WO2014063175A1 - Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfähren zu seiner herstellung - Google Patents

Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfähren zu seiner herstellung Download PDF

Info

Publication number
WO2014063175A1
WO2014063175A1 PCT/AT2013/000176 AT2013000176W WO2014063175A1 WO 2014063175 A1 WO2014063175 A1 WO 2014063175A1 AT 2013000176 W AT2013000176 W AT 2013000176W WO 2014063175 A1 WO2014063175 A1 WO 2014063175A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
composite material
particles
wetting agent
raw materials
Prior art date
Application number
PCT/AT2013/000176
Other languages
English (en)
French (fr)
Inventor
Walter Ruef
Christoph GUNTSCHNIG
Original Assignee
Mondi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mondi Ag filed Critical Mondi Ag
Priority to JP2015537078A priority Critical patent/JP2015532344A/ja
Priority to KR1020157013246A priority patent/KR102152976B1/ko
Priority to CN201380055081.9A priority patent/CN104755537A/zh
Priority to US14/437,654 priority patent/US20150291784A1/en
Priority to EP13791894.2A priority patent/EP2909256B1/de
Priority to ES13791894.2T priority patent/ES2642880T3/es
Publication of WO2014063175A1 publication Critical patent/WO2014063175A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a composite material consisting of a plastic base material and embedded particles or fibers of nachwumblesenden raw materials such as abaca, cellulose fibers, pulp fibers, viscose, hemp fibers or flax fibers, and optionally an adhesion promoter, and a method for producing a composite material in which natural fibers such as cellulose fibers, regenerated cellulose fibers, cellulose fibers, hemp fibers or flax fibers are mixed with a plastic base material and optionally additives in a mixing device and pressed in a molding press or extruder to form a composite material.
  • Plastics such as polyolefins, polymethylmethacrylate (PMMA), acrylonitrile-butadiene-styrene copolymers (ABS, etc.), which particles or fibers from renewable raw materials, such as pulp, viscose, hemp, wood, flax, etc.
  • PMMA polymethylmethacrylate
  • ABS acrylonitrile-butadiene-styrene copolymers
  • Adhesion promoters are grafted onto polypropylene or polyethylene, for example in the case of polyolefins, maleic anhydride groups, in order to be able to achieve sufficient connectivity between the plastics and the particles or fibers from renewable raw materials.
  • the impact strength or notch impact strength filled with particles or fibers from renewable resources or with particles or fibers renewable raw materials offset composite Significantly increase materials without adversely affecting other properties.
  • WO 03/035393 A1 is a composite material consisting of PVC and wood fibers corresponds detachable, in which additional additives, such as polyester and a lubricant compliance 'th may be.
  • additional additives such as polyester and a lubricant compliance 'th may be.
  • PVC polyvinyl chloride
  • US 201 1028060 A1 discloses composite structures comprising a fibrous material and a matrix-resin composition, which composite structure contains, in addition to a fibrous material, a matrix-resin composition consisting of polyamide compositions.
  • the polyamide compositions themselves according to this document are composed of polyamide resin and polyalcohols having more than two hydroxyl groups.
  • WO 02/083824 A1 describes composite compositions for creped articles comprising a cellulosic fiber, a thermoplastic binder, a coupling agent containing maleic anhydride and maleic anhydride functionalities as well as a lubricant containing the alkyl ester of a carboxylic acid.
  • the present invention therefore aims to provide a composite material which, on the one hand, has an increased impact strength or notched impact strength compared to conventional composite materials consisting of base polymers and additives based on particles or fibers of renewable raw materials and, on the other hand, a composite material which is conventional with respect to these at least as good material composite and material properties can provide.
  • the composite material according to the invention is essentially characterized in that it further contains a wetting agent selected from a polyethylene glycol having an average molecular weight of 90 to 40,000 and / or a polyhydric alcohol.
  • a wetting agent selected from a polyethylene glycol having an average molecular weight of 90 to 40,000 and / or a polyhydric alcohol.
  • a higher elongation or extensibility of the fiber also has the consequence in the event of breakage, a facilitated fiber extraction from the composite takes place, and thus at the same time an improved lubricating or wetting effect is achieved at the fiber-plastic interface, which consequently leads to an increased impact strength or notched impact strength of the entire composite material in comparison to Conventional composite materials in which the fibers were not subjected to impregnation leads.
  • a polyethylene glycol having an average molecular weight of 90 to 40,000 is used as the wetting agent.
  • polyethylene glycol having a molecular weight between 90 and 40,000, in particular 120 to 2,000 in particular the lubricating effect at the interface between fiber and plastic is significantly increased, whereby overall the impact strength of the composite compared to conventional composites without the addition of low molecular weight polyethylene glycols a mean molecular weight of 90 to 40,000 is significantly improved.
  • wetting agent in the present context various alcohols, polyhydric alcohols or polyethylene glycol having an average molecular weight of 90 to 40,000, which attach to and / or penetrate the surface of the fibers, thus wetting or moistening the fibers and thereby the fibers in a softer state compared to the unwetted state.
  • the composite is preferably formed so that the wetting agent used as a polyhydric alcohol from sorbitol, glycerol, diethylene glycol, ethylene glycol, propylene glycol, butylene glycol, tetramethylene glycol, pentamethylene glycol or propanediol is selected.
  • Polyhydric alcohols from the above-mentioned group are characterized by the fact that they are sufficiently volatile on the one hand and therefore unintentional evaporation from the composite material during processing and thus a disturbance of the internal structure can be avoided with certainty and, on the other hand, adequate wetting or sealing Humidification of the fibers and thus achieve the desired effect of impact resistance.
  • Particularly advantageous results are achieved with a composite material in which the wetting agent is contained in amounts of 0.1 to 6% by weight of the total composite material. When using such amounts, it is possible to significantly increase the impact strength or notched impact strength, in particular by up to 150%, in comparison to composite materials which contain no wetting agent.
  • Particularly high impact strengths or notched impact strengths are obtained with composite materials in which the constituents are present in the following ratios: 30 to 95% by weight of plastic base material, 5 to 70% by weight of particles and fibers from renewable raw materials, 0.5 to 21 wt .-% wetting agent and up to 20 wt .-% additives.
  • a composite material which receives about twice as much to four times as much plastic base material, such as particles or fibers from renewable raw materials and about 1 to 30%, in particular 10 to 20 wt .-% wetting agent with respect to the particles or fibers used from renewable raw materials, it is possible to further increase the impact strength of the plastic or composite material filled with particles or fibers from renewable raw materials.
  • the Verbundmateria invention is further developed such that the additives of a coupling agent selected from maleic anhydride grafted polypropylene or with Maleic anhydride grafted polyethylene or chemically modified polyolefins.
  • a coupling agent selected from maleic anhydride grafted polypropylene or with Maleic anhydride grafted polyethylene or chemically modified polyolefins.
  • plastic base material selected from polypropylene, polylactic acid (PLA), poly methyl methacrylate, ABS polycarbonate, polyoxymethylene (POM), polyethylene
  • PLM polyoxymethylene
  • polyethylene a plastic base material selected from polypropylene, polylactic acid (PLA), poly methyl methacrylate, ABS polycarbonate, polyoxymethylene (POM), polyethylene
