WO2014064751A1 - 液晶表示装置及びその製造方法 - Google Patents

液晶表示装置及びその製造方法 Download PDF

Info

Publication number
WO2014064751A1
WO2014064751A1 PCT/JP2012/077241 JP2012077241W WO2014064751A1 WO 2014064751 A1 WO2014064751 A1 WO 2014064751A1 JP 2012077241 W JP2012077241 W JP 2012077241W WO 2014064751 A1 WO2014064751 A1 WO 2014064751A1
Authority
WO
WIPO (PCT)
Prior art keywords
divided
integer
alignment
liquid crystal
region
Prior art date
Application number
PCT/JP2012/077241
Other languages
English (en)
French (fr)
Inventor
杉本 光弘
住吉 研
西田 真一
池野 英徳
英毅 伊藤
Original Assignee
Nltテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nltテクノロジー株式会社 filed Critical Nltテクノロジー株式会社
Priority to JP2014543019A priority Critical patent/JP6057261B2/ja
Priority to PCT/JP2012/077241 priority patent/WO2014064751A1/ja
Priority to US14/437,368 priority patent/US9606403B2/en
Priority to CN201280076568.0A priority patent/CN104756000B/zh
Publication of WO2014064751A1 publication Critical patent/WO2014064751A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present invention relates to a liquid crystal display device capable of maintaining good viewing angle characteristics even with high-definition pixels and capable of efficient alignment division processing, and a method for manufacturing the same.
  • Liquid crystal display has features such as high display quality, thinness, low power consumption, and low cost, and is rapidly spreading in various applications.
  • small-sized monitors such as monitors for mobile terminals and monitors for digital still cameras
  • medium-sized sizes such as monitors for laptop computers and desktop computers
  • monitors for graphic designs, and monitors for medical use as well as monitors for LCD TVs and digital signage It is applied to various display products of large size.
  • the liquid crystal alignment in the pixels In order to improve the uniformity of the display screen, it is necessary to make the liquid crystal alignment in the pixels uniform.
  • rubbing-less alignment treatment in which an alignment film is irradiated with an energy beam is known, and ion alignment treatment of He atoms and Ar atoms and photo-alignment treatment by irradiation with UV (Ultra Violet) light. is there.
  • the photo-alignment process is a process that does not require a vacuum process, and VA (Vertical Development studies are also being conducted for application to TN (Twisted Nematic), IPS (In-plane Switching), FFS (Fringe Field Switching), etc.
  • Photo-alignment treatment is effective for alignment of liquid crystal molecules by breaking the intermolecular bonds of the alignment film at the molecular level, changing the coordination position of the molecules, or bonding at the molecular level according to the incident direction of light irradiation and the polarization direction.
  • the alignment uniformity of the liquid crystal molecules can be controlled at the molecular level, and the alignment uniformity is extremely high.
  • the photo-alignment treatment is a bright spot, a dark spot, or the like caused by scratches caused by rubbing of the rubbing cloth, streaky alignment irregularities, or foreign matters including scraps such as an alignment film or a rubbing cloth as seen in the rubbing method. Since no problem occurs, it is particularly effective for high definition.
  • the photo-alignment treatment requires relatively large energy irradiation in order to impart alignment properties to the alignment film, so that the processing capability can be improved by improving the light irradiation process, improving the pixel structure, developing the alignment film material, etc. desired.
  • a horizontal electric field method such as an IPS method or an FFS method.
  • This system rotates horizontally aligned nematic liquid crystal molecules in a horizontal direction with a horizontal electric field, and can suppress changes in image quality due to the viewing angle direction accompanying the rise of the molecular axis, thus improving viewing angle characteristics. be able to.
  • the horizontal electric field method by using a split electrode method in which the comb-like electrode shape in a pixel is operated by being divided into two or four divided regions, the viewing angle characteristics in each electrode region can be compensated. Thus, it is possible to improve the color change characteristic of the perspective and the gradation inversion.
  • this improvement can achieve the same effect even in the split orientation method in which the same comb electrode region in the pixel is divided into regions having different orientation directions.
  • the liquid crystal alignment is discontinuous at the boundary between the divided electrode regions or alignment regions.
  • disclination lines are generated, so that the contrast of light leakage in black display is lowered, and the electric field necessary to rotate the liquid crystal cannot be applied.
  • the brightness may be reduced.
  • a countermeasure such as light shielding by devising the electrode structure is effective, but it becomes difficult to apply to a high-definition pixel.
  • Patent Document 1 The technique described in Patent Document 1 is shown in FIG.
  • Patent Document 1 in a liquid crystal display device having a plurality of picture elements 6 arranged in a matrix, nematic liquid crystal is sandwiched between two opposing substrates on which electrodes and a liquid crystal alignment film are formed.
  • the viewing angle directions of the liquid crystal molecules are divided into different areas 18 and 19, and the lower area on the picture element 6 in an arbitrary row and the upper area on the picture element 6 in the next row are the same.
  • a technique is disclosed that has a viewing angle direction, and that a lower region on an arbitrary row of picture elements 6 and a lower region on the next row of picture elements 6 have the same viewing angle direction. Thereby, the alignment division state is stably maintained, and uneven contrast due to the viewing angle direction and uneven contrast due to pressing are prevented.
  • FIG. 26 the gate electrode 13, the source electrode 17, and the active matrix substrate 20 are shown.
  • Patent Document 2 The technology described in Patent Document 2 is shown in FIG.
  • a liquid crystal layer is sandwiched between two substrates that form a plurality of pixels a with the surfaces on which electrodes are placed facing each other, and two regions A and B having different molecular arrangement states in each pixel.
  • a technique for arranging so that regions of other pixels adjacent to one region of an arbitrary pixel are the same molecular arrangement region between adjacent pixels As a result, the number of disclination lines generated when a pixel is divided into two regions A and B having different orientations is reduced, and a liquid crystal display element of high quality display can be obtained.
  • FIG. 27 the pixel electrode 21 and the TFT drive element 22 are shown.
  • Patent Document 3 The technique described in Patent Document 3 is shown in FIG.
  • the twisted nematic layer on one pixel is divided into two regions A and B having different 180 ° orientation directions in order to widen the viewing angle range, and the boundary of the twisted nematic layer when normally white black is displayed.
  • a technique for preventing light leakage from the light using a light shielding film and realizing high contrast is disclosed. This means that a reduction in contrast of a liquid crystal display device having twisted nematic liquid crystals having different alignment directions in one pixel is suppressed.
  • 28A shows a general planar arrangement of the color filters R, G, and B
  • FIGS. 28B and 28C are examples in which the technique described in Patent Document 3 is applied to FIG. 28A.
  • a section 25 indicated by a line indicates that one pixel is divided.
  • Patent Document 4 discloses a technique for providing a liquid crystal display device that is excellent in viewing angle characteristics and capable of high-quality display.
  • the picture elements are arranged in this order along the direction in which the first, second, third and fourth domains (D1 to D4) having different alignment directions of the liquid crystal molecules located near the center of the liquid crystal layer 30 in the thickness direction are present. It contains a quadrant domain D arranged.
  • the first substrate 10 has two first regions A1 having a regulating force for orienting liquid crystal molecules in the first direction R1, and a regulating force for orienting in a second direction R2 opposite to the first direction R1. And a second region A2 provided between the first regions A1.
  • the second substrate 20 has a third region A3 having a regulating force to be oriented in a third direction R3 intersecting the first direction R1, and a fourth having a regulating force to be oriented in a fourth direction R4 opposite to the third direction R3. And a region A4.
  • the boundaries between the domains (D1 to D4) extend in a direction orthogonal to the arrangement direction of the domains (D1 to D4). Note that x, y, and P in FIG. 29 indicate lengths.
  • Patent Document 5 discloses a technique for improving the viewing angle dependency of a display image regardless of the direction in which a line segment, a monochromatic region or a character is displayed on a liquid crystal display device.
  • An alignment in which a first unit alignment region 6 having a first alignment characteristic and a second unit alignment region 8 having a second alignment characteristic different from the first alignment characteristic are mixedly arranged in a matrix position of the matrix
  • the alignment film 10 including the film 10 and in which the first and second unit alignment regions 6 and 8 are disposed so that the first and second unit alignment regions 6 and 8 are mixed along a straight line in every direction. Including.
  • FIG. 30 shows an alignment region 12 composed of the unit alignment region 6, an alignment region 14 composed of the unit alignment region 8, and a reference pattern 16 composed of the alignment regions 12, 14.
  • the first problem is that the high-definition and wide viewing angle characteristics of the pixel cannot be achieved by the split alignment method using the photo-alignment process.
  • the dividing orientation is particularly effective because it can create the symmetry of the orientation direction of the liquid crystal.
  • the boundary portion of the divided alignment cannot be said to be an effective region for display because the liquid crystal alignment becomes discontinuous and disclination occurs.
  • the area ratio to the pixel area increases as the number of divisional divisions increases or as the definition becomes finer (the pixel size is smaller). Opening ratio is reduced.
  • the photo-alignment process is not efficient for high definition of pixels and wide viewing angle characteristics.
  • the dividing orientation is particularly effective because it can create the symmetry of the orientation direction of the liquid crystal.
  • the main method is to divide the work substrate into a plurality of UV irradiation areas and perform mask exposure by step-feeding the divided regions, and the gap between the mask and the work substrate is several ⁇ m. The proximity exposure takes about several tens of ⁇ m.
  • the third problem is the deterioration of display quality.
  • Divided orientation is the same orientation treatment in an area between pixels as disclosed in Patent Documents 1, 2, and 4.
  • the alignment processing is performed in a continuous layout only in one direction, display unevenness at the alignment processing portion boundary is continuously visually recognized, so that display quality is deteriorated.
  • a mask unit in which a plurality of pixel patterns having different alignment states in one pixel or one sub-pixel unit is combined. And an alignment process is performed in units of the mask.
  • an object of the present invention is to provide a liquid crystal display device and a method for manufacturing the same, which can maintain a good viewing angle characteristic even with high-definition pixels and can perform an efficient alignment division process.
  • the liquid crystal display device is A liquid crystal display device in which an electrode pattern of one pixel region and a liquid crystal alignment region are separately arranged with respect to pixels arranged in a matrix,
  • the one pixel region includes a divided electrode Pn (P1, P2,..., Pm, where m is an integer of 2 or more) in which an electrode pattern is divided into a plurality, and a divided alignment in which a liquid crystal alignment is divided into a plurality.
  • the divided electrode Pn in the one pixel region (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) and the divided electrode P′n (n is an arbitrary integer in the range from 1 to m) , M is an integer of 2 or more) is the same structure,
  • the divided orientation On of the one pixel region (n is an integer from 1 to m, m is an integer of 2 or more), and the divided orientation On'n of at least one pixel adjacent thereto (n is an integer from 1 to m) And m is an integer of 2 or more) and formed in the same orientation region, Is.
  • a method for manufacturing a liquid crystal display device includes: A method of manufacturing a liquid crystal display device in which an electrode pattern of one pixel region and a liquid crystal alignment region are separately arranged with respect to pixels arranged in a matrix,
  • the one pixel region includes a divided electrode Pn (P1, P2,..., Pm, where m is an integer of 2 or more) in which an electrode pattern is divided into a plurality, and a divided alignment On in which a liquid crystal alignment is divided into a plurality.
  • the divided electrode Pn in the one pixel region (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) and the divided electrode P′n (n is an arbitrary integer in the range from 1 to m) , M is an integer of 2 or more) is the same structure,
  • the divided orientation On of the one pixel region (n is an integer from 1 to m, m is an integer of 2 or more), and the divided orientation On'n of at least one pixel adjacent thereto (n is an integer from 1 to m) And m is an integer of 2 or more) and are formed in the same orientation region,
  • the divided alignment regions On + O′n formed by the divided alignment On of the one pixel region and the divided alignment O′n of the pixel region adjacent thereto are formed in a repetitive pattern having the same shape and the same area.
  • the divided alignment region On + O′n (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) is an exposure area having an arbitrary mask size, and in a direction corresponding to the alignment direction of each region of the alignment division Step feeding, forming by photo-alignment processing, Is.
  • a pixel when a pixel is divided and aligned by photo-alignment processing, it has a wide alignment pattern sharing an adjacent pixel region, so that even a high-definition pixel maintains good viewing angle characteristics and is efficient. It is possible to provide a liquid crystal display device and a method for manufacturing the same that can perform good alignment division processing.
  • FIG. 3 is a schematic diagram illustrating an example of a configuration in which divided electrodes and divided orientations are combined in Embodiment 1.
  • FIG. FIG. 3 is a plan view (part 1) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 6 is a plan view (part 2) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 6 is a plan view (part 3) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 6 is a plan view (part 4) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 6 is a plan view (part 5) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 3 is a cross-sectional view (part 1) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 3 is a cross-sectional view (part 2) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 3 is a cross-sectional view (part 3) specifically showing a combination of divided electrodes and divided orientations in one pixel in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a layout of divided electrodes of each pixel in a display area in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a layout of divided electrodes of each pixel in a display area in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a layout of divided orientations of pixels in a display area in the first embodiment.
  • FIG. 3 is a schematic diagram specifically showing a method of divided mask exposure using the same mask in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of different periodicities in the layout of divided electrodes of pixels in a display area in the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of periodicity with different layouts of divisional orientations of pixels in a display area in the first embodiment.
  • FIG. 6 is a schematic diagram illustrating another example of different periodicities in the layout of the divided electrodes of the respective pixels in the display area in the first embodiment.
  • FIG. 6 is a schematic diagram illustrating another example of periodicity with different layouts of divisional orientations of pixels in a display area in the first embodiment.
  • 6 is a schematic diagram illustrating an example of a configuration in which divided electrodes and divided orientations are combined in Embodiment 2.
  • FIG. FIG. 9 is a plan view (part 1) specifically showing a combination of divided electrodes and divided orientations in one pixel in the second embodiment.
  • FIG. 10 is a plan view (part 2) specifically showing a combination of divided electrodes and divided orientations in one pixel in the second embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout of divided electrodes of pixels in a display area in the second embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout of divided orientations of pixels in a display area in the second embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout cycle of a divided electrode of each sub pixel in a display area in the third embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout cycle of divisional orientation of each sub pixel in a display area in the third embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout cycle of divided electrodes of two sub-pixels in a display area in a fourth embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a layout cycle of divisional orientation of each two sub-pixels in a display area in the fourth embodiment. It is a figure which shows the technique of patent document 1.
  • FIG. is a figure which shows the technique of patent document 2.
  • FIG. is a figure which shows the technique of patent document 3.
  • FIG. It is a figure which shows the technique of patent document 4.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration in which divided electrodes and divided orientations are combined in the liquid crystal display device according to the first embodiment.
  • the liquid crystal display device of Embodiment 1 includes four divided electrodes (P1, P2, P3, P4) divided into four as shown in FIG. 1A and four divided electrodes as shown in FIG. 1B. It is constituted by an arrangement relationship with divided divisional orientations (O1, O2, O3, O4). Further, FIG. 1C shows a positional relationship between the divided electrodes and the divided orientations. The figure shows four adjacent pixels, and one pixel is composed of four divided electrodes (P1, P2, P3, P4).
  • the divided electrode P4 has the same structure as the divided electrode P′4 of three adjacent pixels (three locations on the right, lower, and lower right). Furthermore, the region surrounding the four divided electrodes P4 (P′4) having the same structure in the four adjacent pixels is processed with the same divided orientation (O4).
  • the liquid crystal display device has four divided electrodes (P1, P2, P3, P4) and four divided alignments (O1, O2, O3, O4).
  • the divided electrode P4 has the same structure as P′4 of pixels adjacent to the divided electrode P3 (right, lower, and lower right).
  • a region surrounding four divided electrodes P4 (P'4) having the same structure in four adjacent pixels is processed with the same divided orientation (O4).
  • the split electrode is an FFS system
  • the split alignment is homogeneously aligned liquid crystal orientation and tilt angle (pretilt angle)
  • the polarization axis 11a of the TFT substrate and the polarization axis 12a of the CF substrate are shown as examples. is there.
  • the FFS method is shown in the first embodiment, the present invention is suitable for a device of a horizontal electric field method such as an IPS method or a method combining the FFS method and the IPS method.
  • the present invention can be applied to systems other than those described above.
  • the four divided electrodes (P1, P2, P3, P4) are different from each other, and the four divided orientations (O1, O2, O3, O4) are also different from each other.
  • FIGS. 7 to 9 are diagrams showing the alignment state of the liquid crystal molecules in the cross-sectional direction based on the plan view of FIG. 2 among the combinations of the divided electrodes and the divided alignments in one pixel described above.
  • a liquid crystal layer 13 is sandwiched between a TFT (Thin Film Transistor) substrate 11 that is a substrate on which divided electrodes are formed and a CF (Color Filter) substrate 12 that is a substrate facing the TFT substrate 11.
  • the liquid crystal alignment at the interface with the liquid crystal layer 13 of the TFT substrate 11 and the liquid crystal alignment at the interface with the liquid crystal layer 13 on the CF substrate 12 side are the liquid crystal alignment in the cross-sectional direction (thickness direction). Determined. 2 (FIGS. 7A, 8A, and 9A) and BB ′ cross sections (FIGS. 7B, 8B, and 9B). ]) Liquid crystal alignment can be made in three states by selecting the alignment processing direction of the TFT substrate 11 and the CF substrate 12.
  • FIG. 7 shows an antiparallel alignment state in which the alignment directions on the TFT substrate 11 side and the CF substrate 12 side are changed by 180 degrees.
  • FIG. 8 shows a splay alignment state in which the alignment directions on the TFT substrate 11 side and the CF substrate 12 side are the same.
  • the TFT substrate 11 side divides the orientation in the pixel plane at 0 degrees and 180 degrees, while the CF substrate 12 side orientation orientation is fixed at 0 degrees or 180 degrees.
  • the above-mentioned divided alignment indicates the average liquid crystal alignment direction in the cross-sectional direction, and the type of liquid crystal alignment in the cross-sectional direction (anti-parallel, spray, or a mixture of both) ) Is not particularly limited.
  • the liquid crystal alignment in the cross-sectional direction it is necessary to provide a pretilt angle of the liquid crystal molecules at the alignment film interface.
  • non-polarized or linearly polarized UV light is irradiated into the alignment film at an oblique incident angle, so that the alignment film includes not only the XY plane direction but also the thickness direction (Z direction).
  • Optical anisotropy can be expressed, and an arbitrary pretilt angle can be controlled.
  • the split orientation (O1, O2, O3, O4) is a twist of the liquid crystal molecules in the bulk depending on the combination with the split electrodes, even if the average liquid crystal orientation is the same with no voltage applied.
  • the orientation of the liquid crystal alignment after voltage application can be made substantially different.
  • the pretilt angle of the liquid crystal molecules may be zero.
  • linearly polarized UV light may be irradiated from the vertical direction so as to develop two-dimensional optical anisotropy in the XY plane direction of the alignment film.
  • the selection can be made arbitrarily in consideration of viewing angle characteristics, suppression of disclination between the divisional alignments, mass productivity related to the alignment processing of each substrate, and the like. it can.
  • the alignment treatment on the TFT substrate side having the divided electrodes is important. Since a large electric field is applied to the liquid crystal molecules in the vicinity of the divided electrodes when the panel is driven, a stable and strong anchoring is required between the liquid crystal and the alignment film at the substrate interface. Therefore, the alignment treatment on the substrate side having divided electrodes is the most important for divided alignment (O1, O2, O3, O4).
  • 10 to 16 are schematic diagrams showing three examples in which the periodicity of the layout of the divided electrodes and the layout of the divided orientations of each pixel in the display area is different.
  • the pixel is composed of four divided electrodes (P1, P2, P3, P4), and the display area is composed of a combination of divided electrode layouts in four types of pixels.
  • the divided electrode layout period of the pixel is 2 pixel pitches in the X direction and 2 pixel pitches in the Y direction. Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same.
  • the liquid crystal alignment is composed of four divided alignments (O1, O2, O3, O4) each having substantially the same shape and area as the pixel, and the divided alignment layout period is in the X direction. Are 2 pixel pitches and the Y direction is 2 pixel pitches.
  • region enclosed with the broken line of FIG.10 and FIG.11 has shown the substantially same area
  • the mainstream of the split alignment photo-alignment processing method is to divide a work substrate into a plurality of UV irradiation areas and perform mask exposure by step-feeding the divided areas.
  • the combination of the divided orientations in the example of FIG. 11 described above has the same pattern as the repetition period of the four divided orientations (O1, O2, O3, O4) in the display region. Therefore, four division alignment processes can be performed with one mask.
  • a division exposure mask that covers a division area of a display area (work substrate) and an optical system for photo-alignment processing that can arbitrarily determine an irradiation axis or a polarization axis (in some cases, both may be combined) are prepared. .
  • the optical system irradiates the alignment film with non-polarized or linearly polarized UV light at an oblique incident angle in order to control the pretilt angle of the liquid crystal molecules in each divided alignment region.
  • the optical system may irradiate linearly polarized UV light from the vertical direction into the alignment film in order to make the pretilt angle of the liquid crystal molecules zero.
  • the divided exposure by step feed may be performed.
  • division exposure of the orientation direction “ ⁇ ” is performed by step feeding on all the regions to be divided orientation O1
  • the work substrate is rotated
  • division of the orientation direction “ ⁇ ” is performed by step feeding on all the regions to be divided orientation O2.
  • Execute exposure rotate the work substrate, and perform stepwise feeding to all the areas that will be divided orientation O3 by stepwise feeding in the orientation direction “ ⁇ ”, rotate the work substrate and step feed to all areas that will be divided orientation O4 To divide and expose in the orientation direction " ⁇ ".
  • the pixel is composed of four divided electrodes (P1, P2, P3, P4), and the display area is composed of a combination of divided electrode layouts in four types of pixels.
  • the divided electrode layout cycle of the pixels is 4 pixel pitches in the X direction and 2 pixel pitches in the Y direction. Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same. As shown in FIG.
  • each liquid crystal alignment is composed of four divided alignments (O1, O2, O3, O4) each having substantially the same shape and the same area as the pixel, and the divided alignment layout period is in the X direction.
  • the pitch is 4 pixels and the Y direction is a 2 pixel pitch.
  • region enclosed with the broken line of FIG.13 and FIG.14 has shown the substantially same area
  • the work substrate is rotated by 0 degrees with respect to the optical system of the photo-alignment processing and 180 degrees.
  • the arrangement period is the same when rotated, and the arrangement period is the same when rotated 90 degrees and 270 degrees. Therefore, four divisional alignment processes can be performed with two masks for the X direction feed process and the Y direction feed process.
  • the pixel is composed of four divided electrodes (P1, P2, P3, P4), and the display area is composed of a combination of divided electrode layouts in four types of pixels.
  • the divided electrode layout period of the pixel is 2 pixel pitch in the X direction and 4 pixel pitch in the Y direction. Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same. As shown in FIG.
  • each liquid crystal alignment is composed of four divided alignments (O1, O2, O3, O4) each having substantially the same shape and the same area as the pixel, and the divided alignment layout period is in the X direction.
  • the pitch is 2 pixels and the Y direction is 4 pixels.
  • region enclosed with the broken line of FIG.15 and FIG.16 has shown the substantially same area
  • the work substrate is rotated by 0 degrees with respect to the optical system of the photo-alignment processing and 180 degrees.
  • the arrangement period is the same when rotated, and the arrangement period is the same when rotated 90 degrees and 270 degrees. Therefore, four divisional alignment processes can be performed with two masks for the X direction feed process and the Y direction feed process.
  • FIG. 17 is a schematic diagram illustrating an example of a configuration in which divided electrodes and divided orientations are combined in the second embodiment of the liquid crystal display device of the present invention.
  • the liquid crystal display device of Embodiment 2 is divided into four divided electrodes (P1, P2, P3, P4) as shown in FIGS. 17 [A1] and [A2] and FIGS. 17 [B1] and [B2]. As shown in the drawing, it is divided into four parts (O1, O2, O3, O4) and is arranged in an arrangement relationship in the imposition direction different from that of the first embodiment. Further, FIG. 17C shows the positional relationship between the divided electrodes and the divided orientations. FIG. 17C shows four adjacent pixels, and one pixel is composed of four divided electrodes (P1, P2, P3, P4). The divided electrodes of the pixels adjacent to the pixel (FIG. 17 [A1]) have the structure shown in FIG.
