 6, 862-864) 방법을 이용하여 진행될 수 있다.
상기 리파아제는 Amano Lipase PS 등을 사용할 수 있다. 상기 리파아제는 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물100중량%에 대하여 5 내지 15중량% 첨가하는 것이 바람직하고, 특히 8 내지 12중량%인 것이 바람직하다. 상기 리파아제가 상기 범위로 사용될 경우 [화학식 5b] 화합물의 충분한 선택적 아세틸화 반응이 이루어질 수 있다.
또한, 상기 아세틸화된 [화학식 7]과 [화학식 5a] 화합물을 분리하기 위해 크로마토그래피를 이용할 수 있다. 상기 크로마토그래피는 액상의 혼합물을 용이하게 분리할 수 있는 컬럼크로마토그래피를 이용하는 것이 바람직하다.
상기 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물의 아세틸화 반응은 용매인 톨루엔으로 용해시키고, 리파아제 및 비닐 아세테이트를 첨가함으로써 이루어질 수 있다. 또한, 상기 아세틸화 반응은 실온 조건하에서 교반, 감압 농축 및 정제과정을 실시할 수 있다.
예를 들어, [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물에 용매를 첨가하여 용해시키고, 여기에 리파아제, 분자체 및 비닐 아세테이트를 순차적으로 첨가한 다음 실온에서 15시간 이상, 바람직하게는 20시간 이상 교반시켜 반응시킨다. 그리고 나서 반응액을 여과하고, 그 여액을 감압 농축한 다음, 잔류액을 컬럼크로마토그래피를 이용하여 분리함으로써 오일상의 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 얻을 수 있다.
단계 5. [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조
단계 5에서는, 하기 [반응식 10]에 나타낸 바와 같이 상기 단계 4에서 분리된 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르을 가수분해(Hydrolysis)시키면 [화학식 1]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올을 제조할 수 있다.
[반응식 10]
Figure PCTKR2013009451-appb-I000019
상기 [반응식 10]은 [화학식 5a] 의 트랜스-알코올 에스테르 화합물은 가수분해 반응 시킴으로써 [화학식 5a] 화합물에 있는 카르복시산의 에스테르기를 히드록시기로 변환할 수 있다.
상기 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르 화합물의 가수분해 반응은 반응속도를 증가시키기 위해 산 또는 염기 존재하에서 수행되는 것이 바람직하다.
상기 산은 염산, 황산, 브롬화수소 등의 유기산 또는 포름산, 아세트산, p-톨루엔설폰산 등의 무기산을 사용할 수 있다. 또한, 상기 염기는 리튬하이드록사이드, 수산화나트륨, 수산화칼륨 등을 사용할 수 있다.
또한, 상기 가수분해 반응은 아세토니트릴 등의 용매로 용해시키고, 냉각조건 하에서 교반, 추출 및 감압 농축과정을 실시할 수 있다.
예를 들어, [화학식 5a]의 트랜스-알코올 에스테르 화합물에 용매를 첨가한 반응액을 0 내지 5℃까지 냉각시킨 상태에서 물과 산 또는 염기를 서서히 첨가한 다음, 15시간 이상, 바람직하게 20시간 이상 교반시켜 반응시킨다. 그리고 나서, 에틸아세테이트 및 물을 첨가하여 추출한 다음 수층을 분리시킨다.
이때, pH를 3 내지 3.5로 조절하기 위하여 분리된 수층에 염산을 첨가한 다음, 디클로메탄을 이용하여 2회 이상 추출을 실시하는 것이 바람직하다.
따라서, 상기 추출한 반응액을 무수황산나트륨으로 건조시키고 여과한 다음, 그 여액을 감압 농축시켜 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 제조할 수 있다.
또한, 상기 제조된 [화학식 1]의 화합물은 순도를 높이기 위하여 유기용매 하에서 재결정하는 단계를 추가로 포함하여 정제할 수 있다.
상기 재결정하는 단계는 에틸 아세테이트 및 헥산의 유기용매를 사용하여 수행할 수 있다.
상기한 단계를 거쳐 제조된 하기 [화학식 1]의 화합물은 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올로서, 그 화학명은 (2S)-2-[4-((1R, 2S)-2-히드록시시클로펜틸메틸)페닐]프로피온 산이다.
[화학식 1]
Figure PCTKR2013009451-appb-I000020
본 발명에 따르면 상기 [화학식 1]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올은 순도가 90% 이상으로 제조할 수 있다.