  • POM polyoxymethylene
  • particles or fibers of renewable raw materials selected from cellulose, wood, regenerated cellulose, hemp, flax
  • wetting agent selected from polyethylene glycol, glycerol, sorbitol, diethylene glycol, 1, 3-propanedial and others
  • Aggregates selected from odor absorbers, processing aids, UV stabilizers, colorants or adhesion promoters can be used.
  • Such composites or with such composites it is possible in particular to increase the impact strength or notched impact strength by 100% or even more%.
  • the composite materials according to the invention to achieve impact strengths in the range of 4.5 to 14 kJ / m 2 .
  • Composite materials with such notch impact. Toughenes can be used, for example, for the automotive industry, electrical / electronics industry, logistics industry. Such an application was with conventional materials due to the low impact strength to date, or insufficiently possible.
  • the invention further aims at a method for the production of the composite materials according to the invention, with which it is possible to quickly and reliably produce composite materials containing particles and fibers from renewable raw materials, which are characterized by an increased notched impact strength compared to conventional materials.
  • the inventive method is essentially characterized in that the particles or fibers are impregnated from renewable raw materials with a wetting agent.
  • a moistening of the fibers is achieved before or during mixing, and thus a softening of the fibers achieved, whereby an overall higher elasticity of the impregnated with the particles or fibers from renewable Raw materials produced composite material can be achieved.
  • the method is performed so that the plastic base material is impregnated with the particles or fibers of renewable resources and at least a portion of the wetting agent in an internal mixer, it succeeds easily and quickly, all contacting and intimately mixing components necessary to form the composite, both to ensure adequate wetting of the particles or fibers from renewable resources with the wetting agent, and to ensure separation and inadvertent separation of the individual composite forming constituents Security is being withheld.
  • the process is conducted in such a way that the particles or fibers from renewable raw materials are mixed with a part of the wetting agent.
  • the process is conducted in such a way that the additives are selected from a coupling agent selected from polypropylene grafted with maleic anhydride or polyethylene grafted with maleic anhydride or chemically modified polyolefins.
  • this is performed so that the material mixture from the internal mixer of a molding press or an extruder is supplied, and is compressed with a relation to atmosphere increased pressure, in particular 5 to 40 bar, which not only receive products can be, which have completely homogeneous properties, but in particular a variety of any shapes or objects are produced with the composite material according to the invention.
  • a relation to atmosphere increased pressure in particular 5 to 40 bar
  • 1 is a diagram showing the change in notched impact strength by adding different wetting agents
  • FIG. 2 is a block diagram showing changes in notched impact strength with addition of different amounts of wetting agents
  • Example 1 To produce a composite material according to the invention, the starting materials of a composite material, namely 80% by weight of polypropylene and 20% by weight of cellulose fibers are kneaded at 180 ° C. for 4 minutes in an internal mixer and pressed into a composite material. The notched impact strength of this composite material thus produced was determined to be 3.27 kJ / m 2 . The starting material was subsequently changed so that 2% by weight of the polypropylene was replaced by a wetting agent and composites were made by the same procedure. With addition of 2
  • Example 2 The procedure of Example 1 is repeated except that the amount of the wetting agent used is varied to recognize the influence of the amount of a wetting agent on the impact value.
  • a wetting agent 2% by weight of glycerol was mixed as a wetting agent, whereupon an impact value of 10.55 kJ / m 2 was achieved.
  • 4 wt .-% glycerol results in an increase in the notch impact on 13.82 kj ' / ' m 2 , as shown in FIG. 2 can be removed. From this comparison it can be seen that an increase in the notched impact strength can be achieved by increasing the amount added.
  • Example 3 A base composite material was prepared as described in Example 1, without the addition of a wetting agent. This base composite material thus prepared was compared to a composite material containing 20% fiber content and 2% wetting agent, the process being chosen once as described in Example 1, in which process a notched impact strength of 5.85 kJ / m 2 was achieved , compared to a notched impact strength of 4.75 kJ / m 2 in a composite material without addition of wetting agent.
  • the wetting agent here was selected to be a polyethylene glycol having an average molecular weight of 150.
  • Example 1 the polyethylene glycol was used prior to introduction into the internal mixer for impregnating the cellulose fibers and the cellulose fibers impregnated in this way were subsequently introduced into the internal mixer and mixed with the plastic base material as described in Example 1 and pressed into a composite material.
  • a composite material produced in this way exhibited a notched impact strength of 6.23 kJ / m 2 compared to 5.85 kJ / m 2 in comparison to the production process described in FIG. 1 in the process of Example 1. From these results it can be seen that can be further increased depending on the chosen process control of the notched impact strength.
  • Example 4 to 8 the procedure of Example 1 was followed and the development of impact strength of composite materials with different particles or fibers from renewable raw materials and with different wetting agents was examined. Notched impact values were measured at 23 ° C as in the previous examples.
  • Example 4 A composite material of 45% by weight of polypropylene, 50% by weight of wood fibers and 5% by weight of polyethylene glycol was processed into a composite material as described in Example 1.
  • the notched impact strength measured at room temperature (23 ° C.) was 6.46 kJ / m 2 in the composition used in Example 4; Similar composite material without addition of wetting agent, ie without the addition of Polyiyylygiycoi 3.4 kJ / rn 2 .
  • Example 5 A composite material of 67% by weight of polypropylene, 30% by weight of hemp fibers and 3% by weight of propanediol was processed into a composite material as described in Example 1. The notched impact strength measured at room temperature (23 ° C) was. In the case of the composition used in Example 5, 5.5 kJ / m 2 for a comparable composite material without addition of wetting agent, ie without the addition of propanediol 2.2 kJ / m 2 .
  • Example 6 A composite material of 67% by weight of polypropylene, 30% by weight of rice husks and 3% by weight of glycerol was processed into a composite material as described in Example 1.
  • the notched impact strength measured at room temperature (23 ° C.) was 3.2 kJ / m 2 for the composition used in Example 6, and 2.1 kJ / m 2 for a comparable composite material without addition of wetting agent, ie without the addition of glycerol.
  • Example 7 A composite material of 67% by weight of polypropylene, 30% by weight of flax fibers and 3% by weight of glycerol was processed into a composite material as described in Example 1.
  • the notched impact strength measured at room temperature (23 ° C.) in the composition used in Example 7 was 6.1 kJ / m 2 , with a comparable composite material without addition of wetting agent, ie without addition of glycerol, 3.2 kJ / m 2 .
  • Example 8 A composite material of 67% by weight of polypropylene, 30% by weight of viscose fibers and 3% by weight of polyoxyglycoi was processed into a composite material as described in Example 1.
  • the notched impact strength measured at room temperature (23 ° C.) was 6.2 kJ / m 2 in the case of the composition used in Example 8, with a comparable composite material without addition of wetting agent, ie without the addition of polyethylglycoi 4 kJ / m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

