WO2014065116A1 - 質量流量計 - Google Patents

質量流量計 Download PDF

Info

Publication number
WO2014065116A1
WO2014065116A1 PCT/JP2013/077423 JP2013077423W WO2014065116A1 WO 2014065116 A1 WO2014065116 A1 WO 2014065116A1 JP 2013077423 W JP2013077423 W JP 2013077423W WO 2014065116 A1 WO2014065116 A1 WO 2014065116A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
strain gauge
zero point
flow rate
point drift
Prior art date
Application number
PCT/JP2013/077423
Other languages
English (en)
French (fr)
Inventor
亮 小阪
恭平 福田
山根 隆志
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to EP13848317.7A priority Critical patent/EP2913642B1/en
Priority to US14/438,197 priority patent/US9689729B2/en
Priority to JP2014543220A priority patent/JP5999725B2/ja
Publication of WO2014065116A1 publication Critical patent/WO2014065116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/206Measuring pressure, force or momentum of a fluid flow which is forced to change its direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/50Correcting or compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/72Devices for measuring pulsing fluid flows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values

Definitions

  • the present invention relates to a mass flow meter, in particular, in a field where flow measurement is required with a small and lightweight flow meter, for example, a medical flow meter such as an artificial heart or a piping of a plant such as petroleum, petrochemical, and chemical
  • a mass flow meter applicable to flow measurement of flowing fluid and gas, bottle cleaning water, wafer and substrate cleaning liquid, chemicals, and the like.
  • Patent Document 1 a mass flow meter
  • Patent Document 2 a mass flow meter using an elastic bent tube as a small and lightweight flow meter.
  • Patent Document 3 proposes a method of measuring blood pressure from the pulse wave propagation velocity, but does not measure the flow rate, and in order to obtain the pulse wave propagation time, a specific frequency component of the electrocardiogram Is used.
  • flow rate display is necessary for pathological management, but there is no small flow meter that can be implanted.
  • industrial flowmeters such as vortex flowmeters, resistance flowmeters, and float flowmeters, but ultra-lightweight and simple flowmeters are required.
  • mass flowmeters using bent pipes proposed by the present applicants have a simple measurement method and can be miniaturized. There was a possibility that a measurement error would occur due to a zero point drift in the measured flow rate due to changes, external forces, sensor element degradation, and the like.
  • the present invention provides a pressure sensor capable of compensating for a zero point drift of a pressure detecting means for detecting the pressure of a fluid in a pipe, and a flow rate measurement of a mass flow meter using a bent pipe.
  • a mass flow meter that compensates for zero point drift is provided. That is, the pressure sensor of the present invention includes a pressure detection means for detecting the pressure of the fluid in a conduit through which the fluid flows, and a zero point drift correction pressure detection means at a position different from the pressure detection means. And the zero point drift of the pressure of the pressure detecting means is compensated using the pulse wave propagation time between the two points and the pressure change amount of the pressure detecting means.
  • the centrifugal force or the centripetal force detection strain gauge and the centrifugal force or the centripetal force detection strain gauge are applied to the portion where the centrifugal force or centripetal force of the fluid acts in the conduit through which the fluid flows.
  • a strain gauge for correcting the zero point drift of the flow rate is attached to a position different from the above, and the zero point drift of the flow rate is compensated using the pulse wave propagation time between the two points.
  • a portion where a centrifugal force or centripetal force of the fluid acts in the pipe through which the fluid flows is a bent portion in a bent pipe formed by bending the pipe.
  • static pressure or temperature compensation is performed by attaching a static pressure or temperature compensating strain gauge to a location different from the portion where the centrifugal force or centripetal force acts in the mass flow meter.
  • the present invention provides the mass flow meter, wherein, instead of the strain gauge for correcting the zero point drift of the flow rate, the signal of the time when the pulsation of the flow generator is generated, the signal of the opening / closing time of the pressure valve, and the bent pipe The zero point drift of the flow rate is compensated using the pulse wave propagation time between the two points with the strain gauge signal attached to.
  • a tube made of an elastic material is formed between a portion where centrifugal force or centripetal force acts and a portion for correcting a zero flow rate drift.
  • the present invention can be used as a pressure gauge in a pipe line using the pulse wave propagation time in the mass flow meter.
  • the present invention can also be used for measuring the pipe resistance from the pressure measured using the pulse wave propagation time and the flow measured using the bent pipe.
  • the pulse wave propagation time by using the pulse wave propagation time, the zero point drift of the pressure detecting means for detecting the pressure of the fluid in the pipe can be compensated, so that long-term stable pressure measurement can be realized.
  • the pulse wave propagation time is used, and compared with a conventional mass flow meter, it is calculated from a strain gauge at a portion where centrifugal force or centripetal force of fluid acts. Since zero point drift of pressure, static pressure or pressure calculated from temperature compensation strain gauge can be compensated, stable long-term flow measurement can be realized against sudden changes in temperature or external force. Furthermore, since the pulse wave propagation time is not affected by the viscosity of the working fluid, the mass flow rate can be measured.
  • a mass flow meter in which a strain gauge for static pressure or temperature compensation and a strain gauge for zero point drift compensation are added to a mass flow meter using a bent pipe, which is an embodiment of the mass flow meter of the present invention.
  • Example The mass flowmeter which added the signal input for zero point drift compensation from a pressure valve to the mass flowmeter using the bent pipe which is one Example of the mass flowmeter of this invention (2nd Example).
  • the mass flowmeter which added the signal input for zero point drift compensation from a flow-rate generator to the mass flowmeter using the bending pipe which is one Example of the mass flowmeter of this invention (3rd Example).
  • the figure for demonstrating zero point drift (a solid line is an actual pressure waveform, a pressure waveform when a dotted line drifts). The figure which showed the experimental result with zero point drift compensation without the zero point drift compensation when the zero point drift was intentionally generated.
  • PWV Pulse Wave Velocity
  • PTT Pulse Transit Time
  • the minimum pressure value P L is a function of the PTT and the pressure change amount ⁇ P. Moreover, since the PTT and the pressure change amount ⁇ P are not affected by the zero point drift, if the constant ⁇ is obtained in advance by the above equation, the pressure change amount ⁇ P is obtained by a strain gauge attached to the pipe as described above. Therefore, the minimum pressure value P L can be obtained from the above equation from the PTT. Then, it is zero drift compensation pressure by replacing the value P L 'of the pressure minimum values obtained from the strain gauges attached to the conduit to the pressure minimum value P L obtained from the PTT. Then, by obtaining the mass flow rate from the corrected pressure, it is possible to compensate for the zero point drift of the flow rate.
  • FIG. 1 shows a first embodiment which is an embodiment of the present invention.
  • a strain gauge for centrifugal force measurement is placed on the outer circumference of the bent part
  • a strain gauge for compensating static pressure is placed on the straight pipe part
  • a strain gauge for compensating for zero point drift is called a bent pipe.
  • a pressure pulse wave is applied from the inlet
  • the strain gauge for centrifugal force measurement and the strain gauge for zero point drift compensation the strain gauge for static pressure compensation
  • the strain gauge for zero point drift compensation Obtain the pulse wave propagation time.
  • a signal measured by the strain gauge for centrifugal force measurement and the strain gauge for static pressure compensation is amplified by an amplifier, and the amount of pressure change is obtained from a calibration equation obtained in advance.
  • the minimum value of the pulse pressure can be obtained by a previously obtained calibration formula.
  • the zero point drift of the pressure can be compensated by replacing the minimum value of the pulse pressure with the minimum value of the pressure obtained from the strain gauge attached to the pipe line.
  • the mass flow rate can be measured by inputting the pressure difference and the flow rate calibration formula obtained from the two types of strain gauges of the compensated bent pipe into the flow rate output device.