또한, 상기 제조된 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올을 추가로 재결정하게 되면, 그 순도는 95% 이상으로 높일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하여 설명하기로 하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[사용기기 및 측정조건]
하기 실시예에 있어서, 화합물의 순도는 키랄 고성능 액상 크로마토그래피(CHIRAL HPLC)로 측정하였다. 키랄 정지상(CHIRALCEL, AD-H 컬럼, 250 X 4.6mm)과 이동상(n-헥산 : 에탄올 : 트리플루오로아세트산 : 디에틸아민 = 900 : 100 : 1 : 1)을 사용하였고, 유속 1.0ml/분, 오븐온도 40oC, 파장 220nm에서 측정하였다.
<실시예 1> 단계 1. [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)- 록소프로펜이 함유된 고체상 혼합물 수득
방법 A
용기에 록소프로펜 500g과 N-메틸-D-글루카민 200g을 투입하고, 물 2500㎖와 에탄올 500㎖의 혼합용매를 첨가한 후 약 60℃까지 승온시켜 완전히 용해시켰다. 상기 용해시킨 반응액을 약 45℃로 서서히 냉각시킨 후 약 45℃에서 4시간 동안 교반하여 결정을 석출하였다. 그리고 나서 석출된 결정을 약 35℃까지 서서히 냉각시킨 후 1시간 동안 교반하였다. 이어서 상기 결정을 여과하고 물 500㎖로 세척한 후 약 40℃에서 훈풍 건조하여 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 165g(수율 33%)을 얻었다.
순도측정 (2S, 1`R-이성체 44.5%, 2R, 1`S-이성체 44.5%, 2R, 1`R-이성체 5.5%, 2S, 1`S-이성체 5.5%)
방법 B
용기에 상기 방법 A에서 제조한 [화학식 3a] 및 [화학식 3b]가 함유된 고체상 혼합물 160g과 N-메틸-D-글루카민 25g을 투입하고, 물 480㎖와 에탄올 240㎖의 혼합용매를 첨가한 후 약 60℃까지 승온시켜 완전히 용해시켰다. 상기 용해시킨 반응액을 약 60℃에서 물 160㎖을 첨가하고, 약 45℃까지 서서히 냉각시킨 후 4시간 동안 교반하여 결정을 석출하였다. 그리고 나서 석출된 결정을 약 45℃에서 30분 동안 물 640㎖을 서서히 첨가한 후 1시간 동안 교반하여 다시 한번 결정을 석출하였다. 상기 석출된 결정을 여과하고 물 400㎖로 세척한 후 약 40℃에서 훈풍 건조하여 수율이 증가한 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 125g(수율 78%)을 얻었다.
순도측정 (2S, 1`R-이성체 48.5%, 2R, 1`S-이성체 48.7%, 2R, 1`R-이성체 1.4%, 2S, 1`S-이성체 1.4%)
방법 C
방법 A와 동일하게 실시하되, 에탄올 대신에 아세톤을 사용하여 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 132g(수율 26%)을 얻었다.
순도측정 (2S, 1`R-이성체 44.1%, 2R, 1`S-이성체 44.1%, 2R, 1`R-이성체 5.9%, 2S, 1`S-이성체 5.9%)
방법 D
방법 A와 동일하게 실시하되, 에탄올 대신에 아세토니트릴을 사용하여 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 120g(수율 24%)을 얻었다.
순도측정 (2S, 1`R-이성체 45.7%, 2R, 1`S-이성체 45.4%, 2R, 1`R-이성체 4.2%, 2S, 1`S-이성체 4.7%)
방법 E
방법 A와 동일하게 실시하되, 에탄올 대신에 N,N-디메틸포름이미드을 사용하여 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 164g(수율 33%)을 얻었다.
순도측정 (2S, 1`R-이성체 43.0%, 2R, 1`S-이성체 43.0%, 2R, 1`R-이성체 7.0%, 2S, 1`S-이성체 7.0%)
방법 F
방법 A와 동일하게 실시하되, 물과 에탄올의 혼합용매 대신에 물만 사용하여 목적화합물인 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 함유된 고체상 혼합물 115g(수율 23%)을 얻었다.
