WO2014062810A1 - Chute arrangement with strip-off feature - Google Patents
Chute arrangement with strip-off feature Download PDFInfo
- Publication number
- WO2014062810A1 WO2014062810A1 PCT/US2013/065255 US2013065255W WO2014062810A1 WO 2014062810 A1 WO2014062810 A1 WO 2014062810A1 US 2013065255 W US2013065255 W US 2013065255W WO 2014062810 A1 WO2014062810 A1 WO 2014062810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chute
- gripper
- slots
- unit
- chute arrangement
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 239000002699 waste material Substances 0.000 claims description 50
- 238000011109 contamination Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 14
- 239000000523 sample Substances 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- -1 serum Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/08—Gripping heads and other end effectors having finger members
- B25J15/10—Gripping heads and other end effectors having finger members with three or more finger members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/04—Gripping heads and other end effectors with provision for the remote detachment or exchange of the head or parts thereof
- B25J15/0475—Exchangeable fingers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
- A61B50/36—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments for collecting or disposing of used articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/08—Gripping heads and other end effectors having finger members
- B25J15/10—Gripping heads and other end effectors having finger members with three or more finger members
- B25J15/103—Gripping heads and other end effectors having finger members with three or more finger members for gripping the object in three contact points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B69/00—Unpacking of articles or materials, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G11/00—Chutes
- B65G11/02—Chutes of straight form
- B65G11/023—Chutes of straight form for articles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/14—Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/296—Acoustic waves
- G01F23/2962—Measuring transit time of reflected waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/80—Arrangements for signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/52—Weighing apparatus combined with other objects, e.g. furniture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N35/00732—Identification of carriers, materials or components in automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/0099—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/04—Systems determining presence of a target
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- Some automated components of a laboratory system include a robotic arm and a specimen gripper.
- a conventional robotic arm in a laboratory system may be capable of moving in an x, y, or z direction. It may carry a specimen gripper with gripper fingers.
- the specimen gripper may grip and transport objects such as sample tubes or centrifuge buckets.
- a specimen gripper and robotic arm may also be used to grip and transport waste objects to discard them into a waste container. However, in some cases, when the specimen gripper releases the waste object into the waste container, the waste object may get stuck to the specimen gripper and may not separate from the specimen gripper.
- Embodiments of the invention relate to systems and methods for a chute
- the arrangement comprising a strip-off feature for objects, such as test tubes, caps, and the like.
- objects such as test tubes, caps, and the like.
- the released objects may be collected in a waste container.
- One embodiment is directed to an element useful for releasing an object gripped by a gripper unit, wherein said gripper unit includes a plurality of gripper fingers for gripping the object.
- the element comprises a tubular body comprising a central axial bore running the length of the tubular body with a first end and a second end.
- the tubular body is configured to receive at least a portion of said object into said central axial bore through said first end, the first end including a plurality of slots parallel to the axis of the central axial bore and being open at the first end, said plurality of slots being positioned to receive portions of the plurality of gripper fingers of the gripper unit.
- the said tubular body is configured to restrain the object as the plurality of gripper fingers are extracted through the plurality of slots to release the object.
- One embodiment is directed to a chute arrangement for guiding an object.
- the chute arrangement comprises an element, an adapter unit and a bottom chute.
- the element comprises a tubular body comprising a central axial bore, a first end and a second end opposite to the first end, the first end comprising a plurality of slots parallel to a longitudinal axis of the central axial bore.
- the bottom chute is coupled to the element through the adapter unit, wherein one end of the adapter unit is coupled to the second end of the element and another end of the adapter unit is coupled to the bottom chute.
- Another embodiment is directed to a method of releasing an object through a chute arrangement.
- the method comprises gripping the object using a plurality of gripper fingers in a gripper unit and inserting the object into the chute arrangement by means of the gripper unit.
- the chute arrangement comprises an element comprising an element body comprising a central axial bore, a first end and a second end, the first end comprising a plurality of slots.
- the method further comprises releasing the object by the plurality of gripper fingers by causing the gripper fingers to extend outward through the plurality of slots while the object is within the element of the chute arrangement.
- FIG. 1 depicts an example of a Cartesian or gantry robot with three independently moveable directions x-,y-, and z-.
- FIG. 2A illustrates a typical gripper unit operable to grip a specimen container.
- FIG. 2B illustrates a prior art robotic gripper that may be used as a strip-off element for caps.
- FIG. 3 illustrates a block diagram of a system that may be utilized in a laboratory.
- FIG. 4 illustrates certain elements of an exemplary system comprising a chute arrangement, in one embodiment of the invention.
- FIGS. 5A-5B illustrate close up views of a top chute comprising an element, in one embodiment of the invention.
- FIG. 6 illustrates a top chute arrangement with a square shaped profile, in one embodiment of the invention.
- FIG. 7 illustrates a close up view of the placement of a chute arrangement, in one embodiment of the invention.
- FIG. 8 illustrates overview of an exemplary specimen output system in one embodiment of the invention.
- FIG. 9 illustrates a flow chart for a method of releasing an object through a chute arrangement, in one embodiment of the invention.
- FIG. 10 illustrates a block diagram of an exemplary computer apparatus. DETAILED DESCRIPTION
- Specimen containers such as sample tubes may be used to hold specimens for medical analysis. Examples of such specimens include blood, serum, gel, plasma, etc. After the specimen has been processed or after the storage period of the specimen container has expired, the specimen container may need to be discarded.
- Robotic gripper units may be used to grip and transport waste specimen containers for discarding them into a waste container. However, in some cases, when the gripper unit releases the specimen container into the waste container, the specimen container may get stuck to the gripper unit and may not be automatically released. For example, the outside surface of the specimen container may be sticky due to contamination, glue from a label stuck to the specimen container, etc. In such cases, human intervention may be required to remove the specimen container to minimize the processing delays. Furthermore, contamination may be transported with the gripper fingers from one specimen container to another, thus further spreading the
- Embodiments of the invention provide systems and methods for a chute
- At least one gripper finger in a plurality of gripper fingers may separate (e.g., strip off) from a sticky object so that the at least one gripper finger is not stuck to the object and the object is released from the gripper finger.
- An element can be used to surround the object to restrain (hold back) the object as the gripper fingers release the object.
- An element may include a hollow tubular body comprising a first end and a second end.
- the first end of the body may include a plurality of slots to enable a plurality of gripper fingers gripping an object surrounded by the body of the element to strip off from the object through the plurality of slots.
- the body of the element may have a square profile, a cylindrical profile or any suitable profile, which can accommodate an object that needs to be discarded, e.g., a specimen container, a cap, etc.
- the first end of the body may be open and integrated with an open end of each slot in a plurality of slots.
- a second end of the body may be coupled to another device or unit.
- a “central axial bore” may include an opening along an axis of a body.
- a central axial bore may be defined by a body with any suitable shape and may be of any suitable length.
- the body defining the central axial bore may have a volume slightly larger than the volume of an object with any suitable profile (square, cylindrical, etc.) and may have a length slightly longer than the object.
- an element body comprising a central axial bore may be configured to surround an object, e.g., a specimen container, within the central axial bore.
- a specimen container e.g., a sample tube
- the diameter of the bore may be large enough to accommodate a sample tube held by a plurality of gripper fingers within the bore.
- the central axial bore may include any hollow cylindrical forms including square shaped forms.
- a "slot” may include a narrow opening.
- a slot may have any suitable length.
- a slot may be sized so that it is slightly wider than a gripper finger or a jaw attached to the gripper finger.
- the slot may also have any suitable shape including a rectangular shape.
- a slot may be elongated, arranged axially parallel to an axis of the element body and may be open at the first end of the element.
- a plurality of slots may be integrated in the body of an element.
- the number of slots in the plurality of slots may be equal to the number of gripper fingers gripping an object surrounded by the body of the element.
- plurality of slots includes at least two slots.
- plurality of slots includes exactly four slots.
- Each of the plurality of slots (e.g., four slots) may have a rectangular shape with a length smaller than a length of the body of the element and a width large enough to allow a gripper finger to move easily in and out of the slot.
- a gripper unit may utilize plurality of gripper fingers to grip an object.
- the plurality of gripper fingers may comprise two or more (e.g., three, four or any suitable number) gripper fingers.
- the plurality of gripper fingers comprises four gripper fingers.
- Each gripper finger may take a form of an elongated structure that is capable of gripping an object such as a sample tube in collaboration with one or more other gripper fingers.
- an exemplary gripper finger may have a rectangular, axial and/or longitudinal, cross-section with predetermined thickness (e.g., one quarter of an inch or more) and length (e.g., three inches or more). Suitable gripper fingers may be rigid or may have one or more pivoting regions. [0031]
- a jaw may be coupled to one end (gripping end) of the gripper finger to aid in gripping the object. The other end of the gripper finger may be coupled to an assembly or mechanism along with other gripper fingers that may be operable to control the gripper fingers for gripping the object.
- the gripper unit may be used in a medical laboratory system for processing patient samples.
- a gripper unit may be coupled to a robotic arm.
- Robotic arms may be used for the transportation of specimen containers in various areas of a laboratory system, such as input, distribution, centrifuge, decapper, aliquotter, output, sorting, recapping, and secondary tube lift areas.
- robotic arms may be used to lift waste specimen containers from a specimen carrier using a gripper unit and discard them into a waste container.
- FIG. 1 depicts an example of a Cartesian or gantry robot 1000 with three independently moveable directions x-, y-, and z-.
- the gantry robot 1000 shown in FIG. 1 shows a simple robotic arm 1002 that can move up and down.
- More complex robotic arms may include, for example, a Selective Compliant Assembly Robot Arm (SCARA) or an articulated robotic arm with multiple joint arms.
- SCARA Selective Compliant Assembly Robot Arm
- a gripper unit 1004 may be coupled to the robot arm 1002.
- the robot arm 1002 may be part of the gantry robot 1000 that is configured to move independently in three, orthogonal directions denoted as 1000 A, 1000B and lOOOC.
- the gripper unit 1004 may transport a specimen container 1006 held by the gripper unit 1004.
- the gripper unit 1004 may have two or more moveable gripper fingers 1008, 1010 coupled to a body 1012 to grip the specimen container 1006.
- the gripper fingers 1008, 1010 may move inwardly toward the specimen container 1006 until the specimen container 1006 is held in a fixed position between the gripper fingers 1008 and 1010.
- the gripper fingers 1008, 1010 may also be configured to spread outwardly to release the specimen container 1006.
- the robot arm 1002 may be part of a laboratory automation system, which is further described with reference to FIG. 3.
- FIG. 2A illustrates a typical gripper unit operable to grip a specimen container.
- a gripper unit 1050 may be operable to grip a specimen container 1054 using gripper fingers 1052 to discard the specimen container 1054 into a waste container.
- the specimen container 1054 may be a test tube containing patient samples. Under normal conditions, the gripper unit 1050 may release the specimen container 1054 by opening the gripper fingers 1052.
- a substance 1056 may be stuck to an outside surface of the specimen container 1054. The substance 1056 may be deposited due to contamination from aliquotting or glue from a label stuck on the surface of the specimen container 1054. Due to the presence of the substance 1056, the gripper fingers 1052 may get stuck to the specimen container 1054 during the process of discarding the specimen container 1054.
- the gripper unit 1050 opens its gripper fingers 1052 to release the specimen container 1054
- the specimen container 1054 may be left dangling because it is attached to the gripper finger. This may increase the processing time to discard the specimen containers as human intervention may be required to remove the stuck specimen container 1054. Further, contamination may be transported by the gripper fingers 1052 to other specimen containers, thus, further spreading the contamination.
- FIG. 2B illustrates a prior art robotic gripper 1060 that may be used as a strip-off element for caps.
- the robotic gripper 1060 comprises a strip-off element 1062 for caps using gripper fingers 1064.
- a similar robotic gripper is used in Beckman AutomateTM 2500 series as a decapper for decapping or removing caps from specimen containers, such as, sample tubes.
- the contamination may be transferred to the body of the strip-off element 1060 (e.g., the cylinder). Since the strip-off element 1062 is attached to the body of the robotic gripper 1060, it may not be easily cleaned and the contamination may be transferred to other specimen containers. The presence of the strip off element 1062 on the body of the robotic gripper also makes it more difficult to see what is being gripped.
- Embodiments of the invention provide an element that is detached from the gripper unit, thus, can be easily replaced or removed for cleaning, etc.
- the element may be part of a chute arrangement that can be mounted right above a waste container so the contamination does not get transferred to other components of the automation system.
- Embodiments may be used for any object that needs to be collected in a container, such as discarded specimen samples (e.g., waste tubes), secondary tubes that need not be stored, capillary waste, pipette tip waste or test tube cap waste used in various modules of a medical laboratory system (e.g., de and re-capper module, serum indices module, aliquoter module).
- FIG. 3 illustrates a block diagram of a system 1100 that may be utilized in a medical laboratory.
- the system 1100 may include an operator 1102 that may use a laboratory automation system 1104 to process samples (e.g., serum, plasma, gel, packed red blood cells, etc.).
- the laboratory automation system 1104 includes the robot arm 1002, a processing unit 1106, a gripper unit 1114 and a chute arrangement 1122.
- a number of other units may be utilized by the laboratory automation system 1104.
- the laboratory automation system 1104 may include an input module, a distribution area, a centrifuge, a decapper, a serum indices measurement device, an aliquotter and an output/sorter in some embodiments of the invention.
- the robot arm 1002 may be part of the gantry robot 1000.
- the gripper unit 1114 may be configured to
- the processor 1108 may be configured to execute instructions or code in order to implement methods, processes or operations in various embodiments.
- the processor may include other suitable processing elements (not shown), such as a microprocessor, a digital signal processor, a graphics processor, a co-processor, etc.
- the memory 1110 may be coupled to the processor 1108 internally or externally (e.g., cloud based data storage) and may comprise any combination of volatile and/or nonvolatile memory such as, for example, buffer memory, RAM, DRAM, ROM, flash, or any other suitable memory device.
- the memory 1110 may be in the form of a computer readable medium (CRM), and may comprise code, executable by the processor 1108 for implementing methods described herein.
- the processor 1108 may be part of a computer system as described with reference to FIG. 9.
- the memory 1110 may also store other information. Such information may include types and dimensions of various specimen containers that may be collected in a waste container. The memory 1110 may also store information relating to a count of specimen containers that are dropped in the waste container through the chute arrangement 1122.
- the laboratory automation system 1104 may utilize the robot arm 1002 to grip a specimen container (e.g., sample tube) using the gripper unit 1114.
- the gripper unit 1114 may include a body 1116 and gripper fingers 1118 that are coupled to the body 1116. It will be understood that the gripper unit 1114 may also include or interface with other units to enable the gripper unit perform the intended function.
- the gripper fingers 1118 are coupled to the body 1116.
- the body 1116 may be in the form of a support structure or a housing. It may have any suitable shape including a square or rectangular vertical or horizontal cross section.
- the gripper fingers 1118 can be capable of moving with respect to the body 1116.
- the body 1116 may include one or more mounting structures so that the gripper fingers 1118 are coupled to the one or more mounting structures. It may also contain the well-known components (e.g., gears, solenoids, etc.) that allow the gripper unit to function.
- the body 1116 may be made of any suitable material including metal or plastic.
- the chute arrangement 1122 may include a top chute 1124 which may be in the form of an element implementing a strip-off feature and a bottom chute 1126 coupled to the top chute 1 124.
- the top chute 1124 may be coupled to the bottom chute 1126 using an adapter or a spacer unit for compatibility or height adjustments.