  • FIG. 2 shows a second embodiment which is an embodiment of the present invention.
  • a strain gauge for centrifugal force measurement is attached to the outer periphery of the bent portion, and a strain gauge for static pressure compensation is attached to the straight pipe portion.
  • a check valve is attached downstream of the pipeline, and when a certain pressure is applied, the check valve opens and fluid flows downstream of the pipeline.
  • Centrifugal force measurement from two points when a pressure pulse wave is applied from the inlet of a pipe line, when a constant pressure is applied and the check valve opens and when a constant pressure change occurs in the two strain gauges
  • the pulse wave propagation time between two points of the strain gauge and check valve for static pressure, and the strain gauge and check valve for static pressure compensation are obtained.
  • a signal measured by the strain gauge for centrifugal force measurement and the strain gauge for static pressure compensation is amplified by an amplifier, and the amount of pressure change is obtained from a calibration equation obtained in advance. From the pulse wave propagation time measured for each pressure pulse wave and the amount of change in pressure, the minimum value of the pulse pressure can be obtained by a previously obtained calibration formula.
  • the zero point drift of the pressure can be compensated by replacing the minimum value of the pulse pressure with the minimum value of the pressure obtained from the strain gauge attached to the pipe line.
  • the mass flow rate can be measured by inputting the pressure difference and the flow rate calibration formula obtained from the two types of strain gauges of the compensated bent pipe into the flow rate output device.
  • FIG. 3 shows a third embodiment which is an embodiment of the present invention.
  • a strain gauge for centrifugal force measurement is attached to the outer periphery of the bent portion, and a strain gauge for static pressure compensation is attached to the straight pipe portion.
  • a flow rate generator is attached upstream of the pipeline.
  • the pulse wave propagation time between the two points of the strain gauge for measuring the centrifugal force and the flow rate generator, and the strain gauge for static pressure compensation and the flow rate generator are obtained from the two points of the generated time. Then, a signal measured by the strain gauge for centrifugal force measurement and the strain gauge for static pressure compensation is amplified by an amplifier, and the amount of pressure change is obtained from a calibration equation obtained in advance. From the pulse wave propagation time measured for each pressure pulse wave and the amount of change in pressure, the minimum value of the pulse pressure can be obtained by a previously obtained calibration formula. The zero point drift of the pressure can be compensated by replacing the minimum value of the pulse pressure with the minimum value of the pressure obtained from the strain gauge attached to the pipe line. The mass flow rate can be measured by inputting the pressure difference and the flow rate calibration formula obtained from the two types of strain gauges of the compensated bent pipe into the flow rate output device.
  • FIG. 4 is a diagram illustrating the pressure waveform when the solid line is the actual pressure waveform and the dotted line is drifting.
  • the vertical axis represents pressure and the horizontal axis represents time [s].
  • P L and P L ′ in the graph indicate the minimum pulse pressure before drift and the pulse pressure after drift. The minimum value is shown, and ⁇ P shows the pressure change amount of the pressure pulse wave.
  • a strain gauge is used as a sensor for pressure measurement, a zero point drift occurs in the output of the strain gauge due to external force applied to the pipe line from outside, temperature change, sensor element deterioration, etc., and the pressure waveform drifts from a solid line to a dotted line. End up. Therefore, the pressure minimum pressure P L obtained from the pulse wave propagation velocity and pressure change amount by replacing the lowest pressure P L 'after drift can be compensated for zero drift.
  • FIG. 5 is an example of a result of an actual measurement test using a one-round closed circuit.
  • the solid line shows the measurement result of a commercially available ultrasonic flow meter
  • the light gray solid line shows the measurement result of a mass flow meter without zero point drift compensation
  • the dark gray solid line shows the measurement result with zero point drift compensation ing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Volume Flow (AREA)