순도측정 (2S, 1`R-이성체 43.3%, 2R, 1`S-이성체 43.4%, 2R, 1`R-이성체 6.6%, 2S, 1`S-이성체 6.6%)
단계 1에서는, 용매로 물을 사용한 방법 F에 따르면 [화학식3a] 및 [화학식 3b]가 함유된 고체상 혼합물이 수율이 23% 정도이나, 용매로 물 이외에 유기용매를 더 포함하는 혼합용매의 형태로 사용하는 방법 A 내지 E의 경우 방법 F에 비하여 수율이 좀 더 향상된 결과를 보여준다는 것을 알 수 있다.
또한, 상기 방법 B의 과정을 추가로 반복 실시하는 경우 방법 A, C, D, E 및 F에서 수득한 [화학식 3a] 및 [화학식 3b]가 함유된 고체상 혼합물의 순도가 증가된다는 것을 알 수 있다.
<실시예 2> 단계 2. [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)- 에스테르 혼합물 제조 (R: 메틸기)
용기에 상기 실시예 1의 방법 B에서 제조한 [화학식 3a] 및 [화학식 3b]가 함유된 고체상 혼합물 100g을 첨가하고, 디클로로메탄 1000㎖으로 용해시켰다. 상기 반응액에 1-에틸-3-(3-디메틸아미노프로필)카보디이미드 116.7g과 N,N-디메틸아미노피리딘 5.0g을 첨가한 후 메탄올 25㎖을 서서히 첨가하였다. 그리고 나서, 실온에서 1시간 동안 교반하고, 물 1000㎖을 가해 추출한 다음 20% 염화나트륨 수용액1000㎖로 세척하였다. 그리고 상기 분리된 유기층을 무수황산마그네슘으로 건조시키고, 여과한 후 남은 여액을 감압 농축시켜 오일상의 목적화합물인 [화학식4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물 105.7g(조수율 100%)을 얻었다.
<실시예 3> 단계 3. [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물 수득 (R: 메틸기)
용기에 상기 실시예 2에서 제조한 [화학식 4a]의 (2R, 1'S) 및 [화학식4b]의 (2S, 1'R)-에스테르 혼합물 105.7g을 첨가하고, 메탄올 1000㎖으로 용해시킨 후 0℃까지 냉각시켰다. 상기 온도를 유지하며 소듐보로하이드라이드(NaBH4) 18.4g을 서서히 첨가하였다. 이어서 상기 반응액을 0℃에서 1시간 동안 교반하고, 감압 농축한 후 오일 상의 잔류물에 디클로로메탄 1000㎖으로 용매분획 하였다. 상기 분리된 유기층을 물 1000㎖로 2회 세척한 후, 다시 한번 20% 염화나트륨 수용액1000㎖로 세척하였다. 이어서 유기층을 무수황산마그네슘으로 건조시키고, 감압 농축한 후 잔류물([화학식 5a] 및 [화학식5b] 의 트랜스-알코올 에스테르 혼합물: [화학식 6a] 및 [화학식 6b]의 시스-알코올 에스테르 혼합물 = 79.2:20.8)를 컬럼 크로마토그래피(에틸아세테이트:n-헥산=1:10)로 분리하였다. 상기 [화학식6a] 및 [화학식 6b]의 시스-알코올 에스테르 혼합물은 제거하고, 오일상의 목적화합물인 [화학식5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물 50.5g(수율 48%)을 얻었다.
<실시예 4> 단계 4. [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르 수득 (R: 메틸기)
용기에 상기 실시예 3에서 제조한 [화학식 5a] 및 [화학식5b]의 트랜스-알코올 에스테르 혼합물 30.5g을 첨가하고, 톨루엔 92㎖으로 용해시켰다. 그리고 나서 상기 반응액에 Amano Lipase PS 3.4g, molecular sieves 3Åpowder 3.4g 및 비닐 아세테이트 32.1㎖을 첨가한 후 실온에서 20시간 동안 교반하였다. 상기 교반한 반응액을 여과하고, 남은 여액을 감압 농축한 후 잔류물을 컬럼 크로마토그래피(에틸 아세테이트:n-헥산=1:6)을 이용하여 오일상의 목적화합물인 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르 13.6g(수율: 45%)을 얻었다..