- a sensor unit may be communicatively coupled to the chute arrangement 1122 that may be operable to detect a falling object passing through the chute arrangement 1122.
- the robot arm 1002 may be operable to grip a specimen container (e.g., a sample tube) using the gripper unit 114 from a specimen carrier (e.g., a tube rack) and drop it through the chute arrangement 1122 into a waste container.
- a specimen container e.g., a sample tube
- a specimen carrier e.g., a tube rack
- FIG. 4 illustrates certain elements of an exemplary system 3000 comprising a chute arrangement, in one embodiment.
- the exemplary system 3000 may include the robot arm 1002 coupled to a gripper unit 3002 including gripper fingers 3004.
- the gripper unit 3002 may grip specimen containers such as waste tubes, and the gripper fingers 3004 can automatically discard the specimen containers into a waste bin 3016.
- a chute arrangement 3012 may include a top chute 3006 in the form of an element and a bottom chute 3010 coupled to the top chute 3006 through an optional adapter unit 3008. In one
- the gripper unit 3002 may be communicatively coupled to the processing unit 1106.
- the processing unit 1106 may control the gripper unit 3002 using code stored in the memory 1110.
- an ultrasonic sensor unit 3018 may be in proximity to the chute arrangement 3012, as shown in FIG. 4.
- the ultrasonic sensor unit 3018 may be configured as a transceiver for transmitting and detecting ultrasonic signals.
- the ultrasonic sensor unit 3018 may be configured to generate acoustic waves and to evaluate the waves reflected from a surface and received by the ultrasonic sensor unit 3018.
- the ultrasonic sensor unit 3018 may be configured to detect an object, e.g., a specimen container 3014 passing through the chute arrangement 3012 by sending a signal through a side hole in the bottom chute 3010.
- detection of a falling object through the chute arrangement 3012 may be used to keep a count of the number of objects (e.g., tubes, caps, etc.) that can be collected in the waste bin 3016.
- objects e.g., tubes, caps, etc.
- the operation of the ultrasonic sensor unit 3018 is explained in greater detail in a co-pending U.S. Patent
- the gripper unit 3002 may be configured to grip the specimen container 3014 using the gripper fingers 3004.
- the chute arrangement 3012 helps direct the specimen container 3014 into the waste bin 3016, when the specimen container 3014 is released by the gripper fingers 3004.
- the chute arrangement 3012 may be configured to allow un-gripped objects to fall through the chute by means of gravity. If the specimen container 3014 is not sticky (i.e., no substance 1056), the specimen container 3014 may fall into the waste bin 3016 when it is released by the gripper fingers 3004. However, as explained above, the specimen container 3014 may stick to the gripper fingers 3004.
- the top chute 3006 can be an element and can separate the specimen container 3014 from the gripper fingers 3004, when the gripper fingers 3004 move outwardly to release the specimen container 3014.
- the top chute 3006 may restrain the specimen container 3014 from moving with the gripper fingers 3004 as they move outwardly away from the specimen container 3014. This allows the specimen container 3014 to separate from the gripper fingers 3004 so that it can pass down through the chute
- the adapter unit 3008 may be configured as a spacer unit to provide a height adjustment for mounting the chute arrangement 3012 on a platform.
- One end of the adapter unit 3008 may be coupled to the top chute 3006 and another end of the adapter unit 3008 may be coupled to the bottom chute 3010.
- the adapter unit 3008, in combination with the top chute 3006, may be configured to have a length that is equal to or greater than the length of the specimen container 3014 such that no part of the specimen container 3014 can stick to gripper fingers 3004 beyond the chute.
- a potential splash of the sample specimen can be confined by the top chute 3006 and/or the adapter unit 3008.
- the chute arrangement 3012 may be able to accommodate specimen containers of any suitable length so that the specimen container does not interrupt the acoustic, light, or other signal used for detecting the falling specimen container, when the specimen container is in the grasp of the gripper unit 3002.
- the combined length of the top chute 3006 and the adapter unit 3008 can be adjusted to accommodate lengths of different objects that are intended to be passing through the chute arrangement 3012.
- the bottom chute 3010 may be configured to provide multiple functions.
- the bottom chute 3010 may include a mechanism for mounting on a platform to provide support or stability to the chute arrangement 3012.
- one end of the bottom chute 3010 may comprise mounting tabs for mounting on a platform and another end of the bottom chute 3010 may couple to the adapter unit 3008 or directly to the top chute 3006.
- the bottom chute 3010 may be configured to be in a close proximity of the ultrasonic sensor unit 3018 so that the ultrasonic sensor unit 3018 can detect a falling object passing through the bottom chute 3010.
- an opening on the bottom chute 3010 may be in a line of sight of the ultrasonic sensor unit 3018 so that an ultrasonic signal transmitted by the ultrasonic sensor unit 3018 can reflect from a surface of an object passing through the bottom chute 3010 and bounce back to the ultrasonic sensor unit 3018.
- the ultrasonic sensor unit 3018 may be communicatively coupled to the processing unit 1106 so that a count of the falling objects can be stored and/or updated in the memory 1110.
- the bottom chute 3010 has wider dimensions than the top chute 3006.
- the increased size of the bottom chute 3010, in conjunction with the ultrasonic sensor unit 3018, can provide for the capability of detecting falling objects.
- the bottom chute 3010 may have any suitable design as long as it can interface with the top chute 3006, with or without the adapter unit 3008.
- the top chute 3006 enables the waste tube 3014 to strip off from the gripper fingers 3004, as further explained with reference to FIGs. 5A-5B.
- FIGS. 5A-5B are close up, perspective views of a top chute in form of an element.
- the top chute 3006 includes a plurality of slots 3102.
- each of the plurality of slots is parallel to a longitudinal axis of the top chute 3006.
- the gripper fingers 3004 may generally enter the plurality of slots 3102 from above for at least partially inserting the specimen container 3014 gripped by at least two of the gripper fingers 3004.
- the gripper fingers 3004 may open laterally to release the gripped specimen container 3014.
- a geometric dimension of each of the plurality of slots 3102 may be smaller than an overall length, width or height of the specimen container 3014 such that the specimen container 3014 is unable to pass through the slots 3102 when released by the gripper fingers 3004.
- the geometric dimension of each of the plurality of slots may be a width of the slot so that each of the gripper fingers 3004 may pass through the slot but not the object.
- the specimen container 3014 may drop down the chute arrangement 3012 into the waste bin 3016 when the specimen container 3014 is released from the gripper fingers 3004, as shown in FIG. 4. However, if there is contamination on the specimen container 3014, the specimen container 3014 may stick to the gripper fingers 3004.
- Embodiments provide a stripping feature in the top chute 3006 such that the gripper fingers 3004 can be moved by the gripper unit 3002 to extend outwardly through the slots 3102 so that the specimen container 3014 can be released and separated from the gripper fingers.
- FIG. 5B illustrates open gripper fingers 3004 that have opened outwardly outside the slots 3102 of the top chute 3006. The gripper fingers 3004 do not touch the sample container 3014 and are completely separated from it.
- the slots 3102 may be configured such that the gripper fingers 3004 may pass through the slots 3102. If the specimen container 3014 sticks to the gripper fingers 3004 due to some contamination during the movement of the opening of the gripper fingers 3004, the element of the top chute 3006 retains the specimen container 3014 within it so that the specimen container 3014 is released from the gripper fingers 3004 and passes down through the chute arrangement 3012. Because slots 3102 are smaller in dimensions (e.g., narrower) than the specimen container 3014, the specimen container 3014 does not pass through the slots 3102 when the gripper fingers 3004 pass through the slots and is restrained by the element.
- the element can be made of a material sufficiently strong to restrain the specimen container 3014 if the specimen container 3014 sticks to the gripper fingers 3004 due to contamination on the specimen container 3014.
- Some non- limiting examples of the material for the element are metal (e.g., steel or aluminum), plastic, Teflon, etc.
- Stabilizing bars 3104 on the surface of the top chute 3006 may help provide further stabilization.
- the specimen container 3014 may be collected in a container, e.g., a container for waste collection or for further processing.
- the substance 1302 may get transported with the specimen container 1304 into the waste container instead of sticking to the gripper fingers 3004. This may avoid having contamination from the substance 1302 transferred to the other objects that may come in contact with the gripper fingers 3004.
- FIG. 6 illustrates a top chute arrangement with a square shaped radial cross-section, or a square shaped profile, according to one embodiment of the invention.
- a top chute arrangement 3200 may comprise an element 3202 and an adapter unit 3204, both with a square shaped profile.
- the element 3202 may comprise an element body 3202A comprising a central axial bore 3202B, a first end 3202C and a second end 3202D.
- the gripper unit 3002 may insert the specimen container 3014 held by the gripper fingers 3004 into the element 3202 from top for discarding it.
- the element 3202 may be configured to have dimensions that may allow different types of objects (e.g., different types of tubes, caps, etc.) to be surrounded by the element body 3202A so that the element body 3202A can restrain the object when the object is released by the gripper fingers.
- the top chute arrangement 3200 may have any suitable profile that would allow a correct alignment of the element 3202 and the gripper unit 3002 to allow the gripper fingers 3004 to properly enter the plurality of slots 3206.
- the element body 3202A has a square shaped profile.
- the element body 3202A may comprise four walls where each wall may comprise a slot.
- the element body 3202A may comprise a plurality of stabilizing bars 3202E for providing stabilization or support to the element 3202. As illustrated in FIG. 6, there is one stabilizing bar on each side of the slot, which runs longitudinally along the element body 3202A from the first end 3202C to the second end 3202D.
- the second end 3202D of the element body 3202A may have slightly larger dimensions than the rest of the element body 3202A.
- the second end 3202D may be configured to support the coupling of the stabilizing bars 3202E to the element body 3202 A.
- the stabilizing bars 3202 may be integrally formed with the main body of the element, or could be separate parts that are attached to the main body of the element.
- the second end 3202D may further be configured to couple to one end of the adapter unit 3204.
- the element body 3202A may comprise of a material with sufficient strength to restrain a specimen container from moving with the gripper fingers when the gripper fingers are moving away from the specimen container through the slots 3206.
- the number of slots 3206 may be same as the number of gripper fingers and configured in shape and size such that the gripper fingers may pass through the slots 3206 but the specimen container stays confined within the element 3202.
- the slots 3206 are parallel to a longitudinal axis of the central axial bore 3202B.
- each slot in the plurality of slots 3206 may have a rectangular cross-section and may have an open end 3206A and a closed end 3206B.
- each slot may depend upon a number of factors such as the dimensions (e.g., length of the element, width of each wall, etc.) of the element body 3202, the dimensions (e.g., length, width, thickness, etc.) of the gripper finger passing through each slot, the dimensions of each object that may be surrounded by the element body 3202A for dropping through the top chute arrangement 3200, material of the element 3202, etc.
- the adapter unit 3204 has a square shaped profile.
- the square shaped profile of the adapter unit 3204 may provide for easy alignment with the element 3202.
- the adapter unit 3204 or other portion of the element 3202 having a square cross-sectional profile can be used to ensure that each time the top chute arrangement 3200 is installed, the plurality of slots 3206 are positioned to receive the gripper fingers.
- the square shaped profile of the element 3202 provides a benefit over a cylindrical shape since a cylindrical shaped chute may be rotated when replaced such that the gripper fingers are not aligned with the slots.
- a cylindrical shape profile with specific alignment features may be used.
- these features are preferably located at the second end 3202D of the element body 3202A and may e.g. interface with the adapter 3204 in such a way that an unintentional rotation or misplacement of the element 3202 that would lead to a mis-alignment of the slots 3206 in relation to the gripper fingers 3004, is avoided.
- the adapter unit 3204 is part of the element 3202.
- the adapter unit 3204 may further be configured to couple to a bottom chute for forming a chute arrangement that may be used to drop off waste objects into a waste container, e.g., the waste bin 3016.
- a waste container e.g., the waste bin 3016.
- one end of the bottom chute 3010 which connects to the adapter unit 3008 may be configured to have a square shaped profile so that the bottom chute 3010 may be coupled to the adapter unit 3204 for forming a chute arrangement.
- the chute arrangement may be coupled to a platform, as described with reference to FIG. 7.
- FIG. 7 illustrates a perspective view of the placement of a chute arrangement 3300 according to one embodiment of the invention.
- a top chute 3302 is coupled to a bottom chute 3306 via an adapter unit 3304.
- the top chute 3302 may be attached directly to the bottom chute 3306 without the adapter unit 3304 or any other intermediary unit.
- the adapter unit 3304 may be a part of the bottom chute 3306.
- Top chute 3302 may be easily removed or replaced for cleaning or other maintenance.
- the top chute 3302 may have a square shaped profile similar to the top chute 3202 of FIG. 6.
- the adapter unit 3304 may have a square shaped profile similar to the adapter unit 3204 that provides an easy alignment with the top chute 3302.
- the adapter unit 3304 or other portion of the top chute 3302 may be inserted into an opening, such as an opening in a deck 3308, for support or stability.
- the bottom chute 3306 may comprise a plurality of mounting tabs for mounting on a deckbase 3310.
- any mechanism may be used to connect the bottom chute 3306 to the deckbase 3310 or any other stabilizing platform.
- the deck 3308 and the deckbase 3310 are part of the laboratory automation system 1104 (e.g., in a storage unit).
- the deck 3308 may hold a plurality of specimen carrier racks holding a plurality of specimen carriers carrying multiple specimen containers.
- the adapter unit 3304 may be configured to compensate for the distance between the top chute 3302 and the bottom chute 3306 that results from the presence of the deck base 3310.
- the bottom chute 3306 is in close proximity to an ultrasonic sensor 3312 such that the ultrasonic signals emitted from the ultrasonic sensor 3312 are directed towards an opening or side hole in the bottom chute 3306 to detect an object passing through the chute arrangement 3300.
- an optical sensor may be used in place of the ultrasonic sensor unit 3312 for short range detection of the passing objects.
- the optical sensor may be mounted on the deck base 3310 such that an object falling through the chute arrangement 3300 is in its line of sight. The optical sensor may detect change in light when a sample container passes through the chute arrangement 3300.
- the optical sensor may be implemented as a light barrier or a light curtain comprising multiple light barriers in parallel.
- the chute arrangement 3300 may be part of a specimen output system, as described with reference to FIG. 8. [0074] FIG. 8 illustrates overview of an exemplary specimen output system according to one embodiment of the invention.
- a specimen output system 3400 may be used in medical laboratory systems where specimen containers may need to be discarded, e.g., when the storage time for the specimen container has expired.
- the specimen container may be a test tube containing material for medical analysis, such as blood, serum, plasma, etc.
- An output robot 3402 may be used to transport the specimen containers from various areas of a laboratory system, such as input, distribution, centrifuge, decapper, aliquotter, output, analyzer, sorting, recapping, and secondary tube lift areas.
- the specimen containers may be stored in a single tube carrier rack 3404. A plurality of such racks may be placed in the deck 3308.
- the output robot 3402 may comprise a gripper unit (e.g., the gripper unit 3002) that may be used to automatically lift a tube from the single tube carrier rack 3404 for discarding into a waste bin 3406.
- a gripper unit e.g., the gripper unit 3002
- specimen containers may be picked up from any handling system, such as a track system or via any test tube supply mechanism.
- Embodiments may be used to help the specimen container pass through a chute arrangement into the waste bin 3406 when released by the gripper unit (not shown).
- the chute arrangement includes one or more of the top chute 3302, adapter unit 3304 and the bottom chute 3306.
- the bottom chute 3306 may be mounted on the deckbase 3310 to provide support or stability (as shown in FIG. 7).
- the adapter unit 3304 may be configured to compensate for the distance between the top chute 3302 and the bottom chute 3306 caused by the deck base 3310.
- Embodiments provide for a number of advantages. For example, by not attaching the waste bin 3406 to the chute arrangement or the deckbase 3310, the waste bin 3406 may be removed for emptying or replaced with another container.
- the specimen output system 3400 may be part of the laboratory automation system 1104.
- the output robot 3402 may utilize the robot arm 1002 for gripping an object using the gripper unit 1114 from the single tube carrier rack 3404 and dropping it into the waste bin 3406 through the chute arrangement comprising one or more of the top chute 3302, adapter unit 3304 and the bottom chute 3306.
- the processing unit 1106 may be in communication with the output robot 3402 to control the output robot 3402 to start and stop the specimen container discarding process.
- FIG. 9 illustrates a flow chart for a method of releasing an object through a chute arrangement, in one embodiment of the invention.
- an object is gripped using a plurality of gripper fingers in a gripper unit.
- the gripper unit 3002 may grip the specimen container 3014 using the gripper fingers 3004 (e.g., from the single tube carrier rack 3404 as shown in FIG. 8) for discarding it into the waste bin 3016.
- the gripper unit 3002 may be part of the output robot 3402.
- the object is inserted into a chute arrangement using the gripper unit.
- the gripper unit 3002 may insert the specimen container 3014 into the chute arrangement 3012.
- the chute arrangement 3012 may comprise the top chute 3006 in the form of an element and the bottom chute 3010 coupled to the top chute 3006 through the optional adapter unit 3008. As shown in FIGS. 5A-5B, the specimen container 3014 may be inserted into the top chute 3006 from above by the gripper unit 3002 using the gripper fingers 3004. The gripper fingers 3004 may pass through the slots by entering the open ends of the slots in the top chute 3006 while holding the specimen container 3014.
- step 3506 the object is released by the plurality of gripper fingers by causing the gripper fingers to extend outward while the object is within an element of the chute arrangement.
- the specimen container 3014 may be released by the gripper fingers 3004 by causing the gripper fingers 3004 to extend outward while the specimen container 3014 is within the element 3006 of the chute arrangement 3012.
- the element 3006 helps separate the specimen container 3014 from the gripper fingers 3004, when the gripper fingers 3004 release the specimen container 3014 and pass through the plurality of slots 3102.
- step 3508 the object passes through the chute arrangement to a waste container placed under the chute arrangement.
- the specimen container 3014 passes through the chute arrangement 3012 to the waste container 3016 when released by the gripper fingers 3004.
- the waste container 3016 is not attached to the chute arrangement 3012, thus can be easily replaced or emptied as needed.
- the various participants and elements described herein with reference to FIG. 3 may operate one or more computer apparatuses to facilitate the functions described herein.
- Any of the elements in the above description, including any servers, processors, or databases, may use any suitable number of subsystems to facilitate the functions described herein, such as, e.g., functions for operating and/or controlling the functional units and modules of the laboratory automation system, transportation systems, the scheduler, the central controller, local controllers, etc.
- FIG. 10 Examples of such subsystems or components are shown in FIG. 10.
- FIG. 10 is interconnected via a system bus 10. Additional subsystems such as a printer 18, keyboard 26, fixed disk 28 (or other memory comprising computer readable media), monitor 22, which is coupled to display adapter 20, and others are shown. Peripherals and input/output (I/O) devices, which couple to I/O controller 12 (which can be a processor or other suitable controller), can be connected to the computer system by any number of means known in the art, such as serial port 24. For example, serial port 24 or external interface 30 can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner.
- I/O controller 12 which can be a processor or other suitable controller
- system bus allows the central processor 16 to communicate with each subsystem and to control the execution of instructions from system memory 14 or the fixed disk 28, as well as the exchange of information between subsystems.
- the system memory 14 and/or the fixed disk 28 may embody a computer readable medium.
- Any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object- oriented techniques.
- the software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM.
- RAM random access memory
- ROM read only memory
- magnetic medium such as a hard-drive or a floppy disk
- optical medium such as a CD-ROM.
- Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Fluid Mechanics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Signal Processing (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Manipulator (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Devices For Opening Bottles Or Cans (AREA)
- Refuse Receptacles (AREA)
- Feeding Of Articles To Conveyors (AREA)
- Chutes (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN2705DEN2015 IN2015DN02705A (en) | 2012-10-16 | 2013-10-16 | |
BR112015008363A BR112015008363A2 (en) | 2012-10-16 | 2013-10-16 | drain rail arrangement with remover feature |
JP2015537791A JP6170165B2 (en) | 2012-10-16 | 2013-10-16 | Chute configuration with peeling mechanism |
CN201380053873.2A CN104718457B (en) | 2012-10-16 | 2013-10-16 | Chute device with lift-off structure |
KR1020157009676A KR102077879B1 (en) | 2012-10-16 | 2013-10-16 | Chute arrangement with strip-off feature |
ES13786357T ES2712975T3 (en) | 2012-10-16 | 2013-10-16 | Ramp arrangement with extraction characteristic |
EP13786357.7A EP2909635B1 (en) | 2012-10-16 | 2013-10-16 | Chute arrangement with strip-off feature |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261714656P | 2012-10-16 | 2012-10-16 | |
US61/714,656 | 2012-10-16 | ||
US201361790446P | 2013-03-15 | 2013-03-15 | |
US61/790,446 | 2013-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014062810A1 true WO2014062810A1 (en) | 2014-04-24 |
Family
ID=49488684
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/065280 WO2014062828A1 (en) | 2012-10-16 | 2013-10-16 | System and method including specimen gripper |
PCT/US2013/065255 WO2014062810A1 (en) | 2012-10-16 | 2013-10-16 | Chute arrangement with strip-off feature |
PCT/US2013/065213 WO2014062785A1 (en) | 2012-10-16 | 2013-10-16 | Container fill level detection |
PCT/US2013/065216 WO2014062786A1 (en) | 2012-10-16 | 2013-10-16 | Removable specimen gripper fingers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/065280 WO2014062828A1 (en) | 2012-10-16 | 2013-10-16 | System and method including specimen gripper |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/065213 WO2014062785A1 (en) | 2012-10-16 | 2013-10-16 | Container fill level detection |
PCT/US2013/065216 WO2014062786A1 (en) | 2012-10-16 | 2013-10-16 | Removable specimen gripper fingers |
Country Status (9)
Country | Link |
---|---|
US (4) | US8967691B2 (en) |
EP (3) | EP2909634A1 (en) |
JP (2) | JP2016500878A (en) |
KR (2) | KR20150068396A (en) |
CN (2) | CN104718457B (en) |
BR (2) | BR112015008363A2 (en) |
ES (1) | ES2712975T3 (en) |
IN (2) | IN2015DN02705A (en) |
WO (4) | WO2014062828A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112455841A (en) * | 2020-11-26 | 2021-03-09 | 中冶赛迪工程技术股份有限公司 | Method and device for adjusting position of outer ring belt head of steel coil |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015069547A1 (en) * | 2013-11-06 | 2015-05-14 | Siemens Healthcare Diagnostics Inc. | Confirmed placement of sample tubes in a servo driven automation system using trajectory deviation |
US9598203B2 (en) * | 2013-12-24 | 2017-03-21 | Ookuma Electronic Co., Ltd. | Injection container storage box device and injection container picking system including the device |
WO2015169687A1 (en) * | 2014-05-09 | 2015-11-12 | Oce-Technologies B.V. | A print system and a method of using said system |
CA2951701A1 (en) * | 2014-06-18 | 2015-12-23 | Simplehuman, Llc | Domestic appliance communication system |
US10160177B2 (en) * | 2014-06-27 | 2018-12-25 | Pregis Intellipack Llc | Protective packaging device queue control |
JP6269430B2 (en) * | 2014-10-10 | 2018-01-31 | 株式会社ダイフク | Vegetable and fruit supply apparatus and method |
EP3029468B1 (en) * | 2014-12-02 | 2019-10-30 | F.Hoffmann-La Roche Ag | Device for repositioning tubes in a tube rack |
US9757863B2 (en) * | 2015-01-30 | 2017-09-12 | Canon Kabushiki Kaisha | Robot apparatus, exchanger apparatus and robot system |
CN104924316B (en) * | 2015-06-25 | 2017-02-22 | 长城信息产业股份有限公司 | Grabhook and grabhook opening and closing method |
US10086974B2 (en) * | 2015-07-13 | 2018-10-02 | Express Scripts Strategic Development, Inc. | Methods and systems for pallet sizing and pucking |
US9617074B2 (en) * | 2015-09-08 | 2017-04-11 | Carefusion Germany 326 Gmbh | Method and picking device for storing a plurality of identical piece goods |
CN105150192B (en) * | 2015-09-09 | 2017-08-25 | 临海市锦铮机械有限公司 | The grabbing device that Intelligent Measurement container is filled with |
CA3192499A1 (en) * | 2015-09-11 | 2017-03-16 | Berkshire Grey Operating Company, Inc. | Robotic systems and methods for identifying and processing a variety of objects |
SG11201803503SA (en) * | 2015-11-19 | 2018-06-28 | Inventio Ag | Screwing device and method for screwing a screw into a wall |
US9604358B1 (en) * | 2015-12-10 | 2017-03-28 | Amazon Technologies, Inc. | Secondary robotic catch apparatus and method |
US9937532B2 (en) | 2015-12-18 | 2018-04-10 | Berkshire Grey Inc. | Perception systems and methods for identifying and processing a variety of objects |
US10821233B2 (en) * | 2015-12-30 | 2020-11-03 | Baxter Corporation Englewood | Syringe gripping apparatus and method |
US10011020B2 (en) | 2016-01-08 | 2018-07-03 | Berkshire Grey, Inc. | Systems and methods for acquiring and moving objects |
DE102016107167A1 (en) * | 2016-04-18 | 2017-10-19 | Krones Ag | Closing head for closing a container with a container closure |
JP2017196705A (en) * | 2016-04-28 | 2017-11-02 | セイコーエプソン株式会社 | Robot and robot system |
US9855663B1 (en) * | 2016-06-17 | 2018-01-02 | X Development Llc | Automated digit interchange |
JP6827100B2 (en) * | 2016-07-14 | 2021-02-10 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | Methods, systems, and equipment for dynamic pick-up and placement selection sequences based on sample rack imaging data |
CN109477848B (en) * | 2016-07-25 | 2023-07-18 | 西门子医疗保健诊断公司 | Systems, methods, and apparatus for identifying sample container lids |
EP3459007B1 (en) | 2016-08-31 | 2024-05-08 | Abbott Laboratories | Systems, apparatus, and related methods for evaluating biological sample integrity |
CN106697904A (en) * | 2016-12-28 | 2017-05-24 | 立信染整机械(深圳)有限公司 | Automatic cheese emptying device |
WO2018165017A1 (en) | 2017-03-06 | 2018-09-13 | Berkshire Grey, Inc. | Systems and methods for efficiently moving a variety of objects |
CN116945132A (en) | 2017-08-02 | 2023-10-27 | 伯克希尔格雷营业股份有限公司 | System and method for acquiring and moving objects having complex outer surfaces |
US10639796B2 (en) * | 2017-11-03 | 2020-05-05 | Fanuc America Corporation | Vehicle e-coat drain plug insertion tool |
SE541776C2 (en) * | 2017-11-10 | 2019-12-10 | Il Granito Ab | Identifying, sorting and manipulating test tubes |
CN108214463A (en) * | 2018-01-23 | 2018-06-29 | 梁馨予 | A kind of clamping device for separator paper |
NL2020360B1 (en) * | 2018-01-31 | 2019-08-07 | Besi Netherlands Bv | Handler device for handling substrates |
WO2020006071A1 (en) * | 2018-06-26 | 2020-01-02 | Teradyne, Inc. | System and method for robotic bin picking |
EP3818142A4 (en) | 2018-07-03 | 2022-04-27 | Advanced Solutions Life Sciences, LLC | Modular storage units for perfusion and/or incubation of one or more specimens and storage assemblies |
CN108801400A (en) * | 2018-08-17 | 2018-11-13 | 浙江清环智慧科技有限公司 | Ultrasonic liquid level measurer and ultrasonic liquid-level measurement method |
KR101987847B1 (en) * | 2018-09-17 | 2019-06-11 | 박재현 | Automatic apparatus for aseptic collection of fecal sample |
US20200115082A1 (en) * | 2018-10-15 | 2020-04-16 | Pregis Sharp Systems, Llc | Bag opening verification system and method for operating a bagging machine |
WO2020120343A1 (en) * | 2018-12-14 | 2020-06-18 | Project Management Limited | A test tube manipulation system |
DE102018132888A1 (en) * | 2018-12-19 | 2020-06-25 | Martin Bergmann | Gripping device |
US10744655B2 (en) * | 2019-01-02 | 2020-08-18 | Feiloli Electronic Co., Ltd. | Pneumatic claw-controlling apparatus of a claw crane |
EP3699598A1 (en) * | 2019-02-25 | 2020-08-26 | Siemens Healthcare Diagnostics Products GmbH | Waste shipment system |
CN109883514B (en) * | 2019-03-15 | 2021-04-20 | 浙江清环智慧科技有限公司 | Liquid level data detection device and method |
CN110208554B (en) * | 2019-06-06 | 2021-05-11 | 深圳传世生物医疗有限公司 | Sample analysis system, control method thereof and sample analysis method |
CN110202606B (en) * | 2019-07-03 | 2020-10-27 | 江南大学 | Dexterous soft-touch end effector capable of changing various fingers and finger nails |
CN110539298B (en) * | 2019-09-03 | 2021-03-26 | 亿嘉和科技股份有限公司 | Outdoor live working robot operating system of automatic switching tool |
CN110484847B (en) * | 2019-09-19 | 2021-04-02 | 齐河承泽照明金属涂装有限公司 | Galvanized hanging piece |
CN110672866B (en) * | 2019-09-27 | 2024-07-05 | 广州万孚生物技术股份有限公司 | In-vitro diagnosis analysis device, mechanism for taking and placing sample tube caps and manipulator thereof |
JP7341837B2 (en) * | 2019-10-10 | 2023-09-11 | 清水建設株式会社 | construction work robot |
JP6945246B2 (en) * | 2020-03-19 | 2021-10-06 | 株式会社イシダ | Article gripping system |
US11590666B1 (en) * | 2020-03-27 | 2023-02-28 | Mckesson Corporation | Apparatuses and systems for the automated retrieval and transport of articles |
IT202000015637A1 (en) * | 2020-06-29 | 2021-12-29 | Comecer Spa | APPARATUS FOR REMOVING A FLIP-OFF TYPE PLASTIC CAP FROM A BOTTLE |
EP4185444A1 (en) | 2020-07-22 | 2023-05-31 | Berkshire Grey Operating Company, Inc. | Systems and methods for object processing using a vacuum gripper that provides object retention by evacuation |
CN116133804A (en) | 2020-07-22 | 2023-05-16 | 伯克希尔格雷营业股份有限公司 | System and method for object handling using a passively folded vacuum gripper |
GB202012448D0 (en) * | 2020-08-11 | 2020-09-23 | Ocado Innovation Ltd | Object presence sensing |
US11523631B2 (en) | 2020-11-25 | 2022-12-13 | Island Packaging And Import, Llc | Automated fill detection for pre-filled cones |
DE102021202263B4 (en) | 2021-03-09 | 2022-10-13 | Festo Vertrieb GmbH & Co. KG | Gripping system for gripping test tubes and device for handling test tubes |
DE102021109315A1 (en) * | 2021-04-14 | 2022-10-20 | Bundesdruckerei Gmbh | Gripper and method of gripping and inspecting an object |
CN113682579A (en) * | 2021-08-31 | 2021-11-23 | 新特能源股份有限公司 | Bagging equipment for polycrystalline silicon packaging bags |
WO2023217815A1 (en) * | 2022-05-12 | 2023-11-16 | F. Hoffmann-La Roche Ag | Method for operating a sorter device in an ivd laboratory system and ivd laboratory system |
CN115239219B (en) * | 2022-09-26 | 2023-04-18 | 成都秦川物联网科技股份有限公司 | Smart city muck vehicle management method and system based on Internet of things |
EP4407281A1 (en) * | 2023-01-30 | 2024-07-31 | Roche Diagnostics GmbH | Apparatus for measuring a filling level of a sample container |
EP4446747A1 (en) * | 2023-04-12 | 2024-10-16 | Roche Diagnostics GmbH | Chute arrangement and cap-removal apparatus |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5455006A (en) * | 1993-08-17 | 1995-10-03 | Toa Medical Electronics Co., Ltd. | Sample container turning apparatus |
US6859271B1 (en) * | 2001-01-26 | 2005-02-22 | Ta Instruments-Waters Llc | Platen for automatic sampler |
WO2006075201A1 (en) * | 2004-09-08 | 2006-07-20 | Pfizer Products Inc. | Automated system for handling and weighing analytic quantities of particulate substances |
US20090047179A1 (en) * | 1996-07-05 | 2009-02-19 | Ping Wing S | Automated sample processing system |
US20110262896A1 (en) * | 2003-07-18 | 2011-10-27 | Bio-Rad Laboratories, Inc | System and method for multi-analyte detection |
US20120058900A1 (en) * | 2010-03-04 | 2012-03-08 | Roche Molecular Systems, Inc. | Hardware architecture of analyzers |
WO2012029834A1 (en) * | 2010-09-03 | 2012-03-08 | 株式会社日立ハイテクノロジーズ | Specimen transfer mechanism |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1010320A (en) * | 1911-04-28 | 1911-11-28 | Charles L Ruehs | Sanitary-cup holder. |
GB954014A (en) * | 1960-01-15 | 1964-04-02 | Pye Ltd | Master and slave arm manipulating apparatus |
JPS6039605B2 (en) * | 1979-05-10 | 1985-09-06 | ソニー株式会社 | Goods transfer device |
US4676541A (en) | 1982-11-27 | 1987-06-30 | Cleveland-Guest (Engineering) Limited | Robot hand |
GB8326364D0 (en) * | 1983-10-01 | 1983-11-02 | Bull R J | Robot part |
US4579380A (en) | 1983-12-06 | 1986-04-01 | Carnegie-Mellon University | Servo robot gripper |
DE3420857A1 (en) | 1984-06-05 | 1985-12-05 | Rudi 4018 Langenfeld Kirst | Gripping apparatus with gripper jaw |
GB8415498D0 (en) * | 1984-06-18 | 1984-07-25 | Emi Ltd | Gripper |
DE3513453A1 (en) * | 1985-04-15 | 1986-10-16 | Traub Gmbh, 7313 Reichenbach | GRIPPER WITH INTERCHANGEABLE GRIPPER JACK |
GB2191466B (en) * | 1986-06-12 | 1989-12-20 | Rolls Royce Plc | Robot hand with a releasable gripper |
SE455476B (en) * | 1986-10-22 | 1988-07-18 | Asea Atom Ab | INCORPORATIVE, URGENT AND FIXED DEVICE |
US5256128A (en) * | 1990-01-17 | 1993-10-26 | Hewlett-Packard Company | Gripper exchange mechanism for small robots |
DE4023149A1 (en) | 1990-07-20 | 1992-01-23 | Kodak Ag | DEVICE FOR SCANING CONTAINERS WITH A LIQUID |
US6498037B1 (en) * | 1991-03-04 | 2002-12-24 | Bayer Corporation | Method of handling reagents in a random access protocol |
US5360249A (en) * | 1991-09-13 | 1994-11-01 | Refac Technology Development, Corporation | Multifunctional end effectors |
JP2938240B2 (en) * | 1991-09-24 | 1999-08-23 | 株式会社日立製作所 | Automatic analyzer |
US5350564A (en) * | 1993-06-28 | 1994-09-27 | Baxter Diagnostics Inc. | Automated chemical analyzer with apparatus and method for conveying and temporary storage of sample tubes |
US5941366A (en) | 1996-09-19 | 1999-08-24 | Labotix Automation, Inc. | Transport system for biospecimens |
US5918739A (en) | 1998-05-23 | 1999-07-06 | Bilof; Richard M. | Full level indicator for medical disposables container |
CA2273729A1 (en) * | 1998-07-14 | 2000-01-14 | Bayer Corporation | Robotics for transporting containers and objects within an automated analytical instrument and service tool for servicing robotics |
US6257091B1 (en) | 1998-07-14 | 2001-07-10 | Bayer Corporation | Automatic decapper |
CA2356270A1 (en) | 1998-12-22 | 2000-06-29 | Ronald M. Hubert | Automated centrifuge loading device |
US6539334B1 (en) * | 2000-07-07 | 2003-03-25 | Transtech Pharma, Inc. | Automated weighing station |
US7128874B2 (en) * | 2001-01-26 | 2006-10-31 | Beckman Coulter, Inc. | Method and system for picking and placing vessels |
US7473897B2 (en) | 2001-09-12 | 2009-01-06 | Tecan Trading Ag | System, method, and computer program for conducting optical transmission measurements and evaluating determined measuring variables |
US7402281B2 (en) * | 2003-07-18 | 2008-07-22 | Siemens Healthcare Diagnostics Inc. | Magazine for inventorying reaction cuvettes in an automatic analyzer |
JP4403940B2 (en) * | 2004-10-04 | 2010-01-27 | 株式会社日立製作所 | Hard disk device with network function |
DE102004054177B3 (en) * | 2004-11-10 | 2006-04-27 | Schunk Gmbh & Co. Kg Fabrik Für Spann- Und Greifwerkzeuge | Clamping or gripping device, in particular linear or centric gripper |
EP1870713B1 (en) * | 2005-04-01 | 2021-01-27 | LSI Medience Corporation | Apparatus for multiple automatic analysis of biosamples, method for autoanalysis, and reaction cuvette |
EP2295984B8 (en) | 2005-09-26 | 2018-10-24 | QIAGEN GmbH | Apparatus for processing biological material |
US20070080223A1 (en) | 2005-10-07 | 2007-04-12 | Sherwood Services Ag | Remote monitoring of medical device |
US20070258858A1 (en) | 2006-05-03 | 2007-11-08 | Brian Rasnow | Robotic gripper for transporting multiple object types |
US20070289660A1 (en) * | 2006-06-01 | 2007-12-20 | John Thomas Aylward | Vacuum Apparatus and Methods for Handling Pills |
FR2903927B1 (en) * | 2006-07-21 | 2008-09-05 | Sidel Participations | RAPID ASSEMBLY DEVICE FOR SUPPORTING TOOLS. |
JP4890998B2 (en) | 2006-08-22 | 2012-03-07 | 株式会社日立ハイテクノロジーズ | Sample processing system |
ES2356675T3 (en) | 2006-12-04 | 2011-04-12 | Inpeco Ip Ltd | CONTAINER GRIPPER WITH A POSITION SENSOR. |
US8204169B2 (en) | 2007-05-15 | 2012-06-19 | Sandisk Il Ltd. | Methods and systems for interrupted counting of items in containers |
US7688448B2 (en) | 2007-06-01 | 2010-03-30 | University Of Utah Research Foundation | Through-container optical evaluation system |
US20100101317A1 (en) | 2008-10-23 | 2010-04-29 | Whirlpool Corporation | Lid based amount sensor |
JP5208868B2 (en) | 2008-10-31 | 2013-06-12 | シスメックス株式会社 | Sample processing equipment |
DE102009005252A1 (en) | 2009-01-14 | 2010-07-15 | Pvt Probenverteiltechnik Gmbh | Method and device for determining the position of an interface |
US8382177B2 (en) * | 2009-06-11 | 2013-02-26 | Re2, Inc. | Quick-change finger for robotic gripper |
JP2011064537A (en) | 2009-09-16 | 2011-03-31 | Sysmex Corp | Specimen processing device |
US8439414B2 (en) | 2009-10-20 | 2013-05-14 | Brooks Automation, Inc. | Gripper apparatus and method for containers of different sizes |
IT1403938B1 (en) * | 2011-02-16 | 2013-11-08 | Inpeco Ip Ltd Ora Inpeco Holding Ltd | INTERFACE SYSTEM BETWEEN A PNEUMATIC MAIL PLANT AND A SYSTEM OF FEEDING CONTAINERS OF BIOLOGICAL PRODUCTS TOWARDS A LABORATORY AUTOMATION PLANT. |
CH705297A1 (en) | 2011-07-21 | 2013-01-31 | Tecan Trading Ag | Gripping pliers with interchangeable gripper fingers. |
WO2014025817A1 (en) * | 2012-08-06 | 2014-02-13 | Beckman Coulter, Inc. | Sensing specimen gripper |
-
2013
- 2013-10-16 US US14/055,601 patent/US8967691B2/en active Active
- 2013-10-16 WO PCT/US2013/065280 patent/WO2014062828A1/en active Application Filing
- 2013-10-16 KR KR1020157009677A patent/KR20150068396A/en not_active Application Discontinuation
- 2013-10-16 EP EP13783461.0A patent/EP2909634A1/en not_active Withdrawn
- 2013-10-16 EP EP13786357.7A patent/EP2909635B1/en active Active
- 2013-10-16 BR BR112015008363A patent/BR112015008363A2/en not_active IP Right Cessation
- 2013-10-16 WO PCT/US2013/065255 patent/WO2014062810A1/en active Application Filing
- 2013-10-16 WO PCT/US2013/065213 patent/WO2014062785A1/en active Application Filing
- 2013-10-16 BR BR112015008438A patent/BR112015008438A2/en not_active IP Right Cessation
- 2013-10-16 KR KR1020157009676A patent/KR102077879B1/en active IP Right Grant
- 2013-10-16 CN CN201380053873.2A patent/CN104718457B/en active Active
- 2013-10-16 US US14/435,429 patent/US20150298321A1/en not_active Abandoned
- 2013-10-16 US US14/055,540 patent/US20140107953A1/en not_active Abandoned
- 2013-10-16 IN IN2705DEN2015 patent/IN2015DN02705A/en unknown
- 2013-10-16 JP JP2015537787A patent/JP2016500878A/en active Pending
- 2013-10-16 WO PCT/US2013/065216 patent/WO2014062786A1/en active Application Filing
- 2013-10-16 ES ES13786357T patent/ES2712975T3/en active Active
- 2013-10-16 CN CN201380053959.5A patent/CN104736439A/en active Pending
- 2013-10-16 EP EP13783459.4A patent/EP2909089A1/en not_active Withdrawn
- 2013-10-16 JP JP2015537791A patent/JP6170165B2/en not_active Expired - Fee Related
- 2013-10-16 US US14/055,479 patent/US9010819B2/en active Active
- 2013-10-16 IN IN2704DEN2015 patent/IN2015DN02704A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5455006A (en) * | 1993-08-17 | 1995-10-03 | Toa Medical Electronics Co., Ltd. | Sample container turning apparatus |
US20090047179A1 (en) * | 1996-07-05 | 2009-02-19 | Ping Wing S | Automated sample processing system |
US6859271B1 (en) * | 2001-01-26 | 2005-02-22 | Ta Instruments-Waters Llc | Platen for automatic sampler |
US20110262896A1 (en) * | 2003-07-18 | 2011-10-27 | Bio-Rad Laboratories, Inc | System and method for multi-analyte detection |
WO2006075201A1 (en) * | 2004-09-08 | 2006-07-20 | Pfizer Products Inc. | Automated system for handling and weighing analytic quantities of particulate substances |
US20120058900A1 (en) * | 2010-03-04 | 2012-03-08 | Roche Molecular Systems, Inc. | Hardware architecture of analyzers |
WO2012029834A1 (en) * | 2010-09-03 | 2012-03-08 | 株式会社日立ハイテクノロジーズ | Specimen transfer mechanism |
US20130149079A1 (en) * | 2010-09-03 | 2013-06-13 | Hitachi High-Technologies Corporation | Sample transfer mechanism |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112455841A (en) * | 2020-11-26 | 2021-03-09 | 中冶赛迪工程技术股份有限公司 | Method and device for adjusting position of outer ring belt head of steel coil |
CN112455841B (en) * | 2020-11-26 | 2024-05-14 | 中冶赛迪工程技术股份有限公司 | Method and device for adjusting position of outer ring belt head of steel coil |
Also Published As
Publication number | Publication date |
---|---|
EP2909089A1 (en) | 2015-08-26 |
WO2014062785A1 (en) | 2014-04-24 |
IN2015DN02705A (en) | 2015-09-04 |
EP2909634A1 (en) | 2015-08-26 |
US20140107953A1 (en) | 2014-04-17 |
US20140105719A1 (en) | 2014-04-17 |
CN104736439A (en) | 2015-06-24 |
CN104718457A (en) | 2015-06-17 |
BR112015008363A2 (en) | 2017-07-04 |
JP2015533221A (en) | 2015-11-19 |
BR112015008438A2 (en) | 2017-07-04 |
US8967691B2 (en) | 2015-03-03 |
JP6170165B2 (en) | 2017-07-26 |
KR20150068395A (en) | 2015-06-19 |
IN2015DN02704A (en) | 2015-09-04 |
EP2909635B1 (en) | 2018-12-05 |
US20150298321A1 (en) | 2015-10-22 |
KR20150068396A (en) | 2015-06-19 |
JP2016500878A (en) | 2016-01-14 |
US20140103674A1 (en) | 2014-04-17 |
WO2014062828A1 (en) | 2014-04-24 |
EP2909635A1 (en) | 2015-08-26 |
CN104718457B (en) | 2017-06-20 |
US9010819B2 (en) | 2015-04-21 |
KR102077879B1 (en) | 2020-02-14 |
WO2014062786A1 (en) | 2014-04-24 |
ES2712975T3 (en) | 2019-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8967691B2 (en) | Chute arrangement with strip-off feature | |
JP6743204B2 (en) | Storage and supply of container holders | |
ES2977459T3 (en) | Automated method and system for obtaining and preparing a sample of microorganism for both identification and antibiotic susceptibility tests | |
EP2776845B1 (en) | Robotic arm | |
WO2005119269A1 (en) | Pipetting system with selective pipette tip loading | |
US20170225159A1 (en) | Reagent Carrier Unit, Adapter and Method for Handling a Reagent Carrier Unit | |
EP2076780B1 (en) | Method and device for test sample loading | |
CN216584999U (en) | Automatic nucleic acid extraction apparatus | |
BR112014030334B1 (en) | method for automatically transferring biological material and reagents from a laboratory automation system and apparatus to perform the respective method | |
CN114214183A (en) | Automatic nucleic acid extraction equipment and nucleic acid extraction method thereof | |
WO2023157836A1 (en) | Inspection system | |
BR122023006901B1 (en) | LABORATORY INSTRUMENT | |
BR112017025551B1 (en) | AUTOMATED METHOD AND SYSTEM FOR OBTAINING AND PREPARING SAMPLES OF MICRO-ORGANISMS FOR BOTH IDENTIFICATION AND ANTIBIOTICS SUSCEPTIBILITY TESTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13786357 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157009676 Country of ref document: KR Kind code of ref document: A Ref document number: 2015537791 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013786357 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015008363 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015008363 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150414 |