In einem Verbundwerkstoff bestehend aus einem Kunststoff-Basismaterial und darin eingebetteten Partikel oder Fasern aus nachwachsenden Rohstoffen, wie Holzfasern, Abaca,. Zellulosefasern, Zellstofffasern, Regeneratzellulosefasern, Hanffasern oder Flachsfasern sowie gegebenenfalls einem Haftvermittler, ist weiterhin ein Benetzungsmittel gewählt aus einem Polyethylenglycol mit einem mittleren Molekulargewicht von 90 bis 40.000 und/oder einem mehrwertigen Alkohol enthalten.

Description

NACHWACHSENDE ROHSTOFFE ENTHALTENDER VERBUNDWERKSTOFF
SOWIE VERFÄHREN ZU SEINER HERSTELLUNG
Die vorliegende Erfindung bezieht sich auf einen Verbundwerkstoff bestehend aus einem Kunststoff-Basismaterial und darin eingebetteten Partikeln oder Fasern aus nachwächsenden Rohstoffen, wie Abaca, Zellulosefasern, Zellstofffasern, Viskosefasern, Hanffasern oder Flachsfasern sowie gegebenenfalls einem Haftvermittler, sowie auf ein Verfahren zur Herstellung eines Verbundwerkstoffs, bei welchem in einer Mischvorrichtung Naturfasern, wie Zellulosefasern, Regeneratzellulosefasern, Zellstofffasern, Hanffasern oder Flachsfasern mit einem Kunststoff-Basismaterial sowie gegebenenfalls Zuschlagstoffen vermischt werden und in einer Formpresse oder auch Extruder zu einem Verbundwerkstoff verpresst werden.
Verbundmaterialien bzw. Compounds bestehend aus Kunststoffen, wie Polyolefinen, Po- lymethylmetacrylat (PMMA), Acrylnitril-Butadien-Styrol Copolymere (ABS usw.), welche Partikel oder Fasern aus nachwachsenden Rohstoffen, wie Zellstoff, Viskose, Hanf, Holz, Flachs usw. enthalten, sind in den verschiedensten Einsatzbereichen in Verwendung, wobei derartige Verbundmaterialien jedoch häufig große Mengen eines Haftvermittlers benötigen, um einen innigen Verbund zwischen den Partikeln oder Fasern aus nachwachsen- den Rohstoffen und den Kunststoffen zur Verfügung zu stellen. Als Haftvermittler werden hierbei beispielsweise bei Polyolefinen, Maleinsäureanhydridgruppen auf Polypropylen oder Polyethylen gepfropft, verwendet, um eine ausreichende Verbindungsfähigkeit zwischen den Kunststoffen und den Partikeln oder Fasern aus nachwachsenden Rohstoffen erreichen zu können. Ein anderes Problem bei derartigen Verbundmaterialien ist jedoch, dass, sobald sie Partikel oder Fasern aus nachwachsenden Rohstoffen enthalten, die Schlagzähigkeit bzw. Kerbschlagzähigkeit der damit hergestellten Produkte drastisch absinkt, so dass der Einsatzzweck dieser Materialien begrenzt ist. Es wurden Versuche angestellt, eine Matrix aus Kunststoff und Partikeln oder Fasern aus nachwachsenden Rohstoffen mit Zusatz von weicheren Polymeren bzw. Polymeren mit niedrigeren Molekular- gewichten weich zu machen, um die Schlagzähigkeit zu erhöhen, wobei jedoch dies nur begrenzte Erfolge zeigte, insbesondere dann, wenn nicht bereits ein weiches Grundpolymer zur Verfügung gestellt bzw. eingesetzt wurde. Um derartige Polymere auch in Einsatzgebieten, wie der Automobilindustrie, Elektro/Elektronikindustrie, Logistikindustrie zur Anwendung bringen zu können, ist es daher erforderlich, die Schlagzähigkeit bzw. Kerb- Schlagzähigkeit der mit Partikeln oder Fasern aus nachwachsenden Rohstoffen gefüllten bzw. mit Partikeln oder Fasern aus nachwachsenden Rohstoffen versetzten Verbund- Werkstoffe deutlich zu erhöhen, ohne gleichzeitig andere Eigenschaften nachteilig zu beeinflussen.
Der WO 03/035393 A1 ist ein Kompositmaterial bestehend aus PVC und Holzfasern ent- nehmbar, in welchem zusätzlich Zuschlagstoffe, wie Polyester und ein Gleitmittel einhal- ' ten sein können. Der Zusatz von Polyvinylchlorid (PVC) zu den Holzfasern soll die Verar- beitbarkeit des herzustellenden Komposits erleichtern, da diese bei niedrigen Temperaturen verpressbar sein sollen. Der US 201 1028060 A1 sind Kompositstrukturen entnehmbar, enthaltend ein faseriges Material und eine Matrix-Harz-Zusammensetzung, welche Kompositstruktur neben einem faserigen Material eine Matrix-Harz-Zusammensetzung enthält, welche aus Polyamidzusammensetzungen besteht. Die Polyamidzusammensetzungen selbst sind gemäß diesem Dokument aus Polyamidharz und Polyalkoholen, die mehr als zwei Hydroxylgruppen auf- weisen, zusammengesetzt.
Die WO 02/083824 A1 beschreibt Kompositzusammensetzungen für geforte Gegenstände, umfassend eine Zellulosefaser, ein thermoplastisches Bindemittel, ein Kopplungsagens, enthaltend Maleinsäureanhydrid und Maleinanhydridfunktionalitäten ebenso wie ein Gleitmittel, enthaltend Alcylester einer Carbonsäure.
Die vorliegende Erfindung zielt daher darauf ab, einen Verbundwerkstoff zur Verfügung zu stellen, welcher einerseits einen gegenüber herkömmlichen Verbundwerkstoffen, bestehend aus Basispolymeren und Zuschlagstoffen auf Basis von Partikeln oder Fasern aus nachwachsenden Rohstoffen erhöhte Schlagzähigkeit bzw. Kerbschlagzähigkeit aufweist, und andererseits eine gegenüber diesen herkömmlichen Verbundwerkstoffen wenigstens ebenso guten Materialverbund und Stoffeigenschaften zur Verfügung stellen können.
Zur Lösung dieser Aufgabe ist der erfindungsgemäße Verbundwerkstoff im Wesentlichen dadurch gekennzeichnet, dass weiterhin ein Benetzungsmittel gewählt aus einem Poly- ethylenglycol mit einem mittleren Molekulargewicht von 90 bis 40.000 und/oder einem mehrwertigen Alkohol enthalten ist. Dadurch, dass ein Benetzungsmittel zugesetzt wird, werden zumindest die Naturfasern mit dem Benetzungsmittel imprägniert, wodurch es gelingt, die Faser in dem Verbundmaterial benetzt oder weich zu halten und somit zu erwei- chen, was im Falle einer Belastung zu einer höheren Dehnung bzw. Dehnfähigkeit der Faser führt. Eine höhere Dehnung bzw. Dehnfähigkeit der Faser hat weiterhin zur Folge, dass es beim Bruch, zu einem erleichterten Faserauszug aus dem Verbund kommt und somit gleichzeitig eine verbesserte Schmier- bzw. Benetzungswirkung an der Grenzfläche zwischen Faser und Kunststoff erzielt wird, was in der Folge zu einer erhöhten Schlagzähigkeit bzw. Kerbschlagzähigkeit des gesamten Verbundwerkstoffs im Vergleich zu her- kömmlichen Verbundwerkstoffen, bei welchen die Fasern keiner Imprägnierung unterzogen wurden, führt.