<실시예 5> 단계 5. [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올 제조
용기에 상기 실시예 4에서 제조한 [화학식 5a]의 트랜스-알코올 에스테르 화합물13.6g을 첨가하고, 아세토니트릴 135㎖로 용해시켰다. 그리고 나서 상기 용액을 약 0℃까지 냉각시키고, 물 135㎖에 리튬하이드록사이드 일수화물(LiOH·H2O) 6.5g을 용해시킨 수용액을 약 0℃을 유지하면서 상기 용액에 서서히 첨가한 후 20시간 동안 교반하였다. 이어서 에틸아세테이트 270㎖을 첨가하고, 물 270㎖로 추출하여 수층을 분리하였다. 상기 분리된 수층은 6N 염산을 이용하여 약 pH 3으로 조절하고, 디클로로메탄 135㎖로 2회 추출한 후, 무수황산마그네슘으로 건조시켰다. 그리고 나서 건조시킨 반응액을 여과하고 감압 농축한 후 에틸아세테이트 41㎖을 첨가해 용해시켰다. 이어서 n-헥산 272㎖을 서서히 첨가하고 실온에서 1시간 동안 교반한 후 여과하였다. 상기 여과액을 25℃에서 진공 건조시켜, 고체상의 목적화합물인 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올 11.0g(수율 88%)을 제조하였다.
순도측정(2S, 1`R, 2'S-이성체 94.5%, 2R,1'R,2'S-이성체(에피머) 5.5%)
1H-NMR (CDCl3) δ: 1.12~1.29 (m, 1H), 1.41~1.77 (m, 3H), 1.48 (d, 3H), 1.77~1.89 (m, 1H), 1.90~2.07(m, 2H), 2.44 (dd, 1H), 2.73 (dd, 1H), 3.68 (q, 1H), 3.88 (q, 1H), 5.5~6.2 (br s, 1H), 7.12 (d, 2H), 7.24 (d, 2H)
<실시예 6> 단계 1. [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)- 록소프로펜이 함유된 고체상 혼합물 수득
상기 실시예 1의 방법 B와 동일
<실시예 7> 단계 2. [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)- 에스테르 혼합물 제조 (R: (S)-에틸락테이트기)
용기에 상기 실시예 6의 방법 B에서 제조한 [화학식 3a] 및 [화학식 3b]가 함유된 고체상 혼합물 100g을 첨가하고, 디클로로메탄 1000㎖으로 용해시켰다. 상기 반응액에 1-에틸-3-(3-디메틸아미노프로필)카보디이미드 116.7g과 N,N-디메틸아미노피리딘 5.0g을 첨가한 후 (S)-에틸락테이트 69.5㎖을 서서히 첨가하였다. 그리고 나서, 실온에서 1시간 동안 교반하고, 물 1000㎖을 가해 추출한 다음 20% 염화나트륨 수용액 1000㎖로 세척하였다. 그리고 상기 분리된 유기층을 무수황산마그네슘으로 건조시키고, 여과한 후 남은 여액을 감압 농축시켜 오일상의 목적화합물인 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물140.6g(조수율 100%)을 얻었다.
<실시예 8> 단계 3. [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물 수득 (R: (S)-에틸락테이트기)
용기에 상기 실시예 7에서 제조한 [화학식 4a]의 (2R, 1'S) 및 [화학식4b]의 (2S, 1'R)-에스테르 혼합물 140.6g을 첨가하고, 테트라히드로퓨란 1400㎖으로 용해시킨 후 초산 232㎖을 첨가하였다. 그리고 나서 상기 반응액을 0℃까지 냉각시키고, 상기 온도를 유지하며 소듐시아노보로하이드라이드(NaCNBH3) 38.3g을 서서히 첨가하였다. 이어서 상기 반응액을 0℃에서 1시간 동안 교반하고, 실온에서 16시간 동안 재교반한 후 물 815㎖을 첨가하였다. 그리고 나서, 상기 반응액을 에틸아세테이트 1055㎖으로 추출하고 에틸아세테이트 280㎖로 재추출하였다. 분리된 유기층은 무수황산마그네슘으로 건조시키고, 감압 농축한 후 잔류물([화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물: [화학식 6a] 및 [화학식 6b]의 시스-알코올 에스테르 혼합물= 77:23)를 컬럼크로마토그래피(에틸아세테이트:n-헥산=1:10)로 분리하였다. 상기 [화학식 6a] 및 [화학식 6b]의 시스-알코올 에스테르 혼합물은 제거하고, 오일상의 목적화합물인 [화학식 5a] 및 [화학식 5b] 트랜스-알코올 에스테르 혼합물 65g(수율: 46%)을 얻었다.
