WO2014061527A1 - ガス化装置 - Google Patents

ガス化装置 Download PDF

Info

Publication number
WO2014061527A1
WO2014061527A1 PCT/JP2013/077485 JP2013077485W WO2014061527A1 WO 2014061527 A1 WO2014061527 A1 WO 2014061527A1 JP 2013077485 W JP2013077485 W JP 2013077485W WO 2014061527 A1 WO2014061527 A1 WO 2014061527A1
Authority
WO
WIPO (PCT)
Prior art keywords
char
gas
gasification furnace
space
coal
Prior art date
Application number
PCT/JP2013/077485
Other languages
English (en)
French (fr)
Inventor
横濱 克彦
治 品田
北田 昌司
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380049405.8A priority Critical patent/CN104662135B/zh
Priority to KR1020157008189A priority patent/KR101598768B1/ko
Priority to US14/431,872 priority patent/US9388348B2/en
Publication of WO2014061527A1 publication Critical patent/WO2014061527A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/152Nozzles or lances for introducing gas, liquids or suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1876Heat exchange between at least two process streams with one stream being combustion gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the present invention relates to a gasification apparatus that generates gas fuel by burning and gasifying coal or biomass.
  • the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • the coal gasification apparatus in this coal gasification combined power generation facility is configured such that a gasification furnace is disposed in a pressure vessel, and a heat exchanger (gas cooler) is disposed above the gasification furnace.
  • the space between the container and the gasification furnace is filled with a seal gas.
  • An example of such a coal gasifier is described in Patent Document 1 below.
  • the pressurized gasification furnace described in Patent Document 1 is provided with a water-cooled wall at an interval inside the pressure vessel, and the space between the two and the inside of the furnace body are communicated with each other by a pipe so that the differential pressure between the two is maintained. Accordingly, the pressurized gas is supplied to the space portion to equalize the space portion and the furnace body.
  • Patent Document 2 As a means for simplifying such a coal gasifier, there is one described in Patent Document 2 below, for example.
  • the gasification furnace apparatus described in Patent Document 2 performs gas generation using a gasification furnace that gasifies fuel, temperature control of the generated gas generated in the gasification furnace, and sensible heat of the generated gas.
  • a pressure vessel storing a gas heat exchanger is provided, and a pressure equalizing pipe having one end opened in the gasification furnace and the other end opened in the pressure vessel is connected.
  • the pressurized gasification furnace of Patent Document 1 requires piping, a pressure gauge, a pressurized purified gas supply pipe, an on-off valve, and the like that connect the space and the inside of the furnace body, and the structure becomes complicated.
  • the pressure equalizing pipe when trying to apply the pressure equalizing pipe in the gasification furnace apparatus of Patent Document 2 to the pressurized gasification furnace of Patent Document 1, the pressure equalizing pipe must be extended downward, which is not realistic.
  • This invention solves the subject mentioned above, and provides the gasifier which can suppress the differential pressure
  • a gasification apparatus is a gasification apparatus that generates gaseous fuel by combusting and gasifying a fuel, and includes a pressure vessel having a hollow shape and a hollow shape.
  • a gasification furnace disposed in the pressure vessel via a space; a heat exchanger disposed in an upper part of the gasification furnace; and a gas supply unit for supplying a corrosion-resistant gas to a lower part of the space.
  • a char receiving portion provided above the heat exchanger in the space, a pressure equalizing pipe having one end communicating with the gasification furnace and the other end opening to the char receiving portion, and the char receiving portion And a gas flow path penetrating up and down the side portion.
  • a char receiving portion is provided above the space between the pressure vessel and the gasification furnace, and a pressure equalizing pipe having one end communicating with the gasification furnace and the other end opened to the char receiving portion.
  • the pressure equalizing pipe is disposed in the space portion, one end portion opens a furnace wall along the vertical direction in the gasification furnace, and the other end portion widens so that the char receiving portion It is characterized by opening to the bottom.
  • the pressure equalizing pipe communicates with a region where there is almost no fluctuation in the flow rate of the rising fuel gas, and the char to the pressure equalizing pipe is Intrusion can be suppressed.
  • the other end of the pressure equalizing tube is wide-angled and opens to the bottom surface of the char receiving portion, so that the char accumulated in the char receiving portion is properly sucked back by the pressure reduction in the gasification furnace and returned to the gasification furnace. Can do.
  • the char receiving portion is formed in a concave shape over the entire circumference or a part of the space portion, and a plurality of the pressure equalizing pipes are provided at predetermined intervals in the circumferential direction of the space portion. It is characterized by that.
  • the char receiving portion is formed in a concave shape and arranged over the entire circumference or a part of the space portion, while a plurality of pressure equalizing tubes are provided at a predetermined interval in the circumferential direction, so And the char in the fuel gas discharged to the space due to the increase in the pressure in the gasification furnace can be reliably received.
  • the gas flow path is provided over the entire circumference or a part of the space portion.
  • the corrosive gas can be appropriately filled over the entire space between the pressure vessel and the gasification furnace.
  • the gas flow path is provided along a vertical direction along the outer wall of the gasification furnace.
  • the gasification furnace is at a higher temperature than the pressure vessel, the corrosive gas rises along the outer wall of the gasification furnace, and the gas flow path is provided along the outer wall of the gasification furnace.
  • the gas can be properly filled over the entire space without disturbing the gas flow.
  • the gas flow path is provided between an outer wall of the gasification furnace and an outer wall of the char receiving portion.
  • the gas flow path with the outer wall of the gasification furnace and the outer wall of the char receiving portion, it is not necessary to provide a separate member, and the configuration can be simplified and the cost can be reduced.
  • the char receiving portion includes a bottom portion provided below the pressure equalizing tube, the other end portion of the pressure equalizing tube being opened, and an inclined portion inclined downward toward the bottom portion. It is characterized by that.
  • the char receiving part is composed of the bottom part where the other end of the pressure equalizing pipe opens and the surrounding inclined part, so that the char accumulated in the char receiving part can be easily collected at the bottom part, and the pressure in the gasification furnace is reduced. Sometimes, the char accumulated in the char receiving part can be efficiently sucked and returned to the gasifier.
  • the char receiving portion is arranged on a support member fixed to the inner wall of the pressure vessel via a seal member.
  • the gas flow path is provided with a first char intrusion prevention member on the upper side.
  • the first char intrusion prevention member when the gas flow rate in the gas flow path decreases, the first char intrusion prevention member prevents the char from entering the gas flow path. In addition, the diffusion of char into the space can be prevented.
  • the pressure equalizing pipe is characterized in that a second char intrusion prevention member is provided below the communicating portion into the gasifier.
  • the second char intrusion prevention member below the communicating portion of the pressure equalizing pipe into the gasification furnace, when the char in the fuel rises in the gasification furnace, the second char intrusion prevention member causes the pressure equalization pipe to It is possible to prevent char from entering into the space and to prevent diffusion of char into the space.
  • the char receiving portion provided above the heat exchanger in the space portion between the pressure vessel and the gasification furnace, and one end portion communicates with the inside of the gasification furnace and the other end portion.
  • FIG. 1 is a schematic diagram illustrating a gasifier according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view illustrating a pressure equalizing device in the gasifier of the first embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG. 2 showing the pressure equalizing apparatus according to the first embodiment.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 illustrating the pressure equalizing apparatus according to the first embodiment.
  • FIG. 5 is a schematic diagram illustrating the operation of the pressure equalizing apparatus according to the first embodiment.
  • FIG. 6 is a schematic configuration diagram of a combined coal gasification combined power generation facility to which the gasification apparatus according to the first embodiment is applied.
  • FIG. 7 is a schematic diagram illustrating a barometric device in a gasifier according to Embodiment 2 of the present invention.
  • FIG. 8 is a graph showing the state of char according to char particle size and blowing speed.
  • FIG. 1 is a schematic view showing a gasifier according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic plan view showing a pressure equalizing device in the gasifier of Embodiment 1
  • FIG. 2 is a sectional view taken along the line III-III in FIG. 2 showing the pressure device
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2 showing the pressure equalizing device of the first embodiment
  • FIG. FIG. 6 is a schematic diagram of a combined coal gasification combined power generation facility to which the gasification apparatus according to the first embodiment is applied.
  • the combined coal gasification combined power generation facility (IGCC: Integrated Coal Gasification Combined Cycle) of Example 1 employs an air combustion method in which coal gas is generated by a gasifier using air as an oxidizer, and is purified by a gas purifier. Coal gas is supplied as fuel gas to gas turbine equipment to generate electricity. That is, the coal gasification combined power generation facility of Example 1 is an air combustion type (air blowing) power generation facility.
  • the coal gasification combined power generation facility 10 includes a coal supply device 11, a pulverized coal machine (mill) 13, a coal gasification device 14, a char recovery device 15, a gas purification device 16, It has a gas turbine facility 17, a steam turbine facility 18, a generator 19, and an exhaust heat recovery boiler (HRSG: Heat Recovery Steam Generator) 20.
  • HRSG Heat Recovery Steam Generator
  • the coal feeder 11 includes a raw coal bunker 21, a coal feeder 22, and a crusher 23.
  • the raw coal bunker 21 can store coal and can drop a predetermined amount of coal into the coal feeder 22.
  • the coal feeder 22 can transport the coal dropped from the raw coal bunker 21 by a conveyor or the like and drop it on the pulverized coal machine (mill) 13.
  • the pulverized coal machine 13 is a coal pulverizer, and pulverizes raw coal into fine particles to produce pulverized coal. That is, the pulverized coal machine 13 uses raw coal (dry coal) as coal having a predetermined particle size or less, that is, pulverized coal.
  • the pulverized coal after being pulverized by the pulverized coal machine 13 is separated from the conveying gas by the pulverized coal bag filters 37a and 37b and stored in the pulverized coal supply hoppers 38a and 38b.
  • the coal gasifier 14 can supply pulverized coal treated by the pulverized coal machine 13 and can be recycled by returning the char (unburned coal) recovered by the char recovery device 15. .