Abstract

小型・軽量な流量計でゼロ点ドリフト補償を実現した質量流量計を提供する。 内部を流体が流通する管路内の、流体の遠心力ないし向心力が作用する部分に遠心力ないし向心力検出用歪ゲージと、遠心力ないし向心力検出用歪ゲージとは異なる位置に、流量のゼロ点ドリフト補正用の歪ゲージを貼りつけ、この2点間の脈波伝搬時間を利用して流量のゼロ点ドリフトを補償する質量流量計。

Description

質量流量計
 本発明は、質量流量計に関し、特に、小型・軽量な流量計での流量計測が必要な分野、例えば、人工心臓などの医療用流量計や、石油、石油化学、化学などのプラントの配管を流れる流体やガス、ビンの洗浄水、ウェハや基板の洗浄液、薬剤などの流量計測に応用可能な質量流量計に関するものである。
 本出願人は、既に、小型・軽量な流量計として、硬質の曲がり管を用いた質量流量計(特許文献1)、弾性の曲がり管を用いた質量流量計(特許文献2)を出願しているが、いずれも静圧補償・温度補償に関する記載はあっても、ゼロ点ドリフト補償に関する記載は無い。
 また、特許文献3の質量流量計は、流体遠心力を曲がり管端部で計測しているが、ゼロ点ドリフト補償についての記載は無い。
 一方、特許文献4には、脈波伝搬速度から血圧を計測する方法を提案しているが、流量計測は実施しておらず、また、脈波伝搬時間を求めるために、心電図の特定周波数成分を利用している。
特開2007-218775号公報 特開2009-150671号公報 特開平4-276519号公報 特開2001-95766号公報
 例えば、病院外使用の体内埋め込み人工心臓では、病態管理のため流量表示が必要であるが、埋め込みできる小型の流量計が存在していない。産業用の流量計としては、渦流量計、抵抗流量計、フロート式流量計など様々な方式はあるが、超軽量でシンプルな計測方式の流量計が求められている。従来、本出願人らが提案してきた曲がり管を用いた質量流量計では、計測方法はシンプルで小型化が可能だが、圧力計測用のセンサに歪ゲージを使用しているため、急激な温度の変化や外力、センサ素子の劣化などにより流量の計測値にゼロ点ドリフトが生じ、計測誤差が発生する可能性が残っていた。
 上記問題点を解決するために、本発明は、管路内の流体の圧力を検出する圧力検出手段のゼロ点ドリフトを補償できる圧力センサ、及び、曲がり管を用いた質量流量計の流量計測において、ゼロ点ドリフトを補償した質量流量計を提供する。
 すなわち、本発明の圧力センサは、内部を流体が流通する管路内の、流体の圧力を検出する圧力検出手段と、前記圧力検出手段とは異なる位置に、ゼロ点ドリフト補正用圧力検出手段を設け、この2点間の脈波伝搬時間と前記圧力検出手段の圧力変化量を利用して前記圧力検出手段の圧力のゼロ点ドリフトを補償する。
 また、本発明の質量流量計では、内部を流体が流通する管路内の、流体の遠心力ないし向心力が作用する部分に遠心力ないし向心力検出用歪ゲージと、遠心力ないし向心力検出用歪ゲージとは異なる位置に、流量のゼロ点ドリフト補正用の歪ゲージを貼りつけ、この2点間の脈波伝搬時間を利用して流量のゼロ点ドリフトを補償する。
 また、本発明は、前記質量流量計において、前記内部を流体が流通する管路内の、流体の遠心力ないし向心力が作用する部分は管路を曲げて形成した曲がり管における曲がり部とする。
 また、本発明は、前記質量流量計において、前記遠心力ないし向心力が作用する部分とは異なる場所に、静圧あるいは温度補償用歪ゲージを貼り付けることで、静圧あるいは温度補償を行う。
 また、本発明は、前記質量流量計において、流量のゼロ点ドリフト補正用の歪ゲージの代わりに、流量発生装置の脈動を発生させた時間の信号や圧力弁の開閉時間の信号と、曲がり管に貼りつけた歪ゲージの信号との2点間の脈波伝搬時間を利用して流量のゼロ点ドリフトを補償する。
 また、本発明は、前記質量流量計において、遠心力ないし向心力が作用する部分と流量のゼロ点ドリフト補正用の部分の間を弾性材料の管で形成する。
 また、本発明は、前記質量流量計において、脈波伝搬時間を利用して管路内の圧力計として使用も可能である。
 また、本発明は、前記質量流量計において、脈波伝搬時間を利用して計測した圧力と曲がり管を利用して計測した流量から管路抵抗の測定に用いることもできる。
 本発明では、脈波伝搬時間を利用することで、管路内の流体の圧力を検出する圧力検出手段のゼロ点ドリフトが補償できるため長期安定した圧力計測を実現できる。