  • the divided electrode P4 has the same structure as the divided electrode P′4 of the adjacent pixel (right, lower, lower right). Further, the region surrounding the four divided electrodes P4 (P'4) having the same structure in the four adjacent pixels is processed with the same divided orientation (O4).
  • the split electrode is an FFS system
  • the split alignment is homogeneously aligned liquid crystal orientation and tilt angle (pretilt angle)
  • the polarization axis 11a of the TFT substrate and the polarization axis 12a of the CF substrate are shown as examples. is there.
  • the FFS method is shown in the second embodiment, the present invention is also suitable for a lateral electric field device such as an IPS method or a method combining the FFS method and the IPS method.
  • the present invention can be applied to systems other than those described above.
  • the four divided electrodes (P1, P2, P3, P4) are different from each other, and the four divided orientations (O1, O2, O3, O4) are different from each other.
  • 20 and 21 are schematic diagrams showing an example of the period of the divided electrode layout and the divided orientation layout of each pixel in the display area.
  • the second embodiment will be described.
  • the pixel is composed of four divided electrodes (P1, P2, P3, P4), and the display area is composed of a combination of divided electrode layouts in four types of pixels. Furthermore, the divided electrode layout period of the pixel is 2 pixel pitches in the X direction and 2 pixel pitches in the Y direction. Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same. As shown in FIG.
  • the liquid crystal alignment is composed of two horizontally-oriented concave divided alignments (O1, O3) and two horizontally-shaped convex divided alignments (O2, O4), and the divided alignment layout period is X
  • the direction is 2 pixel pitch and the Y direction is 2 pixel pitch.
  • region enclosed with the broken line of FIG.20 and FIG.21 has shown the substantially the same area
  • the arrangement period of the divided orientations in the X direction and the Y direction is the same at a two-pixel pitch as shown in FIG. Further, the phases of the divided orientation (O1) and the divided orientation (O3) and the phases of the divided orientation (O2) and the divided orientation (O4) are shifted from each other by 180 degrees. Accordingly, when it is desired to perform the orientation process by rotating the phases of the four divided orientations by 90 degrees (0, 90, 180, 270 degrees), the work substrate is rotated by 0 degrees with respect to the optical system of the optical orientation process and 180 degrees. The arrangement period is the same when rotated, and the arrangement period is the same when rotated 90 degrees and 270 degrees. Therefore, four divisional alignment processes can be performed with two masks for the X direction feed process and the Y direction feed process.
  • FIG. 22 and FIG. 23 are schematic diagrams showing an example of the period of the divided electrode layout and the divided orientation layout of each sub-pixel in the display area in the liquid crystal display device of the third embodiment.
  • the third embodiment will be described.
  • the sub-pixel (rectangular shape in the unit of thick solid line in the figure) is composed of four divided electrodes (P1, P2, P3, P4), and the display area is divided into four types of sub-pixels. It is composed of a combination of electrode layouts. Further, the divided electrode layout period of the sub-pixels is 2 sub-pixel pitches in the X direction and 2 sub-pixel pitches in the Y direction. Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same. As shown in FIG.
  • each liquid crystal alignment is composed of four divided alignments (O1, O2, O3, O4) each having substantially the same shape and the same area as the sub-pixel, and the divided alignment layout period is X
  • the direction is a 2 sub-pixel pitch and the Y direction is a 2 sub-pixel pitch.
  • region enclosed with the broken line of FIG.22 and FIG.23 has shown the substantially the same area
  • R, G, and B indicate the colors (Red, Green, Blue) of the color filter, respectively.
  • the combination of the divided orientations in the example of FIG. 23 described above has the same pattern as the repetition cycle of the four divided orientations (O1, O2, O3, O4) in the display area. Therefore, four division alignment processes can be performed with one mask.
  • a division exposure mask that covers a division area of a display area (work substrate) and an optical system for photo-alignment processing that can arbitrarily determine an irradiation axis or a polarization axis (in some cases, both may be combined) are prepared.
  • the optical system irradiates the alignment film with non-polarized or linearly polarized UV light at an oblique incident angle in order to control the pretilt angle of the liquid crystal molecules in each divided alignment region.
  • the optical system may irradiate linearly polarized UV light from the vertical direction into the alignment film in order to make the pretilt angle of the liquid crystal molecules zero.
  • the work substrate is positioned at angles (0, 90, 180, 270 degrees) with respect to the optical system of the optical orientation processing. ), And divided exposure by step feed may be performed.
  • FIG. 24 and FIG. 25 are schematic diagrams showing an example of the period of the divided electrode layout and the divided orientation layout of each of the two sub-pixels in the display area in the liquid crystal display device of the fourth embodiment.
  • the fourth embodiment will be described.
  • two sub-pixels in the horizontal direction are taken as one unit, and two sub-pixels (in the unit of a thick solid line in the figure, a rectangular shape) have four divided electrodes (P1, P2, P3, P4), and the display area is composed of a combination of divided electrode layouts in four types of two sub-pixels.
  • the divided electrode layout period of 2 sub-pixels is 4 sub-pixel pitches in the X direction and 2 sub-pixel pitches in the Y direction.
  • Divided orientation of the same irradiation axis or the same polarization axis (which may be a combination of both) is performed on a region where adjacent divided electrodes are the same. As shown in FIG.
  • each liquid crystal alignment is composed of four divided alignments (O1, O2, O3, O4) having substantially the same shape and the same area as the two sub-pixels, and the divided alignment layout period is X
  • the direction is 4 sub-pixel pitch and the Y direction is 4 sub-pixel pitch.
  • region enclosed with the broken line of FIG.24 and FIG.25 has shown the substantially the same area
  • R, G, and B indicate the colors of the color filter (Red, Green, Blue), respectively.
  • the combination of the divided orientations in the example of FIG. 25 described above has the same pattern as the repetition cycle of the four divided orientations (O1, O2, O3, O4) in the display area. Therefore, four division alignment processes can be performed with one mask.
  • a divided exposure mask that covers a divided area of the display area (work substrate) and an optical system for optical alignment processing that can arbitrarily determine the irradiation axis or the same polarization axis (in some cases, both may be combined) are prepared. To do.
  • the work substrate is positioned at angles (0, 90, 180, 270 degrees) with respect to the optical system of the optical orientation processing. ), And divided exposure by step feed may be performed.
  • the liquid crystal display device of the present invention has a wide alignment pattern sharing adjacent pixel regions when the inside of a pixel is divided and aligned by photo-alignment processing, a wide viewing angle characteristic can be maintained even if the pixels are made high definition.
  • the divided orientation is effective because it can create the symmetry of the orientation direction of the liquid crystal.
  • the liquid crystal display device of the present invention can reduce the number of divisional alignments, it can reduce the disclination region generated by discontinuous liquid crystal alignment due to the divisional alignment. Deterioration of display quality can be prevented. Since the layout of the divided electrodes and the divided orientation is periodically changed, display unevenness due to the electrode structure, the divided orientation, or the like is not continuously recognized, so that the display quality can be improved. Since it has a wide alignment pattern sharing adjacent pixel regions, it is possible to suppress deterioration in display quality with respect to the spread of light in proximity exposure and the alignment accuracy with the mask.
  • the liquid crystal display device of the present invention can efficiently perform the division alignment process.
  • the divisional alignment process of the present invention is not limited to up / down / left / right, but also a 4-division alignment effective for improving the viewing angle characteristics of an oblique field of view. Can be planned. Then, in order to obtain a necessary orientation direction with respect to the work substrate, one photo-alignment is performed by rotating the mask exposure direction so that the in-plane angle of the mask with respect to the work substrate matches the orientation of the four-part orientation.
  • a manufacturing method capable of processing by step exposure of the apparatus can be provided.
  • a liquid crystal display device in which an electrode pattern of one pixel region and a liquid crystal alignment region are separately arranged for pixels arranged in a matrix,
  • the one pixel region includes a divided electrode Pn (P1, P2,..., Pm, where m is an integer of 2 or more) in which an electrode pattern is divided into a plurality, and a divided alignment in which a liquid crystal alignment is divided into a plurality.
  • the divided electrode Pn in the one pixel region (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) and the divided electrode P′n (n is an arbitrary integer in the range from 1 to m) , M is an integer of 2 or more) is the same structure,
  • the divided orientation On of the one pixel region (n is an integer from 1 to m, m is an integer of 2 or more), and the divided orientation On'n of at least one pixel adjacent thereto (n is an integer from 1 to m) And m is an integer of 2 or more) and formed in the same orientation region, Liquid crystal display device.
  • a liquid crystal display device in which an electrode pattern in one pixel region and a liquid crystal alignment region are separately arranged with respect to pixels arranged in a matrix,
  • the pixel is composed of a plurality of sub-pixels,
  • a unit of sub-pixel region is formed by combining at least one of the sub-pixels,
  • the sub-pixel region of one unit is divided into a plurality of divided electrodes Pn (P1, P2,..., Pm, where m is an integer of 2 or more), and the liquid crystal alignment is divided into a plurality.
  • the divisional orientation On (composed of O1, O2,..., Om, m is an integer of 2 or more) is a combination corresponding to each other,
  • the divisional orientation On (n is an integer from 1 to m, m is an integer of 2 or more) and the divisional orientation On′n (n is an integer of at least one subpixel region adjacent thereto). 1 to m is an arbitrary integer, and m is an integer of 2 or more).
  • Liquid crystal display device is a combination corresponding to each other.
  • the liquid crystal alignment has a transverse electric field mode.
  • the liquid crystal display device according to any one of appendices 1 to 4.
  • a method of manufacturing a liquid crystal display device in which an electrode pattern of one pixel region and a liquid crystal alignment region are separately arranged for pixels arranged in a matrix,
  • the one pixel region includes a divided electrode Pn (P1, P2,..., Pm, where m is an integer of 2 or more) in which an electrode pattern is divided into a plurality, and a divided alignment On in which a liquid crystal alignment is divided into a plurality.
  • the divided electrode Pn in the one pixel region (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) and the divided electrode P′n (n is an arbitrary integer in the range from 1 to m) , M is an integer of 2 or more) is the same structure,
  • the divided orientation On of the one pixel region (n is an integer from 1 to m, m is an integer of 2 or more), and the divided orientation On'n of at least one pixel adjacent thereto (n is an integer from 1 to m) And m is an integer of 2 or more) and are formed in the same orientation region,
  • the divided alignment regions On + O′n formed by the divided alignment On of the one pixel region and the divided alignment O′n of the pixel region adjacent thereto are formed in a repetitive pattern having the same shape and the same area.
  • the divided alignment region On + O′n (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) is an exposure area having an arbitrary mask size, and in a direction corresponding to the alignment direction of each region of the alignment division Step feeding, forming by photo-alignment processing, A method for manufacturing a liquid crystal display device.
  • Appendix 8 A method of manufacturing a liquid crystal display device in which an electrode pattern in one pixel region and a liquid crystal alignment region are divided and arranged for pixels arranged in a matrix,
  • the pixel is composed of a plurality of sub-pixels,
  • a unit of sub-pixel region is formed by combining at least one of the sub-pixels,
  • the sub-pixel region of one unit is divided into a plurality of divided electrodes Pn (P1, P2,..., Pm, where m is an integer of 2 or more), and the liquid crystal alignment is divided into a plurality.
  • the divisional orientation On (composed of O1, O2,..., Om, m is an integer of 2 or more) is a combination corresponding to each other,
  • the divisional orientation On (n is an integer from 1 to m, m is an integer of 2 or more) and the divisional orientation On′n (n is an integer of at least one subpixel region adjacent thereto).
  • the divisional alignment regions On + O′n formed by the divisional alignment On of the unit pixel region and the divisional alignment O′n of the subpixel region adjacent to the unitary subpixel region have a repeating pattern having the same shape and the same area.
  • the divided alignment region On + O′n (n is an arbitrary integer from 1 to m, m is an integer of 2 or more) is an exposure area having an arbitrary mask size, and in a direction corresponding to the alignment direction of each region of the alignment division Step feeding, forming by photo-alignment processing, A method for manufacturing a liquid crystal display device.
  • Appendix 9 One or two masks are used for the photo-alignment treatment.
  • the liquid crystal display device is a horizontal electric field system that has a high display screen uniformity (uniformity), a liquid crystal display that is required to have a wide viewing angle characteristic with high contrast and good color reproducibility.
  • the present invention can be used for any device equipped with the active matrix type liquid crystal display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

4つに分割された分割電極(P1,P2,P3,P4)と分割配向(O1,O2,O3,O4)とで構成され、分割電極P4がこれに隣接する画素(右、下、右下の3箇所)のP'4と同一構造であり、隣接する4つの画素内にある同一構造の4つの分割電極P4(P'4)を囲む領域を、同一の分割配向(O4)で処理することにより、高精細画素であっても良好な視野角特性を維持するとともに、効率良い配向分割処理が可能な、液晶表示装置及びその製造方法を提供する。

Description

液晶表示装置及びその製造方法
 本発明は、高精細画素であっても良好な視野角特性を維持するとともに、効率良い配向分割処理が可能な、液晶表示装置及びその製造方法に関する。
 液晶表示ディスプレイは、高表示品質、薄型、低消費電力、低コストなどの特徴があり、様々な用途に急激に普及している。例えば、携帯端末用のモニター、デジタルスチルカメラ用モニターなどの小型サイズから、ノートパソコンやデスクトップパソコン用モニター、グラフィックデザイン用モニター、医療用モニターなどの中型サイズ、更には、液晶テレビ、デジタルサイネージ用モニターなどの大型サイズの多様な表示製品に適用されている。
 近年、ハイエンド向けの液晶表示ディスプレイは、表示品位の改良を求めるニーズが高まっており、高精細かつ高開口率(高透過)化による高輝度高画質化が進む中で、表示画面の均一性(ユニフォミティ)の向上や高コントラストで色再現性の良好な広い視野角特性を有する性能が求められている。
 表示画面の均一性を向上するには、画素内の液晶配向を均一にする必要がある。これを改善する手段としては、配向膜にエネルギービームを照射するラビングレスの配向処理が知られており、He原子やAr原子のイオンビーム配向処理やUV(Ultra Violet)光照射による光配向処理がある。特に、光配向処理は、真空処理を必要としないプロセスであり、VA(Vertical
Alignment)方式の製品に適用され、TN(Twisted Nematic)、IPS(In-plane Switching)方式又はFFS(Fringe Field Switching)方式などへ適用するための開発検討も行われている。
 光配向処理は、光照射の入射方向や偏光方位に応じて、配向膜の分子間結合を分子レベルで切断、分子の配位位置を変える又は分子レベルで結合させることで液晶分子の配向に有効な異方性を配向膜に与えることにより、液晶分子の配向を分子レベルで制御できるため配向均一性が極めて高い。また、光配向処理は、ラビング方式で見られるようなラビングクロスの擦りによる傷や筋状の配向むら又は配向膜やラビングクロスなどの削れ屑からなる異物に起因する、明点や暗点などの問題も発生しないため、特に高精細化に対して有効である。ただし、光配向処理は、配向膜に配向性を付与するために比較的大きなエネルギ照射が必要なため、光照射のプロセス改善、画素構造の改良、配向膜材料の開発などによる処理能力の向上が望まれる。
 広い視野角特性を得る技術には、IPS方式又はFFS方式などの横電界方式がある。この方式は、水平配向させたネマティック液晶分子を横電界で水平方向に回転させるもので、分子軸の立ち上がりに伴う視野角方向による画質の変化を抑制することができるため、視野角特性を改善することができる。更に、横電界方式では、画素内の櫛歯状の電極形状を2分割又は4分割の領域に分けて動作させる分割電極方式にすることで、各電極領域内の視野角特性で補償することができ、斜視の色付き変化特性や階調反転を改善することができる。また、この改善は、画素内の同じ櫛歯電極領域を異なる配向方位の領域に分割する分割配向方式でも同様の効果が得られる。ただし、前述した分割電極方式や分割配向方式は、分割された電極領域又は配向領域の境界において液晶配向が不連続になる。これにより、ディスクリネーション線が発生するため、黒表示での光漏れのよりコントラストが低下したり、液晶を回転させるために必要な電界をかけることができないため、白表示での透過率低下により輝度が低下したり、することがある。この対策は、電極構造の工夫による遮光などの対策が有効であるが、高精細な画素においての適用が困難になってくる。
 以下の特許文献1乃至5(関連技術)に開示されているように、分割配向の提案は、TN方式の方が横電界方式よりも以前になされている。なお、以下の図26、図27、図28、図29及び図30は、それぞれ各特許文献からそのまま引用したものである。そのため、これらの図面のそれぞれに付された符号は、その図面においてのみ有効であり、他の図面の符号とは無関係である。
 特許文献1に記載の技術を図26に示す。特許文献1には、電極と液晶配向膜とが形成された対向する二枚の基板の間にネマティック液晶が挟持され、マトリクス状に配列された複数の絵素6を有する液晶表示装置において、それぞれの絵素6上にて、液晶分子の視角方向が互いに異なる領域18,19に分割され、任意の行の絵素6上の下部領域と次行の絵素6上の上部領域とが同一の視角方向を有しており、かつ任意の列の絵素6上の下部領域と次列の絵素6上の下部領域とが同一の視角方向を有する技術が開示されている。これにより、配向分割状態が安定して維持され、視角方向によるコントラストむら及び押圧によるコントラストむらが防止されるということである。なお、図26には、ゲート電極13、ソース電極17、アクティブマトリクス基板20が記載されている。
 特許文献2に記載の技術を図27に示す。特許文献2には、電極を設置した面を対向させ複数の画素aを形成する二枚の基板の間に液晶層を挟み、画素ごとに画素内に分子配列状態の異なる二つの領域A,Bを有する液晶表示素子に関し、隣接する画素間において、任意の画素の一方の領域に隣接する他の画素の領域が同一分子配列領域であるように配列する技術が開示されている。これにより、画素を異なる配向の二領域A,Bに分割する場合に生じるディスクリネーション線の発生数が低減され、高品位表示の液晶表示素子が得られるということである。なお、図27には、画素電極21、TFT駆動素子22が記載されている。
 特許文献3に記載の技術を図28に示す。特許文献3には、視角範囲を広げるために一つの画素上のツイステッドネマチック層を180°配向方向が異なる二領域A,Bに分割し、更に、ノーマリホワイト黒表示時におけるツイステッドネマチック層の境界からの光モレを、遮光膜を用いて防ぎ、高コントラストを実現する技術が開示されている。これにより、一画素内に、配向方向の異なるツイステッドネマチック液晶を有する液晶表示装置のコントラスト低下が抑制されるということである。なお、図28(a)はカラーフィルタR,G,Bの一般的な平面配置を示し、図28(b)(c)は特許文献3に記載の技術を図28(a)に適用した例を示し、~線で示した区分25は一画素を分割することを意味している。
 特許文献4に記載の技術を図29に示す。特許文献4には、視野角特性に優れ、高品位の表示が可能な液晶表示装置を提供する技術が開示されている。絵素は、液晶層30の厚さ方向の中央付近に位置する液晶分子の配向方向が互いに異なる第1、第2、第3及び第4ドメイン(D1~D4)がある方向に沿ってこの順に配列された4分割ドメインDを含む。第1基板10は、液晶分子を第1方向R1に配向させる規制力を有する二つの第1領域A1と、第1方向R1と反対の第2方向R2に配向させる規制力を有し、二つの第1領域A1の間に設けられた第2領域A2とを有する。第2基板20は、第1方向R1と交差する第3方向R3に配向させる規制力を有する第3領域A3と、第3方向R3と反対の第4方向R4に配向させる規制力を有する第4領域A4とを有する。各ドメイン(D1~D4)間の境界は、各ドメイン(D1~D4)の配列方向に直交する方向に延びている。なお、図29中のx,y,Pは長さを示している。
 特許文献5に記載の技術を図30に示す。特許文献5には、液晶表示装置にどのような方向の線分や、単色の領域又は文字を表示させても、表示像の視野角依存性を改善する技術が開示されている。第1の配向特性を有する第1の単位配向領域6及びその第1の配向特性と異なる第2の配向特性を有する第2の単位配向領域8がマトリクスの行列位置に混在して配置された配向膜10を含み、第1及び第2の単位配向領域6,8があらゆる方向の直線に沿って混在するように、第1及び第2の単位配向領域6,8が配設した配向膜10を含む。異なる配向特性を有する複数種類の配向領域を配向膜10に形成するのに適した、マスクを使用したということである。なお、図30には、単位配向領域6からなる配向領域12、単位配向領域8からなる配向領域14、配向領域12,14からなる基準パターン16が記載されている。
特開平08-043826号公報 特開平06-110060号公報 特開平05-224210号公報 特開2006-085204号公報 特開2001-305543号公報
 しかしながら、上述した関連技術には、次のような問題点がある。
 第1の問題点として、光配向処理による分割配向方式では、画素の高精細化と広視野角特性が両立できないことにある。分割配向は、上下左右だけでなく斜め視野の視野角特性を改善するために、液晶の配向方位の対称性が作り出せる4分割配向が特に有効である。一方、分割配向の境界部は、液晶配向が不連続となるためにディスクリネーションが発生するので、表示に有効な領域といえない。ディスクリネーションの発生する領域は、分割配向の分割数が多くなる程、また高精細(画素サイズが小さく)になる程、画素領域に対する面積比率が増えてしまい、表示品位の悪化や実質的な開口率が低下につながる。
 第2の問題点として、光配向処理による分割配向方式では、画素の高精細化や広視野角特性に対して光配向処理が効率的でないことにある。分割配向は、上下左右だけでなく斜め視野の視野角特性を改善するために、液晶の配向方位の対称性が作り出せる4分割配向が特に有効である。また、分割配向の光配向処理方法は、ワーク基板を複数のUV照射エリアに分割し、その分割領域をステップ送りでマスク露光を行う方式が主流であり、マスクとワーク基板との隙間を数μmから数十μm程度とるプロキシミティ露光である。分割配向では、一つの配向方位の領域が小さくなることに加えて、高精細化によってその領域がより小さくなってしまう。更にプロキシミティ露光の光の広がりや合わせ精度が問題となってしまう。したがって、分割配向の光照射エリアは、できる限り大きくする方が有利である。この点については、いずれの特許文献にも言及されていない。