  • the coal gasifier 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply compressed air compressed by the gas turbine equipment 17.
  • the air separation device 42 separates and generates nitrogen and oxygen from air in the atmosphere.
  • a first nitrogen supply line 43 is connected to the coal gasifier 14, and a pulverized coal supply hopper is connected to the first nitrogen supply line 43.
  • Charging lines 44a and 44b from 38a and 38b are connected.
  • the second nitrogen supply line 45 is also connected to the coal gasifier 14, and the char return line 46 from the char recovery device 15 is connected to the second nitrogen supply line 45.
  • the oxygen supply line 47 is connected to the compressed air supply line 41.
  • nitrogen is used as a carrier gas for coal and char
  • oxygen is used as an oxidant.
  • the coal gasifier 14 has, for example, a two-stage two-chamber entrained bed type gasifier, and combusts and gasifies coal, char, air (oxygen) supplied therein, or water vapor as a gasifying agent. At the same time, a combustible gas (generated gas, coal gas) containing carbon dioxide as a main component is generated, and a gasification reaction occurs using this combustible gas as a gasifying agent.
  • the coal gasifier 14 is provided with a foreign matter removing device 48 that removes foreign matter mixed with pulverized coal.
  • the coal gasifier 14 is not limited to the spouted bed gasifier, and may be a fluidized bed gasifier or a fixed bed gasifier.
  • the coal gasifier 14 is provided with a combustible gas generation line 49 toward the char recovery device 15 so that the combustible gas containing char can be discharged.
  • the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 15.
  • the char collection device 15 has a dust collector 51 and a supply hopper 52.
  • the dust collector 51 is constituted by one or a plurality of bag filters or cyclones, and can separate the char contained in the combustible gas generated by the coal gasifier 14.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the supply hopper 52 stores the char separated from the combustible gas by the dust collector 51.
  • a bin may be disposed between the dust collector 51 and the supply hopper 52, and a plurality of supply hoppers 52 may be connected to the bin.
  • a char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
  • the gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 15.
  • the gas purifier 16 purifies the combustible gas to produce fuel gas and supplies it to the gas turbine equipment 17.
  • the sulfur is finally removed by removing it with the amine absorbent. Is recovered as gypsum and used effectively.
  • the gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63.
  • the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasifier 14, and a booster 68 is provided in the middle.
  • the compressed air supplied from the compressor 61 and the fuel gas supplied from the gas purifier 16 are mixed and burned, and the rotating shaft 64 is rotated by the generated combustion gas in the turbine 63. By doing so, the generator 19 can be driven.
  • the steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam by exchanging heat between the air and the high temperature exhaust gas. Therefore, the exhaust heat recovery boiler 20 is provided with the steam supply line 71 between the steam turbine equipment 18 and the turbine 69 of the steam turbine equipment 18, the steam recovery line 72 is provided, and the steam recovery line 72 is provided with the condenser 73. Yes. Therefore, in the steam turbine facility 18, the turbine 69 is driven by the steam supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
  • the exhaust gas from which heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas is discharged from the chimney 75 to the atmosphere.
  • raw coal (coal) is stored in the raw coal bunker 21 by the coal feeder 11, and the coal in the raw coal bunker 21 is finely powdered by the coal feeder 22.
  • the pulverized coal is pulverized into fine particles to produce pulverized coal, and is stored in the pulverized coal supply hoppers 38a and 38b via the pulverized coal bag filters 37a and 37b.
  • the pulverized coal stored in the pulverized coal supply hoppers 38 a and 38 b is supplied to the coal gasifier 14 through the first nitrogen supply line 43 by nitrogen supplied from the air separation device 42.
  • the char recovered by the char recovery device 15 described later is supplied to the coal gasifier 14 through the second nitrogen supply line 45 by nitrogen supplied from the air separation device 42. Further, compressed air extracted from a gas turbine facility 17 described later is boosted by a booster 68 and then supplied to the coal gasifier 14 through the compressed air supply line 41 together with oxygen supplied from the air separator 42.
  • the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified to generate combustible gas (coal gas) mainly composed of carbon dioxide. Can be generated.
  • This combustible gas is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
  • the combustible gas is first supplied to the dust collector 51, whereby the char contained in the gas is separated from the combustible gas.
  • the combustible gas from which the char has been separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the fine char separated from the combustible gas is deposited on the supply hopper 52, returned to the coal gasifier 14 through the char return line 46, and recycled.
  • the combustible gas from which the char has been separated by the char recovery device 15 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce fuel gas.
  • the gas turbine facility 17 when the compressor 61 generates compressed air and supplies the compressed air to the combustor 62, the combustor 62 is supplied from the compressed air supplied from the compressor 61 and the gas purification device 16. Combustion gas is generated by mixing with fuel gas and combusting, and the turbine 63 is driven by this combustion gas, so that the generator 19 can be driven via the rotating shaft 64 to generate power.
  • the exhaust gas discharged from the turbine 63 in the gas turbine equipment 17 generates steam by exchanging heat with air in the exhaust heat recovery boiler 20, and supplies the generated steam to the steam turbine equipment 18. .
  • the generator 69 can be driven through the rotating shaft 64 to generate electric power by driving the turbine 69 with the steam supplied from the exhaust heat recovery boiler 20.
  • the coal gasifier 14 includes a gasification furnace 101 having a hollow cross-sectional shape, a heat exchanger 102 disposed above the gasification furnace 101, and a pressure vessel that houses the gasification furnace 101. 103, and a space 104 is defined between the gasification furnace 101 and the pressure vessel 103.
  • the gasification furnace 101 has a hollow shape, and includes a reductor part 111, a diffuser part 112, and a combustor part 113 from the top.
  • the pressure vessel 103 has a hollow cylindrical shape, and a gas discharge port 121 is formed at the upper end portion, while a slag discharge port 122 is formed at the lower end portion.
  • the pressure vessel 103 has a gasification furnace 101 disposed therein. That is, the gasification furnace 101 has a pressure vessel 103 arranged outside through a predetermined space portion 104, and the outer surface of the reductor portion 111 in the gasification furnace 101 is supported by the support portion 105 on the inner surface of the pressure vessel 103. Has been.
  • the upper end portion of the heat exchanger accommodating portion 114 is connected to the upper end portion of the pressure vessel 103 by the expansion joint 123 and communicates with the gas discharge port 121.
  • the pressure vessel 103 is provided with a slag hopper 124 at the bottom, and the gasification furnace 101 has a lower end portion, that is, a ring-shaped extending portion 116 suspended from the combustor portion 113 soaked in the stored water of the slag hopper 124. And sealed with water.
  • the gasification furnace 101 includes a combustion device including a plurality of burners 117 arranged at equal intervals in the circumferential direction in the reductor unit 111, and a plurality of burners 118 and 119 arranged at equal intervals in the combustor unit 113. Two sets of combustion devices are arranged. Each of the burners 117, 118, and 119 passes through the pressure vessel 103 and the gasification furnace 101 from the outside and is fixed so as to be substantially horizontal.
  • the support portion 105 of the gasification furnace 101 is located above the burner 117. In this case, the support part 105 may be provided not only in this position but also in the diffuser part 112 and the combustor part 113. That is, it is preferable to be in the vicinity of each burner 117, 118, 119.
  • the burner 117 is connected to the first nitrogen supply line 43 and the coal supply lines 44a and 44b, the burner 118 is connected to the char return line 46, and the burner 119 is connected to the burner 119.
  • a line in which the oxygen supply line 47 and the compressed air supply line 41 are gathered is connected.
  • the pressure vessel 103 applies a seal gas (for example, nitrogen gas, carbon dioxide gas, natural gas) as a corrosion-resistant gas to the space 104 formed between the pressure vessel 103 and the gasification furnace 101.
  • a seal gas for example, nitrogen gas, carbon dioxide gas, natural gas
  • a gas nozzle 120 for supplying is provided.
  • the gas nozzle 120 is provided below the pressure vessel 103, specifically, below the burner 119.
  • the heat exchanger 102 serves as a plurality of heat exchanging portions along the vertical direction from the top to the bottom, economizer 131, superheaters (superheaters) 132 and 133, and evaporator (evaporator) 134. Are arranged at predetermined intervals.
  • the gasification furnace 101 is composed of a plurality of heat transfer tubes 141 whose furnace walls extend in the vertical direction and are arranged in parallel in the circumferential direction. Specifically, the heat transfer tube 141 and the fin 142 are alternately connected to the furnace wall by welding, and the heat transfer tube 141 and the fin 142 are preferably made of stainless steel.
  • the gasification furnace 101 includes the same number of heat transfer tubes 141 whose furnace walls extend in the vertical direction. That is, each heat transfer tube 141 is extended along the vertical direction throughout the gasification furnace 101, and a part of the heat transfer tubes 141 is not cut, and another heat transfer tube is not increased.
  • the furnace wall of the gasification furnace 101 is formed by the same heat transfer tube 141 extending vertically and being juxtaposed in the circumferential direction.
  • the lower ends of the plurality of heat transfer tubes 141 are collected in the header 141a, and the upper ends are collected in the header 141b.
  • the steam drum 151 is connected to the header 141 a via the downcomer 152, and is connected to the header 141 b via the ascending pipe 153, and the circulation pump 154 is provided in the downcomer 152.
  • the downcomer 152 is provided with a branch pipe 155, which is connected to one end (inlet header) of the heat transfer pipe 134a of the evaporator 134, and the other end (outlet header) of the heat transfer pipe 134a.
  • the delivery pipe 156 connected to is connected to the steam drum 151.
  • the external water supply pipe 157 is connected to one end (inlet header) of the heat transfer pipe 131a of the economizer 131, and the water supply pipe 158 connected to the other end (outlet header) of the heat transfer pipe 131a is a steam drum. 151.
  • the steam pipe 159 from the steam drum 151 is branched and connected to one end (inlet header) of the heat transfer tubes 132a and 133a of the superheaters 132 and 133, and the other end (outlet header) of the heat transfer tubes 132a and 133a.
  • the steam discharge pipe 160 connected to () is connected to a steam turbine (not shown).
  • a beam member 161 is disposed above the economizer 131, and the end of the beam member 161 is connected to the furnace wall (the heat transfer tube 141 and the fin 142) by welding. Further, the heat exchanger 102 has a plurality of cooling pipes 162 as hanging tools arranged in the vertical direction, the lower end portion is connected to the water supply pipe 157, and the upper end portion is supported by the beam member 161. Later, it is connected to a water pipe 158.
  • the two superheaters 132 and 133 and the evaporator 134 are suspended and supported by a plurality of cooling pipes 162 via suspension fittings 132b, 133b, and 134b.
  • the economizer 131 is placed and supported on a support plate 131b fixed to the furnace wall (heat transfer tubes 141 and fins 142) by welding.
  • the heat exchanger 102 since the heat exchanger 102 has a higher temperature in the lower part closer to the gasification furnace 101, the durability of welding is severe. Therefore, the two superheaters 132, 133 and the evaporator 134 located below are suspended from the upper beam member 161 via the plurality of cooling pipes 162, and the economizer 131 located above is welded to the furnace wall. It is mounted on the support plate 131b. In this case, according to the temperature condition of the heat exchanger 102, the two superheaters 132 and 133 may be mounted and supported by welding support plates to the furnace wall.
  • the coal gasifier 14 has a leveling function as a sedimentation type classification mechanism between the upper portion of the space portion 104, that is, between the gasification furnace 101 (heat exchanger accommodating portion 114) and the pressure vessel 103.
  • a pressure device 171 is provided.
  • the pressure equalizing device 171 includes a char receiving portion 172 provided above the heat exchanger 102 in the space portion 104, and a pressure equalizing portion having one end communicating with the gasification furnace 101 and the other end opening to the char receiving portion 172. It has a pressure tube 173 and a gas flow path 174 that vertically penetrates the side portion of the char receiving portion 172.
  • the char receiving portion 172 is disposed over the entire circumference (or part) of the space portion 104 in the shape of a recess, and heat exchange in the gasification furnace 101 is performed. It is divided into four parts according to the square cross-sectional shape of the container accommodating part 114, and each has the substantially same structure.
  • a plurality of (four in this embodiment) pressure equalizing tubes 173 are provided at predetermined intervals (equal intervals) in the circumferential direction of the space portion 104.
  • the char receiving portion 172 is disposed so as to close the inner wall surface of the pressure vessel 103 in the space portion 104 and the outer surface of the furnace wall 114 a of the heat exchanger accommodating portion 114 in the gasification furnace 101. It is provided facing downward.
  • the char receiving portion 172 has a horizontal bottom 181 where the other end of the pressure equalizing pipe 173 is open, and a vertical rising from the end of the bottom 181 on the gasification furnace 101 (heat exchanger accommodating portion 114) side.
  • a wall 182 a first inclined portion 183 that rises obliquely upward from the end on the pressure vessel 103 side in the bottom 181, and two second inclinations that rise obliquely upward in the circumferential direction of the space portion 104 in the bottom 181.
  • Part 184 Therefore, since the three inclined portions 183 and 184 are inclined downward toward the bottom portion 181 in the char receiving portion 172, the char received by the char receiving portion 172 can be collected on the bottom portion 181 by gravity.
  • the inclined portions 183 and 184 may not be linearly inclined but may be curved or may have a flow surface shape in which the inclined portions 183 and 184 are combined.
  • Each pressure equalizing pipe 173 has substantially the same configuration and is arranged in the space 104.
  • Each pressure equalizing pipe 173 is fixed to a straight line portion 185 along the vertical direction and to the furnace wall 114a of the heat exchanger accommodating portion 114 in the gasification furnace 101 continuously to the upper end of the straight line portion 185.
  • a curved portion 186 and a wide-angle portion 187 that opens continuously with a wide-angle downward toward the lower end of the linear portion 185 are configured.
  • the heat exchanger accommodating portion 114 becomes a reduced diameter portion 114c whose upper portion gradually decreases from the same diameter portion 114b along the vertical direction, and is connected to the upper end portion of the pressure vessel 103 via the expansion joint 123.
  • the curved portion 186 opens the furnace wall of the same diameter portion 114b of the heat exchanger accommodating portion 114.
  • the wide-angle portion 187 opens with a predetermined gap on the upper surface (bottom surface) of the bottom portion 181 of the char receiving portion 172.
  • the gap between the opening surface of the wide angle portion 187 and the upper surface (bottom surface) of the bottom portion 181 of the char receiving portion 172 is desirably set to be twice or less the opening width (inner diameter) of the wide angle portion 187.
  • the gas flow path 174 is provided over the entire circumference (or a part) of the space portion 104. Specifically, the gas flow path 174 is provided between the outer wall of the gasification furnace 101 (heat exchanger accommodating part 114) and the outer wall of the char receiving part 172, that is, the vertical wall part 182. 101 (heat exchanger accommodating part 114) is provided along the vertical direction along the outer wall.
  • the gas channel 174 has a lower portion that opens below the bottom portion 181 of the char receiving portion 172, and an upper portion that opens toward the curved portion 186 of the pressure equalizing pipe 173.
  • the char receiving portion 172 has a concave shape, its volume is 1/2 of the amount of pulverized coal charged into the coal gasifier 14, the dust concentration calculated from the amount of fuel gas produced, and the gasifier It is set to be larger than the volume of inflowing particles calculated from the product of the amount of gas flowing into the gap from the gasification furnace 101 when the pressure of 101 increases.
  • the coal gasifier 14 As shown in FIG. 1, in the gasifier 101, nitrogen and pulverized coal are charged by a burner 117 and ignited, and char and compressed air (oxygen) are burned by the burners 118 and 119. It is turned on and ignited. Then, in the combustor unit 113, high-temperature combustion gas is generated by the combustion of pulverized coal and char. Further, in the combustor unit 113, molten slag is generated in the high-temperature gas by the combustion of pulverized coal and char, and this molten slag adheres to the furnace wall and falls to the furnace bottom, and finally to the water stored in the slag hopper 124. Discharged.
  • the high-temperature combustion gas generated in the combustor unit 113 rises to the reductor unit 111 through the diffuser unit 112.
  • pulverized coal is mixed with high-temperature combustion gas, and a gasification reaction is performed in a high-temperature reducing atmosphere field to generate combustible gas (coal gas) containing carbon dioxide as a main component.
  • water is supplied from the water supply pipe 157 to the economizer 131, and the water supply is heated here and then sent to the steam drum 151 through the water supply pipe 158.
  • the steam drum 151 sends feed water to the lower part of the plurality of heat transfer tubes 141 as the furnace wall through the downcomer 152 by the circulation pump 154 and to the evaporator 134 through the branch pipe 155.
  • the gasification furnace 101 is cooled and sent to the steam drum 151 through the riser tube 153.
  • the evaporator 134 heats feed water with the combustible gas which raises the inside of the heat exchanger 102, and sends it to the steam drum 151 through the delivery pipe
  • the steam drum 151 is subjected to brackish water separation, and the steam is sent to the superheaters 132 and 133 through the steam pipe 159 and superheated here.
  • the superheaters 132 and 133 superheat the steam with the combustible gas rising in the heat exchanger 102 and send the generated superheated steam from the steam discharge pipe 160 to the steam turbine.
  • the gas nozzle 120 supplies a seal gas to the space portion 104, and the seal gas ascends the space portion 104.
  • the pressure equalizing device 171 since the pressure equalizing device 171 is provided between the gasification furnace 101 and the space portion 104, even if the pressure of the gasification furnace 101 fluctuates, the pressure equalizing device 171 causes the space between the gasification furnace 101 and the space. The differential pressure with the part 104 is suppressed.
  • the coal gasifier 14 has a pressure in the pressure vessel 103 (space 104) higher than that in the gasifier 101 during normal operation.
  • the pressure of the fuel gas rising in the gasification furnace 101 may become higher than the pressure in the pressure vessel 103 (space part 104) due to pressure fluctuations.
  • a part of the fuel gas in the gasification furnace 101 flows out into the pressure vessel 103 (space part 104) through each pressure equalizing pipe 173, so that the differential pressure between the gasification furnace 101 and the space part 104 is suppressed. Is done.
  • each pressure equalizing pipe 173 has a char receiving portion 172 disposed at the lower part, the char that flows out into the space 104 through each pressure equalizing pipe 173 together with the fuel gas is received by the char receiving portion 172 and accumulated there. Thus, it is prevented from falling below the space 104.
  • the space 104 has a higher temperature on the gasification furnace 101 side (inner periphery side) than the pressure vessel 103 side (outer periphery side), so that the seal gas rises along the inner periphery side of the space portion 104. It can rise through the gas flow path 174 on the inner peripheral side from the pressure equalizing device 171.
  • the pressure in the pressure vessel 103 becomes higher than the pressure in the gasifier 101. Then, as shown by a dotted arrow B in FIG. 5, the char accumulated in the char receiving portion 172 is sucked by the pressure equalizing pipe 173 and returned to the gasification furnace 101.
  • the lower end portion of the pressure equalizing tube 173 is wide-angled, while the inclined portions 183 and 184 are provided around the char receiving portion 172, so that the char deposited on the char receiving portion 172 is the opening of the pressure equalizing tube 173. It will be gathered in and sucked properly.
  • the pressure vessel 103 having a hollow shape
  • the gasification furnace 101 having a hollow shape and disposed in the pressure vessel 103 via the space portion 104
  • a gas A heat exchanger 102 disposed in the upper part of the conversion furnace 101
  • a gas nozzle 120 for supplying a seal gas to the lower part of the space part 104
  • a char receiving part 172 provided in the space part 104 above the heat exchanger 102
  • one end A pressure equalizing pipe 173 having a portion communicating with the gasification furnace 101 and having the other end opened to the char receiving portion 172, and a gas flow path 174 penetrating vertically through the side portion of the char receiving portion 172 are provided.
  • the pressure difference between the gasification furnace 101 and the space 104 can be reduced by the pressure equalizing pipe 173, and the pressure in the gasification furnace 101 increases.
  • the char in the fuel gas discharged to the space portion 104 can be properly received by the char receiving portion 172, and the char can be prevented from falling below the space portion 104.
  • the pressure equalizing pipe 173 is disposed in the space portion 104, one end portion is opened in the furnace wall along the vertical direction in the gasification furnace 101, and the other end portion is wide-angled to form the char receiving portion 172.
  • An opening is formed on the upper surface of the bottom 181. Therefore, one end of the pressure equalizing pipe 173 opens to the furnace wall along the vertical direction in the gasification furnace 101, so that the pressure equalizing pipe 173 communicates with a region where there is almost no fluctuation in the flow rate of the fuel gas rising up the gasification furnace 101.
  • the intrusion of char into the pressure equalizing pipe 173 can be suppressed.