<실시예 9> 단계 4. [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르 수득 (R: (S)-에틸락테이트기)
용기에 상기 실시예 8에서 제조한 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물 65g을 첨가하고, 톨루엔 195㎖으로 용해시켰다. 그리고 나서 상기 반응액에 Amano Lipase PS 7.2g, molecular sieves 3Åpowder 7.2g 및 비닐 아세테이트 51.6㎖을 첨가한 후 실온에서 20시간 동안 교반하였다. 상기 교반한 반응액을 여과하고, 남은 여액을 감압 농축한 후 잔류물을 컬럼크로마토그래피(에틸 아세테이트:n-헥산=1:6)을 이용하여 오일상의 목적화합물인 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르 30.7g(수율 47%)을 얻었다.
<실시예 10> 단계 5. [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코 올 제조
용기에 상기 실시예 9에서 제조한 [화학식 5a]의 트랜스-알코올 에스테르 화합물29.3g을 첨가하고, 아세토니트릴 293㎖로 용해시켰다. 그리고 나서 상기 용액을 약 0℃까지 냉각시키고, 물 293㎖에 리튬하이드록사이드 일수화물(LiOH·H2O) 39.1g을 용해시킨 수용액을 약 0℃을 유지하면서 상기 용액에 서서히 첨가한 후 20시간 동안 교반하였다. 이어서 에틸아세테이트 590㎖을 첨가하고, 물 590㎖로 추출하여 수층을 분리하였다. 상기 분리된 수층은 6N 염산을 이용하여 약 pH 3으로 조절하고, 디클로로메탄 290㎖로 2회 추출한 후, 무수황산마그네슘으로 건조시켰다. 그리고 나서 건조시킨 반응액을 여과하고 감압 농축한 후 에틸아세테이트 88㎖을 첨가해 용해시켰다. 이어서 n-헥산 586㎖을 서서히 첨가하고 실온에서 1시간 동안 교반한 후 여과하였다. 상기 여과액을 25℃에서 진공 건조시켜, 고체상의 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올 17.9g(수율 85%)을 제조하였다.
순도측정(2S, 1`R, 2'S-이성체 94.3%, 2R,1'R,2'S-이성체(에피머) 5.7%)
1H-NMR (CDCl3) δ: 1.12~1.29 (m, 1H), 1.41~1.77 (m, 3H), 1.48 (d, 3H), 1.77~1.89 (m, 1H),1.90~2.07(m, 2H), 2.44 (dd, 1H), 2.73 (dd, 1H), 3.68 (q, 1H), 3.88 (q, 1H), 5.5~6.2 (br s, 1H), 7.12 (d, 2H), 7.24 (d, 2H)
또한 본 발명에 의해 미반응된 록소프로펜은 다음과 같은 방법으로 회수될 수 있다.
1)록소프로펜의 회수방법 ①
용기에 실시예 1의 방법 A 및 B에서 고체상 혼합물을 제조하고 남은 여액과 물 360㎖을 첨가하였다. 그리고 나서 실온에서 2N-HCl을 사용하여 pH 5.5로 조절하고, 결정이 석출되면서 pH가 상승하면 약 30분 동안 2N-HCl을 사용하여 지속적으로 pH 5.5로 조절하였다. 결정이 충분히 석출되면 다시2N-HCl로 pH 5.0으로 조절하고, pH 상승하면 약 30분 동안 pH 5.0으로 계속 조절하였다. 그리고 나서 2N-HCl을 사용하여 pH 4.0까지 천천히 조절한 후 1시간 교반한 다음 석출된 결정을 여과하였다. 상기 석출된 결정은 물 200㎖로 세척하고, 약 40℃에서 훈풍 건조하여 록소프로펜 34g을 회수하였다.
순도측정(2S, 1`R-이성체 19.8%, 2R, 1`S-이성체 19.8%, 2R, 1`R-이성체 30.2%, 2S, 1`S-이성체 30.2%)
2)록소프로펜의 회수방법 ②
용기에 참고예의 1)에서 회수한 록소프로펜 20g과 물 100㎖을 첨가하였다. 그리고 나서 상기 반응액을 약 95℃까지 승온시키고, 15시간 동안 교반하고, 실온으로 냉각시킨 후 물 200㎖을 첨가하였다. 이어서 2N-HCl을 이용하여 서서히 pH 4.0으로 조절하고, 결정을 석출하였다. 상기 석출된 결정을 여과하고 물 100㎖로 세척한 후 훈풍 건조하여 록소프로펜 18.8g(수율 94%)을 회수하였다.