 第3の問題点として、表示品位の悪化がある。分割配向は、特許文献1,2及び4に開示されているように画素間を跨ぐエリアで同一の配向処理となっている。しかしながら、その配向処理は、一方向のみに連続的レイアウトで処理されているために、配向処理部境界の表示ムラが連続的に視認されるので、表示品位が悪化する。この連続的に視認される配向処理部境界の表示ムラを解決するために、特許文献5に開示される技術では、1画素又は1サブ画素単位で配向状態が異なる画素パターンを複数組合せたマスク単位を設けて、そのマスク単位での配向処理を行っている。しかし、この特許文献5の例では、連続性を有する配向処理境界に起因する表示ムラに効果があるかもしれないが、マスクパターンが非常に複雑になり、各配向処理パターンごとにマスクを準備することが必要とるので、効率的な配向処理を行うことができない。
 また、いずれの特許文献においても、画素内の分割電極レイアウトと分割配向レイアウトとの組合せを周期的に変えるような技術は全く開示されておらず、効率的な配向処理を行うことができない。
 そこで、本発明の目的は、高精細画素であっても良好な視野角特性を維持するとともに、効率良い配向分割処理が可能な、液晶表示装置及びその製造方法を提供することにある。
 本発明に係る液晶表示装置は、
 マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置であって、
 前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成された、
 ものである。
 本発明に係る液晶表示装置の製造方法は、
 マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置を製造する方法であって、
 前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成され、
 前記一画素領域の前記分割配向Onとそれに隣接する画素領域の前記分割配向O’nとで形成される分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成されており、
 前記分割配向領域On+O’n(nは1~mで任意の整数、mは2以上の整数)を、任意のマスクサイズを露光エリアとし、前記配向分割の各領域の配向方位に対応した方向にステップ送りする、光配向処理で形成する、
 ものである。
 本発明によれば、画素内を光配向処理により分割配向する際、隣接する画素領域を共有した広い配向パターンを有するため、高精細画素であっても良好な視野角特性を維持するとともに、効率良い配向分割処理が可能な、液晶表示装置及びその製造方法を提供できる。
実施形態1における、分割電極と分割配向とを組み合わせた構成の一例を示す模式図である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その1)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その2)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その3)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その4)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その5)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す断面図(その1)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す断面図(その2)である。 実施形態1における、一つの画素内での分割電極と分割配向との組合せを具体的に示す断面図(その3)である。 実施形態1における、表示領域の各画素の分割電極のレイアウトの例を示す模式図である。 実施形態1における、表示領域の各画素の分割配向のレイアウトの例を示す模式図である。 実施形態1における、同一のマスクを使用した分割マスク露光の方法を具体的に示す模式図である。 実施形態1における、表示領域の各画素の分割電極のレイアウトの異なる周期性の例を示す模式図である。 実施形態1における、表示領域の各画素の分割配向のレイアウトの異なる周期性の例を示す模式図である。 実施形態1における、表示領域の各画素の分割電極のレイアウトの異なる周期性のもう一つの例を示す模式図である。 実施形態1における、表示領域の各画素の分割配向のレイアウトの異なる周期性のもう一つの例を示す模式図である。 実施形態2における、分割電極と分割配向を組み合わせた構成の一例を示す模式図である。 実施形態2における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その1)である。 実施形態2における、一つの画素内での分割電極と分割配向との組合せを具体的に示す平面図(その2)である。 実施形態2における、表示領域の各画素の分割電極のレイアウトの一例を示す模式図である。 実施形態2における、表示領域の各画素の分割配向のレイアウトの一例を示す模式図である。 実施形態3における、表示領域の各サブ画素の分割電極のレイアウト周期の一例を示す模式図である。 実施形態3における、表示領域の各サブ画素の分割配向のレイアウト周期の一例を示す模式図である。 実施形態4における、表示領域の各2サブ画素の分割電極のレイアウト周期の一例を示す模式図である。 実施形態4における、表示領域の各2サブ画素の分割配向のレイアウト周期の一例を示す模式図である。 特許文献1に記載の技術を示す図である。 特許文献2に記載の技術を示す図である。 特許文献3に記載の技術を示す図である。 特許文献4に記載の技術を示す図である。 特許文献5に記載の技術を示す図である。
 以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、以下の記載において、実質的に同一の構成要素については同一の符号を用いる。図面に描かれた形状は、当業者が理解しやすいように描かれているため、実際の寸法及び比率とは必ずしも一致していない。
 [実施形態1]
 図1は、実施形態1の液晶表示装置における、分割電極と分割配向とを組み合わせた構成の一例を示す模式図である。本実施形態1の液晶表示装置は、図1[A]に示すように4つに分割された分割電極(P1,P2,P3,P4)と、図1[B]に示すように4つに分割された分割配向(O1,O2,O3,O4)との配置関係で構成されている。更に、図1[C]には、分割電極と分割配向との位置関係を示している。図には、隣接する4つの画素が示されており、1つの画素は4つの分割電極(P1,P2,P3,P4)で構成されている。また、ある画素のある分割電極が他の画素の分割電極に隣接するとき、これらの分割電極は同一構造となっている。図示する例では、分割電極P4が隣接する3つの画素(右、下、右下の3箇所)の分割電極P’4と同一構造である。更に、隣接する4つの画素内にある同一構造の4つの分割電極P4(P’4)を囲む領域は、同一の分割配向(O4)で処理される。
 換言すると、本実施形態1の液晶表示装置は、4つに分割された分割電極(P1,P2,P3,P4)と、4つに分割された分割配向(O1,O2,O3,O4)と、を備える構成である。例えば分割電極P4は、これに隣接する画素(右、下、右下の3箇所)のP’4と同一構造である。隣接する4つの画素内にある同一構造の4つの分割電極P4(P’4)を囲む領域は、同一の分割配向(O4)で処理される。
 図2乃至図6は、前述した内容に基づいて一つの画素内での分割電極と分割配向との組合せを具体的に示した平面図である。分割電極はFFS方式を、分割配向はホモジニアス配向させた液晶の配向方位と傾斜角(プレチルト角)とを、更にTFT基板の偏光軸11aとCF基板の偏光軸12aとを、それぞれ一例として示してある。本実施形態1ではFFS方式で示しているが、本発明はIPS方式や更にFFS方式とIPS方式とを組み合わせた方式などの横電界方式のデバイスに好適である。更に、本発明は上記以外の方式であっても適用が可能である。
 図2及び図6では、4つの分割電極(P1,P2,P3,P4)が互いに異なり、4つの分割配向(O1,O2,O3,O4)も互いに異なる。図3では、4つの分割配向(O1,O2,O3,O4)のうち、O1とO2が同一の配向であり(O1=O2)、O3とO4も同一の配向である(O3=O4)。図4では、4つの分割電極(P1,P2,P3,P4)のうち、P1とP2が同一の電極構造であり(P1=P2)、P3とP4も同一の電極構造である(P3=P4)。図5では、4つの分割電極(P1,P2,P3,P4)のうち、P1とP2が同一の電極構造であり(P1=P2)、P3とP4も同一の電極構造であり(P3=P4)、かつ、4つの分割配向(O1、O2、O3、O4)のうち、O1とO2が同一の配向であり(O1=O2)、O3とO4も同一の配向である(O3=O4)。
 図7乃至図9は、前述した一つの画素内での分割電極と分割配向との組合せのうち図2の平面図を元に、断面方向の液晶分子の配向状態を示した図である。分割電極が形成される基板であるTFT(Thin Film Transistor)基板11と、TFT基板11に対向する基板であるCF(Color Filter)基板12との間に、液晶層13が挟まれている。分割配向の状態は、TFT基板11の液晶層13との界面での液晶配向、及び、CF基板12側の液晶層13との界面での液晶配向によって、断面方向(厚み方向)の液晶配向が決まる。図2におけるa-a’断面(図7[A]、図8[A]及び図9[A])並びにb-b’断面(図7[B]、図8[B]及び図9[B])の液晶配向については、TFT基板11とCF基板12の配向処理方位の選択により、3つの状態をつくることができる。
 図7は、TFT基板11側とCF基板12側の配向方位を180度変えたアンチパラレル配向の状態である。図8は、TFT基板11側とCF基板12側の配向方位を同じにしたスプレイ配向の状態である。図9は、TFT基板11側が画素面内の配向を0度と180度で分割するのに対して、CF基板12側の配向方位を0度又は180度で固定している。
 なお、上述する分割配向(O1,O2,O3,O4)は、断面方向の平均的な液晶配向の方位を示すものであって、断面方向の液晶配向の種類(アンチパラレル、スプレイ又は両者の混在)を特に限定するものでない。断面方向の液晶配向を任意に制御するには、配向膜界面の液晶分子のプレチルト角を付ける必要がある。その方法として、配向膜中に無偏光又は直線偏光のUV光を斜めの入射角度で照射することで、配向膜のX-Y平面方向だけでなく厚み方向(Z方向)も含めた3次元的な光学異方性を発現することができ、任意のプレチルト角を制御できる。
 また、分割配向(O1,O2,O3,O4)は、電圧が無印加の状態で平均的な液晶配向の方位が同じであっても、分割電極との組合せによって、バルク中の液晶分子のツイストの程度やその方向を変えることで、電圧印加後の液晶配向の方位を実質的に異なるようにできる。この場合には、液晶分子のプレチルト角が、ゼロであっても構わない。この場合には、配向膜のX-Y平面方向の2次元的な光学異方性を発現させるように、垂直方向から直線偏光のUV光を照射すればよい。
 上述したように、分割配向にはいくつかの選択肢があるが、視野角特性、分割配向間のディスクリネーション抑制、各基板の配向処理にかかわる量産性、などを考慮し任意に選択することができる。また、横電界モードでは、分割電極を有するTFT基板側の配向処理が重要である。分割電極側近傍の液晶分子にはパネル駆動時に大きな電界がかかるため、基板界面の液晶と配向膜との間に安定した強いアンカリングが必要である。そのため、分割配向(O1、O2,O3,O4)は、分割電極を有する基板側の配向処理が最も重要である。
 図10乃至図16は、表示領域の各画素の分割電極のレイアウトと分割配向のレイアウトとの周期性の異なる3つの例を示した模式図である。
 図10及び図11の例について説明する。図10に示すように、画素は4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類の画素内の分割電極レイアウトの組合せで構成されている。更に、画素の分割電極レイアウト周期は、X方向が2画素ピッチ、Y方向が2画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対して、同じ照射軸又は同じ偏光軸(両者を組合せる場合もある)の分割配向がなされる。図11に示すように、液晶配向は一つ一つが画素と実質的に同一形状、同一面積となる4つの分割配向(O1,O2,O3,O4)で構成され、分割配向レイアウト周期はX方向が2画素ピッチかつY方向が2画素ピッチとなっている。なお、図10及び図11の破線で囲む領域は、実質的に同一の領域を示している。
 分割配向の光配向処理方法は、ワーク基板を複数のUV照射エリアに分割し、その分割領域をステップ送りでマスク露光を行う方式が主流である。上述の図11の例の分割配向の組合せは、表示領域内での4つの分割配向(O1,O2,O3,O4)の繰り返し周期と、パターンが全く同一である。そのため、1つのマスクで4つの分割配向処理が可能である。一例として、表示領域(ワーク基板)の分割領域をカバーする分割露光マスクと、照射軸又は偏光軸(両者を組合せる場合もある)を任意に決められる光配向処理の光学系と、を準備する。また、光学系は、各分割配向領域の液晶分子のプレチルト角を制御するために、配向膜中に無偏光又は直線偏光のUV光を斜めの入射角度で照射する。あるいは、光学系は、液晶分子のプレチルト角をゼロにするために、配向膜中に垂直方向から直線偏光のUV光を照射すればよい。
 図12に示すように、4つの分割配向の位相を90度回転(0,90,180,270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板をそれぞれの角度(0,90,180,270度)でステップ送りによる分割露光を行えばよい。例えば、分割配向O1となる全ての領域にステップ送りによって配向方向「←」の分割露光をし、ワーク基板を回転させ、分割配向O2となる全ての領域にステップ送りによって配向方向「→」の分割露光をし、ワーク基板を回転させ、分割配向O3となる全ての領域にステップ送りによって配向方向「↓」の分割露光をし、ワーク基板を回転させ、分割配向O4となる全ての領域にステップ送りによって配向方向「↑」の分割露光をする。このときに使用するマスクは一種類である。
 図13及び図14の例について説明する。図13に示すように、画素は4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類の画素内の分割電極レイアウトの組合せで構成されている。更に、画素の分割電極レイアウト周期は、X方向が4画素ピッチ、Y方向が2画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対して、同じ照射軸又は同じ偏光軸(両者を組合せる場合もある)の分割配向がなされる。図14に示すように、液晶配向は一つ一つが画素と実質的に同一形状、同一面積の4つの分割配向(O1,O2,O3,O4)で構成され、分割配向レイアウト周期はX方向が4画素ピッチかつY方向が2画素ピッチとなっている。なお、図13及び図14の破線で囲む領域は、実質的に同一の領域を示している。
 前述の図14の例の分割配向の組合せは、図14に示すようにX方向とY方向の分割配向の配列周期が異なる。そのため、4つの分割配向の位相を90度回転(0,90,180,270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板を、0度回転させたときと180度回転させたときとで配列周期が同一となり、90度回転させたときと270度回転させたときとで配列周期が同一となる。したがって、X方向の送り処理用とY方向の送り処理用との2つのマスクで、4つの分割配向処理が可能である。
 図15及び図16の例について説明する。図15に示すように、画素は4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類の画素内の分割電極レイアウトの組合せで構成されている。更に、画素の分割電極レイアウト周期は、X方向が2画素ピッチ、Y方向が4画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対して、同じ照射軸又は同じ偏光軸(両者を組合せる場合もある)の分割配向がなされる。図16に示すように、液晶配向は一つ一つが画素と実質的に同一形状、同一面積の4つの分割配向(O1,O2,O3,O4)で構成され、分割配向レイアウト周期はX方向が2画素ピッチかつY方向が4画素ピッチとなっている。なお、図15及び図16の破線で囲む領域は、実質的に同一の領域を示している。
 前述の図16の例の分割配向の組合せは、図16に示すようにX方向とY方向の分割配向の配列周期が異なる。そのため、4つの分割配向の位相を90度回転(0,90,180,270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板を、0度回転させたときと180度回転させたときとで配列周期が同一となり、90度回転させたときと270度回転させたときとで配列周期が同一となる。したがって、X方向の送り処理用とY方向の送り処理用との2つのマスクで、4つの分割配向処理が可能である。
 [実施形態2]
 図17は、本発明の液晶表示装置の実施形態2における、分割電極と分割配向を組み合わせた構成の一例を示す模式図である。
 本実施形態2の液晶表示装置は、図17[A1][A2]に示すように4つに分割された分割電極(P1,P2,P3,P4)と、図17[B1][B2]に示すように4つに分割された分割配向(O1,O2,O3,O4)とを備え、実施形態1とは異なる面付け方向の配置関係で構成されている。更に、図17[C]は、分割電極と分割配向との位置関係を示している。図17[C]には、隣接する4つの画素が示されており、1つの画素は4つの分割電極(P1,P2,P3,P4)で構成されている。また、画素(図17[A1])に隣接する画素の分割電極は、右側と下側が図17[A2]の構造、右下斜めが図17[A1]の構造となっている。図17[C]に示す例では、分割電極P4は、隣接する画素(右、下、右下の3箇所)の分割電極P’4と同一構造である。更に、隣接する4つの画素内にある同一構造の4つの分割電極P4(P’4)を囲む領域は、同一の分割配向(O4)で処理される。
 図18及び図19は、前述した内容に基づいて一つの画素内での分割電極と分割配向の組合せを具体的に示した平面図である。分割電極はFFS方式を、分割配向はホモジニアス配向させた液晶の配向方位と傾斜角(プレチルト角)とを、更にTFT基板の偏光軸11aとCF基板の偏光軸12aとを、それぞれ一例として示してある。本実施形態2ではFFS方式で示しているが、本発明はIPS方式やFFS方式とIPS方式とを組み合わせた方式などの横電界方式のデバイスへも好適である。更に、本発明は上記以外の方式であっても適用が可能である。
 図18では、4つの分割電極(P1,P2,P3,P4)が互いに異なり、4つの分割配向(O1,O2,O3,O4)が互いに異なる。図19では、4つの分割配向(O1,O2,O3,O4)のうち、分割配向O1と分割配向O2とが同一の配向であり(O1=O2)、分割配向O3と分割配向O4とが同一の配向である(O3=O4)。
 図20及び図21は、表示領域の各画素の分割電極のレイアウトと分割配向のレイアウトとの周期の一例を示した模式図である。以下、本実施形態2について説明する。
 図20に示すように、画素は4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類の画素内の分割電極レイアウトの組合せで構成されている。更に、画素の分割電極レイアウト周期は、X方向が2画素ピッチ、Y方向が2画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対して、同じ照射軸又は同じ偏光軸(両者を組合せる場合もある)の分割配向がなされる。図21に示すように、液晶配向は横向きの凹形状の2つの分割配向(O1,O3)と横向きの凸形状の2つの分割配向(O2,O4)とで構成され、分割配向レイアウト周期はX方向が2画素ピッチかつY方向が2画素ピッチとなっている。なお、図20及び図21の破線で囲む領域は、実質的に同一の領域を示している。
 前述の図21の例における分割配向の組合せは、図21に示すようにX方向とY方向の分割配向の配列周期が2画素ピッチで同じである。また、分割配向(O1)と分割配向(O3)との位相、及び、分割配向(O2)と分割配向(O4)との位相は、それぞれ互いに180度ずれている。したがって、4つの分割配向の位相を90度回転(0、90、180、270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板を、0度回転させたときと180度回転させたときとの配列周期が同一となり、90度回転させたときと270度回転させたときとの配列周期が同一となる。したがって、X方向の送り処理用とY方向の送り処理用との2つのマスクで、4つの分割配向処理が可能である。
 [実施形態3]
 本発明の液晶表示装置は、画素単位だけでなくカラーフィルター(CF)との組合せで構成するサブ画素単位でも適用できる。図22及び図23は、実施形態3の液晶表示装置における、表示領域の各サブ画素の分割電極のレイアウトと分割配向のレイアウトとの周期の一例を示した模式図である。以下、本実施形態3について説明する。
 図22に示すように、サブ画素(図中の太実線の単位で長方形状)は4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類のサブ画素内の分割電極レイアウトの組合せで構成されている。更に、サブ画素の分割電極レイアウト周期は、X方向が2サブ画素ピッチ、Y方向が2サブ画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対し、同じ照射軸又は同じ偏光軸(両者を組合せる場合もある)の分割配向がなされる。図23に示すように、液晶配向は一つ一つがサブ画素と実質的に同一形状、同一面積となる4つの分割配向(O1,O2,O3,O4)で構成され、分割配向レイアウト周期はX方向が2サブ画素ピッチかつY方向が2サブ画素ピッチとなっている。なお、図22及び図23の破線で囲む領域は、実質的に同一の領域を示している。図22においてR,G,Bはそれぞれカラーフィルタの色(Red,Green,Blue)示す。
 前述の図23の例における分割配向の組合せは、表示領域内での4つの分割配向(O1,O2,O3,O4)の繰り返し周期と、パターンが全く同一である。そのため、1つのマスクで4つの分割配向処理が可能である。一例として、表示領域(ワーク基板)の分割領域をカバーする分割露光マスクと、照射軸又は偏光軸(両者を組合せる場合もある)を任意に決められる光配向処理の光学系と、を準備する。また、光学系は、各分割配向領域の液晶分子のプレチルト角を制御するために、配向膜中に無偏光又は直線偏光のUV光を斜めの入射角度で照射する。あるいは、光学系は、液晶分子のプレチルト角をゼロにするために、配向膜中に垂直方向から直線偏光のUV光を照射すればよい。4つの分割配向の位相を90度回転(0,90,180,270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板をそれぞれの角度(0,90,180,270度)で回転させ、ステップ送りによる分割露光を行えばよい。
 [実施形態4]
 本発明の液晶表示装置は、更にカラーフィルタ(CF)のサブ画素を複数組み合わせた単位でも適用できる。図24及び図25は、実施形態4液晶表示装置における、表示領域の各2サブ画素の分割電極のレイアウトと分割配向のレイアウトとの周期の一例を示した模式図である。以下、本実施形態4について説明する。
 図24に示すように、本実施形態4では横方向の2サブ画素を1単位とし、2サブ画素(図中の太実線の単位で長方形状)が4つの分割電極(P1,P2,P3,P4)で構成され、表示領域は4種類の2サブ画素内の分割電極レイアウトの組合せで構成されている。更に、2サブ画素の分割電極レイアウト周期は、X方向が4サブ画素ピッチ、Y方向が2サブ画素ピッチとなっている。隣接する分割電極同士が同一となる領域に対して、同じ照射軸又は同じ偏光軸(両者の組合せる場合もある)の分割配向がなされる。図25に示すように、液晶配向は一つ一つが2サブ画素と実質的に同一形状、同一面積の4つの分割配向(O1,O2,O3,O4)で構成され、分割配向レイアウト周期はX方向が4サブ画素ピッチかつY方向が4サブ画素ピッチとなっている。なお、図24及び図25の破線で囲む領域は、実質的に同一の領域を示している。図24においてR,G,Bはそれぞれカラーフィルタの色(Red,Green,Blue)示す。
 前述の図25の例における分割配向の組合せは、表示領域内での4つの分割配向(O1,O2,O3,O4)の繰り返し周期と、パターンが全く同一である。そのため、1つのマスクで4つの分割配向処理が可能である。一例として、表示領域(ワーク基板)の分割領域をカバーする分割露光マスクと、照射軸又は同じ偏光軸(両者を組合せる場合もある)を任意に決められる光配向処理の光学系と、を準備する。4つの分割配向の位相を90度回転(0,90,180,270度)で配向処理したい場合、光配向処理の光学系に対してワーク基板をそれぞれの角度(0,90,180,270度)で回転させ、ステップ送りによる分割露光を行えばよい。
 [補足説明]
 以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。例えば、上記各実施形態では特許請求の範囲における「m」が主に4の場合を示したが、本発明には「m」が2、3又は5以上の場合も含まれる、また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。
 ここで、本発明の効果について詳しく説明する。
 本発明の液晶表示装置は、画素内を光配向処理により分割配向する際、隣接する画素領域を共有した広い配向パターンを有するため、画素を高精細化しても広視野角特性を維持できる。特に、分割配向は、上下左右だけでなく斜め視野の視野角特性を改善するために、液晶の配向方位の対称性が作り出せる4分割配向が有効である。
 また、本発明の液晶表示装置は、分割配向の分割数を少なくすることができるため、分割配向による液晶配向が不連続となって発生するディスクリネーション領域を低減することができ、高精細でも表示品位の悪化を防止できる。分割電極及び分割配向のレイアウトが周期的に変わっているので、電極構造や分割配向等に起因する表示ムラが連続的に視認されないため、表示品位を向上できる。隣接する画素領域を共有した広い配向パターンを有するため、プロキシミティ露光の光の広がりやマスクとの合わせ精度に対する表示品位の悪化が抑制できる。
 更に、本発明の液晶表示装置は、分割配向処理を効率的に行うことができる。特に、本発明の分割配向処理は、上下左右だけでなく斜め視野の視野角特性を改善に有効な4分割配向に対し、4分割配向であっても各分割配向処理に使用するマスクの共通化が図れる。そして、ワーク基板に対して必要な配向方位を得るために、ワーク基板に対するマスクの面内角度を4分割配向の方位に合わせるように、マスク露光の方位を回転させることで、一台の光配向装置のステップ露光で処理できる製造方法を提供できる。
 上記の実施形態の一部又は全部は以下の付記のようにも記載され得るが、本発明は以下の構成に限定されるものではない。
 [付記1]マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置であって、
 前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成された、
 液晶表示装置。
 [付記2]前記一画素領域の前記分割配向Onとそれに隣接する画素領域の前記分割配向O’nとで形成された分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成された、
 付記1記載の液晶表示装置。
 [付記3]マトリクス状に配列する画素に対し一画素領域内の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置であって、
 前記画素は複数のサブ画素から構成され、
 前記サブ画素を少なくとも一つ以上組み合わせて一単位のサブ画素領域とし、
 前記一単位のサブ画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一単位のサブ画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一単位のサブ画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成された、
 液晶表示装置。
 [付記4]前記一単位のサブ画素領域の前記分割配向Onとそれに隣接するサブ画素領域の前記分割配向O’nとで形成された分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成された、
 付記3記載の液晶表示装置。
 [付記5]前記液晶配向は横電界方式のモードある、
 付記1乃至4のいずれか一つに記載の液晶表示装置。
 [付記6]前記mが4である、
 付記1乃至5のいずれか一つに記載の液晶表示装置。
 [付記7]マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置を製造する方法であって、
 前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成され、
 前記一画素領域の前記分割配向Onとそれに隣接する画素領域の前記分割配向O’nとで形成される分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成されており、
 前記分割配向領域On+O’n(nは1~mで任意の整数、mは2以上の整数)を、任意のマスクサイズを露光エリアとし、前記配向分割の各領域の配向方位に対応した方向にステップ送りする、光配向処理で形成する、
 液晶表示装置の製造方法。
 [付記8]マトリクス状に配列する画素に対し一画素領域内の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置を製造する方法であって、
 前記画素は複数のサブ画素から構成され、
 前記サブ画素を少なくとも一つ以上組み合わせて一単位のサブ画素領域とし、
 前記一単位のサブ画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
 前記一単位のサブ画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
 前記一単位のサブ画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成され、
 前記一単位のサブ画素領域の前記分割配向Onとそれに隣接するサブ画素領域の前記分割配向O’nとで形成される分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成され、
 前記分割配向領域On+O’n(nは1~mで任意の整数、mは2以上の整数)を、任意のマスクサイズを露光エリアとし、前記配向分割の各領域の配向方位に対応した方向にステップ送りする、光配向処理で形成する、
 液晶表示装置の製造方法。
 [付記9]前記光配向処理に使用するマスクは1種類又は2種類である、
 付記7又は8記載の液晶表示装置の製造方法。
 [付記10]前記mが4である、
 付記7乃至9のいずれか一つに記載の液晶表示装置の製造方法。
 本発明に係る液晶表示装置は、表示画面の均一性(ユニフォミティ)が高く、高コントラストで色再現性の良好な広い視野角特性を求められる液晶ディスプレイとして、特にハイエンド向けのニーズの高い横電界方式のアクティブマトリクス型液晶ディスプレイを搭載する任意の機器に利用可能である。
 P1,P2,P3,P4 分割電極
 O1,O2,O3,O4 分割配向
 11 TFT基板
 11a TFT基板の偏光軸
 12 CF基板
 12a CF基板の偏光軸
 13 液晶層

Claims (10)

  1.  マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置であって、
     前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
     前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
     前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成された、
     液晶表示装置。
  2.  前記一画素領域の前記分割配向Onとそれに隣接する画素領域の前記分割配向O’nとで形成された分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成された、
     請求項1記載の液晶表示装置。
  3.  マトリクス状に配列する画素に対し一画素領域内の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置であって、
     前記画素は複数のサブ画素から構成され、
     前記サブ画素を少なくとも一つ以上組み合わせて一単位のサブ画素領域とし、
     前記一単位のサブ画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
     前記一単位のサブ画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
     前記一単位のサブ画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成された、
     液晶表示装置。
  4.  前記一単位のサブ画素領域の前記分割配向Onとそれに隣接するサブ画素領域の前記分割配向O’nとで形成された分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成された、
     請求項3記載の液晶表示装置。
  5.  前記液晶配向は横電界方式のモードある、
     請求項1乃至4のいずれか一つに記載の液晶表示装置。
  6.  前記mが4である、
     請求項1乃至5のいずれか一つに記載の液晶表示装置。
  7.  マトリクス状に配列する画素に対し一画素領域の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置を製造する方法であって、
     前記一画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
     前記一画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
     前記一画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つの画素の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成され、
     前記一画素領域の前記分割配向Onとそれに隣接する画素領域の前記分割配向O’nとで形成される分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成されており、
     前記分割配向領域On+O’n(nは1~mで任意の整数、mは2以上の整数)を、任意のマスクサイズを露光エリアとし、前記配向分割の各領域の配向方位に対応した方向にステップ送りする、光配向処理で形成する、
     液晶表示装置の製造方法。
  8.  マトリクス状に配列する画素に対し一画素領域内の電極パターンと液晶配向領域とがそれぞれ分割配置される液晶表示装置を製造する方法であって、
     前記画素は複数のサブ画素から構成され、
     前記サブ画素を少なくとも一つ以上組み合わせて一単位のサブ画素領域とし、
     前記一単位のサブ画素領域は、電極パターンが複数に分割された分割電極Pn(P1,P2,・・・,Pmで構成、mは2以上の整数)と、液晶配向が複数に分割された分割配向On(O1,O2,・・・,Omで構成、mは2以上の整数)とが、それぞれ互いに対応した組合せになっており、
     前記一単位のサブ画素領域の前記分割電極Pn(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割電極P’n(nは1~mで任意の整数、mは2以上の整数)とは、同一構造であり、
     前記一単位のサブ画素領域の前記分割配向On(nは1~mで任意の整数、mは2以上の整数)と、それに隣接する少なくとも一つのサブ画素領域の分割配向O’n(nは1~mで任意の整数、mは2以上の整数)とは、同一配向領域で形成され、
     前記一単位のサブ画素領域の前記分割配向Onとそれに隣接するサブ画素領域の前記分割配向O’nとで形成される分割配向領域On+O’nは、それぞれ同一形状でかつ同一面積の繰り返しパターンで形成され、
     前記分割配向領域On+O’n(nは1~mで任意の整数、mは2以上の整数)を、任意のマスクサイズを露光エリアとし、前記配向分割の各領域の配向方位に対応した方向にステップ送りする、光配向処理で形成する、
     液晶表示装置の製造方法。
  9.  前記光配向処理に使用するマスクは1種類又は2種類である、
     請求項7又は8記載の液晶表示装置の製造方法。
  10.  前記mが4である、
     請求項7乃至9のいずれか一つに記載の液晶表示装置の製造方法。
PCT/JP2012/077241 2012-10-22 2012-10-22 液晶表示装置及びその製造方法 WO2014064751A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014543019A JP6057261B2 (ja) 2012-10-22 2012-10-22 液晶表示装置及びその製造方法
PCT/JP2012/077241 WO2014064751A1 (ja) 2012-10-22 2012-10-22 液晶表示装置及びその製造方法
US14/437,368 US9606403B2 (en) 2012-10-22 2012-10-22 Liquid crystal display device comprising segmented electrodes and segmented liquid crystal orientations and method for producing the same
CN201280076568.0A CN104756000B (zh) 2012-10-22 2012-10-22 液晶显示装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077241 WO2014064751A1 (ja) 2012-10-22 2012-10-22 液晶表示装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014064751A1 true WO2014064751A1 (ja) 2014-05-01

Family

ID=50544152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077241 WO2014064751A1 (ja) 2012-10-22 2012-10-22 液晶表示装置及びその製造方法

Country Status (4)

Country Link
US (1) US9606403B2 (ja)
JP (1) JP6057261B2 (ja)
CN (1) CN104756000B (ja)
WO (1) WO2014064751A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018980A (zh) * 2012-12-31 2013-04-03 信利半导体有限公司 一种广视角液晶显示器及显示方法
TWI564638B (zh) * 2014-07-18 2017-01-01 友達光電股份有限公司 顯示面板之畫素結構
CN105487298A (zh) * 2016-01-25 2016-04-13 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置
CN105487299A (zh) * 2016-01-26 2016-04-13 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN105487301B (zh) * 2016-02-15 2018-11-23 深圳市华星光电技术有限公司 垂直光配向方法及液晶显示面板的制作方法
CN106125388B (zh) * 2016-06-27 2019-04-05 南京中电熊猫液晶显示科技有限公司 液晶显示装置
CN108761930B (zh) * 2018-05-18 2021-11-09 上海天马微电子有限公司 液晶显示面板与液晶显示装置
CN110955087B (zh) * 2018-09-26 2022-11-18 咸阳彩虹光电科技有限公司 一种像素结构、像素单元及显示面板
CN112987415B (zh) * 2021-03-12 2023-07-25 深圳市华星光电半导体显示技术有限公司 液晶显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110060A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 液晶表示素子
JPH0843826A (ja) * 1994-07-28 1996-02-16 Sharp Corp 液晶表示装置
JPH10307295A (ja) * 1996-11-06 1998-11-17 Nec Corp 横電界方式の液晶表示装置
JP2008268944A (ja) * 2007-04-17 2008-11-06 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイパネル
JP2012181501A (ja) * 2011-02-08 2012-09-20 Nlt Technologies Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2903833B2 (ja) 1992-02-18 1999-06-14 日本電気株式会社 液晶表示装置
JP4483014B2 (ja) 2000-04-14 2010-06-16 インターナショナル・ビジネス・マシーンズ・コーポレーション マスク及び液晶表示装置の製造方法
JP3662573B2 (ja) * 2003-09-29 2005-06-22 独立行政法人科学技術振興機構 液晶表示素子
JP2006085204A (ja) 2005-12-15 2006-03-30 Sharp Corp 液晶表示装置
US20090244462A1 (en) * 2006-07-14 2009-10-01 Toshihide Tsubata Liquid crystal display device
WO2008069181A1 (ja) * 2006-12-05 2008-06-12 Sharp Kabushiki Kaisha 液晶表示装置
KR20120105722A (ko) * 2011-03-16 2012-09-26 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR101937446B1 (ko) * 2012-04-19 2019-01-11 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06110060A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 液晶表示素子
JPH0843826A (ja) * 1994-07-28 1996-02-16 Sharp Corp 液晶表示装置
JPH10307295A (ja) * 1996-11-06 1998-11-17 Nec Corp 横電界方式の液晶表示装置
JP2008268944A (ja) * 2007-04-17 2008-11-06 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイパネル
JP2012181501A (ja) * 2011-02-08 2012-09-20 Nlt Technologies Ltd 液晶表示装置

Also Published As

Publication number Publication date
US9606403B2 (en) 2017-03-28
CN104756000B (zh) 2017-09-29
JP6057261B2 (ja) 2017-01-11
CN104756000A (zh) 2015-07-01
JPWO2014064751A1 (ja) 2016-09-05
US20150286105A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6057261B2 (ja) 液晶表示装置及びその製造方法
US9069212B2 (en) Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device
US8937700B2 (en) Lateral electric field liquid crystal display device and manufacturing method thereof
TW201415139A (zh) 顯示裝置及電子機器
US20120229739A1 (en) Liquid crystal display device and manufacturing method therefor
US9575364B2 (en) Liquid crystal display
JP2008026756A (ja) 液晶表示装置
KR20070096773A (ko) 액정표시장치
US10209579B2 (en) Pixel electrode and array substrate
WO2012063680A1 (ja) 液晶表示パネル
JP2012068591A (ja) 液晶表示装置
WO2011013649A1 (ja) 液晶表示装置およびその製造方法
JP2007178895A (ja) 液晶表示装置
WO2010097879A1 (ja) 液晶表示装置
US11231624B2 (en) Pixel structure, display panel and display device
KR100873025B1 (ko) 시야각 조절이 가능한 프린지 필드 스위칭 액정표시장치
JP2011118247A (ja) 液晶表示装置
KR100698044B1 (ko) 마스크 설계 방법 및 패널 형성 방법
CN107329329B (zh) 液晶显示面板及其uv2a配向方法
JP2012093578A (ja) 液晶表示装置
TWI480648B (zh) 配向平衡之多視域液晶顯示器
JP4899584B2 (ja) 表示装置
JP6086403B2 (ja) 横電界方式の液晶表示装置及びその製造方法
CN109445197B (zh) 显示面板的液晶配向结构、显示面板及显示装置
TWI504999B (zh) 基板、具有其之顯示裝置及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543019

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887241

Country of ref document: EP

Kind code of ref document: A1