  • the other end portion of the pressure equalizing pipe 173 is wide-angled and opened on the upper surface of the bottom portion 181 of the char receiving portion 172, so that the char accumulated in the char receiving portion 172 due to the pressure reduction in the gasification furnace 101 can be sucked appropriately. Can be returned to the gasification furnace 101.
  • the char receiving portion 172 has a concave shape, is arranged over the entire circumference (or part) of the space portion 104, and a plurality of pressure equalizing tubes 173 are provided at predetermined intervals in the circumferential direction of the space portion 104. ing. Therefore, the differential pressure between the gasification furnace 101 and the space part 104 can be appropriately equalized by the pressure equalizing pipe 173, and the char receiving part 172 is discharged into the space part 104 due to the pressure increase in the gasification furnace 101. The char in the fuel gas can be received with certainty.
  • the gas flow path 174 is provided over the entire circumference (or a part) of the space portion 104. Accordingly, the seal gas can be appropriately filled over the entire space 104 between the pressure vessel 103 and the gasification furnace 101.
  • the gas flow path 174 is provided along the vertical direction along the outer wall of the gasification furnace 101. Therefore, since the gasification furnace 101 is in a higher temperature state than the pressure vessel 103, the seal gas rises along the outer wall of the gasification furnace 101, and the gas flow path 174 extends along the outer wall of the gasification furnace 101. By being provided, the gas can be properly filled over the entire space 104 without disturbing the flow of the gas.
  • the gas flow path 174 is provided between the outer wall of the gasification furnace 101 and the outer wall of the char receiving portion 172. Therefore, by forming the gas flow path 174 with the outer wall of the gasification furnace 101 and the outer wall of the char receiving portion 172, it is not necessary to provide another member, and the configuration can be simplified and the cost can be reduced. .
  • the char receiving portion 172 is provided below the pressure equalizing pipe 173, the bottom portion 181 in which the other end portion of the pressure equalizing tube 173 is opened, and the inclined portions 183 and 184 that are inclined downward toward the bottom portion 181. And are provided. Therefore, the char accumulated in the char receiving portion 172 can be easily collected in the bottom portion 181, and when the pressure in the gasification furnace 101 is reduced, the char accumulated in the char receiving portion 172 can be efficiently sucked and returned to the gasification furnace 101. it can.
  • FIG. 7 is a schematic diagram showing a pressure device in the gasifier according to Embodiment 2 of the present invention
  • FIG. 8 is a graph showing the state of char according to char particle size and blowing speed.
  • symbol is attached
  • the coal gasifier according to the second embodiment includes a pressure equalizing device 201 between the upper portion of the space portion 104, that is, between the gasification furnace 101 (heat exchanger accommodating portion 114) and the pressure vessel 103. Is provided.
  • the pressure equalizing device 201 includes a char receiving portion 202 provided above the heat exchanger in the space portion 104, and a pressure equalizing tube having one end communicating with the gasification furnace 101 and the other end opened to the char receiving portion 202. 203 and a gas flow path 204 that vertically penetrates the side portion of the char receiving portion 202.
  • the char receiving portion 202 is disposed over the entire circumference of the space portion 104 in a concave shape.
  • a plurality of pressure equalizing tubes 203 are provided at predetermined intervals (equal intervals) in the circumferential direction in the space portion 104.
  • the char receiving part 202 rises in a vertical direction from a horizontal bottom part 211 where the other end part of the pressure equalizing pipe 203 is opened and an end part of the bottom part 211 on the gasification furnace 101 (heat exchanger accommodating part 114) side.
  • the pressure vessel 103 has a support member 215 fixed to the inner wall surface
  • the char receiving portion 202 has a support portion 214 disposed on the support member 215 via a seal member 216 and is fixed by welding or the like.
  • the char receiving portion 202 is provided with a steadying member 217 on the gasification furnace 101 (heat exchanger accommodating portion 114) side of the first vertical wall portion 212.
  • This steadying member 217 can prevent the char receiving portion 202 from being vibrated by the seal gas rising up the gas flow path 204.
  • the steadying member 217 is disposed at a predetermined circumferential position in the gas flow path 204 and does not close the gas flow path 204. In this case, by providing the steadying member 217, welding or the like may be unnecessary by simply placing the support portion 214 of the char receiving portion 202 on the seal member 216 on the support member 215.
  • an inclined portion is provided on the support member 215 side, and an inclined portion is also provided on the support portion 214 of the char receiving portion 202, and the char receiving portion 202 has an inclined portion on the inclined portion of the support member 215.
  • the inclined portion can improve the adhesion between the char receiving portion 202, the seal member 216, and the support member 215, and improve the sealing performance.
  • the pressure equalizing tube 203 is disposed in the space portion 104, and is connected to the straight portion 218 along the vertical direction and the furnace wall 114 a of the heat exchanger accommodating portion 114 in the gasification furnace 101 continuously to the upper end of the straight portion 218. It comprises a curved portion 219 that is connected and fixed, and a wide-angle portion 220 that opens at a wide angle downward toward the lower end of the straight portion 218.
  • the gas flow path 204 is provided over the entire circumference of the space portion 104, and is between the outer wall of the gasification furnace 101 (heat exchanger accommodating portion 114) and the outer wall of the char receiving portion 202, that is, the vertical wall portion 212. By being provided, it is provided along the vertical direction along the outer wall of the gasification furnace 101 (heat exchanger accommodating part 114).
  • the pressure equalizing tube 203 is provided with a second char intrusion prevention member below the end of the curved portion 219 communicating with the gasification furnace 101 (heat exchanger accommodating portion 114). That is, the pressure equalizing tube 203 is provided with a protruding portion 221 whose lower side protrudes toward the gasification furnace 101 (heat exchanger accommodating portion 114) side by forming an inclined surface 219a at the opening end of the curved portion 219.
  • the protrusion 221 functions as a second char intrusion prevention member.
  • another plate may be fixed without extending the lower side of the opening end of the curved portion 219 in the pressure equalizing tube 203 and providing the second char intrusion prevention member.
  • the gas flow path 204 is provided with a first char intrusion preventing member on the upper side. That is, the gas flow path 204 is provided between the outer wall of the gasification furnace 101 (heat exchanger accommodating portion 114) and the first vertical wall portion 212 of the char receiving portion 202, and serves as a first char intrusion prevention member.
  • the eaves member 222 is inclined above the gas flow path 204 and fixed to the outer wall of the gasification furnace 101 (heat exchanger accommodating portion 114). In this case, the eaves member 222 of the pressure equalizing pipe 203 covers the entire upper part of the gas flow path 204 from below the curved portion 219 of the pressure equalizing pipe 203 on the outer wall of the gasification furnace 101 (heat exchanger accommodating portion 114). Inclined downward toward the straight line portion 218.
  • the char particles have a property that the blowing speed is set with respect to the particle diameter, and the char particles are blown up and scattered above the boundary, and settled below the boundary. That is, char particles having a particle size equal to or smaller than the collected particle size of the pressure equalizing device 201 flow out from the gasification furnace 101 to the char receiving section 202 through the pressure equalizing pipe 203 when the pressure of the gasification furnace 101 rises. And it winds up accompanying the sealing gas C which goes up the gas flow path 204, and settles in the char receiving part 202 by gravity after that. That is, char particles cannot settle with a flow of sealing gas above the associated flow rate.
  • the pressure in the pressure vessel 103 (space 104) is higher than the pressure in the gasifier 101.
  • the pressure of the fuel gas rising in the gasification furnace 101 may become higher than the pressure in the pressure vessel 103 (space part 104) due to pressure fluctuations.
  • a part of the fuel gas in the gasification furnace 101 flows out into the pressure vessel 103 (space part 104) through each pressure equalizing pipe 203, thereby suppressing the differential pressure between the gasification furnace 101 and the space part 104. Is done.
  • each pressure equalizing pipe 203 has a char receiving portion 202 arranged at the lower part, the char that flows out to the space portion 104 through each pressure equalizing pipe 203 together with the fuel gas is received by the char receiving portion 202 and accumulated there. Thus, it is prevented from falling below the space 104.
  • the pressure in the pressure vessel 103 (space 104) becomes higher than the pressure in the gasifier 101. Then, the char accumulated in the char receiving unit 202 is sucked by the pressure equalizing tube 203 and returned to the gasification furnace 101. In this case, since the lower end portion of the pressure equalizing tube 203 is wide-angled, and the inclined portions 183 and 184 are provided around the char receiving portion 202, the char deposited on the char receiving portion 202 is an opening of the pressure equalizing tube 203. It will be gathered in and sucked properly.
  • the char receiving portion 202 is arranged on the support member 215 fixed to the inner wall of the pressure vessel 103 via the seal member 201. Therefore, the char receiving unit 202 can be easily positioned at an appropriate position, and the mounting property of the char receiving unit 202 can be improved, and the seal member 216 prevents the seal gas from flowing to the char receiving unit 202. It is possible to prevent the deposited char from diffusing.
  • a gutter member 222 as a first char intrusion preventing member is provided above the gas flow path 204. Therefore, when the flow rate of the sealing gas rising through the gas flow path 204 is reduced, the char member 222 can prevent the char from entering the gas flow path 204 and the char can be prevented from diffusing into the space 104. .
  • a protruding portion 221 as a second char intrusion preventing member is provided below the communicating portion of the pressure equalizing tube 203 into the gasification furnace 101. Therefore, when the char in the fuel rises in the gasification furnace 101, the protrusion 221 can prevent the char from entering the pressure equalizing tube 203 and the char can be prevented from diffusing into the space 104.
  • the char receivers 172 and 202 are arranged over the entire circumference of the space 104 in the pressure equalizing devices 171 and 201, and the rectangular cross-sectional shape of the heat exchanger accommodating portion 114 in the gasification furnace 101 is obtained.
  • the total is divided into four, it is not limited to this configuration. For example, you may provide a char receiving part for every furnace wall 114a of the heat exchanger accommodating part 114 in the gasification furnace 101.
  • coal is used as a fuel.
  • high-grade coal and low-grade coal can be used, and the present invention is not limited to coal, and can be used as a renewable biological organic resource.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Industrial Gases (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