 本発明では、曲がり管を用いた質量流量計において、脈波伝搬時間を利用することで、従来の質量流量計と比べて、流体の遠心力ないし向心力が作用する部分の歪ゲージから算出される圧力や、静圧あるいは温度補償用歪ゲージから算出される圧力のゼロ点ドリフトが補償できるため、温度の急な変化や外力などに対しても長期安定した流量計測を実現できる。
 さらに、脈波伝搬時間は作動流体の粘度の影響を受けないため、質量流量の計測が可能である。また、静圧あるいは温度補償用歪ゲージを貼りつけることで、管路抵抗の変化にも対応できる。
 従来の形式では歪ゲージの歪量からゼロ点ドリフトの可能性もある圧力計測を実施可能であったが、本発明によりゼロ点ドリフトの補償された圧力計測が可能となる。併せて流量と圧力から管路抵抗の長期計測もできる。
本発明の質量流量計の一実施例である曲がり管を用いた質量流量計に、静圧あるいは温度補償用の歪ゲージと、ゼロ点ドリフト補償用の歪ゲージを加えた質量流量計(第1実施例)。 本発明の質量流量計の一実施例である曲がり管を用いた質量流量計に、圧力弁からのゼロ点ドリフト補償用の信号入力を加えた質量流量計(第2実施例)。 本発明の質量流量計の一実施例である曲がり管を用いた質量流量計に、流量発生装置からのゼロ点ドリフト補償用の信号入力を加えた質量流量計(第3実施例)。 ゼロ点ドリフトを説明するための図(実線が実際の圧力波形、点線がドリフトした時の圧力波形)。 ゼロ点ドリフトを故意に生じさせた時の、ゼロ点ドリフト補償無しの結果とゼロ点ドリフト補償有りの実験結果を示した図。
 管路を進む圧脈波の速度を、脈波伝播速度(PWV:Pulse Wave Velocity)という。管路の中で異なる2点間における脈波を記録したとき、PWVはその2点間の時間差である脈波伝播時間(PTT:Pulse Transit Time)と2点間の距離(ΔL)から以下の式で定義される。
  PWV=ΔL/PTT
 一方、PWVと管路の弾性の関係は、Moens-Kortewegの式から下記の式で表される。
  PWV={(E×h)/(2r×ρ)}1/2
 ここで、Eはヤング率、hは管路壁の厚さ、rは管路内の半径、ρは作動流体の密度を示す。ヤング率以外の値は、ヤング率に比べて変化量が小さいため一定とみなすと、PWVはほぼヤング率に依存していると仮定する。また、さらにヤング率は、以下の式で表すことができる。
  E=ΔP/(h×ΔD)
 ここで、ΔPは圧力変化量、ΔDは内径変化量を示す。これらの式から定数をαとして整理すると、以下の式が得られる。
  PTT=α(ΔD/ΔP)1/2
 本式からPTTは、圧力変化量及び内径変化量により変わることがわかる。このとき、圧力変化量ΔPは、管路に貼りつけた歪ゲージにより得られる。一方、圧力変化量ΔPにおける管路の内径変化量ΔDは拍動の圧力最低値PLの上昇に伴い変化量が小さくなるため、定数をβとして下記の式を得る。
  ΔD=β×PL
 本式とPTTの式から、定数をγとして整理すると下記の式を得る。
  PL=γ×PTT2×ΔP
 すなわち、圧力最低値PLは、PTTと圧力変化量ΔPの関数であることがわかる。しかも、PTTと圧力変化量ΔPはゼロ点ドリフトに影響されないから、上式で予め定数γを求めておくと、前述の通り、圧力変化量ΔPは、管路に貼りつけた歪ゲージにより得られるため、PTTから圧力最低値PLを上式から得ることができる。そして、管路に貼りつけた歪ゲージより得られた圧力最低値の値PL’をPTTから得られた圧力最低値PLに置き換えることで圧力のゼロ点ドリフト補償ができる。そして、補正された圧力から質量流量を求めることで、流量のゼロ点ドリフト補償が可能となる。
(第1実施例)
 図1は、本発明の一実施例である第1実施例を示したものである。歪みゲージを3種類使用した質量流量計では、遠心力計測用の歪ゲージを曲がり部外周に、静圧補償用の歪ゲージを直管部に、ゼロ点ドリフト補償用の歪ゲージを曲がり管とは異なる位置の直管部に取り付けている。流入口から圧脈波が加わったとき、遠心力計測用の歪ゲージとゼロ点ドリフト補償用の歪ゲージ、静圧補償用の歪ゲージとゼロ点ドリフト補償用の歪ゲージのそれぞれ2点間の脈波伝搬時間を求める。そして、遠心力計測用の歪ゲージと静圧補償用の歪ゲージで計測された信号をアンプで増幅し、予め求めていた校正式から圧力変化量を求める。圧脈波ごとに計測される脈波伝搬時間と圧力変化量から、予め求めていた校正式により脈圧の最低値を得ることができる。この脈圧の最低値と管路に取り付けた歪ゲージより得られた圧力の最低値を置き換えることで、圧力のゼロ点ドリフトを補償することができる。そして、補償された曲がり管の2種類の歪ゲージから得られた圧力差と流量の校正式を組み込んだ流量出力装置に入力することで、質量流量を計測することができる。