순도측정(2S, 1`R-이성체 25.1%, 2R, 1`S-이성체 25.1%, 2R, 1`R-이성체 24.7%, 2S, 1`S-이성체 24.7%)
상기 실시예들에서 보는 바와 같이, 본 발명의 실시예1 내지 5를 거쳐 제조된 실시예5의 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올과 실시예6 내지 10를 거쳐 제조된 실시예10의 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올은 최종단계에서의 수율이 85% 이상, 순도가 90% 이상인 것을 알 수 있다. 반면에 종래 미국특허 제 4,400,534호에 따르면 최종적으로 제조된 [화학식1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 최종 수율이 32%로 낮을 뿐만 아니라, 환원 반응시 불순물이 다량으로 생성되어 최종적으로 제조된 [화학식1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 순도가 감소된 것을 확인할 수 있다.

Claims (10)

  1. (1) 하기 [화학식 2]의 록소프로펜과 N-메틸-D-글루카민 또는 N-에틸-D-글루카민을 혼합하고 물 단독 또는 물과 혼화되는 유기용매를 혼합한 용매 존재하에서 승온시켜 용해 및 반응시킨 다음 냉각시켜 석출된 결정을 여과하여 하기 [화학식 3a]의 (2R, 1'S) 및 [화학식 3b]의 (2S, 1'R)-록소프로펜이 각각 35% 이상 함유된 고체상 혼합물을 얻는 단계,
    (2) 상기에서 얻어진 라세미체 혼합물을 에스테르화 반응시켜 하기 [화학식 4a]의 (2R, 1'S) 및 [화학식4b]의 (2S, 1'R)-에스테르 혼합물을 제조하는 단계,
    (3) 상기에서 제조된 에스테르 혼합물을 환원 반응시킨 다음 [화학식 6a] 및 [화학식 6b]의 시스-혼합물을 컬럼크로마토그래피로 제거하고 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 수득하는 단계,
    (4) 상기에서 얻어진 [화학식 5a] 및 [화학식 5b]의 트랜스-알코올 에스테르 혼합물을 리파아제 및 비닐 아세테이트와 반응시킨 후 칼럼크로마토그래피로 분리하여 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 수득하는 단계 및
    (5) 상기에서 얻어진 [화학식 5a]의 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올 에스테르를 가수분해 반응시키는 단계를 포함하는 하기 [화학식 1]의 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법:
    [화학식 1]
    Figure PCTKR2013009451-appb-I000021
    [화학식 2]
    Figure PCTKR2013009451-appb-I000022
    [화학식 3]
    Figure PCTKR2013009451-appb-I000023
    [화학식 4]
    Figure PCTKR2013009451-appb-I000024
    [화학식 5]
    Figure PCTKR2013009451-appb-I000025
    [화학식 6]
    Figure PCTKR2013009451-appb-I000026
    (상기 화학식 4a, 4b, 5a, 5b, 6a 및 6b에서, R은 탄소수 1 내지 10의 알킬기, 탄소수 3 내지 6의 시클로알킬기 또는 S-에틸락테이트기(S-ethyl lactate)이다.).
  2. 청구항 1에 있어서,
    상기 유기용매는 알코올, 아세톤, 아세토니트릴, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 테트라히드로퓨란 및 디올류로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 록소프로펜(2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  3. 청구항 2에 있어서,
    상기 유기용매는 물 1중량부당 0.1 내지 1중량부 첨가하는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  4. 청구항 1에 있어서,
    상기 N-메틸-D-글루카민 또는 N-에틸-D-글루카민은 상기 [화학식 2]의 록소프로펜 1당량에 대하여 0.1 내지 1.0당량 첨가하여 반응시키는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  5. 청구항 1에 있어서,
    상기 에스테르화 반응은 반응 매개체 존재하에서 실시하며, 상기 반응 매개체는 디사이클로헥실카보디이미드 및 1-에틸-3-(3-디메틸아미노프로필)카보디이미드로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  6. 청구항 1에 있어서,
    상기 환원 반응은 환원제를 사용하여 실시되며, 상기 환원제는 소듐 보로하이드라이드 및 소듐 시아노보로하이드라이드로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  7. 청구항 6에 있어서,
    상기 환원제는 [화학식 4a]의 (2R, 1'S) 및 [화학식 4b]의 (2S, 1'R)-에스테르 혼합물 1당량에 대하여 1 내지 3당량 첨가하여 반응시키는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  8. 청구항 1에 있어서,
    상기 [화학식 1]의 화합물을 제조하는 단계 이후 재결정하는 단계를 더 포함하는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  9. 청구항 1 내지 8 중 어느 한 항에 있어서,
    상기 [화학식 1]의 화합물은 순도가 90% 이상인 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
  10. 청구항 9에 있어서,
    상기 고체상 혼합물을 수득하고 남은 여액을 물 존재하에서 90 내지 100℃로 승온 및 교반하고 냉각시킨 다음 pH 4 내지 5.5로 조절하여 [화학식 2]의 록소프로펜을 회수하는 것을 특징으로 하는 록소프로펜 (2S, 1'R, 2'S) 트랜스-알코올의 제조방법.