 ガス化装置において、中空形状をなす圧力容器(103)と、中空形状をなして圧力容器(103)内に空間部(104)を介して配置されるガス化炉(101)と、ガス化炉(101)の上部に配置される熱交換器(102)と、空間部(104)の下部にシールガスを供給するガスノズル(120)と、空間部(104)における熱交換器(102)より上方に設けられるチャー受部(172)と、一端部がガス化炉(101)内に連通して他端部がチャー受部(172)に開口する均圧管(173)と、チャー受部(172)の側部を上下に貫通するガス流路(174)とを設けることで、圧力容器内とガス化炉内との差圧変化を適正に抑制可能とすると共に構造の簡素化を可能とする。

Description

ガス化装置
 本発明は、石炭やバイオマスなどを燃焼・ガス化してガス燃料を生成するガス化装置に関するものである。
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、乾燥装置、石炭ガス化装置、ガス精製装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置などを有している。従って、石炭が乾燥されてから粉砕され、石炭ガス化装置に対して、微粉炭として供給されると共に、空気が取り込まれ、この石炭ガス化装置で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスがガス精製されてからガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。
 この石炭ガス化複合発電設備における石炭ガス化装置は、圧力容器内にガス化炉が配置され、このガス化炉の上方に熱交換器(ガス冷却器)が配置されて構成されており、圧力容器とガス化炉との空間部にシールガスが充填されている。このような石炭ガス化装置として、例えば、下記特許文献1に記載されたものがある。この特許文献1に記載された加圧型ガス化炉は、耐圧容器の内部に間隔をおいて水冷壁を設け、両者の間の空間部と炉本体内とを配管により連通、両者の差圧に応じて空間部に加圧用精製ガスを供給することで、空間部と炉本体内を均圧化するものである。
 また、このような石炭ガス化装置を簡素化するものとして、例えば、下記特許文献2に記載されたものがある。この特許文献2に記載されたガス化炉装置は、燃料をガス化するガス化炉と、ガス化炉で発生した生成ガスの温度調節と生成ガスの顕熱を利用して蒸気発生とを行うガス熱交換器とを格納している圧力容器とを設け、一端がガス化炉内に開口するとともに他端が圧力容器内に開口する均圧管を接続したものである。
特開昭61-246290号公報 特開2011-068812号公報
 ところが、特許文献1の加圧型ガス化炉では、空間部と炉本体内とを連通する配管、圧力計、加圧用精製ガス供給配管、開閉弁などが必要となり、構造が複雑化してしまう。一方、特許文献1の加圧型ガス化炉に特許文献2のガス化炉装置における均圧管を適用しようとすると、この均圧管を下方まで延出しなければならず、現実的ではない。
 本発明は、上述した課題を解決するものであり、圧力容器内とガス化炉内との差圧変化を適正に抑制可能とすると共に構造の簡素化を可能とするガス化装置を提供することを目的とする。
 上記の目的を達成するための本発明のガス化装置は、燃料を燃焼・ガス化することでガス燃料を生成するガス化装置であって、中空形状をなす圧力容器と、中空形状をなして前記圧力容器内に空間部を介して配置されるガス化炉と、前記ガス化炉の上部に配置される熱交換器と、前記空間部の下部に耐腐食性ガスを供給するガス供給部と、前記空間部における前記熱交換器より上方に設けられるチャー受部と、一端部が前記ガス化炉内に連通して他端部が前記チャー受部に開口する均圧管と、前記チャー受部の側部を上下に貫通するガス流路と、を有することを特徴とするものである。
 従って、圧力容器とガス化炉との間の空間部の上方にチャー受部を設けると共に、一端部がガス化炉内に連通して他端部がチャー受部に開口する均圧管を設けることで、均圧管によりガス化炉内と圧力容器(空間部)内との差圧を減少することができると共に、ガス化炉内の圧力増加により空間部へ排出された燃料ガス中のチャーを適正に受け止めることができ、その結果、圧力容器内とガス化炉内との差圧変化を適正に抑制可能とすることができ、また、均圧管を長くする必要がなくなって構造を簡素化することができる。
 本発明のガス化装置では、前記均圧管は、前記空間部に配置され、一端部が前記ガス化炉における鉛直方向に沿う炉壁を開口し、他端部が広角して前記チャー受部の底面に開口することを特徴としている。
 従って、均圧管の一端部がガス化炉における鉛直方向に沿う炉壁に開口することで、均圧管は上昇する燃料ガスの流速変動がほとんどない領域に連通することとなり、均圧管へのチャーの侵入を抑制することができる。また、均圧管の他端部が広角してチャー受部の底面に開口することで、ガス化炉内の圧力減少によりチャー受部に堆積したチャーを適正に吸引してガス化炉へ戻すことができる。
 本発明のガス化装置では、前記チャー受部は、凹部形状をなして前記空間部の全周あるいは一部にわたって配置され、前記均圧管は、前記空間部の周方向に所定間隔で複数設けられることを特徴としている。
 従って、チャー受部が凹部形状をなして空間部の全周あるいは一部にわたって配置される一方、均圧管が周方向に所定間隔で複数設けられることで、均圧管によりガス化炉内と空間部との差圧を適正に均圧させることができ、チャー受部によりガス化炉内の圧力増加により空間部へ排出された燃料ガス中のチャーを確実に受け止めることができる。
 本発明のガス化装置では、前記ガス流路は、前記空間部の全周あるいは一部にわたって設けられることを特徴としている。
 従って、ガス流路を空間部の全周あるいは一部にわたって設けることで、腐食性ガスを圧力容器とガス化炉との間の空間部の全域にわたって適正に充満させることができる。
 本発明のガス化装置では、前記ガス流路は、前記ガス化炉の外壁に沿う鉛直方向に沿って設けられることを特徴としている。
 従って、ガス化炉が圧力容器より高温状態にあることから、腐食性ガスは、ガス化炉の外壁に沿って上昇することとなり、ガス流路がガス化炉の外壁に沿って設けられることで、このガスの流れを乱すことなく、空間部の全域にわたって適正にガスを充満させることができる。
 本発明のガス化装置では、前記ガス流路は、前記ガス化炉の外壁と前記チャー受部の外壁との間に設けられることを特徴としている。
 従って、ガス化炉の外壁とチャー受部の外壁とによりガス流路を構成することで、別部材を設ける必要がなくなり、構成の簡素化及び低コスト化を可能とすることができる。
 本発明のガス化装置では、前記チャー受部は、前記均圧管より下方に設けられ、前記均圧管の他端部が開口する底部と、該底部に向かって下方に傾斜する傾斜部とを有することを特徴としている。
 従って、チャー受部を均圧管の他端部が開口する底部とその周囲の傾斜部とで構成することで、チャー受部に堆積したチャーを底部に集め易くなり、ガス化炉内の圧力減少時に、チャー受部に堆積したチャーを効率良く吸引してガス化炉へ戻すことができる。
 本発明のガス化装置では、前記チャー受部は、前記圧力容器の内壁に固定されたサポート部材上にシール部材を介して配置されることを特徴としている。
 従って、チャー受部の装着性を向上することができると共に、シール部材によりガスの流通を阻止してチャー受部に堆積したチャーの拡散を防止することができる。
 本発明のガス化装置では、前記ガス流路は、上方に第1チャー侵入防止部材が設けられることを特徴としている。
 従って、ガス流路の上方に第1チャー侵入防止部材を設けることで、ガス流路におけるガスの流通量が減少したとき、この第1チャー侵入防止部材によりガス流路へのチャーの侵入を防止し、空間部へのチャーの拡散を防止することができる。
 本発明のガス化装置では、前記均圧管は、前記ガス化炉内への連通部の下方に第2チャー侵入防止部材が設けられることを特徴としている。
 従って、均圧管におけるガス化炉内への連通部の下方に第2チャー侵入防止部材を設けることで、ガス化炉内を燃料中のチャーが上昇するとき、第2チャー侵入防止部材により均圧管へのチャーの侵入を防止し、空間部へのチャーの拡散を防止することができる。
 本発明のガス化装置によれば、圧力容器とガス化炉との間の空間部における熱交換器より上方に設けられるチャー受部と、一端部がガス化炉内に連通して他端部がチャー受部に開口する均圧管と、チャー受部の側部を上下に貫通するガス流路とを設けるので、圧力容器内とガス化炉内との差圧変化を適正に抑制可能とすることができると共に、均圧管を長くする必要がなくなって構造を簡素化することができる。
図1は、本発明の実施例1に係るガス化装置を表す概略図である。 図2は、実施例1のガス化装置における均圧装置を表す平面概略図である。 図3は、実施例1の均圧装置を表す図2のIII-III断面図である。 図4は、実施例1の均圧装置を表す図2のIV-IV断面図である。 図5は、実施例1の均圧装置の作用を表す概略図である。 図6は、実施例1のガス化装置が適用された石炭ガス化複合発電設備の概略構成図である。 図7は、本発明の実施例2に係るガス化装置における気圧装置を表す概略図である。 図8は、チャー粒径と吹き上げ速度によるチャーの状態を表すグラフである。
 以下に添付図面を参照して、本発明に係るガス化装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本発明の実施例1に係るガス化装置を表す概略図、図2は、実施例1のガス化装置における均圧装置を表す平面概略図、図3は、実施例1の均圧装置を表す図2のIII-III断面図、図4は、実施例1の均圧装置を表す図2のIV-IV断面図、図5は、実施例1の均圧装置の作用を表す概略図、図6は、実施例1のガス化装置が適用された石炭ガス化複合発電設備の概略構成図である。
 実施例1の石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤としてガス化装置で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、実施例1の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。
 実施例1において、図6に示すように、石炭ガス化複合発電設備10は、給炭装置11、微粉炭機(ミル)13、石炭ガス化装置14、チャー回収装置15、ガス精製装置16、ガスタービン設備17、蒸気タービン設備18、発電機19、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)20を有している。
 給炭装置11は、原炭バンカ21と、石炭供給機22と、クラッシャ23とを有している。原炭バンカ21は、石炭を貯留可能であって、所定量の石炭を石炭供給機22に投下することができる。石炭供給機22は、原炭バンカ21から投下された石炭をコンベアなどにより搬送し、微粉炭機(ミル)13に投下することができる。
 微粉炭機13は、石炭粉砕機であって、原炭を細かい粒子状に粉砕して微粉炭を製造するものである。即ち、微粉炭機13は、原炭(乾燥炭)を所定粒径以下の石炭、つまり、微粉炭とするものである。そして、微粉炭機13で粉砕後の微粉炭は、微粉炭バグフィルタ37a,37bにより搬送用ガスから分離され、微粉炭供給ホッパ38a,38bに貯留される。
 石炭ガス化装置14は、微粉炭機13で処理された微粉炭が供給可能であると共に、チャー回収装置15で回収されたチャー(石炭の未燃分)が戻されてリサイクル可能となっている。
 即ち、石炭ガス化装置14は、ガスタービン設備17(圧縮機61)から圧縮空気供給ライン41が接続されており、このガスタービン設備17で圧縮された圧縮空気が供給可能となっている。空気分離装置42は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン43が石炭ガス化装置14に接続され、この第1窒素供給ライン43に微粉炭供給ホッパ38a,38bからの給炭ライン44a,44bが接続されている。また、第2窒素供給ライン45も石炭ガス化装置14に接続され、この第2窒素供給ライン45にチャー回収装置15からのチャー戻しライン46が接続されている。更に、酸素供給ライン47は、圧縮空気供給ライン41に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。
 石炭ガス化装置14は、例えば、2段2室噴流床形式のガス化炉を有し、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化装置14は、微粉炭の混入した異物を除去する異物除去装置48が設けられている。この場合、石炭ガス化装置14は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化装置14は、チャー回収装置15に向けて可燃性ガスのガス生成ライン49が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン49にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置15に供給するとよい。
 チャー回収装置15は、集塵装置51と供給ホッパ52とを有している。この場合、集塵装置51は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化装置14で生成された可燃性ガスに含有するチャーを分離することができる。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。供給ホッパ52は、集塵装置51で可燃性ガスから分離されたチャーを貯留するものである。なお、集塵装置51と供給ホッパ52との間にビンを配置し、このビンに複数の供給ホッパ52を接続するように構成してもよい。そして、供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。
 ガス精製装置16は、チャー回収装置15によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置16は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備17に供給する。なお、このガス精製装置16では、チャーが分離された可燃性ガス中にはまだ硫黄分(HS)が含まれているため、アミン吸収液によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。
 ガスタービン設備17は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置16から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備17は、圧縮機61から石炭ガス化装置14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気とガス精製装置16から供給された燃料ガスとを混合して燃焼し、タービン63にて、発生した燃焼ガスにより回転軸64を回転することで発電機19を駆動することができる。