Insbesondere für Verbundwerkstoffe, welche höheren Temperaturen standhalten sollen, hat es sich als vorteilhaft erwiesen, dass als Benetzungsmittel ein Polyethylenglykol mit einem mittleren Molekulargewicht von 90 bis 40.000 eingesetzt wird. Durch Einsatz von Polyethylenglykol mit einem Molekulargewicht zwischen 90 und 40.000, insbesondere 120 bis 2.000 wird insbesondere die Schmierwirkung an der Grenzfläche zwischen Faser und Kunststoff deutlich erhöht, wodurch insgesamt auch die Schlagzähigkeit des Verbundwerkstoffs im Vergleich zu herkömmlichen Verbundwerkstoffen ohne Zusatz von nieder- molekularen Polyethylenglycolen mit einem mittleren Molekulargewicht von 90 bis 40.000 deutlich verbessert ist.
Unter der Bezeichnung Benetzungsmittel werden im vorliegenden Zusammenhang verschiedene Alkohole, mehrwertige Alkohole oder Polyethylenglycol mit einem mittleren Molekulargewicht von 90 bis 40.000 gemeint, welche sich an der Oberfläche der Fasern anlagern und/oder in diese eindringen und somit die Fasern benetzen oder befeuchten und dadurch die Fasern in einem gegenüber dem unbenetzten Zustand weicheren Zustand halten. Gemäß einer Weiterbildung der Erfindung ist der Verbundwerkstoff bevorzugt so ausgebildet, dass der als Benetzungsmittel eingesetzte, mehrwertige Alkohol aus Sorbitol, Gly- cerin, Diethylenglykol, Ethylenglycol, Propylenglycol, Butylenglycol, Tetramethylenglycol, Pentamethylenglycol oder Propandiol gewählt ist. Mehrwertige Alkohole aus der oben genannten Gruppe zeichnen sich dadurch aus, dass sie einerseits ausreichend wenig flüch- tig sind und somit ein unbeabsichtigtes Abdampfen aus dem Verbundwerkstoff während der Verarbeitung und somit einer Störung der inneren Struktur mit Sicherheit vermieden werden kann und andererseits eine ausreichende Benetzung bzw. Befeuchtung der Fasern ermöglichen und somit den gewünschten Effekt der Erhaltung der Schlagzähigkeit erzielen lassen. Besonders vorteilhafte Ergebnisse werden mit einem Verbundwerkstoff erzielt, in welchem das Benetzungsmittel in Mengen von 0, 1 Gew.-% bis 6 Gew.-% des Gesamtverbundmaterials enthalten sind. Bei Einsatz derartiger Mengen gelingt es, die Schlagzähigkeit bzw. Kerbschlagzähigkeit im Vergleich zu Verbundwerkstoffen, welche kein Benet- zungsmittel enthalten, deutlich zu erhöhen, insbesondere um bis 150 % zu erhöhen.
Besonders hohe Schlagzähigkeiten bzw. Kerbschlagzähigkeiten werden mit Verbundwerkstoffen erhalten, in welchen die Bestandteile in folgenden Verhältnissen enthalten sind: 30 bis 95 Gew.-% Kunststoff-Basismaterial, 5 bis 70 Gew.-% Partikel und Fasern aus nachwachsenden Rohstoffen, 0,5 bis 21 Gew.-% Benetzungsmittel sowie bis zu 20 Gew.-% Zuschlagstoffe. Durch ein Verbundmaterial, welches etwa doppelt so viel bis vier Mal so viel Kunststoff-Basismaterial, wie Partikel oder Fasern aus nachwachsenden Rohstoffen erhält und etwa 1 bis 30 %, insbesondere 10 bis 20 Gew.-% Benetzungsmittel in Bezug auf die eingesetzten Partikel oder Fasern aus nachwachsenden Rohstoffen ent- hält, gelingt es, die Schlagzähigkeit des mit Partikeln oder Fasern aus nachwachsenden Rohstoffen gefüllten Kunststoffs bzw. Verbundwerkstoffs noch weiter zu erhöhen.
Um ein Mischen und insbesondere ein unbeabsichtigtes Zerbrechen bzw. Ablösen von einzelnen Materialien bzw. ein Abtrennen der in dem Verbundwerkstoff enthaltenen Grundstoffe mit Sicherheit hintanzuhalten, ist das erfindungsgemäße Verbundmateria) dahingehend weitergebildet, dass die Zuschlagstoffe aus einem Haftvermittler, gewählt aus Maleinsäureanhydrid gepfropftem Polypropylen oder mit Maleinsäureanhydrid gepfropftem Polyethylen oder chemisch modifizierte Polyolefine, gewählt sind. Durch Einsatz von Haftvermittlern gelingt es, einen Verbundwerkstoff herzustellen, welcher auch hohen Bela- stungen standhält und insbesondere neben der erhöhten Kerbschlagzähigkeit auch eine ausreichende Verwindungssteifigkeit besitzt, ohne dass es zu einer Delaminierung der einzelnen Bestandteile kommt.
Besonders gute Ergebnisse werden gemäß der Erfindung dadurch erzielt, dass 30 bis 95 Gew.-% Kunststoffbasismaterial, gewählt aus Polypropylen, Polymilchsäure (PLA), Poly- methylmetacrylat, ABS-Polycarbonat, Polyoxymethylen (POM), Polyethylen, eingesetzt werden, 5 bis 70 Gew.-% Partikel oder Fasern aus nachwachsenden Rohstoffen gewählt aus Zellulose, Holz, Regeneratzellulose, Hanf, Flachs, 0,5 bis 21 Gew.-% Benetzungsmittel, gewählt aus Polyethylenglycol, Glycerin, Sorbit, Diethylenglycol, 1 ,3-Propandial sowie weitere Zuschlagstoffe, gewählt aus Geruchsabsorbern, Verarbeitungshilfsmittel, UV-Stabilisatoren, farbgebenden Mitteln oder auch Haftvermittlern eingesetzt werden. Mit einem derartigen Verbundstoff bzw. mit derartigen Verbundstoffen gelingt es insbesondere, die Schlagzähigkeit bzw. Kerbschlagzähigkeit um 100 % oder sogar mehr % zu erhöhen. So gelingt es mit den erfindungsgemäßen Verbundwerkstoffen, Kerbschlagzähigkeiten im Bereich von 4,5 bis 14 kJ/m2 zu erreichen. Verbundwerkstoffe mit derartigen Kerbschlag- . Zähigkeiten können beispielsweise für die Automobilindustrie, Elektro/Elektronikindustrie, Logistikindustrie eingesetzt werden. Ein derartiger Einsatzzweck war mit herkömmlichen Materialien aufgrund der niedrigen Schlagzähigkeit bis dato nicht oder nur unzureichend möglich. Die Erfindung zielt weiterhin auf ein Verfahren zur Herstellung von der erfindungsgemäßen Verbundwerkstoffe ab, mit welchem es rasch und zuverlässig gelingt, Verbundwerkstoffe enthaltend Partikel und Fasern aus nachwachsenden Rohstoffen herzustellen, welche sich durch eine im Vergleich zu herkömmlichen Materialien erhöhte Kerbschlagzähigkeit auszeichnen.
Zur Lösung dieser Aufgabe ist das erfindungsgemäße Verfahren im Wesentlichen dadurch gekennzeichnet, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen mit einem Benetzungsmittel imprägniert werden. Dadurch, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen mit einem Benetzungsmittel imprägniert werden, wird eine Befeuchtung der Fasern vor bzw. während des Vermischens erreicht und somit eine Erweichung der Fasern erzielt, wodurch insgesamt eine höhere Dehnfähigkeit des mit den imprägnierten Partikeln oder Fasern aus nachwachsenden Rohstoffen hergestellten Verbundwerkstoffs erreicht werden kann. indem, wie dies einer bevorzugten Weiterbildung der vorliegenden Erfindung entspricht, das Verfahren so geführt wird, dass das Kunststoff-Basismaterial mit den Partikeln oder Fasern aus nachwachsenden Rohstoffen und wenigstens einem Teil des Benetzungsmittels in einem Innenmischer imprägniert wird, gelingt es einfach und rasch, sämtliche für die Ausbildung des Verbundwerkstoffs erforderlichen Bestandteile in Kontakt zu bringen und innig zu vermischen, um sowohl die ausreichende Benetzung der Partikel oder Fasern aus nachwachsenden Rohstoffen mit dem Benetzungsmittel sicherzustellen als auch sicherzustellen, dass eine Entmischung und ein unbeabsichtigtes Trennen der einzelnen den Verbundwerkstoff ausbildenden Bestandteile mit Sicherheit hintangehalten wird. Indem, wie dies einer Weiterbildung entspricht, das Verfahren so geführt wird, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen mit einem Teil des Benetzungsmit- tels imprägniert werden und anschließend die imprägnierten Partikel und Fasern aus nachwachsenden Rohstoffen in dem Innenmischer mit dem Kunststoff-Basismaterial sowie dem Rest des Benetzungsmittels sowie gegebenenfalls Zuschlagsstoffen vermischt werden, gelingt es einerseits sicherzustellen, dass eine ausreichende und gleichmäßige Benetzung der Partikel, oder Fasern aus nachwachsenden Rohstoffen mit dem Benetzungsmittel erreicht wird und somit eine Befeuchtung und Erweichung der Partikel oder Fasern aus nachwachsenden Rohstoffen erzielt wird, und andererseits wird sichergestellt, dass sämtliche Materialien innig miteinander vermischt werden und so ein homogener und fester Verbund sämtlicher Materialien erzielt werden kann, welcher nach seiner Fer- tigstellung eine im Vergleich zu herkömmlichen Materialien deutlich erhöhte Schlagzähigkeit bzw. Kerbschlagzähigkeit aufweist.
Besonders gute Ergebnisse und insbesondere eine besonders deutliche Erhöhung der Kerbschlagzähigkeit wird dadurch erzielt, wenn das erfindungsgemäße Verfahren so ge- führt wird, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen vor dem Einbringen in den Innenmischer mit 30 bis 60 Gew.-% des Benetzungsmittels imprägniert werden. Indem die Partikel oder Fasern aus nachwachsenden Rohstoffen vor dem Einbringen in den Innenmischer mit 30 bis 60 Gew.-% des insgesamt eingesetzten Benetzungsmittels imprägniert werden, kann eine ausreichende Befeuchtung der Partikel oder Fasern aus nachwachsenden Rohstoffen erreicht werden und gleichzeitig steht ausreichend Benetzungsmittel für einen homogenen Materialverbund zur Verfügung.
Gemäß einer Weiterbildung der Erfindung wird das Verfahren so geführt, dass die Zuschlagstoffe aus einem Haftvermittler, gewählt aus mit Maleinsäureanhydrid gepfropftem Polypropylen oder mit Maleinsäureanhydrid gepfropftem Polyethylen oder chemisch modifizierten Polyolefinen gewählt sind.
Eine noch bessere Verteilung und insbesondere ein noch günstigerer Effekt kann gemäß der Erfindung dadurch erzielt werden, wenn das Verfahren so geführt wird, dass nass aus einer Presse ausgetragene Partikel oder Fasern aus nachwachsenden Rohstoffen mit Benetzungsmittel imprägniert werden, bevor sie in den Innenmischer eingetragen werden. Mit einer derartigen Verfahrensführung gelingt eine noch gleichmäßigere Verteilung des Benetzungsmittels auf der Oberfläche der Partikel oder Fasern aus nachwachsenden Rohstoffen und somit kann ein Verbundmaterial hergestellt werden, welches im gesamten Volumen bzw. über die gesamte Oberfläche vollkommen homogene Eigenschaften aufweist. Wie dies einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens entspricht, wird dieses so geführt, dass das Materialgemisch aus dem Innenmischer einer Formpresse oder einem Extruder zugeführt wird, und mit einem gegenüber Atmosphäre erhöhten Druck, insbesondere 5 bis 40 bar verpresst wird, wodurch nicht nur Produkte erhalten werden können, welche vollständig homogene Eigenschaften aufweisen, sondern insbesondere eine Vielzahl von beliebigen Formen bzw. Gegenständen mit dem erfindungsgemäßen Verbundwerkstoff hergestellt werden. Die Erfindung wird nachfolgend anhand von Figuren oder Ausführungsbeispielen näher erläutert. In diesen zeigen
Fig. 1 ein Diagramm, welches die Veränderung der Kerbschlagzähigkeit durch Zusatz unterschiedlicher Benetzungsmittel zeigt,
Fig. 2 ein Blockdiagramm, welches Veränderungen der Kerbschlagzähigkeit bei Zugabe unterschiedlicher Mengen von Benetzungsmitteln zeigt, und
Fig. 3 einen Vergleich des Einflusses der unterschiedlichen Verfahrensführung auf die Kerbschlagzähigkeit eines Endprodukts.
Beispiel 1 : Zur Herstellung eines Verbundwerkstoffs gemäß der Erfindung werden die Ausgangstoffe eines Verbundmaterials, nämlich 80 Gew.-% Polypropylen und 20 Gew.-% Zellulosefasern bei 180 °C 4 Minuten in einem Innenmischer geknetet und zu einem Verbundwerkstoff verpresst. Die Kerbschlagzähigkeit dieses so hergestellten Verbundwerkstoffs wurde mit 3,27 kJ/m2 bestimmt. Das Ausgangsmaterial wurde in der Folge so verändert, dass 2 Gew.-% des Polypropylens durch ein Benetzungsmittel ersetzt wurden und mit derselben Verfahrensführung Verbundwerkstoffe hergestellt wurden. Bei Zusatz von 2
Gew.-% Polyethylenglycol gelingt es, die Kerbschlagzähigkeit auf 4,77 kJ/m2 zu erhöhen, bei Zusatz von 2 Gew.-% Diethylenglycol wird die Kerbschlagzähigkeit auf 5,79 kJ/m2 erhöht und bei Zusatz von Propandiol gelingt es, die Kerbschlagzähigkeit auf 6,51 kJ/m2 zu erhöhen, wie dies der beiliegenden Fig. 1 zu entnehmen ist.
Beispiel 2: Die Vorgangsweise von Beispiel 1 wird wiederholt, mit der Ausnahme, dass die Menge des eingesetzten Benetzungsmittels variiert wird, um den Einfluss der Menge eines Benetzungsmittels auf die Kerbschlagzähigkeit erkennen zu können. In das Ausgangsmaterial von Beispiel 1 wurden 2 Gew.-% Glyzerin als Benetzungsmittel eingemischt, worauf eine Kerbschlagzähigkeit von 10,55 kJ/m2 erreicht wurde. Bei Zusatz zu derselben Ausgangsmischung von 4 Gew.-% Glyzerin ergibt sich eine Erhöhung der Kerbschiagzähigkeit auf 13,82 kj'/'m2, wie dies Fig. 2 entnehmbar ist. Aus diesem Vergleich ist erkennbar, dass bei Erhöhung der Zugabemenge auch eine Erhöhung der Kerbschlagzähigkeit erreicht werden kann.
'
Beispiel 3: Es wurde ein Basisverbundmaterial, wie in Beispiel 1 beschrieben, hergestellt, ohne Zusatz eines Benetzungsmittels. Dieses so hergestellte Basisverbundmaterial wurde mit einem Verbundmaterial verglichen, welches 20 % Faseranteil und 2 % Benetzungsmittel enthält, wobei die Verfahrensführung ein Mal, wie in Beispiel 1 beschrieben, gewählt wurde, bei welchem Verfahren eine Kerbschlagzähigkeit von 5,85 kJ/m2 erreicht wurde, im Vergleich zu einer Kerbschlagzähigkeit von 4,75 kJ/m2 bei einem Verbundmaterial ohne Zusatz von Benetzungsmittel. Das Benetzungsmittel war hierbei ein Polyethylenglycol mit einem mittleren Molekulargewicht von 150 gewählt. Schließlich wurde in einer anderen Verfahrensführung das Polyethylenglycol vor dem Einbringen in den Innenmischer zur Imprägnierung der Zellulosefasern verwendet und die derartig imprägnierten Zellulosefasern in der Folge in den Innenmischer eingetragen und mit dem Kunststoffbasismaterial, wie in Beispiel 1 beschrieben, vermischt und zu einem Verbundmaterial verpresst. Ein derart hergestelltes Verbundmaterial zeigte im Vergleich zu dem in Fig. 1 beschriebenen Herstellungsverfahren eine Kerbschlagzähigkeit von 6,23 kJ/m2 im Vergleich zu 5,85 kJ/m2 bei der Verfahrensführung von Beispiel 1. Aus diesen Ergebnissen lässt sich ersehen, dass in Abhängigkeit von der gewählten Verfahrensführung der Kerbschlagzähigkeit weiter erhöht werden kann. In Beispielen 4 bis 8 wurde die Verfahrensführung von Beispiel 1 beibehalten und die Entwicklung der Kerbschlagzähigkeit von Verbundmaterialien mit unterschiedlichsten Partikeln oder Fasern aus nachwachsenden Rohstoffen und mit verschiedenen Benetzungsmitteln untersucht. Die Kerbschlagzähigkeitswerte wurden hierbei ebenso wie bei den vorangegangenen Beispielen bei 23 °C gemessen.
Beispiel 4: Ein Verbundmaterial aus 45 Gew.-% Polypropylen, 50 Gew.-% Holzfasern sowie 5 Gew.-% Polyethylenglycol wurde zu einem Verbundwerkstoff, wie in Beispiel 1 be- schrieben, verarbeitet. Die bei Raumtemperatur (23 °C) gemessene Kerbschlagzähigkeit betrug bei der in Beispiel 4 eingesetzten Zusammensetzung 6,46 kJ/m2, bei einem ver- gleichbaren Verbundmaterial ohne Zusatz von Benetzungsmittel, d.h. ohne Zusatz von Poiyethyiengiycoi 3,4 kJ/rn2.
Beispiel 5: Ein Verbundmaterial aus 67 Gew.-% Polypropylen, 30 Gew.-% Hanffasern sowie 3 Gew.-% Propandiol wurde zu einem Verbundwerkstoff, wie in Beispiel 1 beschrieben, verarbeitet. Die bei Raumtemperatur (23 °C) gemessene Kerbschlagzähigkeit betrug. Bei der in Beispiel 5 eingesetzten Zusammensetzung 5,5 kJ/m2 bei einem vergleichbaren Verbundmaterial ohne Zusatz von Benetzungsmittel, d.h. ohne Zusatz von Propandiol 2,2 kJ/m2.
Beispiel 6: Ein Verbundmaterial aus 67 Gew.-% Polypropylen, 30 Gew.-% Reisschalen sowie 3 Gew.-% Glycerin wurde zu einem Verbundwerkstoff, wie in Beispiel 1 beschrieben, verarbeitet. Die bei Raumtemperatur (23 °C) gemessene Kerbschlagzähigkeit betrug bei der in Beispiel 6 eingesetzten Zusammensetzung 3,2 kJ/m2, bei einem vergleichbaren Verbundmaterial ohne Zusatz von Benetzungsmittel, d.h. ohne Zusatz von Glycerin 2,1 kJ/m2.
Beispiel 7: Ein Verbundmaterial aus 67 Gew.-% Polypropylen, 30 Gew.-% Flachsfasern sowie 3 Gew.-% Glycerin wurde zu einem Verbundwerkstoff, wie in Beispiel 1 beschrie- ben, verarbeitet. Die bei Raumtemperatur (23 °C) gemessene Kerbschlagzähigkeit betrug bei der in Beispiel 7 eingesetzten Zusammensetzung 6, 1 kJ/m2, bei einem vergleichbaren Verbundmaterial ohne Zusatz von Benetzungsmittel, d.h. ohne Zusatz von Glycerin 3,2 kJ/m2. Beispiel 8: Ein Verbundmaterial aus 67 Gew.-% Polypropylen, 30 Gew.-% Viskosefasern sowie 3 Gew.-% Poiyethyiengiycoi wurde zu einem Verbundwerkstoff, wie in Beispiel 1 beschrieben, verarbeitet. Die bei Raumtemperatur (23 °C) gemessene Kerbschlagzähigkeit betrug bei der in Beispiel 8 eingesetzten Zusammensetzung 6,2 kJ/m2, bei einem vergleichbaren Verbundmaterial ohne Zusatz von Benetzungsmittel, d.h. ohne Zusatz von Poiyethyiengiycoi 4 kJ/m2.

