WO2014065102A1 - Permanent magnet synchronous machine, drive system using same, and compressor - Google Patents

Permanent magnet synchronous machine, drive system using same, and compressor Download PDF

Info

Publication number
WO2014065102A1
WO2014065102A1 PCT/JP2013/077193 JP2013077193W WO2014065102A1 WO 2014065102 A1 WO2014065102 A1 WO 2014065102A1 JP 2013077193 W JP2013077193 W JP 2013077193W WO 2014065102 A1 WO2014065102 A1 WO 2014065102A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
stator
phase
synchronous machine
Prior art date
Application number
PCT/JP2013/077193
Other languages
French (fr)
Japanese (ja)
Inventor
暁史 ▲高▼橋
恵理 丸山
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Publication of WO2014065102A1 publication Critical patent/WO2014065102A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet synchronous machine, a drive system using the same, and a compressor.
  • an interior permanent magnet (hereinafter referred to as IPM) structure in which a permanent magnet is embedded in a rotor is widely adopted.
  • IPM structure since the ratio of the direct-axis inductance Ld and the horizontal-axis inductance Lq, the so-called salient pole ratio, is increased, it has been said that reluctance torque can be used in addition to magnet torque.
  • Patent Document 1 discloses a technique capable of improving the torque by further optimally controlling the energization phase in a configuration in which the salient pole ratio is increased.
  • a permanent magnet embedded in a permanent magnet synchronous machine having an IPM structure it is desired to employ a magnet that does not contain neodymium as a main component and that can be stably procured, such as a ferrite magnet. Since the residual magnetic flux density of a ferrite magnet is about 1/3 that of a neodymium magnet, it can be said that utilization of reluctance torque is indispensable to cover the decrease in magnet torque.
  • An object of the present invention is to enable effective use of reluctance torque in a permanent magnet synchronous machine using a permanent magnet having a residual magnetic flux density of 0.6 T or less and a drive system using the same, thereby improving torque and efficiency. It is to be.
  • a rotor having a permanent magnet with a residual magnetic flux density of 0.6 T or less arranged so as to form a plurality of poles therein, and a stator arranged with a predetermined gap with respect to the rotor
  • WB flux linkage
  • Irms Arms
  • the inner rotor is targeted, but the effect of the present invention is not limited to the inner rotor, and can be applied to an outer rotor having a similar configuration. is there.
  • the winding method of the stator may be concentrated winding or distributed winding.
  • the number of rotor poles and the number of phases of the stator coils are not limited to the configuration of the embodiment.
  • an inverter-driven permanent magnet motor is targeted. However, the effect of the present invention can be applied to a self-starting permanent magnet motor.
  • FIG. 1 shows a first embodiment of the present invention.
  • the present invention relates to a direct-axis inductance Ld (H) and a horizontal-axis inductance Lq when a magnetic flux linkage ⁇ p (Wb) for one phase of a stator coil by a permanent magnet and a current effective value Irms (Arms) are supplied to the coil.
  • H a permanent magnet synchronous machine to which a permanent magnet having a residual magnetic flux density of 0.6 T or less is applied and a drive system using the same are configured.
  • FIG. 9 is a perspective view of a 4-pole 6-slot three-phase motor.
  • the stator 9 is composed of a stator core 10 and a stator winding 12 wound around a tooth 11, and the rotor 1 is attached to the stator 9.
  • the stator winding 12 is configured by sequentially arranging three-phase windings U, V, and W in the circumferential direction.
  • U-phase windings 12u1 and 12u2 connected in series as shown in FIG.
  • An AC current iu having a peak value I (the effective value at this time is Irms) is supplied from the inverter.
  • Irms the effective value at this time
  • the magnitudes of I and Irms can be obtained by using a device such as a wattmeter, and can also be obtained by acquiring a current waveform with an oscilloscope or the like and performing Fourier analysis.
  • the shaft 6 mechanically coupled to the rotor 1 is connected to a load, and by appropriately selecting the magnitude and phase of the current I, a rotational torque Me that balances the load is generated.
  • the interlinkage magnetic flux ⁇ p for one phase of the stator coil drives the rotor externally with the terminals Tu, Tv, Tw of U, V, W shown in FIG. 10 open, and the phase voltage peak value E0 at that time, or It can be determined by measuring the line voltage peak value E0 * ⁇ 3.
  • the angular frequency ⁇ when externally driven at the rotation speed N is obtained from the equation (2) and is obtained by substituting it into the equation (3).
  • 2 ⁇ * N / 60 * p (p: number of pole pairs) (2)
  • ⁇ p E0 / ⁇ (3)
  • the torque Me of the magnet motor is generally generated by attraction / repulsion between the rotating magnetic field generated by the energizing currents of the stator windings U, V, and W and the rotor magnetic poles.
  • the rotor magnetic pole often refers to a magnetic field formed by a magnet, but when considering reluctance torque, the magnetic field formed by magnetizing the rotor core due to the influence of the rotating magnetic field is also the magnetic pole. It is easy to understand when considered as a kind of.
  • the method of converting into a dq axis coordinate system (rotating coordinate system) and handling as a direct current amount is common.
  • the magnetic pole central axis of the rotor is the d-axis
  • the axis advanced 90 ° counterclockwise with respect to the d-axis, that is, the central axis between permanent magnets having different polarities is the q-axis.
  • FIG. 11 shows the principle of torque generation of a magnet motor.
  • the counterclockwise direction is the positive direction.
  • FIG. 11A shows the magnet torque
  • FIGS. 11B and 11C show the reluctance torque generated when the d-axis current is negative.
  • the magnet torque is torque generated by attraction and repulsion between the magnetic flux generated on the d-axis and the magnetic field formed by the q-axis current.
  • a radial repulsive force is generated between the magnet magnetic flux and the d-axis current magnetic field, but no rotational force is generated.
  • FIG. 11 shows the principle of torque generation of a magnet motor.
  • the counterclockwise direction is the positive direction.
  • FIG. 11A shows the magnet torque
  • FIGS. 11B and 11C show the reluctance torque generated when the d-axis current is negative.
  • the magnet torque is torque generated by attraction and repulsion between the magnetic flux generated on the d-axis and the magnetic field formed by the q-axis current.
  • Magnet torque is proportional to the amount of magnetic flux generated by the magnet if the q-axis current is constant. That is, in order to increase the magnet torque, it is necessary to increase the amount of magnets or use a strong magnet, resulting in an increase in cost.
  • the reluctance torque is proportional to the difference between the q-axis and q-axis inductances, the torque can be increased to a certain amount by configuring the rotor magnetic circuit so that the difference between the two is large. It has been considered possible.
  • FIG. 12 shows a vector diagram of the dq axis coordinate system. That is, using the phase of the interlinkage magnetic flux ⁇ p for one phase of the stator coil by the permanent magnet as a reference, this is regarded as the d-axis, and the induced electromotive force E0 that is a time derivative of ⁇ p is generated on the q-axis whose phase is advanced by 90 ° To do.
  • V applied to the motor and the current I applied to the motor have a phase difference of ⁇ and ⁇ with respect to E0
  • V and I are d-axis as shown in equations (4) and (5). It can be decomposed into components and q-axis components.
  • the resistance R in FIG. 12 can be measured by using a resistance measuring instrument such as a Wheatstone bridge. Further, the voltage phase difference angle ⁇ and the current phase difference angle ⁇ can be obtained by acquiring the waveforms of E0, V, and I and determining the phase relationship of each fundamental wave component. FIG. 12 shows the case where the phase voltage and phase current waveforms are used. For example, even when the line voltage is obtained instead of the phase voltage, the phase difference between the phase voltage and the line voltage should be considered. Thus, ⁇ and ⁇ can be obtained in the same manner.
  • Ld and Lq can be obtained from the voltage equation of Equation (6).
  • the generated torque Me is expressed by the following equation using the number of pole pairs p, the interlinkage magnetic flux ⁇ p for one phase of the stator coil by a permanent magnet, the direct current Id, and the horizontal current Iq.
  • Id, Iq, and ⁇ p are peak values.
  • the first term in ⁇ represents the magnet torque
  • the second term represents the reluctance torque.
  • the reluctance torque is proportional to Lq ⁇ Ld, Id, and Iq, respectively. Therefore, conventionally, the salient pole ratio Lq / Ld or Lq-Ld has been used as an index of the magnitude of the reluctance torque.
  • Equation (11) it can be seen that ⁇ p and Irms are newly introduced as an index representing the magnitude of the reluctance torque in addition to the conventional Ld and Lq.
  • ⁇ p is determined by the physical properties and shape of the permanent magnet, the stator winding specifications, and the motor cross-sectional shape, and can be obtained from a general induced electromotive force measurement test.
  • Ld and Lq are also determined by the motor configuration and energization current Irms, and can be obtained by a general motor inductance measurement method. Therefore, ⁇ p, Ld, and Lq are constants determined for each motor, and Equation (11) can be treated as a linear function of ⁇ and Irms.
  • the current phase difference angle ⁇ can be arbitrarily set by the configuration of the control software.
  • the control that generates the maximum torque is performed.
  • the operating point is 22.5 deg. ⁇ ⁇ ⁇ 45.0 deg. Exists in the range. Therefore, the torque and the efficiency can be improved more reliably by controlling the phase so as to be the above-mentioned phase.
  • FIG. 3 is a partial cross-sectional view of one pole of the permanent magnet synchronous machine according to this embodiment.
  • the rotor 1 shown in FIG. 3 has a magnet receiving hole 4 configured to protrude radially inward, and a permanent magnet 3 (not shown) is disposed in the receiving hole 4, so that the permanent
  • the magnet 3 has two bending points in the circumferential direction per pole, and is configured to extend in the direction perpendicular to the magnetization direction and toward the end of the pole, with each bending point as a starting end.
  • a permanent magnet having a low residual magnetic flux density such as a ferrite magnet is used.
  • the permanent magnet 3 may be configured to have a plurality of bending points and straight portions at three or more locations.
  • the surface area of the magnet magnetic flux generating surface can be increased, so that it is possible to generate a larger magnet torque than that using a U-shaped magnet as shown in FIG.
  • the cross-sectional area of the iron core in the radially outer peripheral portion of the permanent magnet 3 is increased, the salient pole ratio is increased and a reluctance torque larger than that in FIG. 8 can be generated.
  • the permanent magnet 3 may be integrally formed without being divided in the circumferential direction per pole, or a plurality of permanent magnets 3 may be arranged in the circumferential direction. Further, a plurality of parts may be divided in the axial direction, or may be formed integrally without being divided.
  • the rotor core 2 may be composed of laminated steel plates stacked in the axial direction, may be composed of a dust core, or may be composed of amorphous metal.
  • a permanent magnet synchronous machine driven continuously or intermittently at an ambient temperature of 80 ° C. or higher and a drive system using the same can improve torque and improve efficiency more effectively. Can do.
  • the reason for this will be described below.
  • the residual magnetic flux density (Br) of a ferrite magnet at room temperature (20 ° C.) is known to be 1/3 that of a neodymium magnet, but the temperature coefficient of Br of a ferrite magnet is more than twice that of a neodymium magnet. As the temperature increases, the decrease in Br becomes more significant.
  • the temperature coefficient of neodymium magnets is about -0.11% / K, while that of ferrite magnets is about -0.26% / K. Therefore, as shown in FIG. 3, the Br ratio with respect to the neodymium magnet decreases as the ambient temperature increases. In particular, when the ambient temperature is 80 ° C. or higher, the tendency of Br to decrease becomes significant. Therefore, although the magnet torque is significantly reduced, the reluctance torque can be effectively utilized by applying the present invention, so that the torque and efficiency can be improved.
  • FIG. 5 shows a third embodiment of the present invention.
  • the configuration of FIG. 5 is different from FIG. 1 in that the relationship between ⁇ p, Irms, Ld, and Lq is Since other configurations are the same as those in FIG. 1, the description thereof is omitted.
  • Replacement is not a replacement for a power source, but means that torque characteristics and efficiency characteristics can be maintained at the same level as before.
  • replacement is not a replacement for a power source, but means that torque characteristics and efficiency characteristics can be maintained at the same level as before.
  • the reason why performance degradation is not allowed is to prevent global warming in addition to intense competition among industry companies. For example, the existence of CO2 reduction target values for the future, a review of the global energy supply system triggered by the nuclear accident in Japan, and an increase in energy consumption control needs).
  • Equation (14) As described above, by configuring a permanent magnet synchronous machine using a ferrite magnet and a drive system using the same so as to satisfy Equation (14), the reluctance torque can be effectively used regardless of the application, output, and motor size. Thus, torque and efficiency can be improved, and at the same time, a permanent magnet synchronous machine using a neodymium magnet can be replaced.
  • FIG. 6 shows a fourth embodiment of the present invention. 6 differs from FIG. 1 in that the relationship between ⁇ p, Irms, Ld, and Lq is And a permanent magnet synchronous machine to which a magnet mainly composed of SmFeN (hereinafter referred to as SmFeN magnet) is applied and a drive system using the same are configured.
  • SmFeN magnet a permanent magnet synchronous machine to which a magnet mainly composed of SmFeN (hereinafter referred to as SmFeN magnet) is applied and a drive system using the same are configured.
  • Other configurations are the same as those in FIG.
  • the SmFeN magnet has a residual magnetic flux density as small as 1/2 that of a neodymium magnet, but is larger than a ferrite magnet, and thus is useful as an alternative to a neodymium magnet.
  • a neodymium synchronous machine having a reluctance torque ratio ⁇ of 0.293 is replaced with an SmFeN magnet, the magnet torque is reduced to 1 ⁇ 2, and the decrease is covered by the reluctance torque.
  • the reluctance torque ratio ⁇ is set to It is necessary to do more.
  • the permanent magnet synchronous machine using the SmFeN magnet and the drive system using the same are configured so as to satisfy the expression (11), so that the reluctance torque can be effectively used regardless of the application, output, and motor size.
  • torque and efficiency can be improved, and at the same time, a permanent magnet synchronous machine using a neodymium magnet can be replaced.
  • FIG. 7 is a sectional structural view of the compressor according to the present embodiment.
  • the compression mechanism unit meshes a spiral wrap 15 standing upright on the end plate 14 of the fixed scroll member 13 and a spiral wrap 18 standing upright on the end plate 17 of the turning scroll member 16. Is formed.
  • the revolving scroll member 16 is revolved by the crankshaft 6 to perform a compression operation.
  • the compression chambers 19 (19A, 19B,%) Formed by the fixed scroll member 13 and the swivel scroll member 16, the compression chamber 19 located on the outermost diameter side is accompanied by a swirl motion.
  • the scroll members 13 and 16 move toward the center, and the volume gradually decreases.
  • the compressed gas in the compression chambers 19 is discharged from the discharge port 20 communicating with the compression chamber 19.
  • the discharged compressed gas passes through a gas passage (not shown) provided in the fixed scroll member 13 and the frame 21 and reaches the pressure vessel 22 below the frame 21, and the side wall of the pressure vessel 22. Is discharged from the discharge pipe 23 provided outside the compressor.
  • a permanent magnet motor 103 composed of the stator 9 and the rotor 1 is enclosed in the pressure vessel 22, and the compression operation is performed by the rotation of the rotor 1.
  • An oil sump 25 is provided below the permanent magnet motor 103.
  • the oil in the oil sump 25 passes through an oil hole 26 provided in the crankshaft 6 due to a pressure difference caused by a rotational motion, and a sliding portion between the turning scroll member 16 and the crankshaft 6 and a sliding bearing 27. It is used for lubrication.
  • a terminal box 30 for pulling out the stator coil 12 to the outside of the pressure vessel 22 is provided on the side wall of the pressure vessel 22. For example, in the case of a three-phase permanent magnet motor, terminals of U, V and W windings are provided. There are a total of three.
  • R410A refrigerant is sealed in the compressor 22 and the ambient temperature of the permanent magnet motor 103 is often 80 ° C. or higher.
  • the compressor configuration may be a scroll compressor shown in FIG. 7, a rotary compressor, or a configuration having other compression mechanisms. According to the present invention, as described above, a small and high output motor can be realized.

Abstract

The objective of the present invention is, in a permanent magnet synchronous machine using a permanent magnet with a residual magnetic flux density of 0.6 T or less, and a drive system using the permanent magnet synchronous machine, to allow reluctance torque to be effectively used, thus improving torque and efficiency. To this end, in a permanent magnet synchronous machine comprising a rotor having a permanent magnet with a residual magnetic flux density of 0.6 T or less arranged to constitute a plurality of poles in the rotor and a stator arranged with a prescribed gap with respect to the rotor, interlinkage flux Ψp (WB) for one phase of a stator coil generated by the permanent magnet and direct-axis inductance Ld (H) and quadrature-axis inductance Lq (H) when energizing the coil with a current effective value Irms (Arms), satisfy the following relationship:

Description

永久磁石同期機及びこれを用いた駆動システム、圧縮機Permanent magnet synchronous machine, drive system using the same, and compressor
 本発明は永久磁石同期機、及びこれを用いた駆動システム、圧縮機に関するものである。 The present invention relates to a permanent magnet synchronous machine, a drive system using the same, and a compressor.
 永久磁石同期機では、回転子に永久磁石を埋設するInterior Permanent Magnet(以下、IPM)構造が広く採用されている。IPM構造では、直軸インダクタンスLdと横軸インダクタンスLqの比、いわゆる突極比が大きくなるので、磁石トルクに加えリラクタンストルクの活用が可能であるとされてきた。 特許文献1では、突極比が大きくなる構成において、さらに通電位相を最適に制御することでトルク向上が図れる技術を公開している。 In the permanent magnet synchronous machine, an interior permanent magnet (hereinafter referred to as IPM) structure in which a permanent magnet is embedded in a rotor is widely adopted. In the IPM structure, since the ratio of the direct-axis inductance Ld and the horizontal-axis inductance Lq, the so-called salient pole ratio, is increased, it has been said that reluctance torque can be used in addition to magnet torque. Patent Document 1 discloses a technique capable of improving the torque by further optimally controlling the energization phase in a configuration in which the salient pole ratio is increased.
特開2001-119875JP2001-11875
 IPM構造の永久磁石同期機に埋設する永久磁石には、ネオジムを主成分としない安価でかつ安定調達が可能な磁石、例えばフェライト磁石の採用が望まれている。フェライト磁石の残留磁束密度はネオジウム磁石の約1/3であるため、磁石トルクの低下分をカバ-するためにはリラクタンストルクの活用が不可欠と言える。 As a permanent magnet embedded in a permanent magnet synchronous machine having an IPM structure, it is desired to employ a magnet that does not contain neodymium as a main component and that can be stably procured, such as a ferrite magnet. Since the residual magnetic flux density of a ferrite magnet is about 1/3 that of a neodymium magnet, it can be said that utilization of reluctance torque is indispensable to cover the decrease in magnet torque.
 しかしながら、用途や出力、およびモ-タ体格によっては、仮にIPM構造としても、すなわち突極比を大きくしてもリラクタンストルクを活用できないものがある。これは、リラクタンストルクの大きさが突極比の大小のみに依存するのではなく、磁石トルクとの相対関係にも依存するためであるが、従来の設計理論ではこのような観点が見逃されていた。このため、リラクタンストルクが活用できず出力向上や効率向上が図れない一方で、突極比が大きいゆえにインダクタンスが大きいため、鉄損増加を招いたり、高速化が困難となったりする場合があった。 However, depending on the application, output, and motor physique, there is an IPM structure, that is, a reluctance torque that cannot be utilized even if the salient pole ratio is increased. This is because the magnitude of the reluctance torque depends not only on the magnitude of the salient pole ratio, but also on the relative relationship with the magnet torque, but this viewpoint has been overlooked in the conventional design theory. It was. For this reason, reluctance torque cannot be used and output and efficiency cannot be improved. On the other hand, because the salient pole ratio is large, the inductance is large, leading to an increase in iron loss and making speeding up difficult. .
 本発明の目的は、残留磁束密度が0.6T以下の永久磁石を適用した永久磁石同期機およびこれを用いた駆動システムにおいて、リラクタンストルクの有効活用を可能とし、トルク向上、効率向上を可能にすることである。 An object of the present invention is to enable effective use of reluctance torque in a permanent magnet synchronous machine using a permanent magnet having a residual magnetic flux density of 0.6 T or less and a drive system using the same, thereby improving torque and efficiency. It is to be.
 内部に複数極を構成するよう配備された残留磁束密度が0.6T以下の永久磁石を有する回転子と、該回転子に対して所定のギャップを介して配置される固定子と、を備えた永久磁石同期機において、
 前記永久磁石による固定子コイル一相分の鎖交磁束Ψp(WB)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
Figure JPOXMLDOC01-appb-I000005
の関係を満足することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
A rotor having a permanent magnet with a residual magnetic flux density of 0.6 T or less arranged so as to form a plurality of poles therein, and a stator arranged with a predetermined gap with respect to the rotor In permanent magnet synchronous machine,
A linear flux inductance Ld (H) and a horizontal axis inductance Lq (H) when the coil is supplied with a flux linkage Ψp (WB) for one phase of the stator coil by the permanent magnet and a current effective value Irms (Arms). And
Figure JPOXMLDOC01-appb-I000005
And a drive system using the same.
 本発明によればトルクおよび効率が向上する。 According to the present invention, torque and efficiency are improved.
本発明の第1の実施例における構成の説明図Explanatory drawing of the structure in 1st Example of this invention 本発明の第1の実施例におけるトルク特性の説明図Explanatory drawing of the torque characteristic in 1st Example of this invention 本発明の第2の実施例における永久磁石同期機の1極分の部分断面図Partial sectional view of one pole of a permanent magnet synchronous machine in the second embodiment of the present invention 本発明の第2の実施例における温度依存性の説明図Explanatory drawing of temperature dependence in 2nd Example of this invention 本発明の第3の実施例における構成の説明図Explanatory drawing of the structure in the 3rd Example of this invention 本発明の第4の実施例における構成の説明図Explanatory drawing of the structure in 4th Example of this invention 本発明の第5の実施例における圧縮機の断面構造図Cross-sectional structure diagram of a compressor in the fifth embodiment of the present invention 従来の永久磁石同期機の1極分の部分断面図Partial sectional view of one pole of a conventional permanent magnet synchronous machine 4極6スロット三相モータの斜視図Perspective view of 4-pole 6-slot three-phase motor 4極6スロット三相モータの固定子コイル接続図4-pole 6-slot three-phase motor stator coil connection diagram 永久磁石モータのベクトル図Permanent magnet motor vector illustration 永久磁石モータのベクトル図Permanent magnet motor vector illustration
 以下、本発明の一実施例について図面を参照して説明する。以下の説明では、同一の構成要素には同一の記号を付してある。それらの名称および機能は同じであり、重複説明は避ける。また、以下の説明では内転型回転子を対象としているが、本発明の効果は内転型回転子に限定されるものではなく、同様の構成を有する外転型回転子にも適用可能である。また、固定子の巻線方式は集中巻でも良いし分布巻でも良い。また、回転子の極数、固定子コイルの相数も、実施例の構成に限定されるものではない。また、以下の説明ではインバータ駆動の永久磁石モータを対象としているが、本発明の効果は自己始動型永久磁石モータにも適用可能である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following description, the same symbols are attached to the same components. Their names and functions are the same, and duplicate descriptions are avoided. Further, in the following description, the inner rotor is targeted, but the effect of the present invention is not limited to the inner rotor, and can be applied to an outer rotor having a similar configuration. is there. Further, the winding method of the stator may be concentrated winding or distributed winding. Further, the number of rotor poles and the number of phases of the stator coils are not limited to the configuration of the embodiment. In the following description, an inverter-driven permanent magnet motor is targeted. However, the effect of the present invention can be applied to a self-starting permanent magnet motor.
 図1に本発明の第1の実施例を示す。本発明は、永久磁石による固定子コイル一相分の鎖交磁束Ψp(Wb)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
Figure JPOXMLDOC01-appb-I000006
の関係を満足するように、残留磁束密度が0.6T以下の永久磁石を適用した永久磁石同期機およびこれを用いた駆動システムを構成する。
FIG. 1 shows a first embodiment of the present invention. The present invention relates to a direct-axis inductance Ld (H) and a horizontal-axis inductance Lq when a magnetic flux linkage Ψp (Wb) for one phase of a stator coil by a permanent magnet and a current effective value Irms (Arms) are supplied to the coil. (H)
Figure JPOXMLDOC01-appb-I000006
In order to satisfy the above relationship, a permanent magnet synchronous machine to which a permanent magnet having a residual magnetic flux density of 0.6 T or less is applied and a drive system using the same are configured.
 ここでまず、上記の物理量ならびにリラクタンストルクの発生原理に関して図9~11を用いて説明する。 
 図9は4極6スロット三相モータの斜視図であり、固定子9は固定子鉄心10とティース11に巻回された固定子巻線12とで構成され、回転子1は固定子9に対してギャップを介して回転自在に保持されると同時に、回転子1は永久磁石挿入孔4を備えた回転子鉄心2と、4極(極対数p=2)を構成するよう配備された永久磁石3とで構成される。固定子巻線12は三相の巻線U、V、Wを順に周方向に配置することで構成され、例えば図10に示すように直列に接続されたU相巻線12u1、12u2には、インバータから波高値I(このときの実行値をIrmsとする)の交流電流iuが供給される。V相、W相に関しても同様であるが、各相の電流位相は電気角で120°ずつずれている。IやIrmsの大きさは、ワットメータ等の機器を用いることで求めることができるほか、オシロスコープなどで電流波形を取得してフーリエ解析することでも求めることができる。
First, the physical quantity and the reluctance torque generation principle will be described with reference to FIGS.
FIG. 9 is a perspective view of a 4-pole 6-slot three-phase motor. The stator 9 is composed of a stator core 10 and a stator winding 12 wound around a tooth 11, and the rotor 1 is attached to the stator 9. At the same time, the rotor 1 is rotatably arranged through a gap, and at the same time, the rotor 1 is arranged to constitute a rotor core 2 having a permanent magnet insertion hole 4 and four poles (number of pole pairs p = 2). It is comprised with the magnet 3. The stator winding 12 is configured by sequentially arranging three-phase windings U, V, and W in the circumferential direction. For example, the U-phase windings 12u1 and 12u2 connected in series as shown in FIG. An AC current iu having a peak value I (the effective value at this time is Irms) is supplied from the inverter. The same applies to the V phase and the W phase, but the current phase of each phase is shifted by 120 ° in electrical angle. The magnitudes of I and Irms can be obtained by using a device such as a wattmeter, and can also be obtained by acquiring a current waveform with an oscilloscope or the like and performing Fourier analysis.
 回転子1と機械的に結合されたシャフト6は負荷に連結され、電流Iの大きさと位相を適当に選定することで、負荷と釣り合うような回転トルクMeが発生する。固定子コイル一相分の鎖交磁束Ψpは、図10に示すU、V、Wの端子Tu、Tv、Twを開放した状態で回転子を外部駆動し、その時の相電圧波高値E0、または線間電圧波高値E0*√3を測定することで求めることができる。具体的には、回転数Nで外部駆動した時の角周波数ωを式(2)から求め、それを式(3)に代入して得られる。
  ω=2π*N/60*p  (p:極対数)     (2)
  Ψp=E0/ω     (3)
The shaft 6 mechanically coupled to the rotor 1 is connected to a load, and by appropriately selecting the magnitude and phase of the current I, a rotational torque Me that balances the load is generated. The interlinkage magnetic flux Ψp for one phase of the stator coil drives the rotor externally with the terminals Tu, Tv, Tw of U, V, W shown in FIG. 10 open, and the phase voltage peak value E0 at that time, or It can be determined by measuring the line voltage peak value E0 * √3. Specifically, the angular frequency ω when externally driven at the rotation speed N is obtained from the equation (2) and is obtained by substituting it into the equation (3).
ω = 2π * N / 60 * p (p: number of pole pairs) (2)
Ψp = E0 / ω (3)
 ところで、磁石モータのトルクMeは一般に、固定子巻線U、V、W各相の通電電流が生成する回転磁界と、回転子磁極との吸引・反発によって発生する。回転子磁極とは、磁石モータの場合、磁石によって形成される磁界を指すことが多いが、リラクタンストルクを考慮するときには、回転磁界の影響により回転子鉄心が磁化することで形成される磁界も磁極の一種として考えるとわかりやすい。なお、磁石モータの同期運転時における電流や磁束は交流量であるため、 dq軸座標系(回転座標系)に変換し直流量として扱う方法が一般的である。一般に、dq軸座標系では回転子の磁極中心軸をd軸とし、d軸に対して反時計回りに電気角で90°進んだ軸、すなわち極性の異なる永久磁石間の中心軸をq軸とする。この場合、回転子位置によらず、dq軸と回転磁界との相対的な位置関係のみでトルク等の諸物理量を考察することが可能となる。 Incidentally, the torque Me of the magnet motor is generally generated by attraction / repulsion between the rotating magnetic field generated by the energizing currents of the stator windings U, V, and W and the rotor magnetic poles. In the case of a magnet motor, the rotor magnetic pole often refers to a magnetic field formed by a magnet, but when considering reluctance torque, the magnetic field formed by magnetizing the rotor core due to the influence of the rotating magnetic field is also the magnetic pole. It is easy to understand when considered as a kind of. In addition, since the electric current and magnetic flux at the time of the synchronous operation of a magnet motor are alternating current amounts, the method of converting into a dq axis coordinate system (rotating coordinate system) and handling as a direct current amount is common. In general, in the dq-axis coordinate system, the magnetic pole central axis of the rotor is the d-axis, and the axis advanced 90 ° counterclockwise with respect to the d-axis, that is, the central axis between permanent magnets having different polarities is the q-axis. To do. In this case, it is possible to consider various physical quantities such as torque based only on the relative positional relationship between the dq axis and the rotating magnetic field regardless of the rotor position.
 図11に磁石モータのトルク発生原理を示す。図において、反時計回りを正方向としている。図11(a)に磁石トルクを、図11(b)、(c)にd軸電流が負の場合に生じるリラクタンストルクを示す。図11(a)に示すように、磁石トルクはd軸に発生する磁石磁束とq軸電流により形成される磁界との吸引および反発によって生じるトルクである。このとき、磁石磁束とd軸電流磁界との間には径方向の反発力が発生するが、回転力は生じない。一方で、図11(b)に示すように、q軸電流磁界により回転子q軸が磁化される場合、d軸電流磁界との間に吸引力および反発力が生じる。これがリラクタンストルクであり、d軸電流が負の場合、すなわち弱め界磁運転時には正のトルクが得られ、増磁作用時には負のトルクとなる。同様にして、図11(c)に示すように回転子d軸が磁化されやすい場合も、q軸電流磁界との関係でリラクタンストルクが発生し、こちらは弱め界磁運転時に負のトルク、増磁作用時には正のトルクとなる(一般的には図11(b)と(c)の和をリラクタンストルクと呼ぶ)。 Fig. 11 shows the principle of torque generation of a magnet motor. In the figure, the counterclockwise direction is the positive direction. FIG. 11A shows the magnet torque, and FIGS. 11B and 11C show the reluctance torque generated when the d-axis current is negative. As shown in FIG. 11A, the magnet torque is torque generated by attraction and repulsion between the magnetic flux generated on the d-axis and the magnetic field formed by the q-axis current. At this time, a radial repulsive force is generated between the magnet magnetic flux and the d-axis current magnetic field, but no rotational force is generated. On the other hand, as shown in FIG. 11B, when the rotor q-axis is magnetized by the q-axis current magnetic field, an attractive force and a repulsive force are generated between the rotor and the d-axis current magnetic field. This is a reluctance torque, and when the d-axis current is negative, that is, a positive torque is obtained during field-weakening operation, and a negative torque is obtained during a magnetizing action. Similarly, when the rotor d-axis is easily magnetized as shown in FIG. 11 (c), reluctance torque is generated in relation to the q-axis current magnetic field, which is negative torque and increased during field-weakening operation. At the time of magnetic action, a positive torque is obtained (generally, the sum of FIGS. 11B and 11C is called a reluctance torque).
 磁石トルクはq軸電流一定の下であれば磁石の発生する磁束量に比例する。すなわち、磁石トルクを増加させるには磁石量を増やしたり、強力な磁石を用いたりする必要があり、コスト増を招く。これに対し、リラクタンストルクはq軸とq軸のインダクタンスの差に比例するため、両者の差が大きくなるように回転子磁気回路を構成することで、ある一定量までトルクの増加を図ることができると考えられてきた。 Magnet torque is proportional to the amount of magnetic flux generated by the magnet if the q-axis current is constant. That is, in order to increase the magnet torque, it is necessary to increase the amount of magnets or use a strong magnet, resulting in an increase in cost. On the other hand, since the reluctance torque is proportional to the difference between the q-axis and q-axis inductances, the torque can be increased to a certain amount by configuring the rotor magnetic circuit so that the difference between the two is large. It has been considered possible.
 さて、式(1)の構成物理量のうち、Ψp、Irmsは上述の要領で求められるのに対し、Ld、Lqの求め方に関しては、ダルトン・カメロン法などのような回転子静止法か、または以下で述べるようなベクトル図から逆算する方法がある。 Now, among the constituent physical quantities of the formula (1), Ψp and Irms are obtained in the above-described manner, whereas the method for obtaining Ld and Lq is a rotor stationary method such as the Dalton-Cameron method or the like. There is a method of calculating backward from a vector diagram as described below.
 図12にdq軸座標系のベクトル図を示す。すなわち、永久磁石による固定子コイル一相分の鎖交磁束Ψpの位相を基準として、これをd軸とみなし、Ψpの時間微分である誘導起電力E0は位相が90°進んだq軸に発生する。モータに印加される電圧Vとモータに通電される電流Iが、E0に対してそれぞれθ、βの位相差をもつとき、V、Iは式(4)、(5)に示すようにd軸成分、q軸成分に分解できる。 
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
FIG. 12 shows a vector diagram of the dq axis coordinate system. That is, using the phase of the interlinkage magnetic flux Ψp for one phase of the stator coil by the permanent magnet as a reference, this is regarded as the d-axis, and the induced electromotive force E0 that is a time derivative of Ψp is generated on the q-axis whose phase is advanced by 90 ° To do. When the voltage V applied to the motor and the current I applied to the motor have a phase difference of θ and β with respect to E0, V and I are d-axis as shown in equations (4) and (5). It can be decomposed into components and q-axis components.
Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000008
 なお、図12の抵抗Rはホイートストーンブリッジなどの抵抗測定器を用いることで計測可能である。また、電圧位相差角θ、電流位相差角βに関しては、E0、V、Iの波形を取得し、各基本波成分の位相関係を割り出すことで求めることができる。図12では相電圧、相電流の波形を用いた場合を表しているが、例えば相電圧の代わりに線間電圧を取得している場合でも、相電圧と線間電圧の位相差を考慮することで、同様にしてθ、βを求めることができる。 The resistance R in FIG. 12 can be measured by using a resistance measuring instrument such as a Wheatstone bridge. Further, the voltage phase difference angle θ and the current phase difference angle β can be obtained by acquiring the waveforms of E0, V, and I and determining the phase relationship of each fundamental wave component. FIG. 12 shows the case where the phase voltage and phase current waveforms are used. For example, even when the line voltage is obtained instead of the phase voltage, the phase difference between the phase voltage and the line voltage should be considered. Thus, θ and β can be obtained in the same manner.
 上記で得られた物理量を用いて、Ld、Lqは式(6)の電圧方程式から求めることができる。 
Figure JPOXMLDOC01-appb-I000009
Using the physical quantities obtained above, Ld and Lq can be obtained from the voltage equation of Equation (6).
Figure JPOXMLDOC01-appb-I000009
 以上、式(1)の物理量ならびにリラクタンストルクの発生原理に関して説明した。 In the above, the physical quantity of formula (1) and the generation principle of reluctance torque have been described.
 次に、本発明の基本原理、すなわち、式(1)で述べた構成によって、用途や出力、およびモ-タ体格に拘わらずリラクタンストルクの有効活用が可能となり、トルク向上、効率向上を図ることができる原理を説明する。 Next, the basic principle of the present invention, that is, the configuration described in the equation (1) enables effective use of reluctance torque regardless of the application, output, and motor physique, thereby improving torque and efficiency. Explain the principle that can.
 一般に発生トルクMeは、極対数p、永久磁石による固定子コイル一相分の鎖交磁束Ψp、直軸電流Id、横軸電流Iqを用いて次式で表される。 
Figure JPOXMLDOC01-appb-I000010
 ただし、Id、Iq、Ψpは波高値である。 
 式(7)において、{ }内第一項が磁石トルクを、第二項がリラクタンストルクを表している。この式から明らかなように、リラクタンストルクはLq-Ld、Id、Iqにそれぞれ比例する。このため、従来はリラクタンストルクの大きさの指標として突極比Lq/Ld、またはLq-Ldが用いられていた。しかしながら、リラクタンストルクが発生トルクMeにどれだけ寄与するかは、磁石トルクとの相対関係で決まる。したがって、リラクタンストルクの大きさを表す指標には、従来の突極比に加え、磁石トルクとの相対関係を加味できる別の物理量を新たに導入する必要がある。
In general, the generated torque Me is expressed by the following equation using the number of pole pairs p, the interlinkage magnetic flux Ψp for one phase of the stator coil by a permanent magnet, the direct current Id, and the horizontal current Iq.
Figure JPOXMLDOC01-appb-I000010
However, Id, Iq, and Ψp are peak values.
In Expression (7), the first term in {} represents the magnet torque, and the second term represents the reluctance torque. As is apparent from this equation, the reluctance torque is proportional to Lq−Ld, Id, and Iq, respectively. Therefore, conventionally, the salient pole ratio Lq / Ld or Lq-Ld has been used as an index of the magnitude of the reluctance torque. However, how much the reluctance torque contributes to the generated torque Me is determined by a relative relationship with the magnet torque. Therefore, in addition to the conventional salient pole ratio, another physical quantity that can take into account the relative relationship with the magnet torque needs to be newly introduced into the index representing the magnitude of the reluctance torque.
 ここで、磁石トルクは電流位相差角β=0のときに最大となり、その最大値Mp、maxは式(5)、(7)より次式で表せる。 
Figure JPOXMLDOC01-appb-I000011
Here, the magnet torque becomes maximum when the current phase difference angle β = 0, and the maximum values Mp and max can be expressed by the following equations from equations (5) and (7).
Figure JPOXMLDOC01-appb-I000011
 一方、リラクタンストルクはβ=π/4(電気角で45 deg.)のときに最大となり、その最大値Mr、maxは式(5)、(7)より次式で表せる。 
Figure JPOXMLDOC01-appb-I000012
On the other hand, the reluctance torque becomes maximum when β = π / 4 (45 deg. In electrical angle), and the maximum values Mr and max can be expressed by the following equations from equations (5) and (7).
Figure JPOXMLDOC01-appb-I000012
 式(8)と(9)の比が、リラクタンストルクの大きさを表す指標に他ならないので、この比をリラクタンストルク比αと定義する。電流波高値Iを用いる場合は 
Figure JPOXMLDOC01-appb-I000013
Since the ratio of the equations (8) and (9) is nothing but an index representing the magnitude of the reluctance torque, this ratio is defined as the reluctance torque ratio α. When using the current peak I
Figure JPOXMLDOC01-appb-I000013
となり、電流実効値Irmsを用いる場合は 
Figure JPOXMLDOC01-appb-I000014
となる。本発明では電流実効値Irmsを用いた式(11)を使用する。
When the effective current value Irms is used,
Figure JPOXMLDOC01-appb-I000014
It becomes. In the present invention, Expression (11) using the current effective value Irms is used.
 式(11)から明らかなように、リラクタンストルクの大きさを表す指標として、従来のLd、Lqに加え、Ψp、Irmsが新たに導入されていることがわかる。このうち、Ψpは永久磁石の物性と形状、固定子巻線仕様、モ-タ断面形状によって決定され、一般的な誘導起電力測定試験から求めることができる。同様に、Ld、Lqもモ-タ構成と通電電流Irmsによって決定され、一般的なモ-タインダクタンス測定法によって求めることができる。したがって、Ψp、Ld、Lqはモ-タ毎に決まる定数であり、式(11)はαとIrmsの線形関数として扱うことができる。 As is clear from Equation (11), it can be seen that Ψp and Irms are newly introduced as an index representing the magnitude of the reluctance torque in addition to the conventional Ld and Lq. Of these, Ψp is determined by the physical properties and shape of the permanent magnet, the stator winding specifications, and the motor cross-sectional shape, and can be obtained from a general induced electromotive force measurement test. Similarly, Ld and Lq are also determined by the motor configuration and energization current Irms, and can be obtained by a general motor inductance measurement method. Therefore, Ψp, Ld, and Lq are constants determined for each motor, and Equation (11) can be treated as a linear function of α and Irms.
 リラクタンストルク比αは、式(11)の右辺、特に電流値を変化させることで任意の値を採ることができるが、発生トルク向上、効率向上の観点から言えば、図2に示すようにリラクタンストルクMrが最大となるβ=45 deg.において、発生トルクMeが磁石トルク最大値Mp、maxと同等かそれ以上となることが望ましい。すなわち、 
Figure JPOXMLDOC01-appb-I000015
の関係が成り立てば良い。式(12)を整理すると、
Figure JPOXMLDOC01-appb-I000016
となり、さらに式(11)を用いて変形すると式(1)を得る。
The reluctance torque ratio α can take an arbitrary value by changing the right side of the equation (11), in particular, the current value. From the viewpoint of improving the generated torque and improving the efficiency, the reluctance torque ratio α is as shown in FIG. Β = 45 deg. At which the torque Mr becomes maximum. In this case, it is desirable that the generated torque Me is equal to or greater than the magnet torque maximum values Mp and max. That is,
Figure JPOXMLDOC01-appb-I000015
The relationship should be established. When formula (12) is arranged,
Figure JPOXMLDOC01-appb-I000016
Then, further deformation using equation (11) yields equation (1).
 以上より、リラクタンストルクの大きさを表す指標として、従来のLd、Lqに加え、Ψp、Irmsを導入する必要があること、用途や出力、およびモ-タ体格に拘わらずリラクタンストルクを有効活用するためには式(1)の関係式を満足する必要があることを示した。 From the above, it is necessary to introduce Ψp, Irms in addition to the conventional Ld and Lq as an index indicating the magnitude of the reluctance torque, and the reluctance torque is effectively utilized regardless of the application, output, and motor physique. Therefore, it was shown that the relational expression of the formula (1) needs to be satisfied.
 ところで、上述した永久磁石同期機を駆動する場合、電流位相差角βは制御ソフトの構成によって任意に設定できるが、式(1)を満足するような構成においては、発生トルクが最大となる制御動作点は22.5 deg. ≦ β ≦ 45.0 deg.の範囲に存在する。したがって、前記の位相となるように制御することで、より確実にトルク向上、効率向上を図ることができる。 By the way, when the above-described permanent magnet synchronous machine is driven, the current phase difference angle β can be arbitrarily set by the configuration of the control software. However, in the configuration satisfying the expression (1), the control that generates the maximum torque is performed. The operating point is 22.5 deg. ≦ β ≦ 45.0 deg. Exists in the range. Therefore, the torque and the efficiency can be improved more reliably by controlling the phase so as to be the above-mentioned phase.
 以下、図面を用いて本発明の第2の実施例について説明する。 
 図3は本実施例による永久磁石同期機の1極分の部分断面図を示す図である。実施例1に示した構成および制御方法を図3の構成に適用することで、リラクタンストルクのさらなる増加を図ることができる。図3に示す回転子1は、径方向内側に凸となるよう構成された磁石収容孔4を有し、前記収容孔4には永久磁石3(図示していない)が配設され、前記永久磁石3は1極につき周方向に2ヶ所の屈曲点を有するとともに、それぞれの屈曲点を始端として磁化方向に対して垂直方向かつ極の端部側に向けて伸びるように構成している。永久磁石3には、フェライト磁石のような残留磁束密度が低い永久磁石を使用する。永久磁石3は、3カ所以上の複数の屈曲点および直線部分を有するように構成してもよい。
The second embodiment of the present invention will be described below with reference to the drawings.
FIG. 3 is a partial cross-sectional view of one pole of the permanent magnet synchronous machine according to this embodiment. By applying the configuration and the control method shown in the first embodiment to the configuration of FIG. 3, the reluctance torque can be further increased. The rotor 1 shown in FIG. 3 has a magnet receiving hole 4 configured to protrude radially inward, and a permanent magnet 3 (not shown) is disposed in the receiving hole 4, so that the permanent The magnet 3 has two bending points in the circumferential direction per pole, and is configured to extend in the direction perpendicular to the magnetization direction and toward the end of the pole, with each bending point as a starting end. As the permanent magnet 3, a permanent magnet having a low residual magnetic flux density such as a ferrite magnet is used. The permanent magnet 3 may be configured to have a plurality of bending points and straight portions at three or more locations.
 このような磁石形状とすることで、磁石磁束発生面の表面積を大きくできるので、図8に示すようなU字形の磁石を使用したものよりも大きな磁石トルクを発生することが可能となる。同時に、永久磁石3の径方向外周部の鉄心断面積が大きくなるので、突極比が大きくなり、図8よりも大きなリラクタンストルクを発生することが可能となる。なお、永久磁石3は1極につき周方向に分割されることなく一体で構成しても良いし、複数個を周方向に分割して配置しても良い。また、軸方向に複数個を分割して構成しても良いし、分割することなく一体で構成しても良い。回転子鉄心2は軸方向に積み重ねた積層鋼板で構成しても良いし、圧粉磁心などで構成しても良いし、アモルファス金属などで構成しても良い。 By adopting such a magnet shape, the surface area of the magnet magnetic flux generating surface can be increased, so that it is possible to generate a larger magnet torque than that using a U-shaped magnet as shown in FIG. At the same time, since the cross-sectional area of the iron core in the radially outer peripheral portion of the permanent magnet 3 is increased, the salient pole ratio is increased and a reluctance torque larger than that in FIG. 8 can be generated. Note that the permanent magnet 3 may be integrally formed without being divided in the circumferential direction per pole, or a plurality of permanent magnets 3 may be arranged in the circumferential direction. Further, a plurality of parts may be divided in the axial direction, or may be formed integrally without being divided. The rotor core 2 may be composed of laminated steel plates stacked in the axial direction, may be composed of a dust core, or may be composed of amorphous metal.
 さらに本発明によれば、周囲温度が80℃以上の状態で連続的または断続的に駆動される永久磁石同期機およびこれを用いた駆動システムで、より効果的にトルク向上、効率向上を図ることができる。この理由を以下に説明する。常温(20℃)でのフェライト磁石の残留磁束密度(Br)はネオジウム磁石の1/3であることが知られているが、フェライト磁石のBrの温度係数はネオジム磁石の2倍以上であるため、高温になるほどBrの低下が顕著となる。 Furthermore, according to the present invention, a permanent magnet synchronous machine driven continuously or intermittently at an ambient temperature of 80 ° C. or higher and a drive system using the same can improve torque and improve efficiency more effectively. Can do. The reason for this will be described below. The residual magnetic flux density (Br) of a ferrite magnet at room temperature (20 ° C.) is known to be 1/3 that of a neodymium magnet, but the temperature coefficient of Br of a ferrite magnet is more than twice that of a neodymium magnet. As the temperature increases, the decrease in Br becomes more significant.
 具体的には、ネオジム磁石の温度係数が-0.11 %/K程度であるのに対し、フェライト磁石は-0.26 %/K程度である。したがって、図3に示すように、周囲温度が上昇するほどネオジム磁石に対するBr比は低下していく。特に、周囲温度が80℃以上の場合にはBrの低下傾向が顕著化する。したがって、磁石トルクの低下が顕著となるが、本発明を適用することでリラクタンストルクの有効活用が可能となるので、トルクおよび効率を向上できる。 Specifically, the temperature coefficient of neodymium magnets is about -0.11% / K, while that of ferrite magnets is about -0.26% / K. Therefore, as shown in FIG. 3, the Br ratio with respect to the neodymium magnet decreases as the ambient temperature increases. In particular, when the ambient temperature is 80 ° C. or higher, the tendency of Br to decrease becomes significant. Therefore, although the magnet torque is significantly reduced, the reluctance torque can be effectively utilized by applying the present invention, so that the torque and efficiency can be improved.
 以下、図面を用いて本発明の第3の実施例について説明する。 
 図5に本発明の第3の実施例を示す。図5の構成が図1と異なる点は、Ψp、Irms、Ld、Lqの関係が、 
Figure JPOXMLDOC01-appb-I000017
となることであり、他の構成は図1と同一であるので説明を省略する。
The third embodiment of the present invention will be described below with reference to the drawings.
FIG. 5 shows a third embodiment of the present invention. The configuration of FIG. 5 is different from FIG. 1 in that the relationship between Ψp, Irms, Ld, and Lq is
Figure JPOXMLDOC01-appb-I000017
Since other configurations are the same as those in FIG. 1, the description thereof is omitted.
 現在、ネオジム磁石を用いた永久磁石同期機は家電や自動車など幅広い分野に適用されており、それらの代替としての役割がフェライト磁石を用いた永久磁石同期機に求められている(ここでいう「代替」とは動力源としての代替ではなく、トルク特性や効率特性が従来とほぼ同等レベルを維持できることを指す。性能低下が許容されない理由として、業界各社の激しい性能競争に加え、地球温暖化防止に向けたCO2削減目標値の存在や、我が国の原発事故を発端とする世界的なエネルギ-供給体制の見直し、ならびにエネルギ-消費抑制ニ-ズの高まりなどが挙げられる)。 Currently, permanent magnet synchronous machines using neodymium magnets are applied to a wide range of fields such as home appliances and automobiles, and a role as an alternative to them is required for permanent magnet synchronous machines using ferrite magnets (herein " “Replacement” is not a replacement for a power source, but means that torque characteristics and efficiency characteristics can be maintained at the same level as before.The reason why performance degradation is not allowed is to prevent global warming in addition to intense competition among industry companies. For example, the existence of CO2 reduction target values for the future, a review of the global energy supply system triggered by the nuclear accident in Japan, and an increase in energy consumption control needs).
 ただし、これまでに開発されてきたネオジム磁石を用いた永久磁石同期機は、その開発過程におけるカット&トライの結果として、式(1)に示すような構成に落着いているものが少なくない。したがって、それらと同等以上のトルクや効率をフェライト磁石で達成するためには、リラクタンストルクのさらなる活用が不可欠となる。例えば、ネオジム磁石を用いた永久磁石同期機において、リラクタンストルク比αが0.293となっている場合、磁石トルクが発生トルクに占める割合は0.707である。これをフェライト磁石で置き換えようとすると、磁石トルクは1/3に低下してしまうので、低下分をリラクタンストルクでカバ-する必要がある。すなわち、リラクタンストルク比αを 
Figure JPOXMLDOC01-appb-I000018
However, many permanent magnet synchronous machines using neodymium magnets that have been developed so far have settled in the configuration shown in Formula (1) as a result of cut and try in the development process. Therefore, further utilization of reluctance torque is indispensable in order to achieve a torque and efficiency equal to or higher than those of the ferrite magnet. For example, in a permanent magnet synchronous machine using a neodymium magnet, when the reluctance torque ratio α is 0.293, the ratio of the magnet torque to the generated torque is 0.707. If this is replaced with a ferrite magnet, the magnet torque will be reduced to 1/3, and it is necessary to cover the decrease with the reluctance torque. That is, the reluctance torque ratio α is set to
Figure JPOXMLDOC01-appb-I000018
以上にする必要がある。 It is necessary to do more.
 以上より、式(14)を満足するようフェライト磁石を適用した永久磁石同期機およびこれを用いた駆動システムを構成することで、用途や出力、およびモ-タ体格に拘わらずリラクタンストルクの有効活用が可能となり、トルク向上、効率向上を図ることができると同時に、ネオジム磁石を用いた永久磁石同期機の代替を図ることが可能となる。 As described above, by configuring a permanent magnet synchronous machine using a ferrite magnet and a drive system using the same so as to satisfy Equation (14), the reluctance torque can be effectively used regardless of the application, output, and motor size. Thus, torque and efficiency can be improved, and at the same time, a permanent magnet synchronous machine using a neodymium magnet can be replaced.
 以下、図面を用いて本発明の第4の実施例について説明する。 
 図6に本発明の第4の実施例を示す。図6の構成が図1と異なる点は、Ψp、Irms、Ld、Lqの関係が、
Figure JPOXMLDOC01-appb-I000019
の関係を満足し、SmFeNを主成分とする磁石(以下、SmFeN磁石)を適用した永久磁石同期機およびこれを用いた駆動システムを構成することである。他の構成は図1と同一であるので説明を省略する。
The fourth embodiment of the present invention will be described below with reference to the drawings.
FIG. 6 shows a fourth embodiment of the present invention. 6 differs from FIG. 1 in that the relationship between Ψp, Irms, Ld, and Lq is
Figure JPOXMLDOC01-appb-I000019
And a permanent magnet synchronous machine to which a magnet mainly composed of SmFeN (hereinafter referred to as SmFeN magnet) is applied and a drive system using the same are configured. Other configurations are the same as those in FIG.
 SmFeN磁石は残留磁束密度がネオジム磁石の1/2と小さいものの、フェライト磁石よりも大きいため、ネオジム磁石の代替として有用である。実施例3と同様に、リラクタンストルク比αが0.293となるネオジム磁石同期機をSmFeN磁石で置き換えようとすると、磁石トルクは1/2に低下してしまうので、低下分をリラクタンストルクでカバ-する必要がある。すなわち、リラクタンストルク比αを 
Figure JPOXMLDOC01-appb-I000020
以上にする必要がある。
The SmFeN magnet has a residual magnetic flux density as small as 1/2 that of a neodymium magnet, but is larger than a ferrite magnet, and thus is useful as an alternative to a neodymium magnet. As in the third embodiment, when a neodymium synchronous machine having a reluctance torque ratio α of 0.293 is replaced with an SmFeN magnet, the magnet torque is reduced to ½, and the decrease is covered by the reluctance torque. -There is a need to. That is, the reluctance torque ratio α is set to
Figure JPOXMLDOC01-appb-I000020
It is necessary to do more.
 以上より、式(11)を満足するようSmFeN磁石を適用した永久磁石同期機およびこれを用いた駆動システムを構成することで、用途や出力、およびモ-タ体格に拘わらずリラクタンストルクの有効活用が可能となり、トルク向上、効率向上を図ることができると同時に、ネオジム磁石を用いた永久磁石同期機の代替を図ることが可能となる。 As described above, the permanent magnet synchronous machine using the SmFeN magnet and the drive system using the same are configured so as to satisfy the expression (11), so that the reluctance torque can be effectively used regardless of the application, output, and motor size. Thus, torque and efficiency can be improved, and at the same time, a permanent magnet synchronous machine using a neodymium magnet can be replaced.
 以下、図面を用いて本発明の第5の実施例について説明する。 
 図7は、本実施例による圧縮機の断面構造図である。図7において、圧縮機構部は、固定スクロ-ル部材13の端板14に直立する渦巻状ラップ15と、旋回スクロ-ル部材16の端板17に直立する渦巻状ラップ18とを噛み合わせて形成されている。そして、旋回スクロ-ル部材16をクランクシャフト6によって旋回運動させることで圧縮動作を行う。固定スクロ-ル部材13及び旋回スクロ-ル部材16によって形成される圧縮室19(19A、19B、……)のうち、最も外径側に位置している圧縮室19は、旋回運動に伴って両スクロ-ル部材13、16の中心に向かって移動し、容積が次第に縮小する。
The fifth embodiment of the present invention will be described below with reference to the drawings.
FIG. 7 is a sectional structural view of the compressor according to the present embodiment. In FIG. 7, the compression mechanism unit meshes a spiral wrap 15 standing upright on the end plate 14 of the fixed scroll member 13 and a spiral wrap 18 standing upright on the end plate 17 of the turning scroll member 16. Is formed. The revolving scroll member 16 is revolved by the crankshaft 6 to perform a compression operation. Of the compression chambers 19 (19A, 19B,...) Formed by the fixed scroll member 13 and the swivel scroll member 16, the compression chamber 19 located on the outermost diameter side is accompanied by a swirl motion. The scroll members 13 and 16 move toward the center, and the volume gradually decreases.
 両圧縮室19A、19Bが両スクロ-ル部材13、16の中心近傍に達すると、両圧縮室19内の圧縮ガスは圧縮室19と連通した吐出口20から吐出される。吐出された圧縮ガスは、固定スクロ-ル部材13及びフレ-ム21に設けられたガス通路(図示せず)を通ってフレ-ム21下部の圧力容器22内に至り、圧力容器22の側壁に設けられた吐出パイプ23から圧縮機外に排出される。圧力容器22内に、固定子9と回転子1とで構成される永久磁石モ-タ103が内封されており、回転子1が回転することで、圧縮動作を行う。永久磁石モ-タ103の下部には、油溜め部25が設けられている。油溜め部25内の油は回転運動により生ずる圧力差によって、クランクシャフト6内に設けられた油孔26を通って、旋回スクロ-ル部材16とクランクシャフト6との摺動部、滑り軸受け27等の潤滑に供される。圧力容器22の側壁には固定子コイル12を圧力容器22の外側に引き出すための端子箱30が設けられ、例えば、三相永久磁石モ-タの場合は、U、V、W各巻線の端子が計3個、納められている。 When the compression chambers 19A and 19B reach the vicinity of the centers of the scroll members 13 and 16, the compressed gas in the compression chambers 19 is discharged from the discharge port 20 communicating with the compression chamber 19. The discharged compressed gas passes through a gas passage (not shown) provided in the fixed scroll member 13 and the frame 21 and reaches the pressure vessel 22 below the frame 21, and the side wall of the pressure vessel 22. Is discharged from the discharge pipe 23 provided outside the compressor. A permanent magnet motor 103 composed of the stator 9 and the rotor 1 is enclosed in the pressure vessel 22, and the compression operation is performed by the rotation of the rotor 1. An oil sump 25 is provided below the permanent magnet motor 103. The oil in the oil sump 25 passes through an oil hole 26 provided in the crankshaft 6 due to a pressure difference caused by a rotational motion, and a sliding portion between the turning scroll member 16 and the crankshaft 6 and a sliding bearing 27. It is used for lubrication. A terminal box 30 for pulling out the stator coil 12 to the outside of the pressure vessel 22 is provided on the side wall of the pressure vessel 22. For example, in the case of a three-phase permanent magnet motor, terminals of U, V and W windings are provided. There are a total of three.
 現在の家庭用・業務用空調機では、圧縮用機22内にR410A冷媒が封入されているものが多く、永久磁石モ-タ103の周囲温度は80℃以上となることが多い。今後、地球温暖化係数がより小さいR32冷媒の採用が進むと周囲温度はさらに上昇するため、磁石のBr低下がより顕著なる。このような場合でも、本発明の実施例1~4記載の構成を適用することで、トルク向上、効率向上を図ることができる。 
 なお、圧縮機構成は図7記載のスクロ-ル圧縮機でも良いし、ロ-タリ圧縮機でも良い、その他の圧縮機構を有する構成でも良い。なお本発明によれば、以上に説明したように小形で高出力のモータが実現できる。すると高速運転が可能になるなど、運転範囲を広げることが可能となり、さらには、HeやR32などの冷媒においては、R22、R407C、R410Aなどの冷媒に比べ、隙間からの漏れが大きく、特に低速運転時には循環量に対する漏れの比率が顕著に大きくなるため、効率低下が大きい。低循環量(低速運転)時の効率向上のため、圧縮機構部を小型化し、同じ循環量を得るために回転数を上げることで、漏れ損失を低減させることが有効な手段となりうるが、最大循環量を確保するために最大回転数も上げる必要がある。本発明によれば、最大トルクを大きくすることが可能となるため、最大回転数を上げることが可能となり、HeやR32などの冷媒における効率向上に有効な手段となる。
In many current home and commercial air conditioners, R410A refrigerant is sealed in the compressor 22 and the ambient temperature of the permanent magnet motor 103 is often 80 ° C. or higher. In the future, as the adoption of R32 refrigerant having a smaller global warming potential progresses, the ambient temperature further increases, and thus the Br decrease in the magnet becomes more prominent. Even in such a case, it is possible to improve the torque and the efficiency by applying the configurations described in the first to fourth embodiments of the present invention.
The compressor configuration may be a scroll compressor shown in FIG. 7, a rotary compressor, or a configuration having other compression mechanisms. According to the present invention, as described above, a small and high output motor can be realized. Then, it becomes possible to widen the operating range, such as enabling high-speed operation. Further, in refrigerants such as He and R32, leakage from gaps is larger than refrigerants such as R22, R407C, and R410A, and in particular, low speeds. During operation, the ratio of leakage to the circulation amount is significantly increased, so that the efficiency is greatly reduced. Reducing leakage loss by reducing the size of the compression mechanism and increasing the rotational speed to obtain the same amount of circulation can be an effective means to improve efficiency during low circulation (low speed operation). It is necessary to increase the maximum number of revolutions in order to secure the circulation rate. According to the present invention, since the maximum torque can be increased, the maximum number of revolutions can be increased, which is an effective means for improving the efficiency of refrigerants such as He and R32.
1…回転子、2…回転子鉄心、3…永久磁石、4…永久磁石挿入孔、5…カシメ用リベット、6…シャフト又はクランクシャフト、9…固定子、10…固定子鉄心、11…ティース、12…固定子コイル、13…固定スクロ-ル部材、14…端板、15…渦巻状ラップ、16…旋回スクロ-ル部材、17…端板、18…渦巻状ラップ、19…圧縮室、20…吐出口、21…フレ-ム、22…圧力容器、23…吐出パイプ、25…油溜部、26…油孔、27…滑り軸受け、30…端子箱、103…永久磁石モ-タ。 DESCRIPTION OF SYMBOLS 1 ... Rotor, 2 ... Rotor iron core, 3 ... Permanent magnet, 4 ... Permanent magnet insertion hole, 5 ... Riveting for caulking, 6 ... Shaft or crankshaft, 9 ... Stator, 10 ... Stator iron core, 11 ... Teeth 12 ... Stator coil, 13 ... Fixed scroll member, 14 ... End plate, 15 ... Spiral wrap, 16 ... Swivel scroll member, 17 ... End plate, 18 ... Spiral wrap, 19 ... Compression chamber, DESCRIPTION OF SYMBOLS 20 ... Discharge port, 21 ... Frame, 22 ... Pressure vessel, 23 ... Discharge pipe, 25 ... Oil reservoir, 26 ... Oil hole, 27 ... Sliding bearing, 30 ... Terminal box, 103 ... Permanent magnet motor

Claims (7)

  1.  複数のティースを有する固定子と、
     該固定子に対して所定のギャップを介して内周側に配置される回転子と、を備えた永久磁石同期機において、
     前記回転子は、内部に複数の極を構成するように複数の永久磁石が配置されるとともに、前記永久磁石の残留磁束密度は0.6T以下であり、
     前記永久磁石による固定子コイル一相分の鎖交磁束Ψp(WB)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
    Figure JPOXMLDOC01-appb-I000001
    の関係を満足することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    A stator having a plurality of teeth;
    In a permanent magnet synchronous machine comprising a rotor disposed on the inner peripheral side with a predetermined gap with respect to the stator,
    In the rotor, a plurality of permanent magnets are arranged so as to constitute a plurality of poles therein, and the residual magnetic flux density of the permanent magnet is 0.6 T or less,
    A linear flux inductance Ld (H) and a horizontal axis inductance Lq (H) when the coil is supplied with a flux linkage Ψp (WB) for one phase of the stator coil by the permanent magnet and a current effective value Irms (Arms). And
    Figure JPOXMLDOC01-appb-I000001
    And a drive system using the same.
  2.  請求項1において、
     前記回転子は、径方向内側に凸となるよう構成された磁石収容孔を有し、
     前記磁石収容孔にはフェライト磁石が配設され、
     前記永久磁石は1極につき周方向に少なくとも2ヶ所の屈曲点を有するとともに、それぞれの屈曲点を始端として磁化方向に対して垂直方向かつ極の端部側に向けて伸びる少なくとも2ヶ所の直線部分を有することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    In claim 1,
    The rotor has a magnet housing hole configured to be convex radially inward,
    A ferrite magnet is disposed in the magnet accommodation hole,
    The permanent magnet has at least two bending points in the circumferential direction per pole, and at least two linear portions extending from the respective bending points to the direction perpendicular to the magnetization direction and toward the end of the pole. A permanent magnet synchronous machine and a drive system using the same.
  3.  複数のティースを有する固定子と、
     該固定子に対して所定のギャップを介して内周側に配置される回転子と、を備えた永久磁石同期機において、
     前記回転子は、内部に複数の極を構成するように複数の永久磁石が配置されるとともに、
     前記永久磁石による固定子コイル一相分の鎖交磁束Ψp(WB)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
    Figure JPOXMLDOC01-appb-I000002
    の関係を満足することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    A stator having a plurality of teeth;
    In a permanent magnet synchronous machine comprising a rotor disposed on the inner peripheral side with a predetermined gap with respect to the stator,
    The rotor is provided with a plurality of permanent magnets so as to form a plurality of poles therein,
    A linear flux inductance Ld (H) and a horizontal axis inductance Lq (H) when the coil is supplied with a flux linkage Ψp (WB) for one phase of the stator coil by the permanent magnet and a current effective value Irms (Arms). And
    Figure JPOXMLDOC01-appb-I000002
    And a drive system using the same.
  4.  内部に複数極を構成するよう配備されたSMFeNを主成分とする磁石を有する回転子と、該回転子に対して所定のギャップを介して配置される固定子と、を備えた永久磁石同期機において、
     前記永久磁石による固定子コイル一相分の鎖交磁束Ψp(WB)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
    Figure JPOXMLDOC01-appb-I000003
    の関係を満足することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    Permanent magnet synchronous machine comprising: a rotor having a magnet composed mainly of SMFeN arranged so as to form a plurality of poles therein; and a stator arranged with a predetermined gap with respect to the rotor In
    A linear flux inductance Ld (H) and a horizontal axis inductance Lq (H) when the coil is supplied with a flux linkage Ψp (WB) for one phase of the stator coil by the permanent magnet and a current effective value Irms (Arms). And
    Figure JPOXMLDOC01-appb-I000003
    And a drive system using the same.
  5.  請求項1から4のいずれかにおいて、
     前記永久磁石同期機の周囲温度が80℃以上の状態で連続的または断続的に駆動されることを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    In any one of Claim 1-4,
    A permanent magnet synchronous machine and a drive system using the same are driven continuously or intermittently at an ambient temperature of 80 ° C. or higher.
  6.  請求項1から5において、
     インバ-タから前記永久磁石同期機に供給される電流の位相が、前記永久磁石による固定子コイル一相分の誘導起電力の位相に対して、22.5°~45.0°の進み位相となるように制御することを特徴とする永久磁石同期機およびこれを用いた駆動システム。
    In claims 1 to 5,
    The phase of the current supplied from the inverter to the permanent magnet synchronous machine is a lead phase of 22.5 ° to 45.0 ° with respect to the phase of the induced electromotive force of one phase of the stator coil by the permanent magnet. And a drive system using the same.
  7.  冷媒を吸い込んで圧縮し吐出する圧縮機構部と、この圧縮機構部を駆動する永久磁石モ-タを備えた圧縮機において、
     前記永久磁石モ-タは、内部に複数極を構成するよう配備された残留磁束密度が0.6T以下の永久磁石を有する回転子と、該回転子に対して所定のギャップを介して配置される固定子と、を備え、
     前記永久磁石による固定子コイル一相分の鎖交磁束Ψp(WB)と、電流実効値Irms(Arms)を該コイルに通電した時の直軸インダクタンスLd(H)および横軸インダクタンスLq(H)とが、
    Figure JPOXMLDOC01-appb-I000004
    の関係を満足するとともに、
    前記圧縮機にはR32冷媒が封入されていることを特徴とする圧縮機。
    In a compressor provided with a compression mechanism that sucks in and compresses and discharges the refrigerant, and a permanent magnet motor that drives the compression mechanism,
    The permanent magnet motor is disposed with a rotor having a permanent magnet with a residual magnetic flux density of 0.6 T or less arranged so as to form a plurality of poles, and a predetermined gap with respect to the rotor. And a stator
    A linear flux inductance Ld (H) and a horizontal axis inductance Lq (H) when the coil is supplied with a flux linkage Ψp (WB) for one phase of the stator coil by the permanent magnet and a current effective value Irms (Arms). And
    Figure JPOXMLDOC01-appb-I000004
    While satisfying the relationship
    An R32 refrigerant is sealed in the compressor.
PCT/JP2013/077193 2012-10-23 2013-10-07 Permanent magnet synchronous machine, drive system using same, and compressor WO2014065102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-233384 2012-10-23
JP2012233384A JP2014087142A (en) 2012-10-23 2012-10-23 Permanent magnet synchronous machine, drive system using the same, and compressor

Publications (1)

Publication Number Publication Date
WO2014065102A1 true WO2014065102A1 (en) 2014-05-01

Family

ID=50544482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077193 WO2014065102A1 (en) 2012-10-23 2013-10-07 Permanent magnet synchronous machine, drive system using same, and compressor

Country Status (2)

Country Link
JP (1) JP2014087142A (en)
WO (1) WO2014065102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413440A1 (en) * 2017-06-06 2018-12-12 GE Renewable Technologies Wind B.V. Magnet module and electrical machine
WO2019069573A1 (en) * 2017-10-02 2019-04-11 株式会社日立製作所 Permanent magnet synchronous machine and electric motor vehicle equipped with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507502B2 (en) * 2014-07-03 2019-05-08 日本精工株式会社 Direct drive motor, transfer device, inspection device, machine tool, and semiconductor manufacturing device
WO2023148981A1 (en) * 2022-02-07 2023-08-10 株式会社Ihi Rotating machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290542A (en) * 1997-04-11 1998-10-27 Aichi Emerson Electric Co Ltd Motor
JP2005207362A (en) * 2004-01-26 2005-08-04 Matsushita Electric Ind Co Ltd Driving device for electric compressor
JP2010063209A (en) * 2008-09-01 2010-03-18 Daikin Ind Ltd Core for rotor
JP2011211819A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Permanent magnet synchronous machine and press machine or injection molding machine using the same
JP2012055119A (en) * 2010-09-02 2012-03-15 Mitsubishi Electric Corp Driving device for permanent magnet type motor, and compressor
JP2012095491A (en) * 2010-10-28 2012-05-17 Aisin Aw Co Ltd Ipm motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290542A (en) * 1997-04-11 1998-10-27 Aichi Emerson Electric Co Ltd Motor
JP2005207362A (en) * 2004-01-26 2005-08-04 Matsushita Electric Ind Co Ltd Driving device for electric compressor
JP2010063209A (en) * 2008-09-01 2010-03-18 Daikin Ind Ltd Core for rotor
JP2011211819A (en) * 2010-03-30 2011-10-20 Hitachi Ltd Permanent magnet synchronous machine and press machine or injection molding machine using the same
JP2012055119A (en) * 2010-09-02 2012-03-15 Mitsubishi Electric Corp Driving device for permanent magnet type motor, and compressor
JP2012095491A (en) * 2010-10-28 2012-05-17 Aisin Aw Co Ltd Ipm motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413440A1 (en) * 2017-06-06 2018-12-12 GE Renewable Technologies Wind B.V. Magnet module and electrical machine
US10840753B2 (en) 2017-06-06 2020-11-17 Ge Renewable Technologies Wind B.V. Magnet module and electrical machine
WO2019069573A1 (en) * 2017-10-02 2019-04-11 株式会社日立製作所 Permanent magnet synchronous machine and electric motor vehicle equipped with same
JP2019068632A (en) * 2017-10-02 2019-04-25 株式会社日立製作所 Permanent magnet synchronous machine and motor vehicle having the same
JP7442954B2 (en) 2017-10-02 2024-03-05 株式会社日立インダストリアルプロダクツ Permanent magnet synchronous machine and electric motor vehicle equipped with the same
JP7473619B2 (en) 2017-10-02 2024-04-23 株式会社日立インダストリアルプロダクツ Permanent magnet synchronous machine and electric motor vehicle equipped with the same

Also Published As

Publication number Publication date
JP2014087142A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6002625B2 (en) Permanent magnet synchronous machine and compressor using the same
JP6118227B2 (en) Permanent magnet rotating electric machine and compressor using the same
Ostovic Memory motors-a new class of controllable flux PM machines for a true wide speed operation
TW565981B (en) Permanent magnet type rotating electrical machine
Li et al. Elimination of even-order harmonics and unipolar leakage flux in consequent-pole PM machines by employing NS-iron–SN-iron rotor
US20170117762A1 (en) Permanent-magnet dynamo-electric machine and compressor using the same
Kashitani et al. Novel slipring-less winding-excited synchronous machine
Lavrinovicha et al. Comparison of permanent magnet synchronous motor and synchronous reluctance motor based on their torque per unit volume
WO2014065102A1 (en) Permanent magnet synchronous machine, drive system using same, and compressor
Bonthu et al. Design of permanent magnet assisted synchronous reluctance motor with external rotor architecture
Zhang et al. High speed permanent magnet motor design and power loss analysis
Liu et al. A dual permanent magnet machine for high-torque low-speed applications
JP6470598B2 (en) Permanent magnet type rotating electric machine and compressor using the same
Yoneda et al. Novel selection of the slot/pole ratio of the PMSM for auxiliary automobile
Park et al. Comparative analysis of surface-mounted and interior permanent magnet synchronous motor for compressor of air-conditioning system in electric vehicles
Sanada et al. Development of high-power PMASynRM using ferrite magnets for reducing rare-earth material use
JP6231285B2 (en) Permanent magnet synchronous machine and compressor using the same
Zhou et al. Comparative studies of fractional/integer-slot consequent pole permanent magnet machines
JP6518720B2 (en) Permanent magnet type rotary electric machine and compressor using the same
JP6002619B2 (en) Permanent magnet synchronous machine and compressor using the same
Takano et al. Improvement of torque density of variable reluctance vernier machine for hybrid electric vehicle
Di Tommaso et al. A novel improved matlab-based software for the electric and magnetic analysis and design of rotating electrical machines
Yu-Seop Comparative Performance Evaluation of Wound Rotor Synchronous Motor and Interior Permanent Magnet Synchronous Motor with Experimental Verification.
Jagasics et al. Comparison of different PMSM rotor configurations
Jeong et al. Comparisons of flat and V-shaped IPMSM in electric vehicle compressor for high efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848481

Country of ref document: EP

Kind code of ref document: A1