 蒸気タービン設備18は、ガスタービン設備17における回転軸64に連結されるタービン69を有しており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン設備17(タービン63)からの排ガスライン70に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ20は、蒸気タービン設備18のタービン69との間に蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69が駆動し、回転軸64を回転することで発電機19を駆動することができる。
 そして、排熱回収ボイラ20で熱が回収された排ガスは、ガス浄化装置74により有害物質を除去され、浄化された排ガスは、煙突75から大気へ放出される。
 ここで、実施例1の石炭ガス化複合発電設備10の作動について説明する。
 実施例1の石炭ガス化複合発電設備10において、給炭装置11にて、原炭(石炭)が原炭バンカ21に貯留されており、この原炭バンカ21の石炭が石炭供給機22により微粉炭機13に投入され、ここで、細かい粒子状に粉砕されて微粉炭が製造され、微粉炭バグフィルタ37a,37bを介して微粉炭供給ホッパ38a,38bに貯留される。この微粉炭供給ホッパ38a,38bに貯留される微粉炭は、空気分離装置42から供給される窒素により第1窒素供給ライン43を通して石炭ガス化装置14に供給される。また、後述するチャー回収装置15で回収されたチャーが、空気分離装置42から供給される窒素により第2窒素供給ライン45を通して石炭ガス化装置14に供給される。更に、後述するガスタービン設備17から抽気された圧縮空気が昇圧機68で昇圧された後、空気分離装置42から供給される酸素と共に圧縮空気供給ライン41を通して石炭ガス化装置14に供給される。
 石炭ガス化装置14では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化装置14からガス生成ライン49を通して排出され、チャー回収装置15に送られる。
 このチャー回収装置15にて、可燃性ガスは、まず、集塵装置51に供給されることで、ここで可燃性ガスからこのガスに含有するチャーが分離される。そして、チャーが分離された可燃性ガスは、ガス排出ライン53を通してガス精製装置16に送られる。一方、可燃性ガスから分離した微粒チャーは、供給ホッパ52に堆積され、チャー戻しライン46を通して石炭ガス化装置14に戻されてリサイクルされる。
 チャー回収装置15によりチャーが分離された可燃性ガスは、ガス精製装置16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備17では、圧縮機61が圧縮空気を生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気と、ガス精製装置16から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン63を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。
 そして、ガスタービン設備17におけるタービン63から排出された排気ガスは、排熱回収ボイラ20にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備18に供給する。蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気によりタービン69を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。
 その後、ガス浄化装置74では、排熱回収ボイラ20から排出された排気ガスの有害物質が除去され、浄化された排ガスが煙突75から大気へ放出される。
 以下、上述した石炭ガス化複合発電設備10における石炭ガス化装置14について詳細に説明する。
 石炭ガス化装置14は、図1に示すように、中空断面形状を有するガス化炉101と、ガス化炉101の上方に配置される熱交換器102と、ガス化炉101を収容する圧力容器103とを有しており、ガス化炉101と圧力容器103との間に空間部104が区画されている。
 ガス化炉101は、中空形状をなし、上部からリダクタ部111、ディフューザ部112、コンバスタ部113とから構成されている。
 圧力容器103は、中空円筒形状をなし、上端部にガス排出口121が形成される一方、下端部にスラグ排出口122が形成されている。この圧力容器103は、内部にガス化炉101が配置されている。即ち、ガス化炉101は、所定の空間部104を介してその外側に圧力容器103が配置されており、ガス化炉101におけるリダクタ部111の外面が支持部105により圧力容器103の内面に支持されている。
 そして、熱交換器収容部114は、上端部がエキスパンションジョイント123により圧力容器103の上端部に連結され、ガス排出口121に連通している。圧力容器103は、下部にスラグホッパ124が設けられており、ガス化炉101は、下端部、つまり、コンバスタ部113から垂下されたリング形状をなす延出部116がこのスラグホッパ124の貯留水に浸水して水封されている。
 また、ガス化炉101は、リダクタ部111に周方向に均等間隔で配置される複数のバーナ117からなる燃焼装置が配置され、コンバスタ部113に均等間隔で配置される複数のバーナ118,119からなる2組の燃焼装置が配置されている。この各バーナ117,118,119は、外部から圧力容器103及びガス化炉101を貫通して略水平をなすように固定されている。そして、ガス化炉101の支持部105は、バーナ117の上方に位置している。この場合、支持部105は、この位置に限らず、ディフューザ部112やコンバスタ部113に設けてもよい。即ち、各バーナ117,118,119の近傍であることが好ましい。
 なお、バーナ117は、図6に示すように、第1窒素供給ライン43と給炭ライン44a,44bとが集合したラインが接続され、バーナ118は、チャー戻しライン46が接続され、バーナ119は、酸素供給ライン47と圧縮空気供給ライン41とが集合したラインが接続される。
 また、圧力容器103は、この圧力容器103とガス化炉101との間に形成される空間部104に耐腐食性ガスとしてのシールガス(例えば、窒素ガス、二酸化炭素ガス、天然ガスなど)を供給するガスノズル(ガス供給部)120が設けられている。このガスノズル120は、圧力容器103の下部、具体的には、バーナ119より下方に設けられており、空間部104の下部にシールガスを供給することで、シールガスが空間部104内を上昇して全領域に充満させることができる。
 一方、熱交換器102は、上下方向に沿って複数の熱交換部として、上方から下方に向かって節炭器(エコノマイザ)131、過熱器(スーパーヒータ)132,133、蒸発器(エバポレータ)134が所定間隔をあけて配置されている。
 ガス化炉101は、炉壁が鉛直方向に延びて周方向に並設される複数の伝熱管141により構成されている。具体的に、炉壁は、伝熱管141とフィン142が交互に溶接により連結されており、この伝熱管141とフィン142は、ステンレス製とすることが好ましい。
 そして、ガス化炉101は、炉壁が鉛直方向に延びる同数の伝熱管141により構成される。即ち、各伝熱管141は、ガス化炉101を全域にわたって鉛直方向に沿って延設されており、一部の伝熱管141が切断されることなく、また、別の伝熱管が増加することなく、同じ伝熱管141が上下に伸び、周方向に並設されることで、ガス化炉101の炉壁が形成されている。
 そして、複数の伝熱管141は、下端部が管寄せ141aに集められ、上端部が管寄せ141bに集められている。蒸気ドラム151は、下降管152を介して管寄せ141aに連結されると共に、上昇管153を介して管寄せ141bに連結されており、下降管152に循環ポンプ154が設けられている。また、下降管152は、分岐管155が設けられ、この分岐管155は、蒸発器134の伝熱管134aの一端部(入口ヘッダ)に連結され、この伝熱管134aの他端部(出口ヘッダ)に連結された配送管156は、蒸気ドラム151に連結されている。
 外部からの給水管157は、節炭器131の伝熱管131aの一端部(入口ヘッダ)に連結され、この伝熱管131aの他端部(出口ヘッダ)に連結された送水管158は、蒸気ドラム151に連結されている。また、蒸気ドラム151からの蒸気管159は、分岐して過熱器132,133の伝熱管132a,133aの一端部(入口ヘッダ)に連結され、この伝熱管132a,133aの他端部(出口ヘッダ)に連結された蒸気排出管160は、図示しない蒸気タービンに連結されている。
 熱交換器102は、節炭器131より上方に梁部材161が配置されており、この梁部材161は、端部が炉壁(伝熱管141及びフィン142)に溶接により連結されている。また、熱交換器102は、上下方向に沿って吊具としての複数の冷却管162が配置されており、下端部が給水管157に連結される一方、上端部が梁部材161に支持された後、送水管158に連結されている。そして、2つの過熱器132,133と蒸発器134は、吊り金具132b,133b,134bを介して複数の冷却管162に吊下げ支持されている。また、節炭器131は、炉壁(伝熱管141及びフィン142)に溶接により固定された支持板131bに載置支持されている。
 即ち、熱交換器102は、ガス化炉101に近い下部ほど温度が高いことから、溶接の耐久性が厳しい。そのため、下方に位置する2つの過熱器132,133と蒸発器134を、上方の梁部材161から複数の冷却管162を介して吊下げ、上方に位置する節炭器131を、炉壁に溶接された支持板131bに載置している。この場合、熱交換器102の温度条件に応じて、2つの過熱器132,133も炉壁に支持板を溶接して載置支持してもよい。
 ところで、実施例1の石炭ガス化装置14は、空間部104の上部、つまり、ガス化炉101(熱交換器収容部114)と圧力容器103との間に、沈降式の分級機構としての均圧装置171が設けられている。この均圧装置171は、空間部104における熱交換器102より上方に設けられるチャー受部172と、一端部がガス化炉101内に連通して他端部がチャー受部172に開口する均圧管173と、チャー受部172の側部を上下に貫通するガス流路174とを有している。
 均圧装置171において、図2から図4に示すように、チャー受部172は、凹部形状をなして空間部104の全周(あるいは、一部)にわたって配置され、ガス化炉101における熱交換器収容部114の四角形断面形状に合わせて4分割されており、それぞれがほぼ同様の構成となっている。均圧管173は、空間部104における周方向に所定間隔(均等間隔)で複数(本実施例では、4個)設けられている。チャー受部172は、空間部104における圧力容器103の内壁面とガス化炉101における熱交換器収容部114の炉壁114aの外面とを閉塞するように配置されており、各均圧管173の下方に対向して設けられている。
 即ち、チャー受部172は、均圧管173の他端部が開口する水平な底部181と、この底部181におけるガス化炉101(熱交換器収容部114)側の端部から鉛直方向に立ち上がる縦壁部182と、底部181における圧力容器103側の端部から斜め上方に向かって立ち上がる第1傾斜部183と、底部181における空間部104の周方向に向かって斜め上方に立ち上がる2つの第2傾斜部184とから構成されている。そのため、チャー受部172は、3つの傾斜部183,184が底部181に向かって下方に傾斜していることから、チャー受部172が受け止めたチャーを重力により底部181に集めることができる。なお、この傾斜部183,184は、直線的な傾斜ではなく、湾曲した傾斜であってもよく、傾斜部183,184を合体した流面形状としてもよい。
 各均圧管173は、ほぼ同様の構成をなし、空間部104に配置されている。そして、各均圧管173は、鉛直方向に沿った直線部185と、この直線部185の上端に連続してガス化炉101における熱交換器収容部114の炉壁114aに連通して固定される湾曲部186と、直線部185の下端に連続して下方に向かって広角して開口する広角部187とから構成されている。この場合、熱交換器収容部114は、鉛直方向に沿う同径部114bからその上部が漸次小さくなる縮径部114cとなり、エキスパンションジョイント123を介して圧力容器103の上端部に連結されており、湾曲部186は、熱交換器収容部114の同径部114bの炉壁を開口している。一方、広角部187は、チャー受部172の底部181の上面(底面)に所定隙間を持って開口している。なお、この広角部187の開口面とチャー受部172の底部181の上面(底面)との隙間は、広角部187の開口幅(内径)の2倍以下に設定することが望ましい。
 また、ガス流路174は、空間部104の全周(あるいは、一部)にわたって設けられている。具体的に、ガス流路174は、ガス化炉101(熱交換器収容部114)の外壁とチャー受部172の外壁、つまり、縦壁部182との間に設けられることで、ガス化炉101(熱交換器収容部114)の外壁に沿う鉛直方向に沿って設けられている。このガス流路174は、下部がチャー受部172における底部181より下方に開口し、上部が均圧管173の湾曲部186に向けて開口している。
 なお、チャー受部172を凹部形状としたが、その容積は、石炭ガス化装置14に投入される微粉炭量の1/2、生成される燃料ガス量から算出されるダスト濃度、ガス化炉101の圧力上昇時にガス化炉101から間隙に流入するガス量の積から算出される流入粒子の体積よりも大きく設定されている。
 ここで、上述した実施例1の石炭ガス化装置14の作動について説明する。
 石炭ガス化装置14において、図1に示すように、ガス化炉101にて、バーナ117により窒素と微粉炭が投入されて点火されると共に、バーナ118,119によりチャーと圧縮空気(酸素)が投入されて点火される。すると、コンバスタ部113では、微粉炭とチャーの燃焼により高温燃焼ガスが発生する。また、コンバスタ部113では、微粉炭とチャーの燃焼により高温ガス中で溶融スラグが生成され、この溶融スラグが炉壁へ付着すると共に、炉底へ落下し、最終的にスラグホッパ124内の貯水へ排出される。そして、コンバスタ部113で発生した高温燃焼ガスは、ディフューザ部112を通ってリダクタ部111に上昇する。このリダクタ部111では、微粉炭が高温燃焼ガスと混合し、高温の還元雰囲気場においてガス化反応が行われ、二酸化炭素を主成分とする可燃性ガス(石炭ガス)が生成される。
 このとき、給水管157から節炭器131へ給水が行われ、給水がここで加熱された後、送水管158を通って蒸気ドラム151に送られる。この蒸気ドラム151は、給水を循環ポンプ154により下降管152を通して炉壁としての複数の伝熱管141の下部に送ると共に、分岐管155を通して蒸発器134に送る。そして、給水が複数の伝熱管141を上昇するとき、ガス化炉101が冷却され、上昇管153を通って蒸気ドラム151に送られる。また、蒸発器134は、熱交換器102内を上昇する可燃性ガスにより給水を加熱し、汽水混合の状態で配送管156を通して蒸気ドラム151に送る。
 また、蒸気ドラム151は、汽水分離が行われ、蒸気を蒸気管159により過熱器132,133に送り、ここで過熱する。過熱器132,133は、熱交換器102内を上昇する可燃性ガスにより蒸気を過熱し、生成した過熱蒸気を蒸気排出管160から蒸気タービンに送る。
 また、ガス化炉101と圧力容器103との間の空間部104にて、ガスノズル120は、空間部104にシールガスを供給しており、このシールガスは、空間部104を上昇する。この場合、ガス化炉101と空間部104との間に均圧装置171が設けられていることから、ガス化炉101の圧力が変動しても、均圧装置171によりガス化炉101と空間部104との差圧が抑制される。
 即ち、石炭ガス化装置14は、通常運転時、圧力容器103内(空間部104)の圧力がガス化炉101内の圧力より高くなっている。ところが、圧力変動などにより、ガス化炉101内を上昇する燃料ガスの圧力が圧力容器103内(空間部104)の圧力よりも高くなることがある。このとき、ガス化炉101内の燃料ガスの一部が、各均圧管173を通して圧力容器103内(空間部104)へ流出することで、ガス化炉101と空間部104との差圧が抑制される。
 また、ガス化炉101内の燃料ガスは、チャーを含んでいることから、図5に実線の矢印Aで示すように、ガス化炉101内の燃料ガスと共にチャーが、各均圧管173を通して圧力容器103内(空間部104)へ流出する。各均圧管173は、下部にチャー受部172が配置されていることから、燃料ガスと共に各均圧管173を通して空間部104へ流出したチャーは、チャー受部172に受け止められてここに堆積することとなり、空間部104の下方に落下することが防止される。なお、この空間部104は、ガス化炉101側(内周側)が圧力容器103側(外周側)より高温であることから、シールガスが空間部104の内周側に沿って上昇し、均圧装置171より内周側のガス流路174を通って上昇することができる。
 そして、石炭ガス化装置14が通常運転時に戻ると、圧力容器103内(空間部104)の圧力がガス化炉101内の圧力より高くなる。すると、図5に点線の矢印Bで示すように、チャー受部172に堆積するチャーは、均圧管173により吸引され、ガス化炉101へ戻される。この場合、均圧管173の下端部が広角する一方、チャー受部172の周囲に傾斜部183,184が設けられていることから、チャー受部172に堆積するチャーは、均圧管173の開口部に集まって適正に吸引されることとなる。
 このように実施例1のガス化装置にあっては、中空形状をなす圧力容器103と、中空形状をなして圧力容器103内に空間部104を介して配置されるガス化炉101と、ガス化炉101の上部に配置される熱交換器102と、空間部104の下部にシールガスを供給するガスノズル120と、空間部104における熱交換器102より上方に設けられるチャー受部172と、一端部がガス化炉101内に連通して他端部がチャー受部172に開口する均圧管173と、チャー受部172の側部を上下に貫通するガス流路174とを設けている。
 従って、ガス化炉101内に圧力変動が発生しても、均圧管173によりガス化炉101内と空間部104内との差圧を減少することができると共に、ガス化炉101内の圧力増加により空間部104へ排出された燃料ガス中のチャーをチャー受部172により適正に受け止めることができ、空間部104の下方へのチャーの落下を阻止することができる。その結果、圧力容器104内とガス化炉101内との差圧変化を適正に抑制可能とすることができ、また、均圧管173を長くする必要がなくなって構造を簡素化することができ、石炭ガス化装置14の運転の健全性を維持することできる。
 実施例1のガス化装置では、均圧管173を空間部104に配置し、一端部をガス化炉101における鉛直方向に沿う炉壁に開口し、他端部を広角してチャー受部172の底部181の上面に開口している。従って、均圧管173の一端部がガス化炉101における鉛直方向に沿う炉壁に開口することで、均圧管173がガス化炉101を上昇する燃料ガスの流速変動がほとんどない領域に連通することとなり、均圧管173へのチャーの侵入を抑制することができる。また、均圧管173の他端部が広角してチャー受部172の底部181の上面に開口することで、ガス化炉101内の圧力減少によりチャー受部172に堆積したチャーを適正に吸引してガス化炉101へ戻すことができる。
 実施例1のガス化装置では、チャー受部172を凹部形状とし、空間部104の全周(あるいは、一部)にわたって配置し、均圧管173を空間部104の周方向に所定間隔で複数設けている。従って、均圧管173によりガス化炉101内と空間部104との差圧を適正に均圧させることができ、チャー受部172によりガス化炉101内の圧力増加により空間部104へ排出された燃料ガス中のチャーを確実に受け止めることができる。
 実施例1のガス化装置では、ガス流路174を空間部104の全周(あるいは、一部)にわたって設けている。従って、シールガスを圧力容器103とガス化炉101との間の空間部104の全域にわたって適正に充満させることができる。
 実施例1のガス化装置では、ガス流路174をガス化炉101の外壁に沿う鉛直方向に沿って設けている。従って、ガス化炉101が圧力容器103より高温状態にあることから、シールガスは、ガス化炉101の外壁に沿って上昇することとなり、ガス流路174がガス化炉101の外壁に沿って設けられることで、このガスの流れを乱すことなく、空間部104の全域にわたって適正にガスを充満させることができる。
 実施例1のガス化装置では、ガス流路174をガス化炉101の外壁とチャー受部172の外壁との間に設けている。従って、ガス化炉101の外壁とチャー受部172の外壁とによりガス流路174を構成することで、別部材を設ける必要がなくなり、構成の簡素化及び低コスト化を可能とすることができる。
 実施例1のガス化装置では、チャー受部172を均圧管173より下方に設け、均圧管173の他端部が開口する底部181と、底部181に向かって下方に傾斜する傾斜部183,184とを設けている。従って、チャー受部172に堆積したチャーを底部181に集め易くなり、ガス化炉101内の圧力減少時に、チャー受部172に堆積したチャーを効率良く吸引してガス化炉101へ戻すことができる。
 図7は、本発明の実施例2に係るガス化装置における気圧装置を表す概略図、図8は、チャー粒径と吹き上げ速度によるチャーの状態を表すグラフである。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例2の石炭ガス化装置は、図7に示すように、空間部104の上部、つまり、ガス化炉101(熱交換器収容部114)と圧力容器103との間に、均圧装置201が設けられている。この均圧装置201は、空間部104における熱交換器より上方に設けられるチャー受部202と、一端部がガス化炉101内に連通して他端部がチャー受部202に開口する均圧管203と、チャー受部202の側部を上下に貫通するガス流路204とを有している。
 均圧装置201において、チャー受部202は、凹部形状をなして空間部104の全周にわたって配置されている。均圧管203は、空間部104における周方向に所定間隔(均等間隔)で複数設けられている。
 即ち、チャー受部202は、均圧管203の他端部が開口する水平な底部211と、この底部211におけるガス化炉101(熱交換器収容部114)側の端部から鉛直方向に立ち上がる第1縦壁部212と、底部211における圧力容器103側の端部から鉛直方向に立ち上がる第2縦壁部213と、この第2縦壁部213の上端部から水平方向に延出する支持部214とから構成されている。圧力容器103は、内壁面にサポート部材215が固定されており、チャー受部202は、支持部214がサポート部材215上にシール部材216を介して配置され、溶接などにより固定されている。
 また、チャー受部202は、第1縦壁部212におけるガス化炉101(熱交換器収容部114)側に振れ止め部材217が設けられている。この振れ止め部材217は、ガス流路204を上昇するシールガスによるチャー受部202の振動を防止することができる。なお、この振れ止め部材217は、ガス流路204における周方向の所定の位置に配置されており、ガス流路204を閉塞するものではない。この場合、振れ止め部材217を設けることで、チャー受部202の支持部214をサポート部材215上にシール部材216に載置するだけで、溶接などを不要としてもよい。
 なお、サポート部材215側に傾斜部を設けると共に、チャー受部202の支持部214にも傾斜部を設け、チャー受部202を支持部214の傾斜部がサポート部材215の傾斜部上にシール部材216を介して配置してもよく、この場合、傾斜部によりチャー受部202とシール部材216とサポート部材215との密着性を高め、シール性を向上することができる。
 均圧管203は、空間部104に配置されており、鉛直方向に沿った直線部218と、この直線部218の上端に連続してガス化炉101における熱交換器収容部114の炉壁114aに連通して固定される湾曲部219と、直線部218の下端に連続して下方に向かって広角して開口する広角部220とから構成されている。
 ガス流路204は、空間部104の全周にわたって設けられており、ガス化炉101(熱交換器収容部114)の外壁とチャー受部202の外壁、つまり、縦壁部212との間に設けられることで、ガス化炉101(熱交換器収容部114)の外壁に沿う鉛直方向に沿って設けられている。
 また、均圧管203は、ガス化炉101(熱交換器収容部114)内へ連通する湾曲部219の端部の下方に第2チャー侵入防止部材が設けられている。即ち、均圧管203は、湾曲部219の開口端に傾斜面219aが形成されることで、下側がガス化炉101(熱交換器収容部114)側に突出する突出部221が設けられており、この突出部221が第2チャー侵入防止部材として機能する。この場合、均圧管203における湾曲部219の開口端の下側を延長して第2チャー侵入防止部材を設けずに、別の板を固定してもよい。
 また、ガス流路204は、上方に第1チャー侵入防止部材が設けられている。即ち、ガス流路204は、ガス化炉101(熱交換器収容部114)の外壁とチャー受部202の第1縦壁部212との間に設けられており、第1チャー侵入防止部材としての庇部材222がこのガス流路204の上方に傾斜してガス化炉101(熱交換器収容部114)の外壁に固定されている。この場合、庇部材222は、ガス化炉101(熱交換器収容部114)の外壁における均圧管203の湾曲部219の下方から、ガス流路204の上方を全て覆うように、均圧管203の直線部218に向けて下方に傾斜して配置されている。
 ところで、図8に示すように、チャーの粒子は、粒径に対する吹き上げ速度が設定されており、この境界より上方で吹き上がって飛散し、この境界より下方で沈降する性質を有している。即ち、チャーの粒子は、均圧装置201の捕集粒径以下の粒子が、ガス化炉101の圧力上昇時にこのガス化炉101から均圧管203を通してチャー受部202に流出する。そして、ガス流路204を上昇するシールガスCに随伴されて巻上がり、その後重力によりチャー受部202に沈降する。即ち、チャーの粒子は、随伴された流速以上のシールガスの流れでは沈降することができない。そのため、ガス化炉101の圧力上昇時に、ガス化炉101から均圧管203を通してチャー受部202に流出して吹き上がる流れAの流速V1に対して、ガス流路204を上昇するシールガスの流速V2を大きくすることで、ガス流路204から下方に沈降するチャーをなくすことができる。
 ここで、上述した実施例2の均圧装置201の作用について説明する。
 石炭ガス化装置の通常運転時、圧力容器103内(空間部104)の圧力がガス化炉101内の圧力より高くなっている。ところが、圧力変動などにより、ガス化炉101内を上昇する燃料ガスの圧力が圧力容器103内(空間部104)の圧力よりも高くなることがある。このとき、ガス化炉101内の燃料ガスの一部が、各均圧管203を通して圧力容器103内(空間部104)へ流出することで、ガス化炉101と空間部104との差圧が抑制される。
 また、ガス化炉101内の燃料ガスは、チャーを含んでいることから、ガス化炉101内の燃料ガスと共にチャーが、各均圧管203を通して圧力容器103内(空間部104)へ流出する。各均圧管203は、下部にチャー受部202が配置されていることから、燃料ガスと共に各均圧管203を通して空間部104へ流出したチャーは、チャー受部202に受け止められてここに堆積することとなり、空間部104の下方に落下することが防止される。
 そして、石炭ガス化装置14が通常運転時に戻ると、圧力容器103内(空間部104)の圧力がガス化炉101内の圧力より高くなる。すると、チャー受部202に堆積するチャーは、均圧管203により吸引され、ガス化炉101へ戻される。この場合、均圧管203の下端部が広角する一方、チャー受部202の周囲に傾斜部183,184が設けられていることから、チャー受部202に堆積するチャーは、均圧管203の開口部に集まって適正に吸引されることとなる。
 このように実施例2のガス化装置にあっては、チャー受部202を圧力容器103の内壁に固定されたサポート部材215上にシール部材201を介して配置としている。従って、チャー受部202を容易に適正位置に位置決めすることができ、チャー受部202の装着性を向上することができると共に、シール部材216によりシールガスの流通を阻止してチャー受部202に堆積したチャーの拡散を防止することができる。
 実施例2のガス化装置では、ガス流路204の上方に第1チャー侵入防止部材としての庇部材222を設けている。従って、ガス流路204を上昇するシールガスの流量が減少したとき、庇部材222によりによりガス流路204へのチャーの侵入を防止し、空間部104へのチャーの拡散を防止することができる。
 実施例2のガス化装置では、均圧管203におけるガス化炉101内への連通部の下方に第2チャー侵入防止部材としての突出部221を設けている。従って、ガス化炉101内を燃料中のチャーが上昇するとき、突出部221により均圧管203へのチャーの侵入を防止し、空間部104へのチャーの拡散を防止することができる。
 なお、上述した実施例では、均圧装置171,201にて、チャー受部172,202を空間部104の全周にわたって配置し、ガス化炉101における熱交換器収容部114の四角形断面形状に合わせて4分割としたが、この構成に限定されるものではない。例えば、ガス化炉101における熱交換器収容部114の炉壁114aごとにチャー受部を設けてもよい。
 また、上述した実施例では、燃料として石炭を使用したが、高品位炭や低品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。
 11 給炭装置
 13 微粉炭機
 14 石炭ガス化装置
 15 チャー回収装置
 16 ガス精製装置
 17 ガスタービン設備
 18 蒸気タービン設備
 19 発電機
 20 排熱回収ボイラ
 101 ガス化炉
 102 熱交換器
 103 圧力容器
 104 空間部
 120 ガスノズル(ガス供給部)
 171,201 均圧装置
 172,202 チャー受部
 173,203 均圧管
 174,204 ガス流路

Claims (10)

  1.  燃料を燃焼・ガス化することでガス燃料を生成するガス化装置であって、
     中空形状をなす圧力容器と、
     中空形状をなして前記圧力容器内に空間部を介して配置されるガス化炉と、
     前記ガス化炉の上部に配置される熱交換器と、
     前記空間部の下部に耐腐食性ガスを供給するガス供給部と、
     前記空間部における前記熱交換器より上方に設けられるチャー受部と、
     一端部が前記ガス化炉内に連通して他端部が前記チャー受部に開口する均圧管と、
     前記チャー受部の側部を上下に貫通するガス流路と、
     を有することを特徴とするガス化装置。
  2.  前記均圧管は、前記空間部に配置され、一端部が前記ガス化炉における鉛直方向に沿う炉壁を開口し、他端部が広角して前記チャー受部の底面に開口することを特徴とする請求項1に記載のガス化装置。
  3.  前記チャー受部は、凹部形状をなして前記空間部の全周あるいは一部にわたって配置され、前記均圧管は、前記空間部の周方向に所定間隔で複数設けられることを特徴とする請求項1または2に記載のガス化装置。
  4.  前記ガス流路は、前記空間部の全周あるいは一部にわたって設けられることを特徴とする請求項1から3のいずれか一つに記載のガス化装置。
  5.  前記ガス流路は、前記ガス化炉の外壁に沿う鉛直方向に沿って設けられることを特徴とする請求項1から4のいずれか一つに記載のガス化装置。
  6.  前記ガス流路は、前記ガス化炉の外壁と前記チャー受部の外壁との間に設けられることを特徴とする請求項1から5のいずれか一つに記載のガス化装置。
  7.  前記チャー受部は、前記均圧管より下方に設けられ、前記均圧管の他端部が開口する底部と、該底部に向かって下方に傾斜する傾斜部とを有することを特徴とする請求項1から6のいずれか一つに記載のガス化装置。
  8.  前記チャー受部は、前記圧力容器の内壁に固定されたサポート部材上にシール部材を介して配置されることを特徴とする請求項1から7のいずれか一つに記載のガス化装置。
  9.  前記ガス流路は、上方に第1チャー侵入防止部材が設けられることを特徴とする請求項8に記載のガス化装置。
  10.  前記均圧管は、前記ガス化炉内への連通部の下方に第2チャー侵入防止部材が設けられることを特徴とする請求項1から9のいずれか一つに記載のガス化装置。
PCT/JP2013/077485 2012-10-16 2013-10-09 ガス化装置 WO2014061527A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380049405.8A CN104662135B (zh) 2012-10-16 2013-10-09 煤气化装置
KR1020157008189A KR101598768B1 (ko) 2012-10-16 2013-10-09 가스화 장치
US14/431,872 US9388348B2 (en) 2012-10-16 2013-10-09 Gasification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-229153 2012-10-16
JP2012229153A JP5518161B2 (ja) 2012-10-16 2012-10-16 ガス化装置

Publications (1)

Publication Number Publication Date
WO2014061527A1 true WO2014061527A1 (ja) 2014-04-24

Family

ID=50488095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077485 WO2014061527A1 (ja) 2012-10-16 2013-10-09 ガス化装置

Country Status (5)

Country Link
US (1) US9388348B2 (ja)
JP (1) JP5518161B2 (ja)
KR (1) KR101598768B1 (ja)
CN (1) CN104662135B (ja)
WO (1) WO2014061527A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229697A (zh) * 2019-06-24 2019-09-13 中国科学院山西煤炭化学研究所 一种煤高温气化生产合成气的方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621310B2 (ja) * 2015-11-18 2019-12-18 三菱日立パワーシステムズ株式会社 ガス化装置、制御装置、ガス化複合発電設備及び制御方法
JP6650746B2 (ja) * 2015-12-18 2020-02-19 三菱日立パワーシステムズ株式会社 ガス化装置、ガス化装置の制御装置及び方法、ガス化複合発電設備
JP6602196B2 (ja) * 2015-12-18 2019-11-06 三菱日立パワーシステムズ株式会社 ガス化装置及びガス化複合発電設備
CN107828446B (zh) * 2017-12-06 2024-09-13 无锡蓝天太和科技有限公司 一种气化炉及气化装置
CN109855111B (zh) * 2019-03-28 2024-01-30 万荣金坦能源科技有限公司 一种燃气系统
JP7286504B2 (ja) * 2019-09-27 2023-06-05 三菱重工業株式会社 ガス化設備及びこれを備えたガス化複合発電設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246290A (ja) * 1985-04-25 1986-11-01 Mitsubishi Heavy Ind Ltd 加圧型ガス化炉
JP2001271073A (ja) * 2000-03-28 2001-10-02 Nippon Steel Corp 石炭ガス化装置
JP2011068812A (ja) * 2009-09-28 2011-04-07 Mitsubishi Heavy Ind Ltd ガス化炉装置、その運転方法およびこれを備えたガス化燃料発電設備
WO2013118626A1 (ja) * 2012-02-10 2013-08-15 三菱重工業株式会社 ガス化炉装置の均圧構造及び均圧方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803937A (en) * 1993-01-14 1998-09-08 L. & C. Steinmuller Gmbh Method of cooling a dust-laden raw gas from the gasification of a solid carbon-containing fuel
DE59300598D1 (de) * 1993-03-16 1995-10-19 Krupp Koppers Gmbh Verfahren für die Druckvergasung von feinteiligen Brennstoffen.
ES2083787T3 (es) * 1993-03-16 1996-04-16 Krupp Koppers Gmbh Aparato de gasificacion para gasificar a presion combustibles finamente divididos.
JPH08302364A (ja) 1995-05-12 1996-11-19 Mitsubishi Heavy Ind Ltd 炭素含有燃料ガス化装置
WO1997044412A1 (fr) 1996-05-20 1997-11-27 Hitachi, Ltd. Appareil de gazeification du charbon, procede de gazeification et centrale integree de production d'energie a gazeification de charbon a cycle combine
JP2695766B2 (ja) 1996-09-12 1998-01-14 三菱重工業株式会社 加圧型ガス化炉
CA2606846C (en) * 2005-05-02 2013-12-10 Shell Internationale Research Maatschappij B.V. Method and system for producing synthesis gas
JP4481906B2 (ja) 2005-08-26 2010-06-16 電源開発株式会社 加圧型ガス化装置、その運転方法およびガス化発電装置
US20080000155A1 (en) * 2006-05-01 2008-01-03 Van Den Berg Robert E Gasification system and its use
CN201660608U (zh) * 2010-03-09 2010-12-01 祖希光 用于秸秆气化炉系统的沉降除尘装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246290A (ja) * 1985-04-25 1986-11-01 Mitsubishi Heavy Ind Ltd 加圧型ガス化炉
JP2001271073A (ja) * 2000-03-28 2001-10-02 Nippon Steel Corp 石炭ガス化装置
JP2011068812A (ja) * 2009-09-28 2011-04-07 Mitsubishi Heavy Ind Ltd ガス化炉装置、その運転方法およびこれを備えたガス化燃料発電設備
WO2013118626A1 (ja) * 2012-02-10 2013-08-15 三菱重工業株式会社 ガス化炉装置の均圧構造及び均圧方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229697A (zh) * 2019-06-24 2019-09-13 中国科学院山西煤炭化学研究所 一种煤高温气化生产合成气的方法及装置

Also Published As

Publication number Publication date
KR20150046333A (ko) 2015-04-29
JP2014080506A (ja) 2014-05-08
US20150240176A1 (en) 2015-08-27
KR101598768B1 (ko) 2016-02-29
JP5518161B2 (ja) 2014-06-11
CN104662135A (zh) 2015-05-27
US9388348B2 (en) 2016-07-12
CN104662135B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2014061527A1 (ja) ガス化装置
JP5734234B2 (ja) ガス化装置
JP2012513501A (ja) 温和ガス化複合サイクル発電装置
CN102083947A (zh) 温和气化联合循环发电设备
JP5675671B2 (ja) 流動層乾燥装置
US20200001310A1 (en) Cyclone integrated type storage device, integrated gasification combined cycle, and method for separating particles
JP6607817B2 (ja) ガス化炉装置及びガス化複合発電設備
JP6602174B2 (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP7134637B2 (ja) ガス化炉設備及びこれを備えたガス化複合発電設備並びにガス化炉設備の製造方法及び生成ガスの排出方法
JP2018095745A (ja) ガス化炉設備及びその運転方法
JP6602196B2 (ja) ガス化装置及びガス化複合発電設備
JP7286504B2 (ja) ガス化設備及びこれを備えたガス化複合発電設備
WO2019156064A1 (ja) 湿式炉の炉壁構造及び湿式炉
CN104039934A (zh) 气化炉、气化发电设备及气化炉的渣口闭塞防止方法
JP5595089B2 (ja) ガス化炉及びボイラ設備
JP6833553B2 (ja) 集塵装置
JP3788149B2 (ja) 複合発電システム
JP2012233634A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム
Krasniqi Modern Technologies In New Lignite Power Plants In Kosovo And Their Impact On Energy And Environmental Security
JP2013167418A (ja) 熱処理物の冷却装置
JP2013170799A (ja) 流動層乾燥装置
JP2012233635A (ja) 流動層乾燥装置及び石炭を用いたガス化複合発電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14431872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020157008189

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847575

Country of ref document: EP

Kind code of ref document: A1