Claims

P a t e n t a n s p r ü c h e :
1. Verbundwerkstoff bestehend aus einem Kunststoff-Basismaterial und darin eingebetteten Partikel oder Fasern aus nachwachsenden Rohstoffen, wie Holzfasern, Abaca, Zellu- losefasern, Zellstofffasern, Regeneratzellulosefasern, Hanffasern oder Flachsfasern sowie gegebenenfalls einem Haftvermittler, dadurch gekennzeichnet, dass weiterhin ein Benetzungsmittel gewählt aus einem Polyethylenglycol mit einem mittleren Molekulargewicht von 90 bis 40.000 und/oder einem mehrwertigen Alkohol enthalten ist.
2. Verbundwerkstoff nach Anspruch , dadurch gekennzeichnet, dass der mehrwertige Alkohol aus Sorbitol, Glycerin, Diethylenglykol, Ethylenglycol, Propylenglycol, Butylenglycol, Tetramethylenglycol, Pentamethylenglycol oder Propandiol gewählt ist.
3. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass von 0,1 Gew.-% bis 21 Gew.-% Benetzungsmittel enthalten sind.
4. Verbundwerkstoff nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass er 30 bis 95 Gew.-% Kunststoff-Basismaterial, 5 bis 70 Gew.-% Partikel oder Fasern aus nachwachsenden Rohstoffen, 0,5 bis 21 Gew.-% Benetzungsmittel sowie bis zu 20 Gew.-% Zuschlagstoffe enthält.
5. Verbundwerkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zuschlagstoffe aus einem Haftvermittler, gewählt aus mit Maleinsäureanhydrid gepfropftem Polypropylen oder mit Maieinsäureanhydrid gepfropftem Polyethylen oder che- misch modifizierte Polyolefine gewählt sind.
6. Verbundwerkstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verbundwerkstoff eine Kerbschlagzähigkeit von 2 bis 30 kJ/m2 aufweist.
7. Verbundwerkstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Benetzungsmittel in einer Menge von 1 bis 30 Gew.-%, insbesondere 10 bis 20 Gew.- % in Bezug auf die Menge der Partikel oder Fasern aus nachwachsenden Rohstoffen enthalten ist.
8. Verfahren zur Herstellung eines Verbundwerkstoffs, bei welchem in einer Mischvorrichtung eingebetteten Partikel oder Fasern aus nachwachsenden Rohstoffen, gewählt aus Holzfasern, Abaca, Zellulosefasern, Zellstofffasern, Regeneratzellulosefasem, Hanffasem oder Flachsfasern mit einem Kunststoff-Basismaterial sowie gegebenenfalls Zuschlagstoffen vermischt werden und in einer Formpresse oder einem Extruder zu einem Verbundwerkstoff verpresst werden, dadurch gekennzeichnet, dass zumindest die Partikel oder Fasern aus nachwachsenden Rohstoffen mit einem Benetzungsmittel imprägniert werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Kunststoff-Basismaterial mit den Partikeln oder Fasern aus nachwachsenden Rohstoffen und wenigstens einem Teil des Benetzungsmittels in einem innenmischer imprägniert werden.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen mit einem Teil des Benetzungsmittels imprägniert werden, dass die imprägnierten Partikel oder Faser aus nachwachsenden Rohstoffen in dem Innenmischer mit dem Kunststoff-Basismaterial sowie dem Rest des Benet- zungsmittels sowie gegebenenfalls Zuschlagstoffen vermischt werden.
11. Verfahren nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, dass die Partikel oder Fasern aus nachwachsenden Rohstoffen vor dem Einbringen in den Innenmischer mit 0,5 bis 30 Gew.-% des Benetzungsmittels imprägniert werden.
12. Verfahren nach einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass nass aus einer Presse ausgetragene nasse Zellstofffasern mit Benetzungsmittel imprägniert werden.
13. Verfahren nach einem der Ansprüche 8 bis 12 dadurch gekennzeichnet, dass das Materialgemisch aus dem Innenmischer einer Formpresse oder einem Extruder zugeführt wird und verpresst wird.
14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die Zu- schlagstoffe aus einem Haftvermittler, gewählt aus mit Maleinsäureanhydrid gepfropftem
Polypropylen oder mit Maleinsäureanhydrid gepfropftem Polyethylen oder chemisch modifizierten Polyolefinen gewählt werden.
PCT/AT2013/000176 2012-10-22 2013-10-18 Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfähren zu seiner herstellung WO2014063175A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015537078A JP2015532344A (ja) 2012-10-22 2013-10-18 再生可能な原料を含有する複合材料およびそれらの製造方法
KR1020157013246A KR102152976B1 (ko) 2012-10-22 2013-10-18 재생가능한 원재료를 함유하는 복합 물질 및 이의 제조 방법
CN201380055081.9A CN104755537A (zh) 2012-10-22 2013-10-18 含有可再生原料的复合材料和用于其制备的方法
US14/437,654 US20150291784A1 (en) 2012-10-22 2013-10-18 Composite material containing renewable raw materials and method for the production thereof
EP13791894.2A EP2909256B1 (de) 2012-10-22 2013-10-18 Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfahren zu seiner herstellung
ES13791894.2T ES2642880T3 (es) 2012-10-22 2013-10-18 Material compuesto que contiene materias primas renovables, y método para producir tal material compuesto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1136/2012A AT513561B1 (de) 2012-10-22 2012-10-22 Nachwachsende Rohstoffe enthaltender Verbundwerkstoff sowie Verfahren zu seiner Herstellung
ATA1136/2012 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014063175A1 true WO2014063175A1 (de) 2014-05-01

Family

ID=49585223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2013/000176 WO2014063175A1 (de) 2012-10-22 2013-10-18 Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfähren zu seiner herstellung

Country Status (10)

Country Link
US (1) US20150291784A1 (de)
EP (1) EP2909256B1 (de)
JP (1) JP2015532344A (de)
KR (1) KR102152976B1 (de)
CN (1) CN104755537A (de)
AR (1) AR093083A1 (de)
AT (1) AT513561B1 (de)
ES (1) ES2642880T3 (de)
HU (1) HUE036480T2 (de)
WO (1) WO2014063175A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106195466A (zh) * 2016-06-29 2016-12-07 巢湖鹏远金属焊管有限公司 耐腐蚀铝塑复合管

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117181B2 (ja) * 2018-07-11 2022-08-12 旭化成株式会社 セルロース含有樹脂組成物
MX2021006354A (es) 2018-12-18 2021-08-11 SOCIéTé BIC Revestimiento de mina para lapiz y lapiz de este para escribir, dibujar, marcar, trazar y colorear.
CN113165416B (zh) * 2018-12-18 2023-05-16 法国比克公司 铅笔用铅套以及用于书写、绘画、做标记、绘制和上色的包括铅笔用铅套的铅笔
BR112021010571B1 (pt) * 2018-12-18 2023-10-03 Societe Bic Invólucro de núcleo para lápis, e lápis do mesmo para escrever, desenhar, marcar, traçar e colorir
US10557105B1 (en) 2019-08-09 2020-02-11 Bao Tran Extraction systems and methods
KR102153308B1 (ko) * 2019-12-24 2020-09-08 재단법인 한국섬유기계융합연구원 나노셀룰로오스 복합시트 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083824A1 (en) 2001-04-16 2002-10-24 Honeywell International, Inc. Composite compositions
WO2003035393A1 (en) 2001-10-25 2003-05-01 Cognis Corporation Pvc/wood fiber composite
US20110028060A1 (en) 2009-07-30 2011-02-03 E .I. Du Pont De Nemours And Company Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
DE102010031892A1 (de) * 2010-07-21 2012-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Faserverstärkte Verbundstoffe, Verfahren zu deren Herstellung sowie deren Verwendung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018961B1 (de) * 1979-05-04 1983-07-20 Rockwool Aktiebolaget Trägermaterial
JPS644652A (en) * 1987-06-26 1989-01-09 Nanba Press Kogyo Kk Sisal-hemp-reinforced composite thermoplastic composition
US5051150A (en) * 1989-03-20 1991-09-24 Hercules Incorporated Stabilized synthetic pulp-cellulose blends
US5498478A (en) * 1989-03-20 1996-03-12 Weyerhaeuser Company Polyethylene glycol as a binder material for fibers
IT1256914B (it) 1992-08-03 1995-12-27 Novamont Spa Composizione polimerica biodegradabile.
US6340411B1 (en) * 1992-08-17 2002-01-22 Weyerhaeuser Company Fibrous product containing densifying agent
CA2122168A1 (en) * 1993-12-16 1995-06-17 David P. Hultman Polymer-reinforced paper having improved cross-direction tear
US6344109B1 (en) * 1998-12-18 2002-02-05 Bki Holding Corporation Softened comminution pulp
US6495225B1 (en) * 1998-12-25 2002-12-17 Konica Corporation Molding material
US20020161072A1 (en) * 2001-01-22 2002-10-31 Philip Jacoby Wood fiber-filled polypropylene
JP2003073539A (ja) * 2001-09-06 2003-03-12 Chisso Corp 高強度生分解性樹脂組成物及び成形品
KR20020048353A (ko) * 2002-05-24 2002-06-22 김휘주 목질분 고함량의 생분해성 블록·그래프트 혼성중합매트릭스 컴파운드와 컴파운드 제조방법
EP1812233A2 (de) * 2004-11-05 2007-08-01 Osmose, Inc. Wasserabweisende polymerzusammensetzungen für die dimensionale stabilität von holzprodukten
JP2008019355A (ja) * 2006-07-13 2008-01-31 Chisso Corp 熱可塑性樹脂組成物とその成形品
US20080015285A1 (en) * 2006-07-14 2008-01-17 Steven Richard Oriani Process aid for extruded wood composites
CN101386702B (zh) * 2007-09-11 2011-03-02 比亚迪股份有限公司 一种聚乳酸复合材料及其制备方法
CN101735581A (zh) * 2008-11-12 2010-06-16 王世和 一种全生物质基复合材料及其制备方法和用途
JP5589435B2 (ja) 2010-02-24 2014-09-17 住友ベークライト株式会社 複合体組成物および複合体
JP2011201196A (ja) * 2010-03-26 2011-10-13 Dow Corning Toray Co Ltd リグノセルロース材料用処理剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083824A1 (en) 2001-04-16 2002-10-24 Honeywell International, Inc. Composite compositions
WO2003035393A1 (en) 2001-10-25 2003-05-01 Cognis Corporation Pvc/wood fiber composite
US20110028060A1 (en) 2009-07-30 2011-02-03 E .I. Du Pont De Nemours And Company Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
DE102010031892A1 (de) * 2010-07-21 2012-01-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Faserverstärkte Verbundstoffe, Verfahren zu deren Herstellung sowie deren Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PFLANZEN ROHSTOFFE PRODUKTE: "Naturfaserverstärkte Kunststoffe nachwachsende-rohstoffe.de", 1 January 2008 (2008-01-01), XP055096659, Retrieved from the Internet <URL:http://www.fnr-server.de/ftp/pdf/literatur/pdf_227-brosch_nfk_2008.pdf> [retrieved on 20140115] *
XUE LI ET AL: "Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review", JOURNAL OF POLYMERS AND THE ENVIRONMENT ; FORMERLY: 'JOURNAL OF ENVIRONMENTAL POLYMER DEGRADATION', KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 15, no. 1, 4 January 2007 (2007-01-04), pages 25 - 33, XP019481860, ISSN: 1572-8900, DOI: 10.1007/S10924-006-0042-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106195466A (zh) * 2016-06-29 2016-12-07 巢湖鹏远金属焊管有限公司 耐腐蚀铝塑复合管
CN106195466B (zh) * 2016-06-29 2019-09-27 巢湖鹏远金属焊管有限公司 耐腐蚀铝塑复合管

Also Published As

Publication number Publication date
ES2642880T3 (es) 2017-11-20
AR093083A1 (es) 2015-05-20
KR20150094608A (ko) 2015-08-19
EP2909256A1 (de) 2015-08-26
US20150291784A1 (en) 2015-10-15
AT513561A1 (de) 2014-05-15
JP2015532344A (ja) 2015-11-09
KR102152976B1 (ko) 2020-09-08
HUE036480T2 (hu) 2018-07-30
EP2909256B1 (de) 2017-07-12
CN104755537A (zh) 2015-07-01
AT513561B1 (de) 2016-02-15

Similar Documents

Publication Publication Date Title
EP2909256B1 (de) Nachwachsende rohstoffe enthaltender verbundwerkstoff sowie verfahren zu seiner herstellung
EP0773972B1 (de) Formkörper aus verbundmaterial auf der basis von celluloseacetat und verstärkenden natürlichen cellulosefasern, ein verfahren zu dessen herstellung und dessen verwendung
DE2655446C2 (de) Gealterte, hitzehärtbare Formmasse, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung von geformten Gegenständen
EP2953997B1 (de) Mikrostrukturiertes kompositmaterial, verfahren zu dessen herstellung, formkörper hieraus sowie verwendungszwecke
EP1799414B1 (de) Rieselfähige pellets auf basis cellulosischer spinnfasern, verfahren zu deren herstellung und deren verwendung
DE102016102561A1 (de) VOC-armes Naturfaserverbundmaterial, Herstellungsverfahren dafür und Anwendung dafür
DE3417369A1 (de) Verbindung aus zusammengesetztem material unter verwendung von abfall-kunstfaser
EP2539396B1 (de) Kompositzusammensetzung, verfahren zu deren herstellung, formteil und verwendung
DE102021101905A1 (de) Faserverbundbauteil und daraus hergestellte Fahrzeuginnenverkleidung
WO2007071387A2 (de) Pflanzliche faser, formkörper auf faserbasis sowie verfahren zur herstellung von mit novolak versehenen pflanzlichen fasern
DE102010031892B4 (de) Faserverstärkte Verbundstoffe, Verfahren zu deren Herstellung sowie deren Verwendung
EP2089456A1 (de) Verfahren zur herstellung flammgeschützter faserverbundswerkstoffe oder prepregs
DE102011122560B4 (de) Textilverstärkter Formkörper, ein Verfahren zu dessen Herstellung sowie seine Verwendung
DE69838452T2 (de) Stift aus regeneriertem kautschuk
WO2005012399A1 (de) Verfahren zur herstellung von leichtbauteilen sowie mit dem verfahren herstellbare leichtbauprofile
EP0092724A1 (de) Verfahren zur Herstellung von faserhaltigen Polyurethanformteilen mit farblich inhomogenen, fasrig verteilte Farbkontraste aufweisenden Oberflächen und entsprechende Formteile
DE1694796A1 (de) Faserige Formmassen
DE1927844A1 (de) Verfahren zur Herstellung von flexiblen und rueckfedernden Schaumstoffen
EP1304348B1 (de) Faserverbundformteil und Verfahren zur Herstellung eines Faserverbundformteils
DE10348804A1 (de) Verfahren zur Herstellung von Leichtbauteilen mit Holzfasern sowie mit dem Verfahren herstellbare Leichtbauprofile
EP2670896B1 (de) Verfahren zur bereitstellung und aufbereitung von naturfasern
DE2021305A1 (de) Thermoplastische Polymere mit Faserstruktur
EP4229126A1 (de) Verbundwerkstoff
EP4378981A1 (de) Polymilchsäure basierter monomaterialverbundwerkstoff mit verbesserter thermischer belastbarkeit
WO2012104041A1 (de) Faserverstärktes kunststoffmaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791894

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2013791894

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013791894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015537078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14437654

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157013246

Country of ref document: KR

Kind code of ref document: A