WO2023162824A1 - Dispensing system - Google Patents

Dispensing system Download PDF

Info

Publication number
WO2023162824A1
WO2023162824A1 PCT/JP2023/005284 JP2023005284W WO2023162824A1 WO 2023162824 A1 WO2023162824 A1 WO 2023162824A1 JP 2023005284 W JP2023005284 W JP 2023005284W WO 2023162824 A1 WO2023162824 A1 WO 2023162824A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
chip
dispensing
unit
robot arm
Prior art date
Application number
PCT/JP2023/005284
Other languages
French (fr)
Japanese (ja)
Inventor
友希男 岩▲崎▼
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023162824A1 publication Critical patent/WO2023162824A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present disclosure relates to a dispensing system.
  • Japanese Patent No. 3549263 discloses a dispensing device having a pipette tip attached to the tip.
  • the dispensing device is attached to a robot.
  • the robot moves the pipetting device to a tip rack holding pipette tips.
  • the robot then moves the pipetting device so that the tip of the pipetting device can be attached to the pipette tip.
  • the present disclosure provides a dispensing system that can prevent the tip from being properly attached due to an insufficient amount of pushing of the tip attachment portion into the tip.
  • a dispensing system includes a robot arm, a dispensing hand attached to the robot arm and including a tip attachment section to which a tip is attached, and a tip attachment section that determines whether or not a tip is attached.
  • a detection unit for detecting and a control unit are provided, and the control unit controls the robot arm to place the chip placed on the chip placement unit until the detection unit detects that the chip is attached. Push in the tip mounting part.
  • the control unit controls the robot arm to place the chip on the chip placement unit until the detection unit detects that the chip is attached. Push the tip mounting part into the tip that has been pressed. As a result, the chip attachment portion is pushed into the chip until the detection portion detects that the chip is attached, so it is possible to prevent the chip attachment portion from being pushed into the chip by an insufficient amount. As a result, it is possible to prevent the chip from being properly mounted due to insufficient pushing amount of the chip mounting portion with respect to the chip.
  • FIG. 1 is a plan view showing the configuration of an inspection system according to one embodiment
  • FIG. FIG. 4 is a plan view showing the configuration of the uncapped dispensing unit according to one embodiment.
  • FIG. 3 is a perspective view showing the configuration of a sample supply section according to one embodiment;
  • Figure 400 is a cross-sectional view along line 400-400 of Figure 3;
  • FIG. 4 is a perspective view showing the configuration of a first hand according to one embodiment;
  • FIG. 4 is a conceptual diagram showing the configuration of a first hand and sensors according to one embodiment;
  • FIG. 5 is a perspective view showing the configuration of a second hand according to one embodiment;
  • FIG. 3 is a perspective view showing the configuration of a sample supply section according to one embodiment
  • Figure 400 is a cross-sectional view along line 400-400 of Figure 3
  • FIG. 4 is a perspective view showing the configuration of a first hand according to one embodiment
  • FIG. 4 is a conceptual diagram showing the configuration of a first hand and sensors according to one embodiment
  • FIG. 12 illustrates a dispensing body of an inspection system according to one embodiment
  • 4 is a perspective view showing the configuration of a reagent supply unit according to one embodiment
  • FIG. FIG. 10 is a diagram showing a state in which the swab and the chip are in contact with each other in the specimen container and the swab is broken.
  • FIG. 3 shows a swab
  • FIG. 4 is a flow diagram illustrating the first half of the inspection procedure of the inspection system according to one embodiment
  • FIG. 4 is a flow diagram illustrating the second half of the inspection procedure of the inspection system according to one embodiment
  • FIG. 4 is a flow diagram illustrating a procedure for attaching a chip of an inspection system according to one embodiment
  • FIG. 10 is a diagram showing a state in which the chip enters the sample container;
  • FIG. 10 is a diagram showing a state in which the tip is in contact with the swab;
  • FIG. 11 shows a state in which the tip has moved horizontally after contacting the swab.
  • FIG. 10 is a diagram showing a state in which the tip is lowered to pick up a sample;
  • FIG. 1 the vertical direction is defined as the Z direction.
  • the upper side is the Z1 side
  • the lower side is the Z2 side.
  • the direction orthogonal to the Z direction is defined as the X direction.
  • One side in the X direction is the X1 side
  • the other side is the X2 side.
  • a direction perpendicular to the Z direction and the X direction is defined as the Y direction.
  • One side in the Y direction is the Y1 side, and the other side is the Y2 side.
  • Inspection system 200 is an example of a dispensing system.
  • the inspection system 200 includes an uncapped pipetting unit 1, a nucleic acid extraction unit 2, a reagent adjustment unit 3, a PCR measurement unit 4, and an overall control panel 5.
  • pretreatment for measurement is performed on the sample.
  • nucleic acid extraction unit 2 nucleic acid is extracted from the specimen as pretreatment of the specimen.
  • the reagent adjustment unit 3 adjusts the reagent.
  • PCR measurement unit 4 a process of measuring whether or not the sample contains an infectious virus is performed by RT-PCR test.
  • a control panel and a distribution panel are arranged in the general control panel 5 .
  • the uncapped dispensing unit 1 includes a specimen supply section 10 , a DWP supply section 20 and a tip supply section 30 .
  • DWP means deep well plate.
  • the uncapped dispensing unit 1 also includes a robot 40 , a first hand 50 , a sensor 51 , a second hand 60 and a detector 64 .
  • the uncapped dispensing unit 1 also includes a sample capper section 70 , a barcode reader 71 , a dispensing work table 80 , a reagent supply section 90 , a chip table 100 , a PC/NC table 110 , and a chip disposal section 120 .
  • the uncapped dispensing unit 1 also includes a delivery table 130 .
  • the uncapped dispensing unit 1 also includes a control section 140 .
  • the second hand 60 is an example of a dispensing hand.
  • the chip mount 100 is an example of a chip mount.
  • the specimen supply section 10 includes a tray 11 and a transport section 15 .
  • a sample container 210 is placed on the tray 11 by the user.
  • the tray 11 is placed on the transport section 15 by the user.
  • the tray 11 is detachable from the transport section 15 .
  • two trays 11 and two conveying units 15 are arranged.
  • the tray 11 includes a first plate portion 12 and a second plate portion 13.
  • the first plate portion 12 is provided with a plurality of first holes 12a into which the plurality of sample containers 210 are respectively inserted.
  • the second plate portion 13 is arranged vertically separated from the first plate portion 12 .
  • the second plate portion 13 is provided with a plurality of second holes 13a into which the plurality of sample containers 210 are respectively inserted.
  • the specimen container 210 is inserted into the first hole 12a and the second hole 13a.
  • the first hole portion 12a has a circular shape when viewed from the Z direction.
  • the first holes 12a are arranged in a houndstooth pattern.
  • the first hole portion 12a is a through hole.
  • the second hole 13a has a circular shape when viewed from the Z direction.
  • the second holes 13a are arranged in a houndstooth pattern.
  • the second hole portion 13a has a concave shape.
  • the first hole portion 12a is arranged directly above the second hole portion 13a.
  • the first plate portion 12 and the second plate portion 13 are connected by a column portion 14 .
  • the edge 12b of the upper opening of the first hole 12a and the edge 13b of the upper opening of the second hole 13a are chamfered. That is, the radii of the first hole portion 12a and the second hole portion 13a gradually increase toward the Z1 direction side.
  • the tray 11 includes a grip portion 12c.
  • the grip portion 12c is gripped by the user.
  • the gripping portions 12c are arranged at both ends of the first plate portion 12 in the X direction.
  • the grip portion 12c is an elongated through hole.
  • the transport unit 15 reciprocates the tray 11 between the robot 40 and the position P1 where the user places the tray 11 on which the plurality of sample containers 210 are arranged on the transport unit 15 .
  • the position P1 is located at the end of the uncapped dispensing unit 1 on the X2 direction side.
  • the transport section 15 includes a linear actuator 15a for linearly moving the tray 11, and a sensor 15b.
  • the tray 11 is placed on the linear actuator 15a.
  • Linear actuator 15 a linearly moves tray 11 between position P ⁇ b>1 and robot 40 .
  • the transport unit 15 detects the position of the tray 11 on the linear actuator 15a.
  • the sensor 15b detects whether or not the tray 11 is present. For example, two trays 11 and two conveying units 15 are arranged.
  • the DWP supply section 20 includes a transport section 21 .
  • the transport unit 21 reciprocates the DWP 220 between the robot 40 and the position P ⁇ b>2 where the user places the DWP 220 on the transport unit 21 .
  • the position P2 is located at the end of the uncapped dispensing unit 1 on the X2 direction side.
  • Conveying unit 21 includes linear actuator 22 and sensor 23 .
  • the linear motion actuator 22 linearly moves the DWP 220 placed on the tray 24 .
  • the transport section 21 detects the position of the DWP 220 on the transport section 21 .
  • Sensor 23 detects the presence or absence of DWP 220 and the height of DWP 220 . For example, two trays 24 and two conveying units 21 are arranged.
  • the chip supply section 30 includes a transport section 31 .
  • the transport unit 31 reciprocates the chip 230 between a position P3 where the user places the chip 230 on the transport unit 31 and the robot 40 .
  • the position P3 is located at the end of the uncapped dispensing unit 1 on the X1 direction side.
  • the transport section 31 includes a direct acting actuator 32 and a sensor 33 .
  • the linear motion actuator 32 linearly moves the plurality of chips 230 placed on the tray 34 .
  • the transport section 31 detects the position of the chip 230 on the transport section 31 .
  • a sensor 33 detects the presence or absence of the chip 230 . For example, two trays 34 and two conveying units 31 are arranged.
  • the robot 40 is arranged inside the uncapped dispensing unit 1 .
  • Robot 40 includes a robot arm 41 .
  • the robot arm 41 is, for example, a vertical articulated robot arm.
  • the first hand 50 is attached to the tip of the robot arm 41.
  • the specimen container 210 has a cylindrical shape.
  • the sample container 210 includes a body portion 211 and a lid portion 212 in which the sample is stored.
  • the first hand 50 grips the body portion 211 of the sample container 210 arranged on the tray 11 .
  • the first hand 50 includes a chuck 52 .
  • the body portion 211 of the sample container 210 is gripped by the chuck 52 .
  • the sensor 51 is arranged on the first hand 50 .
  • the sensor 51 detects whether or not the sample container 210 is placed on the tray 11 .
  • the sensor 51 detects the presence or absence of the sample container 210 from the Z1 direction side.
  • the robot 40 grips the sample container 210 placed on the tray 11 with the first hand 50 based on the detection that the sample container 210 is placed on the tray 11 of the sample supply unit 10 . Then, the sample container 210 is transported to the sample capper section 70 . Also, the robot 40 grips the sample container 210 after the dispensing process with the first hand 50 . Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 . After the sensor 51 confirms that there is no foreign matter on the tray 11 , the robot 40 returns the sample container 210 after the dispensing process to the tray 11 .
  • the second hand 60 is attached to the tip of the robot arm 41 in this embodiment.
  • the second hand 60 holds at least one of a tip 230 that aspirates and ejects the sample in the sample container 210 and a DWP 220 that ejects the sample from the tip 230 .
  • the second hand 60 holds both the chip 230 and the DWP 220 .
  • the second hand 60 is provided with a plurality of chip mounting portions 61 .
  • An air cylinder is arranged in the tip attachment portion 61, and the tip 230 is attached to the tip attachment portion 61 by the suction force of the air cylinder.
  • the second hand 60 includes a chuck 62 that grips the DWP 220 .
  • the second hand 60 includes a dispensing body portion 65 and a movement mechanism portion 66.
  • the tip attachment portion 61 is attached to the dispensing main body portion 65 .
  • the moving mechanism 66 linearly moves the dispensing main body 65 along the Z direction and holds the dispensing main body 65 .
  • the moving mechanism part 66 is, for example, an air cylinder 66a.
  • the dispensing main body 65 is positioned at the lower end of the moving mechanism 66 by gravity.
  • the second hand 60 is provided with a plurality of sets of a chip attachment portion 61 , a dispensing main body portion 65 and a movement mechanism portion 66 .
  • the dispensing main body portion 65 is an example of a main body portion.
  • the moving mechanism part 66 is an example of a holding part.
  • the detection unit 64 is arranged on the second hand 60 .
  • the detector 64 detects whether the tip 230 is properly attached to the tip attachment portion 61 .
  • the detection unit 64 also detects that the tip 230 has come into contact with the swab 213 inside the sample container 210 .
  • Detection unit 64 is, for example, an auto switch.
  • An auto switch is a sensor that detects a position by detecting magnetism.
  • the movement mechanism section 66 includes an air cylinder 66a having a piston 66b. The auto switch detects that the piston 66b of the air cylinder 66a of the moving mechanism 66 has moved to a predetermined position P.
  • Swab 213 is an example of a foreign object.
  • the detection section 64 detects that the dispensing main body section 65 has moved to the predetermined position P with respect to the movement mechanism section 66 . Specifically, the detection unit 64 detects that the dispensing main body 65 has moved to a predetermined position P when the tip mounting portion 61 is pushed into the tip 230 placed on the tip table 100 .
  • a magnet is attached to the dispensing main body 65 .
  • the second hand 60 is lowered by the robot arm 41 . As a result, the dispensing main body part 65 descends, and the tip mounting part 61 is pushed into the tip 230 placed on the tip mounting base 100 . As a result, the chip attachment portion 61 contacts the chip 230 .
  • the moving mechanism 66 continues to descend together with the second hand 60 .
  • the dispensing main body 65 moves in the Z1 direction relative to the moving mechanism 66 .
  • the magnetism of the magnet of the dispensing main body 65 is detected by the detector 64 .
  • the predetermined position P is a position where the magnetism of the magnet of the dispensing main body 65 can be detected by the detector 64 .
  • the detection unit 64 moves the dispensing main unit 65 when the tip 230 enters the sample container 210 to aspirate the sample and the tip 230 contacts the swab 213 in the sample container 210 . It detects that it has moved to a predetermined position P with respect to the mechanism section 66 .
  • the second hand 60 is lowered by the robot arm 41 .
  • the dispensing main body 65 descends and the tip 230 comes into contact with the swab 213 arranged inside the specimen container 210 . Therefore, while the dispensing main unit 65 stops descending, the moving mechanism 66 continues to descend together with the second hand 60 .
  • the dispensing main body 65 moves in the Z1 direction relative to the moving mechanism 66 . Then, when the magnetism of the magnet of the pipetting main unit 65 is detected by the detection unit 64 , the detection unit 64 detects that the tip 230 has come into contact with the swab 213 inside the sample container 210 .
  • the first hand 50 and the second hand 60 are detachable from the robot arm 41.
  • the first hand 50 is provided with an automatic tool changer 53 .
  • the second hand 60 is provided with an automatic tool changer 63 .
  • the automatic tool changer 53 automatically attaches the first hand 50 to the robot arm 41 .
  • the automatic tool changer 63 automatically attaches the second hand 60 to the robot arm 41 .
  • the robot arm 41 is arranged in common with the first hand 50 and the second hand 60 .
  • the specimen capper section 70 opens and closes the lid section 212 of the specimen container 210 transported by the robot 40 .
  • the barcode reader 71 reads the barcode attached to the sample container 210 transported by the robot 40 .
  • a sensor 70 a for detecting the presence or absence of the sample container 210 is arranged in the sample capper section 70 .
  • the dispensing workbench 80 measures the amount of dispensing to the DWP220.
  • a barcode reader 81 for reading a barcode attached to the DWP 220 is arranged on the dispensing workbench 80 .
  • a sensor 82 for detecting the presence or absence of the DWP 220 is arranged on the dispensing workbench 80 .
  • the reagent supply section 90 includes a solubilizing liquid supply section 91, a magnetic particle supply section 92, and a ProK supply section 93.
  • a user supplies a reservoir containing a solubilizing solution to the solubilizing solution supply unit 91 .
  • the user supplies DWP 220 containing magnetic particles to the magnetic particle supply unit 92 .
  • the user supplies the DWP 220 containing ProK to the ProK supply unit 93 .
  • a sensor 91a for detecting the presence or absence of a reservoir is arranged in the solubilizing liquid supply unit 91 .
  • a sensor 92 a for detecting the presence or absence of the DWP 220 containing magnetic particles is arranged in the magnetic particle supply unit 92 .
  • the ProK supply unit 93 is provided with a sensor 93a for detecting the presence or absence of the DWP 220 containing ProK.
  • a chip 230 transported by the chip supply section 30 is placed on the chip table 100 by the robot 40 .
  • the chips 230 are transported in a state in which a plurality of chips 230 are mounted on the adapter.
  • a sensor 101 for detecting the presence or absence of a chip 230 is arranged on the chip table 100 .