(第2実施例)
 図2は、本発明の一実施例である第2実施例を示したものである。歪みゲージを2種類使用した質量流量計では、遠心力計測用の歪ゲージを曲がり部外周に、静圧補償用の歪ゲージを直管部に取り付けている。管路下流には逆止弁が取り付けられており、一定の圧力が加わった時に逆止弁が開き、管路下流に流体が流れる。管路の流入口から圧脈波が加わったとき、一定の圧力が加わり逆止弁が開く時間と、2種類の歪ゲージに一定の圧力変化量が発生する時間の2点より、遠心力計測用の歪ゲージと逆止弁、静圧補償用の歪ゲージと逆止弁のそれぞれ2点間の脈波伝搬時間を求める。
 そして、遠心力計測用の歪ゲージと静圧補償用の歪ゲージで計測された信号をアンプで増幅し、予め求めていた校正式から圧力変化量を求める。圧脈波ごとに計測される脈波伝搬時間と圧力変化量から、予め求めていた校正式により脈圧の最低値を得ることができる。この脈圧の最低値と管路に取り付けた歪ゲージより得られた圧力の最低値を置き換えることで、圧力のゼロ点ドリフトを補償することができる。そして、補償された曲がり管の2種類の歪ゲージから得られた圧力差と流量の校正式を組み込んだ流量出力装置に入力することで、質量流量を計測することができる。
(第3実施例)
 図3は、本発明の一実施例である第3実施例を示したものである。歪みゲージを2種類使用した質量流量計では、遠心力計測用の歪ゲージを曲がり部外周に、静圧補償用の歪ゲージを直管部に取り付けている。管路上流には流量発生装置が取り付けられている。管路の流入口から流量発生装置により圧脈波が加わったとき、流量発生装置へ圧脈波を発生させるための信号が入力された時間と、2種類の歪ゲージに一定の圧力変化量が発生する時間の2点より、遠心力計測用の歪ゲージと流量発生装置、静圧補償用の歪ゲージと流量発生装置のそれぞれ2点間の脈波伝搬時間を求める。そして、遠心力計測用の歪ゲージと静圧補償用の歪ゲージで計測された信号をアンプで増幅し、予め求めていた校正式から圧力変化量を求める。圧脈波ごとに計測される脈波伝搬時間と圧力変化量から、予め求めていた校正式により脈圧の最低値を得ることができる。この脈圧の最低値と管路に取り付けた歪ゲージより得られた圧力の最低値を置き換えることで、圧力のゼロ点ドリフトを補償することができる。そして、補償された曲がり管の2種類の歪ゲージから得られた圧力差と流量の校正式を組み込んだ流量出力装置に入力することで、質量流量を計測することができる。
 図4は、実線が実際の圧力波形、点線がドリフトした時の圧力波形を示す図である。縦軸に圧力(pressure)、横軸に時間(time)[s]を表した図であり、グラフ中のPL、PL’はドリフト前の脈圧の最低値とドリフト後の脈圧の最低値を示しており、ΔPは圧脈波の圧力変化量を示している。圧力の計測に歪ゲージをセンサとして用いる場合、外部から管路に加わる外力や温度変化、センサ素子の劣化などにより、歪ゲージの出力にゼロ点ドリフトが生じ、圧力波形が実線から点線にドリフトしてしまう。そのため、脈波伝搬速度と圧力変化量から得られる圧力最低圧PLをドリフト後の最低圧PL’と置き換えることで、ゼロ点ドリフトを補償することができる。
 図5は、一巡閉鎖回路を用いて実測試験を行った結果の一例である。実線が市販の超音波式流量計の計測結果、薄い灰色の実線がゼロ点ドリフト補償を付与していない質量流量計の計測結果、濃い灰色の実線がゼロ点ドリフト補償を付与した計測結果を示している。30[s]において、質量流量計の歪ゲージにゼロ点ドリフトを生じさせた結果、ゼロ点補償を加えていない質量流量計は、市販流量計に比べて大きな計測誤差が生じた。一方、ゼロ点補償を加えた質量流量計は、ゼロ点補償を加えていない質量流量計に比べて、市販流量計に対する計測誤差が小さくなった。
 小型・軽量な流量計での流量計測が必要な分野、例えば、人工心臓などの医療用流量計や、石油、石油化学、化学などのプラントの配管を流れる流体やガス、ビンの洗浄水、ウェハや基板の洗浄液、薬剤などの流量計測が必要な分野に利用でき、ゼロ点ドリフト補償が実現可能となる。
 