PCT/KR2013/009451 2012-10-25 2013-10-23 록소프로펜 (2s, 1'r, 2's) 트랜스-알코올의 제조방법 WO2014065577A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120119272A KR101451171B1 (ko) 2012-10-25 2012-10-25 록소프로펜 (2s, 1''r, 2''s) 트랜스-알코올의 제조방법
KR10-2012-0119272 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065577A1 true WO2014065577A1 (ko) 2014-05-01

Family

ID=50544898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009451 WO2014065577A1 (ko) 2012-10-25 2013-10-23 록소프로펜 (2s, 1'r, 2's) 트랜스-알코올의 제조방법

Country Status (2)

Country Link
KR (1) KR101451171B1 (ko)
WO (1) WO2014065577A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045842A (zh) * 2016-06-16 2016-10-26 南京海融制药有限公司 一种制备洛索洛芬活性代谢物的方法
CN111423319A (zh) * 2020-05-11 2020-07-17 上海应用技术大学 一种洛索洛芬的制备方法
WO2022052936A1 (zh) * 2020-09-09 2022-03-17 南京海融医药科技股份有限公司 一种芳基丙酸衍生物、药物组合物及其制备方法和应用
CN115557839A (zh) * 2021-12-23 2023-01-03 南京海融医药科技股份有限公司 一种包含芳基丙酸衍生物的脂肪乳剂及其制备方法
CN115836047A (zh) * 2021-12-24 2023-03-21 南京海融医药科技股份有限公司 一种芳基丙酸衍生物及其乳状制剂
CN116478050A (zh) * 2022-04-19 2023-07-25 石家庄迪斯凯威医药科技有限公司 一种手性芳基丙酸衍生物及其药物组合物和用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400534A (en) * 1980-12-23 1983-08-23 Sankyo Company, Limited Analgesic and anti-inflammatory agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400534A (en) * 1980-12-23 1983-08-23 Sankyo Company, Limited Analgesic and anti-inflammatory agents

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHUNIYA, R. ET AL.: "Asymmetric synthesis of the active form ofloxoprofen and its analogue", TETRAHEDRON: ASYMMETRY, vol. 22, no. 10, 2011, pages 1125 - 1132 *
HYODO, T. ET AL.: "Synthesis of the active form ofloxoprofen by using allylic substitutions in two steps", ORG. LETT., vol. 11, no. 5, 2009, pages 1103 - 1106 *
MANDAI, T. ET AL.: "An efficient synthesis of (2S)-2-[4-((1R,2S)-2-hydroxy- cyclopentylmethyl)phenyl]proionic acid", SYNLETT, 2000, pages 862 - 864 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106045842A (zh) * 2016-06-16 2016-10-26 南京海融制药有限公司 一种制备洛索洛芬活性代谢物的方法
CN111423319B (zh) * 2020-05-11 2022-11-04 上海应用技术大学 一种洛索洛芬的制备方法
CN111423319A (zh) * 2020-05-11 2020-07-17 上海应用技术大学 一种洛索洛芬的制备方法
JP7389414B2 (ja) 2020-09-09 2023-11-30 南京海融医薬科技股▲フン▼有限公司 アリールプロピオン酸誘導体の調製方法
CN114746394A (zh) * 2020-09-09 2022-07-12 南京海融医药科技股份有限公司 一种芳基丙酸衍生物、药物组合物及其制备方法和应用
JP2022552590A (ja) * 2020-09-09 2022-12-19 南京海融医薬科技股▲フン▼有限公司 アリールプロピオン酸誘導体、医薬組成物、その調製方法および使用
WO2022052936A1 (zh) * 2020-09-09 2022-03-17 南京海融医药科技股份有限公司 一种芳基丙酸衍生物、药物组合物及其制备方法和应用
CN114746394B (zh) * 2020-09-09 2024-02-02 南京海融医药科技股份有限公司 一种芳基丙酸衍生物、药物组合物及其制备方法和应用
CN115557839A (zh) * 2021-12-23 2023-01-03 南京海融医药科技股份有限公司 一种包含芳基丙酸衍生物的脂肪乳剂及其制备方法
CN115557839B (zh) * 2021-12-23 2024-02-13 南京海融医药科技股份有限公司 一种包含芳基丙酸衍生物的脂肪乳剂及其制备方法
CN115836047A (zh) * 2021-12-24 2023-03-21 南京海融医药科技股份有限公司 一种芳基丙酸衍生物及其乳状制剂
WO2023115511A1 (zh) * 2021-12-24 2023-06-29 南京海融医药科技股份有限公司 一种芳基丙酸衍生物及其乳状制剂
CN115836047B (zh) * 2021-12-24 2024-02-13 南京海融医药科技股份有限公司 一种芳基丙酸衍生物及其乳状制剂
CN116478050A (zh) * 2022-04-19 2023-07-25 石家庄迪斯凯威医药科技有限公司 一种手性芳基丙酸衍生物及其药物组合物和用途
WO2023202554A1 (zh) * 2022-04-19 2023-10-26 石家庄迪斯凯威医药科技有限公司 一种手性芳基丙酸衍生物及其药物组合物和用途
CN116478050B (zh) * 2022-04-19 2023-11-28 石家庄迪斯凯威医药科技有限公司 一种手性芳基丙酸衍生物及其药物组合物和用途

Also Published As

Publication number Publication date
KR101451171B1 (ko) 2014-10-16
KR20140059872A (ko) 2014-05-16

Similar Documents

Publication Publication Date Title
WO2014065577A1 (ko) 록소프로펜 (2s, 1&#39;r, 2&#39;s) 트랜스-알코올의 제조방법
WO2020145627A1 (ko) 글루포시네이트 제조 방법
WO2020145514A1 (ko) L-글루포시네이트 제조 방법
RU2483067C2 (ru) Способы и промежуточные продукты для получения макроциклического ингибитора протеазы вируса гепатита с
CA2683933A1 (fr) Derives de triazolopyridine-carboxamides, leur preparation et leur application en therapeutique
WO2016133317A1 (ko) N-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법
US5473076A (en) Enantiomerically pure intermediates for (quinolin-2-yl-methoxy) phenylacetic acids
AU3630399A (en) Novel intermediates and processes for the preparation of optically active octanoic acid derivatives
EP2611776A2 (en) Production method of intermediate compound for synthesizing medicament
WO2013108959A1 (ko) 글루탐산 유도체와 하이드록시 아닐린 또는 하이드록시기가 보호된 하이드록시 아닐린을 이용한 라말린 및 라말린 전구체의 합성방법
WO2019066467A1 (ko) (2r)-2-(2-메톡시페닐)-2-(옥산-4-일옥시)에탄-1-올 화합물의 신규 제조방법 및 이에 사용되는 중간체
WO2013183800A1 (ko) 결정형 t-부틸 2-[(4R,6S)-6-포밀-2,2-디메틸-1,3-디옥산-4-일]아세테이트 및 이의 제조 방법
JP5585822B2 (ja) 光学活性ニペコチン酸誘導体の製造方法
WO2021118003A1 (ko) 신규 혈관누출 차단제의 고수율 제조방법
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2021194244A1 (ko) 신규한 이노토디올의 제조방법
KR20010090775A (ko) 타미플루 갈로카복실산의 제조 방법
WO2022220612A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2022059948A1 (ko) 소디움 타우로디옥시콜레이트의 대량 생산 방법
WO2023101115A1 (ko) 고순도의 1-(1-(2-벤질페녹시)프로판-2-일)-2-메틸피페리딘 단일 이성질체의 제조방법
WO2018038297A1 (ko) (r)-(1-메틸피롤리딘-3-일)메틸(3&#39;-클로로-4&#39;-플루오로-[1,1&#39;-비페닐]-2-일)카바메이트의 신규염 및 이의 결정형
WO2011105649A1 (ko) 새로운 중간체를 이용하는 피타바스타틴 헤미칼슘의 신규한 제조방법
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2016153094A1 (ko) 3-알콕시싸이오펜 유도체의 신규한 제조방법
JPH0129793B2 (ko)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849898

Country of ref document: EP

Kind code of ref document: A1