  • the PC/NC table 110 is provided with a plurality of containers 112 each containing a positive control and a negative control for checking accuracy of inspection.
  • a sensor 111 for detecting the presence or absence of a container 112 is arranged on the PC/NC table 110 .
  • the chip discarding unit 120 discards used chips 230 .
  • a sensor 121 for detecting whether or not the used chips 230 are full is arranged in the chip disposal section 120 .
  • the control unit 140 controls the devices arranged in the uncapped dispensing unit 1 .
  • the sample container 210 contains a swab 213 for collecting the sample from the subject.
  • the swab 213 is a cotton swab impregnated with a specimen such as saliva.
  • swab 213 is provided with preformed breakpoints 213a for easy cutting.
  • the operator inserts the swab 213 into the specimen container 210 in a state where the swab 213 is cut at the breakpoint 213a.
  • the swab 213 with the breakpoint 213a remaining may be inserted into the specimen container 210.
  • FIG. 10 when the operator cuts the swab 213 at a location other than the breakpoint 213a, the swab 213 with the breakpoint 213a remaining may be inserted into the specimen container 210.
  • the swab 213 will break at the cutting point and the broken swab 213 may scatter. As a result, the specimen in the specimen container 210 will jump out.
  • step S1 is a procedure performed by the user. Other steps are controlled by the control unit 140 .
  • step S1 the user places the sample container 210 in the sample supply section 10. As shown in FIG. The user places DWP 220 in DWP supply 20 . The user places the chip 230 on the chip supply section 30 . The user supplies the reagent supply unit 90 with the lysate, magnetic particles and ProK.
  • step S2 the robot 40 mounts the second hand 60.
  • step S ⁇ b>3 the sample supply unit 10 transports the sample container 210 to the vicinity of the robot 40 .
  • the DWP supply section 20 conveys the DWP 220 to the vicinity of the robot 40 .
  • the tip supply section 30 conveys the tip 230 to the vicinity of the robot 40 .
  • step S ⁇ b>4 in this embodiment, the robot 40 grips the DWP 220 with the second hand 60 and transports the gripped DWP 220 to the dispensing workbench 80 .
  • Sensor 82 detects the presence or absence of DWP 220 .
  • a barcode reader 81 reads the barcode attached to the DWP 220 .
  • step S5a the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60.
  • the control unit 140 controls the robot arm 41 to attach the chip 230 mounted on the chip table 100 to the chip mounting unit 61 until the detection unit 64 detects that the chip 230 is mounted. push in.
  • step S ⁇ b>31 shown in FIG. 14 the controller 140 causes the robot arm 41 to lower the second hand 60 .
  • the dispensing main body part 65 descends, and the tip mounting part 61 is pushed into the tip 230 placed on the tip mounting base 100 .
  • the moving mechanism portion 66 continues to descend together with the second hand 60 .
  • step S32 the control section 140 determines whether or not the detection section 64 has detected that the dispensing main body section 65 has moved to the predetermined position P. Steps S31 and S32 are repeated until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P in step S32. That is, the controller 140 determines that the tip 230 is attached to the tip attachment part 61 when the detection part 64 detects that the dispensing main body 65 has moved to the predetermined position P. FIG. That is, it is determined that the tip 230 is properly attached to the tip attachment portion 61 based on the detection by the detection portion 64 that the dispensing main body portion 65 has moved to the predetermined position P. Also, the fact that the tip 230 is properly attached to the tip attachment portion 61 means that the amount of pushing the tip attachment portion 61 into the tip 230 is sufficient.
  • the control unit 140 controls the robot arm 41 until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P, regardless of the posture of the robot arm 41. Then, the chip mounting portion 61 is pushed into the chip 230 mounted on the chip mounting table 100 .
  • the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 differs depending on the attitude of the robot arm 41 . For example, when the joint opening angle of the robot arm 41 is large and the attitude of the robot arm 41 is nearly straight, the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 becomes weak. Therefore, the pushing amount of the tip attachment portion 61 against the tip 230 may be insufficient.
  • the tip mounting portion 61 is pushed into the tip 230 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P. On the other hand, the pushing amount of the chip mounting portion 61 becomes sufficient.
  • control unit 140 controls the robot arm 41 to place the chip 230 on the chip table 100 until each of the plurality of detection units 64 detects that the chip 230 is properly attached.
  • a plurality of chip attachment portions 61 are pushed into each of the plurality of chips 230 .
  • the control unit 140 controls the robot arm 41 to continuously attach a plurality of chips to each of the plurality of chips 230 until all of the plurality of detection units 64 detect that the chips 230 are properly attached.
  • the part 61 is pushed.
  • step S5b the robot 40 sucks the solubilizing liquid placed in the solubilizing liquid supply section 91 with the chip 230, and places the sucked solubilizing liquid on the dispensing workbench 80. Dispense into the DWP220. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S6a the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. Note that the operation of step S6a includes the operations of steps S31 and S32.
  • step S6b the robot 40 uses the tip 230 to attract the magnetic particles placed in the magnetic particle supply unit 92, and dispenses the attracted magnetic particles to the DWP 220 placed on the dispensing workbench 80. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S7a the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. Note that the operation of step S7a includes the operations of steps S31 and S32.
  • step S7b the robot 40 aspirates the ProK placed in the ProK supply unit 93 with the tip 230 and dispenses the aspirated ProK to the DWP 220 placed on the dispensing workbench 80. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • step S8 the robot 40 attaches the first hand 50 after removing the second hand 60.
  • step S ⁇ b>9 the sensor 51 arranged on the first hand 50 detects whether or not the sample container 210 is arranged on the tray 11 of the sample supply section 10 .
  • the robot 40 grips the sample container 210 with the first hand 50 and transports the sample container 210 to the sample capper section 70 in step S10.
  • the barcode reader 71 of the sample capper section 70 reads the barcode attached to the sample container 210 .
  • the specimen capper section 70 opens the lid section 212 of the specimen container 210 .
  • step S11 the robot 40 detaches the first hand 50 and then attaches the second hand 60 .
  • step S ⁇ b>12 a the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 .
  • step S12a is the operation of steps S31 and S32.
  • step S12b the robot 40 aspirates the specimen contained in the specimen container 210 with the chip 230, and dispenses the aspirated specimen to the DWP 220 placed on the dispensing workbench 80.
  • the controller 140 causes the robot arm 41 to move the tip 230 into the sample container 210 to aspirate the sample. to control.
  • the control unit 140 controls the robot arm 41 so that the chip 230 attached to the second hand 60 enters the sample container 210 .
  • control unit 140 controls the robot arm 41 to lower the tip 230 into the sample container 210 for sample aspiration. Specifically, the controller 140 controls the robot arm 41 to lower the second hand 60 . The control unit 140 controls the robot arm 41 so that the tip 230 is lowered to the center of the main body 211 of the cylindrical sample container 210 when viewed from the Z1 direction.
  • step S ⁇ b>22 the control unit 140 determines whether the tip 230 has come into contact with the swab 213 inside the sample container 210 .
  • the control unit 140 determines whether the tip 230 has come into contact with the swab 213 inside the sample container 210 based on the detection result of the detection unit 64 .
  • step S23 the controller 140 controls the robot arm 41 to move the tip 230 in a direction intersecting with the direction in which the tip 230 enters. Specifically, when tip 230 contacts swab 213 in sample container 210 , controller 140 raises tip 230 and moves robot arm 41 horizontally to avoid swab 213 . Control.
  • the tip 230 may be raised outside the sample container 210 or may be raised so as not to come out of the sample container 210 .
  • the controller 140 raises the tip 230 and moves the tip 230 horizontally by a distance smaller than the radius r of the cylindrical sample container 210 so as to avoid the swab 213 . move in the direction
  • the radius r of the sample container 210 is the inner diameter of the cylindrical sample container 210 .
  • the control unit 140 controls the robot arm 41 to change the position of the second hand 60 when at least one of the plurality of chips 230 contacts the swab 213 inside the specimen container 210 . Then, the process proceeds to step S24.
  • step S24 in this embodiment, as shown in FIG. 19, the control unit 140 causes the robot arm 41 and the second robot arm 41 to cause the chip 230 to enter again and aspirate the sample in the sample container 210 with the chip 230.
  • Control the hand 60 Specifically, the controller 140 controls the robot arm 41 and the second hand 60 so that the tip 230 is lowered again and the sample in the sample container 210 is aspirated.
  • steps S22 and S23 are performed until the tip 230 does not contact the swab 213 again. is repeated.
  • step S12c the sample capper section 70 closes the lid section 212 of the sample container 210 after the dispensing. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
  • the robot 40 attaches the first hand 50 after removing the second hand 60 in step S13.
  • step S14 the sensor 51 arranged on the first hand 50 detects whether the sample container 210 is arranged on the sample capper section 70 or not. Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 .
  • step S15 the robot 40 grips the sample container 210 with the first hand 50, and moves the sample supply unit.
  • the specimen container 210 is transported to the ten trays 11 . Operations from steps S9 to S15 are performed for a plurality of sample containers 210 .
  • step S ⁇ b>16 the robot 40 attaches the second hand 60 after removing the first hand 50 .
  • step S ⁇ b>17 the robot 40 transports the DWP 220 dispensed with the sample by the second hand 60 to the delivery table 130 for delivery to the nucleic acid extraction unit 2 .
  • the control unit 140 controls the robot arm 41 to push the chip mounting part 61 into the chip 230 mounted on the chip mounting table 100 until the detection unit 64 detects that the chip 230 is mounted.
  • the tip attachment portion 61 is pushed into the tip 230 until the detection portion 64 detects that the tip 230 is attached. can be suppressed.
  • the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P with respect to the moving mechanism unit 66, and the control unit 140 causes the detection unit 64 to move the dispensing main unit 65 to the predetermined position P. By detecting the movement, it is determined that the chip 2230 is attached to the chip attachment portion 61 . As a result, the tip attachment portion 61 is pushed into the tip 230 placed on the tip mounting table 100 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P.
  • the detection unit 64 can easily prevent the pushing amount of the chip 230 from becoming insufficient.
  • the detection unit 64 includes an auto switch that detects that the piston 66b of the air cylinder 66a has moved to a predetermined position P.
  • the air cylinder 66a may be provided with an auto switch in advance to detect the position of the piston 66b.
  • the control unit 140 controls the robot arm 41 to place it on the chip holder 100 until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P.
  • the chip attachment portion 61 is pushed into the placed chip 230 .
  • the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 may change depending on the posture of the robot arm 41 . Therefore, regardless of the posture of the robot arm 41, the tip mounting portion 61 is pushed into the tip 230 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P. 41, the chip 230 can be properly attached.
  • the detection unit 64 detects that the dispensing main unit 65 has moved to a predetermined position P when the tip mounting unit 61 is pushed into the tip 230 placed on the tip pedestal 100, and also detects that the sample is aspirated.
  • the tip 230 enters the sample container 210 and contacts the swab 213 in the sample container 210, the dispensing body 65 moves to the predetermined position P with respect to the moving mechanism 66. to detect.
  • the detection unit 64 for attaching the chip 230 to the chip attachment unit 61 and the detection unit 64 for detecting contact of the chip 230 with the swab 213 are also used, so the configuration of the inspection system 200 becomes complicated. can be suppressed.
  • the controller 140 controls the robot arm 41 to move each of the plurality of chips 230 placed on the chip table 100 until each of the plurality of detectors 64 detects that the chip 230 is properly attached. to push the plurality of chip mounting portions 61 into. As a result, the plurality of tip attachment portions 61 are pushed in until each of the plurality of detection portions 64 detects that the tip 230 is properly attached. Even if the positions vary, the chip 230 can be appropriately attached to each of the plurality of chip attachment portions 61 .
  • the chip 230 attached to the second hand 60 aspirates the specimen in the specimen container 210 and discharges the aspirated specimen.
  • the tip 230 that aspirates and discharges the specimen in the specimen container 210 can be appropriately attached to the tip attachment portion 61 .
  • the control unit 140 causes the robot arm 41 to perform preprocessing, which is processing before measurement is performed on the collected sample. Thereby, the chip 230 for performing pretreatment on the sample can be appropriately attached to the chip attachment portion 61 .
  • the detection unit 64 when the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P with respect to the moving mechanism unit 66, it is determined that the tip 230 is properly attached.
  • a camera or the like may detect whether chip 230 is properly attached.
  • the moving mechanism 66 includes the air cylinder 66a in the above embodiment, the present disclosure is not limited to this.
  • the moving mechanism section 66 may be a slider or the like.
  • the robot arm 41 includes a vertical articulated robot arm
  • the present disclosure is not limited to this.
  • the present disclosure may be applied to an orthogonal robot that moves in the X, Y and Z axes.
  • the detection unit 64 that detects whether the chip 230 is properly attached also serves as the detection unit 64 that detects that the chip 230 comes into contact with the swab 213 in the sample container 210.
  • the disclosure is not so limited.
  • a detector that detects whether the tip 230 is properly attached and a detector that detects that the tip 230 comes into contact with the swab 213 in the sample container 210 may be separately arranged.
  • the detection unit 64 detects that the tip 230 has come into contact with the swab 213 inside the sample container 210, but the present disclosure is not limited to this.
  • the detection unit 64 may detect that the tip 230 has come into contact with foreign matter other than the swab 213 inside the sample container 210 .
  • the second hand 60 may be provided with one set of the chip attachment portion 61 , the dispensing main body portion 65 and the moving mechanism portion 66 .
  • the detection unit 64 is an auto switch, but the present disclosure is not limited to this.
  • the detection unit 64 may be an optical sensor or a contact sensor.
  • the robot 40 performs preprocessing, which is processing before measurement is performed on the sampled sample, but the present disclosure is not limited to this.
  • the robot 40 may perform processing other than preprocessing.
  • ASICs Application Specific Integrated Circuits
  • a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
  • (Item 1) a robot arm; a dispensing hand that is attached to the robot arm and includes a tip attachment part to which a tip is attached; a detection unit that detects whether the chip is attached to the chip attachment portion; a control unit; The control unit controls the robot arm to push the chip mounting unit into the chip mounted on the chip mounting unit until the detection unit detects that the chip is mounted. dispensing system.
  • the dispensing hand a main body on which the chip mounting portion is arranged; further comprising a holding portion that linearly moves and holds the main body,
  • the detection unit detects that the main body has moved to a predetermined position with respect to the holding unit,
  • the holding part includes an air cylinder, Item 3.
  • the robotic arm includes a vertical articulated robotic arm;
  • the control unit controls the vertical articulated robot arm until the detecting unit detects that the main body has moved to the predetermined position, regardless of the posture of the vertical articulated robot arm. 4.
  • the detection unit is In addition to detecting that the main body has moved to the predetermined position when the chip mounting portion is pushed into the chip placed on the chip mounting portion, When the tip enters into the specimen container for aspirating the specimen and the tip comes into contact with foreign matter in the specimen container, the main body moves to the predetermined position with respect to the holding part. 5.
  • a plurality of sets of the chip attachment portion, the body portion, and the holding portion are arranged in the dispensing hand,
  • the control unit controls the robot arm to keep the plurality of chips placed on the chip placement unit until each of the plurality of detection units detects that the chips are properly attached. 6.
  • the dispensing system according to any one of items 2 to 5, wherein the plurality of tip attachment portions are pushed into each of the .
  • (Item 7) The dispensing system according to any one of items 1 to 6, wherein the chip attached to the dispensing hand aspirates the specimen in the specimen container and discharges the aspirated specimen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Manipulator (AREA)

Abstract

In an examination system (200) of the present invention, until a detection unit (64) detects that a chip (230) has been attached, a control unit (140) controls a robot arm (41) so that the robot arm causes a chip attachment part (61) to be pressed onto the chip (230) which has been placed on a chip placement part (100).

Description

分注システムdispensing system
 本開示は、分注システムに関する。 The present disclosure relates to a dispensing system.
 従来、分注システムが知られている。たとえば、特許第3549263号には、先端にピペットチップが取り付けられる分注装置が開示されている。特許第3549263号では、分注装置は、ロボットに取り付けられている。ロボットは、分注装置を、ピペットチップが保持されたチップラックまで移動させる。そして、ロボットは、分注装置の先端にピペットチップが取り付けられるように分注装置を移動させる。 Conventionally, a dispensing system is known. For example, Japanese Patent No. 3549263 discloses a dispensing device having a pipette tip attached to the tip. In Patent No. 3549263 the dispensing device is attached to a robot. The robot moves the pipetting device to a tip rack holding pipette tips. The robot then moves the pipetting device so that the tip of the pipetting device can be attached to the pipette tip.
特許第3549263号Patent No. 3549263
 特許第3549263号に記載される分注装置のように、ロボットによって分注装置にピペットチップを取り付ける際、ピペットチップに対する分注装置のチップを取り付ける部分の押し込み量が不十分になることに起因して、ピペットチップを適切に分注装置に取り付けられない場合があるという問題点がある。 As in the pipetting device described in Japanese Patent No. 3549263, when the pipette tip is attached to the pipetting device by a robot, it is caused by insufficient pushing amount of the portion of the pipetting device where the tip is attached to the pipette tip. Therefore, there is a problem that the pipette tip may not be properly attached to the pipetting device.
 本開示は、チップに対するチップ取付部の押し込み量が不十分であることに起因して、チップを適切に取り付けられなくなることを抑制することが可能な分注システムを提供する。 The present disclosure provides a dispensing system that can prevent the tip from being properly attached due to an insufficient amount of pushing of the tip attachment portion into the tip.
 本開示の一の局面による分注システムは、ロボットアームと、ロボットアームに取り付けられるとともに、チップが取り付けられるチップ取付部を含む分注ハンドと、チップ取付部にチップが取り付けられているか否かを検知する検知部と、制御部と、を備え、制御部は、検知部によりチップが取り付けられていることが検知されるまで、ロボットアームを制御してチップ載置部に載置されたチップにチップ取付部を押し込ませる。 A dispensing system according to one aspect of the present disclosure includes a robot arm, a dispensing hand attached to the robot arm and including a tip attachment section to which a tip is attached, and a tip attachment section that determines whether or not a tip is attached. A detection unit for detecting and a control unit are provided, and the control unit controls the robot arm to place the chip placed on the chip placement unit until the detection unit detects that the chip is attached. Push in the tip mounting part.
 この開示の一の局面による分注システムは、上記のように、制御部は、検知部によりチップが取り付けられていることが検知されるまで、ロボットアームを制御してチップ載置部に載置されたチップにチップ取付部を押し込ませる。これにより、検知部によりチップが取り付けられていることが検知されるまで、チップ取付部がチップに押し込まれるので、チップ取付部のチップに対する押し込み量が不十分になることを抑制できる。その結果、チップに対するチップ取付部の押し込み量が不十分であることに起因して、チップを適切に取り付けられなくなることを抑制できる。 In the dispensing system according to one aspect of the present disclosure, as described above, the control unit controls the robot arm to place the chip on the chip placement unit until the detection unit detects that the chip is attached. Push the tip mounting part into the tip that has been pressed. As a result, the chip attachment portion is pushed into the chip until the detection portion detects that the chip is attached, so it is possible to prevent the chip attachment portion from being pushed into the chip by an insufficient amount. As a result, it is possible to prevent the chip from being properly mounted due to insufficient pushing amount of the chip mounting portion with respect to the chip.
 本開示の技術によれば、チップに対するチップ取付部の押し込み量が不十分であることに起因して、チップを適切に取り付けられなくなることを抑制できる。 According to the technology of the present disclosure, it is possible to prevent the chip from being properly mounted due to insufficient pushing amount of the chip mounting portion into the chip.
一実施形態による検査システムの構成を示す平面図である。1 is a plan view showing the configuration of an inspection system according to one embodiment; FIG. 一実施形態による開栓分注ユニットの構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the uncapped dispensing unit according to one embodiment. 一実施形態による検体供給部の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of a sample supply section according to one embodiment; 図3の400-400線に沿った断面図である。Figure 400 is a cross-sectional view along line 400-400 of Figure 3; 一実施形態による第1ハンドの構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of a first hand according to one embodiment; 一実施形態による第1ハンドおよびセンサの構成を示す概念図である。FIG. 4 is a conceptual diagram showing the configuration of a first hand and sensors according to one embodiment; 一実施形態による第2ハンドの構成を示す斜視図である。FIG. 5 is a perspective view showing the configuration of a second hand according to one embodiment; 一実施形態による検査システムの分注本体部を示す図である。FIG. 12 illustrates a dispensing body of an inspection system according to one embodiment; 一実施形態による試薬供給部の構成を示す斜視図である。4 is a perspective view showing the configuration of a reagent supply unit according to one embodiment; FIG. 検体容器内でスワブとチップとが接触し、スワブが折れた状態を示す図である。FIG. 10 is a diagram showing a state in which the swab and the chip are in contact with each other in the specimen container and the swab is broken. スワブを示す図である。FIG. 3 shows a swab; 一実施形態による検査システムの検査手順の前半を示すフロー図である。FIG. 4 is a flow diagram illustrating the first half of the inspection procedure of the inspection system according to one embodiment; 一実施形態による検査システムの検査手順の後半を示すフロー図である。FIG. 4 is a flow diagram illustrating the second half of the inspection procedure of the inspection system according to one embodiment; 一実施形態による検査システムのチップの取り付け手順を示すフロー図である。FIG. 4 is a flow diagram illustrating a procedure for attaching a chip of an inspection system according to one embodiment; 一実施形態による検査システムの検体の吸引および分注の手順を示すフロー図である。FIG. 4 is a flow diagram showing procedures for sample aspiration and dispensing in the inspection system according to one embodiment. チップが検体容器内に侵入する状態を示す図である。FIG. 10 is a diagram showing a state in which the chip enters the sample container; チップがスワブに接触した状態を示す図である。FIG. 10 is a diagram showing a state in which the tip is in contact with the swab; チップがスワブに接触した後に水平移動した状態を示す図である。FIG. 11 shows a state in which the tip has moved horizontally after contacting the swab. 検体を採取するためにチップが下降する状態を示す図である。FIG. 10 is a diagram showing a state in which the tip is lowered to pick up a sample;
 図1から図19までを参照して、本実施形態による検査システム200の構成について説明する。なお、本願明細書において、上下方向をZ方向とする。上方側をZ1側とし、下方側をZ2側とする。Z方向に直交する方向をX方向とする。X方向の一方側をX1側とし、他方側をX2側とする。Z方向およびX方向に直交する方向をY方向とする。Y方向の一方側をY1側とし、他方側をY2側とする。検査システム200は、分注システムの一例である。 The configuration of an inspection system 200 according to this embodiment will be described with reference to FIGS. 1 to 19. FIG. In the specification of the present application, the vertical direction is defined as the Z direction. The upper side is the Z1 side, and the lower side is the Z2 side. The direction orthogonal to the Z direction is defined as the X direction. One side in the X direction is the X1 side, and the other side is the X2 side. A direction perpendicular to the Z direction and the X direction is defined as the Y direction. One side in the Y direction is the Y1 side, and the other side is the Y2 side. Inspection system 200 is an example of a dispensing system.
 図1に示すように、検査システム200は、開栓分注ユニット1と、核酸抽出ユニット2と、試薬調整ユニット3と、PCR測定ユニット4と、全体制御盤5と、を備えている。開栓分注ユニット1では、検体に対して測定を行うための前処理が行われる。核酸抽出ユニット2では、検体の前処理として、検体から核酸の抽出が行われる。試薬調整ユニット3では、試薬の調整が行われる。PCR測定ユニット4では、RT-PCR検査により検体中に感染性ウイルスが含まれているかを測定する処理が行われる。全体制御盤5には、制御盤や配電盤が配置されている。 As shown in FIG. 1, the inspection system 200 includes an uncapped pipetting unit 1, a nucleic acid extraction unit 2, a reagent adjustment unit 3, a PCR measurement unit 4, and an overall control panel 5. In the uncapped dispensing unit 1, pretreatment for measurement is performed on the sample. In the nucleic acid extraction unit 2, nucleic acid is extracted from the specimen as pretreatment of the specimen. The reagent adjustment unit 3 adjusts the reagent. In the PCR measurement unit 4, a process of measuring whether or not the sample contains an infectious virus is performed by RT-PCR test. A control panel and a distribution panel are arranged in the general control panel 5 .
 (開栓分注ユニット)
 開栓分注ユニット1の具体的な構成について説明する。図2に示すように、開栓分注ユニット1は、検体供給部10、DWP供給部20、および、チップ供給部30を備える。DWPとは、ディープウェルプレートを意味する。また、開栓分注ユニット1は、ロボット40、第1ハンド50、センサ51、第2ハンド60、および、検知部64を備えている。また、開栓分注ユニット1は、検体キャッパー部70、バーコードリーダ71、分注作業台80、試薬供給部90、チップ置台100、PC/NC置台110、および、チップ廃棄部120を備える。PCおよびNCは、それぞれ、ポジティブコントロ―ル、および、ネガティブコントロールを意味する。また、開栓分注ユニット1は、受渡台130を備えている。また、開栓分注ユニット1は、制御部140を備えている。第2ハンド60は、分注ハンドの一例である。チップ置台100は、チップ載置部の一例である。
(Opening dispensing unit)
A specific configuration of the uncapped dispensing unit 1 will be described. As shown in FIG. 2 , the uncapped dispensing unit 1 includes a specimen supply section 10 , a DWP supply section 20 and a tip supply section 30 . DWP means deep well plate. The uncapped dispensing unit 1 also includes a robot 40 , a first hand 50 , a sensor 51 , a second hand 60 and a detector 64 . The uncapped dispensing unit 1 also includes a sample capper section 70 , a barcode reader 71 , a dispensing work table 80 , a reagent supply section 90 , a chip table 100 , a PC/NC table 110 , and a chip disposal section 120 . PC and NC denote positive and negative controls, respectively. The uncapped dispensing unit 1 also includes a delivery table 130 . The uncapped dispensing unit 1 also includes a control section 140 . The second hand 60 is an example of a dispensing hand. The chip mount 100 is an example of a chip mount.
 図3に示すように、検体供給部10は、トレイ11と、搬送部15とを含む。トレイ11には、ユーザにより検体容器210が配置される。トレイ11は、ユーザにより、搬送部15に載置される。トレイ11は、搬送部15に着脱可能である。トレイ11および搬送部15は、たとえば、2つずつ配置されている。 As shown in FIG. 3 , the specimen supply section 10 includes a tray 11 and a transport section 15 . A sample container 210 is placed on the tray 11 by the user. The tray 11 is placed on the transport section 15 by the user. The tray 11 is detachable from the transport section 15 . For example, two trays 11 and two conveying units 15 are arranged.
 図4に示すように、トレイ11は、第1板部12と、第2板部13とを含む。第1板部12は、複数の検体容器210の各々が挿入される複数の第1孔部12aが配置されている。第2板部13は、第1板部12と上下方向に離間した状態で配置されている。第2板部13は、複数の検体容器210の各々が挿入される複数の第2孔部13aが配置されている。検体容器210は、第1孔部12aと第2孔部13aとに挿入される。第1孔部12aは、Z方向から見て、円形状を有する。第1孔部12aは、千鳥格子状に配置されている。第1孔部12aは、貫通孔である。第2孔部13aは、Z方向から見て、円形状を有する。第2孔部13aは、千鳥格子状に配置されている。第2孔部13aは、凹形状を有する。第2孔部13aの直上に第1孔部12aが配置される。第1板部12と第2板部13とは、柱部14により接続されている。 As shown in FIG. 4, the tray 11 includes a first plate portion 12 and a second plate portion 13. The first plate portion 12 is provided with a plurality of first holes 12a into which the plurality of sample containers 210 are respectively inserted. The second plate portion 13 is arranged vertically separated from the first plate portion 12 . The second plate portion 13 is provided with a plurality of second holes 13a into which the plurality of sample containers 210 are respectively inserted. The specimen container 210 is inserted into the first hole 12a and the second hole 13a. The first hole portion 12a has a circular shape when viewed from the Z direction. The first holes 12a are arranged in a houndstooth pattern. The first hole portion 12a is a through hole. The second hole 13a has a circular shape when viewed from the Z direction. The second holes 13a are arranged in a houndstooth pattern. The second hole portion 13a has a concave shape. The first hole portion 12a is arranged directly above the second hole portion 13a. The first plate portion 12 and the second plate portion 13 are connected by a column portion 14 .
 第1孔部12aの上部の開口の縁部12bおよび第2孔部13aの上部の開口の縁部13bは、面取りされている。すなわち、第1孔部12aおよび第2孔部13aの半径は、Z1方向側に向かって徐々に大きくなる。 The edge 12b of the upper opening of the first hole 12a and the edge 13b of the upper opening of the second hole 13a are chamfered. That is, the radii of the first hole portion 12a and the second hole portion 13a gradually increase toward the Z1 direction side.
 図3に示すように、トレイ11は、把持部12cを含む。把持部12cは、ユーザによって把持される。把持部12cは、第1板部12のX方向の両端部に配置されている。把持部12cは、長孔状の貫通孔である。 As shown in FIG. 3, the tray 11 includes a grip portion 12c. The grip portion 12c is gripped by the user. The gripping portions 12c are arranged at both ends of the first plate portion 12 in the X direction. The grip portion 12c is an elongated through hole.
 図2に示すように、搬送部15は、複数の検体容器210が配置されたトレイ11をユーザが搬送部15に配置する位置P1と、ロボット40との間において、トレイ11を往復移動させる。位置P1は、開栓分注ユニット1のX2方向側の端部に位置している。図3に示すように、搬送部15は、トレイ11を直線移動させる直動アクチュエータ15aと、センサ15bとを含む。直動アクチュエータ15aには、トレイ11が載置される。直動アクチュエータ15aは、トレイ11を、位置P1とロボット40との間において直線移動させる。搬送部15は、直動アクチュエータ15a上におけるトレイ11の位置を検出する。センサ15bは、トレイ11の有無を検知する。トレイ11および搬送部15は、たとえば、2つずつ配置されている。 As shown in FIG. 2, the transport unit 15 reciprocates the tray 11 between the robot 40 and the position P1 where the user places the tray 11 on which the plurality of sample containers 210 are arranged on the transport unit 15 . The position P1 is located at the end of the uncapped dispensing unit 1 on the X2 direction side. As shown in FIG. 3, the transport section 15 includes a linear actuator 15a for linearly moving the tray 11, and a sensor 15b. The tray 11 is placed on the linear actuator 15a. Linear actuator 15 a linearly moves tray 11 between position P<b>1 and robot 40 . The transport unit 15 detects the position of the tray 11 on the linear actuator 15a. The sensor 15b detects whether or not the tray 11 is present. For example, two trays 11 and two conveying units 15 are arranged.
 図2に示すように、DWP供給部20は、搬送部21を含む。搬送部21は、ユーザがDWP220を搬送部21に配置する位置P2と、ロボット40との間において、DWP220を往復移動させる。位置P2は、開栓分注ユニット1のX2方向側の端部に位置している。搬送部21は、直動アクチュエータ22と、センサ23とを含む。直動アクチュエータ22は、トレイ24に載置されたDWP220を直線移動させる。搬送部21は、搬送部21上におけるDWP220の位置を検出する。センサ23は、DWP220の有無およびDWP220の高さを検知する。トレイ24および搬送部21は、たとえば、2つずつ配置されている。 As shown in FIG. 2 , the DWP supply section 20 includes a transport section 21 . The transport unit 21 reciprocates the DWP 220 between the robot 40 and the position P<b>2 where the user places the DWP 220 on the transport unit 21 . The position P2 is located at the end of the uncapped dispensing unit 1 on the X2 direction side. Conveying unit 21 includes linear actuator 22 and sensor 23 . The linear motion actuator 22 linearly moves the DWP 220 placed on the tray 24 . The transport section 21 detects the position of the DWP 220 on the transport section 21 . Sensor 23 detects the presence or absence of DWP 220 and the height of DWP 220 . For example, two trays 24 and two conveying units 21 are arranged.
 チップ供給部30は、搬送部31を含む。搬送部31は、ユーザがチップ230を搬送部31に配置する位置P3と、ロボット40との間において、チップ230を往復移動させる。位置P3は、開栓分注ユニット1のX1方向側の端部に位置している。搬送部31は、直動アクチュエータ32と、センサ33とを含む。直動アクチュエータ32は、トレイ34に載置された複数のチップ230を直線移動させる。搬送部31は、搬送部31上におけるチップ230の位置を検出する。センサ33は、チップ230の有無を検知する。トレイ34および搬送部31は、たとえば、2つずつ配置されている。 The chip supply section 30 includes a transport section 31 . The transport unit 31 reciprocates the chip 230 between a position P3 where the user places the chip 230 on the transport unit 31 and the robot 40 . The position P3 is located at the end of the uncapped dispensing unit 1 on the X1 direction side. The transport section 31 includes a direct acting actuator 32 and a sensor 33 . The linear motion actuator 32 linearly moves the plurality of chips 230 placed on the tray 34 . The transport section 31 detects the position of the chip 230 on the transport section 31 . A sensor 33 detects the presence or absence of the chip 230 . For example, two trays 34 and two conveying units 31 are arranged.
 図2に示すように、ロボット40は、開栓分注ユニット1内に配置されている。ロボット40は、ロボットアーム41を含む。ロボットアーム41は、たとえば、垂直多関節ロボットアームである。 As shown in FIG. 2 , the robot 40 is arranged inside the uncapped dispensing unit 1 . Robot 40 includes a robot arm 41 . The robot arm 41 is, for example, a vertical articulated robot arm.
 図5に示すように、第1ハンド50は、ロボットアーム41の先端に取り付けられる。図6に示すように、本実施形態では、検体容器210は、円筒形状を有する。検体容器210は、検体が収容される本体部211と蓋部212とを含む。第1ハンド50は、トレイ11に配置されている検体容器210の本体部211を把持する。具体的には、第1ハンド50は、チャック52を含む。チャック52によって、検体容器210の本体部211が把持される。 As shown in FIG. 5, the first hand 50 is attached to the tip of the robot arm 41. As shown in FIG. 6, in this embodiment, the specimen container 210 has a cylindrical shape. The sample container 210 includes a body portion 211 and a lid portion 212 in which the sample is stored. The first hand 50 grips the body portion 211 of the sample container 210 arranged on the tray 11 . Specifically, the first hand 50 includes a chuck 52 . The body portion 211 of the sample container 210 is gripped by the chuck 52 .
 センサ51は、第1ハンド50に配置されている。センサ51は、トレイ11に検体容器210が配置されているか否かを検知する。センサ51は、Z1方向側から検体容器210の有無を検出する。ロボット40は、検体供給部10のトレイ11に検体容器210が配置されていることが検知されたことに基づいて、第1ハンド50によりトレイ11に配置された検体容器210を把持するとともに、把持した検体容器210を検体キャッパー部70に搬送する。また、ロボット40は、分注処理が行われた後の検体容器210を第1ハンド50により把持する。また、センサ51によってトレイ11上の異物の有無が確認される。そして、ロボット40は、センサ51によってトレイ11上に異物が無いことが確認された後、分注処理が行われた後の検体容器210をトレイ11に返却する。 The sensor 51 is arranged on the first hand 50 . The sensor 51 detects whether or not the sample container 210 is placed on the tray 11 . The sensor 51 detects the presence or absence of the sample container 210 from the Z1 direction side. The robot 40 grips the sample container 210 placed on the tray 11 with the first hand 50 based on the detection that the sample container 210 is placed on the tray 11 of the sample supply unit 10 . Then, the sample container 210 is transported to the sample capper section 70 . Also, the robot 40 grips the sample container 210 after the dispensing process with the first hand 50 . Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 . After the sensor 51 confirms that there is no foreign matter on the tray 11 , the robot 40 returns the sample container 210 after the dispensing process to the tray 11 .
 図7に示すように、本実施形態では、第2ハンド60は、ロボットアーム41の先端に取り付けられる。第2ハンド60は、検体容器210内の検体を吸引および吐出するチップ230と、チップ230からの検体が吐出されるDWP220とのうちの少なくとも一方を保持する。具体的には、第2ハンド60は、チップ230とDWP220との両方を保持する。 As shown in FIG. 7, the second hand 60 is attached to the tip of the robot arm 41 in this embodiment. The second hand 60 holds at least one of a tip 230 that aspirates and ejects the sample in the sample container 210 and a DWP 220 that ejects the sample from the tip 230 . Specifically, the second hand 60 holds both the chip 230 and the DWP 220 .
 本実施形態では、図7に示すように、第2ハンド60には、チップ取付部61が複数配置されている。チップ取付部61にはエアシリンダが配置されており、エアシリンダの吸引力によって、チップ取付部61にチップ230が取り付けられる。また、第2ハンド60は、DWP220を把持するチャック62を含む。 In this embodiment, as shown in FIG. 7, the second hand 60 is provided with a plurality of chip mounting portions 61 . An air cylinder is arranged in the tip attachment portion 61, and the tip 230 is attached to the tip attachment portion 61 by the suction force of the air cylinder. Also, the second hand 60 includes a chuck 62 that grips the DWP 220 .
 図8に示すように、第2ハンド60は、分注本体部65と、移動機構部66とを含む。チップ取付部61は、分注本体部65に取り付けられている。移動機構部66は、分注本体部65をZ方向に沿って直線移動させるとともに分注本体部65を保持している。移動機構部66は、たとえば、エアシリンダ66aである。分注本体部65は、重力によって、移動機構部66の下端に位置している。第2ハンド60には、チップ取付部61と、分注本体部65と、移動機構部66と、の組が複数組配置されている。第2ハンド60には、チップ取付部61と、分注本体部65と、移動機構部66と、の組は、たとえば、4組配置されている。すなわち、1つの第2ハンド60には、4つのチップ230が取り付けられる。分注本体部65は、本体部の一例である。移動機構部66は、保持部の一例である。 As shown in FIG. 8, the second hand 60 includes a dispensing body portion 65 and a movement mechanism portion 66. The tip attachment portion 61 is attached to the dispensing main body portion 65 . The moving mechanism 66 linearly moves the dispensing main body 65 along the Z direction and holds the dispensing main body 65 . The moving mechanism part 66 is, for example, an air cylinder 66a. The dispensing main body 65 is positioned at the lower end of the moving mechanism 66 by gravity. The second hand 60 is provided with a plurality of sets of a chip attachment portion 61 , a dispensing main body portion 65 and a movement mechanism portion 66 . In the second hand 60, for example, four sets of the chip attachment portion 61, the dispensing main body portion 65, and the moving mechanism portion 66 are arranged. That is, four chips 230 are attached to one second hand 60 . The dispensing main body portion 65 is an example of a main body portion. The moving mechanism part 66 is an example of a holding part.
 本実施形態では、検知部64は、第2ハンド60に配置されている。検知部64は、チップ取付部61にチップ230が適切に取り付けられているか否かを検知する。また、検知部64は、チップ230が検体容器210内のスワブ213に接触したことを検知する。検知部64は、たとえば、オートスイッチである。オートスイッチは、磁気を検出することにより位置を検出するセンサである。移動機構部66は、ピストン66bを有するエアシリンダ66aを含む。オートスイッチは、移動機構部66のエアシリンダ66aのピストン66bが所定の位置Pに移動したことを検知する。スワブ213は、異物の一例である。 In this embodiment, the detection unit 64 is arranged on the second hand 60 . The detector 64 detects whether the tip 230 is properly attached to the tip attachment portion 61 . The detection unit 64 also detects that the tip 230 has come into contact with the swab 213 inside the sample container 210 . Detection unit 64 is, for example, an auto switch. An auto switch is a sensor that detects a position by detecting magnetism. The movement mechanism section 66 includes an air cylinder 66a having a piston 66b. The auto switch detects that the piston 66b of the air cylinder 66a of the moving mechanism 66 has moved to a predetermined position P. Swab 213 is an example of a foreign object.
 本実施形態では、検知部64は、分注本体部65が移動機構部66に対して所定の位置Pに移動したことを検知する。具体的には、検知部64は、チップ置台100に載置されたチップ230にチップ取付部61を押し込む際に、分注本体部65が所定の位置Pに移動したことを検知する。たとえば、分注本体部65に磁石が取り付けられている。ロボットアーム41によって第2ハンド60が下降される。これにより、分注本体部65が下降して、チップ取付部61がチップ置台100に載置されたチップ230に押し込まれる。これにより、チップ取付部61がチップ230に接触する。このため、分注本体部65の下降が停止される一方、移動機構部66は、第2ハンド60とともに下降を続ける。これにより、分注本体部65が移動機構部66に対して相対的にZ1方向側に移動する。そして、分注本体部65が移動機構部66に対して所定の位置Pに移動した際に、分注本体部65の磁石の磁気が検知部64に検知される。所定の位置Pは、分注本体部65の磁石の磁気を検知部64が検知可能な位置である。 In this embodiment, the detection section 64 detects that the dispensing main body section 65 has moved to the predetermined position P with respect to the movement mechanism section 66 . Specifically, the detection unit 64 detects that the dispensing main body 65 has moved to a predetermined position P when the tip mounting portion 61 is pushed into the tip 230 placed on the tip table 100 . For example, a magnet is attached to the dispensing main body 65 . The second hand 60 is lowered by the robot arm 41 . As a result, the dispensing main body part 65 descends, and the tip mounting part 61 is pushed into the tip 230 placed on the tip mounting base 100 . As a result, the chip attachment portion 61 contacts the chip 230 . Therefore, while the dispensing main unit 65 stops descending, the moving mechanism 66 continues to descend together with the second hand 60 . As a result, the dispensing main body 65 moves in the Z1 direction relative to the moving mechanism 66 . Then, when the dispensing main body 65 moves to a predetermined position P with respect to the moving mechanism 66 , the magnetism of the magnet of the dispensing main body 65 is detected by the detector 64 . The predetermined position P is a position where the magnetism of the magnet of the dispensing main body 65 can be detected by the detector 64 .
 本実施形態では、検知部64は、検体の吸引のためにチップ230が検体容器210内に侵入され、チップ230が検体容器210内のスワブ213に接触した場合に、分注本体部65が移動機構部66に対して所定の位置Pに移動したことを検知する。たとえば、ロボットアーム41によって第2ハンド60が下降される。これにより、分注本体部65が下降して、チップ230が検体容器210内に配置されているスワブ213に接触したとする。このため、分注本体部65の下降が停止される一方、移動機構部66は、第2ハンド60とともに下降を続ける。これにより、分注本体部65が移動機構部66に対して相対的にZ1方向側に移動する。そして、分注本体部65の磁石の磁気が検知部64に検知されることにより、検知部64は、チップ230が検体容器210内のスワブ213に接触したことを検知する。 In this embodiment, the detection unit 64 moves the dispensing main unit 65 when the tip 230 enters the sample container 210 to aspirate the sample and the tip 230 contacts the swab 213 in the sample container 210 . It detects that it has moved to a predetermined position P with respect to the mechanism section 66 . For example, the second hand 60 is lowered by the robot arm 41 . As a result, the dispensing main body 65 descends and the tip 230 comes into contact with the swab 213 arranged inside the specimen container 210 . Therefore, while the dispensing main unit 65 stops descending, the moving mechanism 66 continues to descend together with the second hand 60 . As a result, the dispensing main body 65 moves in the Z1 direction relative to the moving mechanism 66 . Then, when the magnetism of the magnet of the pipetting main unit 65 is detected by the detection unit 64 , the detection unit 64 detects that the tip 230 has come into contact with the swab 213 inside the sample container 210 .
 第1ハンド50および第2ハンド60は、ロボットアーム41に対して着脱可能である。図5に示すように、第1ハンド50には、自動工具交換装置53が配置されている。図7に示すように、第2ハンド60には、自動工具交換装置63が配置されている。自動工具交換装置53によって、第1ハンド50がロボットアーム41に自動的に取り付けられる。自動工具交換装置63によって、第2ハンド60がロボットアーム41に自動的に取り付けられる。ロボットアーム41は、第1ハンド50および第2ハンド60に対して共通に配置されている。 The first hand 50 and the second hand 60 are detachable from the robot arm 41. As shown in FIG. 5, the first hand 50 is provided with an automatic tool changer 53 . As shown in FIG. 7, the second hand 60 is provided with an automatic tool changer 63 . The automatic tool changer 53 automatically attaches the first hand 50 to the robot arm 41 . The automatic tool changer 63 automatically attaches the second hand 60 to the robot arm 41 . The robot arm 41 is arranged in common with the first hand 50 and the second hand 60 .
 図2に示すように、検体キャッパー部70は、ロボット40により搬送された検体容器210の蓋部212の開栓および閉栓を行う。バーコードリーダ71は、ロボット40により搬送された検体容器210に貼付されたバーコードを読み取る。検体キャッパー部70には、検体容器210の有無を検知するセンサ70aが配置されている。 As shown in FIG. 2 , the specimen capper section 70 opens and closes the lid section 212 of the specimen container 210 transported by the robot 40 . The barcode reader 71 reads the barcode attached to the sample container 210 transported by the robot 40 . A sensor 70 a for detecting the presence or absence of the sample container 210 is arranged in the sample capper section 70 .
 分注作業台80は、DWP220に対する分注量を測定する。分注作業台80には、DWP220に貼付されたバーコードを読み取るバーコードリーダ81が配置されている。分注作業台80には、DWP220の有無を検知するセンサ82が配置されている。 The dispensing workbench 80 measures the amount of dispensing to the DWP220. A barcode reader 81 for reading a barcode attached to the DWP 220 is arranged on the dispensing workbench 80 . A sensor 82 for detecting the presence or absence of the DWP 220 is arranged on the dispensing workbench 80 .
 図9に示すように、試薬供給部90は、可溶化液供給部91、磁性粒子供給部92、および、ProK供給部93を含む。ユーザは、可溶化液供給部91に可溶化液が収容されたリザーバを供給する。ユーザは、磁性粒子供給部92に磁性粒子入りのDWP220を供給する。ユーザは、ProK供給部93にProK入りのDWP220を供給する。可溶化液供給部91には、リザーバの有無を検出するためのセンサ91aが配置されている。磁性粒子供給部92には、磁性粒子入りのDWP220の有無を検出するためのセンサ92aが配置されている。ProK供給部93には、ProK入りのDWP220の有無を検出するためのセンサ93aが配置されている。 As shown in FIG. 9, the reagent supply section 90 includes a solubilizing liquid supply section 91, a magnetic particle supply section 92, and a ProK supply section 93. A user supplies a reservoir containing a solubilizing solution to the solubilizing solution supply unit 91 . The user supplies DWP 220 containing magnetic particles to the magnetic particle supply unit 92 . The user supplies the DWP 220 containing ProK to the ProK supply unit 93 . A sensor 91a for detecting the presence or absence of a reservoir is arranged in the solubilizing liquid supply unit 91 . A sensor 92 a for detecting the presence or absence of the DWP 220 containing magnetic particles is arranged in the magnetic particle supply unit 92 . The ProK supply unit 93 is provided with a sensor 93a for detecting the presence or absence of the DWP 220 containing ProK.
 図9に示すように、チップ置台100には、チップ供給部30によって搬送されたチップ230が、ロボット40により載置される。なお、チップ230は、アダプタに複数のチップ230が載置された状態で搬送される。チップ置台100には、チップ230の有無を検知するセンサ101が配置されている。 As shown in FIG. 9 , a chip 230 transported by the chip supply section 30 is placed on the chip table 100 by the robot 40 . Note that the chips 230 are transported in a state in which a plurality of chips 230 are mounted on the adapter. A sensor 101 for detecting the presence or absence of a chip 230 is arranged on the chip table 100 .
 図9に示すように、PC/NC置台110には、検査精度確認用のポジティブコントロ―ルおよびネガティブコントロールが各々収容される複数の容器112が配置されている。PC/NC置台110には、容器112の有無を検知するセンサ111が配置されている。 As shown in FIG. 9, the PC/NC table 110 is provided with a plurality of containers 112 each containing a positive control and a negative control for checking accuracy of inspection. A sensor 111 for detecting the presence or absence of a container 112 is arranged on the PC/NC table 110 .
 図2に示すように、チップ廃棄部120には、使用済みのチップ230が廃棄される。チップ廃棄部120には、使用済みのチップ230が満杯になっているか否かを検知するセンサ121が配置されている。 As shown in FIG. 2, the chip discarding unit 120 discards used chips 230 . A sensor 121 for detecting whether or not the used chips 230 are full is arranged in the chip disposal section 120 .
 制御部140は、開栓分注ユニット1に配置されている機器を制御する。 The control unit 140 controls the devices arranged in the uncapped dispensing unit 1 .
 図10に示すように、検体容器210内には、被検者から検体を採取するためのスワブ213が収容されている。スワブ213は、唾液などの検体がしみ込まされている綿棒である。図11に示すように、スワブ213には、切断しやすいように予め形成されたブレイクポイント213aが配置されている。作業者は、ブレイクポイント213aでスワブ213を切断した状態で、検体容器210内に挿入する。しかしながら、図10に示すように、作業者がブレイクポイント213a以外の箇所でスワブ213を切断した際、ブレイクポイント213aが残った状態のスワブ213が検体容器210に挿入される場合がある。この場合、検体容器210内に侵入するチップ230の先端とスワブ213とが接触した後、チップ230の位置を変更せず検体容器210内へのチップ230の侵入が継続されると、スワブ213の切断点においてスワブ213が折れて、折れたスワブ213が飛び散る場合がある。このため、検体容器210内の検体が跳ね出てしまう。 As shown in FIG. 10, the sample container 210 contains a swab 213 for collecting the sample from the subject. The swab 213 is a cotton swab impregnated with a specimen such as saliva. As shown in FIG. 11, swab 213 is provided with preformed breakpoints 213a for easy cutting. The operator inserts the swab 213 into the specimen container 210 in a state where the swab 213 is cut at the breakpoint 213a. However, as shown in FIG. 10, when the operator cuts the swab 213 at a location other than the breakpoint 213a, the swab 213 with the breakpoint 213a remaining may be inserted into the specimen container 210. FIG. In this case, after the tip of the tip 230 entering the sample container 210 comes into contact with the swab 213, if the tip 230 continues to enter the sample container 210 without changing the position of the tip 230, the swab 213 will The swab 213 may break at the cutting point and the broken swab 213 may scatter. As a result, the specimen in the specimen container 210 will jump out.
  (検査システムの検査手順)
 検査システム200の検査手順について説明する。本実施形態では、制御部140は、採取された検体に対して測定を行う前の処理である前処理をロボットアーム41に行わせる。なお、以下のステップS1は、ユーザによって行われる手順である。その他のステップは、制御部140によって制御されている。
(Inspection procedure of inspection system)
An inspection procedure of the inspection system 200 will be described. In this embodiment, the control unit 140 causes the robot arm 41 to perform preprocessing, which is processing before measurement is performed on the collected sample. Note that the following step S1 is a procedure performed by the user. Other steps are controlled by the control unit 140 .
 図12に示すように、ステップS1において、ユーザは、検体容器210を検体供給部10に配置する。ユーザは、DWP220をDWP供給部20に配置する。ユーザは、チップ230をチップ供給部30に配置する。ユーザは、試薬供給部90に、可溶化液、磁性粒子およびProKを供給する。 As shown in FIG. 12, in step S1, the user places the sample container 210 in the sample supply section 10. As shown in FIG. The user places DWP 220 in DWP supply 20 . The user places the chip 230 on the chip supply section 30 . The user supplies the reagent supply unit 90 with the lysate, magnetic particles and ProK.
 ステップS2において、ロボット40は、第2ハンド60を装着する。 In step S2, the robot 40 mounts the second hand 60.
 ステップS3において、検体供給部10は、検体容器210をロボット40の近傍まで搬送する。DWP供給部20は、DWP220をロボット40の近傍まで搬送する。チップ供給部30は、チップ230をロボット40の近傍まで搬送する。 In step S<b>3 , the sample supply unit 10 transports the sample container 210 to the vicinity of the robot 40 . The DWP supply section 20 conveys the DWP 220 to the vicinity of the robot 40 . The tip supply section 30 conveys the tip 230 to the vicinity of the robot 40 .
 ステップS4において、本実施形態では、ロボット40は、第2ハンド60によりDWP220を把持するとともに、把持したDWP220を分注作業台80に搬送する。センサ82は、DWP220の有無を検知する。バーコードリーダ81は、DWP220に貼付されたバーコードを読み取る。 In step S<b>4 , in this embodiment, the robot 40 grips the DWP 220 with the second hand 60 and transports the gripped DWP 220 to the dispensing workbench 80 . Sensor 82 detects the presence or absence of DWP 220 . A barcode reader 81 reads the barcode attached to the DWP 220 .
 ステップS5aにおいて、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。本実施形態では、制御部140は、検知部64によりチップ230が取り付けられていることが検知されるまで、ロボットアーム41を制御してチップ置台100に載置されたチップ230にチップ取付部61を押し込ませる。具体的には、図14に示すステップS31において、制御部140は、ロボットアーム41によって第2ハンド60を下降させる。これにより、分注本体部65が下降して、チップ取付部61がチップ置台100に載置されたチップ230に押し込まれる。チップ取付部61がチップ230に接触し、分注本体部65の下降が停止される一方、移動機構部66は、第2ハンド60とともに下降を続ける。そして、ステップS32において、制御部140は、検知部64により分注本体部65が所定の位置Pに移動したことが検知されたか否かを判定する。ステップS32において、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、ステップS31とステップS32とが繰り返される。すなわち、制御部140は、検知部64により分注本体部65が所定の位置Pに移動したことが検知されることにより、チップ取付部61にチップ230が取り付けられていると判定する。すなわち、検知部64により分注本体部65が所定の位置Pに移動したことが検知されることに基づき、チップ取付部61にチップ230が適切に取り付けられたと判定される。また、チップ取付部61にチップ230が適切に取り付けられたとは、チップ230に対するチップ取付部61の押し込み量が十分であることを意味する。 In step S5a, the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. In this embodiment, the control unit 140 controls the robot arm 41 to attach the chip 230 mounted on the chip table 100 to the chip mounting unit 61 until the detection unit 64 detects that the chip 230 is mounted. push in. Specifically, in step S<b>31 shown in FIG. 14 , the controller 140 causes the robot arm 41 to lower the second hand 60 . As a result, the dispensing main body part 65 descends, and the tip mounting part 61 is pushed into the tip 230 placed on the tip mounting base 100 . While the tip mounting portion 61 contacts the tip 230 and the dispensing body portion 65 stops descending, the moving mechanism portion 66 continues to descend together with the second hand 60 . Then, in step S32, the control section 140 determines whether or not the detection section 64 has detected that the dispensing main body section 65 has moved to the predetermined position P. Steps S31 and S32 are repeated until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P in step S32. That is, the controller 140 determines that the tip 230 is attached to the tip attachment part 61 when the detection part 64 detects that the dispensing main body 65 has moved to the predetermined position P. FIG. That is, it is determined that the tip 230 is properly attached to the tip attachment portion 61 based on the detection by the detection portion 64 that the dispensing main body portion 65 has moved to the predetermined position P. Also, the fact that the tip 230 is properly attached to the tip attachment portion 61 means that the amount of pushing the tip attachment portion 61 into the tip 230 is sufficient.
 また、本実施形態では、制御部140は、ロボットアーム41の姿勢に関わらず、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、ロボットアーム41を制御してチップ置台100に載置されたチップ230にチップ取付部61を押し込ませる。ここで、ロボットアーム41の姿勢によって、チップ取付部61をチップ230に押し込むためのロボットアーム41の力が異なる。たとえば、ロボットアーム41の関節の開き角度が大きく、ロボットアーム41の姿勢が直線に近い場合、チップ取付部61をチップ230に押し込むためのロボットアーム41の力が弱くなる。このため、チップ230に対するチップ取付部61の押し込み量が不十分になる場合がある。そこで、ロボットアーム41の姿勢に関わらず、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、チップ取付部61をチップ230に押し込むことにより、チップ230に対して、チップ取付部61の押し込み量が十分になる。 Further, in this embodiment, the control unit 140 controls the robot arm 41 until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P, regardless of the posture of the robot arm 41. Then, the chip mounting portion 61 is pushed into the chip 230 mounted on the chip mounting table 100 . Here, the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 differs depending on the attitude of the robot arm 41 . For example, when the joint opening angle of the robot arm 41 is large and the attitude of the robot arm 41 is nearly straight, the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 becomes weak. Therefore, the pushing amount of the tip attachment portion 61 against the tip 230 may be insufficient. Therefore, regardless of the posture of the robot arm 41, the tip mounting portion 61 is pushed into the tip 230 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P. On the other hand, the pushing amount of the chip mounting portion 61 becomes sufficient.
 また、本実施形態では、制御部140は、複数の検知部64の各々によりチップ230が適切に取り付けられていることが検知されるまで、ロボットアーム41を制御してチップ置台100に載置された複数のチップ230の各々に複数のチップ取付部61を押し込ませる。つまり、制御部140は、ロボットアーム41を制御して、複数の検知部64の全てが、チップ230が適切に取り付けられていることを検知するまで、複数のチップ230の各々に複数のチップ取付部61を押し込ませる。 In this embodiment, the control unit 140 controls the robot arm 41 to place the chip 230 on the chip table 100 until each of the plurality of detection units 64 detects that the chip 230 is properly attached. A plurality of chip attachment portions 61 are pushed into each of the plurality of chips 230 . In other words, the control unit 140 controls the robot arm 41 to continuously attach a plurality of chips to each of the plurality of chips 230 until all of the plurality of detection units 64 detect that the chips 230 are properly attached. The part 61 is pushed.
 図12に示すように、ステップS5bにおいて、ロボット40は、チップ230により可溶化液供給部91に配置された可溶化液を吸引し、吸引した可溶化液を分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 As shown in FIG. 12, in step S5b, the robot 40 sucks the solubilizing liquid placed in the solubilizing liquid supply section 91 with the chip 230, and places the sucked solubilizing liquid on the dispensing workbench 80. Dispense into the DWP220. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS6aにおいて、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。なお、ステップS6aの動作は、ステップS31およびステップS32の動作が行われる。 In step S6a, the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. Note that the operation of step S6a includes the operations of steps S31 and S32.
 ステップS6bにおいて、ロボット40は、チップ230により磁性粒子供給部92に配置された磁性粒子を吸引し、吸引した磁性粒子を分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S6b, the robot 40 uses the tip 230 to attract the magnetic particles placed in the magnetic particle supply unit 92, and dispenses the attracted magnetic particles to the DWP 220 placed on the dispensing workbench 80. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS7aにおいて、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。なお、ステップS7aの動作は、ステップS31およびステップS32の動作が行われる。 In step S7a, the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60. Note that the operation of step S7a includes the operations of steps S31 and S32.
 ステップS7bにおいて、ロボット40は、チップ230によりProK供給部93に配置されたProKを吸引し、吸引したProKを分注作業台80に載置されたDWP220に分注する。分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 In step S7b, the robot 40 aspirates the ProK placed in the ProK supply unit 93 with the tip 230 and dispenses the aspirated ProK to the DWP 220 placed on the dispensing workbench 80. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 ステップS8において、ロボット40は、第2ハンド60を取り外した後、第1ハンド50を装着する。 In step S8, the robot 40 attaches the first hand 50 after removing the second hand 60.
 ステップS9において、第1ハンド50に配置されているセンサ51は、検体供給部10のトレイ11に検体容器210が配置されているか否かを検知する。 In step S<b>9 , the sensor 51 arranged on the first hand 50 detects whether or not the sample container 210 is arranged on the tray 11 of the sample supply section 10 .
 センサ51によって検体容器210が検知された場合、ステップS10において、ロボット40は、第1ハンド50によって検体容器210を把持するとともに、検体容器210を検体キャッパー部70に搬送する。検体キャッパー部70のバーコードリーダ71は、検体容器210に貼付されたバーコードを読み取る。検体キャッパー部70は、検体容器210の蓋部212を開栓する。 When the sensor 51 detects the sample container 210, the robot 40 grips the sample container 210 with the first hand 50 and transports the sample container 210 to the sample capper section 70 in step S10. The barcode reader 71 of the sample capper section 70 reads the barcode attached to the sample container 210 . The specimen capper section 70 opens the lid section 212 of the specimen container 210 .
 図13に示すように、ステップS11において、ロボット40は、第1ハンド50を取り外した後、第2ハンド60を装着する。 As shown in FIG. 13 , in step S11, the robot 40 detaches the first hand 50 and then attaches the second hand 60 .
 ステップS12aにおいて、ロボット40は、チップ置台100に配置されたチップ230を第2ハンド60に取り付ける。なお、ステップS12aの動作は、ステップS31およびステップS32の動作が行われる。 In step S<b>12 a , the robot 40 attaches the chip 230 placed on the chip table 100 to the second hand 60 . Note that the operation of step S12a is the operation of steps S31 and S32.
 次に、ステップS12bにおいて、ロボット40は、チップ230により検体容器210に収容された検体を吸引し、吸引した検体を分注作業台80に載置されたDWP220に分注する。具体的には、図15のステップS21において、本実施形態では、図16に示すように、制御部140は、検体の吸引のためにチップ230を検体容器210内に侵入させるようにロボットアーム41を制御する。制御部140は、第2ハンド60に取り付けられたチップ230を検体容器210内に侵入させるようにロボットアーム41を制御する。 Next, in step S12b, the robot 40 aspirates the specimen contained in the specimen container 210 with the chip 230, and dispenses the aspirated specimen to the DWP 220 placed on the dispensing workbench 80. Specifically, in step S21 of FIG. 15, in this embodiment, as shown in FIG. 16, the controller 140 causes the robot arm 41 to move the tip 230 into the sample container 210 to aspirate the sample. to control. The control unit 140 controls the robot arm 41 so that the chip 230 attached to the second hand 60 enters the sample container 210 .
 また、制御部140は、検体の吸引のためにチップ230を検体容器210内に下降させるようにロボットアーム41を制御する。具体的には、制御部140は、第2ハンド60を下降させるように、ロボットアーム41を制御する。制御部140は、Z1方向から見て、円筒形状の検体容器210の本体部211の中心にチップ230が下降されるように、ロボットアーム41を制御する。 In addition, the control unit 140 controls the robot arm 41 to lower the tip 230 into the sample container 210 for sample aspiration. Specifically, the controller 140 controls the robot arm 41 to lower the second hand 60 . The control unit 140 controls the robot arm 41 so that the tip 230 is lowered to the center of the main body 211 of the cylindrical sample container 210 when viewed from the Z1 direction.
 ステップS22において、制御部140は、チップ230が検体容器210内のスワブ213に接触したか否かを判定する。制御部140は、検知部64の検知結果に基づいて、チップ230が検体容器210内のスワブ213に接触したか否かを判定する。 In step S<b>22 , the control unit 140 determines whether the tip 230 has come into contact with the swab 213 inside the sample container 210 . The control unit 140 determines whether the tip 230 has come into contact with the swab 213 inside the sample container 210 based on the detection result of the detection unit 64 .
 図17に示すように、チップ230が検体容器210内のスワブ213に接触した場合、ステップS23に進む。ステップS23において、図18に示すように、制御部140は、チップ230の侵入方向と交差する方向にチップ230を移動させるようにロボットアーム41を制御する。具体的には、制御部140は、チップ230が検体容器210内のスワブ213に接触した場合、チップ230を上昇させるとともに、スワブ213を避けるように、水平方向に移動させるようにロボットアーム41を制御する。チップ230は、検体容器210の外まで上昇されてもよいし、検体容器210から出ないように上昇されてもよい。制御部140は、チップ230が検体容器210内のスワブ213に接触した場合、チップ230を上昇させるとともに、スワブ213を避けるように、円筒形状の検体容器210の半径rよりも小さい距離分、水平方向に移動させる。検体容器210の半径rとは、円筒形状の検体容器210の内径である。制御部140は、複数のチップ230のうちの少なくとも1つが検体容器210内のスワブ213に接触した場合、第2ハンド60の位置を変更するようにロボットアーム41を制御する。そして、ステップS24に進む。 As shown in FIG. 17, when the tip 230 contacts the swab 213 inside the specimen container 210, the process proceeds to step S23. In step S23, as shown in FIG. 18, the controller 140 controls the robot arm 41 to move the tip 230 in a direction intersecting with the direction in which the tip 230 enters. Specifically, when tip 230 contacts swab 213 in sample container 210 , controller 140 raises tip 230 and moves robot arm 41 horizontally to avoid swab 213 . Control. The tip 230 may be raised outside the sample container 210 or may be raised so as not to come out of the sample container 210 . When the tip 230 comes into contact with the swab 213 inside the sample container 210 , the controller 140 raises the tip 230 and moves the tip 230 horizontally by a distance smaller than the radius r of the cylindrical sample container 210 so as to avoid the swab 213 . move in the direction The radius r of the sample container 210 is the inner diameter of the cylindrical sample container 210 . The control unit 140 controls the robot arm 41 to change the position of the second hand 60 when at least one of the plurality of chips 230 contacts the swab 213 inside the specimen container 210 . Then, the process proceeds to step S24.
 そして、ステップS24において、本実施形態では、図19に示すように、制御部140は、チップ230を再び侵入させてチップ230により検体容器210内の検体を吸引させるようにロボットアーム41および第2ハンド60を制御する。具体的には、制御部140は、チップ230を再び下降させて検体容器210内の検体を吸引させるようにロボットアーム41および第2ハンド60を制御する。 Then, in step S24, in this embodiment, as shown in FIG. 19, the control unit 140 causes the robot arm 41 and the second robot arm 41 to cause the chip 230 to enter again and aspirate the sample in the sample container 210 with the chip 230. Control the hand 60. Specifically, the controller 140 controls the robot arm 41 and the second hand 60 so that the tip 230 is lowered again and the sample in the sample container 210 is aspirated.
 なお、ステップS24において、チップ230が再び下降された場合において、再び、チップ230が検体容器210内のスワブ213に接触した際には、チップ230がスワブ213に接触しなくなるまで、ステップS22およびS23の動作が繰り返される。 Note that when the tip 230 is lowered again in step S24 and the tip 230 contacts the swab 213 in the sample container 210 again, steps S22 and S23 are performed until the tip 230 does not contact the swab 213 again. is repeated.
 図9に示すように、ステップS12cにおいて、分注後、検体キャッパー部70は、検体容器210の蓋部212を閉栓する。そして、分注後、ロボット40は、チップ廃棄部120にチップ230を廃棄する。 As shown in FIG. 9, in step S12c, the sample capper section 70 closes the lid section 212 of the sample container 210 after the dispensing. After dispensing, the robot 40 discards the tip 230 in the tip discarding unit 120 .
 図13に示すように、ステップS13において、ロボット40は、第2ハンド60を取り外した後、第1ハンド50を装着する。 As shown in FIG. 13, the robot 40 attaches the first hand 50 after removing the second hand 60 in step S13.
 ステップS14において、第1ハンド50に配置されているセンサ51は、検体キャッパー部70に検体容器210が配置されているか否かを検知する。また、センサ51によってトレイ11上の異物の有無が確認される。 In step S14, the sensor 51 arranged on the first hand 50 detects whether the sample container 210 is arranged on the sample capper section 70 or not. Further, the presence or absence of foreign matter on the tray 11 is confirmed by the sensor 51 .
 センサ51によって検体容器210が検知され、かつ、トレイ11上に異物が無いことが確認された場合、ステップS15において、ロボット40は、第1ハンド50によって検体容器210を把持するとともに、検体供給部10のトレイ11に検体容器210を搬送する。ステップS9からS15までの動作が、複数の検体容器210の分、行われる。 When the sample container 210 is detected by the sensor 51 and it is confirmed that there is no foreign matter on the tray 11, in step S15, the robot 40 grips the sample container 210 with the first hand 50, and moves the sample supply unit. The specimen container 210 is transported to the ten trays 11 . Operations from steps S9 to S15 are performed for a plurality of sample containers 210 .
 ステップS16において、ロボット40は、第1ハンド50を取り外した後、第2ハンド60を装着する。 In step S<b>16 , the robot 40 attaches the second hand 60 after removing the first hand 50 .
 ステップS17において、ロボット40は、第2ハンド60によって検体が分注されたDWP220を核酸抽出ユニット2に受け渡すための受渡台130に搬送する。 In step S<b>17 , the robot 40 transports the DWP 220 dispensed with the sample by the second hand 60 to the delivery table 130 for delivery to the nucleic acid extraction unit 2 .
 [本実施形態の効果]
 制御部140は、検知部64によりチップ230が取り付けられていることが検知されるまで、ロボットアーム41を制御してチップ置台100に載置されたチップ230にチップ取付部61を押し込ませる。これにより、検知部64によりチップ230が取り付けられていることが検知されるまで、チップ取付部61がチップ230に押し込まれるので、チップ取付部61のチップ230に対する押し込み量が不十分になることを抑制できる。その結果、チップ230に対するチップ取付部61の押し込み量が不十分であることに起因して、チップ230を適切に取り付けられなくなることを抑制できる。
[Effect of this embodiment]
The control unit 140 controls the robot arm 41 to push the chip mounting part 61 into the chip 230 mounted on the chip mounting table 100 until the detection unit 64 detects that the chip 230 is mounted. As a result, the tip attachment portion 61 is pushed into the tip 230 until the detection portion 64 detects that the tip 230 is attached. can be suppressed. As a result, it is possible to prevent the chip 230 from being improperly mounted due to insufficient pushing amount of the chip mounting portion 61 into the chip 230 .
 検知部64は、分注本体部65が移動機構部66に対して所定の位置Pに移動したことを検知し、制御部140は、検知部64により分注本体部65が所定の位置Pに移動したことが検知されることにより、チップ取付部61にチップ2230が取り付けられていると判定する。これにより、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、チップ置台100に載置されたチップ230にチップ取付部61が押し込まれるので、チップ取付部61のチップ230に対する押し込み量が不十分になることを検知部64により容易に抑制できる。 The detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P with respect to the moving mechanism unit 66, and the control unit 140 causes the detection unit 64 to move the dispensing main unit 65 to the predetermined position P. By detecting the movement, it is determined that the chip 2230 is attached to the chip attachment portion 61 . As a result, the tip attachment portion 61 is pushed into the tip 230 placed on the tip mounting table 100 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P. The detection unit 64 can easily prevent the pushing amount of the chip 230 from becoming insufficient.
 検知部64は、エアシリンダ66aのピストン66bが所定の位置Pに移動したことを検知するオートスイッチを含む。ここで、エアシリンダ66aにはピストン66bの位置を検知するために予めオートスイッチが設けられている場合がある。予め設けられているオートスイッチを用いて分注本体部65が所定の位置Pに移動したことを検知することにより、チップ230を適切に取り付けるための検知部64を別途設ける必要がないので、検査システム200の構成が複雑になることを抑制できる。 The detection unit 64 includes an auto switch that detects that the piston 66b of the air cylinder 66a has moved to a predetermined position P. Here, the air cylinder 66a may be provided with an auto switch in advance to detect the position of the piston 66b. By detecting that the dispensing main body 65 has moved to the predetermined position P using an auto switch provided in advance, there is no need to separately provide the detection unit 64 for properly attaching the tip 230, so that inspection can be performed. It is possible to prevent the configuration of the system 200 from becoming complicated.
 制御部140は、ロボットアーム41の姿勢に関わらず、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、ロボットアーム41を制御してチップ置台100に載置されたチップ230にチップ取付部61を押し込ませる。ここで、ロボットアーム41の姿勢によって、チップ取付部61をチップ230に押し込むためのロボットアーム41の力が変化する場合がある。そこで、ロボットアーム41の姿勢に関わらず、検知部64により分注本体部65が所定の位置Pに移動したことが検知されるまで、チップ230にチップ取付部61が押し込まれることにより、ロボットアーム41の姿勢に関わらず、適切にチップ230を取り付けることができる。 Regardless of the posture of the robot arm 41, the control unit 140 controls the robot arm 41 to place it on the chip holder 100 until the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P. The chip attachment portion 61 is pushed into the placed chip 230 . Here, the force of the robot arm 41 for pushing the tip mounting portion 61 into the tip 230 may change depending on the posture of the robot arm 41 . Therefore, regardless of the posture of the robot arm 41, the tip mounting portion 61 is pushed into the tip 230 until the detection portion 64 detects that the dispensing main body portion 65 has moved to the predetermined position P. 41, the chip 230 can be properly attached.
 検知部64は、チップ置台100に載置されたチップ230にチップ取付部61を押し込む際に、分注本体部65が所定の位置Pに移動したことを検知することに加えて、検体の吸引のためにチップ230が検体容器210内に侵入され、チップ230が検体容器210内のスワブ213に接触した場合に、分注本体部65が移動機構部66に対して所定の位置Pに移動したことを検知する。これにより、チップ取付部61にチップ230を取り付けるための検知部64と、チップ230がスワブ213に接触したことを検知する検知部64とが兼用されるので、検査システム200の構成が複雑になることを抑制できる。 The detection unit 64 detects that the dispensing main unit 65 has moved to a predetermined position P when the tip mounting unit 61 is pushed into the tip 230 placed on the tip pedestal 100, and also detects that the sample is aspirated. When the tip 230 enters the sample container 210 and contacts the swab 213 in the sample container 210, the dispensing body 65 moves to the predetermined position P with respect to the moving mechanism 66. to detect. As a result, the detection unit 64 for attaching the chip 230 to the chip attachment unit 61 and the detection unit 64 for detecting contact of the chip 230 with the swab 213 are also used, so the configuration of the inspection system 200 becomes complicated. can be suppressed.
 制御部140は、複数の検知部64の各々によりチップ230が適切に取り付けられていることが検知されるまで、ロボットアーム41を制御してチップ置台100に載置された複数のチップ230の各々に複数のチップ取付部61を押し込ませる。これにより、複数の検知部64の各々によりチップ230が適切に取り付けられていることが検知されるまで複数のチップ取付部61が押し込まれるので、第2ハンド60に対する複数のチップ取付部61の取り付け位置がばらついている場合でも、複数のチップ取付部61の各々に適切にチップ230を取り付けることができる。 The controller 140 controls the robot arm 41 to move each of the plurality of chips 230 placed on the chip table 100 until each of the plurality of detectors 64 detects that the chip 230 is properly attached. to push the plurality of chip mounting portions 61 into. As a result, the plurality of tip attachment portions 61 are pushed in until each of the plurality of detection portions 64 detects that the tip 230 is properly attached. Even if the positions vary, the chip 230 can be appropriately attached to each of the plurality of chip attachment portions 61 .
 第2ハンド60に取り付けられるチップ230は、検体容器210内の検体の吸引と、吸引した検体の吐出とを行う。これにより、検体容器210内の検体の吸引と吐出とを行うチップ230をチップ取付部61に適切に取り付けることができる。 The chip 230 attached to the second hand 60 aspirates the specimen in the specimen container 210 and discharges the aspirated specimen. As a result, the tip 230 that aspirates and discharges the specimen in the specimen container 210 can be appropriately attached to the tip attachment portion 61 .
 制御部140は、採取された検体に対して測定を行う前の処理である前処理をロボットアーム41に行わせる。これにより、検体に対して前処理を行うためのチップ230を、チップ取付部61に適切に取り付けることができる。 The control unit 140 causes the robot arm 41 to perform preprocessing, which is processing before measurement is performed on the collected sample. Thereby, the chip 230 for performing pretreatment on the sample can be appropriately attached to the chip attachment portion 61 .
 [変形例]
 今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiments disclosed this time should be considered illustrative and not restrictive in all respects. The scope of the present disclosure is indicated by the scope of claims rather than the above description of the embodiments, and further includes all changes (modifications) within the scope and meaning equivalent to the scope of the claims.
 上記実施形態では、分注本体部65が移動機構部66に対して所定の位置Pに移動したことが検知部64により検知されることにより、チップ230が適切に取り付けられていると判断される例を示したが、本開示はこれに限られない。たとえば、カメラなどによりチップ230が適切に取り付けられているか否かを検知してもよい。 In the above-described embodiment, when the detection unit 64 detects that the dispensing main unit 65 has moved to the predetermined position P with respect to the moving mechanism unit 66, it is determined that the tip 230 is properly attached. Although examples have been provided, the disclosure is not limited thereto. For example, a camera or the like may detect whether chip 230 is properly attached.
 上記実施形態では、移動機構部66がエアシリンダ66aを含む例を示したが、本開示はこれに限られない。たとえば、移動機構部66がスライダなどであってもよい。 Although the moving mechanism 66 includes the air cylinder 66a in the above embodiment, the present disclosure is not limited to this. For example, the moving mechanism section 66 may be a slider or the like.
 上記実施形態では、ロボットアーム41が垂直多関節ロボットアームを含む例を示したが、本開示はこれに限られない。たとえば、X軸、Y軸およびZ軸に移動する直交ロボットに本開示を適用してもよい。 In the above embodiment, an example in which the robot arm 41 includes a vertical articulated robot arm is shown, but the present disclosure is not limited to this. For example, the present disclosure may be applied to an orthogonal robot that moves in the X, Y and Z axes.
 上記実施形態では、チップ230が適切に取り付けられているか否かを検知する検知部64が、チップ230が検体容器210内のスワブ213に接触したことを検知する検知部64を兼ねている例を示したが、本開示はこれに限られない。たとえば、チップ230が適切に取り付けられているか否かを検知する検知部と、チップ230が検体容器210内のスワブ213に接触したことを検知する検知部とを別個に配置してもよい。 In the above embodiment, the detection unit 64 that detects whether the chip 230 is properly attached also serves as the detection unit 64 that detects that the chip 230 comes into contact with the swab 213 in the sample container 210. Although shown, the disclosure is not so limited. For example, a detector that detects whether the tip 230 is properly attached and a detector that detects that the tip 230 comes into contact with the swab 213 in the sample container 210 may be separately arranged.
 上記実施形態では、検知部64が、チップ230が検体容器210内のスワブ213に接触したことを検知する例を示したが、本開示はこれに限られない。たとえば、検知部64が、チップ230が検体容器210内のスワブ213以外の異物に接触したことを検知してもよい。 In the above embodiment, an example was shown in which the detection unit 64 detects that the tip 230 has come into contact with the swab 213 inside the sample container 210, but the present disclosure is not limited to this. For example, the detection unit 64 may detect that the tip 230 has come into contact with foreign matter other than the swab 213 inside the sample container 210 .
 上記実施形態では、第2ハンド60に、チップ取付部61と、分注本体部65と、移動機構部66と、の組が複数組配置されている例を示したが、本開示はこれに限られない。たとえば、第2ハンド60に、チップ取付部61と、分注本体部65と、移動機構部66と、の組が1組配置されていてもよい。 In the above-described embodiment, an example is shown in which a plurality of sets of the tip mounting portion 61, the dispensing main body portion 65, and the moving mechanism portion 66 are arranged on the second hand 60, but the present disclosure is directed to this. Not limited. For example, the second hand 60 may be provided with one set of the chip attachment portion 61 , the dispensing main body portion 65 and the moving mechanism portion 66 .
 上記実施形態では、検知部64がオートスイッチである例を示したが、本開示はこれに限られない。たとえば、検知部64が光センサや接触センサであってもよい。 In the above embodiment, an example in which the detection unit 64 is an auto switch is shown, but the present disclosure is not limited to this. For example, the detection unit 64 may be an optical sensor or a contact sensor.
 上記実施形態では、ロボット40は、採取された検体に対して測定を行う前の処理である前処理を行う例を示したが、本開示はこれに限られない。たとえば、ロボット40が、前処理以外の処理を行ってもよい。 In the above embodiment, the robot 40 performs preprocessing, which is processing before measurement is performed on the sampled sample, but the present disclosure is not limited to this. For example, the robot 40 may perform processing other than preprocessing.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。 The functionality of the elements disclosed herein may be extended to general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, and/or those configured or programmed to perform the disclosed functions. can be implemented using a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions. The hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. A circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
 [態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be appreciated by those skilled in the art that the exemplary embodiments described above are specific examples of the following aspects.
 (項目1)
 ロボットアームと、
 前記ロボットアームに取り付けられるとともに、チップが取り付けられるチップ取付部を含む分注ハンドと、
 前記チップ取付部に前記チップが取り付けられているか否かを検知する検知部と、
 制御部と、を備え、
 前記制御部は、前記検知部により前記チップが取り付けられていることが検知されるまで、前記ロボットアームを制御してチップ載置部に載置された前記チップに前記チップ取付部を押し込ませる、分注システム。
(Item 1)
a robot arm;
a dispensing hand that is attached to the robot arm and includes a tip attachment part to which a tip is attached;
a detection unit that detects whether the chip is attached to the chip attachment portion;
a control unit;
The control unit controls the robot arm to push the chip mounting unit into the chip mounted on the chip mounting unit until the detection unit detects that the chip is mounted. dispensing system.
 (項目2)
 前記分注ハンドは、
  前記チップ取付部が配置される本体部と、
  前記本体部を直線移動させるとともに保持する保持部と、をさらに含み、
 前記検知部は、前記本体部が前記保持部に対して所定の位置に移動したことを検知し、
 前記制御部は、前記検知部により前記本体部が前記所定の位置に移動したことが検知されることにより、前記チップ取付部に前記チップが取り付けられていると判定する、項目1に記載の分注システム。
(Item 2)
The dispensing hand
a main body on which the chip mounting portion is arranged;
further comprising a holding portion that linearly moves and holds the main body,
The detection unit detects that the main body has moved to a predetermined position with respect to the holding unit,
The component according to item 1, wherein the control unit determines that the tip is attached to the tip attachment portion when the detection unit detects that the main body has moved to the predetermined position. note system.
 (項目3)
 前記保持部は、エアシリンダを含み、
 前記検知部は、前記エアシリンダのピストンが前記所定の位置に移動したことを検知するオートスイッチを含む、項目2に記載の分注システム。
(Item 3)
The holding part includes an air cylinder,
Item 3. The dispensing system according to item 2, wherein the detection unit includes an auto switch that detects that the piston of the air cylinder has moved to the predetermined position.
 (項目4)
 前記ロボットアームは、垂直多関節ロボットアームを含み、
 前記制御部は、前記垂直多関節ロボットアームの姿勢に関わらず、前記検知部により前記本体部が前記所定の位置に移動したことが検知されるまで、前記垂直多関節ロボットアームを制御して前記チップ載置部に載置された前記チップに前記チップ取付部を押し込ませる、項目2または項目3に記載の分注システム。
(Item 4)
the robotic arm includes a vertical articulated robotic arm;
The control unit controls the vertical articulated robot arm until the detecting unit detects that the main body has moved to the predetermined position, regardless of the posture of the vertical articulated robot arm. 4. The dispensing system according to item 2 or 3, wherein the tip attachment portion is pushed into the tip placed on the tip placement portion.
 (項目5)
 前記検知部は、
  前記チップ載置部に載置された前記チップに前記チップ取付部を押し込む際に、前記本体部が前記所定の位置に移動したことを検知することに加えて、
  検体の吸引のために前記チップが検体容器内に侵入され、前記チップが前記検体容器内の異物に接触した場合に、前記本体部が前記保持部に対して前記所定の位置に移動したことを検知する、項目2から項目4までのいずれか1項に記載の分注システム。
(Item 5)
The detection unit is
In addition to detecting that the main body has moved to the predetermined position when the chip mounting portion is pushed into the chip placed on the chip mounting portion,
When the tip enters into the specimen container for aspirating the specimen and the tip comes into contact with foreign matter in the specimen container, the main body moves to the predetermined position with respect to the holding part. 5. The dispensing system of any one of items 2 through 4, wherein the dispensing system detects.
 (項目6)
 前記分注ハンドには、前記チップ取付部と、前記本体部と、前記保持部と、の組が複数組配置されており、
 前記制御部は、複数の前記検知部の各々により前記チップが適切に取り付けられていることが検知されるまで、前記ロボットアームを制御して前記チップ載置部に載置された複数の前記チップの各々に前記複数のチップ取付部を押し込ませる、項目2から項目5までのいずれか1項に記載の分注システム。
(Item 6)
A plurality of sets of the chip attachment portion, the body portion, and the holding portion are arranged in the dispensing hand,
The control unit controls the robot arm to keep the plurality of chips placed on the chip placement unit until each of the plurality of detection units detects that the chips are properly attached. 6. The dispensing system according to any one of items 2 to 5, wherein the plurality of tip attachment portions are pushed into each of the .
 (項目7)
 前記分注ハンドに取り付けられる前記チップは、検体容器内の検体の吸引と、吸引した検体の吐出とを行う、項目1から項目6までのいずれか1項に記載の分注システム。
(Item 7)
7. The dispensing system according to any one of items 1 to 6, wherein the chip attached to the dispensing hand aspirates the specimen in the specimen container and discharges the aspirated specimen.
 (項目8)
 前記制御部は、採取された検体に対して測定を行う前の処理である前処理を前記ロボットアームに行わせる、項目1から項目7までのいずれか1項に記載の分注システム。
(Item 8)
8. The dispensing system according to any one of items 1 to 7, wherein the control unit causes the robot arm to perform preprocessing, which is processing before measurement is performed on the collected sample.

Claims (8)

  1.  ロボットアームと、
     前記ロボットアームに取り付けられるとともに、チップが取り付けられるチップ取付部を含む分注ハンドと、
     前記チップ取付部に前記チップが取り付けられているか否かを検知する検知部と、
     制御部と、を備え、
     前記制御部は、前記検知部により前記チップが取り付けられていることが検知されるまで、前記ロボットアームを制御してチップ載置部に載置された前記チップに前記チップ取付部を押し込ませる、分注システム。
    a robot arm;
    a dispensing hand that is attached to the robot arm and includes a tip attachment part to which a tip is attached;
    a detection unit that detects whether the chip is attached to the chip attachment portion;
    a control unit;
    The control unit controls the robot arm to push the chip mounting unit into the chip mounted on the chip mounting unit until the detection unit detects that the chip is mounted. dispensing system.
  2.  前記分注ハンドは、
      前記チップ取付部が配置される本体部と、
      前記本体部を直線移動させるとともに保持する保持部と、をさらに含み、
     前記検知部は、前記本体部が前記保持部に対して所定の位置に移動したことを検知し、
     前記制御部は、前記検知部により前記本体部が前記所定の位置に移動したことが検知されることにより、前記チップ取付部に前記チップが取り付けられていると判定する、請求項1に記載の分注システム。
    The dispensing hand
    a main body on which the chip mounting portion is arranged;
    further comprising a holding portion that linearly moves and holds the main body,
    The detection unit detects that the main body has moved to a predetermined position with respect to the holding unit,
    2. The control unit according to claim 1, wherein the control unit determines that the tip is attached to the tip attachment unit when the detection unit detects that the main body has moved to the predetermined position. dispensing system.
  3.  前記保持部は、エアシリンダを含み、
     前記検知部は、前記エアシリンダのピストンが前記所定の位置に移動したことを検知するオートスイッチを含む、請求項2に記載の分注システム。
    The holding part includes an air cylinder,
    3. The dispensing system according to claim 2, wherein said detector includes an auto switch that detects that the piston of said air cylinder has moved to said predetermined position.
  4.  前記ロボットアームは、垂直多関節ロボットアームを含み、
     前記制御部は、前記垂直多関節ロボットアームの姿勢に関わらず、前記検知部により前記本体部が前記所定の位置に移動したことが検知されるまで、前記垂直多関節ロボットアームを制御して前記チップ載置部に載置された前記チップに前記チップ取付部を押し込ませる、請求項2に記載の分注システム。
    the robotic arm includes a vertical articulated robotic arm;
    The control unit controls the vertical articulated robot arm until the detecting unit detects that the main body has moved to the predetermined position, regardless of the posture of the vertical articulated robot arm. 3. The dispensing system according to claim 2, wherein the tip mounting portion is pushed into the tip mounted on the tip mounting portion.
  5.  前記検知部は、
      前記チップ載置部に載置された前記チップに前記チップ取付部を押し込む際に、前記本体部が前記所定の位置に移動したことを検知することに加えて、
      検体の吸引のために前記チップが検体容器内に侵入され、前記チップが前記検体容器内の異物に接触した場合に、前記本体部が前記保持部に対して前記所定の位置に移動したことを検知する、請求項2に記載の分注システム。
    The detection unit is
    In addition to detecting that the main body has moved to the predetermined position when the chip mounting portion is pushed into the chip placed on the chip mounting portion,
    When the tip enters into the specimen container for aspirating the specimen and the tip comes into contact with foreign matter in the specimen container, the main body moves to the predetermined position with respect to the holding part. 3. The dispensing system of claim 2, wherein sensing.
  6.  前記分注ハンドには、前記チップ取付部と、前記本体部と、前記保持部と、の組が複数組配置されており、
     前記制御部は、複数の前記検知部の各々により前記チップが適切に取り付けられていることが検知されるまで、前記ロボットアームを制御して前記チップ載置部に載置された複数の前記チップの各々に前記複数のチップ取付部を押し込ませる、請求項2に記載の分注システム。
    A plurality of sets of the chip attachment portion, the body portion, and the holding portion are arranged in the dispensing hand,
    The control unit controls the robot arm to keep the plurality of chips placed on the chip placement unit until each of the plurality of detection units detects that the chips are properly attached. 3. The dispensing system according to claim 2, wherein the plurality of tip attachment portions are pushed into each of the.
  7.  前記分注ハンドに取り付けられる前記チップは、検体容器内の検体の吸引と、吸引した検体の吐出とを行う、請求項1に記載の分注システム。  The dispensing system according to claim 1, wherein the chip attached to the dispensing hand aspirates the specimen in the specimen container and discharges the aspirated specimen.
  8.  前記制御部は、採取された検体に対して測定を行う前の処理である前処理を前記ロボットアームに行わせる、請求項1に記載の分注システム。  The dispensing system according to claim 1, wherein the control unit causes the robot arm to perform preprocessing, which is a process prior to performing measurement on the collected sample.
PCT/JP2023/005284 2022-02-24 2023-02-15 Dispensing system WO2023162824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022026634A JP2023122876A (en) 2022-02-24 2022-02-24 dispensing system
JP2022-026634 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023162824A1 true WO2023162824A1 (en) 2023-08-31

Family

ID=87765921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005284 WO2023162824A1 (en) 2022-02-24 2023-02-15 Dispensing system

Country Status (2)

Country Link
JP (1) JP2023122876A (en)
WO (1) WO2023162824A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048222A (en) * 1996-08-06 1998-02-20 Aloka Co Ltd Nozzle chip mounting control mechanism
JPH1114631A (en) * 1997-06-23 1999-01-22 Sanyo Electric Co Ltd Dispensing device
JPH11295323A (en) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd Automatic dispenser and its method
JP2001264342A (en) * 2000-03-22 2001-09-26 Atoo Kk Variable interval multiple pipette device
US8007741B1 (en) * 2008-07-08 2011-08-30 Scigene Corporation Pipetting head with plate gripper
JP2013174536A (en) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp Automatic analyzer
JP2021189049A (en) * 2020-05-29 2021-12-13 川崎重工業株式会社 Dispensing system, robot, and dispensing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048222A (en) * 1996-08-06 1998-02-20 Aloka Co Ltd Nozzle chip mounting control mechanism
JPH1114631A (en) * 1997-06-23 1999-01-22 Sanyo Electric Co Ltd Dispensing device
JPH11295323A (en) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd Automatic dispenser and its method
JP2001264342A (en) * 2000-03-22 2001-09-26 Atoo Kk Variable interval multiple pipette device
US8007741B1 (en) * 2008-07-08 2011-08-30 Scigene Corporation Pipetting head with plate gripper
JP2013174536A (en) * 2012-02-27 2013-09-05 Hitachi High-Technologies Corp Automatic analyzer
JP2021189049A (en) * 2020-05-29 2021-12-13 川崎重工業株式会社 Dispensing system, robot, and dispensing method

Also Published As

Publication number Publication date
JP2023122876A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
EP3101428B1 (en) Automatic analytical apparatus
JP6336715B2 (en) Grip mechanism
CN108351362B (en) Automated method and system for obtaining and preparing microbial samples for identification and antibiotic susceptibility testing
CN107167344B (en) Sample suction system and sample analyzer
CN101617231B (en) Conveyor of specimen containers with spur units in laboratory automation systems
EP2613156A1 (en) Specimen transfer mechanism
US20020102736A1 (en) Method and system for picking and placing vessels
EP2076780B1 (en) Method and device for test sample loading
WO2023162824A1 (en) Dispensing system
CN109696556B (en) Pipetting device and pipetting device positioning system
US20210220833A1 (en) Labware aligning systems and liquid handling systems and methods including same
CN114214183A (en) Automatic nucleic acid extraction equipment and nucleic acid extraction method thereof
WO2023162820A1 (en) Dispensing system
WO2023157836A1 (en) Inspection system
WO2023157834A1 (en) Examination system
US11933804B2 (en) Automatic analyzer
JP2004309431A (en) Dispensing device
JP2550510Y2 (en) Sampler equipped with sample stirring device and sample suction device
JP3115290U (en) Immune analyzer
JP2024515971A (en) Sample injection probe cleaning
CN117501130A (en) Apparatus and method for monitoring items in a diagnostic laboratory system
JP2021032587A (en) Inspection chip transport unit and optical measurement system
CN114653418A (en) Laboratory system for monitoring reference points of laboratory devices
JPH02115768A (en) Diluting dispenser capable of being directly connected to automation line
JP2005062149A (en) Dispensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759825

Country of ref document: EP

Kind code of ref document: A1