Claims (8)

  1.  内部を流体が流通する管路内の、流体の圧力を検出する圧力検出手段と、前記圧力検出手段とは異なる位置に、ゼロ点ドリフト補正用圧力検出手段を設け、この2点間の脈波伝搬時間と前記圧力検出手段の圧力変化量を利用して前記圧力検出手段の圧力のゼロ点ドリフトを補償する圧力センサ。
  2.  内部を流体が流通する管路内の、流体の遠心力ないし向心力が作用する部分に遠心力ないし向心力検出用歪ゲージと、遠心力ないし向心力検出用歪ゲージとは異なる位置に、流量のゼロ点ドリフト補正用の歪ゲージを貼りつけ、この2点間の脈波伝搬時間を利用して流量のゼロ点ドリフトを補償する質量流量計。
  3.  前記内部を流体が流通する管路内の、流体の遠心力ないし向心力が作用する部分は管路を曲げて形成した曲がり管における曲がり部であることを特徴とする請求項2記載の質量流量計。
  4.  前記遠心力ないし向心力が作用する部分とは異なる場所に、静圧あるいは温度補償用歪ゲージを貼り付けることで、静圧あるいは温度補償を行うことを特徴とする請求項2または3記載の質量流量計。
  5.  請求項2ないし4の何れか1項記載の質量流量計において、流量のゼロ点ドリフト補正用の歪ゲージの代わりに、流量発生装置の脈動を発生させた時間の信号や圧力弁の開閉時間の信号と、曲がり管に貼りつけた歪ゲージの信号との2点間の脈波伝搬時間を利用して流量のゼロ点ドリフトを補償することを特徴とする質量流量計。
  6.  請求項2ないし5の何れか1項記載の質量流量計において、遠心力ないし向心力が作用する部分と流量のゼロ点ドリフト補正用の部分の間を弾性材料の管で形成したことを特徴とする質量流量計。
  7.  請求項2ないし6の何れか1項記載の質量流量計において、脈波伝搬時間を利用してゼロ点ドリフト補償した後の信号を圧力信号として出力すること特徴とする質量流量計。
  8.  請求項7記載の質量流量計において、前記圧力信号と曲がり管を利用して計測した流量とから管路抵抗の測定を行うことを特徴とする質量流量計。
     
PCT/JP2013/077423 2012-10-24 2013-10-09 質量流量計 WO2014065116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13848317.7A EP2913642B1 (en) 2012-10-24 2013-10-09 Mass flowmeter
US14/438,197 US9689729B2 (en) 2012-10-24 2013-10-09 Zero point drift compensating flowmeter
JP2014543220A JP5999725B2 (ja) 2012-10-24 2013-10-09 質量流量計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012234891 2012-10-24
JP2012-234891 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014065116A1 true WO2014065116A1 (ja) 2014-05-01

Family

ID=50544496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077423 WO2014065116A1 (ja) 2012-10-24 2013-10-09 質量流量計

Country Status (4)

Country Link
US (1) US9689729B2 (ja)
EP (1) EP2913642B1 (ja)
JP (1) JP5999725B2 (ja)
WO (1) WO2014065116A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538803A (en) 2015-05-29 2016-11-30 Airbus Operations Ltd A metering apparatus for and method of determining a characteristic of a fluid flowing through a pipe
KR102435697B1 (ko) * 2017-12-05 2022-08-24 삼성전자 주식회사 가스 센서가 장착된 구조물을 갖는 전자 장치
CN110174195A (zh) * 2019-04-12 2019-08-27 浙江工业大学 一种仿生柔性压力传感器
CN110398306B (zh) * 2019-07-08 2024-05-07 华电电力科学研究院有限公司 一种火力发电厂管道应力解耦分析系统与分析方法
IT202100005384A1 (it) * 2021-03-09 2022-09-09 Caterina Mazzocchi Sistema di misura di un flusso pulsante con l’impiego di trasduttori di forza
DE102022126228A1 (de) 2022-10-10 2024-04-11 Diehl Metering Gmbh Fluidzähler, insbesondere Wasserzähler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264821A (ja) * 1990-03-15 1991-11-26 Tokyo Gas Co Ltd 複合センサ出力信号処理方法
JPH04276519A (ja) 1991-03-04 1992-10-01 Mitsubishi Heavy Ind Ltd 流体の質量流量測定装置
JPH11290285A (ja) * 1998-04-09 1999-10-26 Matsushita Electric Ind Co Ltd 血流速度測定装置
JP2001095766A (ja) 1999-09-30 2001-04-10 Japan Science & Technology Corp 血圧測定方法
JP2007218775A (ja) 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology 質量流量計
JP2009150671A (ja) 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology 質量流量計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3090377A (en) * 1961-10-30 1963-05-21 Peter F Salisbury Blood pressure measurement
FR2215607B1 (ja) * 1973-01-30 1976-04-09 Bertin & Cie
DE4331451C1 (de) 1993-09-16 1994-11-17 Hewlett Packard Gmbh Blutdruckmeßvorrichtung und Verfahren zum Steuern des Manschettendruckes bei einer Blutdruckmeßvorrichtung
US5905208A (en) * 1995-02-03 1999-05-18 Lockheed Martin Idhao Technologies Company System and method measuring fluid flow in a conduit
US6048363A (en) * 1997-05-13 2000-04-11 Nagyszalanczy; Lorant Centrifugal blood pump apparatus
JP4082901B2 (ja) * 2001-12-28 2008-04-30 忠弘 大見 圧力センサ、圧力制御装置及び圧力式流量制御装置の温度ドリフト補正装置
US20040088123A1 (en) * 2002-11-01 2004-05-06 Zhong Ji Method for real-time monitoring of cardiac output and blood flow in arteries and apparatus for implementing the same
CN1698536A (zh) 2004-05-20 2005-11-23 香港中文大学 采用自动补偿的无袖带式连续血压测量方法
US7730792B2 (en) * 2006-12-18 2010-06-08 Abb Patent Gmbh Method and device for compensation for influences, which interfere with the measurement accuracy, in measurement devices of the vibration type
TWI425934B (zh) * 2008-12-23 2014-02-11 Ind Tech Res Inst 生理信號量測模組及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264821A (ja) * 1990-03-15 1991-11-26 Tokyo Gas Co Ltd 複合センサ出力信号処理方法
JPH04276519A (ja) 1991-03-04 1992-10-01 Mitsubishi Heavy Ind Ltd 流体の質量流量測定装置
JPH11290285A (ja) * 1998-04-09 1999-10-26 Matsushita Electric Ind Co Ltd 血流速度測定装置
JP2001095766A (ja) 1999-09-30 2001-04-10 Japan Science & Technology Corp 血圧測定方法
JP2007218775A (ja) 2006-02-17 2007-08-30 National Institute Of Advanced Industrial & Technology 質量流量計
JP2009150671A (ja) 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology 質量流量計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913642A4

Also Published As

Publication number Publication date
EP2913642A4 (en) 2016-07-13
US9689729B2 (en) 2017-06-27
EP2913642A1 (en) 2015-09-02
EP2913642B1 (en) 2021-03-17
JP5999725B2 (ja) 2016-09-28
JPWO2014065116A1 (ja) 2016-09-08
US20150253170A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5999725B2 (ja) 質量流量計
RU2606931C1 (ru) Первичный элемент с датчиками для расходомера
JP5147844B2 (ja) 密度測定を備えるプロセス装置
US7730792B2 (en) Method and device for compensation for influences, which interfere with the measurement accuracy, in measurement devices of the vibration type
US6651512B1 (en) Ancillary process outputs of a vortex flowmeter
JP2004361392A (ja) コリオリ流量計
CN107709951B (zh) 用于测量流过管路的流体的压强的装置
Beaulieu et al. A flowmeter for unsteady liquid flow measurements
RU2758191C1 (ru) Способ компенсации значения массового расхода с использованием известной плотности
JP4936392B2 (ja) 質量流量計
JP2007051913A (ja) 超音波流量計の補正方法
JP6202327B2 (ja) 質量流量計及び静圧計測方法
US10539442B2 (en) Fluid momentum detection method and related apparatus
US9976890B2 (en) Vibrating flowmeter and related methods
JP2013142539A (ja) 質量流量計
JP6418936B2 (ja) 流量計
Chun et al. Assessment of combined V/Z clamp-on ultrasonic flow metering
JP2014066549A (ja) 温度計測器、流量計及び温度計測方法
JP2012159484A (ja) 質量流量計
JP2010066184A (ja) 質量流量計
JP6587129B2 (ja) 流量計
RU2632999C2 (ru) Устройство для измерения параметров жидких сред в трубопроводе
CN214173502U (zh) 一种实时动态补偿温度变化的气体流量计检定装置
KR101204705B1 (ko) 초음파 유량계의 편차보정 방법
RU2430345C1 (ru) Датчик для определения перепада давления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543220

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14438197

Country of ref document: US

Ref document number: 2013848317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE