WO2014065259A1 - Light-emitting diode and production method therefor - Google Patents

Light-emitting diode and production method therefor Download PDF

Info

Publication number
WO2014065259A1
WO2014065259A1 PCT/JP2013/078534 JP2013078534W WO2014065259A1 WO 2014065259 A1 WO2014065259 A1 WO 2014065259A1 JP 2013078534 W JP2013078534 W JP 2013078534W WO 2014065259 A1 WO2014065259 A1 WO 2014065259A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
light emitting
emitting diode
metal
Prior art date
Application number
PCT/JP2013/078534
Other languages
French (fr)
Japanese (ja)
Inventor
範行 粟飯原
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2014065259A1 publication Critical patent/WO2014065259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the present invention relates to a light emitting diode and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2012-233768 for which it applied to Japan on October 23, 2012, and uses the content here.
  • the antinode of the standing wave generated in the resonator composed of two mirrors is located in the light emitting layer disposed in the resonator, and the reflectance of the mirror on the light emitting side (upper DBR layer) is set on the substrate side.
  • the resonator type light emitting diode (RCLED: Resonant-Cavity Light Emitting Diode), which is a high-efficiency light emitting element that operates in the LED mode without causing laser oscillation by setting it lower than the reflectivity of the mirror (lower DBR layer)
  • RCLED Resonant-Cavity Light Emitting Diode
  • the resonator type light emitting diode Since the resonator type light emitting diode has the resonator structure as described above, the emission spectral line width is narrower, the directivity of emitted light is higher, and the carrier lifetime due to spontaneous emission is shorter than that of a normal light emitting diode. It is possible to enjoy effects such as being able to respond. Therefore, the resonator type light emitting diode is particularly suitable for a sensor or the like.
  • the resonator type light emitting diode is configured such that the antinodes of standing waves generated in the resonator composed of two mirrors (the lower DBR layer and the upper DBR layer) are located in the light emitting layer. Of the light incident on the lower DBR, the light other than the vertical direction may not be sufficiently reflected. Accordingly, there is a need for a light emitting diode having higher output while maintaining high directivity.
  • This invention is made
  • a light-emitting diode includes a light-emitting portion that includes a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order on a support substrate, A support substrate and the light emitting part are joined.
  • the support substrate may include any one of a Ge substrate, a metal substrate, a Si substrate, a GaAs substrate, and a GaP substrate.
  • the metal reflective layer may be composed of one or more layers of gold, copper, silver, aluminum, Pt, or an alloy thereof.
  • the light emitting unit may be bonded to the support substrate via a diffusion prevention layer and / or a bonding layer formed on the metal reflective layer. .
  • the lower DBR layer may be configured by alternately stacking 10 to 50 pairs of two types of layers having different refractive indexes.
  • the lower DBR layer is formed by alternately stacking two types of layers having different refractive indexes, and the two types of layers having different refractive indexes have different compositions.
  • the upper DBR layer may be configured by alternately stacking 3 to 10 pairs of two types of layers having different refractive indexes.
  • the upper DBR layer is formed by alternately stacking two types of layers having different refractive indexes, and the two types of layers having different refractive indexes have different compositions.
  • the light-emitting layer included in the active layer has ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ⁇ X1 ⁇ 1, 0 ⁇ Y1 ⁇ 1), (Al X2 Ga 1-X2 ) As (0 ⁇ X2 ⁇ 1), (In X3 Ga 1-X3 ) As (0 ⁇ X3 ⁇ 1)).
  • a method for manufacturing a light-emitting diode includes: a light-emitting unit including a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order on a support substrate; A method of manufacturing a light emitting diode comprising: forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in order on a growth substrate; and forming a metal reflective layer on the compound semiconductor layer Forming a light emitting portion, joining the light emitting portion and the support substrate, and removing the growth substrate.
  • the resonator structure is constituted by the metal reflection layer, the lower DBR layer, and the upper DBR layer.
  • the resonator type structure By providing the resonator type structure, it has high directivity. Further, in the conventional resonator type structure consisting only of the upper DBR layer and the lower DBR layer, the reflectance directly above the lower DBR layer on the reflection side can be almost 100%. For example, if the rate exceeds 30 degrees, the reflectance is 60% or less.
  • incident light from an oblique direction can be compensated for by the metal reflection layer and can be sufficiently reflected.
  • the light emitting diode of the present invention has a higher output than the resonator type light emitting diode having the conventional resonator type structure.
  • the light emitting diode of the present invention has a structure in which a metal reflective layer is sandwiched between a support substrate and a compound semiconductor layer. This structure removes the growth substrate used for the growth of the compound semiconductor layer. Thus, it is possible to adopt a configuration in which a light emitting portion including the compound semiconductor layer is attached to the support substrate.
  • FIG. 1A It is a cross-sectional schematic diagram for demonstrating the example which used Ge substrate for the support substrate 1 in the light emitting diode which is one Embodiment of this invention. It is a cross-sectional schematic diagram for demonstrating the example which used the metal substrate for the support substrate 1 in the light emitting diode which is one Embodiment of this invention.
  • FIG. 1A is a schematic cross-sectional view showing an example of a light emitting diode according to an embodiment to which the present invention is applied.
  • the light emitting diode 100 includes a light emitting unit 6 including a metal reflective layer 2, a compound semiconductor layer 5 including a lower DBR layer 3b, an active layer 4, and an upper DBR layer 3a in this order on the support substrate 1. And the support substrate 1 and the light emitting unit 6 are joined.
  • a lower current diffusion layer 7 is formed between the metal reflection layer 2 and the lower DBR layer 3b
  • an upper current diffusion layer 9 is formed between the upper DBR layer 3a and the contact layer 8. ing.
  • a surface electrode 12 is provided on the opposite side of the compound semiconductor layer 5 to the support substrate 1 via a contact layer 8, and on the opposite side of the metal reflection layer 2 of the support substrate 1. Is provided with a back electrode 13.
  • the form of the electrode is not particularly limited.
  • a translucent film SiO 2 film
  • a p-type ohmic electrode is formed on the translucent film. May be formed.
  • the metal reflection layer 2 can reflect light from the light emitting layer 43 (described later) in the front direction f by the metal reflection layer 2 and improve the light extraction efficiency in the front direction f. High brightness can be achieved.
  • a material of the metal reflective layer 2 one or more layers of metals such as AgPdCu alloy (APC), gold, copper, silver, aluminum, Pt, or alloys thereof can be used.
  • the lower current diffusion layer 7 is disposed for the purpose of suppressing the propagation of junction damage to the active layer along with the current diffusion.
  • As the material other than GaP, AlGaInP, AlGaAs or the like that is transparent to the emission wavelength is used. be able to.
  • the lower DBR (Distributed Bragg Reflector) layer 3b is of two types having a thickness of ⁇ / (4n) ( ⁇ : wavelength of light to be reflected in vacuum, n: refractive index of layer material) and different refractive indexes. It consists of a multilayer film in which layers are alternately stacked. When the difference between the two types of refractive indexes is large, a high reflectance can be obtained with a multilayer film having a relatively small number of layers. Instead of being reflected on a certain surface as in a normal reflective film, the multilayer film as a whole is characterized in that reflection occurs based on the light interference phenomenon.
  • the material of the lower DBR layer 3b is preferably transparent with respect to the emission wavelength, and is preferably selected so as to be a combination that increases the difference in refractive index between the two types of materials constituting the lower DBR layer.
  • the lower DBR layer 3b is preferably formed by alternately stacking 10 to 50 pairs of two types of layers 3ba and 3bb having different refractive indexes. This is because when the number of stacked layers is 10 pairs or less, the reflectance is too low to contribute to an increase in output, and even when the number is 50 pairs or more, the increase in reflectance is small.
  • a combination of AlGaInP having different compositions is preferable because it does not contain As which easily causes crystal defects, and GaInP and AlInP are refracted therein. Since the rate difference can be maximized, the number of reflection layers can be reduced, and the composition switching is also simple, which is preferable. Moreover, AlGaAs has an advantage that a large difference in refractive index is easily obtained.
  • the compound semiconductor layer 5 includes a lower current diffusion layer 7, a lower DBR layer 3 b, an active layer 4, and an upper DBR layer 3 a in this order on the metal reflective layer 2.
  • the active layer 4 includes a lower clad layer 41, a lower guide layer 42, a light emitting layer 43, an upper guide layer 44, and an upper clad layer 45 that are sequentially laminated. That is, the active layer 4 includes a lower clad layer 41 disposed facing the lower side and the upper side of the light emitting layer 43 in order to “confine” the light emitting layer 43 with carriers (carriers) and light emission that cause radiative recombination.
  • a so-called double hetero (English abbreviation: DH) structure including the lower guide layer 42, the upper guide layer 44, and the upper clad layer 45 is preferable for obtaining high-intensity light emission.
  • the light emitting layer 43 can form a quantum well structure in order to control the light emission wavelength of the light emitting diode (LED). That is, the light emitting layer 43 can have a multilayer structure (laminated structure) of the well layer 47 and the barrier layer 48 having a barrier layer (also referred to as a barrier layer) 48 at both ends.
  • a barrier layer also referred to as a barrier layer
  • the thickness of the light emitting layer 43 is preferably in the range of 0.02 to 2 ⁇ m.
  • the conductivity type of the light emitting layer 43 is not particularly limited, and any of undoped, p-type, and n-type can be selected. In order to increase the light emission efficiency, it is desirable to have an undoped crystallinity with a good crystallinity or a carrier concentration of less than 3 ⁇ 10 17 cm ⁇ 3 .
  • the material of the well layer 47 includes ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ⁇ X1 ⁇ 1, 0 ⁇ Y1 ⁇ 1), (Al X2 Ga 1-X2 ) As (0 ⁇ X2 ⁇ 1), (In X3 Ga 1-X3 ) As (0 ⁇ X3 ⁇ 1)) and the like can be used.
  • the layer thickness of the well layer 47 is preferably in the range of 3 to 30 nm. More preferably, it is in the range of 3 to 10 nm.
  • the material of the barrier layer (barrier layer) 48 it is preferable to select a material suitable for the material of the well layer 47. In order to prevent absorption in the barrier layer 48 and increase the light emission efficiency, it is preferable that the composition has a band gap larger than that of the well layer 47.
  • AlGaAs or InGaAs is used as the material of the well layer 47
  • AlGaAs or AlGaInP is preferable as the material of the barrier layer 48.
  • AlGaInP is used as the material of the barrier layer 48, since it does not contain As which tends to create defects, it has high crystallinity and contributes to high output.
  • Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ⁇ X1 ⁇ 1, 0 ⁇ Y1 ⁇ 1) is used as the material of the well layer 47
  • the Al composition is higher than the material of the barrier layer 48 ( Al X4 Ga 1-X4 ) Y1 In 1-Y1 P (0 ⁇ X4 ⁇ 1, 0 ⁇ Y1 ⁇ 1, X1 ⁇ X4) or (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P of the well layer 47 AlGaAs whose band gap energy is larger than (0 ⁇ X1 ⁇ 1, 0 ⁇ Y1 ⁇ 1) can be used.
  • the layer thickness of the barrier layer 48 is preferably equal to the layer thickness of the well layer 47 or thicker than the layer thickness of the well layer 47.
  • the number of pairs in which the well layers 47 and the barrier layers 48 are alternately stacked is not particularly limited, but is preferably 2 or more and 40 or less. . That is, the active layer 4 preferably includes 2 to 40 well layers 47.
  • the well layer 47 is preferably five or more layers.
  • the forward voltage (V F ) increases when the number of pairs is increased. For this reason, the number of well layers 47 is preferably 40 pairs or less, and more preferably 20 pairs or less.
  • the lower guide layer 42 and the upper guide layer 44 are provided on the lower surface and the upper surface of the light emitting layer 43, respectively, as shown in FIG. Specifically, the lower guide layer 42 is provided on the lower surface of the light emitting layer 43, and the upper guide layer 44 is provided on the upper surface of the light emitting layer 43.
  • the material of the lower guide layer 42 and the upper guide layer 44 a known compound semiconductor material can be used, and it is preferable to select a material suitable for the material of the light emitting layer 43.
  • a material suitable for the material of the light emitting layer 43 For example, AlGaAs or AlGaInP can be used.
  • the material of the lower guide layer 42 and the upper guide layer 44 is preferably AlGaAs or AlGaInP.
  • AlGaInP is used as the material of the lower guide layer 42 and the upper guide layer 44, it does not contain As that easily causes defects, so that the crystallinity is high and contributes to high output.
  • the lower guide layer 42 and the upper guide layer 44 are provided in order to reduce the propagation of defects between the lower cladding layer 41 and the upper cladding layer 45 and the active layer 4, respectively.
  • the layer thickness of the lower guide layer 42 and the upper guide layer 44 is preferably 10 nm or more, and more preferably 20 nm to 100 nm.
  • the conductivity types of the lower guide layer 42 and the upper guide layer 44 are not particularly limited, and any of undoped, p-type, and n-type can be selected. In order to increase the light emission efficiency, it is desirable to have an undoped crystallinity with a good crystallinity or a carrier concentration of less than 3 ⁇ 10 17 cm ⁇ 3 .
  • the lower clad layer 41 and the upper clad layer 45 are provided on the lower surface of the lower guide layer 42 and the upper surface of the upper guide layer 44, respectively, as shown in FIG.
  • the material of the lower cladding layer 41 and the upper cladding layer 45 a known compound semiconductor material can be used, and it is preferable to select a material suitable for the material of the light emitting layer 43.
  • a material suitable for the material of the light emitting layer 43 For example, AlGaAs or AlGaInP can be used.
  • the material of the lower cladding layer 41 and the upper cladding layer 45 is preferably AlGaAs or AlGaInP.
  • AlGaInP is used as the material of the lower clad layer 41 and the upper clad layer 45, it does not contain As that easily causes defects, so that it has high crystallinity and contributes to high output.
  • the lower cladding layer 41 and the upper cladding layer 45 are configured to have different polarities.
  • the carrier concentration and thickness of the lower clad layer 41 and the upper clad layer 45 can be in a known suitable range, and the conditions are preferably optimized so that the luminous efficiency of the active layer 41 is increased.
  • the lower and upper clad layers need not be provided.
  • a semiconductor layer such as AlGaAs or AlGaInP may be appropriately provided between the lower DBR layer 3b and the active layer 4.
  • the upper DBR layer 3a can also have the same layer structure as the lower DBR layer 3b. However, since it is necessary to emit light through the upper DBR layer 3a, the reflectance is lower than that of the lower DBR layer 3b. Configure to be Specifically, when it is made of the same material as the lower DBR layer 3b, 3 to 10 pairs of two types of layers having different refractive indexes are alternately stacked so that the number of layers is smaller than that of the lower DBR layer 3b. Is preferred. This is because when the number of stacked layers is 2 pairs or less, the reflectance is too low to contribute to an increase in output, and when the number is 11 pairs or more, the amount of light transmitted through the upper DBR layer 3a is too low.
  • a combination of AlGaInP having different compositions is preferable because it does not contain As which easily causes crystal defects, and GaInP and AlInP are refracted therein. Since the rate difference can be maximized, the number of reflection layers can be reduced, and the composition switching is also simple, which is preferable. Moreover, AlGaAs has an advantage that a large difference in refractive index is easily obtained.
  • the upper current diffusion layer 9 is disposed for the purpose of current diffusion, and as a material, AlGaInP, AlGaAs or the like that is transparent to the emission wavelength can be used in addition to GaP. .
  • the contact layer 8 is provided to reduce the contact resistance with the surface electrode 12.
  • the material of the contact layer 8 is preferably a material having a band gap larger than that of the light emitting layer 43.
  • the lower limit value of the carrier concentration of the contact layer 8 is preferably 5 ⁇ 10 17 cm ⁇ 3 or more, more preferably 1 ⁇ 10 18 cm ⁇ 3 or more, in order to reduce the contact resistance with the electrode.
  • the upper limit value of the carrier concentration is desirably 2 ⁇ 10 19 cm ⁇ 3 or less at which the crystallinity is likely to decrease.
  • the thickness of the contact layer 8 is preferably 0.05 ⁇ m or more.
  • the upper limit value of the thickness of the contact layer 8 is not particularly limited, but is desirably 10 ⁇ m or less in order to make the cost for epitaxial growth within an appropriate range.
  • the structure of the metal reflection layer 2 and the compound semiconductor layer 5 (the lower current diffusion layer 7, the lower DBR layer 3b, the active layer 4, the upper DBR layer 3a, the upper current diffusion layer 9, and the contact layer 8) described above is included.
  • a known functional layer can be added in a timely manner.
  • a known layer structure such as a current blocking layer or a current confinement layer for limiting the region through which the element driving current flows can be provided.
  • the front electrode 12 and the back electrode 13 known electrode materials can be used, respectively.
  • AuGeNi can be used, and as the back electrode 13, AuBe can be used.
  • the back electrode 13 is provided on the opposite side of the metal reflective layer 2 of the support substrate 1 .
  • the front electrode 12 and the back electrode 13 in the present embodiment The form of is not particularly limited.
  • a translucent film (SiO 2 film) 14 is formed between the metal reflective layer 2 and the lower current diffusion layer 7, and the ohmic electrode 15 is formed on the translucent film 14. May be formed.
  • the same members as those in the semiconductor device shown in FIG. 1A are denoted by the same reference numerals.
  • a Ge substrate, a metal substrate, a Si substrate, a GaAs substrate, a GaP substrate, or the like can be used.
  • a Si substrate, a GaAs substrate, a GaP substrate, or the like can be used.
  • substrate is used is demonstrated.
  • FIG. 3 is a schematic cross-sectional view of an example in which the Ge substrate 51 is used as the support substrate 1 in the light emitting diode of the present embodiment.
  • a Ge substrate 51 is used as the support substrate 1
  • a layer 52 made of Ti / Au / In is arranged on the front surface of the bonding layer 10 described later, and a layer 53 made of Ti / Au is arranged on the back surface. Therefore, it can be applied to the support substrate 1 according to the present embodiment.
  • a metal layer having good adhesion to Ge for example, Pt or Au can be used.
  • Metal substrate When a metal substrate is used as the support substrate 1, a structure in which a plurality of metal layers (metal plates) are stacked can be employed. In the case of a structure in which a plurality of metal layers (metal plates) are laminated, it is preferable that two types of metal layers are alternately laminated, and in particular, these two types of metal layers (for example, the first metal layer).
  • the number of layers of the second metal layer is preferably an odd number in total. For example, when the two types of metal layers are the first metal layer 61b and the second metal layer 61a and the number of layers is three, the structure is as shown in FIG.
  • the compound as the second metal layer 61a is used from the viewpoint of warping and cracking of the metal substrate.
  • the first metal layer 61b made of a material having a larger thermal expansion coefficient than the compound semiconductor layer. Since the thermal expansion coefficient of the entire metal substrate is close to the thermal expansion coefficient of the compound semiconductor layer 5, it is possible to suppress warping and cracking of the metal substrate when the compound semiconductor layer 5 and the metal substrate are joined, This is because the manufacturing yield of the light emitting diode can be improved.
  • the first metal layer 61 b made of a material having a smaller thermal expansion coefficient than that of the compound semiconductor layer 5 is used. Is preferred. Since the thermal expansion coefficient of the entire metal substrate is close to the thermal expansion coefficient of the compound semiconductor layer 5, warpage and cracking of the metal substrate when the compound semiconductor layer 5 and the metal substrate are joined can be suppressed, and the light emitting diode This is because the manufacturing yield can be improved.
  • a preferred example is a metal substrate composed of three layers of Cu / Mo / Cu. From the above viewpoint, the same effect can be obtained with a metal substrate composed of three layers of Mo / Cu / Mo, but the metal substrate composed of three layers of Cu / Mo / Cu is a Cu layer that has high mechanical strength and is easy to process Mo. Therefore, there is an advantage that processing such as cutting is easier than a metal substrate composed of three layers of Mo / Cu / Mo.
  • the thermal expansion coefficient of the entire metal substrate is, for example, 6.1 ppm / K for a three-layer metal substrate of Cu (30 ⁇ m) / Mo (25 ⁇ m) / Cu (30 ⁇ m), and Mo (25 ⁇ m) / Cu (70 ⁇ m). In the case of a metal substrate composed of three layers of / Mo (25 ⁇ m), it is 5.7 ppm / K.
  • a metal substrate is bonded, and the growth substrate is removed using an etching solution.
  • the upper and lower surfaces of the metal substrate are preferably covered with the metal protective film 61c.
  • the material of the metal protective film 61c is preferably made of a metal containing at least one of chromium, nickel, chemically stable platinum, and gold having excellent adhesion.
  • the metal protective film 61c is optimally composed of a layer combining nickel having good adhesion and gold having excellent chemical resistance.
  • any one of a Si substrate, a GaAs substrate, and a GaP substrate can be used as the support substrate 1 in the present embodiment.
  • a Si substrate for example, a layer made of Ti / Au / In is arranged on the surface of the silicon substrate on the metal reflective layer side, and a layer made of Ti / Au is further arranged on the back surface of the silicon substrate. Can be applied.
  • the light-emitting portion 6 may be bonded to the support substrate 1 by disposing the diffusion prevention layer 11 and / or the bonding layer 10 on the substrate side of the metal reflection layer 2.
  • the diffusion prevention layer 11 can suppress the metal contained in the support substrate 1 from diffusing and reacting with the metal reflection layer 2.
  • a material of the diffusion preventing layer 11 nickel, titanium, platinum, chromium, tantalum, tungsten, molybdenum, or the like can be used.
  • the diffusion prevention layer 11 can improve the performance of diffusion prevention by a combination of two or more kinds of metals, for example, a combination of platinum and titanium. Even if the diffusion preventing layer 11 is not provided, the bonding layer can have the same function as that of the diffusion preventing layer 11 by adding these materials to the joining layer described later.
  • the bonding layer 10 is a layer for bonding the compound semiconductor layer 5 including the active layer 4 to the support substrate 1.
  • a material for the bonding layer 10 an Au-based eutectic metal that is chemically stable and has a low melting point is used.
  • the Au-based eutectic metal include eutectic compositions of alloys such as AuGe, AuSn, AuSi, and AuIn.
  • the light emitting diode 100 of the present embodiment has a structure in which the active layer 4 is sandwiched between the metal reflection layer 2, the lower DBR layer 3b, and the upper DBR layer 3a. That is, the light emitted from the active layer 4 resonates between the lower DBR layer 3b and the upper DBR layer 3a so that the antinodes of the standing waves are located in the light emitting layer, and the light emitted from the active layer 4 is incident obliquely.
  • a laser diode does not oscillate and has higher directivity than a conventional light emitting diode, and a highly efficient light emitting diode. It has become.
  • the method of manufacturing a light emitting diode includes a step of forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in order on a growth substrate, and forming a metal reflective layer on the compound semiconductor layer. Forming a light emitting portion, joining the light emitting portion and the supporting substrate, and removing the growth substrate.
  • a Ge Substrate is Used as the Support Substrate 1
  • a layer 52 made of, for example, Ti / Au / In is formed on the front surface 51A of the Ge substrate 51
  • a layer 53 made of Ti / Au is formed on the back surface of the Ge substrate 51 to produce the support substrate 1.
  • the materials of the layer 52 and the layer 53 are not limited to these, and may be selected within a range that does not impair the effects of the present invention.
  • a metal substrate is used as the support substrate 1
  • a structure in which three layers of metals having different thermal expansion coefficients are laminated will be described.
  • a metal substrate is used as the support substrate 1
  • a first metal layer (first metal plate) 61b having a thermal expansion coefficient larger than that of the active layer and a material having a thermal expansion coefficient of the active layer.
  • a smaller second metal layer (second metal plate) 61a is employed and hot pressed to form a metal substrate.
  • first metal layers 61b and one substantially flat plate-like second metal layer 61a are prepared.
  • Cu having a thickness of 10 ⁇ m is used as the first metal layer 61b
  • Mo having a thickness of 75 ⁇ m is used as the second metal layer 61a.
  • the second metal layer 61a is inserted between the two first metal layers 61b, and these are overlapped.
  • the first metal layer 61b is Cu
  • the second metal layer 61a is Mo
  • the three layers of Cu (10 ⁇ m) / Mo (75 ⁇ m) / Cu (10 ⁇ m) are used.
  • Forming a metal substrate for example, the metal substrate has a thermal expansion coefficient of 5.7 ppm / K and a thermal conductivity of 220 W / m ⁇ K.
  • a metal protective film 61c that covers the entire surface of the metal substrate, that is, the upper surface, the lower surface, and the side surfaces is formed.
  • the side surface covered by the metal protective film 61c is the outer peripheral side surface of the metal substrate. Therefore, when the side surface of the metal substrate of each light-emitting diode after singulation is covered with the metal protective film 61c, a step of covering the side surface with the metal protective film 61c is performed separately.
  • FIG. 6 shows a part of the metal substrate that is not on the outer peripheral end side, and the metal protective film on the outer peripheral side surface is not shown in the figure.
  • a known film forming method can be used for the metal protective film 61c, but a plating method capable of forming a film on the entire surface including the side surfaces is most preferable.
  • nickel is then plated with gold, and a metal substrate in which the upper surface, side surfaces, and lower surface of the metal substrate are covered with a nickel film and a gold film (metal protective film) can be produced.
  • the plating material is not particularly limited, and known materials such as copper, silver, nickel, chromium, platinum, and gold can be applied. However, a layer that combines nickel having good adhesion and gold having excellent chemical resistance is optimal.
  • known techniques and chemicals can be used.
  • An electroless plating method that does not require an electrode is simple and desirable.
  • Si substrate is used as support substrate 1
  • a layer made of Au / Pt is formed on the front surface of the Si substrate, and a layer made of Pt / Au is formed on the back surface of the Si substrate, for example.
  • the support substrate 1 is produced.
  • the material of each layer formed on the front surface or the back surface of the Si substrate is not limited to these, and may be selected within a range not impairing the effects of the present invention.
  • a GaP substrate is used as the support substrate 1
  • a functional substrate made of p-type GaP is prepared, a layer made of, for example, Au / Pt is formed on the front surface, and the back surface of the Si substrate is formed.
  • a support substrate 1 is manufactured by forming a layer made of Pt / Au.
  • the material of each layer formed on the front surface or the back surface of the Si substrate is not limited to these, and may be selected within a range not impairing the effects of the present invention.
  • a GaAs substrate in addition to the support substrate as described above, can be used as the support substrate 1.
  • an epitaxial stacked body 30 including the compound semiconductor layer 5 is formed by growing a plurality of epitaxial layers on one surface 21 a of a semiconductor substrate (growth substrate) 21.
  • the semiconductor substrate 21 is a substrate for forming the epitaxial stacked body 30.
  • the semiconductor substrate 21 is a Si-doped n-type GaAs single crystal substrate in which one surface 21a is inclined by 15 ° from the (100) plane.
  • GaAs gallium arsenide
  • a metal organic chemical vapor deposition (MOCVD) method As a method for forming the epitaxial layered structure 30, a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a liquid phase epitaxial (Liquid Phase EpiLex) method is used. Etc. can be used.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • Etc. liquid phase epitaxial
  • the low pressure MOCVD method using trimethylaluminum ((CH 3 ) 3 Al), trimethylgallium ((CH 3 ) 3 Ga), and trimethylindium ((CH 3 ) 3 In) as group III constituent elements.
  • Each layer is epitaxially grown using Note that biscyclopentadienyl magnesium ((C 5 H 5 ) 2 Mg) is used as a Mg doping material. Further, disilane (Si 2 H 6 ) is used as a Si doping raw material. Further, phosphine (PH 3 ) or arsine (AsH 3 ) is used as a raw material for the group V constituent element.
  • a buffer layer 22 a made of n-type GaAs doped with Si is formed on one surface 21 a of the semiconductor substrate 21.
  • the buffer layer 22a for example, n-type GaAs doped with Si is used, the carrier concentration is 2 ⁇ 10 18 cm ⁇ 3 , and the layer thickness is 0.2 ⁇ m.
  • an etching stop layer 22b made of Si-doped n-type (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P is formed on the buffer layer 22a.
  • the etching stop layer 22b is a layer for preventing the cladding layer and the light emitting layer from being etched when the semiconductor substrate is removed by etching.
  • a contact layer 8 made of Si-doped n-type GaAs is formed on the etching stop layer 22b.
  • n-type upper current diffusion layer (n-type semiconductor layer) 9 made of, for example, AlGaInP is formed on the contact layer 8.
  • the upper DBR layer 3 a is formed on the current spreading layer 9. Specifically, two types of layers 3aa and 3ab having different refractive indexes are alternately stacked.
  • the upper DBR layer 3a can be formed in the same layer structure as the lower DBR layer 3b described later. However, since it is necessary to transmit light through the upper DBR layer 3a, the upper DBR layer 3a is more than the lower DBR layer 3b.
  • the reflectance is low.
  • 3 to 10 pairs of two types of layers having different refractive indexes are alternately stacked so that the number of layers is smaller than that of the lower DBR layer 3b. Is preferred.
  • the active layer 4 is formed on the upper DBR layer 3a.
  • an upper cladding layer 45 made of n-type Al 0.5 In 0.5 P doped with Si is formed.
  • the upper clad layer 45 may have a two-layer structure of a surface roughened layer for roughening the surface for improving light extraction and a clad layer. In this case, a surface roughened layer may be formed before the upper cladding layer 45 is formed.
  • an n-type (Al 0.5 Ga 0. 5 ) 0.5 In 0.5 P can be used as the surface roughened layer.
  • the light emitting layer 43 having a 20-pair quantum well structure of P is formed.
  • the light emitting layer 43 can have a multilayer structure (laminated structure) of a well layer 47 and a barrier layer 48 having a barrier layer (also referred to as a barrier layer) 48 at both ends.
  • the material of the well layer 47 includes ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ⁇ X1 ⁇ 1, 0 ⁇ Y1 ⁇ 1), (Al X2 Ga 1-X2 ) As (0 ⁇ X2 ⁇ 1) or (In X3 Ga 1-X3 ) As (0 ⁇ X3 ⁇ 1)) can be used.
  • a material of the barrier layer 48 a material suitable for the material of the well layer 47 is preferably selected. In order to prevent the absorption in the barrier layer 48 and increase the light emission efficiency, it is preferable that the composition has a band gap larger than that of the well layer 47.
  • a lower cladding layer 41 made of p-type Al 0.5 In 0.5 P doped with Mg is formed on the light emitting layer 43.
  • the lower DBR layer 3 b is formed on the active layer 4.
  • two types of layers 3ba and 3bb having different refractive indexes are alternately stacked.
  • the lower DBR layer 3b is preferably formed by alternately stacking 10 to 50 pairs of two types of layers 3ba and 3bb having different refractive indexes. This is because when the number of stacked layers is 10 pairs or less, the reflectance is too low to contribute to an increase in output, and even when the number is 50 pairs or more, the increase in reflectance is small.
  • an Mg-doped p-type lower current diffusion layer (p-type semiconductor layer) 7 made of, for example, GaP is formed on the lower DBR layer 3b.
  • An upper guide layer 44 and a lower guide layer 42 may be provided between the upper clad layer 45 and the lower clad layer 41 and the light emitting layer 43, respectively.
  • the metal reflection layer 2 is formed on the lower current diffusion layer 7.
  • the metal reflective layer 2 composed of any one layer or two or more layers of gold, copper, silver, aluminum, Pt, or an alloy thereof is formed on the lower current diffusion layer 7 by vapor deposition. .
  • a diffusion preventing layer and / or a bonding layer may be appropriately formed on the support substrate side surface of the metal reflective layer 2.
  • the diffusion prevention layer 11 is formed on the metal reflection layer 2.
  • a barrier layer made of nickel can be formed on the metal reflective layer 2 by vapor deposition.
  • the bonding layer 10 is formed on the diffusion preventing layer 11.
  • the bonding layer 10 made of AuGe which is an Au-based eutectic metal, is formed on the diffusion prevention layer 11 by vapor deposition.
  • the semiconductor substrate 21 on which the epitaxial layered body 30, the metal reflective layer 2, and the like are formed is bonded to the support substrate 1 formed in the support substrate manufacturing process.
  • a Ge substrate is used as the support substrate 1
  • a Ti / Au / In layer 52 formed on the front surface 51A of the Ge substrate 51 as shown in FIG.
  • the bonding layer 10 of the structure shown in FIG. Thereafter, for example, heating is performed at 320 ° C. and pressure is applied at 500 g / cm 2 , and the support substrate 1 is bonded to the structure including the epitaxial multilayer body 30 as illustrated in FIG.
  • the metal substrate as shown in FIG. 6 and the bonding layer 10 of the structure shown in FIG. 7 are arranged so as to face each other.
  • a load of 500 kg is applied to bond the bonding layer 10 of the structure shown in FIG. 7 and the metal substrate. To do.
  • the growth substrate (semiconductor substrate) 21 and the buffer layer 22a are selectively removed from the bonding structure shown in FIG. 9 with an ammonia-based etchant ⁇ etching stop layer removal step>
  • the etching stop layer 22b is selectively removed with a hydrochloric acid-based etchant.
  • a surface electrode 12 made of a material containing AnGe / Ni is formed, and on the surface opposite to the side on which the metal reflective layer 2 of the support substrate 1 is formed, AuBe A back electrode 13 made of a material containing is formed.
  • a material containing AnGe / Ni is formed on the contact layer 8 and a material containing AuBe is formed on the support substrate 1 by vapor deposition.
  • the semiconductor device according to the present embodiment is not limited to the arrangement form of the back electrode 13 as described above.
  • a process for forming the electrode structure as shown in FIG. 1B will be described.
  • a p-type electrode (p-type ohmic electrode) 15 is formed on the lower current diffusion layer (p-type semiconductor layer) 7.
  • a light transmitting film (SiO 2 film) 14 is formed on the entire surface of the lower current diffusion layer 7 by using, for example, a CVD method.
  • the material constituting the translucent film 14 may be SiO 2, SiN, SiON, Al 2 O 3, MgF 2, TiO 2, TiN, ZnO, ITO, IZO or the like is used.
  • a plurality of through holes for embedding a conductive member constituting the p-type ohmic electrode 15 are formed in the light-transmitting film 14 by using a photolithography technique and an etching technique. Specifically, a photoresist pattern having holes corresponding to the through holes is formed on the light transmitting film 14, and the light transmitting film 14 corresponding to the through holes is removed using a hydrofluoric acid-based etchant. As a result, a plurality of through holes are formed in the translucent film 14.
  • the p-type ohmic electrode 15 made of a material containing Au, Be, and Ni is formed on the plurality of through holes of the translucent film 14 on the lower current diffusion layer 7 by using, for example, vapor deposition. To do.
  • the p-type ohmic electrode 15 is preferably made of an AuBeNi alloy, and the Ni content in the alloy is 5 to 40 mol%, and the Be / Au is 0.01 to 0. 3 is preferred.
  • the metal reflective layer 2 is formed on the p-type ohmic electrode 15 and the translucent film 14, and the subsequent steps can be used to manufacture the semiconductor device as shown in FIG. 1B. .
  • the light emitting diodes on the wafer are separated.
  • the structure including the support substrate 1 formed in the above steps is cut with a laser, for example, at intervals of 350 ⁇ m to manufacture the light emitting diode 100.
  • the metal protective film is not formed on the side surface of the substrate 1, but the side surface of the cut substrate 1 is formed under the same conditions as the formation conditions of the upper and lower metal protective films.
  • a metal protective film may be formed on the substrate.
  • Example 1 is an example of the embodiment shown in FIGS. 1B and 2.
  • a light-emitting diode lamp in which a light-emitting diode chip was mounted on a substrate was prepared for characteristic evaluation. Further, a Ge substrate was used as the support substrate 1.
  • a layer made of Au / Pt with a thickness of 0.5 ⁇ m / 0.1 ⁇ m was formed on the surface of the Ge substrate.
  • a layer made of Pt / Au was formed to a thickness of 0.1 ⁇ m / 0.5 ⁇ m.
  • an epitaxial wafer having an emission wavelength of 730 nm was fabricated by sequentially laminating compound semiconductor layers on a GaAs substrate made of n-type GaAs single crystal doped with Si.
  • the GaAs substrate the plane inclined by 15 ° from the (100) plane in the (0-1-1) direction was used as the growth plane, and the carrier concentration was set to 2 ⁇ 10 18 cm ⁇ 3 .
  • the layer thickness of the GaAs substrate was about 0.5 ⁇ m.
  • an n-type buffer layer made of GaAs doped with Si As the compound semiconductor layer, an n-type buffer layer made of GaAs doped with Si, an etching stop layer made of Si-doped (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P, Si-doped n Type contact layer made of Al0.1GaAs, upper current diffusion layer made of Al0.3Ga0.7As, upper DBR layer made of Al0.9Ga0.1As / Al0.3Ga0.7As, Si-doped Al 0.5 In 0.5 n-type upper cladding layer composed of P, (Al 0.1 Ga 0.9) 0.5 in 0.5 P / (Al 0.5 Ga 0.5) 20 pairs of 0.5 an in 0.5 P emitting layer of the well layer / barrier layer made of, p-type lower cladding layer made of Al 0.5 in 0.5 P, a lower DB consisting of Al0.9Ga0.1As / Al0.3 Ga0.7 Layer, which is the lower current diffusion layer made of Al0.3 Ga0.7
  • a compound semiconductor layer was epitaxially grown on a GaAs substrate having a diameter of 50 mm and a thickness of 350 ⁇ m by using a low pressure metal organic chemical vapor deposition apparatus method (MOCVD apparatus) to form an epitaxial wafer.
  • MOCVD apparatus metal organic chemical vapor deposition apparatus method
  • trimethylaluminum ((CH 3 ) 3 Al), trimethylgallium ((CH 3 ) 3 Ga) and trimethylindium ((CH 3 ) 3 In) are used as the raw material for the group III constituent element did.
  • biscyclopentadienyl magnesium bis- (C 5 H 5 ) 2 Mg
  • disilane Si 2 H 6
  • phosphine PH 3
  • arsine AsH 3
  • the buffer layer made of GaAs has a carrier concentration of about 1 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 0.5 ⁇ m.
  • the etching stop layer had a carrier concentration of 1 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 0.5 ⁇ m.
  • the contact layer had a carrier concentration of about 1 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 0.05 ⁇ m.
  • the upper current diffusion layer was laminated with Al0.3Ga0.7As having a carrier concentration of about 1.0 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 5 ⁇ m.
  • the upper cladding layer had a carrier concentration of about 2 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 0.5 ⁇ m.
  • the well layer is undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P with a thickness of about 5 nm, and the barrier layer is undoped and has a thickness of about 5 nm (Al 0.5 Ga 0 .5 ) 0.5 In 0.5 P.
  • the lower cladding layer had a carrier concentration of about 8 ⁇ 10 17 cm ⁇ 3 and a layer thickness of about 0.5 ⁇ m.
  • the lower DBR layer carrier concentration of about 1 ⁇ 10 18 cm -3, and Al0.9Ga0.1As that were about 57nm thickness, a carrier concentration of about 1 ⁇ 10 18 cm -3, and about 52nm layer thickness 40 pairs of Al0.3Ga0.7As were alternately laminated.
  • the lower current diffusion layer was laminated with Al0.3Ga0.7As having a carrier concentration of about 1 ⁇ 10 18 cm ⁇ 3 and a layer thickness of about 3 ⁇ m.
  • a p-type electrode (p-type ohmic electrode) was formed on the lower current diffusion layer.
  • a light-transmitting film (SiO 2 film) having a thickness of 0.3 ⁇ m was formed on the entire surface of the lower current diffusion layer by using, for example, a CVD method.
  • a plurality of through holes having a diameter of 9 ⁇ m for embedding a conductive member constituting the p-type ohmic electrode were formed in the translucent film.
  • a plurality of cylindrical p-type ohmic electrodes having a height of 0.3 ⁇ m and a diameter of 9 ⁇ m are formed on the lower current diffusion layer by filling the plurality of through-holes of the light-transmitting film with AuBe alloy by vapor deposition. Formed.
  • a metal reflective layer made of an Au film having a thickness of 0.7 ⁇ m was formed on the lower DBR layer by vapor deposition.
  • a diffusion preventing layer made of a Ti film having a thickness of 0.5 ⁇ m was formed on the metal reflective layer by vapor deposition.
  • a bonding layer made of AuGe having a thickness of 1.0 ⁇ m was formed on the diffusion prevention layer by vapor deposition.
  • a structure in which a compound semiconductor layer, a metal reflection layer, and the like are formed on a GaAs substrate and a Ge substrate are arranged so as to face each other and are carried into a decompression device, and are brought to 400 ° C. In the state heated by, they were joined with a load of 500 kg to form a joined structure.
  • the GaAs substrate which is a growth substrate for the compound semiconductor layer, and the buffer layer were selectively removed from the bonded structure with an ammonia-based etchant, and the etching stop layer was selectively removed with a hydrochloric acid-based etchant.
  • a film is formed by vacuum evaporation so that the thickness of AuGe and Ni alloy is 0.5 ⁇ m, Pt is 0.2 ⁇ m, and Au is 1.0 ⁇ m.
  • a surface electrode (n-type electrode) was formed.
  • a light emitting diode lamp was assembled by mounting the light emitting diode chip of Example 1 manufactured as described above on a mounting substrate.
  • the characteristics of the obtained light emitting diode were evaluated.
  • a current was passed between the n-type and p-type ohmic electrodes of the light-emitting diode (light-emitting diode lamp)
  • infrared light having a peak wavelength of 730 nm was emitted.
  • the forward voltage (V F ) when a current of 20 mA (mA) was passed in the forward direction was about 1.9 volts.
  • the light emission output when the forward current was 20 mA was 13 mW.
  • the light emitting diode of the comparative example is the same as the example except that the lower DBR layer and the upper DBR layer in the light emitting diode of the first embodiment are not provided.
  • V F forward voltage
  • the output of the lamp of Example 1 was 30% higher than that of the comparative example, and the light output directly above the lamp was 70% higher. This is presumably because, in Example 1, light from the light emitting part can be efficiently extracted by interference due to reflection between the metal reflection layer and the lower DBR layer and resonance with the upper DBR layer.

Abstract

This light-emitting diode comprises a light-emitting part including, in order on a support substrate, a metallic reflective layer, a lower DBR layer, and a compound semi-conductor layer which includes, in order, an active layer and an upper DBR layer. Said light-emitting diode is formed by the supporting substrate and the light-emitting part being joined.

Description

発光ダイオードおよびその製造方法Light emitting diode and manufacturing method thereof
 本発明は、発光ダイオードおよびその製造方法に関する。
 本願は、2012年10月23日に日本に出願された特願2012-233768号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light emitting diode and a method for manufacturing the same.
This application claims priority based on Japanese Patent Application No. 2012-233768 for which it applied to Japan on October 23, 2012, and uses the content here.
 2つのミラーからなる共振器内で発生する定在波の腹が共振器内に配置した発光層に位置するように構成すると共に、光出射側のミラー(上部DBR層)の反射率を基板側のミラー(下部DBR層)の反射率よりも低く設定することによりレーザ発振させないでLEDモードで動作する、高効率の発光素子である共振器型発光ダイオード(RCLED:Resonant-Cavity Light Emitting Diode)が知られている(特許文献1,2)。共振器型発光ダイオードは前述のような共振器構造を備えるため、通常の発光ダイオードと比較して、発光スペクトル線幅が狭い、出射光の指向性が高い、自然放出によるキャリア寿命が短いため高速応答が可能である、等の効果を享受できる。そのため、共振器型発光ダイオードは特にセンサなどに適している。 The antinode of the standing wave generated in the resonator composed of two mirrors is located in the light emitting layer disposed in the resonator, and the reflectance of the mirror on the light emitting side (upper DBR layer) is set on the substrate side. The resonator type light emitting diode (RCLED: Resonant-Cavity Light Emitting Diode), which is a high-efficiency light emitting element that operates in the LED mode without causing laser oscillation by setting it lower than the reflectivity of the mirror (lower DBR layer) Known (Patent Documents 1 and 2). Since the resonator type light emitting diode has the resonator structure as described above, the emission spectral line width is narrower, the directivity of emitted light is higher, and the carrier lifetime due to spontaneous emission is shorter than that of a normal light emitting diode. It is possible to enjoy effects such as being able to respond. Therefore, the resonator type light emitting diode is particularly suitable for a sensor or the like.
日本国特開2002-76433号公報Japanese Unexamined Patent Publication No. 2002-76433 日本国特開2007-299949号公報Japanese Unexamined Patent Publication No. 2007-299949
 共振器型発光ダイオードは、上述したように2つのミラー(下部DBR層と上部DBR層)からなる共振器内で発生する定在波の腹が発光層に位置するように構成されているが、下部DBRに入射する光のうち垂直方向以外の光に関しては、反射が十分でない場合がある。
 そこで、高指向性を維持しつつ、より高出力を有する発光ダイオードのニーズがある。
As described above, the resonator type light emitting diode is configured such that the antinodes of standing waves generated in the resonator composed of two mirrors (the lower DBR layer and the upper DBR layer) are located in the light emitting layer. Of the light incident on the lower DBR, the light other than the vertical direction may not be sufficiently reflected.
Accordingly, there is a need for a light emitting diode having higher output while maintaining high directivity.
 本発明は、上記事情を鑑みてなされたものであり、高指向性及び高出力を有する発光ダイオード、及び、その製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and aims at providing the light emitting diode which has high directivity and high output, and its manufacturing method.
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、以下に示す本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have completed the present invention shown below.
[1]本発明の一態様に係る発光ダイオードは、支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備え、前記支持基板と前記発光部とが接合されてなる。
[2]上記[1]に記載の発光ダイオードでは、前記支持基板は、Ge基板、金属基板、Si基板、GaAs基板、GaP基板、のいずれかを含んでよい。
[3]上記[1]に記載の発光ダイオードでは、前記金属反射層は、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上から構成されてもよい。
[4]上記[1]に記載の発光ダイオードでは、前記金属反射層上に形成された拡散防止層及び/又は接合層を介して、前記発光部が前記前記支持基板に接合されていてもよい。
[5]上記[1]に記載の発光ダイオードでは、前記下部DBR層は、屈折率の異なる2種類の層が交互に10~50対積層されて構成されてもよい。
[6]上記[1]に記載の発光ダイオードでは、前記下部DBR層が、屈折率の異なる2種類の層が交互に積層されてなり、前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh-xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されてもよい。
[7]上記[1]に記載の発光ダイオードでは、前記上部DBR層は、屈折率の異なる2種類の層が交互に3~10対積層されて構成されてもよい。
[8]上記[1]に記載の発光ダイオードでは、前記上部DBR層が、屈折率の異なる2種類の層が交互に積層されてなり、前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh-xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されてもよい。
[9]上記[1]に記載の発光ダイオードでは、前記活性層に含まれる発光層は、((AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1-X2)As(0≦X2≦1)、(InX3Ga1-X3)As(0≦X3≦1))、のいずれかから構成されてもよい。
[1] A light-emitting diode according to an aspect of the present invention includes a light-emitting portion that includes a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order on a support substrate, A support substrate and the light emitting part are joined.
[2] In the light emitting diode according to [1], the support substrate may include any one of a Ge substrate, a metal substrate, a Si substrate, a GaAs substrate, and a GaP substrate.
[3] In the light emitting diode according to [1], the metal reflective layer may be composed of one or more layers of gold, copper, silver, aluminum, Pt, or an alloy thereof.
[4] In the light emitting diode according to [1], the light emitting unit may be bonded to the support substrate via a diffusion prevention layer and / or a bonding layer formed on the metal reflective layer. .
[5] In the light emitting diode according to [1], the lower DBR layer may be configured by alternately stacking 10 to 50 pairs of two types of layers having different refractive indexes.
[6] In the light emitting diode according to [1], the lower DBR layer is formed by alternately stacking two types of layers having different refractive indexes, and the two types of layers having different refractive indexes have different compositions. Two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl < 1, Y3 = 0.5), and a combination of Al composition difference ΔX = xh−xl of both is greater than or equal to 0.5, or a combination of GaInP and AlInP, It is a pair of two different types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1), and the difference between the two compositions ΔX = xh− whether xl is greater than or equal to 0.5 Less may be selected.
[7] In the light emitting diode according to [1], the upper DBR layer may be configured by alternately stacking 3 to 10 pairs of two types of layers having different refractive indexes.
[8] In the light emitting diode according to [1], the upper DBR layer is formed by alternately stacking two types of layers having different refractive indexes, and the two types of layers having different refractive indexes have different compositions. Two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl < 1, Y3 = 0.5), and a combination of Al composition difference ΔX = xh−xl of both is greater than or equal to 0.5, or a combination of GaInP and AlInP, It is a pair of two different types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1), and the difference between the two compositions ΔX = xh− Any combination where xl is greater than or equal to 0.5 May be selected.
[9] In the light-emitting diode according to [1], the light-emitting layer included in the active layer has ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1), (Al X2 Ga 1-X2 ) As (0 ≦ X2 ≦ 1), (In X3 Ga 1-X3 ) As (0 ≦ X3 ≦ 1)).
[10]本発明の一態様に係る発光ダイオードの製造方法は、支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備えた発光ダイオードの製造方法であって、成長用基板上に、上部DBR層及び活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、前記化合物半導体層上に金属反射層を形成して発光部を形成する工程と、前記発光部と支持基板とを接合する工程と、前記成長用基板を除去する工程と、を有する。 [10] A method for manufacturing a light-emitting diode according to an aspect of the present invention includes: a light-emitting unit including a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order on a support substrate; A method of manufacturing a light emitting diode comprising: forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in order on a growth substrate; and forming a metal reflective layer on the compound semiconductor layer Forming a light emitting portion, joining the light emitting portion and the support substrate, and removing the growth substrate.
 本発明の発光ダイオードによれば、金属反射層及び下部DBR層と上部DBR層によって共振器型構造を構成する。当該共振器型構造を備えることにより高指向性を有する。
 また、上部DBR層と下部DBR層のみからなる従来の共振器型構造では、反射側である下部DBR層の直上の反射率はほぼ100%とすることもできるが、斜めから入射する光に対する反射率は例えば、30度を超えると60%以下の反射率となる。これに対して、下部DBR層の下方にさらに金属反射層を設けることにより、斜めからの入射光に対しても金属反射層により補うことができ、十分に反射させることができる。つまり、基板側から順に金属反射層、下部DBR層、上部DBR層を有する共振器型構造とすることにより、入射角度によらず、90%以上の反射率を有するものとすることができ、これにより、本発明の発光ダイオードは、従来の共振器型構造を有する共振器型発光ダイオードよりも高出力となる。
 なお、本発明の発光ダイオードは、支持基板と化合物半導体層との間に金属反射層が挟まれた構造となっているが、この構造は、化合物半導体層の成長に用いた成長用基板を除去して、支持基板に改めて、その化合物半導体層を含む発光部を貼り付けた構成を採用することにより可能となったものである。
According to the light emitting diode of the present invention, the resonator structure is constituted by the metal reflection layer, the lower DBR layer, and the upper DBR layer. By providing the resonator type structure, it has high directivity.
Further, in the conventional resonator type structure consisting only of the upper DBR layer and the lower DBR layer, the reflectance directly above the lower DBR layer on the reflection side can be almost 100%. For example, if the rate exceeds 30 degrees, the reflectance is 60% or less. On the other hand, by providing a metal reflection layer further below the lower DBR layer, incident light from an oblique direction can be compensated for by the metal reflection layer and can be sufficiently reflected. In other words, by using a resonator type structure having a metal reflection layer, a lower DBR layer, and an upper DBR layer in order from the substrate side, it can have a reflectance of 90% or more regardless of the incident angle. Therefore, the light emitting diode of the present invention has a higher output than the resonator type light emitting diode having the conventional resonator type structure.
The light emitting diode of the present invention has a structure in which a metal reflective layer is sandwiched between a support substrate and a compound semiconductor layer. This structure removes the growth substrate used for the growth of the compound semiconductor layer. Thus, it is possible to adopt a configuration in which a light emitting portion including the compound semiconductor layer is attached to the support substrate.
本発明の一実施形態である発光ダイオードの断面摸式図である。It is a cross-sectional schematic diagram of the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態の変形例である発光ダイオードの断面摸式図である。It is a cross-sectional schematic diagram of the light emitting diode which is a modification of one Embodiment of this invention. 図1A中に示す活性層4を詳細に説明するための拡大断面模式図である。1B is an enlarged schematic cross-sectional view for explaining in detail the active layer 4 shown in FIG. 1A. FIG. 本発明の一実施形態である発光ダイオードにおける支持基板1に、Ge基板を用いた例を説明するための断面摸式図である。It is a cross-sectional schematic diagram for demonstrating the example which used Ge substrate for the support substrate 1 in the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態である発光ダイオードにおける支持基板1に、金属基板を用いた例を説明するための断面摸式図である。It is a cross-sectional schematic diagram for demonstrating the example which used the metal substrate for the support substrate 1 in the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態である支持基板を、Ge基板を用いて製造する方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the method to manufacture the support substrate which is one Embodiment of this invention using Ge substrate. 本発明の一実施形態である支持基板を、金属基板を用いて製造する方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the method to manufacture the support substrate which is one Embodiment of this invention using a metal substrate. 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。It is a cross-sectional model diagram for demonstrating the manufacturing method of the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。It is a cross-sectional model diagram for demonstrating the manufacturing method of the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。It is a cross-sectional model diagram for demonstrating the manufacturing method of the light emitting diode which is one Embodiment of this invention. 本発明の一実施形態である発光ダイオードの製造方法を説明するための断面摸式図である。It is a cross-sectional model diagram for demonstrating the manufacturing method of the light emitting diode which is one Embodiment of this invention.
 以下、本発明を適用した実施形態の発光ダイオードおよびその製造方法について、図を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the configuration of the light emitting diode according to the embodiment to which the present invention is applied and the manufacturing method thereof will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. . In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.
[発光ダイオード]
 図1Aは、本発明を適用した一実施形態の発光ダイオードの一例を示す断面模式図である。
 本実施形態の発光ダイオード100は、支持基板1上に、金属反射層2と、下部DBR層3b、活性層4、及び上部DBR層3aを順に含む化合物半導体層5とを順に含む発光部6を備え、支持基板1と発光部6とが接合されてなる、ことを特徴とする。
 図1Aで示す例では、金属反射層2と下部DBR層3bとの間には下部電流拡散層7が、そして上部DBR層3aとコンタクト層8との間には上部電流拡散層9が形成されている。また、図1Aで示す例では、化合物半導体層5の支持基板1の反対側には、コンタクト層8を介して表面電極12が設けられており、支持基板1の金属反射層2の反対側には裏面電極13設けられている。なお、電極の形態は特に限定せず、例えば、金属反射層2と下部電流拡散層7との間に透光膜(SiO膜)が成膜され、当該透光膜にp型のオーミック電極が形成された形態でもよい。
[Light emitting diode]
FIG. 1A is a schematic cross-sectional view showing an example of a light emitting diode according to an embodiment to which the present invention is applied.
The light emitting diode 100 according to the present embodiment includes a light emitting unit 6 including a metal reflective layer 2, a compound semiconductor layer 5 including a lower DBR layer 3b, an active layer 4, and an upper DBR layer 3a in this order on the support substrate 1. And the support substrate 1 and the light emitting unit 6 are joined.
In the example shown in FIG. 1A, a lower current diffusion layer 7 is formed between the metal reflection layer 2 and the lower DBR layer 3b, and an upper current diffusion layer 9 is formed between the upper DBR layer 3a and the contact layer 8. ing. Further, in the example shown in FIG. 1A, a surface electrode 12 is provided on the opposite side of the compound semiconductor layer 5 to the support substrate 1 via a contact layer 8, and on the opposite side of the metal reflection layer 2 of the support substrate 1. Is provided with a back electrode 13. The form of the electrode is not particularly limited. For example, a translucent film (SiO 2 film) is formed between the metal reflective layer 2 and the lower current diffusion layer 7, and a p-type ohmic electrode is formed on the translucent film. May be formed.
<金属反射層>
 金属反射層2は、後述する発光層43からの光を金属反射層2で正面方向fへ反射させて、正面方向fでの光取り出し効率を向上させることができ、これにより、発光ダイオードをより高輝度化できる。
 金属反射層2の材料としては、AgPdCu合金(APC)、金、銅、銀、アルミニウム、Ptなどの金属、又はこれらの合金等の一層又は二層以上を用いることができる。
<Metal reflective layer>
The metal reflection layer 2 can reflect light from the light emitting layer 43 (described later) in the front direction f by the metal reflection layer 2 and improve the light extraction efficiency in the front direction f. High brightness can be achieved.
As a material of the metal reflective layer 2, one or more layers of metals such as AgPdCu alloy (APC), gold, copper, silver, aluminum, Pt, or alloys thereof can be used.
<下部電流拡散層>
 下部電流拡散層7は、電流拡散とともに、接合ダメージの活性層への伝播の抑制を目的として配置するものであり、材料としては、GaPの他、発光波長に対し透明なAlGaInP、AlGaAs等を用いることができる。
<Lower current diffusion layer>
The lower current diffusion layer 7 is disposed for the purpose of suppressing the propagation of junction damage to the active layer along with the current diffusion. As the material, other than GaP, AlGaInP, AlGaAs or the like that is transparent to the emission wavelength is used. be able to.
<下部DBR層>
 下部DBR(Distributed Bragg Reflector)層3bは、λ/(4n)の膜厚で(λ:反射すべき光の真空中での波長、n:層材料の屈折率)、屈折率が異なる2種類の層を交互に積層した多層膜からなるものである。反射率は2種類の屈折率の差が大きいと、比較的少ない層数の多層膜で高反射率が得られる。通常の反射膜のようにある面で反射されるのでなく、多層膜の全体として光の干渉現象に基づき反射が起きることが特徴である。
 下部DBR層3bの材料は発光波長に対して透明であることが好ましく、又、下部DBR層を構成する2種類の材料の屈折率の差が大きくなる組み合わせとなるよう選択されるのが好ましい。
<Lower DBR layer>
The lower DBR (Distributed Bragg Reflector) layer 3b is of two types having a thickness of λ / (4n) (λ: wavelength of light to be reflected in vacuum, n: refractive index of layer material) and different refractive indexes. It consists of a multilayer film in which layers are alternately stacked. When the difference between the two types of refractive indexes is large, a high reflectance can be obtained with a multilayer film having a relatively small number of layers. Instead of being reflected on a certain surface as in a normal reflective film, the multilayer film as a whole is characterized in that reflection occurs based on the light interference phenomenon.
The material of the lower DBR layer 3b is preferably transparent with respect to the emission wavelength, and is preferably selected so as to be a combination that increases the difference in refractive index between the two types of materials constituting the lower DBR layer.
 下部DBR層3bは、屈折率の異なる2種類の層3ba、3bbが交互に10~50対積層されてなるのが好ましい。積層数が10対以下である場合は反射率が低すぎるために出力の増大に寄与せず、50対以上にしてもさらなる反射率の増大は小さいからである。
 下部DBR層3bを構成する屈折率の異なる2種類の層3ba、3bbは、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対である。また、下部DBR層3bを構成する屈折率の異なる2種類の層3ba、3bbは、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の組み合わせであり、これら組み合わせのいずれかから選択されるのが効率よく高い反射率が得られることから望ましい。
 下部DBR層3bを構成する屈折率の異なる2種類の層3ba、3bbとしては特に、組成の異なるAlGaInPの組み合わせは、結晶欠陥を生じやすいAsを含まないので好ましく、GaInPとAlInPはその中で屈折率差を最も大きくとれるので、反射層の数を少なくすることができ、組成の切り替えも単純であるので好ましい。また、AlGaAsは、大きな屈折率差をとりやすいという利点がある。
The lower DBR layer 3b is preferably formed by alternately stacking 10 to 50 pairs of two types of layers 3ba and 3bb having different refractive indexes. This is because when the number of stacked layers is 10 pairs or less, the reflectance is too low to contribute to an increase in output, and even when the number is 50 pairs or more, the increase in reflectance is small.
The two types of layers 3ba and 3bb having different refractive indexes constituting the lower DBR layer 3b are composed of two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0) having different compositions. .5), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl <1, Y3 = 0.5). Further, the two types of layers 3ba and 3bb having different refractive indexes constituting the lower DBR layer 3b are a combination in which the Al composition difference ΔX = xh−xl is greater than or equal to 0.5, or GaInP and It is a combination of AlInP or a combination of two types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1) having different compositions. Therefore, it is desirable to select any one of these combinations because a high reflectance can be obtained efficiently.
Particularly, as the two types of layers 3ba and 3bb having different refractive indexes constituting the lower DBR layer 3b, a combination of AlGaInP having different compositions is preferable because it does not contain As which easily causes crystal defects, and GaInP and AlInP are refracted therein. Since the rate difference can be maximized, the number of reflection layers can be reduced, and the composition switching is also simple, which is preferable. Moreover, AlGaAs has an advantage that a large difference in refractive index is easily obtained.
<活性層>
 本実施形態において、化合物半導体層5は、金属反射層2上に、下部電流拡散層7、下部DBR層3b、活性層4及び上部DBR層3aを順に含むことを特徴とする。
 活性層4は、図2に示すように、下部クラッド層41、下部ガイド層42、発光層43、上部ガイド層44、上部クラッド層45が順次積層されて構成されている。すなわち、活性層4は、放射再結合をもたらすキャリア(担体;carrier)及び発光を発光層43に「閉じ込める」ために、発光層43の下側及び上側に対峙して配置した下部クラッド層41、下部ガイド層42、及び上部ガイド層44、上部クラッド層45を含む、所謂、ダブルヘテロ(英略称:DH)構造とすることが高強度の発光を得る上で好ましい。
<Active layer>
In the present embodiment, the compound semiconductor layer 5 includes a lower current diffusion layer 7, a lower DBR layer 3 b, an active layer 4, and an upper DBR layer 3 a in this order on the metal reflective layer 2.
As shown in FIG. 2, the active layer 4 includes a lower clad layer 41, a lower guide layer 42, a light emitting layer 43, an upper guide layer 44, and an upper clad layer 45 that are sequentially laminated. That is, the active layer 4 includes a lower clad layer 41 disposed facing the lower side and the upper side of the light emitting layer 43 in order to “confine” the light emitting layer 43 with carriers (carriers) and light emission that cause radiative recombination. A so-called double hetero (English abbreviation: DH) structure including the lower guide layer 42, the upper guide layer 44, and the upper clad layer 45 is preferable for obtaining high-intensity light emission.
 図2に示すように、発光層43は、発光ダイオード(LED)の発光波長を制御するため、量子井戸構造を構成することができる。すなわち、発光層43は、バリア層(障壁層ともいう)48を両端に有する、井戸層47とバリア層48との多層構造(積層構造)とすることができる。 As shown in FIG. 2, the light emitting layer 43 can form a quantum well structure in order to control the light emission wavelength of the light emitting diode (LED). That is, the light emitting layer 43 can have a multilayer structure (laminated structure) of the well layer 47 and the barrier layer 48 having a barrier layer (also referred to as a barrier layer) 48 at both ends.
 発光層43の層厚は、0.02~2μmの範囲であることが好ましい。発光層43の伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm-3未満のキャリア濃度とすることが望ましい。 The thickness of the light emitting layer 43 is preferably in the range of 0.02 to 2 μm. The conductivity type of the light emitting layer 43 is not particularly limited, and any of undoped, p-type, and n-type can be selected. In order to increase the light emission efficiency, it is desirable to have an undoped crystallinity with a good crystallinity or a carrier concentration of less than 3 × 10 17 cm −3 .
 井戸層47の材料としては、((AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1-X2)As(0≦X2≦1)、(InX3Ga1-X3)As(0≦X3≦1))等を用いることができる。 The material of the well layer 47 includes ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1), (Al X2 Ga 1-X2 ) As (0 ≦ X2 ≦ 1), (In X3 Ga 1-X3 ) As (0 ≦ X3 ≦ 1)) and the like can be used.
 井戸層47の層厚は、3~30nmの範囲が好適である。より好ましくは、3~10nmの範囲である。 The layer thickness of the well layer 47 is preferably in the range of 3 to 30 nm. More preferably, it is in the range of 3 to 10 nm.
 バリア層(障壁層)48の材料としては、井戸層47の材料に対して適した材料を選択するのが好ましい。バリア層48での吸収を防止して発光効率を高めるため、井戸層47よりもバンドギャップが大きくなる組成とするのが好ましい。 As the material of the barrier layer (barrier layer) 48, it is preferable to select a material suitable for the material of the well layer 47. In order to prevent absorption in the barrier layer 48 and increase the light emission efficiency, it is preferable that the composition has a band gap larger than that of the well layer 47.
 例えば、井戸層47の材料としてAlGaAs又はInGaAsを用いた場合にはバリア層48の材料としてAlGaAsやAlGaInPが好ましい。バリア層48の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
 井戸層47の材料として(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、バリア層48の材料としてよりAl組成の高い(AlX4Ga1-X4Y1In1-Y1P(0≦X4≦1,0<Y1≦1,X1<X4)、または井戸層47の(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
For example, when AlGaAs or InGaAs is used as the material of the well layer 47, AlGaAs or AlGaInP is preferable as the material of the barrier layer 48. When AlGaInP is used as the material of the barrier layer 48, since it does not contain As which tends to create defects, it has high crystallinity and contributes to high output.
When (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) is used as the material of the well layer 47, the Al composition is higher than the material of the barrier layer 48 ( Al X4 Ga 1-X4 ) Y1 In 1-Y1 P (0 ≦ X4 ≦ 1, 0 <Y1 ≦ 1, X1 <X4) or (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P of the well layer 47 AlGaAs whose band gap energy is larger than (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) can be used.
 バリア層48の層厚は、井戸層47の層厚と等しいか又は井戸層47の層厚より厚いのが好ましい。トンネル効果が生じる層厚範囲で十分に厚くすることにより、トンネル効果による井戸層間への広がりが抑制されてキャリアの閉じ込め効果が増大し、電子と正孔の発光再結合確率が大きくなり、発光出力の向上を図ることができる。 The layer thickness of the barrier layer 48 is preferably equal to the layer thickness of the well layer 47 or thicker than the layer thickness of the well layer 47. By sufficiently thickening the layer thickness range in which the tunnel effect occurs, spreading between the well layers due to the tunnel effect is suppressed, the carrier confinement effect is increased, the probability of recombination of electrons and holes is increased, and the light emission output Can be improved.
 井戸層47とバリア層48との多層構造において、井戸層47とバリア層48とを交互に積層する対の数は特に限定されるものではないが、2対以上40対以下であることが好ましい。すなわち、活性層4には、井戸層47が2~40層含まれていることが好ましい。ここで、活性層4の発光効率が好適となる条件としては、井戸層47が5層以上であることが好ましい。一方、井戸層47及びバリア層48は、キャリア濃度が低いため、多くの対にすると順方向電圧(V)が増大してしまう。このため、井戸層47は40対以下であることが好ましく、20対以下であることがより好ましい。 In the multilayer structure of the well layers 47 and the barrier layers 48, the number of pairs in which the well layers 47 and the barrier layers 48 are alternately stacked is not particularly limited, but is preferably 2 or more and 40 or less. . That is, the active layer 4 preferably includes 2 to 40 well layers 47. Here, as a condition that the luminous efficiency of the active layer 4 is suitable, the well layer 47 is preferably five or more layers. On the other hand, since the well layer 47 and the barrier layer 48 have a low carrier concentration, the forward voltage (V F ) increases when the number of pairs is increased. For this reason, the number of well layers 47 is preferably 40 pairs or less, and more preferably 20 pairs or less.
 下部ガイド層42及び上部ガイド層44は、図2に示すように、発光層43の下面及び上面にそれぞれ設けられている。具体的には、発光層43の下面に下部ガイド層42が設けられ、発光層43の上面に上部ガイド層44が設けられている。 The lower guide layer 42 and the upper guide layer 44 are provided on the lower surface and the upper surface of the light emitting layer 43, respectively, as shown in FIG. Specifically, the lower guide layer 42 is provided on the lower surface of the light emitting layer 43, and the upper guide layer 44 is provided on the upper surface of the light emitting layer 43.
 下部ガイド層42および上部ガイド層44の材料としては、公知の化合物半導体材料を用いることができ、発光層43の材料に対して適した材料を選択するのが好ましい。例えば、AlGaAs、AlGaInPを用いることができる。 As the material of the lower guide layer 42 and the upper guide layer 44, a known compound semiconductor material can be used, and it is preferable to select a material suitable for the material of the light emitting layer 43. For example, AlGaAs or AlGaInP can be used.
 例えば、井戸層47の材料としてAlGaAs又はInGaAsを用い、バリア層48の材料としてAlGaAs又はAlGaInPを用いた場合、下部ガイド層42および上部ガイド層44の材料としてはAlGaAs又はAlGaInPが好ましい。下部ガイド層42および上部ガイド層44の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
 井戸層47の材料として(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、下部ガイド層42及び上部ガイド層44の材料としては、よりAl組成の高い(AlX4Ga1-X4Y1In1-Y1P(0≦X4≦1,0<Y1≦1,X1<X4)または井戸層47の材料である(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
For example, when AlGaAs or InGaAs is used as the material of the well layer 47 and AlGaAs or AlGaInP is used as the material of the barrier layer 48, the material of the lower guide layer 42 and the upper guide layer 44 is preferably AlGaAs or AlGaInP. When AlGaInP is used as the material of the lower guide layer 42 and the upper guide layer 44, it does not contain As that easily causes defects, so that the crystallinity is high and contributes to high output.
When (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) is used as the material of the well layer 47, as the material of the lower guide layer 42 and the upper guide layer 44 (Al X4 Ga 1-X4 ) Y1 In 1-Y1 P (0 ≦ X4 ≦ 1, 0 <Y1 ≦ 1, X1 <X4) or the material of the well layer 47 (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) AlGaAs whose band gap energy is larger can be used.
 下部ガイド層42及び上部ガイド層44は、夫々、下部クラッド層41及び上部クラッド層45と活性層4との欠陥の伝搬を低減するために設けられている。このため、下部ガイド層42および上部ガイド層44の層厚は10nm以上が好ましく、20nm~100nmがより好ましい。 The lower guide layer 42 and the upper guide layer 44 are provided in order to reduce the propagation of defects between the lower cladding layer 41 and the upper cladding layer 45 and the active layer 4, respectively. For this reason, the layer thickness of the lower guide layer 42 and the upper guide layer 44 is preferably 10 nm or more, and more preferably 20 nm to 100 nm.
 下部ガイド層42及び上部ガイド層44の伝導型は特に限定されるものではなく、アンドープ、p型及びn型のいずれも選択することができる。発光効率を高めるには、結晶性が良好なアンドープ又は3×1017cm-3未満のキャリア濃度とすることが望ましい。 The conductivity types of the lower guide layer 42 and the upper guide layer 44 are not particularly limited, and any of undoped, p-type, and n-type can be selected. In order to increase the light emission efficiency, it is desirable to have an undoped crystallinity with a good crystallinity or a carrier concentration of less than 3 × 10 17 cm −3 .
 下部クラッド層41及び上部クラッド層45は、図2に示すように、下部ガイド層42の下面及び上部ガイド層44上面にそれぞれ設けられている。 The lower clad layer 41 and the upper clad layer 45 are provided on the lower surface of the lower guide layer 42 and the upper surface of the upper guide layer 44, respectively, as shown in FIG.
 下部クラッド層41及び上部クラッド層45の材料としては、公知の化合物半導体材料を用いることができ、発光層43の材料に対して適した材料を選択するのが好ましい。例えば、AlGaAs、AlGaInPを用いることができる。 As the material of the lower cladding layer 41 and the upper cladding layer 45, a known compound semiconductor material can be used, and it is preferable to select a material suitable for the material of the light emitting layer 43. For example, AlGaAs or AlGaInP can be used.
 例えば、井戸層47の材料としてAlGaAs又はInGaAsを用い、バリア層48の材料としてAlGaAs又はAlGaInPを用いた場合、下部クラッド層41及び上部クラッド層45の材料としてはAlGaAs又はAlGaInPが好ましい。下部クラッド層41及び上部クラッド層45の材料としてAlGaInPを用いた場合、欠陥を作りやすいAsを含まないので結晶性が高く、高出力に寄与する。
 井戸層47の材料として(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)を用いた場合、下部クラッド層41及び上部クラッド層45の材料としては、よりAl組成の高い(AlX4Ga1-X4Y1In1-Y1P(0≦X4≦1,0<Y1≦1,X1<X4)または井戸層47の材料である(AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)よりバンドギャップエネルギーが大きくなるAlGaAsを用いることができる。
For example, when AlGaAs or InGaAs is used as the material of the well layer 47 and AlGaAs or AlGaInP is used as the material of the barrier layer 48, the material of the lower cladding layer 41 and the upper cladding layer 45 is preferably AlGaAs or AlGaInP. When AlGaInP is used as the material of the lower clad layer 41 and the upper clad layer 45, it does not contain As that easily causes defects, so that it has high crystallinity and contributes to high output.
When (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) is used as the material of the well layer 47, the material of the lower cladding layer 41 and the upper cladding layer 45 is used. (Al X4 Ga 1-X4 ) Y1 In 1-Y1 P (0 ≦ X4 ≦ 1, 0 <Y1 ≦ 1, X1 <X4) or the material of the well layer 47 (Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1) AlGaAs whose band gap energy is larger can be used.
 下部クラッド層41と上部クラッド層45とは、極性が異なるように構成されている。
 また、下部クラッド層41及び上部クラッド層45のキャリア濃度及び厚さは、公知の好適な範囲を用いることができ、活性層41の発光効率が高まるように条件を最適化することが好ましい。なお、下部および上部クラッド層は設けなくてもよい。
The lower cladding layer 41 and the upper cladding layer 45 are configured to have different polarities.
The carrier concentration and thickness of the lower clad layer 41 and the upper clad layer 45 can be in a known suitable range, and the conditions are preferably optimized so that the luminous efficiency of the active layer 41 is increased. The lower and upper clad layers need not be provided.
 なお、本実施形態においては、下部DBR層3bと活性層4との間に、AlGaAsや、AlGaInP等の半導体層を適宜設けてもよい。 In the present embodiment, a semiconductor layer such as AlGaAs or AlGaInP may be appropriately provided between the lower DBR layer 3b and the active layer 4.
<上部DBR層>
 上部DBR層3aも、上記下部DBR層3bと同様の層構造を用いることができるが、上部DBR層3aを透過させて光を射出する必要があるので、下部DBR層3bよりも反射率が低くなるように構成する。具体的には、下部DBR層3bと同じ材料からなる場合、下部DBR層3bよりも層数が少なくなるように、屈折率の異なる2種類の層が交互に3~10対積層されてなるのが好ましい。積層数が2対以下である場合は反射率が低すぎるために出力の増大に寄与せず、11対以上にすると上部DBR層3aを透過する光量が低下しすぎるからである。
<Upper DBR layer>
The upper DBR layer 3a can also have the same layer structure as the lower DBR layer 3b. However, since it is necessary to emit light through the upper DBR layer 3a, the reflectance is lower than that of the lower DBR layer 3b. Configure to be Specifically, when it is made of the same material as the lower DBR layer 3b, 3 to 10 pairs of two types of layers having different refractive indexes are alternately stacked so that the number of layers is smaller than that of the lower DBR layer 3b. Is preferred. This is because when the number of stacked layers is 2 pairs or less, the reflectance is too low to contribute to an increase in output, and when the number is 11 pairs or more, the amount of light transmitted through the upper DBR layer 3a is too low.
 上部DBR層3aを構成する屈折率の異なる2種類の層3aa、3abは、上記下部DBR層3bと同様に、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対である。また、上部DBR層3aを構成する屈折率の異なる2種類の層3aa、3abは、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の組み合わせであり、これら組み合わせのいずれかから選択されるのが効率よく高い反射率が得られることから望ましい。
 上部DBR層3aを構成する屈折率の異なる2種類の層3aa、3abとしては特に、組成の異なるAlGaInPの組み合わせは、結晶欠陥を生じやすいAsを含まないので好ましく、GaInPとAlInPはその中で屈折率差を最も大きくとれるので、反射層の数を少なくすることができ、組成の切り替えも単純であるので好ましい。また、AlGaAsは、大きな屈折率差をとりやすいという利点がある。
The two types of layers 3aa and 3ab having different refractive indices constituting the upper DBR layer 3a are similar to the lower DBR layer 3b in that two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P ( 0 <Xh ≦ 1, Y3 = 0.5), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl <1, Y3 = 0.5). Further, the two types of layers 3aa and 3ab having different refractive indexes constituting the upper DBR layer 3a may be a combination in which the Al composition difference ΔX = xh−xl is greater than or equal to 0.5, or GaInP It is a combination of AlInP or a combination of two types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1) having different compositions. Therefore, it is desirable to select any one of these combinations because a high reflectance can be obtained efficiently.
Especially for the two types of layers 3aa and 3ab having different refractive indexes constituting the upper DBR layer 3a, a combination of AlGaInP having different compositions is preferable because it does not contain As which easily causes crystal defects, and GaInP and AlInP are refracted therein. Since the rate difference can be maximized, the number of reflection layers can be reduced, and the composition switching is also simple, which is preferable. Moreover, AlGaAs has an advantage that a large difference in refractive index is easily obtained.
<上部電流拡散層>
 上部電流拡散層9は、下部電流拡散層7と同様に、電流拡散を目的として配置するものであり、材料としては、GaPの他、発光波長に対し透明なAlGaInP、AlGaAs等を用いることができる。
<Upper current diffusion layer>
Similar to the lower current diffusion layer 7, the upper current diffusion layer 9 is disposed for the purpose of current diffusion, and as a material, AlGaInP, AlGaAs or the like that is transparent to the emission wavelength can be used in addition to GaP. .
<コンタクト層>
 コンタクト層8は、表面電極12との接触抵抗を低下させるために設けられている。コンタクト層8の材料は、発光層43よりバンドギャップの大きい材料であることが好ましい。また、コンタクト層8のキャリア濃度の下限値は、電極との接触抵抗を低下させるために5×1017cm-3以上であることが好ましく、1×1018cm-3以上がより好ましい。キャリア濃度の上限値は、結晶性の低下が起こりやすくなる2×1019cm-3以下が望ましい。コンタクト層8の厚さは、0.05μm以上が好ましい。コンタクト層8の厚さの上限値は特に限定されないが、エピタキシャル成長に係るコストを適正範囲にするため、10μm以下とすることが望ましい。
<Contact layer>
The contact layer 8 is provided to reduce the contact resistance with the surface electrode 12. The material of the contact layer 8 is preferably a material having a band gap larger than that of the light emitting layer 43. Further, the lower limit value of the carrier concentration of the contact layer 8 is preferably 5 × 10 17 cm −3 or more, more preferably 1 × 10 18 cm −3 or more, in order to reduce the contact resistance with the electrode. The upper limit value of the carrier concentration is desirably 2 × 10 19 cm −3 or less at which the crystallinity is likely to decrease. The thickness of the contact layer 8 is preferably 0.05 μm or more. The upper limit value of the thickness of the contact layer 8 is not particularly limited, but is desirably 10 μm or less in order to make the cost for epitaxial growth within an appropriate range.
 ここで、上述してきた金属反射層2及び化合物半導体層5(下部電流拡散層7、下部DBR層3b、活性層4、上部DBR層3a、上部電流拡散層9、コンタクト層8)の構造には、公知の機能層を適時加えることができる。例えば、素子駆動電流の通流する領域を制限するための電流阻止層や電流狭窄層など公知の層構造を設けることができる。 Here, the structure of the metal reflection layer 2 and the compound semiconductor layer 5 (the lower current diffusion layer 7, the lower DBR layer 3b, the active layer 4, the upper DBR layer 3a, the upper current diffusion layer 9, and the contact layer 8) described above is included. A known functional layer can be added in a timely manner. For example, a known layer structure such as a current blocking layer or a current confinement layer for limiting the region through which the element driving current flows can be provided.
 また、表面電極12及び裏面電極13については、それぞれ公知の電極材料を用いることができるが、表面電極12としては、AuGeNiを用いることができ、裏面電極13としてはAuBeを用いることができる。 Also, for the front electrode 12 and the back electrode 13, known electrode materials can be used, respectively. As the front electrode 12, AuGeNi can be used, and as the back electrode 13, AuBe can be used.
 ここで、上述してきたような図1Aで示す半導体装置では、支持基板1の金属反射層2の反対側に裏面電極13を設ける例を示したが、本実施形態における表面電極12及び裏面電極13の形態は特に限定しない。電極構造としては例えば、図1Bに示すように、金属反射層2と下部電流拡散層7との間に透光膜(SiO膜)14が成膜され、当該透光膜14にオーミック電極15が形成された形態でもよい。
 なお、図1Bにおいては、図1Aに示す半導体装置における部材と同一の部材については同一の符号を付して示している。
Here, in the semiconductor device shown in FIG. 1A as described above, an example in which the back electrode 13 is provided on the opposite side of the metal reflective layer 2 of the support substrate 1 has been described. However, the front electrode 12 and the back electrode 13 in the present embodiment. The form of is not particularly limited. As an electrode structure, for example, as shown in FIG. 1B, a translucent film (SiO 2 film) 14 is formed between the metal reflective layer 2 and the lower current diffusion layer 7, and the ohmic electrode 15 is formed on the translucent film 14. May be formed.
In FIG. 1B, the same members as those in the semiconductor device shown in FIG. 1A are denoted by the same reference numerals.
<支持基板>
 本実施形態における支持基板1としては、Ge基板、金属基板、Si基板、GaAs基板、GaP基板等を用いることができる。
 以下、それぞれの基板を用いた場合について説明する。
<Support substrate>
As the support substrate 1 in this embodiment, a Ge substrate, a metal substrate, a Si substrate, a GaAs substrate, a GaP substrate, or the like can be used.
Hereinafter, the case where each board | substrate is used is demonstrated.
 図3は、本実施形態の発光ダイオードにおいて、支持基板1としてGe基板51とした例の断面模式図である。
 支持基板1としてGe基板51を用いた場合、後述する接合層10側のおもて面にTi/Au/Inでなる層52を配置し、裏面にTi/Auでなる層53を配置することで、本実施形態に係る支持基板1に適用することができる。
 なお、上記層52及び層53の材料としては、他にもGeと密着性がよい金属層、例えばPtやAuを用いることができる。
FIG. 3 is a schematic cross-sectional view of an example in which the Ge substrate 51 is used as the support substrate 1 in the light emitting diode of the present embodiment.
When a Ge substrate 51 is used as the support substrate 1, a layer 52 made of Ti / Au / In is arranged on the front surface of the bonding layer 10 described later, and a layer 53 made of Ti / Au is arranged on the back surface. Therefore, it can be applied to the support substrate 1 according to the present embodiment.
In addition, as a material of the layer 52 and the layer 53, a metal layer having good adhesion to Ge, for example, Pt or Au can be used.
「金属基板」
 支持基板1として金属基板を用いる場合、複数の金属層(金属板)を積層した構造とすることができる。
 複数の金属層(金属板)を積層した構造とする場合、2種類の金属層が交互に積層されてなるのが好ましく、特に、この2種類の金属層(例えば、これらを第1の金属層、第2の金属層という)の層数は合わせて奇数とするのが好ましい。
 例えば、前記2種類の金属層を第1の金属層61b、第2の金属層61aとし、層数を3層とした場合は、図4に示すような構造となる。
"Metal substrate"
When a metal substrate is used as the support substrate 1, a structure in which a plurality of metal layers (metal plates) are stacked can be employed.
In the case of a structure in which a plurality of metal layers (metal plates) are laminated, it is preferable that two types of metal layers are alternately laminated, and in particular, these two types of metal layers (for example, the first metal layer). The number of layers of the second metal layer is preferably an odd number in total.
For example, when the two types of metal layers are the first metal layer 61b and the second metal layer 61a and the number of layers is three, the structure is as shown in FIG.
 図4に示すように、金属基板を、第2の金属層61aを第1の金属層61bで挟んだ構造とした場合、金属基板の反りや割れの観点から、第2の金属層61aとして化合物半導体層5(図4には図示せず)より熱膨張係数が小さい材料を用いるときは、第1の金属層61bを化合物半導体層より熱膨張係数が大きい材料からなるものを用いるのが好ましい。金属基板全体としての熱膨張係数が化合物半導体層5の熱膨張係数に近いものとなるため、化合物半導体層5と金属基板とを接合する際の金属基板の反りや割れを抑制することができ、発光ダイオードの製造歩留まりを向上させることができるからである。同様に、第2の金属層61aとして化合物半導体層5より熱膨張係数が大きい材料を用いるときは、第1の金属層61bを化合物半導体層5より熱膨張係数が小さい材料からなるものを用いるのが好ましい。金属基板全体としての熱膨張係数が化合物半導体層5の熱膨張係数に近いものとなるため、化合物半導体層5と金属基板とを接合する際の金属基板の反りや割れを抑制でき、発光ダイオードの製造歩留まりを向上できるからである。 As shown in FIG. 4, when the metal substrate has a structure in which the second metal layer 61a is sandwiched between the first metal layers 61b, the compound as the second metal layer 61a is used from the viewpoint of warping and cracking of the metal substrate. When a material having a smaller thermal expansion coefficient than that of the semiconductor layer 5 (not shown in FIG. 4) is used, it is preferable to use the first metal layer 61b made of a material having a larger thermal expansion coefficient than the compound semiconductor layer. Since the thermal expansion coefficient of the entire metal substrate is close to the thermal expansion coefficient of the compound semiconductor layer 5, it is possible to suppress warping and cracking of the metal substrate when the compound semiconductor layer 5 and the metal substrate are joined, This is because the manufacturing yield of the light emitting diode can be improved. Similarly, when a material having a larger thermal expansion coefficient than that of the compound semiconductor layer 5 is used as the second metal layer 61 a, the first metal layer 61 b made of a material having a smaller thermal expansion coefficient than that of the compound semiconductor layer 5 is used. Is preferred. Since the thermal expansion coefficient of the entire metal substrate is close to the thermal expansion coefficient of the compound semiconductor layer 5, warpage and cracking of the metal substrate when the compound semiconductor layer 5 and the metal substrate are joined can be suppressed, and the light emitting diode This is because the manufacturing yield can be improved.
 2種類の金属層としては、例えば、銀(熱膨張係数=18.9ppm/K)、銅(熱膨張係数=16.5ppm/K)、金(熱膨張係数=14.2ppm/K)、アルミニウム(熱膨張係数=23.1ppm/K)、ニッケル(熱膨張係数=13.4ppm/K)およびこれらの合金のいずれかからなる金属層と、モリブデン(熱膨張係数=5.1ppm/K)、タングステン(熱膨張係数=4.3ppm/K)、クロム(熱膨張係数=4.9ppm/K)およびこれらの合金のいずれかからなる金属層との組み合わせを用いることができる。
 好適な例としては、Cu/Mo/Cuの3層からなる金属基板があげられる。上記の観点ではMo/Cu/Moの3層からなる金属基板でも同様な効果が得られるが、Cu/Mo/Cuの3層からなる金属基板は、機械的強度が高いMoを加工しやすいCuで挟んだ構成なので、Mo/Cu/Moの3層からなる金属基板よりも切断等の加工が容易であるという利点がある。
Examples of the two metal layers include silver (thermal expansion coefficient = 18.9 ppm / K), copper (thermal expansion coefficient = 16.5 ppm / K), gold (thermal expansion coefficient = 14.2 ppm / K), and aluminum. (Thermal expansion coefficient = 23.1 ppm / K), nickel (thermal expansion coefficient = 13.4 ppm / K) and a metal layer made of any of these alloys, molybdenum (thermal expansion coefficient = 5.1 ppm / K), Combinations of tungsten (thermal expansion coefficient = 4.3 ppm / K), chromium (thermal expansion coefficient = 4.9 ppm / K), and a metal layer made of any of these alloys can be used.
A preferred example is a metal substrate composed of three layers of Cu / Mo / Cu. From the above viewpoint, the same effect can be obtained with a metal substrate composed of three layers of Mo / Cu / Mo, but the metal substrate composed of three layers of Cu / Mo / Cu is a Cu layer that has high mechanical strength and is easy to process Mo. Therefore, there is an advantage that processing such as cutting is easier than a metal substrate composed of three layers of Mo / Cu / Mo.
 金属基板全体としての熱膨張係数は例えば、Cu(30μm)/Mo(25μm)/Cu(30μm)の3層からなる金属基板では6.1ppm/Kであり、Mo(25μm)/Cu(70μm)/Mo(25μm)の3層からなる金属基板では5.7ppm/Kとなる。 The thermal expansion coefficient of the entire metal substrate is, for example, 6.1 ppm / K for a three-layer metal substrate of Cu (30 μm) / Mo (25 μm) / Cu (30 μm), and Mo (25 μm) / Cu (70 μm). In the case of a metal substrate composed of three layers of / Mo (25 μm), it is 5.7 ppm / K.
 また、後述する成長用基板に化合物半導体層等を成長させた後に、金属基板を接合して、その成長用基板をエッチング液を用いて除去する際に、そのエッチング液による劣化を回避するために、金属基板の上面及び下面を金属保護膜61cで覆うことが好ましい。
 金属保護膜61cの材料としては、密着性に優れるクロム、ニッケル、化学的に安定な白金、又は金の少なくともいずれか一つを含む金属からなるものであることが好ましい。
 金属保護膜61cは密着性がよいニッケルと耐薬品に優れる金を組み合わせた層からなるのが最適である。
In order to avoid deterioration due to an etching solution when a compound semiconductor layer or the like is grown on a growth substrate which will be described later, a metal substrate is bonded, and the growth substrate is removed using an etching solution. The upper and lower surfaces of the metal substrate are preferably covered with the metal protective film 61c.
The material of the metal protective film 61c is preferably made of a metal containing at least one of chromium, nickel, chemically stable platinum, and gold having excellent adhesion.
The metal protective film 61c is optimally composed of a layer combining nickel having good adhesion and gold having excellent chemical resistance.
 また、本実施形態における支持基板1としては、上述したようなGe基板または金属基板のほかにも、Si基板、GaAs基板、GaP基板のいずれかを用いることができる。
 Si基板を用いる場合には、例えば、シリコン基板の金属反射層側の表面に、Ti/Au/Inでなる層を配置し、さらにシリコン基板の裏面に、Ti/Auでなる層を配置することにより適用できる。
In addition to the Ge substrate or metal substrate as described above, any one of a Si substrate, a GaAs substrate, and a GaP substrate can be used as the support substrate 1 in the present embodiment.
In the case of using a Si substrate, for example, a layer made of Ti / Au / In is arranged on the surface of the silicon substrate on the metal reflective layer side, and a layer made of Ti / Au is further arranged on the back surface of the silicon substrate. Can be applied.
 なお、本実施形態においては、金属反射層2の基板側上に拡散防止層11及び/又は接合層10を配置して、発光部6が支持基板1に接合されていてもよい。 In the present embodiment, the light-emitting portion 6 may be bonded to the support substrate 1 by disposing the diffusion prevention layer 11 and / or the bonding layer 10 on the substrate side of the metal reflection layer 2.
<拡散防止層>
 拡散防止層11は、支持基板1に含まれる金属が拡散して、金属反射層2と反応するのを抑制することができる。
 拡散防止層11の材料としては、ニッケル、チタン、白金、クロム、タンタル、タングステン、モリブデン等を用いることができる。
 拡散防止層11は、2種類以上の金属の組み合わせ、たとえば白金とチタンの組み合わせなどにより、拡散防止の性能を向上させることができる。
 なお、拡散防止層11を設けなくても、後述する接合層にそれらの材料を添加することにより接合層に拡散防止層11と同様な機能を持たせることもできる。
<Diffusion prevention layer>
The diffusion prevention layer 11 can suppress the metal contained in the support substrate 1 from diffusing and reacting with the metal reflection layer 2.
As a material of the diffusion preventing layer 11, nickel, titanium, platinum, chromium, tantalum, tungsten, molybdenum, or the like can be used.
The diffusion prevention layer 11 can improve the performance of diffusion prevention by a combination of two or more kinds of metals, for example, a combination of platinum and titanium.
Even if the diffusion preventing layer 11 is not provided, the bonding layer can have the same function as that of the diffusion preventing layer 11 by adding these materials to the joining layer described later.
<接合層>
 接合層10は、活性層4を含む化合物半導体層5等を支持基板1に接合するための層である。
 接合層10の材料としては、化学的に安定で、融点の低いAu系の共晶金属などが用いられる。Au系の共晶金属としては、例えば、AuGe、AuSn、AuSi、AuInなどの合金の共晶組成を挙げることができる。
<Junction layer>
The bonding layer 10 is a layer for bonding the compound semiconductor layer 5 including the active layer 4 to the support substrate 1.
As a material for the bonding layer 10, an Au-based eutectic metal that is chemically stable and has a low melting point is used. Examples of the Au-based eutectic metal include eutectic compositions of alloys such as AuGe, AuSn, AuSi, and AuIn.
 本実施形態の発光ダイオード100は、活性層4を、金属反射層2及び下部DBR層3bと、上部DBR層3aとで挟む構造である。すなわち、活性層4で発光した光が下部DBR層3bと上部DBR層3aとで共振して定在波の腹が発光層に位置させるともに、活性層4で発光した光のうち斜めからの入射光に対しては、下部DBR層3bの下方に形成した金属反射層2により反射させる構成をとることにより、レーザ発振させないで、従来の発光ダイオードよりも指向性が高く、高効率の発光ダイオードとなっている。 The light emitting diode 100 of the present embodiment has a structure in which the active layer 4 is sandwiched between the metal reflection layer 2, the lower DBR layer 3b, and the upper DBR layer 3a. That is, the light emitted from the active layer 4 resonates between the lower DBR layer 3b and the upper DBR layer 3a so that the antinodes of the standing waves are located in the light emitting layer, and the light emitted from the active layer 4 is incident obliquely. By adopting a configuration in which light is reflected by the metal reflection layer 2 formed below the lower DBR layer 3b, a laser diode does not oscillate and has higher directivity than a conventional light emitting diode, and a highly efficient light emitting diode. It has become.
[発光ダイオードの製造方法]
 次に、本発明の一実施形態である発光ダイオードの製造方法について説明する。
 本実施形態の発光ダイオードの製造方法は、成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、化合物半導体層上に金属反射層を形成して発光部を形成する工程と、発光部と支持基板とを接合する工程と、成長用基板を除去する工程と、を有することを特徴とする。
[Method for manufacturing light-emitting diode]
Next, the manufacturing method of the light emitting diode which is one Embodiment of this invention is demonstrated.
The method of manufacturing a light emitting diode according to the present embodiment includes a step of forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in order on a growth substrate, and forming a metal reflective layer on the compound semiconductor layer. Forming a light emitting portion, joining the light emitting portion and the supporting substrate, and removing the growth substrate.
<支持基板の製造工程>〔1〕支持基板1としてGe基板を用いた場合
 図5に示すように、Ge基板51のおもて面51Aに例えば、Ti/Au/Inでなる層52を形成し、Ge基板51の裏面に例えば、Ti/Auでなる層53を形成して、支持基板1を作製する。
 なお、層52及び層53の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
<Support Substrate Manufacturing Process> [1] When a Ge Substrate is Used as the Support Substrate 1 As shown in FIG. 5, a layer 52 made of, for example, Ti / Au / In is formed on the front surface 51A of the Ge substrate 51 Then, for example, a layer 53 made of Ti / Au is formed on the back surface of the Ge substrate 51 to produce the support substrate 1.
The materials of the layer 52 and the layer 53 are not limited to these, and may be selected within a range that does not impair the effects of the present invention.
〔2〕支持基板1として金属基板を用いた場合
 本実施形態では、熱膨張係数がそれぞれ異なる3層の金属を積層した構造について説明する。
 図6に示すように、支持基板1として金属基板を用いる場合、熱膨張係数が活性層の材料より大きい第1の金属層(第1の金属板)61bと、熱膨張係数が活性層の材料より小さい第2の金属層(第2の金属板)61aとを採用して、ホットプレスして金属基板を形成する。
[2] When a metal substrate is used as the support substrate 1 In this embodiment, a structure in which three layers of metals having different thermal expansion coefficients are laminated will be described.
As shown in FIG. 6, when a metal substrate is used as the support substrate 1, a first metal layer (first metal plate) 61b having a thermal expansion coefficient larger than that of the active layer and a material having a thermal expansion coefficient of the active layer. A smaller second metal layer (second metal plate) 61a is employed and hot pressed to form a metal substrate.
 具体的にはまず、2枚の略平板状の第1の金属層61bと、1枚の略平板状の第2の金属層61aを用意する。例えば、第1の金属層61bとしては厚さ10μmのCu、第2の金属層61aとしては厚さ75μmのMoを用いる。
 次に、2枚の第1の金属層61bの間に第2の金属層61aを挿入してこれらを重ねて配置する。
Specifically, first, two substantially flat plate-like first metal layers 61b and one substantially flat plate-like second metal layer 61a are prepared. For example, Cu having a thickness of 10 μm is used as the first metal layer 61b, and Mo having a thickness of 75 μm is used as the second metal layer 61a.
Next, the second metal layer 61a is inserted between the two first metal layers 61b, and these are overlapped.
 次に、重ね合わせたそれらの金属層を所定の加圧装置に配置して、高温下で第1の金属層61bと第2の金属層61aに荷重をかける。これにより、図6に示すように、第1の金属層61bがCuであり、第2の金属層61aがMoであり、Cu(10μm)/Mo(75μm)/Cu(10μm)の3層からなる金属基板を形成する。
 金属基板は、例えば、熱膨張係数が5.7ppm/Kとなり、熱伝導率は220W/m・Kとなる。
Next, these superimposed metal layers are placed in a predetermined pressure device, and a load is applied to the first metal layer 61b and the second metal layer 61a at a high temperature. Thus, as shown in FIG. 6, the first metal layer 61b is Cu, the second metal layer 61a is Mo, and the three layers of Cu (10 μm) / Mo (75 μm) / Cu (10 μm) are used. Forming a metal substrate.
For example, the metal substrate has a thermal expansion coefficient of 5.7 ppm / K and a thermal conductivity of 220 W / m · K.
 次に、図6に示すように、金属基板の全面すなわち、上面、下面及び側面を覆う金属保護膜61cを形成する。このとき、金属基板は各発光ダイオードに個片化のために切断される前なので、金属保護膜61cが覆う側面とは金属基板の外周側面である。
 従って、個片化後の各発光ダイオードの金属基板の側面を金属保護膜61cで覆う場合には別途、金属保護膜61cで側面を覆う工程を実施する。
 なお、図6は、金属基板の外周端側でない箇所の一部を示しているものであり、外周側面の金属保護膜は図に表れていない。
Next, as shown in FIG. 6, a metal protective film 61c that covers the entire surface of the metal substrate, that is, the upper surface, the lower surface, and the side surfaces is formed. At this time, since the metal substrate is before being cut into individual light emitting diodes, the side surface covered by the metal protective film 61c is the outer peripheral side surface of the metal substrate.
Therefore, when the side surface of the metal substrate of each light-emitting diode after singulation is covered with the metal protective film 61c, a step of covering the side surface with the metal protective film 61c is performed separately.
FIG. 6 shows a part of the metal substrate that is not on the outer peripheral end side, and the metal protective film on the outer peripheral side surface is not shown in the figure.
 金属保護膜61cは公知の膜形成方法を用いることができるが、側面を含めた全面に膜形成ができるめっき法が最も好ましい。例えば、無電解めっき法では、ニッケルその後、金をめっきし、金属基板の上面、側面、下面をニッケル膜及び金膜(金属保護膜)で覆われた金属基板を作製できる。
 めっき材質は、特に制限はなく、銅、銀、ニッケル、クロム、白金、金など公知の材質が適用できるが、密着性がよいニッケルと耐薬品に優れる金を組み合わせた層が最適である。
 めっき法は、公知の技術、薬品が使用できる。電極が不要な無電解めっき法が、簡便で望ましい。
A known film forming method can be used for the metal protective film 61c, but a plating method capable of forming a film on the entire surface including the side surfaces is most preferable. For example, in the electroless plating method, nickel is then plated with gold, and a metal substrate in which the upper surface, side surfaces, and lower surface of the metal substrate are covered with a nickel film and a gold film (metal protective film) can be produced.
The plating material is not particularly limited, and known materials such as copper, silver, nickel, chromium, platinum, and gold can be applied. However, a layer that combines nickel having good adhesion and gold having excellent chemical resistance is optimal.
As the plating method, known techniques and chemicals can be used. An electroless plating method that does not require an electrode is simple and desirable.
〔3〕支持基板1としてSi基板を用いた場合
 Si基板のおもて面に例えば、Au/Ptでなる層を形成し、Si基板の裏面に例えば、Pt/Auでなる層を形成して、支持基板1を作製する。
 なお、Si基板のおもて面または裏面に形成する各層の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
[3] When Si substrate is used as support substrate 1 For example, a layer made of Au / Pt is formed on the front surface of the Si substrate, and a layer made of Pt / Au is formed on the back surface of the Si substrate, for example. The support substrate 1 is produced.
The material of each layer formed on the front surface or the back surface of the Si substrate is not limited to these, and may be selected within a range not impairing the effects of the present invention.
〔4〕支持基板1としてGaP基板を用いた場合
 例えば、p型GaPからなる機能性基板を用意し、そのおもて面に例えば、Au/Ptでなる層を形成し、Si基板の裏面に例えば、Pt/Auでなる層を形成して、支持基板1を作製する。
 なお、Si基板のおもて面または裏面に形成する各層の材料はこれらに限らず、本発明の効果を損なわない範囲において選択してよい。
[4] When a GaP substrate is used as the support substrate 1 For example, a functional substrate made of p-type GaP is prepared, a layer made of, for example, Au / Pt is formed on the front surface, and the back surface of the Si substrate is formed. For example, a support substrate 1 is manufactured by forming a layer made of Pt / Au.
The material of each layer formed on the front surface or the back surface of the Si substrate is not limited to these, and may be selected within a range not impairing the effects of the present invention.
 なお、本実施形態においては、上述してきたような支持基板のほかに、GaAs基板も支持基板1として用いることができる。 In the present embodiment, in addition to the support substrate as described above, a GaAs substrate can be used as the support substrate 1.
<化合物半導体層の形成工程>
 次に、成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程について説明する。
 まず、図7に示すように、半導体基板(成長用基板)21の一面21a上に、複数のエピタキシャル層を成長させて化合物半導体層5を含むエピタキシャル積層体30を形成する。
 半導体基板21は、エピタキシャル積層体30形成用基板であり、例えば、一面21aが(100)面から15°傾けた面とされた、Siドープしたn型のGaAs単結晶基板である。エピタキシャル積層体30としてAlGaInP層またはAlGaAs層を用いる場合、エピタキシャル積層体30を形成する基板として砒化ガリウム(GaAs)単結晶基板を用いることができる。
<Step of forming compound semiconductor layer>
Next, a process of forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in this order on the growth substrate will be described.
First, as shown in FIG. 7, an epitaxial stacked body 30 including the compound semiconductor layer 5 is formed by growing a plurality of epitaxial layers on one surface 21 a of a semiconductor substrate (growth substrate) 21.
The semiconductor substrate 21 is a substrate for forming the epitaxial stacked body 30. For example, the semiconductor substrate 21 is a Si-doped n-type GaAs single crystal substrate in which one surface 21a is inclined by 15 ° from the (100) plane. When an AlGaInP layer or an AlGaAs layer is used as the epitaxial stacked body 30, a gallium arsenide (GaAs) single crystal substrate can be used as a substrate on which the epitaxial stacked body 30 is formed.
 エピタキシャル積層体30の形成方法としては、有機金属化学気相成長(Metal Organic Chemical Vapor Deposition:MOCVD)法、分子線エピタキシャル(Molecular Beam Epitaxicy:MBE)法や液相エピタキシャル(Liquid Phase Epitaxicy:LPE)法などを用いることができる。 As a method for forming the epitaxial layered structure 30, a metal organic chemical vapor deposition (MOCVD) method, a molecular beam epitaxy (MBE) method, or a liquid phase epitaxial (Liquid Phase EpiLex) method is used. Etc. can be used.
 本実施形態では、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)をIII族構成元素の原料に用いた減圧MOCVD法を用いて、各層をエピタキシャル成長させる。
 なお、Mgのドーピング原料にはビスシクロペンタジエニルマグネシウム((CMg)を用いる。また、Siのドーピング原料にはジシラン(Si)を用いる。また、V族構成元素の原料としては、ホスフィン(PH)又はアルシン(AsH)を用いる。
In the present embodiment, the low pressure MOCVD method using trimethylaluminum ((CH 3 ) 3 Al), trimethylgallium ((CH 3 ) 3 Ga), and trimethylindium ((CH 3 ) 3 In) as group III constituent elements. Each layer is epitaxially grown using
Note that biscyclopentadienyl magnesium ((C 5 H 5 ) 2 Mg) is used as a Mg doping material. Further, disilane (Si 2 H 6 ) is used as a Si doping raw material. Further, phosphine (PH 3 ) or arsine (AsH 3 ) is used as a raw material for the group V constituent element.
 具体的には、まず、半導体基板21の一面21a上に、Siをドープしたn型のGaAsからなる緩衝層22aを成膜する。緩衝層22aとしては、例えば、Siをドープしたn型のGaAsを用い、キャリア濃度を2×1018cm-3とし、層厚を0.2μmとする。 Specifically, first, a buffer layer 22 a made of n-type GaAs doped with Si is formed on one surface 21 a of the semiconductor substrate 21. As the buffer layer 22a, for example, n-type GaAs doped with Si is used, the carrier concentration is 2 × 10 18 cm −3 , and the layer thickness is 0.2 μm.
 次に、本実施形態では、緩衝層22a上に、Siドープしたn型の(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層22bを成膜する。
 エッチングストップ層22bは、半導体基板をエッチング除去する際、クラッド層および発光層までがエッチングされてしまうことを防ぐための層であり、例えば、Siドープの(Al0.5Ga0.50.5In0.5Pからなり、層厚を0.5μmとする。
Next, in this embodiment, an etching stop layer 22b made of Si-doped n-type (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P is formed on the buffer layer 22a.
The etching stop layer 22b is a layer for preventing the cladding layer and the light emitting layer from being etched when the semiconductor substrate is removed by etching. For example, Si-doped (Al 0.5 Ga 0.5 ) 0 It consists .5 In 0.5 P, the thickness and 0.5 [mu] m.
 次に、エッチングストップ層22b上に、Siドープしたn型のGaAsからなるコンタクト層8を成膜する。 Next, a contact layer 8 made of Si-doped n-type GaAs is formed on the etching stop layer 22b.
 次に、コンタクト層8上に、Siドープしたn型の、例えばAlGaInPからなる上部電流拡散層(n型半導体層)9を成膜する。 Next, an n-type upper current diffusion layer (n-type semiconductor layer) 9 made of, for example, AlGaInP is formed on the contact layer 8.
 次に、上記電流拡散層9上に、上部DBR層3aを形成する。
 具体的には、屈折率の異なる2種類の層3aa、3abを交互に積層する。本実施形態では、屈折率の異なる2種類の層3aa、3abは、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対とすることができる。また、屈折率の異なる2種類の層3aa、3abは、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の組み合わせであり、これら組み合わせかのいずれかから選択されるのが好ましい。
 なお、上部DBR層3aは、後述する下部DBR層3bと同様の層構造で形成することができるが、上部DBR層3aを透過させて光を射出する必要があるので、下部DBR層3bよりも反射率が低くなるように形成する。
 具体的には、下部DBR層3bと同じ材料からなる場合、下部DBR層3bよりも層数が少なくなるように、屈折率の異なる2種類の層が交互に3~10対積層されてなるのが好ましい。
Next, the upper DBR layer 3 a is formed on the current spreading layer 9.
Specifically, two types of layers 3aa and 3ab having different refractive indexes are alternately stacked. In the present embodiment, the two types of layers 3aa and 3ab having different refractive indexes are composed of two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5) having different compositions. ), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl <1, Y3 = 0.5). In addition, the two types of layers 3aa and 3ab having different refractive indexes may be a combination in which the Al composition difference ΔX = xh−xl is greater than or equal to 0.5, a combination of GaInP and AlInP, or A combination of two types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1) having different compositions, and any one of these combinations Is preferably selected.
The upper DBR layer 3a can be formed in the same layer structure as the lower DBR layer 3b described later. However, since it is necessary to transmit light through the upper DBR layer 3a, the upper DBR layer 3a is more than the lower DBR layer 3b. It is formed so that the reflectance is low.
Specifically, when it is made of the same material as the lower DBR layer 3b, 3 to 10 pairs of two types of layers having different refractive indexes are alternately stacked so that the number of layers is smaller than that of the lower DBR layer 3b. Is preferred.
 次に、上部DBR層3a上に、活性層4を形成する。
 具体的には、まず、図8に示すように、Siをドープしたn型のAl0.5In0.5Pからなる上部クラッド層45を成膜する。
 なお、上部クラッド層45は、光取り出し向上の為に表面を粗面化させる表面粗面化層と、クラッド層の2層構造としてもよい。この場合は、上部クラッド層45を成膜する前に、表面粗面化層を成膜すればよく、表面粗面化層としては、Siをドープしたn型の(Al0.5Ga0.50.5In0.5Pを用いることができる。
Next, the active layer 4 is formed on the upper DBR layer 3a.
Specifically, first, as shown in FIG. 8, an upper cladding layer 45 made of n-type Al 0.5 In 0.5 P doped with Si is formed.
The upper clad layer 45 may have a two-layer structure of a surface roughened layer for roughening the surface for improving light extraction and a clad layer. In this case, a surface roughened layer may be formed before the upper cladding layer 45 is formed. As the surface roughened layer, an n-type (Al 0.5 Ga 0. 5 ) 0.5 In 0.5 P can be used.
 次に、上部クラッド層45上に、例えば、アンドープの(Al0.1Ga0.90.5In0.5P/(Al0.7Ga0.30.5In0.5Pの20対の量子井戸構造からなる発光層43を成膜する。
 具体的には、発光層43は、バリア層(障壁層ともいう)48を両端に有する、井戸層47とバリア層48との多層構造(積層構造)とすることができる。
Next, on the upper cladding layer 45, for example, of an undoped (Al 0.1 Ga 0.9) 0.5 In 0.5 P / (Al 0.7 Ga 0.3) 0.5 In 0.5 A light emitting layer 43 having a 20-pair quantum well structure of P is formed.
Specifically, the light emitting layer 43 can have a multilayer structure (laminated structure) of a well layer 47 and a barrier layer 48 having a barrier layer (also referred to as a barrier layer) 48 at both ends.
 井戸層47の材料としては、((AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1-X2)As(0≦X2≦1)、(InX3Ga1-X3)As(0≦X3≦1))のいずれかを用いることができる。
 バリア層48の材料としては、井戸層47の材料に対して適した材料を選択するのが好ましい。バリア層48での吸収を防止して発光効率を高めるため、井戸層47よりもバンドギャップが大きくなる組成とするのが好ましい。
The material of the well layer 47 includes ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1), (Al X2 Ga 1-X2 ) As (0 ≦ X2 ≦ 1) or (In X3 Ga 1-X3 ) As (0 ≦ X3 ≦ 1)) can be used.
As a material of the barrier layer 48, a material suitable for the material of the well layer 47 is preferably selected. In order to prevent the absorption in the barrier layer 48 and increase the light emission efficiency, it is preferable that the composition has a band gap larger than that of the well layer 47.
 次に、発光層43上に、Mgをドープしたp型のAl0.5In0.5Pからなる下部クラッド層41を成膜する。 Next, a lower cladding layer 41 made of p-type Al 0.5 In 0.5 P doped with Mg is formed on the light emitting layer 43.
 次に、活性層4上に、下部DBR層3bを形成する。
 具体的には、上記上部DBR層3aと同様に、屈折率の異なる2種類の層3ba、3bbを交互に積層する。本実施形態では、屈折率の異なる2種類の層3ba、3bbは、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対とすることができる。また、屈折率の異なる2種類の層3ba、3bbは、両者のAlの組成差ΔX=xh-xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の組み合わせであり、これら組み合わせかのいずれかから選択されるのが好ましい。
 なお、下部DBR層3bは、屈折率の異なる2種類の層3ba、3bbが交互に10~50対積層されてなるのが好ましい。積層数が10対以下である場合は反射率が低すぎるために出力の増大に寄与せず、50対以上にしてもさらなる反射率の増大は小さいからである。
Next, the lower DBR layer 3 b is formed on the active layer 4.
Specifically, like the upper DBR layer 3a, two types of layers 3ba and 3bb having different refractive indexes are alternately stacked. In the present embodiment, the two types of layers 3ba and 3bb having different refractive indexes are composed of two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5) having different compositions. ), (Al Xl Ga 1-Xl ) Y3 In 1-Y3 P; 0 ≦ Xl <1, Y3 = 0.5). Further, the two types of layers 3ba and 3bb having different refractive indexes may be a combination in which the composition difference ΔX = xh−xl between the two is greater than or equal to 0.5, or a combination of GaInP and AlInP, or A combination of two types of Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1) and Al xh Ga 1-xh As (0.1 ≦ xh ≦ 1) having different compositions, and any one of these combinations Is preferably selected.
The lower DBR layer 3b is preferably formed by alternately stacking 10 to 50 pairs of two types of layers 3ba and 3bb having different refractive indexes. This is because when the number of stacked layers is 10 pairs or less, the reflectance is too low to contribute to an increase in output, and even when the number is 50 pairs or more, the increase in reflectance is small.
 次に、下部DBR層3b上に、Mgドープしたp型の、例えばGaPからなる下部電流拡散層(p型半導体層)7を成膜する。 Next, an Mg-doped p-type lower current diffusion layer (p-type semiconductor layer) 7 made of, for example, GaP is formed on the lower DBR layer 3b.
 なお、上部クラッド層45、下部クラッド層41それぞれと発光層43との間に、上部ガイド層44、下部ガイド層42を設けてもよい。 An upper guide layer 44 and a lower guide layer 42 may be provided between the upper clad layer 45 and the lower clad layer 41 and the light emitting layer 43, respectively.
<金属反射層の形成工程>
 次に、図7に示すように、下部電流拡散層7上に金属反射層2を形成する。
 具体的には、例えば、蒸着法を用いて、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上からなる金属反射層2を下部電流拡散層7に形成する。
<Metal reflective layer formation process>
Next, as shown in FIG. 7, the metal reflection layer 2 is formed on the lower current diffusion layer 7.
Specifically, for example, the metal reflective layer 2 composed of any one layer or two or more layers of gold, copper, silver, aluminum, Pt, or an alloy thereof is formed on the lower current diffusion layer 7 by vapor deposition. .
<拡散防止層の形成工程>
 本実施形態においては、金属反射層2の支持基板側表面上に、適宜、拡散防止層又は/及び接合層を形成してもよい。
 具体的には、まず金属反射層2上に拡散防止層11を形成する。例えば、蒸着法を用いて、ニッケルからなるバリア層を金属反射層2上に形成できる
<接合層の形成工程>
 次に、拡散防止層11上に接合層10を形成する。例えば、蒸着法を用いて、Au系の共晶金属であるAuGeからなる接合層10を上記拡散防止層11上に形成する。
<Diffusion prevention layer formation process>
In the present embodiment, a diffusion preventing layer and / or a bonding layer may be appropriately formed on the support substrate side surface of the metal reflective layer 2.
Specifically, first, the diffusion prevention layer 11 is formed on the metal reflection layer 2. For example, a barrier layer made of nickel can be formed on the metal reflective layer 2 by vapor deposition. <Joint layer forming step>
Next, the bonding layer 10 is formed on the diffusion preventing layer 11. For example, the bonding layer 10 made of AuGe, which is an Au-based eutectic metal, is formed on the diffusion prevention layer 11 by vapor deposition.
<支持基板の接合工程>
 次に、図9に示すように、エピタキシャル積層体30や金属反射層2等を形成した半導体基板21と、上記支持基板の製造工程で形成した支持基板1とを接合する。
 具体的には、例えば、支持基板1としてGe基板を用いた場合は、まず図5に示したようなGe基板51のおもて面51Aに形成したTi/Au/Inでなる層52と、図7に示した構造体の接合層10とを重ね合わせる。その後、例えば、320℃で加熱・500g/cmで加圧し、図9に示すように、支持基板1を、エピタキシャル積層体30を含む構造体に接合する。
 また、支持基板1として金属基板を用いた場合は、図6に示したような金属基板と、図7に示した構造体の接合層10とが対向して重ね合わされるように配置する。次に、減圧装置内を3×10-5Paまで排気した後、400℃に加熱した状態で、500kgの荷重を印加して図7に示した構造体の接合層10と金属基板とを接合する。
<Support substrate bonding process>
Next, as shown in FIG. 9, the semiconductor substrate 21 on which the epitaxial layered body 30, the metal reflective layer 2, and the like are formed is bonded to the support substrate 1 formed in the support substrate manufacturing process.
Specifically, for example, when a Ge substrate is used as the support substrate 1, first, a Ti / Au / In layer 52 formed on the front surface 51A of the Ge substrate 51 as shown in FIG. The bonding layer 10 of the structure shown in FIG. Thereafter, for example, heating is performed at 320 ° C. and pressure is applied at 500 g / cm 2 , and the support substrate 1 is bonded to the structure including the epitaxial multilayer body 30 as illustrated in FIG.
When a metal substrate is used as the support substrate 1, the metal substrate as shown in FIG. 6 and the bonding layer 10 of the structure shown in FIG. 7 are arranged so as to face each other. Next, after evacuating the inside of the decompression device to 3 × 10 −5 Pa and heating to 400 ° C., a load of 500 kg is applied to bond the bonding layer 10 of the structure shown in FIG. 7 and the metal substrate. To do.
<半導体基板および緩衝層除去工程>
 次に、図10に示すように、図9に示す接合構造体から、成長用基板(半導体基板)21及び緩衝層22aをアンモニア系エッチャントにより選択的に除去する<エッチングストップ層除去工程>
 次に、エッチングストップ層22bを塩酸系エッチャントにより選択的に除去する。
<Semiconductor substrate and buffer layer removal step>
Next, as shown in FIG. 10, the growth substrate (semiconductor substrate) 21 and the buffer layer 22a are selectively removed from the bonding structure shown in FIG. 9 with an ammonia-based etchant <etching stop layer removal step>
Next, the etching stop layer 22b is selectively removed with a hydrochloric acid-based etchant.
<表面電極及び裏面電極の形成工程>
 次に、コンタクト層8上に、例えば、AnGe/Niを含有する材料からなる表面電極12を形成すると共に、支持基板1の金属反射層2が形成されている方と反対側の面に、AuBeを含有する材料からなる裏面電極13を形成する。
 具体的には例えば、蒸着法を用いて、AnGe/Niを含有する材料をコンタクト層8上に、そしてAuBeを含有する材料を支持基板1上に成膜する。
<Formation process of front surface electrode and back surface electrode>
Next, on the contact layer 8, for example, a surface electrode 12 made of a material containing AnGe / Ni is formed, and on the surface opposite to the side on which the metal reflective layer 2 of the support substrate 1 is formed, AuBe A back electrode 13 made of a material containing is formed.
Specifically, for example, a material containing AnGe / Ni is formed on the contact layer 8 and a material containing AuBe is formed on the support substrate 1 by vapor deposition.
 なお、上述したように、本実施形態における半導体装置では、上述したような裏面電極13の配置形態に限らない。
 以下に、図1Bに示したような電極構造を形成するための工程について説明する。
 まず、上述した方法により下部電流拡散層7を成膜した後、下部電流拡散層(p型半導体層)7上にp型電極(p型オーミック電極)15を形成する。
 具体的には、下部電流拡散層7全面に、例えば、CVD法を用いて透光膜(SiO膜)14を形成する。なお、透光膜14を構成する材料としては、SiO、SiN、SiON、Al、MgF、TiO、TiN、ZnO、ITO、IZOなどを用いることができる。
As described above, the semiconductor device according to the present embodiment is not limited to the arrangement form of the back electrode 13 as described above.
Hereinafter, a process for forming the electrode structure as shown in FIG. 1B will be described.
First, after forming the lower current diffusion layer 7 by the method described above, a p-type electrode (p-type ohmic electrode) 15 is formed on the lower current diffusion layer (p-type semiconductor layer) 7.
Specifically, a light transmitting film (SiO 2 film) 14 is formed on the entire surface of the lower current diffusion layer 7 by using, for example, a CVD method. As the material constituting the translucent film 14, may be SiO 2, SiN, SiON, Al 2 O 3, MgF 2, TiO 2, TiN, ZnO, ITO, IZO or the like is used.
 次に、フォトリソグラフィー技術及びエッチング技術を用いて、透光膜14に、p型オーミック電極15を構成する導電性部材を埋め込むための複数の貫通孔を形成する。
 具体的には、それらの貫通孔に対応する孔を有するフォトレジストパターンを透光膜14上に形成し、フッ酸系のエッチャントを用いて貫通孔に対応する箇所の透光膜14を除去することにより、透光膜14に複数の貫通孔を形成する。
Next, a plurality of through holes for embedding a conductive member constituting the p-type ohmic electrode 15 are formed in the light-transmitting film 14 by using a photolithography technique and an etching technique.
Specifically, a photoresist pattern having holes corresponding to the through holes is formed on the light transmitting film 14, and the light transmitting film 14 corresponding to the through holes is removed using a hydrofluoric acid-based etchant. As a result, a plurality of through holes are formed in the translucent film 14.
 次に、例えば、蒸着法を用いて、下部電流拡散層7上であって、透光膜14の複数の貫通孔にAuとBeとNiとを含有する材料からなるp型オーミック電極15を形成する。
なお、p型オーミック電極15は、AuBeNiの合金からなることが好ましく、さらに合金中のNiの含有量が5~40mol%であり、かつ、mol%で、Be/Auが0.01~0.3であることが好ましい。
Next, the p-type ohmic electrode 15 made of a material containing Au, Be, and Ni is formed on the plurality of through holes of the translucent film 14 on the lower current diffusion layer 7 by using, for example, vapor deposition. To do.
The p-type ohmic electrode 15 is preferably made of an AuBeNi alloy, and the Ni content in the alloy is 5 to 40 mol%, and the Be / Au is 0.01 to 0. 3 is preferred.
 次に、p型オーミック電極15及び透光膜14上に金属反射層2を形成するが、これ以降の工程は上述した工程を採用することで、図1Bに示したような半導体装置を製造できる。 Next, the metal reflective layer 2 is formed on the p-type ohmic electrode 15 and the translucent film 14, and the subsequent steps can be used to manufacture the semiconductor device as shown in FIG. 1B. .
<個片化工程>
 次に、ウェハ上の発光ダイオードを個片化する。
 切断する領域の半導体層を除去した後に、以上の工程で形成された支持基板1を含む構造体をレーザで例えば、350μm間隔で切断し、発光ダイオード100を作製する。
<Individualization process>
Next, the light emitting diodes on the wafer are separated.
After removing the semiconductor layer in the region to be cut, the structure including the support substrate 1 formed in the above steps is cut with a laser, for example, at intervals of 350 μm to manufacture the light emitting diode 100.
<支持基板側面の金属保護膜形成工程>
 個片化された各発光ダイオード100では、基板1の側面には金属保護膜は形成されていないが、上面及び下面の金属保護膜の形成条件と同様な条件で、切断された基板1の側面に金属保護膜を形成してもよい。
<Metal protective film forming process on side surface of supporting substrate>
In each of the separated light emitting diodes 100, the metal protective film is not formed on the side surface of the substrate 1, but the side surface of the cut substrate 1 is formed under the same conditions as the formation conditions of the upper and lower metal protective films. A metal protective film may be formed on the substrate.
 以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples.
(実施例1)
 実施例1は、図1Bおよび図2に示した実施形態の実施例である。本実施例では、特性評価のために発光ダイオードチップを基板上に実装した発光ダイオードランプを作製した。
また、支持基板1としてGe基板を用い作製した。
(Example 1)
Example 1 is an example of the embodiment shown in FIGS. 1B and 2. In this example, a light-emitting diode lamp in which a light-emitting diode chip was mounted on a substrate was prepared for characteristic evaluation.
Further, a Ge substrate was used as the support substrate 1.
 まず、Ge基板の表面にAu/Ptでなる層を0.5μm/0.1μmの厚さで形成した。Ge基板の裏面に、Pt/Auでなる層を0.1μm/0.5μmの厚さで形成した。 First, a layer made of Au / Pt with a thickness of 0.5 μm / 0.1 μm was formed on the surface of the Ge substrate. On the back surface of the Ge substrate, a layer made of Pt / Au was formed to a thickness of 0.1 μm / 0.5 μm.
 次に、Siをドープしたn型のGaAs単結晶からなるGaAs基板上に、化合物半導体層を順次積層して発光波長730nmのエピタキシャルウェハを作製した。
 GaAs基板は、(100)面から(0-1-1)方向に15°傾けた面を成長面とし、キャリア濃度を2×1018cm-3とした。また、GaAs基板の層厚は、約0.5μmとした。化合物半導体層としては、SiをドープしたGaAsからなるn型の緩衝層、Siドープの(Al0.5Ga0.50.5In0.5Pからなるエッチングストップ層、Siドープしたn型のAl0.1GaAsからなるコンタクト層、Al0.3Ga0.7Asからなる上部電流拡散層、Al0.9Ga0.1As/Al0.3Ga0.7Asからなる上部DBR層、SiドープのAl0.5In0.5Pからなるn型の上部クラッド層、(Al0.1Ga0.90.5In0.5P/(Al0.5Ga0.50.5In0.5Pの20対からなる井戸層/バリア層の発光層、Al0.5In0.5Pからなるp型の下部クラッド層、Al0.9Ga0.1As/Al0.3Ga0.7Asからなる下部DBR層、Al0.3Ga0.7Asからなる下部電流拡散層である。
Next, an epitaxial wafer having an emission wavelength of 730 nm was fabricated by sequentially laminating compound semiconductor layers on a GaAs substrate made of n-type GaAs single crystal doped with Si.
In the GaAs substrate, the plane inclined by 15 ° from the (100) plane in the (0-1-1) direction was used as the growth plane, and the carrier concentration was set to 2 × 10 18 cm −3 . The layer thickness of the GaAs substrate was about 0.5 μm. As the compound semiconductor layer, an n-type buffer layer made of GaAs doped with Si, an etching stop layer made of Si-doped (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P, Si-doped n Type contact layer made of Al0.1GaAs, upper current diffusion layer made of Al0.3Ga0.7As, upper DBR layer made of Al0.9Ga0.1As / Al0.3Ga0.7As, Si-doped Al 0.5 In 0.5 n-type upper cladding layer composed of P, (Al 0.1 Ga 0.9) 0.5 in 0.5 P / (Al 0.5 Ga 0.5) 20 pairs of 0.5 an in 0.5 P emitting layer of the well layer / barrier layer made of, p-type lower cladding layer made of Al 0.5 in 0.5 P, a lower DB consisting of Al0.9Ga0.1As / Al0.3 Ga0.7 Layer, which is the lower current diffusion layer made of Al0.3 Ga0.7.
 本実施例では、減圧有機金属化学気相堆積装置法(MOCVD装置)を用い、直径50mm、厚さ350μmのGaAs基板に化合物半導体層をエピタキシャル成長させて、エピタキシャルウェーハを形成した。エピタキシャル成長層を成長させる際、III族構成元素の原料としては、トリメチルアルミニウム((CHAl)、トリメチルガリウム((CHGa)及びトリメチルインジウム((CHIn)を使用した。また、Mgのドーピング原料としては、ビスシクロペンタジエニルマグネシウム(bis-(CMg)を使用した。また、Siのドーピング原料としては、ジシラン(Si)を使用した。また、V族構成元素の原料としては、ホスフィン(PH)、アルシン(AsH)を使用した。また、各層の成長温度としては、700℃で成長させた。 In this example, a compound semiconductor layer was epitaxially grown on a GaAs substrate having a diameter of 50 mm and a thickness of 350 μm by using a low pressure metal organic chemical vapor deposition apparatus method (MOCVD apparatus) to form an epitaxial wafer. When growing an epitaxial growth layer, trimethylaluminum ((CH 3 ) 3 Al), trimethylgallium ((CH 3 ) 3 Ga) and trimethylindium ((CH 3 ) 3 In) are used as the raw material for the group III constituent element did. Further, biscyclopentadienyl magnesium (bis- (C 5 H 5 ) 2 Mg) was used as a Mg doping material. Further, disilane (Si 2 H 6 ) was used as a Si doping material. Further, phosphine (PH 3 ) and arsine (AsH 3 ) were used as raw materials for the group V constituent elements. The growth temperature of each layer was 700 ° C.
 GaAsからなる緩衝層は、キャリア濃度を約1×1018cm-3、層厚を約0.5μmとした。エッチングストップ層は、キャリア濃度を1×1018cm-3、層厚を約0.5μmとした。コンタクト層は、キャリア濃度を約1×1018cm-3、層厚を約0.05μmとした。上部電流拡散層はキャリア濃度を約1.0×1018cm-3、層厚を約5μmとしたAl0.3Ga0.7Asを積層した。上部DBR層はキャリア濃度を約1×1018cm-3、層厚を約57nmとしたAl0.9Ga0.1Asと、キャリア濃度を約1×1018cm-3、層厚を約52nmとしたAl0.3Ga0.7Asを交互に8対積層した。上部クラッド層は、キャリア濃度を約2×1018cm-3、層厚を約0.5μmとした。井戸層は、アンドープで層厚が約5nmの(Al0.1Ga0.90.5In0.5Pとし、バリア層はアンドープで層厚が約5nmの(Al0.5Ga0.50.5In0.5Pとした。また、井戸層とバリア層とを交互に20対積層した。下部クラッド層は、キャリア濃度を約8×1017cm-3、層厚を約0.5μmとした。また、下部DBR層はキャリア濃度を約1×1018cm-3、層厚を約57nmとしたAl0.9Ga0.1Asと、キャリア濃度を約1×1018cm-3、層厚を約52nmとしたAl0.3Ga0.7Asを交互に40対積層した。又、下部電流拡散層はキャリア濃度を約1×1018cm-3、層厚を約3μmとしたAl0.3Ga0.7Asを積層した。 The buffer layer made of GaAs has a carrier concentration of about 1 × 10 18 cm −3 and a layer thickness of about 0.5 μm. The etching stop layer had a carrier concentration of 1 × 10 18 cm −3 and a layer thickness of about 0.5 μm. The contact layer had a carrier concentration of about 1 × 10 18 cm −3 and a layer thickness of about 0.05 μm. The upper current diffusion layer was laminated with Al0.3Ga0.7As having a carrier concentration of about 1.0 × 10 18 cm −3 and a layer thickness of about 5 μm. Upper DBR layer carrier concentration of about 1 × 10 18 cm -3, and the Al0.9Ga0.1As that were about 57nm thickness, a carrier concentration of about 1 × 10 18 cm -3, a thickness of about 52 nm AlO 8 pairs of 3Ga0.7As were alternately stacked. The upper cladding layer had a carrier concentration of about 2 × 10 18 cm −3 and a layer thickness of about 0.5 μm. The well layer is undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P with a thickness of about 5 nm, and the barrier layer is undoped and has a thickness of about 5 nm (Al 0.5 Ga 0 .5 ) 0.5 In 0.5 P. Further, 20 pairs of well layers and barrier layers were alternately laminated. The lower cladding layer had a carrier concentration of about 8 × 10 17 cm −3 and a layer thickness of about 0.5 μm. The lower DBR layer carrier concentration of about 1 × 10 18 cm -3, and Al0.9Ga0.1As that were about 57nm thickness, a carrier concentration of about 1 × 10 18 cm -3, and about 52nm layer thickness 40 pairs of Al0.3Ga0.7As were alternately laminated. The lower current diffusion layer was laminated with Al0.3Ga0.7As having a carrier concentration of about 1 × 10 18 cm −3 and a layer thickness of about 3 μm.
 次に、下部電流拡散層上にp型電極(p型オーミック電極)を形成した。
 具体的には、下部電流拡散層全面に、例えば、CVD法を用いて厚さ0.3μmの透光膜(SiO膜)を形成した。
Next, a p-type electrode (p-type ohmic electrode) was formed on the lower current diffusion layer.
Specifically, a light-transmitting film (SiO 2 film) having a thickness of 0.3 μm was formed on the entire surface of the lower current diffusion layer by using, for example, a CVD method.
 次に、フォトリソグラフィー技術及びエッチング技術を用いて、透光膜膜に、p型オーミック電極を構成する導電性部材を埋め込むための直径9μmの複数の貫通孔を形成した。
 次いで、蒸着法を用いて、透光膜の複数の貫通孔にAuBe合金を充填することにより、下部電流拡散層上に高さ0.3μm、直径9μmの複数の円柱状のp型オーミック電極を形成した。
Next, using a photolithography technique and an etching technique, a plurality of through holes having a diameter of 9 μm for embedding a conductive member constituting the p-type ohmic electrode were formed in the translucent film.
Next, a plurality of cylindrical p-type ohmic electrodes having a height of 0.3 μm and a diameter of 9 μm are formed on the lower current diffusion layer by filling the plurality of through-holes of the light-transmitting film with AuBe alloy by vapor deposition. Formed.
 次に、下部DBR層上に、蒸着法を用いて、厚さ0.7μmのAu膜からなる金属反射層を形成した。
 次に、金属反射層上に、蒸着法を用いて、厚さ0.5μmのTi膜からなる拡散防止層を形成した。
 次に、拡散防止層上に、蒸着法を用いて、厚さ1.0μmのAuGeからなる接合層を形成した。
Next, a metal reflective layer made of an Au film having a thickness of 0.7 μm was formed on the lower DBR layer by vapor deposition.
Next, a diffusion preventing layer made of a Ti film having a thickness of 0.5 μm was formed on the metal reflective layer by vapor deposition.
Next, a bonding layer made of AuGe having a thickness of 1.0 μm was formed on the diffusion prevention layer by vapor deposition.
 次に、GaAs基板上に化合物半導体層及び金属反射層等を形成した構造体(図7参照)と、Ge基板とを対向して重ね合わせるように配置して減圧装置内に搬入し、400℃で加熱した状態で、500kg重の荷重でそれらを接合して接合構造体を形成した。 Next, a structure (see FIG. 7) in which a compound semiconductor layer, a metal reflection layer, and the like are formed on a GaAs substrate and a Ge substrate are arranged so as to face each other and are carried into a decompression device, and are brought to 400 ° C. In the state heated by, they were joined with a load of 500 kg to form a joined structure.
 次に、接合構造体から、化合物半導体層の成長基板であるGaAs基板と緩衝層とをアンモニア系エッチャントにより選択的に除去し、さらに、エッチングストップ層を塩酸系エッチャントにより選択的に除去した。 Next, the GaAs substrate, which is a growth substrate for the compound semiconductor layer, and the buffer layer were selectively removed from the bonded structure with an ammonia-based etchant, and the etching stop layer was selectively removed with a hydrochloric acid-based etchant.
 次に、コンタクト層のGe基板と反対側の面に、AuGe、Ni合金を厚さが0.5μm、Ptを0.2μm、Auを1.0μmとなるように真空蒸着法を用いて成膜し表面電極(n型電極)を形成した。 Next, on the surface of the contact layer opposite to the Ge substrate, a film is formed by vacuum evaporation so that the thickness of AuGe and Ni alloy is 0.5 μm, Pt is 0.2 μm, and Au is 1.0 μm. A surface electrode (n-type electrode) was formed.
 次に、ウェットエッチングとレーザ切断を順に行って個片化して、実施例の発光ダイオードを作製した。
 次に、上述のように作製した実施例1の発光ダイオードチップをマウント基板上に実装して発光ダイオードランプを組み立てた。
Next, wet etching and laser cutting were sequentially performed to obtain individual pieces, thereby manufacturing the light emitting diode of the example.
Next, a light emitting diode lamp was assembled by mounting the light emitting diode chip of Example 1 manufactured as described above on a mounting substrate.
 次に、得られた発光ダイオード(発光ダイオードランプ)の特性を評価した。
 この発光ダイオード(発光ダイオードランプ)のn型及びp型オーミック電極間に電流を流したところ、ピーク波長730nmとする赤外光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は、約1.9ボルトとなった。
順方向電流を20mAとした際の発光出力は、13mWであった。
Next, the characteristics of the obtained light emitting diode (light emitting diode lamp) were evaluated.
When a current was passed between the n-type and p-type ohmic electrodes of the light-emitting diode (light-emitting diode lamp), infrared light having a peak wavelength of 730 nm was emitted. The forward voltage (V F ) when a current of 20 mA (mA) was passed in the forward direction was about 1.9 volts.
The light emission output when the forward current was 20 mA was 13 mW.
(比較例)
 比較例の発光ダイオードは、上記実施例1の発光ダイオードにおける下部DBR層及び上部DBR層が無いこと以外は実施例と同様である。
 この発光ダイオードのn型及びp型オーミック電極間に電流を流したところ、ピーク波長730nmとする赤外光が出射された。順方向に20ミリアンペア(mA)の電流を通流した際の順方向電圧(V)は、約1.9ボルトであり、発光出力は、10mWであった。
(Comparative example)
The light emitting diode of the comparative example is the same as the example except that the lower DBR layer and the upper DBR layer in the light emitting diode of the first embodiment are not provided.
When a current was passed between the n-type and p-type ohmic electrodes of the light emitting diode, infrared light having a peak wavelength of 730 nm was emitted. The forward voltage (V F ) when a current of 20 mA (mA) was passed in the forward direction was about 1.9 volts, and the light emission output was 10 mW.
 実施例1のランプは、比較例に比べて出力が30%高く、またランプ直上の発光出力に関しては70%高い出力が得られた。これは、実施例1においては金属反射層、下部DBR層での反射および上部DBR層との間での共振により発光部からの光が干渉により効率よく取り出し可能となったためであると考えられる。 The output of the lamp of Example 1 was 30% higher than that of the comparative example, and the light output directly above the lamp was 70% higher. This is presumably because, in Example 1, light from the light emitting part can be efficiently extracted by interference due to reflection between the metal reflection layer and the lower DBR layer and resonance with the upper DBR layer.
 1支持基板 2金属反射層 3a 上部DBR層 3b 下部DBR層 4活性層 5化合物半導体層 6発光部 7下部電流拡散層 8コンタクト層 9上部電流拡散層 10接合層 11拡散防止層 12表面電極(n型電極) 13裏面電極 14透光膜 15p型電極(p型オーミック電極) 21半導体基板(成長用基板) 30エピタキシャル積層体 41下部クラッド層 42下部ガイド層 43発光層 44上部ガイド層 45上部クラッド層 47井戸層 48バリア層(障壁層) 100発光ダイオード 1 support substrate 2 metal reflective layer 3a upper DBR layer 3b lower DBR layer 4 active layer 5 compound semiconductor layer 6 light emitting part 7 lower current diffusion layer 8 contact layer 9 upper current diffusion layer 10 bonding layer 11 diffusion prevention layer 12 surface electrode (n Type electrode) 13 back electrode 14 translucent film 15 p type electrode (p type ohmic electrode) 21 semiconductor substrate (growth substrate) 30 epitaxial laminate 41 lower cladding layer 42 lower guide layer 43 light emitting layer 44 upper guide layer 45 upper cladding layer 47 well layer 48 barrier layer (barrier layer) 100 light emitting diode

Claims (10)

  1.  支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備え、
     前記支持基板と前記発光部とが接合されてなることを特徴とする発光ダイオード。
    On the support substrate, a light emitting unit including a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order,
    A light-emitting diode, wherein the support substrate and the light-emitting portion are joined.
  2.  前記支持基板は、Ge基板、金属基板、Si基板、GaAs基板、GaP基板、のいずれかを含んでなることを特徴とする請求項1に記載の発光ダイオード。 2. The light emitting diode according to claim 1, wherein the support substrate includes any one of a Ge substrate, a metal substrate, a Si substrate, a GaAs substrate, and a GaP substrate.
  3.  前記金属反射層は、金、銅、銀、アルミニウム、Pt、又はこれらの合金のいずれか一層又は二層以上からなることを特徴とする請求項1に記載の発光ダイオード。 2. The light emitting diode according to claim 1, wherein the metal reflective layer is composed of one or more layers of gold, copper, silver, aluminum, Pt, or an alloy thereof.
  4.  前記金属反射層上に形成された拡散防止層及び/又は接合層を介して、前記発光部が前記前記支持基板に接合されていることを特徴とする請求項1に記載の発光ダイオード。 The light-emitting diode according to claim 1, wherein the light-emitting portion is bonded to the support substrate through a diffusion prevention layer and / or a bonding layer formed on the metal reflective layer.
  5.  前記下部DBR層は、屈折率の異なる2種類の層が交互に10~50対積層されてなることを特徴とする請求項1に記載の発光ダイオード。 2. The light emitting diode according to claim 1, wherein the lower DBR layer is formed by alternately stacking 10 to 50 pairs of two kinds of layers having different refractive indexes.
  6.  前記下部DBR層は、屈折率の異なる2種類が交互に積層されてなり、
     前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh
    -xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh-xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されることを特徴とする請求項1に記載の発光ダイオード。
    The lower DBR layer is formed by alternately stacking two types having different refractive indexes,
    The two types of layers having different refractive indexes are composed of two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5), (Al Xl Ga 1 ) having different compositions. -Xl) Y3 in 1-Y3 P ; 0 ≦ Xl <1, Y3 = 0.5) is a pair of the composition difference of both Al [Delta] X = xh
    -Xl is greater than or equal to 0.5, or a combination of GaInP and AlInP, or two types of different Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1), Al a pair of xh Ga 1-xh As (0.1 ≦ xh ≦ 1), wherein the composition difference ΔX = xh−xl is selected from any combination that is greater than or equal to 0.5 The light emitting diode according to claim 1.
  7.  前記上部DBR層は、屈折率の異なる2種類の層が交互に3~10対積層されてなることを特徴とする請求項1に記載の発光ダイオード。 2. The light emitting diode according to claim 1, wherein the upper DBR layer is formed by alternately stacking 3 to 10 pairs of two kinds of layers having different refractive indexes.
  8.  前記上部DBR層は、屈折率の異なる2種類が交互に積層されてなり、
     前記屈折率の異なる2種類の層は、組成の異なる2種類の(AlXhGa1-XhY3In1-Y3P(0<Xh≦1、Y3=0.5)、(AlXlGa1-XlY3In1-Y3P;0≦Xl<1、Y3=0.5)の対であり、両者のAlの組成差ΔX=xh
    -xlが0.5より大きいか又は等しくなる組み合わせか、又は、GaInPとAlInPの組み合わせか、又は、組成の異なる2種類のAlxlGa1-xlAs(0.1≦xl≦1)、AlxhGa1-xhAs(0.1≦xh≦1)の対であり、両者の組成差ΔX=xh-xlが0.5より大きいか等しくなる組み合わせかのいずれかから選択されることを特徴とする請求項1に記載の発光ダイオード。
    The upper DBR layer is formed by alternately stacking two types having different refractive indexes,
    The two types of layers having different refractive indexes are composed of two types of (Al Xh Ga 1-Xh ) Y3 In 1-Y3 P (0 <Xh ≦ 1, Y3 = 0.5), (Al Xl Ga 1 ) having different compositions. -Xl) Y3 in 1-Y3 P ; 0 ≦ Xl <1, Y3 = 0.5) is a pair of the composition difference of both Al [Delta] X = xh
    -Xl is greater than or equal to 0.5, or a combination of GaInP and AlInP, or two types of different Al xl Ga 1-xl As (0.1 ≦ xl ≦ 1), Al a pair of xh Ga 1-xh As (0.1 ≦ xh ≦ 1), wherein the composition difference ΔX = xh−xl is selected from any combination that is greater than or equal to 0.5 The light emitting diode according to claim 1.
  9.  前記活性層に含まれる発光層は、((AlX1Ga1-X1Y1In1-Y1P(0≦X1≦1,0<Y1≦1)、(AlX2Ga1-X2)As(0≦X2≦1)、(InX3Ga1-X3)As(0≦X3≦1))、のいずれかからなることを特徴とする請求項1に記載の発光ダイオード。 The light emitting layer included in the active layer includes ((Al X1 Ga 1-X1 ) Y1 In 1-Y1 P (0 ≦ X1 ≦ 1, 0 <Y1 ≦ 1), (Al X2 Ga 1-X2 ) As (0 The light-emitting diode according to claim 1, wherein the light-emitting diode is any one of ≦ X2 ≦ 1) and (In X3 Ga 1-X3 ) As (0 ≦ X3 ≦ 1)).
  10.  支持基板上に、金属反射層と、下部DBR層、活性層及び上部DBR層を順に含む化合物半導体層とを順に含む発光部を備えた発光ダイオードの製造方法であって、
     成長用基板上に、上部DBR層、活性層及び下部DBR層を順に含む化合物半導体層を形成する工程と、
     前記化合物半導体層上に金属反射層を形成して発光部を形成する工程と、
     前記発光部と支持基板とを接合する工程と、
     前記成長用基板を除去する工程と、を有することを特徴とする発光ダイオードの製造方法。
    A method of manufacturing a light emitting diode comprising a light emitting unit including a metal reflective layer and a compound semiconductor layer including a lower DBR layer, an active layer, and an upper DBR layer in order on a support substrate,
    Forming a compound semiconductor layer including an upper DBR layer, an active layer, and a lower DBR layer in this order on a growth substrate;
    Forming a light emitting portion by forming a metal reflective layer on the compound semiconductor layer;
    Bonding the light emitting unit and the support substrate;
    And a step of removing the growth substrate.
PCT/JP2013/078534 2012-10-23 2013-10-22 Light-emitting diode and production method therefor WO2014065259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233768 2012-10-23
JP2012233768A JP2014086533A (en) 2012-10-23 2012-10-23 Light-emitting diode and process of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014065259A1 true WO2014065259A1 (en) 2014-05-01

Family

ID=50544638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078534 WO2014065259A1 (en) 2012-10-23 2013-10-22 Light-emitting diode and production method therefor

Country Status (3)

Country Link
JP (1) JP2014086533A (en)
TW (1) TW201421738A (en)
WO (1) WO2014065259A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193385A1 (en) * 2015-06-04 2016-12-08 Osram Opto Semiconductors Gmbh Light-emitting semiconductor component, light-emitting semiconductor device, and method for producing a light-emitting semiconductor component
EP3732757A4 (en) * 2017-12-28 2021-10-13 Princeton Optronics, Inc. Narrow beam divergence semiconductor sources
CN113948593A (en) * 2021-09-23 2022-01-18 中山德华芯片技术有限公司 Solar cell back gold structure and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609602B (en) * 2015-12-29 2017-10-31 中国科学院半导体研究所 Visible light communication upside-down mounting RCLED and preparation method thereof
CN108134005B (en) * 2017-12-13 2023-12-22 华灿光电(浙江)有限公司 Light-emitting diode chip and preparation method thereof
JP7262965B2 (en) * 2018-10-17 2023-04-24 スタンレー電気株式会社 semiconductor light emitting device
JP7237536B2 (en) * 2018-11-12 2023-03-13 株式会社ジャパンディスプレイ Display device
CN115602769B (en) * 2022-12-16 2023-03-24 南昌凯捷半导体科技有限公司 Reverse-polarity infrared LED epitaxial wafer with light filtering structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006157024A (en) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh Light emission semiconductor element
JP2007096327A (en) * 2005-09-29 2007-04-12 Osram Opto Semiconductors Gmbh Beam emission semiconductor chip
JP2009038355A (en) * 2007-07-10 2009-02-19 Toyoda Gosei Co Ltd Light emitting device
WO2012035760A1 (en) * 2010-09-14 2012-03-22 パナソニック株式会社 Backlight device, liquid crystal display device using backlight device, and light emitting diode used for backlight device and liquid crystal display device
WO2012124420A1 (en) * 2011-03-14 2012-09-20 昭和電工株式会社 Light-emitting diode and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3689621B2 (en) * 2000-09-04 2005-08-31 シャープ株式会社 Semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006157024A (en) * 2004-11-30 2006-06-15 Osram Opto Semiconductors Gmbh Light emission semiconductor element
JP2007096327A (en) * 2005-09-29 2007-04-12 Osram Opto Semiconductors Gmbh Beam emission semiconductor chip
JP2009038355A (en) * 2007-07-10 2009-02-19 Toyoda Gosei Co Ltd Light emitting device
WO2012035760A1 (en) * 2010-09-14 2012-03-22 パナソニック株式会社 Backlight device, liquid crystal display device using backlight device, and light emitting diode used for backlight device and liquid crystal display device
WO2012124420A1 (en) * 2011-03-14 2012-09-20 昭和電工株式会社 Light-emitting diode and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193385A1 (en) * 2015-06-04 2016-12-08 Osram Opto Semiconductors Gmbh Light-emitting semiconductor component, light-emitting semiconductor device, and method for producing a light-emitting semiconductor component
EP3732757A4 (en) * 2017-12-28 2021-10-13 Princeton Optronics, Inc. Narrow beam divergence semiconductor sources
US11916355B2 (en) 2017-12-28 2024-02-27 Princeton Optronics, Inc. Narrow beam divergence semiconductor sources
CN113948593A (en) * 2021-09-23 2022-01-18 中山德华芯片技术有限公司 Solar cell back gold structure and application thereof

Also Published As

Publication number Publication date
TW201421738A (en) 2014-06-01
JP2014086533A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014065259A1 (en) Light-emitting diode and production method therefor
US9166110B2 (en) Light-emitting diode and method of manufacturing the same
US9318656B2 (en) Light-emitting diode and method of manufacturing the same
TWI478389B (en) Light emitting diode and production method thereof
US9299885B2 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP6077201B2 (en) Light emitting diode and manufacturing method thereof
JP2012069909A (en) Light-emitting element
KR20080087135A (en) Nitride semiconductor light emitting element
KR20110107869A (en) Light-emitting diode, light-emitting diode lamp, and method for producing light-emitting diode
TWI426626B (en) Light-emitting diode, light-emitting-lamp and lighting device
KR20130038376A (en) Light-emitting diode and light-emitting diode lamp
JP6088132B2 (en) Light emitting diode and manufacturing method thereof
JP2009277898A (en) Semiconductor luminous element and manufacturing method of semiconductor luminous element
WO2012020789A1 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
JP2010212401A (en) Optical semiconductor apparatus and method of manufacturing the same
JP6101303B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
TWI446580B (en) Light-emitting diode, light-emitting diode lamp and lighting device
WO2014042198A1 (en) Light-emitting diode and method for producing same
JP2007150075A (en) Nitride semiconductor light emitting element
JP2012129249A (en) Light-emitting diode, light-emitting diode lamp, and method for manufacturing light-emitting diode
JP5876897B2 (en) Light emitting diode, light emitting diode lamp, and lighting device
JP2006013381A (en) Luminous element
JP2014168101A (en) Light emitting diode, light emitting diode lamp, and lighting device
JP2005005558A (en) Semiconductor light emitting element and epitaxial wafer therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849149

Country of ref document: EP

Kind code of ref document: A1