WO2023157836A1 - Inspection system - Google Patents

Inspection system Download PDF

Info

Publication number
WO2023157836A1
WO2023157836A1 PCT/JP2023/004984 JP2023004984W WO2023157836A1 WO 2023157836 A1 WO2023157836 A1 WO 2023157836A1 JP 2023004984 W JP2023004984 W JP 2023004984W WO 2023157836 A1 WO2023157836 A1 WO 2023157836A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
unit
sample container
robot
transport
Prior art date
Application number
PCT/JP2023/004984
Other languages
French (fr)
Japanese (ja)
Inventor
友希男 岩▲崎▼
尚吾 久保田
佳祐 宮下
昴大 塩谷
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023157836A1 publication Critical patent/WO2023157836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • This disclosure relates to an inspection system.
  • Japanese Unexamined Patent Application Publication No. 2022-13759 discloses a PCR test pretreatment automation apparatus equipped with a robot.
  • a sample collection container containing a sample collected from a subject is transported to the vicinity of the robot.
  • a syringe is attached to the robot, and the sample is aspirated from the sample collection container by the syringe. After that, the sample sucked into the syringe is discharged into the test container.
  • JP-A-2022-13759 in the conventional PCR test as described in JP-A-2022-13759, in order to maintain the test accuracy of the test system, Quality control samples are measured as well as the specimens tested. Specifically, a positive control and a negative control are prepared as samples for quality control. A user carries a sample for quality control to the preprocessing section of the inspection system at a desired time, and the sample for quality control is inspected by the inspection system. The test system measures the positive control and determines it as positive, and the test system measures the negative control and determines it as negative, thereby confirming the correctness of the test accuracy of the test system.
  • the present disclosure provides an inspection system that can reduce the user's burden for checking the inspection accuracy of the inspection system.
  • An inspection system includes a sample container placement section in which a sample container containing a sample for quality control of sample measurement is placed, a sample transport section that transports the sample container, and a control section.
  • the control unit controls the sample transport unit so as to transport the sample container to the processing unit where the sample is processed at each transport interval set in advance.
  • the control unit controls the sample transport unit so as to transport the sample container to the processing unit where the sample is processed at each transport interval set in advance. do.
  • the quality control sample is automatically transported to the processing section and processed in the processing section at each transport interval set in advance. Therefore, the user does not need to know when to check the inspection accuracy, and the user does not need to manually carry the sample for accuracy control to the processing section. Therefore, the user's burden for checking the inspection accuracy of the inspection system can be reduced.
  • FIG. 1 is a plan view showing the configuration of an inspection system according to one embodiment
  • FIG. FIG. 4 is a plan view showing the configuration of the uncapped dispensing unit according to one embodiment.
  • FIG. 3 is a perspective view showing the configuration of a sample supply section according to one embodiment
  • Figure 400 is a cross-sectional view along line 400-400 of Figure 3
  • FIG. 4 is a perspective view showing the configuration of a first hand according to one embodiment
  • FIG. 4 is a conceptual diagram showing the configuration of a first hand and sensors according to one embodiment
  • FIG. 5 is a perspective view showing the configuration of a second hand according to one embodiment
  • 4 is a perspective view showing the configuration of a reagent supply unit according to one embodiment
  • FIG. FIG. 4 is a flow chart showing the procedure for inspecting a sample container in the inspection system according to one embodiment
  • FIG. 10 is a flow diagram illustrating the sample container inspection procedure of the inspection system according to one embodiment.
  • the vertical direction is defined as the Z direction.
  • the upper side is the Z1 side
  • the lower side is the Z2 side.
  • the direction orthogonal to the Z direction is defined as the X direction.
  • One side in the X direction is the X1 side
  • the other side is the X2 side.
  • a direction perpendicular to the Z direction and the X direction is defined as the Y direction.
  • One side in the Y direction is the Y1 side, and the other side is the Y2 side.
  • the inspection system 200 includes an uncapped pipetting unit 1, a nucleic acid extraction unit 2, a reagent adjustment unit 3, a PCR measurement unit 4, and an overall control panel 5.
  • pretreatment for measurement is performed on the sample.
  • nucleic acid extraction unit 2 nucleic acid is extracted from the specimen as pretreatment of the specimen.
  • the reagent adjustment unit 3 adjusts the reagent.
  • PCR measurement unit 4 a process of measuring whether or not the sample contains an infectious virus is performed by RT-PCR test.
  • a control panel, a switchboard, a PC (Personal Computer), and the like are arranged on the overall control panel 5 .
  • the uncapped dispensing unit 1 is an example of an inspection unit.
  • the general control panel 5 is an example of a reception section.
  • the uncapped dispensing unit 1 includes a specimen supply section 10 , a DWP supply section 20 and a tip supply section 30 .
  • DWP means deep well plate.
  • the uncapped dispensing unit 1 also includes a robot 40 , a first hand 50 , a second hand 60 , and a sensor 51 .
  • the uncapped dispensing unit 1 also includes a sample capper section 70 , a barcode reader 71 , a dispensing workbench 80 , a reagent supply section 90 , a chip table 100 , a PC/NC table 110 , a sensor 111 , and a chip discarding section 120 .
  • Prepare. PC and NC denote positive and negative controls, respectively.
  • the uncapped dispensing unit 1 also includes a delivery table 130 .
  • the uncapped dispensing unit 1 also includes a control section 140 .
  • Robot 40 is an example of a sample transporter.
  • the sensor 111 is an example of a sample container detector.
  • the specimen supply section 10 includes a tray 11 and a transport section 15 .
  • a sample container 210 is placed on the tray 11 by the user.
  • the tray 11 is placed on the transport section 15 by the user.
  • the tray 11 is detachable from the transport section 15 .
  • two trays 11 and two conveying units 15 are arranged.
  • the tray 11 includes a first plate portion 12 and a second plate portion 13.
  • the first plate portion 12 is provided with a plurality of first holes 12a into which the plurality of sample containers 210 are respectively inserted.
  • the second plate portion 13 is arranged vertically separated from the first plate portion 12 .
  • the second plate portion 13 is provided with a plurality of second holes 13a into which the plurality of sample containers 210 are respectively inserted.
  • the specimen container 210 is inserted into the first hole 12a and the second hole 13a.
  • the first hole portion 12a has a circular shape when viewed from the Z direction.
  • the first holes 12a are arranged in a houndstooth pattern.
  • the first hole portion 12a is a through hole.
  • the second hole 13a has a circular shape when viewed from the Z direction.
  • the second holes 13a are arranged in a houndstooth pattern.
  • the second hole portion 13a has a concave shape.
  • the first hole portion 12a is arranged directly above the second hole portion 13a.
  • the first plate portion 12 and the second plate portion 13 are connected by a column portion 14 .
  • the edge 12b of the upper opening of the first hole 12a and the edge 13b of the upper opening of the second hole 13a are chamfered. That is, the radii of the first hole portion 12a and the second hole portion 13a gradually increase toward the Z1 direction side.
  • the tray 11 includes a grip portion 12c.
  • the grip portion 12c is gripped by the user.
  • the gripping portions 12c are arranged at both ends of the first plate portion 12 in the X direction.
  • the grip portion 12c is an elongated through hole.
  • the transport unit 15 reciprocates the tray 11 between the robot 40 and the position P1 where the user places the tray 11 on which the plurality of sample containers 210 are arranged on the transport unit 15 .
  • the position P1 is located at the end of the uncapped dispensing unit 1 on the X2 direction side.
  • the transport section 15 includes a linear actuator 15a for linearly moving the tray 11, and a sensor 15b.
  • the tray 11 is placed on the linear actuator 15a.
  • Linear actuator 15 a linearly moves tray 11 between position P ⁇ b>1 and robot 40 .
  • the transport unit 15 detects the position of the tray 11 on the linear actuator 15a.
  • the sensor 15b detects whether or not the tray 11 is present. For example, two trays 11 and two conveying units 15 are arranged.
  • the DWP supply section 20 includes a transport section 21 .
  • the transport unit 21 reciprocates the DWP 220 between the robot 40 and the position P ⁇ b>2 where the user places the DWP 220 on the transport unit 21 .
  • the position P2 is located at the end of the uncapped dispensing unit 1 on the X2 direction side.
  • Conveying unit 21 includes linear actuator 22 and sensor 23 .
  • the linear motion actuator 22 linearly moves the DWP 220 placed on the tray 24 .
  • the transport section 21 detects the position of the DWP 220 on the transport section 21 .
  • Sensor 23 detects the presence or absence of DWP 220 and the height of DWP 220 . For example, two trays 24 and two conveying units 21 are arranged.
  • the chip supply section 30 includes a transport section 31 .
  • the transport unit 31 reciprocates the chip 230 between a position P3 where the user places the chip 230 on the transport unit 31 and the robot 40 .
  • the position P3 is located at the end of the uncapped dispensing unit 1 on the X1 direction side.
  • the transport section 31 includes a direct acting actuator 32 and a sensor 33 .
  • the linear motion actuator 32 linearly moves the plurality of chips 230 placed on the tray 34 .
  • the transport section 31 detects the position of the chip 230 on the transport section 31 .
  • a sensor 33 detects the presence or absence of the chip 230 . For example, two trays 34 and two conveying units 31 are arranged.
  • the robot 40 is arranged inside the uncapped dispensing unit 1, as shown in FIG.
  • Robot 40 includes a robot arm 41 .
  • the robot arm 41 is, for example, a vertical articulated robot arm.
  • the robot 40 transports the sample container 210 and a sample container 240, which will be described later, to the dispensing workbench 80 that processes the sample.
  • the sample container 240 includes a body portion 241 and a lid portion 242 .
  • the first hand 50 is attached to the tip of the robot arm 41.
  • the sample container 210 includes a body portion 211 and a lid portion 212 in which the sample is stored.
  • the first hand 50 grips the body portion 211 of the sample container 210 arranged on the tray 11 .
  • the first hand 50 includes a chuck 52 .
  • the body portion 211 of the sample container 210 is gripped by the chuck 52 .
  • the first hand 50 is an example of a hand.
  • the sensor 51 is arranged on the first hand 50 .
  • the sensor 51 detects whether or not the sample container 210 is placed on the tray 11 .
  • the sensor 51 detects the presence or absence of the sample container 210 from the Z1 direction side.
  • the robot 40 grips the sample container 210 placed on the tray 11 with the first hand 50 based on the detection that the sample container 210 is placed on the tray 11 of the sample supply unit 10 . Then, the sample container 210 is transported to the sample capper section 70 . Also, the robot 40 grips the sample container 210 after the dispensing process with the first hand 50 . Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 . After the sensor 51 confirms that there is no foreign matter on the tray 11 , the robot 40 returns the sample container 210 after the dispensing process to the tray 11 .
  • the robot 40 Upon detecting that the sample container 240 is placed on the PC/NC table 110, the robot 40 grips the sample container 240 placed on the PC/NC table 110 with the first hand 50, The gripped sample container 240 is transported to the specimen capper section 70 . Also, the robot 40 grips the sample container 240 after the dispensing process with the first hand 50 . Further, the sensor 51 confirms whether or not there is a foreign object on the PC/NC table 110 . After the sensor 51 confirms that there is no foreign matter on the PC/NC table 110 , the robot 40 returns the sample container 240 after the dispensing process to the C/NC table 110 .
  • the second hand 60 is attached to the tip of the robot arm 41, as shown in FIG.
  • the second hand 60 holds at least one of a tip 230 that sucks liquid and a DWP 220 that ejects the liquid from the tip 230 .
  • the second hand 60 holds both the chip 230 and the DWP 220 .
  • the second hand 60 includes a plurality of tip attachment portions 61 to which tips 230 are attached.
  • An air cylinder is arranged in the tip attachment portion 61, and the tip 230 is attached to the tip attachment portion 61 by the suction force of the air cylinder.
  • the second hand 60 includes a chuck 62 that grips the DWP 220 .
  • the first hand 50 and the second hand 60 are detachable from the robot arm 41.
  • the first hand 50 is provided with an automatic tool changer 53 .
  • the second hand 60 is provided with an automatic tool changer 63 .
  • the automatic tool changer 53 automatically attaches the first hand 50 to the robot arm 41 .
  • the automatic tool changer 63 automatically attaches the second hand 60 to the robot arm 41 .
  • the robot arm 41 is arranged in common with the first hand 50 and the second hand 60 .
  • the specimen capper section 70 opens and closes the lid section 212 of the specimen container 210 transported by the robot 40 .
  • the barcode reader 71 reads the barcode attached to the sample container 210 transported by the robot 40 .
  • a sensor 70 a for detecting the presence or absence of the sample container 210 is arranged in the sample capper section 70 .
  • the dispensing workbench 80 pre-measurement processing is performed on the collected sample. Also, the dispensing workbench 80 measures the amount of dispensing to the DWP 220 .
  • a barcode reader 81 for reading a barcode attached to the DWP 220 is arranged on the dispensing workbench 80 .
  • a sensor 82 for detecting the presence or absence of the DWP 220 is arranged on the dispensing workbench 80 .
  • the dispensing workbench 80 is an example of a processing section and a preprocessing section.
  • the reagent supply section 90 includes a solubilizing liquid supply section 91, a magnetic particle supply section 92, and a ProK supply section 93.
  • a user supplies a reservoir containing a solubilizing solution to the solubilizing solution supply unit 91 .
  • the user supplies DWP 220 containing magnetic particles to the magnetic particle supply unit 92 .
  • the user supplies the DWP 220 containing ProK to the ProK supply unit 93 .
  • a sensor 91a for detecting the presence or absence of a reservoir is arranged in the solubilizing liquid supply unit 91 .
  • a sensor 92 a for detecting the presence or absence of the DWP 220 containing magnetic particles is arranged in the magnetic particle supply unit 92 .
  • the ProK supply unit 93 is provided with a sensor 93a for detecting the presence or absence of the DWP 220 containing ProK.
  • a chip 230 transported by the chip supply section 30 is placed on the chip table 100 by the robot 40 .
  • the chips 230 are transported in a state in which a plurality of chips 230 are mounted on the adapter.
  • a sensor 101 for detecting the presence or absence of a chip 230 is arranged on the chip table 100 .
  • the PC/NC table 110 is provided with a sample container 240 containing a sample for quality control of specimen measurement. Samples for accuracy control of specimen measurement are positive controls and negative controls for confirming test accuracy. Two positive control sample containers 240p and two negative control sample containers 240n are arranged on the PC/NC table 110 .
  • the PC/NC table 110 is an example of a sample container placement section.
  • the sensor 111 detects whether the sample container 240 is placed on the PC/NC table 110 or not.
  • a sensor 111 is arranged for each sample container 240 .
  • four sensors 111 are arranged to correspond to four sample containers 240 .
  • the touch panel 5a of the general control panel 5 may notify that the sample container 240 is not placed. .
  • the PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1 .
  • the sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the same side with respect to the robot 40 .
  • the PC/NC table 110 is arranged on the opposite side of the robot 40 from the specimen container 210 and the detached first hand 50 .
  • the sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the Y2 side of the robot 40 .
  • the sample container 210 and the second hand 60 detached from the robot arm 41 are arranged on the Y2 side of the robot 40 .
  • the robot arm 41 is positioned on the Y2 side with respect to the base 42 of the robot 40
  • the first hand 50 and the second hand 60 are positioned on the Z2 side of the robot arm 41 .
  • the PC/NC table 110 is arranged on the Y1 side with respect to the robot 40 .
  • the reagent supply unit 90, the chip stand 100, and the PC/NC stand 110 are arranged in this order from the X1 side to the X2 side.
  • sample supply unit 10 and the DWP supply unit 20 are arranged on the X2 side of the robot 40 .
  • a chip supply section 30, a sample capper section 70, a dispensing workbench 80, a reagent supply section 90, a chip table 100, and a chip disposal section 120 are arranged.
  • the chip discarding unit 120 discards used chips 230 .
  • a sensor 121 for detecting whether or not the used chips 230 are full is arranged in the chip disposal section 120 .
  • the control unit 140 is composed of a processor such as a CPU (Central Processing Unit) or FPGA (Field-Programmable Gate Array).
  • the control section 140 controls the devices arranged in the uncapped dispensing unit 1 by executing the control program stored in the storage section.
  • control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 that processes the sample at each preset transport interval.
  • transport interval may be a time interval or the number of sample containers 210 to be pretreated.
  • the general control panel 5 accepts setting of the transport interval by the user.
  • a touch panel 5 a is arranged on the general control panel 5 .
  • the user operates the touch panel 5a to set the transport interval.
  • the set transport interval is stored in the storage section of the uncapped dispensing unit 1 .
  • the control unit 140 of the uncapped dispensing unit 1 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 at each transportation interval accepted by the general control panel 5 and stored in the storage unit. .
  • the general control panel 5 is arranged outside the uncapped dispensing unit 1 . Specifically, the general control panel 5 is arranged at a position separated from the uncapped dispensing unit 1 . For example, the general control panel 5 is arranged at a position separated by the partition 6 from the opening/dispensing unit 1 , the nucleic acid extraction unit 2 , the reagent adjustment unit 3 and the PCR measurement unit 4 .
  • the user sets, for example, a period during which all of the plurality of sample containers 210 placed on the tray 11 are transported as the transport period. Specifically, the user sets the number of the plurality of sample containers 210 or the time during which all of the plurality of sample containers 210 are transported as the transport period.
  • the controller 140 causes the robot 40 to transport the sample container 240 to the dispensing work table 80 every time all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing work table 80 . to control.
  • FIG. 9 The inspection procedure of inspection system 200 will be described with reference to FIGS. 9 and 10.
  • FIG. 10 the robot 40 performs preprocessing, which is processing before measurement, on the collected sample. Note that the following step S1 is a procedure performed by the user. Other steps are controlled by the control unit 140 .
  • step S1 the user places the sample container 210 in the sample supply section 10. As shown in FIG. The user places DWP 220 in DWP supply 20 . The user places the chip 230 on the chip supply section 30 . The user supplies the reagent supply unit 90 with the lysate, magnetic particles and ProK.
  • step S2 the robot 40 mounts the second hand 60.
  • step S ⁇ b>3 the sample supply unit 10 transports the sample container 210 to the vicinity of the robot 40 .
  • the DWP supply section 20 conveys the DWP 220 to the vicinity of the robot 40 .
  • the tip supply section 30 conveys the tip 230 to the vicinity of the robot 40 .
  • step S ⁇ b>4 the robot 40 grips the DWP 220 with the second hand 60 and transports the gripped DWP 220 to the dispensing workbench 80 .
  • Sensor 82 detects the presence or absence of DWP 220 .
  • a barcode reader 81 reads the barcode attached to the DWP 220 .
  • step S ⁇ b>5 the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 .
  • the robot 40 sucks the solubilized liquid placed in the solubilized liquid supply unit 91 with the tip 230 and dispenses the sucked solubilized liquid to the DWP 220 placed on the dispensing workbench 80 .
  • the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S ⁇ b>6 the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 .
  • the robot 40 attracts the magnetic particles arranged in the magnetic particle supply unit 92 with the tip 230 and dispenses the attracted magnetic particles to the DWP 220 placed on the dispensing workbench 80 .
  • the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S7 the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60.
  • the robot 40 aspirates the ProK placed in the ProK supply section 93 with the chip 230 and dispenses the aspirated ProK to the DWP 220 placed on the dispensing workbench 80 .
  • the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S8 the robot 40 attaches the first hand 50 after removing the second hand 60.
  • step S ⁇ b>9 the sensor 51 arranged on the first hand 50 detects whether or not the sample container 210 is arranged on the tray 11 of the sample supply section 10 .
  • the robot 40 grips the sample container 210 with the first hand 50 and transports the sample container 210 to the sample capper section 70 in step S10.
  • the barcode reader 71 of the sample capper section 70 reads the barcode attached to the sample container 210 .
  • the specimen capper section 70 opens the lid section 212 of the specimen container 210 .
  • step S11 the robot 40 attaches the second hand 60 after removing the first hand 50.
  • step S ⁇ b>12 the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 .
  • the robot 40 aspirates the specimen contained in the specimen container 210 with the chip 230 and dispenses the aspirated specimen to the DWP 220 placed on the dispensing workbench 80 .
  • the specimen capper section 70 closes the lid section 212 of the specimen container 210 .
  • the robot 40 discards the tip 230 in the tip disposal section 120 .
  • step S ⁇ b>13 the robot 40 attaches the first hand 50 after removing the second hand 60 .
  • step S14 the sensor 51 arranged on the first hand 50 detects whether the sample container 210 is arranged on the sample capper section 70 or not. Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 .
  • step S15 the robot 40 grips the sample container 210 with the first hand 50, and moves the sample supply unit.
  • the specimen container 210 is transported to the ten trays 11 .
  • step S15a the control unit 140 determines whether or not a preset transportation interval has elapsed. For example, it is determined whether or not the operations from steps S9 to S15 have been performed for the number of sample containers 210 arranged on one tray 11 . If yes in step S15a, the process proceeds to step S109. If no in step S15a, the process returns to step S9.
  • step S109 the sensor 51 arranged on the first hand 50 detects whether or not the sample container 240 is arranged on the PC/NC table 110.
  • the robot 40 grips the body portion 241 of the sample container 240 with the first hand 50 and transports the sample container 240 to the specimen capper portion 70 in step S110.
  • the barcode reader 71 of the specimen capper section 70 reads the barcode attached to the sample container 240 .
  • the specimen capper section 70 opens the lid section 242 of the sample container 240 .
  • step S ⁇ b>111 the robot 40 attaches the second hand 60 after removing the first hand 50 .
  • step S ⁇ b>112 the robot 40 attaches the tip 230 to the second hand 60 .
  • the robot 40 aspirates the sample contained in the sample container 240 with the tip 230 and dispenses the aspirated sample to the DWP 220 placed on the dispensing workbench 80 .
  • the sample capper section 70 closes the lid section 242 of the sample container 240 .
  • the robot 40 discards the tip 230 in the tip disposal section 120 .
  • step S ⁇ b>113 the robot 40 attaches the first hand 50 after removing the second hand 60 .
  • step S ⁇ b>114 the sensor 51 detects whether or not the sample container 240 is placed in the specimen capper section 70 . Further, the sensor 51 confirms whether or not there is a foreign object on the PC/NC table 110 .
  • step S ⁇ b>115 the robot 40 grips the sample container 240 with the first hand 50 and transports the sample container 240 to the PC/NC table 110 .
  • step S ⁇ b>16 the robot 40 attaches the second hand 60 after removing the first hand 50 .
  • step S ⁇ b>17 the robot 40 uses the second hand 60 to transport the DWP 220 dispensed with the specimen and sample to the transfer table 130 for transfer to the nucleic acid extraction unit 2 .
  • the DWP 220 placed on the transfer table 130 and dispensed with the specimen and sample is transported into the nucleic acid extraction unit 2 .
  • nucleic acid extraction unit 2 nucleic acids are extracted from each of the specimen and sample dispensed to the DWP220.
  • the extracted nucleic acid is dispensed into the DWP220.
  • Nucleic acids dispensed into the DWP 220 are transported to the PCR measurement unit 4 .
  • the nucleic acid extracted from the specimen is measured by the PCR measurement device.
  • the nucleic acid extracted from the sample is measured by the PCR measurement device in order to create a calibration curve for testing.
  • the control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 where the sample is processed at each transport interval set in advance.
  • the sample for quality control is automatically transported to the dispensing workbench 80 and processed on the dispensing workbench 80 at each transport interval set in advance. Therefore, the user does not need to know when to check the inspection accuracy, and the user does not need to manually carry the sample for accuracy control to the dispensing workbench 80 . Therefore, the user's burden for checking the inspection accuracy of the inspection system 200 can be reduced.
  • the control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 at each transport interval accepted by the general control panel 5 . Thereby, the user can easily set the transport interval according to the user's intention. Also, the user can easily change the transport interval.
  • the PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1, and the general control panel 5 is arranged outside the uncapped dispensing unit 1.
  • the PC/NC table 110 and the robot 40 are arranged in the same opening/dispensing unit 1, so the distance between the PC/NC table 110 and the robot 40 is relatively small. Therefore, the sample container 240 can be easily transported to the dispensing workbench 80 in a short time.
  • the general control panel 5 is arranged outside the uncapped dispensing unit 1 , the user can set the transport interval from a location away from the uncapped dispensing unit 1 . This can reduce the chance of contact between the user and the specimen.
  • a sensor 111 is arranged to detect whether or not the sample container 240 is arranged on the PC/NC table 110 . Since the presence or absence of the sample container 240 is thereby detected, it is possible to prevent the robot 40 from performing the transport operation when the sample container 240 is not present. Also, by informing the user that there is no sample container 240 , the user can replenish the sample container 240 .
  • pre-measurement processing is performed on the collected sample. As a result, it is possible to reduce the user's burden for checking the inspection accuracy of the inspection system 200 in which preprocessing is performed.
  • the robot 40 transports the sample container 210 to the dispensing workbench 80.
  • the sample container 210 can be transported even if the transport route of the sample container 210 is relatively complicated compared to the case where the sample container 210 is transported to the dispensing workbench 80 by a conveyor or the like that moves linearly. .
  • the sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the same side with respect to the robot 40 , and the PC/NC table 110 is positioned with respect to the robot 40 with the sample container 210 and the removed first hand 40 .
  • 1 hand 50 is arranged on the opposite side.
  • the first hand 50 is arranged on the same side as the sample container 210 with respect to the robot 40, so the distance between the sample container 210 and the first hand 50 becomes relatively small. Therefore, the first hand 50 can be attached and the sample container 210 can be quickly gripped, so that the time required for processing the entire plurality of sample containers 210 can be shortened.
  • the sample container 240 Since the sample container 240 is arranged on the opposite side of the robot 40 from the position where the first hand 50 was arranged, the distance between the sample container 240 and the first hand 50 becomes relatively large. Therefore, it takes a long time to grip the sample container 240 with the first hand 50 . However, since the sample container 240 is transported by the first hand 50 only at preset transport intervals, it takes a long time until the sample container 240 is gripped by the first hand 50. The effect on the overall processing time of container 210 is small.
  • the control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 each time all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing workbench 80. .
  • the sample container 240 is transported to the dispensing workbench 80 before the multiple sample containers 210 placed on the new tray 11 are transported, so that the multiple sample containers placed on the new tray 11 are transported.
  • verification of the inspection accuracy of inspection system 200 may be performed prior to processing at 210. As a result, it is possible to prevent the inspection accuracy from being different for each tray 11 .
  • the present disclosure is applied to the robot 40 and the PC/NC table 110 on which the sample container 240 is placed in the uncapped dispensing unit 1 is shown, but the present disclosure is limited to this. do not have.
  • the present disclosure may be applied to the PC/NC table 110 on which the robot 40 and the sample container 240 arranged in an inspection unit other than the uncapped dispensing unit 1 are arranged.
  • robot 40 may transfer sample container 240 to robot 40 based on a preset fixed transfer interval.
  • the receiving unit of the present disclosure is the general control panel 5
  • the present disclosure is not limited to this.
  • the reception section of the present disclosure may be arranged in the uncapped dispensing unit 1 .
  • PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1 in the above embodiment, the present disclosure is not limited to this.
  • the PC/NC table 110 may be arranged outside the uncapped dispensing unit 1 .
  • the present disclosure is not limited to this.
  • the present disclosure may be applied to quality control samples for measurements other than PCR measurements.
  • sample container 240 is transported by the robot 40
  • present disclosure is not limited to this.
  • sample container 240 may be transported by a conveyor or the like.
  • the robot 40 that transports the sample container 240 and the robot 40 that transports the specimen may be arranged separately.
  • a period during which all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing workbench 80 is set as a transportation period, but the present disclosure is not limited to this. In the present disclosure, it is possible to set various transportation periods according to the user's intentions.
  • ASICs Application Specific Integrated Circuits
  • a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
  • (Item 1) a sample container placement unit in which a sample container containing a sample for quality control of specimen measurement is placed; a sample transport unit that transports the sample container; a control unit; The inspection system, wherein the control unit controls the sample transport unit so as to transport the sample container to a processing unit where the sample is processed at each transport interval set in advance.
  • (Item 2) further comprising a reception unit that receives setting of the transportation interval by a user;
  • (Item 5) The inspection system according to any one of items 1 to 4, wherein the processing unit includes a preprocessing unit that performs processing prior to measurement on the collected sample.
  • (Item 6) The inspection system according to any one of items 1 to 5, wherein the sample transport unit includes a robot that transports the sample container to the processing unit.
  • the robot includes a robotic arm; further comprising a detachable hand attached to the tip of the robot arm, The sample container and the hand removed from the robot arm are arranged on the same side with respect to the robot, 7.
  • (Item 8) further comprising a tray on which a plurality of sample containers are arranged; wherein the control unit controls the sample transport unit to transport the sample container to the processing unit each time all of the plurality of sample containers arranged on the tray are transported to the processing unit;
  • the inspection system according to any one of items 1 to 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

An inspection system (200) comprises a sample container arrangement part (110), a sample conveyance part (40), and a control unit (140). The control unit (140) controls the sample conveyance part (40) so as to convey, at every preset conveyance interval, a sample container (240) to a processing unit (80) in which a specimen is processed.

Description

検査システムinspection system
 本開示は、検査システムに関する。 This disclosure relates to an inspection system.
 従来、検査システムが知られている。たとえば、特開2022-13759号公報には、ロボットを備えるPCR検査前処理自動化装置が開示されている。PCR検査前処理自動化装置では、被検者から採取された検体が収容されている検体回収容器が、ロボットの近傍まで搬送される。ロボットにはシリンジが取り付けられており、シリンジによって検体回収容器から検体が吸引される。その後、シリンジに吸引された検体は、検査用容器に吐出される。 Conventionally, inspection systems are known. For example, Japanese Unexamined Patent Application Publication No. 2022-13759 discloses a PCR test pretreatment automation apparatus equipped with a robot. In the PCR test pretreatment automation apparatus, a sample collection container containing a sample collected from a subject is transported to the vicinity of the robot. A syringe is attached to the robot, and the sample is aspirated from the sample collection container by the syringe. After that, the sample sucked into the syringe is discharged into the test container.
特開2022-13759号公報JP 2022-13759 A
 特開2022-13759号公報には明記されていないが、特開2022-13759号公報に記載されるような従来のPCR検査では、検査システムの検査精度を維持するために、被検者から採取された検体と同様に、精度管理用のサンプルが測定される。具体的には、精度管理用のサンプルとしてポジティブコントロールとネガティブコントロールとが用意される。ユーザは、所望の時期に、検査システムの前処理部まで精度管理用のサンプルを持ち運び、検査システムによって精度管理用のサンプルが検査される。検査システムがポジティブコントロールを測定して陽性と判定し、検査システムがネガティブコントロールを測定して陰性と判定することにより、検査システムの検査精度の正しさが確認される。しかしながら、上記のように精度管理用のサンプルが検査される場合では、ユーザが検査精度を確認するための時期を把握しておく必要があるとともに、検査システムの前処理部までユーザが手動で精度管理用のサンプルを持ち運ぶ必要がある。このため、検査システムの検査精度を確認するためのユーザの負担が大きくなるという問題点がある。 Although not specified in JP-A-2022-13759, in the conventional PCR test as described in JP-A-2022-13759, in order to maintain the test accuracy of the test system, Quality control samples are measured as well as the specimens tested. Specifically, a positive control and a negative control are prepared as samples for quality control. A user carries a sample for quality control to the preprocessing section of the inspection system at a desired time, and the sample for quality control is inspected by the inspection system. The test system measures the positive control and determines it as positive, and the test system measures the negative control and determines it as negative, thereby confirming the correctness of the test accuracy of the test system. However, when samples for quality control are inspected as described above, it is necessary for the user to know when to check the inspection accuracy, and for the user to manually check the accuracy up to the preprocessing section of the inspection system. It is necessary to carry samples for management. Therefore, there is a problem that the user's burden for confirming the inspection accuracy of the inspection system increases.
 本開示は、検査システムの検査精度を確認するためのユーザの負担を軽減することが可能な検査システムを提供する。 The present disclosure provides an inspection system that can reduce the user's burden for checking the inspection accuracy of the inspection system.
 本開示の一の局面による検査システムは、検体測定の精度管理用のサンプルが収容されるサンプル容器が配置されるサンプル容器配置部と、サンプル容器を搬送するサンプル搬送部と、制御部と、を備え、制御部は、予め設定された搬送間隔毎に、サンプル容器を、検体が処理される処理部まで搬送するようにサンプル搬送部を制御する。 An inspection system according to one aspect of the present disclosure includes a sample container placement section in which a sample container containing a sample for quality control of sample measurement is placed, a sample transport section that transports the sample container, and a control section. In addition, the control unit controls the sample transport unit so as to transport the sample container to the processing unit where the sample is processed at each transport interval set in advance.
 この開示の一の局面による検査システムは、上記のように、制御部は、予め設定された搬送間隔毎に、サンプル容器を、検体が処理される処理部まで搬送するようにサンプル搬送部を制御する。これにより、予め設定された搬送間隔毎に、自動的に、精度管理用のサンプルが処理部まで搬送されるとともに、処理部において処理される。このため、ユーザが検査精度を確認するための時期を把握する必要がないとともに、処理部までユーザが手動で精度管理用のサンプルを持ち運ぶ必要もない。このため、検査システムの検査精度を確認するためのユーザの負担を軽減することができる。 In the inspection system according to one aspect of the present disclosure, as described above, the control unit controls the sample transport unit so as to transport the sample container to the processing unit where the sample is processed at each transport interval set in advance. do. As a result, the quality control sample is automatically transported to the processing section and processed in the processing section at each transport interval set in advance. Therefore, the user does not need to know when to check the inspection accuracy, and the user does not need to manually carry the sample for accuracy control to the processing section. Therefore, the user's burden for checking the inspection accuracy of the inspection system can be reduced.
 本開示の技術によれば、検査システムの検査精度を確認するためのユーザの負担を軽減することができる。 According to the technology of the present disclosure, it is possible to reduce the user's burden for checking the inspection accuracy of the inspection system.
一実施形態による検査システムの構成を示す平面図である。1 is a plan view showing the configuration of an inspection system according to one embodiment; FIG. 一実施形態による開栓分注ユニットの構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the uncapped dispensing unit according to one embodiment. 一実施形態による検体供給部の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of a sample supply section according to one embodiment; 図3の400-400線に沿った断面図である。Figure 400 is a cross-sectional view along line 400-400 of Figure 3; 一実施形態による第1ハンドの構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of a first hand according to one embodiment; 一実施形態による第1ハンドおよびセンサの構成を示す概念図である。FIG. 4 is a conceptual diagram showing the configuration of a first hand and sensors according to one embodiment; 一実施形態による第2ハンドの構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of a second hand according to one embodiment; 一実施形態による試薬供給部の構成を示す斜視図である。4 is a perspective view showing the configuration of a reagent supply unit according to one embodiment; FIG. 一実施形態による検査システムの検体容器の検査手順を示すフロー図である。FIG. 4 is a flow chart showing the procedure for inspecting a sample container in the inspection system according to one embodiment; 一実施形態による検査システムのサンプル容器の検査手順を示すフロー図である。FIG. 10 is a flow diagram illustrating the sample container inspection procedure of the inspection system according to one embodiment.
 図1から図10までを参照して、本実施形態による検査システム200の構成について説明する。なお、本願明細書において、上下方向をZ方向とする。上方側をZ1側とし、下方側をZ2側とする。Z方向に直交する方向をX方向とする。X方向の一方側をX1側とし、他方側をX2側とする。Z方向およびX方向に直交する方向をY方向とする。Y方向の一方側をY1側とし、他方側をY2側とする。 The configuration of an inspection system 200 according to this embodiment will be described with reference to FIGS. In the specification of the present application, the vertical direction is defined as the Z direction. The upper side is the Z1 side, and the lower side is the Z2 side. The direction orthogonal to the Z direction is defined as the X direction. One side in the X direction is the X1 side, and the other side is the X2 side. A direction perpendicular to the Z direction and the X direction is defined as the Y direction. One side in the Y direction is the Y1 side, and the other side is the Y2 side.
 図1に示すように、検査システム200は、開栓分注ユニット1と、核酸抽出ユニット2と、試薬調整ユニット3と、PCR測定ユニット4と、全体制御盤5と、を備えている。開栓分注ユニット1では、検体に対して測定を行うための前処理が行われる。核酸抽出ユニット2では、検体の前処理として、検体から核酸の抽出が行われる。試薬調整ユニット3では、試薬の調整が行われる。PCR測定ユニット4では、RT-PCR検査により検体中に感染性ウイルスが含まれているかを測定する処理が行われる。全体制御盤5には、制御盤、配電盤、PC(Personal computer)などが配置されている。開栓分注ユニット1は、検査ユニットの一例である。全体制御盤5は、受付部の一例である。 As shown in FIG. 1, the inspection system 200 includes an uncapped pipetting unit 1, a nucleic acid extraction unit 2, a reagent adjustment unit 3, a PCR measurement unit 4, and an overall control panel 5. In the uncapped dispensing unit 1, pretreatment for measurement is performed on the sample. In the nucleic acid extraction unit 2, nucleic acid is extracted from the specimen as pretreatment of the specimen. The reagent adjustment unit 3 adjusts the reagent. In the PCR measurement unit 4, a process of measuring whether or not the sample contains an infectious virus is performed by RT-PCR test. A control panel, a switchboard, a PC (Personal Computer), and the like are arranged on the overall control panel 5 . The uncapped dispensing unit 1 is an example of an inspection unit. The general control panel 5 is an example of a reception section.
 (開栓分注ユニット)
 開栓分注ユニット1の具体的な構成について説明する。図2に示すように、開栓分注ユニット1は、検体供給部10、DWP供給部20、および、チップ供給部30を備える。DWPとは、ディープウェルプレートを意味する。また、開栓分注ユニット1は、ロボット40、第1ハンド50、第2ハンド60、および、センサ51を備えている。また、開栓分注ユニット1は、検体キャッパー部70、バーコードリーダ71、分注作業台80、試薬供給部90、チップ置台100、PC/NC置台110、センサ111、および、チップ廃棄部120を備える。PCおよびNCは、それぞれ、ポジティブコントロ―ル、および、ネガティブコントロールを意味する。また、開栓分注ユニット1は、受渡台130を備えている。また、開栓分注ユニット1は、制御部140を備えている。ロボット40は、サンプル搬送部の一例である。センサ111は、サンプル容器検知部の一例である。
(Opening dispensing unit)
A specific configuration of the uncapped dispensing unit 1 will be described. As shown in FIG. 2 , the uncapped dispensing unit 1 includes a specimen supply section 10 , a DWP supply section 20 and a tip supply section 30 . DWP means deep well plate. The uncapped dispensing unit 1 also includes a robot 40 , a first hand 50 , a second hand 60 , and a sensor 51 . The uncapped dispensing unit 1 also includes a sample capper section 70 , a barcode reader 71 , a dispensing workbench 80 , a reagent supply section 90 , a chip table 100 , a PC/NC table 110 , a sensor 111 , and a chip discarding section 120 . Prepare. PC and NC denote positive and negative controls, respectively. The uncapped dispensing unit 1 also includes a delivery table 130 . The uncapped dispensing unit 1 also includes a control section 140 . Robot 40 is an example of a sample transporter. The sensor 111 is an example of a sample container detector.
 図3に示すように、検体供給部10は、トレイ11と、搬送部15とを含む。トレイ11には、ユーザにより検体容器210が配置される。トレイ11は、ユーザにより、搬送部15に載置される。トレイ11は、搬送部15に着脱可能である。トレイ11および搬送部15は、たとえば、2つずつ配置されている。 As shown in FIG. 3 , the specimen supply section 10 includes a tray 11 and a transport section 15 . A sample container 210 is placed on the tray 11 by the user. The tray 11 is placed on the transport section 15 by the user. The tray 11 is detachable from the transport section 15 . For example, two trays 11 and two conveying units 15 are arranged.
 図4に示すように、トレイ11は、第1板部12と、第2板部13とを含む。第1板部12は、複数の検体容器210の各々が挿入される複数の第1孔部12aが配置されている。第2板部13は、第1板部12と上下方向に離間した状態で配置されている。第2板部13は、複数の検体容器210の各々が挿入される複数の第2孔部13aが配置されている。検体容器210は、第1孔部12aと第2孔部13aとに挿入される。第1孔部12aは、Z方向から見て、円形状を有する。第1孔部12aは、千鳥格子状に配置されている。第1孔部12aは、貫通孔である。第2孔部13aは、Z方向から見て、円形状を有する。第2孔部13aは、千鳥格子状に配置されている。第2孔部13aは、凹形状を有する。第2孔部13aの直上に第1孔部12aが配置される。第1板部12と第2板部13とは、柱部14により接続されている。 As shown in FIG. 4, the tray 11 includes a first plate portion 12 and a second plate portion 13. The first plate portion 12 is provided with a plurality of first holes 12a into which the plurality of sample containers 210 are respectively inserted. The second plate portion 13 is arranged vertically separated from the first plate portion 12 . The second plate portion 13 is provided with a plurality of second holes 13a into which the plurality of sample containers 210 are respectively inserted. The specimen container 210 is inserted into the first hole 12a and the second hole 13a. The first hole portion 12a has a circular shape when viewed from the Z direction. The first holes 12a are arranged in a houndstooth pattern. The first hole portion 12a is a through hole. The second hole 13a has a circular shape when viewed from the Z direction. The second holes 13a are arranged in a houndstooth pattern. The second hole portion 13a has a concave shape. The first hole portion 12a is arranged directly above the second hole portion 13a. The first plate portion 12 and the second plate portion 13 are connected by a column portion 14 .
 第1孔部12aの上部の開口の縁部12bおよび第2孔部13aの上部の開口の縁部13bは、面取りされている。すなわち、第1孔部12aおよび第2孔部13aの半径は、Z1方向側に向かって徐々に大きくなる。 The edge 12b of the upper opening of the first hole 12a and the edge 13b of the upper opening of the second hole 13a are chamfered. That is, the radii of the first hole portion 12a and the second hole portion 13a gradually increase toward the Z1 direction side.
 図3に示すように、トレイ11は、把持部12cを含む。把持部12cは、ユーザによって把持される。把持部12cは、第1板部12のX方向の両端部に配置されている。把持部12cは、長孔状の貫通孔である。 As shown in FIG. 3, the tray 11 includes a grip portion 12c. The grip portion 12c is gripped by the user. The gripping portions 12c are arranged at both ends of the first plate portion 12 in the X direction. The grip portion 12c is an elongated through hole.
 図2に示すように、搬送部15は、複数の検体容器210が配置されたトレイ11をユーザが搬送部15に配置する位置P1と、ロボット40との間において、トレイ11を往復移動させる。位置P1は、開栓分注ユニット1のX2方向側の端部に位置している。図3に示すように、搬送部15は、トレイ11を直線移動させる直動アクチュエータ15aと、センサ15bとを含む。直動アクチュエータ15aには、トレイ11が載置される。直動アクチュエータ15aは、トレイ11を、位置P1とロボット40との間において直線移動させる。搬送部15は、直動アクチュエータ15a上におけるトレイ11の位置を検出する。センサ15bは、トレイ11の有無を検知する。トレイ11および搬送部15は、たとえば、2つずつ配置されている。 As shown in FIG. 2, the transport unit 15 reciprocates the tray 11 between the robot 40 and the position P1 where the user places the tray 11 on which the plurality of sample containers 210 are arranged on the transport unit 15 . The position P1 is located at the end of the uncapped dispensing unit 1 on the X2 direction side. As shown in FIG. 3, the transport section 15 includes a linear actuator 15a for linearly moving the tray 11, and a sensor 15b. The tray 11 is placed on the linear actuator 15a. Linear actuator 15 a linearly moves tray 11 between position P<b>1 and robot 40 . The transport unit 15 detects the position of the tray 11 on the linear actuator 15a. The sensor 15b detects whether or not the tray 11 is present. For example, two trays 11 and two conveying units 15 are arranged.
 図2に示すように、DWP供給部20は、搬送部21を含む。搬送部21は、ユーザがDWP220を搬送部21に配置する位置P2と、ロボット40との間において、DWP220を往復移動させる。位置P2は、開栓分注ユニット1のX2方向側の端部に位置している。搬送部21は、直動アクチュエータ22と、センサ23とを含む。直動アクチュエータ22は、トレイ24に載置されたDWP220を直線移動させる。搬送部21は、搬送部21上におけるDWP220の位置を検出する。センサ23は、DWP220の有無およびDWP220の高さを検知する。トレイ24および搬送部21は、たとえば、2つずつ配置されている。 As shown in FIG. 2 , the DWP supply section 20 includes a transport section 21 . The transport unit 21 reciprocates the DWP 220 between the robot 40 and the position P<b>2 where the user places the DWP 220 on the transport unit 21 . The position P2 is located at the end of the uncapped dispensing unit 1 on the X2 direction side. Conveying unit 21 includes linear actuator 22 and sensor 23 . The linear motion actuator 22 linearly moves the DWP 220 placed on the tray 24 . The transport section 21 detects the position of the DWP 220 on the transport section 21 . Sensor 23 detects the presence or absence of DWP 220 and the height of DWP 220 . For example, two trays 24 and two conveying units 21 are arranged.
 チップ供給部30は、搬送部31を含む。搬送部31は、ユーザがチップ230を搬送部31に配置する位置P3と、ロボット40との間において、チップ230を往復移動させる。位置P3は、開栓分注ユニット1のX1方向側の端部に位置している。搬送部31は、直動アクチュエータ32と、センサ33とを含む。直動アクチュエータ32は、トレイ34に載置された複数のチップ230を直線移動させる。搬送部31は、搬送部31上におけるチップ230の位置を検出する。センサ33は、チップ230の有無を検知する。トレイ34および搬送部31は、たとえば、2つずつ配置されている。 The chip supply section 30 includes a transport section 31 . The transport unit 31 reciprocates the chip 230 between a position P3 where the user places the chip 230 on the transport unit 31 and the robot 40 . The position P3 is located at the end of the uncapped dispensing unit 1 on the X1 direction side. The transport section 31 includes a direct acting actuator 32 and a sensor 33 . The linear motion actuator 32 linearly moves the plurality of chips 230 placed on the tray 34 . The transport section 31 detects the position of the chip 230 on the transport section 31 . A sensor 33 detects the presence or absence of the chip 230 . For example, two trays 34 and two conveying units 31 are arranged.
 本実施形態では、図2に示すように、ロボット40は、開栓分注ユニット1内に配置されている。ロボット40は、ロボットアーム41を含む。ロボットアーム41は、たとえば、垂直多関節ロボットアームである。ロボット40は、検体容器210および後述するサンプル容器240を、検体を処理する分注作業台80まで搬送する。サンプル容器240は、本体部241と蓋部242とを含む。 In this embodiment, the robot 40 is arranged inside the uncapped dispensing unit 1, as shown in FIG. Robot 40 includes a robot arm 41 . The robot arm 41 is, for example, a vertical articulated robot arm. The robot 40 transports the sample container 210 and a sample container 240, which will be described later, to the dispensing workbench 80 that processes the sample. The sample container 240 includes a body portion 241 and a lid portion 242 .
 図5に示すように、第1ハンド50は、ロボットアーム41の先端に取り付けられる。図6に示すように、検体容器210は、検体が収容される本体部211と蓋部212とを含む。第1ハンド50は、トレイ11に配置されている検体容器210の本体部211を把持する。具体的には、第1ハンド50は、チャック52を含む。チャック52によって、検体容器210の本体部211が把持される。第1ハンド50は、ハンドの一例である。 As shown in FIG. 5, the first hand 50 is attached to the tip of the robot arm 41. As shown in FIG. 6, the sample container 210 includes a body portion 211 and a lid portion 212 in which the sample is stored. The first hand 50 grips the body portion 211 of the sample container 210 arranged on the tray 11 . Specifically, the first hand 50 includes a chuck 52 . The body portion 211 of the sample container 210 is gripped by the chuck 52 . The first hand 50 is an example of a hand.
 センサ51は、第1ハンド50に配置されている。センサ51は、トレイ11に検体容器210が配置されているか否かを検知する。センサ51は、Z1方向側から検体容器210の有無を検出する。ロボット40は、検体供給部10のトレイ11に検体容器210が配置されていることが検知されたことに基づいて、第1ハンド50によりトレイ11に配置された検体容器210を把持するとともに、把持した検体容器210を検体キャッパー部70に搬送する。また、ロボット40は、分注処理が行われた後の検体容器210を第1ハンド50により把持する。また、センサ51によってトレイ11上の異物の有無が確認される。そして、ロボット40は、センサ51によってトレイ11上に異物が無いことが確認された後、分注処理が行われた後の検体容器210をトレイ11に返却する。 The sensor 51 is arranged on the first hand 50 . The sensor 51 detects whether or not the sample container 210 is placed on the tray 11 . The sensor 51 detects the presence or absence of the sample container 210 from the Z1 direction side. The robot 40 grips the sample container 210 placed on the tray 11 with the first hand 50 based on the detection that the sample container 210 is placed on the tray 11 of the sample supply unit 10 . Then, the sample container 210 is transported to the sample capper section 70 . Also, the robot 40 grips the sample container 210 after the dispensing process with the first hand 50 . Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 . After the sensor 51 confirms that there is no foreign matter on the tray 11 , the robot 40 returns the sample container 210 after the dispensing process to the tray 11 .
 ロボット40は、PC/NC置台110にサンプル容器240が配置されていることが検知されたことに基づいて、第1ハンド50によりPC/NC置台110に配置されたサンプル容器240を把持するとともに、把持したサンプル容器240を検体キャッパー部70に搬送する。また、ロボット40は、分注処理が行われた後のサンプル容器240を第1ハンド50により把持する。また、センサ51によってPC/NC置台110上の異物の有無が確認される。そして、ロボット40は、センサ51によってPC/NC置台110上に異物が無いことが確認された後、分注処理が行われた後のサンプル容器240をC/NC置台110に返却する。 Upon detecting that the sample container 240 is placed on the PC/NC table 110, the robot 40 grips the sample container 240 placed on the PC/NC table 110 with the first hand 50, The gripped sample container 240 is transported to the specimen capper section 70 . Also, the robot 40 grips the sample container 240 after the dispensing process with the first hand 50 . Further, the sensor 51 confirms whether or not there is a foreign object on the PC/NC table 110 . After the sensor 51 confirms that there is no foreign matter on the PC/NC table 110 , the robot 40 returns the sample container 240 after the dispensing process to the C/NC table 110 .
 本実施形態では、図7に示すように、第2ハンド60は、ロボットアーム41の先端に取り付けられる。第2ハンド60は、液体を吸引するチップ230と、チップ230からの液体が吐出されるDWP220とのうちの少なくとも一方を保持する。具体的には、第2ハンド60は、チップ230とDWP220との両方を保持する。第2ハンド60は、チップ230が取り付けられる複数のチップ取付部61を含む。チップ取付部61にはエアシリンダが配置されており、エアシリンダの吸引力によって、チップ取付部61にチップ230が取り付けられる。また、第2ハンド60は、DWP220を把持するチャック62を含む。 In this embodiment, the second hand 60 is attached to the tip of the robot arm 41, as shown in FIG. The second hand 60 holds at least one of a tip 230 that sucks liquid and a DWP 220 that ejects the liquid from the tip 230 . Specifically, the second hand 60 holds both the chip 230 and the DWP 220 . The second hand 60 includes a plurality of tip attachment portions 61 to which tips 230 are attached. An air cylinder is arranged in the tip attachment portion 61, and the tip 230 is attached to the tip attachment portion 61 by the suction force of the air cylinder. Also, the second hand 60 includes a chuck 62 that grips the DWP 220 .
 本実施形態では、第1ハンド50および第2ハンド60は、ロボットアーム41に対して着脱可能である。図5に示すように、第1ハンド50には、自動工具交換装置53が配置されている。図7に示すように、第2ハンド60には、自動工具交換装置63が配置されている。自動工具交換装置53によって、第1ハンド50がロボットアーム41に自動的に取り付けられる。自動工具交換装置63によって、第2ハンド60がロボットアーム41に自動的に取り付けられる。ロボットアーム41は、第1ハンド50および第2ハンド60に対して共通に配置されている。 In this embodiment, the first hand 50 and the second hand 60 are detachable from the robot arm 41. As shown in FIG. 5, the first hand 50 is provided with an automatic tool changer 53 . As shown in FIG. 7, the second hand 60 is provided with an automatic tool changer 63 . The automatic tool changer 53 automatically attaches the first hand 50 to the robot arm 41 . The automatic tool changer 63 automatically attaches the second hand 60 to the robot arm 41 . The robot arm 41 is arranged in common with the first hand 50 and the second hand 60 .
 図2に示すように、検体キャッパー部70は、ロボット40により搬送された検体容器210の蓋部212の開栓および閉栓を行う。バーコードリーダ71は、ロボット40により搬送された検体容器210に貼付されたバーコードを読み取る。検体キャッパー部70には、検体容器210の有無を検知するセンサ70aが配置されている。 As shown in FIG. 2 , the specimen capper section 70 opens and closes the lid section 212 of the specimen container 210 transported by the robot 40 . The barcode reader 71 reads the barcode attached to the sample container 210 transported by the robot 40 . A sensor 70 a for detecting the presence or absence of the sample container 210 is arranged in the sample capper section 70 .
 本実施形態では、分注作業台80では、採取された検体に対して測定を行う前の処理が行われる。また、分注作業台80は、DWP220に対する分注量を測定する。分注作業台80には、DWP220に貼付されたバーコードを読み取るバーコードリーダ81が配置されている。分注作業台80には、DWP220の有無を検知するセンサ82が配置されている。分注作業台80は、処理部および前処理部の一例である。 In this embodiment, on the dispensing workbench 80, pre-measurement processing is performed on the collected sample. Also, the dispensing workbench 80 measures the amount of dispensing to the DWP 220 . A barcode reader 81 for reading a barcode attached to the DWP 220 is arranged on the dispensing workbench 80 . A sensor 82 for detecting the presence or absence of the DWP 220 is arranged on the dispensing workbench 80 . The dispensing workbench 80 is an example of a processing section and a preprocessing section.
 図8に示すように、試薬供給部90は、可溶化液供給部91、磁性粒子供給部92、および、ProK供給部93を含む。ユーザは、可溶化液供給部91に可溶化液が収容されたリザーバを供給する。ユーザは、磁性粒子供給部92に磁性粒子入りのDWP220を供給する。ユーザは、ProK供給部93にProK入りのDWP220を供給する。可溶化液供給部91には、リザーバの有無を検出するためのセンサ91aが配置されている。磁性粒子供給部92には、磁性粒子入りのDWP220の有無を検出するためのセンサ92aが配置されている。ProK供給部93には、ProK入りのDWP220の有無を検出するためのセンサ93aが配置されている。 As shown in FIG. 8, the reagent supply section 90 includes a solubilizing liquid supply section 91, a magnetic particle supply section 92, and a ProK supply section 93. A user supplies a reservoir containing a solubilizing solution to the solubilizing solution supply unit 91 . The user supplies DWP 220 containing magnetic particles to the magnetic particle supply unit 92 . The user supplies the DWP 220 containing ProK to the ProK supply unit 93 . A sensor 91a for detecting the presence or absence of a reservoir is arranged in the solubilizing liquid supply unit 91 . A sensor 92 a for detecting the presence or absence of the DWP 220 containing magnetic particles is arranged in the magnetic particle supply unit 92 . The ProK supply unit 93 is provided with a sensor 93a for detecting the presence or absence of the DWP 220 containing ProK.
 図8に示すように、チップ置台100には、チップ供給部30によって搬送されたチップ230が、ロボット40により載置される。なお、チップ230は、アダプタに複数のチップ230が載置された状態で搬送される。チップ置台100には、チップ230の有無を検知するセンサ101が配置されている。 As shown in FIG. 8 , a chip 230 transported by the chip supply section 30 is placed on the chip table 100 by the robot 40 . Note that the chips 230 are transported in a state in which a plurality of chips 230 are mounted on the adapter. A sensor 101 for detecting the presence or absence of a chip 230 is arranged on the chip table 100 .
 本実施形態では、図8に示すように、PC/NC置台110には、検体測定の精度管理用のサンプルが収容されるサンプル容器240が配置される。検体測定の精度管理用のサンプルとは、検査精度確認用のポジティブコントロ―ルおよびネガティブコントロールである。PC/NC置台110には、ポジティブコントロ―ル用のサンプル容器240p、および、ネガティブコントロール用のサンプル容器240nが、各々2つずつ配置されている。PC/NC置台110は、サンプル容器配置部の一例である。 In this embodiment, as shown in FIG. 8, the PC/NC table 110 is provided with a sample container 240 containing a sample for quality control of specimen measurement. Samples for accuracy control of specimen measurement are positive controls and negative controls for confirming test accuracy. Two positive control sample containers 240p and two negative control sample containers 240n are arranged on the PC/NC table 110 . The PC/NC table 110 is an example of a sample container placement section.
 本実施形態では、センサ111は、PC/NC置台110にサンプル容器240が配置されているか否かを検知する。センサ111は、サンプル容器240毎に配置されている。たとえば、4つのサンプル容器240に対応するように4つのセンサ111が配置されている。また、センサ111が、PC/NC置台110にサンプル容器240が配置されていないことを検知した場合、全体制御盤5のタッチパネル5aは、サンプル容器240が配置されていないことを報知してもよい。 In this embodiment, the sensor 111 detects whether the sample container 240 is placed on the PC/NC table 110 or not. A sensor 111 is arranged for each sample container 240 . For example, four sensors 111 are arranged to correspond to four sample containers 240 . Further, when the sensor 111 detects that the sample container 240 is not placed on the PC/NC table 110, the touch panel 5a of the general control panel 5 may notify that the sample container 240 is not placed. .
 本実施形態では、図2に示すように、PC/NC置台110およびロボット40は、同じ開栓分注ユニット1内に配置されている。検体容器210と、ロボットアーム41から取り外された第1ハンド50とは、ロボット40に対して同じ側に配置されている。PC/NC置台110は、ロボット40に対して検体容器210および取り外された第1ハンド50とは逆側に配置されている。具体的には、検体容器210と、ロボットアーム41から取り外された第1ハンド50とは、ロボット40のY2側に配置されている。また、検体容器210と、ロボットアーム41から取り外された第2ハンド60とは、ロボット40のY2側に配置されている。また、ロボットアーム41がロボット40の基台42に対してY2側に位置している状態で、第1ハンド50および第2ハンド60は、ロボットアーム41のZ2側に位置している。PC/NC置台110は、ロボット40に対してY1側に配置されている。また、X1側からX2側に向かって、試薬供給部90、チップ置台100、および、PC/NC置台110がこの順で並んで配置されている。 In this embodiment, as shown in FIG. 2, the PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1 . The sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the same side with respect to the robot 40 . The PC/NC table 110 is arranged on the opposite side of the robot 40 from the specimen container 210 and the detached first hand 50 . Specifically, the sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the Y2 side of the robot 40 . Also, the sample container 210 and the second hand 60 detached from the robot arm 41 are arranged on the Y2 side of the robot 40 . Also, while the robot arm 41 is positioned on the Y2 side with respect to the base 42 of the robot 40 , the first hand 50 and the second hand 60 are positioned on the Z2 side of the robot arm 41 . The PC/NC table 110 is arranged on the Y1 side with respect to the robot 40 . Also, the reagent supply unit 90, the chip stand 100, and the PC/NC stand 110 are arranged in this order from the X1 side to the X2 side.
 また、ロボット40のX2側に、検体供給部10およびDWP供給部20が配置されている。ロボット40のX1側に、チップ供給部30、検体キャッパー部70、分注作業台80、試薬供給部90、チップ置台100、および、チップ廃棄部120が配置されている。 Also, the sample supply unit 10 and the DWP supply unit 20 are arranged on the X2 side of the robot 40 . On the X1 side of the robot 40, a chip supply section 30, a sample capper section 70, a dispensing workbench 80, a reagent supply section 90, a chip table 100, and a chip disposal section 120 are arranged.
 図2に示すように、チップ廃棄部120には、使用済みのチップ230が廃棄される。チップ廃棄部120には、使用済みのチップ230が満杯になっているか否かを検知するセンサ121が配置されている。 As shown in FIG. 2, the chip discarding unit 120 discards used chips 230 . A sensor 121 for detecting whether or not the used chips 230 are full is arranged in the chip disposal section 120 .
 制御部140は、CPU(Central Processing Unit)またはFPGA(Field-Programmable Gate Array)などのプロセッサにより構成されている。制御部140は、記憶部に記憶された制御プログラムを実行することにより、開栓分注ユニット1に配置されている機器を制御する。 The control unit 140 is composed of a processor such as a CPU (Central Processing Unit) or FPGA (Field-Programmable Gate Array). The control section 140 controls the devices arranged in the uncapped dispensing unit 1 by executing the control program stored in the storage section.
 ここで、本実施形態では、制御部140は、予め設定された搬送間隔毎に、サンプル容器240を、検体を処理する分注作業台80まで搬送するようにロボット40を制御する。なお、制御部140の具体的な動作は後述する。また、搬送間隔は、時間間隔でもよいし、前処理される検体容器210の数でもよい。 Here, in the present embodiment, the control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 that processes the sample at each preset transport interval. A specific operation of the control unit 140 will be described later. Also, the transport interval may be a time interval or the number of sample containers 210 to be pretreated.
 (全体制御盤)
 図1に示すように、全体制御盤5は、ユーザによる搬送間隔の設定を受け付ける。具体的には、全体制御盤5には、タッチパネル5aが配置されている。ユーザは、タッチパネル5aを操作して、搬送間隔を設定する。設定された搬送間隔は、開栓分注ユニット1の記憶部に記憶される。開栓分注ユニット1の制御部140は、全体制御盤5により受け付けられ、記憶部に記憶された搬送間隔毎に、サンプル容器240を分注作業台80まで搬送するようにロボット40を制御する。
(Overall control panel)
As shown in FIG. 1, the general control panel 5 accepts setting of the transport interval by the user. Specifically, a touch panel 5 a is arranged on the general control panel 5 . The user operates the touch panel 5a to set the transport interval. The set transport interval is stored in the storage section of the uncapped dispensing unit 1 . The control unit 140 of the uncapped dispensing unit 1 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 at each transportation interval accepted by the general control panel 5 and stored in the storage unit. .
 本実施形態では、全体制御盤5は、開栓分注ユニット1外に配置されている。具体的は、全体制御盤5は、開栓分注ユニット1から離間した位置に配置されている。たとえば、全体制御盤5は、開栓分注ユニット1、核酸抽出ユニット2、試薬調整ユニット3およびPCR測定ユニット4と、パーテーション6により分離された位置に配置されている。 In this embodiment, the general control panel 5 is arranged outside the uncapped dispensing unit 1 . Specifically, the general control panel 5 is arranged at a position separated from the uncapped dispensing unit 1 . For example, the general control panel 5 is arranged at a position separated by the partition 6 from the opening/dispensing unit 1 , the nucleic acid extraction unit 2 , the reagent adjustment unit 3 and the PCR measurement unit 4 .
 ユーザは、たとえば、トレイ11に配置された複数の検体容器210の全てが搬送される期間を搬送期間として設定する。具体的には、ユーザは、複数の検体容器210の本数、または、複数の検体容器210の全てが搬送される時間を搬送期間として設定する。これにより、制御部140は、トレイ11に配置された複数の検体容器210の全てが分注作業台80に搬送される毎に、サンプル容器240を分注作業台80まで搬送するようにロボット40を制御する。 The user sets, for example, a period during which all of the plurality of sample containers 210 placed on the tray 11 are transported as the transport period. Specifically, the user sets the number of the plurality of sample containers 210 or the time during which all of the plurality of sample containers 210 are transported as the transport period. Thereby, the controller 140 causes the robot 40 to transport the sample container 240 to the dispensing work table 80 every time all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing work table 80 . to control.
  (検査システムの検査手順)
 図9および図10を参照して、検査システム200の検査手順について説明する。検査システム200では、ロボット40は、採取された検体に対して測定を行う前の処理である前処理を行う。なお、以下のステップS1は、ユーザによって行われる手順である。その他のステップは、制御部140によって制御されている。
(Inspection procedure of inspection system)
The inspection procedure of the inspection system 200 will be described with reference to FIGS. 9 and 10. FIG. In the inspection system 200, the robot 40 performs preprocessing, which is processing before measurement, on the collected sample. Note that the following step S1 is a procedure performed by the user. Other steps are controlled by the control unit 140 .
 図9に示すように、ステップS1において、ユーザは、検体容器210を検体供給部10に配置する。ユーザは、DWP220をDWP供給部20に配置する。ユーザは、チップ230をチップ供給部30に配置する。ユーザは、試薬供給部90に、可溶化液、磁性粒子およびProKを供給する。 As shown in FIG. 9, in step S1, the user places the sample container 210 in the sample supply section 10. As shown in FIG. The user places DWP 220 in DWP supply 20 . The user places the chip 230 on the chip supply section 30 . The user supplies the reagent supply unit 90 with the lysate, magnetic particles and ProK.
 ステップS2において、ロボット40は、第2ハンド60を装着する。 In step S2, the robot 40 mounts the second hand 60.
 ステップS3において、検体供給部10は、検体容器210をロボット40の近傍まで搬送する。DWP供給部20は、DWP220をロボット40の近傍まで搬送する。チップ供給部30は、チップ230をロボット40の近傍まで搬送する。 In step S<b>3 , the sample supply unit 10 transports the sample container 210 to the vicinity of the robot 40 . The DWP supply section 20 conveys the DWP 220 to the vicinity of the robot 40 . The tip supply section 30 conveys the tip 230 to the vicinity of the robot 40 .
 ステップS4において、ロボット40は、第2ハンド60によりDWP220を把持するとともに、把持したDWP220を分注作業台80に搬送する。センサ82は、DWP220の有無を検知する。バーコードリーダ81は、DWP220に貼付されたバーコードを読み取る。 In step S<b>4 , the robot 40 grips the DWP 220 with the second hand 60 and transports the gripped DWP 220 to the dispensing workbench 80 . Sensor 82 detects the presence or absence of DWP 220 . A barcode reader 81 reads the barcode attached to the DWP 220 .
 ステップS5において、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。ロボット40は、チップ230により可溶化液供給部91に配置された可溶化液を吸引し、吸引した可溶化液を分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S<b>5 , the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 . The robot 40 sucks the solubilized liquid placed in the solubilized liquid supply unit 91 with the tip 230 and dispenses the sucked solubilized liquid to the DWP 220 placed on the dispensing workbench 80 . After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS6において、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。ロボット40は、チップ230により磁性粒子供給部92に配置された磁性粒子を吸引し、吸引した磁性粒子を分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S<b>6 , the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 . The robot 40 attracts the magnetic particles arranged in the magnetic particle supply unit 92 with the tip 230 and dispenses the attracted magnetic particles to the DWP 220 placed on the dispensing workbench 80 . After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS7において、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。ロボット40は、チップ230によりProK供給部93に配置されたProKを吸引し、吸引したProKを分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S7, the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. The robot 40 aspirates the ProK placed in the ProK supply section 93 with the chip 230 and dispenses the aspirated ProK to the DWP 220 placed on the dispensing workbench 80 . After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS8において、ロボット40は、第2ハンド60を取り外した後、第1ハンド50を装着する。 In step S8, the robot 40 attaches the first hand 50 after removing the second hand 60.
 ステップS9において、第1ハンド50に配置されているセンサ51は、検体供給部10のトレイ11に検体容器210が配置されているか否かを検知する。 In step S<b>9 , the sensor 51 arranged on the first hand 50 detects whether or not the sample container 210 is arranged on the tray 11 of the sample supply section 10 .
 センサ51によって検体容器210が検知された場合、ステップS10において、ロボット40は、第1ハンド50によって検体容器210を把持するとともに、検体容器210を検体キャッパー部70に搬送する。検体キャッパー部70のバーコードリーダ71は、検体容器210に貼付されたバーコードを読み取る。検体キャッパー部70は、検体容器210の蓋部212を開栓する。 When the sensor 51 detects the sample container 210, the robot 40 grips the sample container 210 with the first hand 50 and transports the sample container 210 to the sample capper section 70 in step S10. The barcode reader 71 of the sample capper section 70 reads the barcode attached to the sample container 210 . The specimen capper section 70 opens the lid section 212 of the specimen container 210 .
 ステップS11において、ロボット40は、第1ハンド50を取り外した後、第2ハンド60を装着する。 In step S11, the robot 40 attaches the second hand 60 after removing the first hand 50.
 ステップS12において、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。ロボット40は、チップ230により検体容器210に収容された検体を吸引し、吸引した検体を分注作業台80に載置されたDWP220に分注する。分注後、検体キャッパー部70は、検体容器210の蓋部212を閉栓する。また、分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S<b>12 , the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 . The robot 40 aspirates the specimen contained in the specimen container 210 with the chip 230 and dispenses the aspirated specimen to the DWP 220 placed on the dispensing workbench 80 . After dispensing, the specimen capper section 70 closes the lid section 212 of the specimen container 210 . Also, after the dispensing, the robot 40 discards the tip 230 in the tip disposal section 120 .
 ステップS13において、ロボット40は、第2ハンド60を取り外した後、第1ハンド50を装着する。 In step S<b>13 , the robot 40 attaches the first hand 50 after removing the second hand 60 .
 ステップS14において、第1ハンド50に配置されているセンサ51は、検体キャッパー部70に検体容器210が配置されているか否かを検知する。また、センサ51によってトレイ11上の異物の有無が確認される。 In step S14, the sensor 51 arranged on the first hand 50 detects whether the sample container 210 is arranged on the sample capper section 70 or not. Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 .
 センサ51によって検体容器210が検知され、かつ、トレイ11上に異物が無いことが確認された場合、ステップS15において、ロボット40は、第1ハンド50によって検体容器210を把持するとともに、検体供給部10のトレイ11に検体容器210を搬送する。 When the sample container 210 is detected by the sensor 51 and it is confirmed that there is no foreign matter on the tray 11, in step S15, the robot 40 grips the sample container 210 with the first hand 50, and moves the sample supply unit. The specimen container 210 is transported to the ten trays 11 .
 ここで、ステップS15aにおいて、制御部140は、予め設定された搬送間隔が経過したか否かを判定する。たとえば、ステップS9からS15までの動作が、1つのトレイ11に配置されている複数の検体容器210の数の分、行われたか否かを判定する。ステップS15aにおいてyesの場合、ステップS109に進む。ステップS15aにおいてnoの場合、ステップS9に戻る。 Here, in step S15a, the control unit 140 determines whether or not a preset transportation interval has elapsed. For example, it is determined whether or not the operations from steps S9 to S15 have been performed for the number of sample containers 210 arranged on one tray 11 . If yes in step S15a, the process proceeds to step S109. If no in step S15a, the process returns to step S9.
 図10に示すように、ステップS109において、第1ハンド50に配置されているセンサ51は、PC/NC置台110にサンプル容器240が配置されているか否かを検知する。センサ51によってサンプル容器240が検知された場合、ステップS110において、ロボット40は、第1ハンド50によってサンプル容器240の本体部241を把持するとともに、サンプル容器240を検体キャッパー部70に搬送する。検体キャッパー部70のバーコードリーダ71は、サンプル容器240に貼付されたバーコードを読み取る。検体キャッパー部70は、サンプル容器240の蓋部242を開栓する。ステップS111において、ロボット40は、第1ハンド50を取り外した後、第2ハンド60を装着する。ステップS112において、ロボット40は、チップ230を第2ハンド60に取り付ける。ロボット40は、チップ230によりサンプル容器240に収容されたサンプルを吸引し、吸引したサンプルを分注作業台80に載置されたDWP220に分注する。分注後、検体キャッパー部70は、サンプル容器240の蓋部242を閉栓する。また、分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 As shown in FIG. 10, in step S109, the sensor 51 arranged on the first hand 50 detects whether or not the sample container 240 is arranged on the PC/NC table 110. When the sample container 240 is detected by the sensor 51, the robot 40 grips the body portion 241 of the sample container 240 with the first hand 50 and transports the sample container 240 to the specimen capper portion 70 in step S110. The barcode reader 71 of the specimen capper section 70 reads the barcode attached to the sample container 240 . The specimen capper section 70 opens the lid section 242 of the sample container 240 . In step S<b>111 , the robot 40 attaches the second hand 60 after removing the first hand 50 . In step S<b>112 , the robot 40 attaches the tip 230 to the second hand 60 . The robot 40 aspirates the sample contained in the sample container 240 with the tip 230 and dispenses the aspirated sample to the DWP 220 placed on the dispensing workbench 80 . After dispensing, the sample capper section 70 closes the lid section 242 of the sample container 240 . Also, after the dispensing, the robot 40 discards the tip 230 in the tip disposal section 120 .
 ステップS113において、ロボット40は、第2ハンド60を取り外した後、第1ハンド50を装着する。ステップS114において、センサ51は、検体キャッパー部70にサンプル容器240が配置されているか否かを検知する。また、センサ51によってPC/NC置台110上の異物の有無が確認される。ステップS115において、ロボット40は、第1ハンド50によってサンプル容器240を把持するとともに、PC/NC置台110にサンプル容器240を搬送する。 In step S<b>113 , the robot 40 attaches the first hand 50 after removing the second hand 60 . In step S<b>114 , the sensor 51 detects whether or not the sample container 240 is placed in the specimen capper section 70 . Further, the sensor 51 confirms whether or not there is a foreign object on the PC/NC table 110 . In step S<b>115 , the robot 40 grips the sample container 240 with the first hand 50 and transports the sample container 240 to the PC/NC table 110 .
 ステップS16において、ロボット40は、第1ハンド50を取り外した後、第2ハンド60を装着する。 In step S<b>16 , the robot 40 attaches the second hand 60 after removing the first hand 50 .
 ステップS17において、ロボット40は、第2ハンド60によって、検体およびサンプルが分注されたDWP220を核酸抽出ユニット2に受け渡すための受渡台130に搬送する。 In step S<b>17 , the robot 40 uses the second hand 60 to transport the DWP 220 dispensed with the specimen and sample to the transfer table 130 for transfer to the nucleic acid extraction unit 2 .
 なお、上記の説明では、検体の前処理の動作の間に、サンプルの前処理の動作が挟み込まれている例を示したが、検体の前処理の動作と、サンプルの前処理の動作とを分離してもよい。つまり、検体に対して、ステップS9からS15まで、ステップS16およびステップ17の動作を行った後、サンプルに対して、ステップS109からS115まで、ステップS16およびステップ17の動作を行ってもよい。 In the above description, an example in which the sample pretreatment operation is interposed between the sample pretreatment operations is shown. may be separated. That is, after performing the operations of steps S9 to S15, steps S16 and 17 on the specimen, the operations of steps S109 to S115, steps S16 and 17 may be performed on the sample.
 受渡台130に載置された、検体およびサンプルが分注されたDWP220は、核酸抽出ユニット2内に搬送される。核酸抽出ユニット2において、DWP220に分注された検体およびサンプルの各々から核酸が抽出される。抽出された核酸は、DWP220に分注される。DWP220に分注された核酸は、PCR測定ユニット4に搬送される。PCR測定ユニット4において、検体から抽出された核酸に対して、PCR測定装置による測定が行われる。また、PCR測定ユニット4において、検査のための検量線の作成のために、サンプルから抽出された核酸に対して、PCR測定装置による測定が行われる。 The DWP 220 placed on the transfer table 130 and dispensed with the specimen and sample is transported into the nucleic acid extraction unit 2 . In the nucleic acid extraction unit 2, nucleic acids are extracted from each of the specimen and sample dispensed to the DWP220. The extracted nucleic acid is dispensed into the DWP220. Nucleic acids dispensed into the DWP 220 are transported to the PCR measurement unit 4 . In the PCR measurement unit 4, the nucleic acid extracted from the specimen is measured by the PCR measurement device. In the PCR measurement unit 4, the nucleic acid extracted from the sample is measured by the PCR measurement device in order to create a calibration curve for testing.
 [本実施形態の効果]
 制御部140は、予め設定された搬送間隔毎に、サンプル容器240を、検体が処理される分注作業台80まで搬送するようにロボット40を制御する。これにより、予め設定された搬送間隔毎に、自動的に、精度管理用のサンプルが分注作業台80まで搬送されるとともに、分注作業台80において処理される。このため、ユーザが検査精度を確認するための時期を把握する必要がないとともに、分注作業台80までユーザが手動で精度管理用のサンプルを持ち運ぶ必要もない。このため、検査システム200の検査精度を確認するためのユーザの負担を軽減することができる。
[Effect of this embodiment]
The control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 where the sample is processed at each transport interval set in advance. As a result, the sample for quality control is automatically transported to the dispensing workbench 80 and processed on the dispensing workbench 80 at each transport interval set in advance. Therefore, the user does not need to know when to check the inspection accuracy, and the user does not need to manually carry the sample for accuracy control to the dispensing workbench 80 . Therefore, the user's burden for checking the inspection accuracy of the inspection system 200 can be reduced.
 制御部140は、全体制御盤5により受け付けられた搬送間隔毎に、サンプル容器240を分注作業台80まで搬送するようにロボット40を制御する。これにより、ユーザは、ユーザの意図に応じて、容易に、搬送間隔を設定することができる。また、ユーザは、搬送間隔を容易に変更することができる。 The control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 at each transport interval accepted by the general control panel 5 . Thereby, the user can easily set the transport interval according to the user's intention. Also, the user can easily change the transport interval.
 PC/NC置台110およびロボット40は、同じ開栓分注ユニット1内に配置され、全体制御盤5は、開栓分注ユニット1外に配置されている。これにより、PC/NC置台110とロボット40とが同じ開栓分注ユニット1内に配置されるので、PC/NC置台110とロボット40との間の距離が比較的小さくなる。そのため、サンプル容器240を分注作業台80まで容易かつ短時間で搬送することができる。また、全体制御盤5が開栓分注ユニット1外に配置されているので、ユーザは開栓分注ユニット1から離間した場所から搬送間隔を設定することができる。これにより、ユーザと検体との接触の機会を減少できる。 The PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1, and the general control panel 5 is arranged outside the uncapped dispensing unit 1. As a result, the PC/NC table 110 and the robot 40 are arranged in the same opening/dispensing unit 1, so the distance between the PC/NC table 110 and the robot 40 is relatively small. Therefore, the sample container 240 can be easily transported to the dispensing workbench 80 in a short time. In addition, since the general control panel 5 is arranged outside the uncapped dispensing unit 1 , the user can set the transport interval from a location away from the uncapped dispensing unit 1 . This can reduce the chance of contact between the user and the specimen.
 PC/NC置台110にサンプル容器240が配置されているか否かを検知するセンサ111が配置されている。これにより、サンプル容器240の有無が検知されるので、サンプル容器240が無い状態でロボット40が搬送動作を行うことを抑制できる。また、サンプル容器240が無いことをユーザに報知することにより、ユーザはサンプル容器240を補充することができる。 A sensor 111 is arranged to detect whether or not the sample container 240 is arranged on the PC/NC table 110 . Since the presence or absence of the sample container 240 is thereby detected, it is possible to prevent the robot 40 from performing the transport operation when the sample container 240 is not present. Also, by informing the user that there is no sample container 240 , the user can replenish the sample container 240 .
 分注作業台80では、採取された検体に対して測定を行う前の処理が行われる。これにより、前処理が行われる検査システム200の検査精度を確認するためのユーザの負担を軽減することができる。 On the dispensing workbench 80, pre-measurement processing is performed on the collected sample. As a result, it is possible to reduce the user's burden for checking the inspection accuracy of the inspection system 200 in which preprocessing is performed.
 ロボット40は、検体容器210を分注作業台80まで搬送する。これにより、検体容器210が、直線移動するコンベアなどにより分注作業台80まで搬送される場合と比べて、検体容器210の搬送経路が比較的複雑な経路であっても検体容器210を搬送できる。 The robot 40 transports the sample container 210 to the dispensing workbench 80. As a result, the sample container 210 can be transported even if the transport route of the sample container 210 is relatively complicated compared to the case where the sample container 210 is transported to the dispensing workbench 80 by a conveyor or the like that moves linearly. .
 検体容器210と、ロボットアーム41から取り外された第1ハンド50とは、ロボット40に対して同じ側に配置され、PC/NC置台110は、ロボット40に対して検体容器210および取り外された第1ハンド50とは逆側に配置されている。これにより、ロボット40に対して検体容器210と同じ側に第1ハンド50が配置されるので、検体容器210と、第1ハンド50との間の距離が比較的小さくなる。このため、第1ハンド50を取り付けて迅速に検体容器210を把持することができるので、複数の検体容器210の全体の処理に要する時間を短縮することができる。サンプル容器240が、第1ハンド50が配置されていた位置とはロボット40に対して逆側に配置されるため、サンプル容器240と第1ハンド50との間の距離が比較的大きくなる。そのため、第1ハンド50によりサンプル容器240を把持するまでの時間が長くなる。しかしながら、サンプル容器240は予め設定された搬送間隔毎にしか第1ハンド50による搬送が行われないので、第1ハンド50によりサンプル容器240を把持するまでの時間が長くなることの、複数の検体容器210の全体の処理時間に対する影響は小さい。 The sample container 210 and the first hand 50 removed from the robot arm 41 are arranged on the same side with respect to the robot 40 , and the PC/NC table 110 is positioned with respect to the robot 40 with the sample container 210 and the removed first hand 40 . 1 hand 50 is arranged on the opposite side. As a result, the first hand 50 is arranged on the same side as the sample container 210 with respect to the robot 40, so the distance between the sample container 210 and the first hand 50 becomes relatively small. Therefore, the first hand 50 can be attached and the sample container 210 can be quickly gripped, so that the time required for processing the entire plurality of sample containers 210 can be shortened. Since the sample container 240 is arranged on the opposite side of the robot 40 from the position where the first hand 50 was arranged, the distance between the sample container 240 and the first hand 50 becomes relatively large. Therefore, it takes a long time to grip the sample container 240 with the first hand 50 . However, since the sample container 240 is transported by the first hand 50 only at preset transport intervals, it takes a long time until the sample container 240 is gripped by the first hand 50. The effect on the overall processing time of container 210 is small.
 制御部140は、トレイ11に配置された複数の検体容器210の全てが分注作業台80に搬送される毎に、サンプル容器240を分注作業台80まで搬送するようにロボット40を制御する。これにより、新たなトレイ11に配置されている複数の検体容器210が搬送される前にサンプル容器240が分注作業台80まで搬送されるので、新たなトレイ11に配置された複数の検体容器210の処理の前に、検査システム200の検査精度の確認を行うことができる。その結果、トレイ11毎に検査精度が異なることを抑制できる。 The control unit 140 controls the robot 40 to transport the sample container 240 to the dispensing workbench 80 each time all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing workbench 80. . As a result, the sample container 240 is transported to the dispensing workbench 80 before the multiple sample containers 210 placed on the new tray 11 are transported, so that the multiple sample containers placed on the new tray 11 are transported. Prior to processing at 210, verification of the inspection accuracy of inspection system 200 may be performed. As a result, it is possible to prevent the inspection accuracy from being different for each tray 11 .
 [変形例]
 今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiments disclosed this time should be considered illustrative and not restrictive in all respects. The scope of the present disclosure is indicated by the scope of claims rather than the above description of the embodiments, and further includes all changes (modifications) within the scope and meaning equivalent to the scope of the claims.
 上記実施形態では、開栓分注ユニット1内に配置されるロボット40およびサンプル容器240が配置されるPC/NC置台110に本開示を適用する例を示したが、本開示はこれに限られない。たとえば、開栓分注ユニット1以外の検査ユニットに配置されるロボット40およびサンプル容器240が配置されるPC/NC置台110に本開示を適用してもよい。 In the above embodiment, an example in which the present disclosure is applied to the robot 40 and the PC/NC table 110 on which the sample container 240 is placed in the uncapped dispensing unit 1 is shown, but the present disclosure is limited to this. do not have. For example, the present disclosure may be applied to the PC/NC table 110 on which the robot 40 and the sample container 240 arranged in an inspection unit other than the uncapped dispensing unit 1 are arranged.
 上記実施形態では、全体制御盤5によってユーザによる搬送間隔の設定が受け付けられる例を示したが、本開示はこれに限られない。たとえば、予め設定された固定された搬送間隔に基づいて、ロボット40がサンプル容器240をロボット40に搬送してもよい。 In the above embodiment, an example was shown in which the setting of the transport interval by the user was accepted by the general control panel 5, but the present disclosure is not limited to this. For example, robot 40 may transfer sample container 240 to robot 40 based on a preset fixed transfer interval.
 上記実施形態では、本開示の受付部が全体制御盤5である例を示したが、本開示はこれに限られない。たとえば、開栓分注ユニット1に本開示の受付部を配置してもよい。 In the above embodiment, an example in which the receiving unit of the present disclosure is the general control panel 5 is shown, but the present disclosure is not limited to this. For example, the reception section of the present disclosure may be arranged in the uncapped dispensing unit 1 .
 上記実施形態では、PC/NC置台110およびロボット40は、同じ開栓分注ユニット1内に配置される例を示したが、本開示はこれに限られない。たとえば、PC/NC置台110を、開栓分注ユニット1外に配置してもよい。 Although the PC/NC table 110 and the robot 40 are arranged in the same uncapped dispensing unit 1 in the above embodiment, the present disclosure is not limited to this. For example, the PC/NC table 110 may be arranged outside the uncapped dispensing unit 1 .
 上記実施形態では、PCR測定の精度管理用のサンプルに対して本開示を適用する例を示したが、本開示はこれに限られない。たとえば、PCR測定以外の測定のための精度管理用のサンプルに対して本開示を適用してもよい。 In the above embodiment, an example in which the present disclosure is applied to a sample for quality control of PCR measurement is shown, but the present disclosure is not limited to this. For example, the present disclosure may be applied to quality control samples for measurements other than PCR measurements.
 上記実施形態では、サンプル容器240がロボット40によって搬送される例を示したが、本開示はこれに限られない。たとえば、サンプル容器240がコンベアなどによって搬送されてもよい。また、サンプル容器240が検体を搬送するロボット40によって搬送される例を示したが、本開示はこれに限られない。たとえば、サンプル容器240を搬送するロボット40と、検体を搬送するロボット40とを別個に配置してもよい。 In the above embodiment, an example in which the sample container 240 is transported by the robot 40 is shown, but the present disclosure is not limited to this. For example, sample container 240 may be transported by a conveyor or the like. Also, although an example in which the sample container 240 is transported by the robot 40 that transports the specimen has been shown, the present disclosure is not limited to this. For example, the robot 40 that transports the sample container 240 and the robot 40 that transports the specimen may be arranged separately.
 上記実施形態では、トレイ11に配置された複数の検体容器210の全てが分注作業台80に搬送される期間を搬送期間とする例を示したが、本開示はこれに限られない。本開示では、ユーザの意図に応じて様々な搬送期間を設定することが可能である。 In the above embodiment, an example is shown in which a period during which all of the plurality of sample containers 210 arranged on the tray 11 are transported to the dispensing workbench 80 is set as a transportation period, but the present disclosure is not limited to this. In the present disclosure, it is possible to set various transportation periods according to the user's intentions.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。 The functionality of the elements disclosed herein may be extended to general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, and/or those configured or programmed to perform the disclosed functions. can be implemented using a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions. The hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. A circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
 (項目1)
 検体測定の精度管理用のサンプルが収容されるサンプル容器が配置されるサンプル容器配置部と、
 前記サンプル容器を搬送するサンプル搬送部と、
 制御部と、を備え、
 前記制御部は、予め設定された搬送間隔毎に、前記サンプル容器を、検体が処理される処理部まで搬送するように前記サンプル搬送部を制御する、検査システム。
(Item 1)
a sample container placement unit in which a sample container containing a sample for quality control of specimen measurement is placed;
a sample transport unit that transports the sample container;
a control unit;
The inspection system, wherein the control unit controls the sample transport unit so as to transport the sample container to a processing unit where the sample is processed at each transport interval set in advance.
 (項目2)
 ユーザによる前記搬送間隔の設定を受け付ける受付部をさらに備え、
 前記制御部は、前記受付部により受け付けられた前記搬送間隔毎に、前記サンプル容器を前記処理部まで搬送するように前記サンプル搬送部を制御する、項目1に記載の検査システム。
(Item 2)
further comprising a reception unit that receives setting of the transportation interval by a user;
The inspection system according to item 1, wherein the control unit controls the sample transport unit to transport the sample container to the processing unit at each transport interval accepted by the reception unit.
 (項目3)
 前記サンプル容器配置部および前記サンプル搬送部は、同じ検査ユニット内に配置され、
 前記受付部は、前記検査ユニット外に配置されている、項目2に記載の検査システム。
(Item 3)
The sample container arrangement section and the sample transport section are arranged in the same inspection unit,
The inspection system according to item 2, wherein the reception section is arranged outside the inspection unit.
 (項目4)
 前記サンプル容器配置部に前記サンプル容器が配置されているか否かを検知するサンプル容器検知部をさらに備える、項目1から項目3までのいずれか1項に記載の検査システム。
(Item 4)
The inspection system according to any one of items 1 to 3, further comprising a sample container detection unit that detects whether or not the sample container is placed in the sample container placement unit.
 (項目5)
 前記処理部は、採取された検体に対して測定を行う前の処理が行われる前処理部を含む、項目1から項目4までのいずれか1項に記載の検査システム。
(Item 5)
5. The inspection system according to any one of items 1 to 4, wherein the processing unit includes a preprocessing unit that performs processing prior to measurement on the collected sample.
 (項目6)
 前記サンプル搬送部は、検体容器を前記処理部まで搬送するロボットを含む、項目1から項目5までのいずれか1項に記載の検査システム。
(Item 6)
6. The inspection system according to any one of items 1 to 5, wherein the sample transport unit includes a robot that transports the sample container to the processing unit.
 (項目7)
 前記ロボットは、ロボットアームを含み、
 前記ロボットアームの先端に取り付けられ、着脱可能なハンドをさらに備え、
 前記検体容器と、前記ロボットアームから取り外された前記ハンドとは、前記ロボットに対して同じ側に配置され、
 前記サンプル容器配置部は、前記ロボットに対して前記検体容器および取り外された前記ハンドとは逆側に配置されている、項目6に記載の検査システム。
(Item 7)
the robot includes a robotic arm;
further comprising a detachable hand attached to the tip of the robot arm,
The sample container and the hand removed from the robot arm are arranged on the same side with respect to the robot,
7. An inspection system according to item 6, wherein the sample container placement unit is placed on the opposite side of the robot from the sample container and the detached hand.
 (項目8)
 複数の検体容器が配置されるトレイをさらに備え、
 前記制御部は、前記トレイに配置された前記複数の検体容器の全てが前記処理部に搬送される毎に、前記サンプル容器を前記処理部まで搬送するように前記サンプル搬送部を制御する、項目1から項目7までのいずれか1項に記載の検査システム。
 
(Item 8)
further comprising a tray on which a plurality of sample containers are arranged;
wherein the control unit controls the sample transport unit to transport the sample container to the processing unit each time all of the plurality of sample containers arranged on the tray are transported to the processing unit; The inspection system according to any one of items 1 to 7.

Claims (8)

  1.  検体測定の精度管理用のサンプルが収容されるサンプル容器が配置されるサンプル容器配置部と、
     前記サンプル容器を搬送するサンプル搬送部と、
     制御部と、を備え、
     前記制御部は、予め設定された搬送間隔毎に、前記サンプル容器を、検体が処理される処理部まで搬送するように前記サンプル搬送部を制御する、検査システム。
    a sample container placement unit in which a sample container containing a sample for quality control of specimen measurement is placed;
    a sample transport unit that transports the sample container;
    a control unit;
    The inspection system, wherein the control unit controls the sample transport unit so as to transport the sample container to a processing unit where the sample is processed at each transport interval set in advance.
  2.  ユーザによる前記搬送間隔の設定を受け付ける受付部をさらに備え、
     前記制御部は、前記受付部により受け付けられた前記搬送間隔毎に、前記サンプル容器を前記処理部まで搬送するように前記サンプル搬送部を制御する、請求項1に記載の検査システム。
    further comprising a reception unit that receives setting of the transportation interval by a user;
    The inspection system according to claim 1, wherein the control section controls the sample transport section to transport the sample container to the processing section at each of the transport intervals accepted by the reception section.
  3.  前記サンプル容器配置部および前記サンプル搬送部は、同じ検査ユニット内に配置され、
     前記受付部は、前記検査ユニット外に配置されている、請求項2に記載の検査システム。
    The sample container arrangement section and the sample transport section are arranged in the same inspection unit,
    3. The inspection system according to claim 2, wherein said reception section is arranged outside said inspection unit.
  4.  前記サンプル容器配置部に前記サンプル容器が配置されているか否かを検知するサンプル容器検知部をさらに備える、請求項1に記載の検査システム。 The inspection system according to claim 1, further comprising a sample container detection unit that detects whether or not the sample container is placed in the sample container placement unit.
  5.  前記処理部は、採取された検体に対して測定を行う前の処理が行われる前処理部を含む、請求項1に記載の検査システム。 The inspection system according to claim 1, wherein the processing unit includes a preprocessing unit that performs processing prior to measurement on the collected sample.
  6.  前記サンプル搬送部は、検体容器を前記処理部まで搬送するロボットを含む、請求項1に記載の検査システム。 The inspection system according to claim 1, wherein the sample transport unit includes a robot that transports sample containers to the processing unit.
  7.  前記ロボットは、ロボットアームを含み、
     前記ロボットアームの先端に取り付けられ、着脱可能なハンドをさらに備え、
     前記検体容器と、前記ロボットアームから取り外された前記ハンドとは、前記ロボットに対して同じ側に配置され、
     前記サンプル容器配置部は、前記ロボットに対して前記検体容器および取り外された前記ハンドとは逆側に配置されている、請求項6に記載の検査システム。
    the robot includes a robotic arm;
    further comprising a detachable hand attached to the tip of the robot arm,
    The sample container and the hand removed from the robot arm are arranged on the same side with respect to the robot,
    7. The inspection system according to claim 6, wherein said sample container placement section is placed on the opposite side of said robot from said sample container and said detached hand.
  8.  複数の検体容器が配置されるトレイをさらに備え、
     前記制御部は、前記トレイに配置された前記複数の検体容器の全てが前記処理部に搬送される毎に、前記サンプル容器を前記処理部まで搬送するように前記サンプル搬送部を制御する、請求項1に記載の検査システム。
     
     
     
    further comprising a tray on which a plurality of sample containers are arranged;
    wherein the control unit controls the sample transport unit to transport the sample container to the processing unit each time all of the plurality of sample containers arranged on the tray are transported to the processing unit; Item 1. The inspection system according to Item 1.


PCT/JP2023/004984 2022-02-16 2023-02-14 Inspection system WO2023157836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-022283 2022-02-16
JP2022022283A JP2023119397A (en) 2022-02-16 2022-02-16 inspection system

Publications (1)

Publication Number Publication Date
WO2023157836A1 true WO2023157836A1 (en) 2023-08-24

Family

ID=87578306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004984 WO2023157836A1 (en) 2022-02-16 2023-02-14 Inspection system

Country Status (2)

Country Link
JP (1) JP2023119397A (en)
WO (1) WO2023157836A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465676A (en) * 1990-07-06 1992-03-02 Hitachi Ltd Automatic analysis apparatus with sample transfer path and sample treatment for this purpose
JP2004271265A (en) * 2003-03-06 2004-09-30 Hitachi High-Technologies Corp Automatic analyzer
JP2009008558A (en) * 2007-06-28 2009-01-15 A & T Corp Dispenser, sample inspection system, dispensing method, sample inspection method, dispensing program, and sample inspection program
JP2019174369A (en) * 2018-03-29 2019-10-10 シスメックス株式会社 Specimen pretreatment device, robot arm, and specimen pretreatment method
JP2020085849A (en) * 2018-11-30 2020-06-04 シスメックス株式会社 Specimen analyzing device and specimen analyzing method
CN112034190A (en) * 2020-08-18 2020-12-04 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer quality control method, device, system and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465676A (en) * 1990-07-06 1992-03-02 Hitachi Ltd Automatic analysis apparatus with sample transfer path and sample treatment for this purpose
JP2004271265A (en) * 2003-03-06 2004-09-30 Hitachi High-Technologies Corp Automatic analyzer
JP2009008558A (en) * 2007-06-28 2009-01-15 A & T Corp Dispenser, sample inspection system, dispensing method, sample inspection method, dispensing program, and sample inspection program
JP2019174369A (en) * 2018-03-29 2019-10-10 シスメックス株式会社 Specimen pretreatment device, robot arm, and specimen pretreatment method
JP2020085849A (en) * 2018-11-30 2020-06-04 シスメックス株式会社 Specimen analyzing device and specimen analyzing method
CN112034190A (en) * 2020-08-18 2020-12-04 深圳迈瑞生物医疗电子股份有限公司 Sample analyzer quality control method, device, system and storage medium

Also Published As

Publication number Publication date
JP2023119397A (en) 2023-08-28

Similar Documents

Publication Publication Date Title
EP3101428B1 (en) Automatic analytical apparatus
CN108351362B (en) Automated method and system for obtaining and preparing microbial samples for identification and antibiotic susceptibility testing
CN103257221B (en) Analyzer
JP2024086857A (en) Automated diagnostic analyzer and method for operation thereof
CN101617231B (en) Conveyor of specimen containers with spur units in laboratory automation systems
JP5208868B2 (en) Sample processing equipment
CN102914662B (en) Device for analyzing samples
JP5815917B2 (en) Rack transport device
JP5485766B2 (en) Sample rack transport system
CN101852809B (en) Sample processing apparatus and sample processing method
EP3006169A1 (en) Gripping mechanism
CN102955040B (en) Sample analyzer
EP2672271B1 (en) Automatic analysis system
JP5209436B2 (en) Sample analyzer, sample analysis method, and computer program
JP2011064537A (en) Specimen processing device
JP2002014109A (en) Pretreatment device for specimen inspection
EP2076780B1 (en) Method and device for test sample loading
JP2014222248A (en) Specimen processing device
WO2023157836A1 (en) Inspection system
WO2023162824A1 (en) Dispensing system
US11933804B2 (en) Automatic analyzer
WO2023157834A1 (en) Examination system
WO2023162820A1 (en) Dispensing system
JP5484107B2 (en) Sample processing system
JP7529663B2 (en) Automated Analysis Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE