WO2014060003A1 - Azin -metallphosphate als flammhemmende mittel - Google Patents

Azin -metallphosphate als flammhemmende mittel Download PDF

Info

Publication number
WO2014060003A1
WO2014060003A1 PCT/EP2012/004329 EP2012004329W WO2014060003A1 WO 2014060003 A1 WO2014060003 A1 WO 2014060003A1 EP 2012004329 W EP2012004329 W EP 2012004329W WO 2014060003 A1 WO2014060003 A1 WO 2014060003A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
formula
melamine
composition according
oxide
Prior art date
Application number
PCT/EP2012/004329
Other languages
English (en)
French (fr)
Inventor
Wolfgang Wehner
Original Assignee
Wolfgang Wehner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfgang Wehner filed Critical Wolfgang Wehner
Priority to DK12775443.0T priority Critical patent/DK2909215T3/en
Priority to ES12775443.0T priority patent/ES2623944T3/es
Priority to JP2015537148A priority patent/JP2016502505A/ja
Priority to PT127754430T priority patent/PT2909215T/pt
Priority to US14/436,329 priority patent/US9505793B2/en
Priority to PCT/EP2012/004329 priority patent/WO2014060003A1/de
Priority to CN201280077344.1A priority patent/CN104981473B/zh
Priority to EP12775443.0A priority patent/EP2909215B1/de
Priority to PL12775443T priority patent/PL2909215T3/pl
Priority to KR1020157013070A priority patent/KR101828892B1/ko
Publication of WO2014060003A1 publication Critical patent/WO2014060003A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6515Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having three nitrogen atoms as the only ring hetero atoms
    • C07F9/6521Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to azine metal phosphates containing them
  • compositions a process for their preparation and their use as intumescent metal-containing flame retardants.
  • intumescent agents have a flame-retarding effect by reacting under vigorous heating, e.g. under the action of a fire, foam to a flame-retardant insulating layer and here u.a. the dripping of molten, possibly burning material, suppress.
  • Intumescent metal-containing melamine phosphates are already known from EP 2 183 314 B1. But these have the disadvantage of poor thermal stability.
  • Amine metal phosphates are also known, such as in Inorg. Chem., 2005, 44, 658-665 and Crystal Growth and Design, 2002, 2 (6), 665-673
  • Cyanoguanidine (dicyandiamide) zinc phosphite is described in Inorg. Chem., 2001, 40, 895-899, wherein the modulus (cyanoguanidine / zinc ratio) is 1. Guanidine zinc phosphates are not included in this publication. Aminoguanidine zinc phosphite is described in Intern. J. of lnorg. Mater., 2001, 3, 1033-1038, wherein the modulus (aminoguanidine / zinc ratio) is 2: 3. The synthesis will be the same carried out hydrothermally. Aminoguanidine zinc phosphates are not included in this document. A guanidine zinc phosphite is disclosed in JCS Dalton Trans. 2001,
  • Guanidine zinc phosphates are further published in Chem. Mater., 1997, 9, 1837-1846. However, these are produced hydrothermally, with additional long reaction times are required. In addition, these phosphates have a modulus (guanidine / zinc ratio) of 0.5, 2 and 3 and thus sharply distinguished from the
  • azine metal phosphates according to the invention, all of which have a modulus of 1.
  • Metal-free intumescent melamine phosphates are also known.
  • melamine polyphosphates are described, for example in WO 00/02869, EP 1 789 475, WO 97/44377 and EP 0 974 588.
  • these processes are time-consuming to prepare and because of the high reaction temperatures (340 to 400 ° C) associated with very high energy consumption.
  • urea is used as a further additive.
  • intumescent flame retardant systems based on melamine, e.g. on melamine salts of 3,9-dihydroxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane-3,9-dioxide (MAP) and on melamine salts of bis ( 1-Oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octan-4-ylmethanol) phosphate
  • the flame retardants described in the prior art have the disadvantage that they often have an insufficient flame retardancy and for use in plastics, especially thermoplastics and elastomers in the electrical and electronics sector, are not or only conditionally applicable.
  • some phosphorus-containing flame retardants affect the electrical conductivity and thus, for example, the properties of a
  • thermoplastic in electrical components change negatively.
  • An object of the present invention is thus to provide such flame retardants. These should also be easily accessible. Description of the invention
  • M is a metal or metal oxide selected from Cu, Mg, Ca, Zn, Mn, Fe, Co, Ni, TiO, ZrO, VO, B, Si, Al, Sb, La, Ti, Zr, Ce, Bi or Sn .
  • x and y are independently 0 or 1
  • p is an integer from 0 to 4.
  • z is an integer> 5,
  • These compounds are preferably prepared non-hydrothermally and have a modulus (azine / metal ratio) of 1.
  • azine metal phosphates of the present invention are typically
  • (Coordination) polymers can, as the example of melamine-zinc phosphate and the melamine-aluminum phosphate, can be formulated with alternating (phosphate) PO 4 and Zn (OP) 4 tetrahedra or (diphosphate) -P 2 0 7 and AI (OP) 4 tetrahedra (structures Ia and Ib). :
  • Preferred compounds are, for example:
  • Mt is Mg or Zn and p is 0 to 4;
  • the azine metal phosphates of the present invention are more thermally stable than conventional compounds used in flame retardants.
  • they are easy to produce in a one-step process.
  • the process for their preparation is energy efficient and economical, since the separate production of metal dihydrogen phosphates deleted. This is particularly advantageous because metal dihydrogen phosphates are stable in storage only in the heat in the majority of cases and tend to form precipitates at room temperature after a certain time. However, these precipitations are difficult to solubilize again.
  • compositions by addition of synergists or co-components, the profile of action of the azine metal phosphates with respect to flame retardancy and intumescent can be further optimized.
  • These other components may be metal-containing or metal-free.
  • the present invention thus further relates to a composition
  • a composition comprising the above-described azine metal phosphates (component (i)), another of which Component (i) comprises various metal-containing component (ii) and optionally a metal-free component (iii).
  • the additional metal-containing component (ii) may in particular be metal hydroxide, metal phosphate, metal pyrophosphate, hydrotalcite, hydrokalumite, cationically or anionically modified organoclay, stannate salt or molybdate salt, metal borate or metal phosphinate of the formulas (V) or (VI) or metal phosphonate of the formula (VII) include,
  • hydrotalcite and hydrocalumite have the composition
  • Organoclays are understood by the skilled person to mean organophilically modified clay minerals (mainly montmorillonites) based on cation exchange, such as triethanol-tallow-ammonium-montmorillonite and triethanol-tallow-ammonium-hectorite. G. Beyer; Conf. Fire Resistance in Plastics, 2007.
  • Anionic organoclays mean organophilic-modified hydrotalcites based on anion exchange with alkali sarcosates, unsaturated and saturated fatty acid salts, and long-chain alkyl-substituted sulfonates and sulfates.
  • Metal oxides are preferably di-antimony trioxide, di-antimony tetroxide, di-antimony pentoxide or zinc oxide.
  • metal pyrophosphates are preferred. Particularly preferred are aluminum and zinc pyrophosphate and zinc and Aiuminiumtriphosphat as well as aluminum and zinc metaphosphate and aluminum and Zinkorthophosphat.
  • the alkyl sulfate or fatty acid carboxylate-modified hydrotalcites or long-chain quaternary ammonium-modified clay minerals are particularly preferred.
  • Aluminum trihydroxide ATH, gibbsite
  • aluminum monohydroxide boehmite
  • hydromagnesite and hydrozincite hydromagnesite and hydrozincite.
  • gibbsite and boehmite the other modifications of aluminum hydroxides, namely bayerite, nordstrandite and diaspore are also mentioned.
  • Zinc hydroxystannate or mixtures thereof also act as
  • metal borates alkali, alkaline earth or zinc borate are preferred. Also to be mentioned are aluminum borate, barium borate, calcium borate,
  • Metal phosphinates are preferably salts in which Mt 1 is selected from Ca, Mg, Zn or Al.
  • Preferred metal phosphinates are phenylphosphinate diethyl (methyl, ethyl) phosphinate, especially in combination with the aforementioned metals.
  • the Mg, Ca, Zn and Al salts are particularly preferred.
  • Preferred metal phosphinates (VI) and metal phosphonates (VII) are salts with Mt selected from Ca, Mg, Zn or Al. Particularly preferred is the use of a metal phosphinate (VI) prepared from 6H-dibenz [c, e] [1,2] oxaphosphorine 6-oxide [CAS # 35948-25-5) in water without the use of caustic becomes.
  • metal phosphonates which are accessible for example by thermal cyclization of precursors (VI).
  • VI metal phosphonates
  • very particularly preferred are zinc or aluminum phosphonates and Thiophosphonates (VII).
  • the (thio) phosphonates are preferably prepared from the (thio) phosphonic acids (CAS No: 36240-31-0 and CAS No: 62839-09-2). All phosphorus precursors are available as commercial products.
  • Composition includes in particular red phosphorus, oligomeric
  • Phosphate esters oligomeric phosphonate esters, cyclic phosphonate esters,
  • Thiopyrophosphoric acid ester melamine orthophosphate or melamine pyrophosphate, di-melamine phosphate, melam (polyphosphate), Meiern, ammonium polyphosphate,
  • Preferred as a further additional component are melamine polyphosphate, bis-melamine zinc diphosphate, bis-melamine magnesium diphosphate or bis-melamine aluminum triphosphate.
  • oligomeric phosphate esters are phosphate esters of formula (VIII) or formula (IX),
  • R 3 is methyl or phenyl
  • R is hydrogen
  • y is 0 or 2.
  • Particularly preferred is bis [5-ethyl-2-methyl-1,3,2-dioxaphosphorinan-5-yl) methyl] methyl phosphonate P, P ' dioxide.
  • each R and R 2 is independently hydrogen, C 1 -C 4 alkyl
  • 2,2'-oxybis [5,5-dimethyl-1, 3,2-dioxaphosphorinane] 2,2 '- disulfide is particularly preferred.
  • hydroxyalkyl-phosphine oxides preference is given to isobutyl-bis-hydroxymethyl-phosphine oxide and its combination with epoxy resins, as in WO-A
  • the tetrakis-hydroxymethyl-phosphonium salts are particularly preferred.
  • phospholane or phosphole derivatives are dihydrophosphole (oxide) derivatives and phospholane (oxide) derivatives and their salts, as in EP 1 024 166
  • the bis-di-ortho-xylylester are particularly preferred with piperazine as a bridge member.
  • phosphinate esters such as
  • Benzene monophenyl ester derivatives or 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (6H-dibenzo (c, e) (1,2) -oxaphosphorin-6-one) derivatives as shown in the following formulas.
  • R is Ci - C 4 alkyl
  • n is 1 to 6 and x is 1 to 3.
  • Particular preference is given to compounds of the formula (XIII), (XIV) or (XV), as illustrated below.
  • R ' CH 3 , nC 4 H 9 , or cC 6 Hn
  • n 2-10 H 9 , or C-C 6 Hn
  • R ' CH 3 , nC 4 H 9 , or c-CeHn
  • polyols polyols, aminouracils, POSS compounds, trishydroxyethyl isocyanurate, melamine cyanurate, expandable graphite or mixtures thereof.
  • POSS compounds polyhedral oligomeric silsesquioxanes
  • Particularly preferred are POSS derivatives based on methylsiloxane.
  • Triazine polymers having piperazine-1,4-diyl bridge members and morpholin-1-yl end groups may be included in the flame retardants of the present invention.
  • the following additives may be present in the flame retardants of the present invention: bis-azine pentaerythritol diphosphate salts, hexa-aryloxy triphosphazenes, polyaryloxy phosphazenes and siloxanes, for example of the general formula (R 2 SiO) r or (RSiOi, 5 ) r.
  • mixtures of two or more of the compounds described above may also be present in the compositions of the present invention.
  • MZP or MAP 2 (melamine-zinc phosphate / melamine Aluminiumdiphosphat) and Mg (2 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate) 2 CAS number: [165597-56-8], Zn (2 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate) 2 CAS number: [139005-99-5],
  • M 2 ZP 2 or M2AP3 (dimelamine zinc diphosphate / dimelamine aluminum triphosphate)
  • triple combination such as:
  • MZP or MAP 2 melamine-zinc phosphate / melamine Aluminiumdiphosphat
  • Mg 2,3 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate
  • M2ZP2 or M2AP3 (dimelamine zinc diphosphate / dimelamine aluminum triphosphate) and Mg (2 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate) 2,
  • MZP or MAP 2 (melamine-zinc phosphate melamine-aluminum diphosphate) and Mg (2 ' -hydroxy [1, r-biphenyl-2-yl-2-phosphinate) 2 ,
  • M 2 ZP 2 or M 2 AP 3 (dimelamine zinc diphosphate / dimelamine aluminum triphosphate)
  • MZP or MAP 2 melamine-zinc phosphate / melamine Aluminiumdiphosphat
  • Mg 2,3 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate
  • M 2 ZP 2 or M 2 AP 3 (dimelamine zinc diphosphate / dimelamine aluminum triphosphate)
  • compositions as described above, which additionally comprise a polymer or a polymer blend. Preference is given first to the previously described composition comprising the components (i), (ii) and
  • the invention also relates to a process for the preparation of flame-retardant polymer molding compositions, characterized in that the stabilized flame retardants according to the invention are homogenized with the polymer granules and any additives in a compounding unit at higher temperatures in the polymer melt and then the homogenized polymer strand is withdrawn, cooled and portioned.
  • the resulting granules are e.g. dried at 90 ° C in a convection oven.
  • the compounding unit preferably comes from the group of single-screw extruders, multizone screws or twin-screw extruders.
  • Compounding units are single-screw extruders or single-screw extruders, e.g. the company Berstorff GmbH, Hannover and or the company Leistritz, Nuremberg,
  • MEGAcompounder 40 50, 58, 70, 92, 119, 177, 250, 320, 350, 380) and / or Berstorff GmbH, Hanover, Leistritz Extrusionstechnik GmbH, Nuremberg; Ring extruder e.g. Fa. 3 + Extruder GmbH, running with a ring of three to twelve small screws rotating around a static core and / or
  • Planetary roller extruder e.g. Entex, Bochum and / or degassing extruders and / or cascade extruders and / or Maillefer screws; Compounder with counter-rotating twin screw e.g. Complex 37- or -70-types of the company Krauss-Maffei Berstorff.
  • the polymer is typically a thermoplastic, which is preferably selected from the group consisting of polyamide, polycarbonate, polyolefin, polystyrene, polyester, polyvinyl chloride, polyvinyl alcohol, ABS and polyurethane, or a Duroplast is, which is preferably selected from the group consisting of epoxy resin (with hardener), phenolic resin and melamine resin.
  • thermosets in which the azine metal phosphate according to the invention is used as flame retardant.
  • Polymers of mono- and diolefins e.g. Polypropylene, polyisobutylene, polybutene-1, poly-4-methylpentene-1, polyvinylcyclohexane, polyisoprene or
  • Polybutadiene and polymers of cycloolefins e.g. of cyclopentene or norbornene and polyethylene (also cross-linked), e.g. High Density Polyethylene (HDPE) or High Molecular Weight (HDPE-HMW), High Density Polyethylene with Ultra-High Molecular Weight (HDPE-UHMW), Medium Density Polyethylene (MDPE), Low density Polyethylene (HDPE) or High Density Polyethylene (HDPE) or High Molecular Weight (HDPE-HMW), High Density Polyethylene with Ultra-High Molecular Weight (HDPE-UHMW), Medium Density Polyethylene (MDPE), Low
  • LDPE Density Polyethylene
  • LLDPE Linear Low Density Polyethylene
  • VLDPE Linear Low Density Polyethylene
  • ULDPE ULDPE
  • EVA copolymers of ethylene and vinyl acetate
  • Polystyrenes poly (p-methylstyrene), poly ( ⁇ -methylstyrene);
  • Polybutadiene and (meth) acrylonitrile e.g. ABS and MBS;
  • Halogen-containing polymers such as e.g. Polychloroprene, polyvinyl chloride (PVC); Polyvinylidene chloride (PVDC), copolymers of vinyl chloride / vinylidene chloride,
  • Polymers of unsaturated alcohols and amines or their Azylderivaten or acetals such.
  • Polyvinyl alcohol (PVA) polyvinyl acetates, stearates, benzoates or maleates, polyvinyl butyral, polyallyl phthalates and polyallylmelamines;
  • cyclic ethers such as polyalkylene glycols, polyethylene oxides, polypropylene oxides and their copolymers with bisglycidyl ethers;
  • Polyacetals such as polyoxymethylenes (POM), and polyurethane and acrylate-modified polyacetals;
  • Polyphenylene oxides and sulfides and mixtures thereof with styrene polymers or polyamides Polyamides and copolyamides derived from diamines and dicarboxylic acids and / or from aminocarboxylic acids or the corresponding lactams, for example polyamide 4, polyamide 6, polyamide 6/6, 6/10, 6/9, 6/12, 12/12, polyamide 1, Polyamide 12, aromatic polyamides derived from m-xylylenediamine and adipic acid and copolyamides modified with EPDM or ABS.
  • Copolyamides are derived from ⁇ -caprolactam, adipic acid, sebacic acid, dodecanoic acid, isophthalic acid, terephthalic acid, hexamethylenediamine,
  • Tetramethylenediamine 2-methyl-pentamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, m-xylylenediamine or bis (3-methyl-4-aminocyclohexyl) methane;
  • Polyureas polyimides, polyamideimides, polyetherimides, polyesterimides, polyhydantoins and polybenzimidazoles.
  • Polyester derived from dicarboxylic acids and dialcohols and / or
  • Hydroxycarboxylic acids or the corresponding lactones e.g.
  • Polyhydroxybenzoates polylactic acid esters and polyglycolic acid esters
  • Polymers e.g. PP / EPDM, PA / EPDM or ABS, PVC / EVA, PVC / ABS, PBC / MBS, PC / ABS, PBTP / ABS, PC / AS, PC / PBT, PVC / CPE, PVC / Acrylate, POM / Thermoplastic PUR , PC / Thermoplastic PUR, POM / Acrylate, POM / MBS, PPO / HIPS, PPO / PA6.6 and Copolymers, PA / HDPE, PA / PP, PA / PPO, PBT / PC / ABS or PBT / PET / PC, as well as TPE-O, TPE-S and TPE-E;
  • Polymers e.g. PP / EPDM, PA / EPDM or ABS, PVC / EVA, PVC / ABS, PBC / MBS, PC / ABS, PBTP / ABS, PC / AS, PC
  • Thermosets such as PF, MF or UF or mixtures thereof;
  • Wood-plastic composites as well as polymers based on PLA, PHB and starch.
  • the concentration of the flame retardant preparations according to the invention, consisting of the azine metal phosphate (component (i)) and the additional metal-containing component (ii) and optionally the metal-free component (iii) is preferably 0.1 to 60% by weight in a polymer or a polymer mixture. % based on polymer or the polymer mixture.
  • the component ratio in the composition consisting of azine metal phosphate (i) to the co-component (ii) and optionally (iii) is preferably in the range of 1: 1 to 1: 4
  • Polymer material according to the invention contain further fillers, which are preferably selected from the group consisting of metal hydroxides and / or
  • Metal oxides preferably alkaline earth metal hydroxides, for example
  • Minerals such as wollastonite, silica, such as quartz, mica, feldspar, and titanium dioxide, alkaline earth metal silicates and alkali metal silicates, carbonates, preferably calcium carbonate, and talc, clay, mica, silica, calcium sulfate, barium sulfate, pyrite, glass fibers, glass particles, glass beads and glass beads, wood flour .
  • fillers can impart further desired properties to the polymeric material.
  • the polymer materials may contain further additives, such as antioxidants, light stabilizers, process auxiliaries,
  • Viscosity improvers impact modifiers and in particular compatibilizers and dispersants.
  • foaming agents can be added to the polymer in addition to the azine metal phosphate of the present invention.
  • Foaming agents are preferably melamine, melamine-formaldehyde resins, urea derivatives such as urea, thiourea, guanamine, benzoguanamine, acetoguanamine and succinylguanamine, dicyandiamide, guanidine and guanidine sulfamate, as well as other guanidine salts or allantoins and glycolurils.
  • a polymer containing the azine metal phosphate according to the invention may also comprise antidripping agents, in particular
  • Polytetrafluoroethylene base included.
  • concentration of such anti-dripping agents is preferably 0.01 to 5 wt .-%, based on the polymer to be processed.
  • the invention also provides a process for the preparation of the above-described azine metal phosphates according to the invention by reacting an azinineduct (A) with a metal oxide educt (B) and orthophosphoric acid (C), where the dineduct (A) is selected from melamine of the formula (I) , Melam of the formula (II-H), guanamine of the formula (III-H) and guanidine (bi) carbonate of the formula (IV-H), and the metal oxide (B) is selected from metal oxides, metal hydroxides and / or metal carbonates.
  • Preferred azine starting materials are melamine, guanamine and melam.
  • Metal oxides are selected from MgO, ZnO, Al 2 O 3 and SnO, ZrO 2
  • preferred metal hydroxides are selected from Mg (OH) 2 , Zn (OH) 2 , Al (OH) 3 , Ce (OH) 3 and Bi
  • (basic) metal carbonates are preferably selected from CaCO 3 , MgCO 3 , basic magnesium carbonate (hydromagnesite), basic zinc carbonate and basic zirconium carbonate.
  • Particularly preferred are Mg (OH) 2 , ZnO, Al (OH) 3 and basic zinc carbonate.
  • Azinedukt (A) and / or as Metalloxidedukt (B) also mixtures of two or more of the aforementioned compounds can be used.
  • the method usually includes the following steps:
  • Metal oxide educt (B) i.e., metal (hydr) oxide or (basic) metal carbonate
  • the process comprises the reaction of the components (A-1 to A-4) :( B) :( C) in a molar ratio (1 to 3) :( 1) :( 1 to 3), which ensures in particular that in situ additional melamine or (amino) guanidine phosphates are formed.
  • a granulation process can be followed by step (a). This may be preferred as spray agglomeration either in the spray dryer,
  • Spray granulator top spray or bottom spray, countercurrent process
  • Fluidized bed granulator or in a paddle mixer or horizontal dryer, wherein the introduced water is removed until the desired residual moisture is obtained.
  • the granulation can take place by spray-drying an aqueous suspension of an azine metal phosphate of the formula (I) at usually 70-80 ° C. or alternatively as spray granulation starting from a reactant mixture of components (A) and (B) as fluidized bed and spraying component (C ) are obtained on the fluidized bed and subsequent drying.
  • the fluidized bed temperature is kept constant between 70-80 ° C, the granules dry at the same time and a free-flowing, non-dusting
  • Granules are formed.
  • the residual water content is approx. 0.5 - 1%.
  • the heat treatment of the reaction product is typically carried out at 220 to 350 ° C, preferably at 250 to 300 ° C.
  • Example 7 is a comparative example.
  • Example 8 describes the use of the compounds according to the invention as flame retardants.
  • the precipitate is filtered off with suction, washed with water and heated to 120.degree
  • stage I The zinc bis-dihydrogen phosphate (stage I) is metered in with stirring and the product is dried after filtration at 120.degree.
  • Stage III 200g of product from Stage-II are annealed at 300 ° C for 3h. Weight loss: 6.5%
  • test products (Examples 1 to 7) were pH measurements and
  • Products 2, 4 and 5 according to the invention show improved conductivity values in comparison with the conductivity value of product 7.
  • the weight losses at 300 ° C. are also lower than in comparison product 7.
  • Example 8 (Application as flame retardant in PA)
  • PA 6.6 (Durethan A30S, LANXESS); Glass fiber (Thermo Flow ® 671; 10pmx4mm; Fa John Manville.); MPP melamine polyphosphate (Melapur 200; BASF.), Zn (2 '-hydroxy [1, 1' -biphenyl-2-yl-2-phosphinate) 2 (own product), Dimelamin-zinc diphosphate (Example 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft Azin-Metallphosphate, diese enthaltende Zusammensetzungen, ein Verfahren zu deren Herstellung und deren Verwendung als Flammschutzmittel. Typische Vertreter sind (A- H)(+) [ΜtΡO4](-) ∙⋅2Η2O und (Mel - H)(+)[AIP2O7](-) (mit A = Melamin oder Guanidin, Mel = Melamin und Mt = Mg oder Zn).

Description

AZI -METALLPHOSPHATE ALS FLAMMHEMMENDE MITTEL
Die vorliegende Erfindung betrifft Azin-Metallphosphate, diese enthaltende
Zusammensetzungen, ein Verfahren zu deren Herstellung und deren Verwendung als intumeszierende metallhaltige Flammschutzmittel. Typische Vertreter sind (A- H)(+) [MtP04](")*2H2O und (Mel -
Figure imgf000002_0001
(mit A = Melamin oder Guanidin, Mel = Melamin und Mt = Mg oder Zn).
Hintergrund und technische Aufgabe der Erfindung
Es ist bekannt, dass intumeszierende Mittel flammhemmend wirken, indem sie unter starker Erwärmung, z.B. unter Einwirkung eines Brandes, zu einer schwerbrennbaren Isolierschicht aufschäumen und hierbei u.a. das Abtropfen geschmolzenen, möglicherweise brennenden Materials, unterdrücken.
Intumeszierende metallhaltige Melaminphosphate sind bereits aus EP 2 183 314 B1 bekannt. Diese haben aber den Nachteil der mangelhaften Thermostabilität. So gibt beispielsweise das dort beschriebene Aluminiumsalz [(Mel-H)]3 (+) [AI(HP04)3](3_) bei der thermischen Behandlung bei 280 bis 300 °C ein Mol Melamin und zwei Mol Wasser ab, wobei [(Mel-H)]2 (+)[AIP301o](2") entsteht. Ähnliches gilt auch für
[(Mel-H)]2 (+)[MgP207](2"). Ferner sind die dort beschriebenen Produkte nur in einem Mehrstufenprozess erhältlich. Diese Verbindungen besitzen auch allesamt einen nachteiligen Modul (Melamin/Metall-Verhältnis) von 3 oder 2.
Amin-Metallphosphate sind ebenfalls bekannt, wie beispielsweise in Inorg. Chem., 2005, 44, 658-665 und Crystal Growth and Design, 2002, 2(6), 665-673
beschrieben, haben aber wegen ihres Alkylamingehalts eine nicht ausreichende Thermostabilität und sind deshalb als Flammschutzmittel nicht geeignet.
Cyanoguanidin(Dicyandiamid)-Zinkphosphit ist beschrieben in Inorg. Chem., 2001 , 40, 895-899, wobei der Modul (Cyanoguanidin/Zink-Verhältnis) 1 beträgt. Guanidin- Zinkphosphate sind in dieser Publikation nicht enthalten. Aminoguanidin- Zinkphosphit ist beschrieben in Intern. J. of lnorg. Mater., 2001 , 3, 1033-1038, wobei der Modul (Aminoguanidin/Zink-Verhältnis) 2:3 ist. Die Synthese wird ebenfalls hydrothermal durchgeführt. Aminoguanidin-Zinkphosphate sind in dieser Schrift nicht enthalten. Ein Guanidin-Zinkphosphit wird offenbart in JCS Dalton Trans. 2001 ,
2459-2461 , wobei der Modul (Guanidin/Zink-Verhältnis) 2 ist. Guanidin- Zinkphosphate mit einem Modul von 1 werden nicht beschrieben.
Guanidin-Zink-Phosphate sind ferner publiziert in Chem. Mater., 1997, 9, 1837-1846. Diese werden aber hydrothermal hergestellt, wobei zusätzlich lange Reaktionszeiten erforderlich sind. Außerdem besitzen diese Phosphate einen Modul (Guanidin/Zink- Verhältnis) von 0,5, 2 und 3 und grenzen sich damit scharf von den
erfindungsgemäßen Azin-Metallphosphaten ab, die allesamt einen Modul von 1 aufweisen.
Metallfreie intumeszierende Melaminphosphate sind ebenfalls bekannt. So werden mehrere Verfahren zur Herstellung von Melaminpolyphosphaten beschrieben, beispielsweise in WO 00/02869, EP 1 789 475, WO 97/44377 und EP 0 974 588. Diese Verfahren sind aber in der Herstellung zeitaufwendig und wegen der hohen Reaktionstemperaturen (340 bis 400 °C) mit sehr hohem Energieverbrauch verbunden. Zusätzlich wird Harnstoff als weiterer Zusatz verwendet.
Eine bereits im Markt befindliche Formulierung auf Basis von Melaminpolyphosphat ist in EP 1 537 173 B1 beschrieben.
Außerdem gibt es bereits intumeszierende Flammschutzsysteme, welche auf Melamin basieren, wie z.B. auf Melamin-Salzen von 3,9-Dihydroxy-2,4,8,10-tetraoxa- 3,9-diphosphaspiro[5,5]-undecan-3,9-dioxid (MAP) und auf Melamin-Salzen von Bis(1-Oxo-2,6,7-trioxa-1 -phosphabicyclo[2.2.2]octan-4-ylmethanol)phosphat
(Melabis).
Weitere intumeszierend wirkende Systeme sind beschrieben in Kap. 6, Seiten 29- 162 "Fire Retardancy of Polymerie Materials", 2. Auflage (2010), Editoren: C. Wilkie, A.B. Morgan, CRS Press, FL, USA.
Flammschutzmittel für Polyamide (PA) und thermoplastische Polyester (PET/PBT) sind detailliert dargestellt in Kap. 5 und 6, Seiten 85-1 19, "Flame Retardants for Plastics and Textiles", (2009), Autoren: E. Weil und S. Levchik, Hanser Verlag, München.
Die im Stand der Technik beschriebenen Flammschutzmittel besitzen jedoch den Nachteil, dass sie häufig eine nicht ausreichende Flammschutzwirkung aufweisen und für den Einsatz in Kunststoffen, insbesondere thermoplastischen Kunststoffen und Elastomeren im Elektro- und Elektronikbereich, nicht oder nur bedingt einsetzbar sind. Zudem beeinflussen einige phosphorhaltige Flammschutzmittel die elektrische Leitfähigkeit und können somit zum Beispiel die Eigenschaften eines mit
Flammschutzmitteln ausgerüsteten thermoplastischen Kunststoffs in elektrischen Bauteilen negativ verändern.
Trotz der zahlreichen aus dem Stand der Technik bekannten Publikationen besteht weiterhin ein Bedarf an Flammschutzmitteln mit optimierten Eigenschaften und ve rbesse rte r U m we Itve rträg I ich ke it .
Die Aufgabe der vorliegenden Erfindung bestand deshalb darin, wirksamere
Flammschutzmittel bereitzustellen, insbesondere mit verbesserten
Sekundäreigenschaften, wie geringerer Acidität (höheren pH-Werten) und dadurch geringerer Korrosivität sowie niedrigerer Leitfähigkeit, verglichen mit den aus dem Stand der Technik bekannten Flammschutzmitteln.
Insbesondere war eine Aufgabe der vorliegenden Erfindung, Flammschutzmittel bereitzustellen, die ein hohes Maß an (Thermo)-Eigenstabilität aufweisen und einem Polymer nach Einarbeitung des Flammschutzmittels hervorragende mechanische Eigenschaften verleihen.
Eine Aufgabe der vorliegenden Erfindung liegt somit in der Bereitstellung solcher Flammschutzmittel. Diese sollten außerdem leicht zugänglich sein. Beschreibung der Erfindung
Azin-Metallphosphate
Die Aufgabe wurde in der vorliegenden Erfindung überraschend gelöst durch die Bereitstellung von Azin-Metallphosphaten der allgemeinen Formel [I],
[(A - H)(+) [Mm+ (P04)x (3-> (P207)y (4-)](-) . pH20]z [I] wobei (A - H )(+) ausgewählt ist aus Melamin-H der Formel (I), Melam-H der Formel (II), Guanamin der Formel (III), wobei R Methyl oder Phenyl ist, oder
(Amino)Guanidin-H der Formel (IV), wobei R Wasserstoff oder Amin ist,
Figure imgf000005_0001
M ein Metall oder Metalloxid ist, ausgewählt aus Cu, Mg, Ca, Zn, Mn, Fe, Co, Ni, TiO, ZrO, VO, B, Si, AI, Sb, La, Ti, Zr, Ce, Bi oder Sn,
m = 2 oder 3 ist,
x und y unabhängig voneinander 0 oder 1 sind,
p eine ganze Zahl von 0 bis 4 ist und
z eine ganze Zahl >5 ist,
wobei gilt, dass 1 + m = 3x + 4y ist.
Diese Verbindungen werden bevorzugt nichthydrothermal hergestellt und besitzen einen Modul (Azin/Metall-Verhältnis) von 1.
Die Azin-Metallphosphate der vorliegenden Erfindung sind typischerweise
(Koordinations-)Polymere und können, wie am Beispiel des Melamin-Zinkphosphats und des Melamin-Aluminiumphosphats gezeigt, mit alternierenden (Phosphat)-PO4- und Zn(OP)4-Tetraedern oder (Diphosphat)-P207- und AI(OP)4-Tetraedern formuliert werden (Strukturen la und Ib):
Figure imgf000006_0001
Figure imgf000006_0002
Bevorzugte Verbindungen sind beispielsweise:
(A- H)(+) [MtPO4](")*pH20, wobei A Melamin, Guanidin oder Aminoguanidin ist, Mt Mg oder Zn ist und p 0 bis 4 ist;
(A - Η)(+)[ΑΙΡ207]("), wobei A Melamin, Guanidin oder Aminoguanidin ist;
(A- H)(+) [MtP04](_)*pH20, wobei A Melam, Acetoguanamin oder Benzoguanamin ist,
Mt Mg oder Zn und p 0 bis 4 ist;
(A - H)(+)[AIP207](") *pH20, wobei A Melam, Acetoguanamin oder Benzoguanamin und p 0 bis 4 ist;
(A- H)(+) [MtP04](")*pH20, wobei A Melamin, Guanidin oder Aminoguanidin ist, Mt Sn, TiO und ZrO und p 0 bis 4 ist;
(A - Η)(+)[ΑΙΡ2θ7](") *ρΗ2θ, wobei A Melamin, Guanidin oder Aminoguanidin ist, Mt Ce, Sb oder Bi und p 0 bis 4 ist.
Es konnte überraschend gezeigt werden, dass die Azin-Metallphosphate der vorliegenden Erfindung thermisch stabiler als herkömmliche in Flammschutzmitteln verwendete Verbindungen sind. Darüber hinaus sind sie in einem Einstufenprozess einfach herstellbar. Das Verfahren zu ihrer Herstellung ist dabei energiesparend und ökonomisch, da die gesonderte Herstellung von Metall-Dihydrogenphosphaten entfällt. Dies ist insbesondere von Vorteil, da Metall-Dihydrogenphosphate in der Mehrzahl der Fälle nur in der Wärme lagerstabil sind und bei Raumtemperatur nach einer gewissen Zeit zu Niederschlagsbildung neigen. Diese Niederschläge sind jedoch nur schwer wieder zu solubilisieren.
Azin-Metallphosphathaltige Zusammensetzungen
Ferner wurde unerwartet gefunden, dass durch Bereitstellung von
Zusammensetzungen durch Zugabe von Synergisten oder Co-Komponenten das Wirkungsprofil der Azin-Metallphosphate in Bezug auf Flammschutzwirkung und Intumeszenzverhalten weiter optimiert werden kann. Diese weiteren Komponenten können metallhaltig oder metallfrei sein.
Die vorliegende Erfindung betrifft somit ferner eine Zusammensetzung, welche die zuvor beschriebenen Azin-Metallphosphate (Komponente (i)), eine weitere, von der Komponente (i) verschiedene metallhaltige Komponente (ii) und gegebenenfalls eine metallfreie Komponente (iii) umfasst.
Die zusätzliche metallhaltige Komponente (ii) kann insbesondere Metallhydroxid, Metallphosphat, Metallpyrophosphat, Hydrotalcit, Hydrokalumit, kationisch- oder anionisch-modifizierter Organoclay, Stannatsalz oder Molybdatsalz, Metallborat oder Metallphosphinat der Formeln (V) oder (VI) oder Metallphosphonat der Formel (VII) umfassen,
Figure imgf000008_0001
wobei R1 und R2 unabhängig voneinander Wasserstoff, lineares oder verzweigtes C Ce-Alkyl oder Phenyl sind; Mt1 Ca, Mg, Zn oder AI ist, m = 2 oder 3 ist und Mt Ca, Mg, Zn, AI, Sn, Zr, TiO, ZrO, Ce, MoO, WO2, VO, Mn, Bi oder Sb ist, D = O oder S ist und n 2 oder 3 ist.
Hydrotalcit und Hydrokalumit besitzen beispielsweise die Zusammensetzung
Mg6AI2(OH)i 6C03 und Ca4AI2(OH) 2C03. Unter Organoclays versteht der Fachmann organophilmodifizierte Tonmineralien (haupsächlich Montmorillonite) auf Basis von Kationenaustausch wie Triethanol-Talg-Ammonium-Montmorillonit und Triethanol- Talg-Ammonium-Hektorit, wie in Dr. G. Beyer; Konf. Fire Resistance in Plastics, 2007 beschrieben. Anionische Organoclays bedeuten organophil-modifizierte Hydrotalcite auf Basis von Anionenaustausch mit Alkalirosinaten, ungesättigten und gesättigten Fettsäuresalzen sowie langkettig alkylsubstituierten Sulfonaten und Sulfaten.
Metalloxide sind bevorzugt Diantimontrioxid, Diantimontetroxid, Diantimonpentoxid oder Zinkoxid.
Als Metallphosphat sind Metallpyrophosphate bevorzugt. Besonders bevorzugt sind Aluminium- und Zinkpyrophosphat sowie Zink- und Aiuminiumtriphosphat ebenso wie Aluminium- und Zinkmetaphosphat sowie Aluminium- und Zinkorthophosphat. Unter den kationisch- oder anionisch-modifizierten Organoclays sind die alkylsulfat- oder fettsäurecarboxylat- modifizierten Hydrotalcite oder langkettig quaternär- ammonium-modifizierte Tonmineralien besonders bevorzugt.
Bevorzugt sind bei den Metallhydroxiden Magnesiumhydroxid (Brucit),
Aluminiumtrihydroxid (ATH, Gibbsit) oder Aluminiummonohydroxid (Boehmit) sowie Hydromagnesit und Hydrozinkit. Neben Gibbsit und Boehmit sind auch die anderen Modifikationen von Aluminiumhydroxiden, nämlich Bayerit, Nordstrandit und Diaspor anzuführen.
Weiterhin bevorzugt sind in Bezug auf Molybdatsalze oder Stannatsalze
Ammoniumheptamolybdat, Ammoniumoctamolybdat, Zinkstannat oder
Zinkhydroxystannat oder Mischungen davon. Diese wirken ferner als
Rauchverminderer und weisen somit besonders vorteilhafte Eigenschaften in den Flammschutzmitteln der vorliegenden Erfindung auf.
Aus der Klasse der Metallborate sind Alkali-, Erdalkali- oder Zinkborat bevorzugt. Weiterhin anzuführen sind Aluminiumborat, Bariumborat, Calciumborat,
Magnesiumborat, Manganborat, Melaminborat, Kaliumborat, Zinkborphosphat oder Mischungen davon.
Metallphosphinate sind bevorzugt Salze in denen Mt1 ausgewählt ist aus Ca, Mg, Zn oder AI. Bevorzugte Metallphosphinate sind Phenylphosphinat Diethyl(methyl, ethyl)phosphinat, insbesondere in Verbindung mit den zuvor genannten Metallen.
Unter den Hypophosphiten sind das Mg-, Ca-, Zn- und AI-Salz besonders bevorzugt.
Bevorzugte Metallphosphinate (VI) und Metallphosphonate (VII) sind Salze mit Mt ausgewählt aus Ca, Mg, Zn oder AI. Besonders bevorzugt ist die Verwendung eines Metallphosphinates (VI), das aus 6H-Dibenz[c,e][1 ,2]oxaphosphorin-6-oxid [CAS- Nr.:35948-25-5) in Wasser ohne Verwendung von Alkalilauge hergestellt wird.
Besonders bevorzugt ist auch die Verwendung von Metallphosphonaten (VII), die beispielsweise durch thermische Zyklisierung von Vorstufen (VI) zugänglich sind. Ganz besonders bevorzugt sind Zink- oder Aluminium-Phosphonate und Thiophosphonate (VII). Die (Thio)Phosphonate werden vorzugsweise aus den (Thio)Phosphonsäuren (CAS-Nr:36240-31-0 und CAS-Nr:62839-09-2) hergestellt. Sämtliche Phosphorvorstufen sind als Handelsprodukte erhältlich.
Die metallfreie (Co-)Komponente (Komponente (iii) der erfindungsgemäßen
Zusammensetzung) umfasst insbesondere roten Phosphor, oligomere
Phosphatester, oligomere Phosphonatester, zyklische Phosphonatester,
Thiopyrophosphorsäureester, Melaminorthophosphat oder Melaminpyrophosphat, Di- Melaminphosphat, Melam(polyphosphat), Meiern, Ammoniumpolyphosphat,
Melamin-Phenylphosphonat sowie dessen Halbestersalz, wie in WO 2010/063623 beschrieben, Melamin-Benzolphosphinat, wie in WO 2010/057851 beschrieben, Hydroxyalkyl-Phosphinoxide, wie in WO 2009/034023 beschrieben, Tetrakis- hydroxymethylphosphoniumsalze und Phospholan(oxid)- bzw. Phosphol-Derivate sowie Bisphosphoramidate mit Piperazin als Brückenglied oder ein Phosphinatester, die Substanzklasse der NOR-HALS-Verbindungen (non-basic aminoether hindered amine light stabilizer) sowie Mischungen davon.
Bevorzugt als weitere zusätzliche Komponente sind Melaminpolyphosphat, Bis- Melamin-Zinkdiphosphat, Bis-Melamin-Magnesiumdiphosphat oder Bis-Melamin- Aluminiumtriphosphat.
Bevorzugt in Bezug auf oligomere Phosphatester sind Phosphatester der Formel (VIII) oder Formel (IX),
Figure imgf000010_0001
wobei jedes R unabhängig voneinander Wasserstoff, C C4-Alkyl oder Hydroxy ist, n = 1 bis 3 ist und o = 1 bis 10 ist. Besonders bevorzugt sind Oligomere mit Rn = H und Resorcin bzw. Hydrochinon als Bestandteil des Brückengliedes sowie Rn = H und Bisphenol-A oder Bisphenol-F als Bestandteil des Brückengliedes.
Bevorzugt sind oligomere Phosphonatester der Formel (X),
Figure imgf000011_0001
wobei R3 Methyl oder Phenyl ist, x = 1 bis 20 ist, R jeweils unabhängig voneinander Wasserstoff, C C4-Alkyl oder Hydroxy ist, n = 1 bis 3 und o 1 bis 10 ist.
Besonders bevorzugt sind Oligomere mit Rn = H und Resorcin bzw. Hydrochinon als Bestandteil des Brückengliedes.
Weiterhin bevorzugt sind zyklische Phosphonatester der Formel (XI):
Figure imgf000011_0002
wobei R3 Methyl oder Phenyl ist, R Wasserstoff, C C4-Alkyl ist und y 0 oder 2 ist. Besonders bevorzugt ist Bis[5-ethyl-2-methyl-1 ,3,2-dioxaphosphorinan-5- yl)methyl]methylphosphonat-P,P'-dioxid.
Ferner bevorzugt sind Thiopyrophosphorsäureester der Formel (XII)
Figure imgf000011_0003
wobei jedes R und R2 unabhängig voneinander Wasserstoff, CrC4-Alkyl ist
Besonders bevorzugt ist 2,2'-Oxybis[5,5-dimethyl-1 ,3,2-dioxaphosphorinan]2,2'- disulfid. Von den Hydroxyalkyl-Phosphinoxiden sind bevorzugt Isobutyl-bis-hydroxymethyl- Phosphinoxid sowie dessen Kombination mit Epoxyharzen, wie in WO-A
2009/034023 beschrieben.
Von den Tetrakis-hydroxyalkyl-Phosphoniumsalzen sind die Tetrakis-hydroxymethyl- Phosphoniumsalze besonders bevorzugt.
Von den Phospholan- bzw. Phosphol-Derivaten sind Dihydrophosphol(oxid)-Derivate und Phospholan (oxid)-derivate sowie deren Salze, wie in EP 1 024 166
beschrieben, besonders bevorzugt.
Von den Bisphosphoramidaten sind die Bis-di-ortho-xylylester mit Piperazin als Brückenglied besonders bevorzugt.
Ebenfalls besonders bevorzugt sind Phosphinatester, wie beispielsweise
Benzolmonophenylesterderivate oder 9,10-Dihydro-9-oxa-10-phosphaphenanthren- 10-oxid (6H-Dibenzo(c,e)(1 ,2)-oxaphosphorin-6-on) - Derivate wie in den folgenden Formeln dargestellt.
Figure imgf000013_0001

Figure imgf000014_0001
Figure imgf000014_0002

Figure imgf000015_0001
wobei R Ci - C4-Alkyl, n 1 bis 6 und x 1 bis 3 ist. Besonders bevorzugt sind Verbindungen der Formel (XIII), (XIV) oder (XV), wie im Folgenden dargestellt.
Figure imgf000016_0001
Bis-9,10-Dihydro-9-oxa-10-phosphaphenanthren-10-oxid (6H-Dibenz[c,e][1 ,2]oxa- phosphorin-6-oxid)-Verbindungen (Formel XV), sowie 10-Benzyl-9-oxa-10- phosphaphenanthren-10-oxid, CAS-No: 113504-81-7. Die Herstellung dieser
Verbindungen ist in Russ. J. Org. Chem. 2004, 40(12), 1831-35 beschrieben. Weitere in der vorliegenden Erfindung geeignete 9,10-Dihydro-9-oxa-10- phosphaphenanthren- 0-oxid (6H-Dibenz[c,e][1 ,2]oxa-phosphorin-6-oxid)-Derivate sind beschrieben in US 8101678 B2 und US 8236881 B2.
Anstelle von 9,10-Dihydro-9-oxa-10-phosphaphenanthren-10-oxid (6H- Dibenz[c,e][1 ,2]oxa-phosphorin-6-oxid) kann auch Dihydro-oxa-phospha- anthrazenoxid(on) verwendet werden. Eine Übersicht hierzu ist der WO-A
2008/119693 zu entnehmen.
Von den NOR-HALS-Verbindungen sind folgende Verbindungen bevorzugt:
Figure imgf000016_0002
mit R' = CH3, n-C4H9, oder c-C6Hn
Figure imgf000017_0001
H9, oderc-C6Hn
Figure imgf000017_0002
oderc-C6Hn
Figure imgf000017_0003
n= 2-10 H9, oderc-C6Hn
Figure imgf000018_0001
n= 2-10
mit R' = CH3, n-C4H9, oder c-CeHn
Ebenso bevorzugt sind zusätzlich Polyole, Aminouracile, POSS-Verbindungen, Trishydroxyethylisocyanurat, Melamincyanurat, Blähgraphit oder Mischungen davon. POSS-Verbindungen (polyhedral oligomeric silsesquioxanes) und deren Derivate werden näher beschrieben in POLYMER, Vol. 46, S. 7855-7866. Besonders bevorzugt sind hierbei POSS-Derivate auf Methylsiloxan-Basis.
Ferner können auch Tris-hydroxyethyl-isocyanurat-polyterephthalate sowie
Triazinpolymere mit Piperazin-1 ,4-diyl-Brückengliedern und Morpholin-1-yl- Endgruppen in den Flammschutzmitteln der vorliegenden Erfindung enthalten sein.
Ferner können folgende Zusatzstoffen in den Flammschutzmitteln der vorliegenden Erfindung enthalten sein: Bis-Azinpentaerythritdiphosphatsalze, Hexa-aryloxy- triphosphazene, Poly-aryloxy-phosphazene und Siloxane, beispielsweise der allgemeinen Form (R2SiO)r oder (RSiOi,5)r.
Grundsätzlich können in den Zusammensetzungen der vorliegenden Erfindung auch Mischungen zweier oder mehrerer der zuvor beschriebenen Verbindungen enthalten sein.
Besonders bevorzugt sind Zweier-Kombinationen wie beispielsweise:
MZP oder MAP2 (Melamin-Zinkphosphat/Melamin-Aluminiumdiphosphat) und Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2 CAS-Nr: [165597-56-8], Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2 CAS-Nr: [139005-99-5],
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3 CAS-Nr: [145826-41-1] gemäß Formel (VI);
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2
CAS-Nr: [147025-23-8],
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2
CAS-Nr: [69151-14-0],
AI( 0-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3
CAS-Nr: [121166-84-5].
Ca(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2
CAS-Nr: [144722-45-2], gemäß Formel (VII);
M2ZP2 oder M2AP3 (Dimelamin-Zinkdiphosphat/Dimelamin- Aluminiumtriphosphat) und
Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9, 10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
Ganz Besonders bevorzugt sind Dreier-Kombination wie beispielsweise:
MZP oder MAP2 (Melamin-Zinkphosphat/Melamin-Aluminiumdiphosphat) und Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9, 0-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9, 10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
und Zinkborat.
M2ZP2 oder M2AP3 (Dimelamin-Zinkdiphosphat/Dimelamin- Aluminiumtriphosphat) und Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
und Zinkborat.
MZP oder MAP2 (Melamin-Zinkphosphat Melamin-Aluminiumdiphosphat) und Mg(2'-Hydroxy[1 , r-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
und Zinkstannat.
M2ZP2 oder M2AP3 (Dimelamin-Zinkdiphosphat/Dimelamin- Aluminiumtriphosphat) und
Mg(2'-Hydroxy[ ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[ ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al( 0-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
und Zinkstannat.
MZP oder MAP2 (Melamin-Zinkphosphat/Melamin-Aluminiumdiphosphat) und Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[ ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
AI(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3; und Boehmit.
M2ZP2 oder M2AP3 (Dimelamin-Zinkdiphosphat/Dimelamin- Aluminiumtriphosphat) und
Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9, 10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3;
und Boehmit.
MZP + MPP und
Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9, 10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
Al(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3.
MAP2 + MPP und
Mg(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2,
AI(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)3,
Mg(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2,
Zn(10-oxy-9, 10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)2 oder
AI(10-oxy-9,10-Dihydro-9-oxa-phosphaphenanthren-10-oxid-at)3.
Verwendung des erfindungsgemäßen Azin-Metallphosphats
Eine besondere Ausführungsform der Erfindung betrifft die Verwendung des erfindungsgemäßen Azin-Metallphosphats in einem Polymer oder einer
Polymermischung als Flammschutzmittel. Die vorliegende Erfindung betrifft somit ferner Zusammensetzungen, wie zuvor beschrieben, welche zusätzlich ein Polymer oder eine Polymermischung enthalten. Bevorzugt wird zunächst die zuvor beschriebene Zusammensetzung, umfassend die Komponenten (i), (ii) und
gegebenenfalls (iii), hergestellt und diese Zusammensetzung in das Polymer oder die Polymermischung eingearbeitet.
Die Erfindung betrifft auch ein Verfahren zur Herstellung von flammgeschützten Polymerformmassen, dadurch gekennzeichnet, dass die erfindungsgemäßen stabilisierten Flammschutzmittel mit dem Polymergranulat und evtl. Additiven in einem Compoundieraggregat bei höheren Temperaturen in der Polymerschmelze homogenisiert werden und anschließend der homogenisierte Polymerstrang abgezogen, gekühlt und portioniert wird. Das erhaltene Granulat wird z.B. bei 90 °C im Umluftofen getrocknet.
Bevorzugt stammt das Compoundieraggregat aus der Gruppe der Einwellenextruder, Mehrzonenschnecken oder Doppelschneckenextruder. Geeignete
Compoundieraggregate sind Einwellenextruder bzw. Einschneckenextruder z.B. der Fa. Berstorff GmbH, Hannover und oder der Fa. Leistritz, Nürnberg,
Mehrzonenschnecken-Extruder mit Dreizonenschnecken und/oder
Kurzkompresionsschnecken, Ko-Kneader z.B. Fa. Coperion Buss Compounding Systems, CH-Pratteln, z.B. MDK/E46-1 1 D und/oder Laborkneter (MDK 46 der Fa. Buss, Schweiz mit L = 1 1 D); Doppelschneckenextruder z.B. der Fa. Coperion Werner Pfleiderer GmbH & Co. KG, Stuttgart (ZSK 25, ZSk 30, ZSK 40, ZSK 58, ZSK
MEGAcompounder 40, 50, 58, 70, 92, 119, 177, 250, 320, 350, 380) und/oder der Fa. Berstorff GmbH, Hannover, Leistritz Extrusionstechnik GmbH, Nürnberg; Ring- Extruder z.B. der Fa. 3+Extruder GmbH, Laufen mit einem Ring von drei bis zwölf kleinen Schnecken, die um einem statischen Kern rotieren und/oder
Planetwalzenextruder z.B. der Fa. Entex, Bochum und/oder Entgasungsextruder und/oder Kaskadenextruder und/oder Maillefer-Schnecken; Compounder mit gegenläufiger Doppelschnecke z.B. Complex 37- bzw. -70-Typen der Fa. Krauss- Maffei Berstorff.
Das Polymer ist typischerweise ein Thermoplast, der vorzugsweise ausgewählt ist aus der Gruppe, bestehend aus Polyamid, Polycarbonat, Polyolefin, Polystyrol, Polyester, Polyvinylchlorid, Polyvinylalkohol, ABS und Polyurethan, oder ein Duroplast ist, der vorzugsweise ausgewählt ist aus der Gruppe, bestehend aus Epoxidharz (mit Härter), Phenolharz und Melaminharz.
Es können auch Mischungen von zwei oder mehreren Polymeren, insbesondere _ Thermo- und/oder Duroplasten, in denen das erfindungsgemäße Azin- Metallphosphat als Flammschutzmittel eingesetzt wird, verwendet werden.
Beispiele für solche Polymere sind:
Polymere von Mono- und Diolefinen, z.B. Polypropylen, Polyisobutylen, Polybuten-1 , Poly-4-methylpenten-1 , Polyvinylcyclohexan, Polyisopren oder
Polybutadien und Polymerisate von Cycloolefinen, z.B. von Cyclopenten oder Norbornen und Polyethylen (auch vernetzt), z.B. High Density Polyethylen (HDPE) oder High Molecular Weight (HDPE-HMW), High Density Polyethylen mit Ultra-High Molecular Weight (HDPE-UHMW), Medium Density Polyethylen (MDPE), Low
Density Polyethylen (LDPE) und Linear Low Density Polyethylen (LLDPE), (VLDPE) und (ULDPE) sowie Copolymere von Ethylen und Vinylacetat (EVA);
Polystyrole, Poly(p-methylstyrol), Poly(a-methylstyrol);
Copolymere sowie Propfcopolymere von Polybutadien-Styrol oder
Polybutadien und (Meth)Acrylnitril wie z.B. ABS und MBS;
Halogenhaltige Polymere, wie z.B. Polychloropren, Polyvinylchlorid (PVC); Polyvinylidenchlorid (PVDC), Copolymere von Vinylchlorid/Vinylidenchlorid,
Vinylchlorid/Vinylacetat oder Vinylchlorid/Vinylacetat;
Poly(meth)acrylate, Polymethylmethacrylate (PMMA), Polyacrylamid und Polyacrylnitril (PAN);
Polymere von ungesättigten Alkoholen und Aminen oder ihren Azylderivaten bzw. Azetalen, wie z.B. Polyvinylalkohol (PVA), Polyvinylacetate, -stearate, - benzoate oder -maleate, Polyvinylbutyral, Polyallylphthalate und Polyallylmelamine;
Homo- und Copolymere von cyclischen Ethern, wie Polyalkylenglykole, Polyethylenoxide, Polypropylenoxide und deren Copolymere mit Bisglycidylethern;
Polyacetale, wie beispielsweise Polyoxymethylene (POM) sowie Polyurethan und Acrylat-modifizierte Polyazetale;
Polyphenylenoxide und -sulfide und deren Gemische mit Styrolpolymeren oder Polyamiden; Polyamide und Copolyamide hergeleitet von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Laktamen, wie z.B. Polyamid 4, Polyamid 6, Polyamid 6/6, 6/10, 6/9, 6/12, 12/12, Polyamid 1 , Polyamid 12, aromatische Polyamide, hergeleitet vom m-Xylylendiamin und Adipinsäure und Copolyamide modifiziert mit EPDM oder ABS. Beispiele von Polyamiden und
Copolyamiden sind hergeleitet von ε-Kaprolaktam, Adipinsäure, Sebacinsäure, Dodekansäure, Isophthalsäure, Terephthalsäure, Hexamethylen-diamin,
Tetramethylendiamin, 2-Methyl-pentamethylendiamin, 2,2,4-Trimethyl- hexamethylendiamin, 2,4,4-Trimethylhexamethylendiamin, m-Xylylendiamin oder Bis(3-Methyl-4-aminozyklohexyl)methan;
Polyharnstoffe, Polyimide, Polyamidimide, Polyetherimide, Polyesterimide, Polyhydantoine und Polybenzimidazole.
Polyester, hergeleitet von Dicarbonsäuren und Dialkoholen und/oder
Hydroxycarbonsäuren oder den entsprechenden Laktonen, wie z.B.
Polyethylenterephthalat, Polypropylenterephthalat, Polybutylenterephthalat, Poly-1 ,4- dimethylzyklohexanterephthalat, Polyalkylennaphthalat (PAN) und
Polyhydroxybenzoate, Polymilchsäureester und Polyglykolsäureester;
Polycarbonate und Polyestercarbonate;
Polyketone;
Mischungen bzw. Legierungen von o.g. Polymeren z.B. PP/EPDM, PA/EPDM oder ABS, PVC/EVA, PVC/ABS, PBC/MBS, PC/ABS, PBTP/ABS, PC/AS, PC/PBT, PVC/CPE, PVC/Acrylat, POM/thermoplastisches PUR, PC/thermoplastisches PUR, POM/Acrylat, POM/MBS, PPO/HIPS, PPO/PA6.6 und Copolymere, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS oder PBT/PET/PC, sowie TPE-O, TPE-S und TPE-E;
Duroplaste wie PF, MF oder UF oder Mischungen davon;
Epoxidharze - Thermoplaste und Duroplaste;
Phenolharze;
Wood-Plastic-Composites (WPC) sowie Polymere auf PLA-, PHB- und Stärke- Basis.
Die Konzentration der erfindungsgemäßen Flammschutzmittelzubereitungen, bestehend aus dem Azin-Metallphosphat (Komponente (i)) und der zusätzlichen metallhaltigen Komponente (ii) und gegebenenfalls der metallfreien Komponente (iii) beträgt in einem Polymer oder einer Polymermischung bevorzugt 0,1 bis 60 Gew.-%, bezogen auf Polymer oder die Polymermischung. Das Komponentenverhältnis in der Zusammensetzung, bestehend aus Azin-Metallphosphat (i) zu den Co-Komponenten (ii) und gegebenenfalls (iii), liegt bevorzugt im Bereich von 1 :1 bis 1 :4
Gemäß einer bevorzugten Ausführungsform der Erfindung kann das
erfindungsgemäße Polymermaterial weitere Füllstoffe enthalten, die bevorzugt ausgewählt sind aus der Gruppe, bestehend aus Metallhydroxiden und/oder
Metalloxiden, vorzugsweise Erdalkalimetallhydroxiden, beispielsweise
Magnesiumhydroxid und Aluminiumhydroxid, Silikaten, vorzugsweise Schichtsilikaten wie Bentonit, Kaolinit, Muskovit, Pyrophyllit, Markasit und Talk, oder anderen
Mineralien, wie Wollastonit, Siliziumdioxid, wie Quarz, Glimmer, Feldspat, sowie Titandioxid, Erdalkalimetallsilikate und Alkalimetallsilikate, Carbonate, vorzugsweise Calciumcarbonat, sowie Talk, Ton, Glimmer, Kieselerde, Caiciumsulfat, Bariumsulfat, Pyrit, Glasfasern, Glaspartikeln, Glasperlen und Glaskugeln, Holzmehl,
Cellulosepulver, Ruß, Graphit, Kreide und Pigmenten.
Diese Füllstoffe können dem Polymermaterial weitere gewünschte Eigenschaften verleihen. Insbesondere kann z.B. durch eine Verstärkung mit Glasfasern die mechanische Stabilität erhöht werden oder durch Zugabe von Farbstoffen der Kunststoff eingefärbt werden.
Gemäß einer weiteren Ausführungsform können die Polymermaterialien weitere Zusatzstoffe, wie Antioxidantien, Lichtstabilisatoren, Prozesshilfsmittel,
Nukleierungsmittel, Antistatika, Gleitmittel, wie Calcium- und Zinkstearat,
Viskositätsverbesserer, Impact Modifier und insbesondere Kompatibilisatoren und Dispergierungsmittel, enthalten.
Außerdem können dem Polymer zusätzlich zu dem erfindungsgemäßen Azin- Metallphosphat Schaumbildner zugesetzt werden. Schaumbildner sind bevorzugt Melamin, Melaminformaldehydharze, Harnstoffderivate, wie Harnstoff, Thioharnstoff, Guanamine, Benzoguanamin, Azetoguanamin und Succinylguanamin, Dizyandiamid, Guanidin und Guanidinsulfamat sowie andere Guanidinsalze bzw. Allantoine und Glykolurile. Darüber hinaus kann ein Polymer, welches das erfindungsgemäße Azin- Metallphosphat enthält, auch Antidripping-Mittel, insbesondere auf
Polytetrafluoroethylenbasis, enthalten. Die Konzentration solcher Antidrippingmittel beträgt vorzugsweise 0,01 bis 5 Gew.-%, bezogen auf das zu verarbeitende Polymer.
Verfahren zur Herstellung erfindungsgemäßer Azin-Metallphosphate
Bestandteil der Erfindung ist auch ein Verfahren zur Herstellung der zuvor beschriebenen erfindungsgemäßen Azin-Metallphosphate durch Umsetzen eines Azinedukts (A) mit einem Metalloxidedukt (B) und Orthophosphorsäure (C), wobei das Azinedukt (A) ausgewählt ist aus Melamin der Formel (l-H), Melam der Formel (ll-H), Guanamin der Formel (lll-H) und Guanidin(bi)karbonat der Formel (IV-H), und das Metalloxidedukt (B) ausgewählt ist aus Metalloxiden, Metallhydroxiden und/oder Metallkarbonaten.
Figure imgf000026_0001
Melamin (l-H) Melam (ll-H)
Guanamin (lll-H) (Amino)Guanidin(bi)karbonat (IV-H)
Bevorzugte Azin-Edukte sind Melamin, Guanamin und Melam. Bevorzugte
Metalloxide sind ausgewählt aus MgO, ZnO, AI2O3 und SnO, ZrO2, bevorzugte Metallhydroxide sind ausgewählt aus Mg(OH)2, Zn(OH)2, AI(OH)3, Ce(OH)3 und Bi(OH)3 und (basische) Metallkarbonate sind bevorzugt ausgewählt aus CaCO3, MgCO3, basischem Magnesiumkarbonat (Hydromagnesit), basischem Zinkkarbonat und basischem Zirkonkarbonat. Besonders bevorzugt sind Mg(OH)2, ZnO, AI(OH)3 und basisches Zinkkarbonat. Grundsätzlich können als Azinedukt (A) und/oder als Metalloxidedukt (B) auch Mischungen aus zwei oder mehreren der zuvor genannten Verbindungen verwendet werden.
Das Verfahren umfasst üblicherweise die folgenden Schritte:
(a) Vorlage einer wässrigen Suspension aus Azinkomponente (A) und
Metalloxidedukt (B) (d.h. Metall(hydr)oxid oder (basischem) Metallkarbonat),
(b) Zudosierung von Orthophosphorsäure,
(c) Erhitzen auf bevorzugt 60-80 °C,
(d) Abtrennen des Produktes sowie
(e) gegebenenfalls Trocknung zur Gewichtskonstanz und/oder Temperung bei typischerweise 250 - 300 °C.
Bevorzugt umfasst das Verfahren die Umsetzung der Komponenten (A-1 bis A- 4):(B):(C) im molaren Verhältnis (1 bis 3):(1 ):(1 bis 3), wodurch insbesondere gewährleistet wird, dass sich in-situ zusätzliche Melamin- oder (Amino)Guanidin- Phosphate bilden.
Besonders bevorzugt kann an Schritt (a) ein Granulierverfahren anschließen. Dieses kann bevorzugt als Sprühagglomerierung entweder im Sprühtrockner,
Sprühgranulator (Topspray oder Bottomspray, Gegenstromverfahren),
Wirbelschichtgranulator oder in einem Schaufelmischer bzw. Horizontaltrockner erfolgen, wobei das eingebrachte Wasser entfernt wird, bis dass die gewünschte Restfeuchte erhalten wird. Die Granulierung kann durch Sprühtrocknung einer wässrigen Suspension eines Azin-Metallphosphates der Formel (I) bei üblicherweise 70 - 80 °C stattfinden oder alternativ als Sprühgranulierung ausgehend von einer Eduktmischung aus Komponenten (A) und (B) als Fließbett und Aufsprühen von Komponente (C) auf das Fließbett und anschließende Trocknung erhalten werden. Die Fließbett-Temperatur wird dabei konstant zwischen 70 - 80 °C gehalten, wobei die Granulate gleichzeitig abtrocknen und ein rieselfähiges, nichtstaubendes
Granulat entsteht. Der Restwassergehalt liegt bei ca. 0,5 - 1 %.
Die Temperung des Reaktionsproduktes erfolgt typischerweise bei 220 bis 350 °C, bevorzugt bei 250 bis 300 °C. Beispiele
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung, wobei die Verbindungen der Beispiele 1 bis 6 das erfindungsgemäße Verfahren beschreiben und die Beispiele 1 bis 4 ferner neue Verbindungen beschreiben. Beispiel 7 ist ein Vergleichsbeispiel. Beispiel 8 beschreibt die Verwendung der erfindungsgemäßen Verbindungen als Flammschutzmittel.
Beispiel 1 : Synthese von Melamin-Magnesiumphosphat-Dihydrat (MMP)
C3H7N604PMg. 2H20 (MW:282,5)
127,4 g (1 ,01 Mol) Melamin und 58,3 g (1 ,0 Mol) Magnesiumhydroxid werden in 1 ,5 I Wasser unter Rühren suspendiert. Zu dieser Suspension tropft man unter Rühren 1 15,3g (1 ,0 Mol) Orthophosphorsäure (85%ig) als verdünnte wässrige Lösung zu. Nach 1 stündigem Rühren bei 60 °C bildet sich ein voluminöser Niederschlag.
Anschließend wird noch 60 Min. nachgerührt, auf Raumtemperatur abgekühlt, der entstandene weiße Niederschlag abgesaugt, mit Wasser nachgewaschen und bei 120 °C gewichtskonstant getrocknet.
Ausbeute: 253,0 g entsprechend 90% d.Th.
Elementaranalyse:
gefunden: C: 12,70%; H: 3,67%; N: 29,69%; Mg: 8,47%; P: 10,87% berechnet: C: (12,80%); H: (3,90%); N: (29,80%); Mg: (8,60%); P: (1 1 ,0%)
Beispiel 2: Synthese von Melamin-Zinkphosphat-Dihydrat (MZP)
C3H7N6O4PZn. 2H2O (MW = 323,5)
2547 g (20,2Mol) Melamin und 1628 g (20,0 Mol) Zinkoxid werden in 20 I Wasser unter Rühren suspendiert. Zu dieser Suspension tropft man unter Rühren 2306g (20,0 Mol) Orthophosphorsäure (85%ig) als verdünnte wässrige Lösung zu. Nach 1 stündigem Rühren bei 60 °C bildet sich ein voluminöser Niederschlag. Anschließend wird noch 60 Min. nachgerührt, auf Raumtemperatur abgekühlt, der entstandene weiße Niederschlag abgesaugt, mit Wasser nachgewaschen und bei 120 °C gewichtskonstant getrocknet (Produkt 2-I).
Ausbeute: 6042,0g entsprechend 93,4% d.Th.
Elementaranalyse:
gefunden: C: 11 ,6%; H: 2,83%; N: 27,20%; Zn: 19,83%; P: 9,45%
berechnet: C: (1 1 ,1 %); H: (3,4%); N: (26,0%); Zn: (20,2%); P: (9,6%)
Das so erhaltene Produkt 2-I wurde 4h bei 290 °C getempert (Produkt 2-II) Gew.- Verlust: 10,4%. C3H7N604PZn (Mol.Gew.: 287,5).
Elementaranalyse:
gefunden: C: 12,37%; H: 2,05% ; N: 27,48%; Zn: 21 ,35%; P: 10,28% berechnet: C: (12,53%); H:(2,45%); N: (29,23%); Zn: (22,74%); P: (10,77%)
Beispiel 3: Synthese von Guanidin-Magnesiumphosphat-Hemihydrat (GMP) CH6N3O4PMg* 0,5H2O (MW = 188,4)
91 ,0 g (0,505 Mol) Bisguanidiniumkarbonat und 58,3 g (1 ,0 Mol) Magnesiumhydroxid werden in 1 ,5 I Wasser unter Rühren suspendiert. Zu dieser Suspension tropft man unter Rühren 1 15,3g (1 ,0 Mol) Orthophosphorsäure (85%ig) als verdünnte wässrige Lösung zu. Nach 1 stündigem Rühren bei 35 °C bildet sich ein weißer Niederschlag. Anschließend wird noch 60 Min. nachgerührt, auf Raumtemperatur abgekühlt, der entstandene weiße Niederschlag abgesaugt, mit Wasser nachgewaschen und bei 120 °C gewichtskonstant getrocknet.
Ausbeutet 09,1 g entsprechend 58% d.Th.
Beispiel 4: Synthese von Guanidin-Zinkphosphat (GZP) CH6N3O4PZn
(MW =220,4)
91 ,0g (0,505Mol) Bisguanidiniumkarbonat und 81 ,4 g (1 ,0 Mol) Zinkoxid werden in 1 ,5 I Wasser unter Rühren suspendiert. Zu dieser Suspension tropft man unter Rühren 1 15,3g (1 ,0 Mol) Orthophosphorsäure (85%ig) als verdünnte wässrige Lösung zu. Nach 1 stündigem Rühren bei 60 °C bildet sich ein voluminöser
Niederschlag.
Anschließend wird noch 60 Min. nachgerührt, auf Raumtemperatur abgekühlt, der entstandene weiße Niederschlag abgesaugt, mit Wasser nachgewaschen und bei 120 °C gewichtskonstant getrocknet.
Ausbeute: 185,0 g entsprechend 84% d.Th.
Beispiel 5: Synthese von Dimelamin-Zinkbisphosphat-Monohydrat (M2ZP2)
C6H16N12O8P2Zn.H2O (MW =529,6)
2547g (20,2Mol) Melamin und 814 g (10,0 Mol) Zinkoxid werden in 15 I Wasser unter Rühren suspendiert. Zu dieser Suspension tropft man unter Rühren 2306g (20,0 Mol) Orthophosphorsäure (85%ig) als verdünnte wässrige Lösung zu. Nach 1 stündigem Rühren bei 60 °C bildet sich ein voluminöser Niederschlag. Anschließend wird noch 60 Min. nachgerührt, auf Raumtemperatur abgekühlt, der entstandene weiße
Niederschlag abgesaugt, mit Wasser nachgewaschen und bei 120 °C
gewichtskonstant getrocknet (Produkt 5-I).
Ausbeute: 51 18g entsprechend 96,6% d.Th.
Das so erhaltene Produkt 5-I wurde 4h bei 290 °C getempert (Produkt 5-II). Gew.- Verlust: 7,3%, wobei Dimelamin-Zinkdiphosphat resultiert.
Elementaranalyse:
gefunden: C: 14,67%; H: 2,40% ; N: 33,58%; Zn: 12,67%; P: 12,34%
berechnet: C: (14,6%); H:(2,85%); N: (34,05%); Zn: (13,25%); P: (12,55%)
Beispiel 6: Synthese von Dimelamin-Zinkbisphosphat-Monohydrat (M2ZP2)
C6H16N12O8P2Zn*H2O (MW =529,6) nach dem Sprühverfahren
In einem GPCG 3.1 Wirbelschichtgranulator der Fa. GLATT GmbH werden 2547g Melamin (20,2Mol) und 814g (10,0Mol) ZnO vorgelegt. Das Feststoffbett wird mit einem Luftstrom kontinuierlich aufgewirbelt und darauf eine Lösung hergestellt aus 2306g (20-OMol) Orthophosphorsäure in 1000ml Wasser aufgesprüht. Die Fließbettemperatur wird dabei konstant zwischen 70 - 80 °C gehalten, wobei die Granulate gleichzeitig abtrocknen und ein rieselfähiges, nichtstaubendes Granulat entsteht. Die Hauptfraktion (>80%) weist einen Körnungsbereich von 200 - 400 pm. auf. Der Restwassergehalt liegt bei ca. 0,5 - 1 %. Ausbeute: quantitativ
Das so erhaltene Produkt 6-I wurde 4h bei 290 °C getempert (Produkt 6-ll). Gew.- Verlust: 8,0%, wobei Dimelamin-Zinkdiphosphat resultiert.
Elementaranalyse:
gefunden: C: 14,06%; H: 2,48%; N: 33,64%; Zn: 12,79%; P: 1 ,98% berechnet: C: (14,6%); H: (2,85%); N: (34,05%); Zn: (13,25%); P: (12,55%)
Vergleichsbeispiel 7: Synthese von Dimelamin-Pyrophosphato-Zinkat
[Mel-H]+ 2[ZnP207]2" (gemäß EP 2 183 314 B1 )
Stufe I: Herstellung von Zink-bis-Dihydrogenphosphat:
81 ,37g (1 Mol) ZnO werden unter Rühren mit 230,6g (2Mol) Orthophosphorsäure (85%ig) in ca. 500ml Wasser umgesetzt. Nach 2stündigem Rühren auf 90°C hatte das ZnO reagiert.
Stufe II: Umsetzung von Zink-Bisdihydrogenphosphat mit Melamin:
252,2g Melamin werden in ca. 500ml Wasser suspendiert. Das Zink- Bisdihydrogenphosphat (Stufe I) wird unter Rühren zudosiert und Das Produkt nach Filtration bei 120 °C getrocknet.
Ausbeute: 503,0g entsprechend 95% d. Th.
Stufe III: 200g Produkt von Stufe-Il werden 3h bei 300 °C getempert. Gew.-Verlust: 6,5%
An den Versuchsprodukten (Beispiele 1 bis 7) wurden pH-Messungen und
Leitfähigkeit von 10%igen wässrigen Suspensionen, nach Filtration, bei
Raumtemperatur gemessen. Ferner wurden TGA/DSC-Messungen (Aufheizrate: 10K/Min; N2/50) mit einem Netzsch STA 409-Gerät durchgeführt (siehe Tabelle 1 ). Tabelle 1 : Kenndaten der Versuchspropdukte
Figure imgf000032_0001
*hergestellt gemäß EP 2 183 314B1
Als Flammschutzmittel wurden folgende Zinkverbindungen weiter untersucht:
(s. Tab. 2)
Tab. 2: Physikalische Eigenschaften von Zink-Verbindungen
Figure imgf000032_0002
Die erfindungsgemäßen Produkte 2, 4 und 5 zeigen verbesserte Leitfähigkeitswerte im Vergleich zum Leitfähigkeitswert von Produkt 7. Die Gewichtsverluste bei 300 °C sind ebenfalls geringer als beim Vergleichsprodukt 7.
Beispiel 8: (Anwendung als Flammschutzmittel in PA)
Materialien: PA 6.6 (Durethan A30S; Fa. LANXESS); Glasfaser (ThermoFlow® 671 ; 10pmx4mm; Fa. John Manville); Melaminpolyphosphat MPP (Melapur 200; Fa. BASF), Zn(2'-Hydroxy[1 ,1 '-Biphenyl-2-yl-2-phosphinat)2 (eigenes Produkt), Dimelamin-Zinkdiphosphat (Beispiel 5).
Die Komponenten wurden auf einem Leistritz ZSE 27HP-44D (0 = 27 mm, 44 D), Doppelschneckenextruder kompoundiert und granuliert. Aus diesen Granulaten wurden via Spritzgußtechnik normgerechte Prüfkörper (d = 1 ,6mm) gefertigt. Die Brandtestprüfung wurde gemäß UL-94-Test durchgeführt. Die Ergebnisse sind in Tab. 2 zusammengestellt.
Tab. 2: Flammschutzprüfung
Figure imgf000033_0001

Claims

Patentansprüche:
Azin-Metallphosphate der allgemeinen Formel [I],
[(A - H)(+) [Mm+ (PO4)x w (3-) (Ρ207)ν^ (4-ψ(->) · pH2O] [I] wobei (A - H)(+) ausgewählt ist aus (Melamin-H)+ der Formel (l-H), (Melam-H)+ der Formel (ll-H), (Guanamin-H)+ der Formel (lll-H), wobei R Methyl oder Phenyl ist, oder [(Amino)Guanidin-H]+ der Formel (IV-H), wobei R' Wasserstoff oder Amino ist,
Figure imgf000034_0001
M = Cu, Mg, Ca, Zn, Mn, Fe, Co, Ni, TiO, ZrO, VO, B, Si, AI, Sb, La, Ti, Zr, Ce, Bi oder Sn ist,
m = 2 oder 3 ist,
x und y unabhängig voneinander 0 oder 1 sind,
p eine ganze Zahl von 0 bis 4 ist und
z eine ganze Zahl >5 ist,
wobei gilt, dass 1 + m = 3x + 4y ist.
2. Zusammensetzung, umfassend
(i) Azin-Metallphosphate nach Anspruch 1 ,
(ii) eine von der Komponente (i) verschiedene metallhaltige Komponente und
(iii) gegebenenfalls eine metallfreie Komponente.
3. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, dass die metallhaltige Komponente (ii) ausgewählt ist aus Metallhydroxid, Metallphosphat, Metallpyrophosphat, Bis-Melamin-Zinkdiphosphat, Bis-Melamin- Magnesiumdiphosphat, Bis-Melamin-Aluminiumtriphosphat, Hydrotalcit,
Hydrocalumit, Zeolith, bevorzugt Zeolith X oder Zeolith Y, kationisch- oder anionisch- modifiziertem Organoclay, Stannatsalz oder Molybdatsalz, Metallborat oder Metall- Phosphinat der Formeln (V) oder (VI), Metallphosphonat der Formel (VII) oder Mischungen davon,
Figure imgf000035_0001
wobei R1 und R2 unabhängig voneinander Wasserstoff, lineares oder verzweigtes Cr C6-Alkyl oder Phenyl sind; Mt1 = Ca, Mg, Zn oder AI ist, m = 2 oder 3 ist und Mt = Ca, Mg, Zn, AI, Sn, Zr, TiO, ZrO, Ce, MoO, W02, VO, Mn, Bi oder Sb ist, D = O oder S und n 2 oder 3 ist.
4. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass das Metallhydroxid ausgewählt ist aus Magnesiumhydroxid (Brucit), Aluminiumtrihydroxid (ATH, Gibbsit), Aluminiummonohydroxid (Boehmit) oder Mischungen davon.
5. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass das Molybdatsalz oder Stannatsalz ausgewählt ist aus Ammoniumheptamolybdat, Ammoniumoctamolybdat, Zinkstannat, Zinkhydroxystannat oder Mischungen davon.
6. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass das Metallborat ausgewählt ist aus Alkaliborat, Erdalkaliborat, Zinkborat oder Mischungen davon, bevorzugt Zinkborat ist.
7. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass das Ivletallphosphinat der Formeln (V) oder (VI) ausgewählt ist aus Hypophosphit, Phenylphosphinat Diethyl(methyl, ethyl)phosphinat oder Mischungen davon, wobei Mt = Ca, Mg, Zn oder AI ist, bevorzugt Mt1 und/oder M Zn oder AI ist.
8. Zusammensetzung nach Anspruch 3, dadurch gekennzeichnet, dass im Metallphosphinat der Formel (VI) und im Metallphosphonat der Formel (VII) Mt = Ca, Ce, Mg, Zn oder AI ist.
9. Zusammensetzung nach Anspruch 2, dadurch gekennzeichnet, dass die metallfreie Komponente (iii) ausgewählt ist aus rotem Phosphor, oligomerem
Phosphatester, oligomerem Phosphonatester, zyklischem Phosphonatester,
Thiopyrophosphorsäureester, Melaminorthophosphat, Melam, Meiern,
Melaminphenylphosphinat, monomerem, oligomerem und polymerem
Melaminphenylphosphonat, Ammoniumpolyphosphat, Hydroxyalkylphosphinoxid, Tetrakis-Hydroxyalkylphosphoniumsalz, Phospholan(oxid)-Derivat oder
Dihydrophosphol(oxid)-derivat, Phosphinatester oder Mischungen davon.
10. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass das zusätzliche Melaminorthophosphat ausgewählt ist aus Melaminpyrophosphat, Melaminpolyphosphat oder Mischungen davon.
1 1 . Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass der oligomere Phosphatester der Formel (VIII), (IX) und/oder der oligomere
Phosphonatester der Formel (X) entspricht,
Figure imgf000036_0001
Figure imgf000037_0001
wobei jedes R unabhängig voneinander Wasserstoff, d-C4-Alkyl oder Hydroxy ist, R3 Methyl oder Phenyl ist, x eine ganze Zahl von 1 bis 20 ist, n = , 2 oder 3 ist und o eine ganze Zahl von 1 bis 10 ist.
12. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass der zyklische Phosphonatester der Formel (XI) entspricht,
Figure imgf000037_0002
wobei R Wasserstoff, C C4-Alkyl oder Hydroxy ist, R3 Methyl oder Phenyl ist und y = 0 oder 2 ist.
13. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass der Thiopyrophosphorsäureester der Formel (XII) entspricht,
Figure imgf000037_0003
wobei jedes R1 und R2 unabhängig voneinander Wasserstoff, CrC4-Alkyl oder Hydroxy ist.
14. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass der Phosphinatester ausgewählt ist aus einem Benzolmonophenylesterderivat, einem 9,10-Dihydro-9-oxa-10-Phosphaphenanthren-10-oxid- oder 6H-Dibenzo(c,e)(1 ,2)- oxaphosphorin-6-on)-Derivat, der Formel (XIII) oder (XIV) und 10-Benzyl-9-oxa-10- phosphaphenanthrene-10-oxid oder Mischungen davon:
Figure imgf000038_0001
15. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass die Komponente (iii) ferner Polyole, Aminouracile, POSS-Verbindungen, NOR-HALS- Derivate, Trishydroxyethylisocyanurat, Melamincyanurat, Blähgraphit oder
Mischungen davon umfasst. 6. Zusammensetzung nach Anspruch 15, dadurch gekennzeichnet, dass das Polyol ausgewählt ist aus Pentaerythrit, Dipentaerythrit und/oder Tripentaerythrit, das Aminouracil 1 ,3-Dimethyl-6-aminouracil ist und die POSS-Verbindung Methylsiloxan- basiert ist.
17. Zusammensetzung nach einem der Ansprüche 2 bis 16, ferner enthaltend ein Polymer oder eine Polymermischung, dadurch gekennzeichnet, dass die
Konzentration der Summe der Komponenten (i) und (ii) in dem Polymer oder der Polymermischung 0,1 bis 60 Gew.-% beträgt, bezogen auf das Polymer oder die Polymermischung.
18. Zusammensetzung nach Anspruch 17, dadurch gekennzeichnet, dass das Polymer ein Thermoplast ist, bevorzugt ausgewählt aus der Gruppe, bestehend aus Polyamid, Polycarbonat, Polyolefin, Polystyrol, Polyester, Polyvinylchlorid,
Polyvinylalkohol, ABS und Polyurethan, Biopolymere, basierend auf Polymilchsäure und/oder Stärke, oder ein Duroplast ist, bevorzugt ausgewählt aus der Gruppe, bestehend aus Epoxidharz, Phenolharz und Melaminharz, oder eine
Polymermischung aus zwei oder mehreren dieser Polymere.
19. Verfahren zur Herstellung von Azin-Metallphosphaten der allgemeinen Formel [I],
[(A - H)(+) [Mm+ (PO4)x (3-> (Ρ207)ν {4ψ - pH20]z [I] wobei (A - H)(+) ausgewählt ist aus (Melamin-H)+ der Formel (l-H), (Melam-H)+ der Formel (ll-H), [(Aceto)Benzoguanamin-H]+ der Formel (lll-H), wobei R Methyl oder Phenyl , oder [(Amino)Guanidin-H]+ der Formel (IV-H) ist, und R' Wasserstoff oder Amino ist,
Figure imgf000039_0001
M = Cu, Mg, Ca, Zn, Mn, Fe, Co, Ni, TiO, ZrO, VO, B, Si, AI, Sb, La, Ti, Zr, Ce, Bi oder Sn ist,
m = 2 oder 3 ist,
x und y unabhängig voneinander 0 oder 1 sind,
p eine ganze Zahl von 0 bis 4 ist und
z eine ganze Zahl >5 ist,
wobei gilt, dass 1 + m = 3x + 4y ist,
durch Umsetzen eines Azinedukts (A) mit einem Metalloxidedukt (B) und
Orthophosphorsäure (C),
wobei das Azinedukt (A) ausgewählt ist aus Melamin der Formel (l-H), Melam der Formel (ll-H), Guanamin der Formel (lll-H) und Guanidin(bi)karbonat der Formel (IV- H), und das Metalloxidedukt (B) ausgewählt ist aus Metalloxiden, Metallhydroxiden und/oder Metallkarbonaten.
Figure imgf000040_0001
Figure imgf000040_0002
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass das Guanamin Acetoguanamin oder Benzoguanamin ist.
21 . Verfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass in Komponente (B) das Metall der Metalloxide oder Metallhydroxide Cu, Mg, Ca, Zn, Mn, Fe, Co, Ni, Ti, Zr, VO, B, Si, AI, Sb, La, Ce, Bi oder Sn ist und das Metall der basischen Metallkarbonate oder der Metallkarbonate Zn, Mg, Zr oder Cu ist.
22. Verfahren nach einem der Ansprüche 19 bis 21 , dadurch gekennzeichnet, dass die Komponenten (A) und (B) als Gemisch, bevorzugt als Suspension, in Wasser vorgelegt werden und Orthophosphorsäure (C) zudosiert wird.
23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass die Umsetzung bei 20 bis 90 °C, bevorzugt bei 30 bis 70 °C, durchgeführt wird.
24. Verfahren nach einem der Ansprüche 19 bis 23, dadurch gekennzeichnet, dass die Komponenten (A):(B):(C) im molaren Verhältnis (1 bis 3):(1 ):(1 bis 3) vorliegen, wobei außerhalb der Stöchiometrie von 1 :1 :1 zusätzlich Azinphosphate vorliegen.
25. Verfahren nach einem der Ansprüche 19 bis 24, dadurch gekennzeichnet, dass dieses in einem horizontalen oder vertikalen Mischer, bevorzugt einem
Schaufelmischer, Granulator oder Sprühtrockner, durchgeführt wird.
26. Verfahren nach einem der Ansprüche 19 bis 25, dadurch gekennzeichnet, dass das Reaktionsprodukt bei 220 bis 350 °C, bevorzugt bei 250 bis 300 °C, getempert wird.
27. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 18 als Flammschutzmittel in einem Polymer oder einer Polymermischung, Papier, Textilien oder Wood Plastic Composites (WPC).
28. Verwendung nach Anspruch 27, dadurch gekennzeichnet, dass das Polymer ein Thermoplast ist, vorzugsweise ausgewählt aus der Gruppe, bestehend aus Polyamid, Polycarbonat, Polyolefin, Polystyrol, Polyester, Polyvinylchlorid,
Polyvinylalkohol, ABS und Polyurethan und Biopolymere, basierend auf
Polymilchsäure und/oder Stärke, oder ein Duroplast ist, vorzugsweise ausgewählt aus der Gruppe bestehend aus Epoxidharz, Phenolharz und Melaminharz.
PCT/EP2012/004329 2012-10-16 2012-10-16 Azin -metallphosphate als flammhemmende mittel WO2014060003A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DK12775443.0T DK2909215T3 (en) 2012-10-16 2012-10-16 AZIN METALPHOSPHATES AS FLAMMABILITY MATERIALS
ES12775443.0T ES2623944T3 (es) 2012-10-16 2012-10-16 Fosfatos azino-metálicos como agentes antiinflamables
JP2015537148A JP2016502505A (ja) 2012-10-16 2012-10-16 難燃性材料としてのアジン金属ホスフェート
PT127754430T PT2909215T (pt) 2012-10-16 2012-10-16 Fosfatos de azina metálicos utilisados enquanto retardadores de chama
US14/436,329 US9505793B2 (en) 2012-10-16 2012-10-16 Azine metal phosphates as flame-retardant materials
PCT/EP2012/004329 WO2014060003A1 (de) 2012-10-16 2012-10-16 Azin -metallphosphate als flammhemmende mittel
CN201280077344.1A CN104981473B (zh) 2012-10-16 2012-10-16 作为阻燃材料的吖嗪金属磷酸盐
EP12775443.0A EP2909215B1 (de) 2012-10-16 2012-10-16 Azin-metallphosphate als flammhemmende mittel
PL12775443T PL2909215T3 (pl) 2012-10-16 2012-10-16 Fosforany azyny i metalu jako środki zmniejszające palność
KR1020157013070A KR101828892B1 (ko) 2012-10-16 2012-10-16 난연제 재료로서의 아진 금속 포스페이트

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/004329 WO2014060003A1 (de) 2012-10-16 2012-10-16 Azin -metallphosphate als flammhemmende mittel

Publications (1)

Publication Number Publication Date
WO2014060003A1 true WO2014060003A1 (de) 2014-04-24

Family

ID=47049125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/004329 WO2014060003A1 (de) 2012-10-16 2012-10-16 Azin -metallphosphate als flammhemmende mittel

Country Status (10)

Country Link
US (1) US9505793B2 (de)
EP (1) EP2909215B1 (de)
JP (1) JP2016502505A (de)
KR (1) KR101828892B1 (de)
CN (1) CN104981473B (de)
DK (1) DK2909215T3 (de)
ES (1) ES2623944T3 (de)
PL (1) PL2909215T3 (de)
PT (1) PT2909215T (de)
WO (1) WO2014060003A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009598A1 (de) 2015-07-24 2017-01-26 Trupti Dave-Wehner Verfahren zur Herstellung eines halogenfreien Flammschutzmittels
EP2956523B1 (de) * 2013-02-13 2018-12-26 J.M. Huber Corporation Flammschutzmittelzusammensetzung
CN114752042A (zh) * 2022-05-24 2022-07-15 烟台大学 一种高分子量聚酯的制备方法及产品
EP3714020B1 (de) * 2017-11-24 2023-09-06 Tesa Se Herstellung einer haftklebemasse auf basis von acrylnitril-butadien-kautschuk

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035103A1 (de) * 2010-08-23 2012-02-23 Catena Additives Gmbh & Co. Kg Flammschutzmittelzusammensetzungen enthaltend Triazin-interkalierte Metall-Phosphate
US10723833B2 (en) 2015-11-13 2020-07-28 Icl-Ip America Inc. Reactive flame retardants for polyurethane and polyisocyanurate foams
CN106831625A (zh) * 2016-12-22 2017-06-13 杭州捷尔思阻燃化工有限公司 一种金属离子改性三聚氰胺聚磷酸盐及其制备方法、应用
CN107936297A (zh) * 2017-11-22 2018-04-20 江苏利思德新材料有限公司 玻纤增强尼龙用无卤阻燃复配体系及其在无卤阻燃玻纤增强尼龙材料中的应用
CN107828204B (zh) * 2017-11-22 2019-08-13 江苏利思德新材料有限公司 一种聚氨酯用无卤阻燃复配体系及其在无卤阻燃聚氨酯中的应用
CN109651825B (zh) * 2018-12-04 2020-09-11 厦门大学 一种含磷硅氮的金属离子络合物阻燃剂及其制备方法与应用
WO2021216206A1 (en) * 2020-04-24 2021-10-28 J.M. Huber Corporation Methods for the continuous polymerization of phosphate compounds to form polyphosphate compositions
KR102459675B1 (ko) * 2022-02-03 2022-10-26 이정훈 금속 포스피네이트계 난연제를 포함하는 난연성 조성물 및 이를 적용한 난연성 합성 수지 조성물
WO2024122297A1 (ja) * 2022-12-09 2024-06-13 株式会社Adeka 難燃剤組成物、難燃性樹脂組成物および成形品

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112016A (en) * 1973-04-09 1978-09-05 E. I. Du Pont De Nemours And Company Polyamide fiber
WO1997044377A1 (en) 1996-05-22 1997-11-27 Nissan Chemical Industries, Ltd. Melamine polymetaphosphate and process for its production
WO2000002869A1 (en) 1998-07-08 2000-01-20 Dsm N.V. Polyphosphate salt of a 1,3,5-triazine compound with a high degree of condensation and its use as flame retardant in polymer compositions
EP0974588A1 (de) 1997-03-04 2000-01-26 Nissan Chemical Industries, Ltd. Salze aus 1,3,5-triazinderivaten und polysäuren die phosphor, schwefel und sauerstoff enthaltenund verfahren zu ihrer herstellung
EP1024166A1 (de) 1999-01-30 2000-08-02 Clariant GmbH Flammschutzmittel-Kombination für thermoplastische Polymere II
EP1789475A1 (de) 2004-09-04 2007-05-30 Chemische Fabrik Budenheim KG Polyphosphatderivat einer 1,3,5-triazinverbindung, verfahren zu dessen herstellung und dessen verwendung
WO2008119693A1 (en) 2007-04-03 2008-10-09 Basf Se Dopo flame retardant compositions
DE102007036465A1 (de) * 2007-08-01 2009-02-05 Catena Additives Gmbh & Co. Kg Phosphorhaltige Triazin-Verbindungen als Flammschutzmittel
WO2009034023A2 (en) 2007-09-13 2009-03-19 Basf Se Flame retardant combinations of hydroxyalkyl phosphine oxides with 1,3,5-triazines and epoxides
EP1537173B1 (de) 2002-09-03 2009-04-01 Clariant Produkte (Deutschland) GmbH Flammschutzmittel-stabilisator-kombination fur thermoplastische polymere
CN101693836A (zh) * 2009-10-21 2010-04-14 苏州科技学院 一种含硼膨胀型阻燃剂
WO2010057851A1 (en) 2008-11-24 2010-05-27 Basf Se Melamine phenylphosphinate flame retardant compositions
WO2010063623A1 (en) 2008-12-04 2010-06-10 Basf Se Melamine phenylphosphonate flame retardant compositions
CN101781571A (zh) * 2009-12-18 2010-07-21 苏州科技学院 一种复合膨胀型阻燃剂
DE102010035103A1 (de) * 2010-08-23 2012-02-23 Catena Additives Gmbh & Co. Kg Flammschutzmittelzusammensetzungen enthaltend Triazin-interkalierte Metall-Phosphate

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112016A (en) * 1973-04-09 1978-09-05 E. I. Du Pont De Nemours And Company Polyamide fiber
WO1997044377A1 (en) 1996-05-22 1997-11-27 Nissan Chemical Industries, Ltd. Melamine polymetaphosphate and process for its production
EP0974588A1 (de) 1997-03-04 2000-01-26 Nissan Chemical Industries, Ltd. Salze aus 1,3,5-triazinderivaten und polysäuren die phosphor, schwefel und sauerstoff enthaltenund verfahren zu ihrer herstellung
WO2000002869A1 (en) 1998-07-08 2000-01-20 Dsm N.V. Polyphosphate salt of a 1,3,5-triazine compound with a high degree of condensation and its use as flame retardant in polymer compositions
EP1024166A1 (de) 1999-01-30 2000-08-02 Clariant GmbH Flammschutzmittel-Kombination für thermoplastische Polymere II
EP1537173B1 (de) 2002-09-03 2009-04-01 Clariant Produkte (Deutschland) GmbH Flammschutzmittel-stabilisator-kombination fur thermoplastische polymere
EP1789475A1 (de) 2004-09-04 2007-05-30 Chemische Fabrik Budenheim KG Polyphosphatderivat einer 1,3,5-triazinverbindung, verfahren zu dessen herstellung und dessen verwendung
WO2008119693A1 (en) 2007-04-03 2008-10-09 Basf Se Dopo flame retardant compositions
US8236881B2 (en) 2007-04-03 2012-08-07 Basf Se DOPO flame retardant compositions
US8101678B2 (en) 2007-04-03 2012-01-24 Basf Se DOPO flame retardant compositions
EP2183314B1 (de) 2007-08-01 2011-12-28 CATENA Additives GmbH & Co. KG Phosphorhaltige triazin-verbindungen als flammschutzmittel
DE102007036465A1 (de) * 2007-08-01 2009-02-05 Catena Additives Gmbh & Co. Kg Phosphorhaltige Triazin-Verbindungen als Flammschutzmittel
WO2009034023A2 (en) 2007-09-13 2009-03-19 Basf Se Flame retardant combinations of hydroxyalkyl phosphine oxides with 1,3,5-triazines and epoxides
WO2010057851A1 (en) 2008-11-24 2010-05-27 Basf Se Melamine phenylphosphinate flame retardant compositions
WO2010063623A1 (en) 2008-12-04 2010-06-10 Basf Se Melamine phenylphosphonate flame retardant compositions
CN101693836A (zh) * 2009-10-21 2010-04-14 苏州科技学院 一种含硼膨胀型阻燃剂
CN101781571A (zh) * 2009-12-18 2010-07-21 苏州科技学院 一种复合膨胀型阻燃剂
DE102010035103A1 (de) * 2010-08-23 2012-02-23 Catena Additives Gmbh & Co. Kg Flammschutzmittelzusammensetzungen enthaltend Triazin-interkalierte Metall-Phosphate

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Fire Retardancy of Polymeric Materials", 2010, CRS PRESS, pages: 129 - 162
A. SUVITHA, P. MURUGAKOOTHAN: "Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate", SPECTROCHIMICA ACTA, PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, vol. 86, February 2012 (2012-02-01), pages 266 - 270, XP002687808, ISSN: 1386-1425 *
CHEM. MATER., vol. 9, 1997, pages 1837 - 1846
CRYSTAL GROWTH AND DESIGN, vol. 2, no. 6, 2002, pages 665 - 673
DATABASE WPI Week 201030, Derwent World Patents Index; AN 2010-E60357, XP002687805 *
DATABASE WPI Week 201071, Derwent World Patents Index; AN 2010-K68146, XP002687804 *
DR. G. BEYER, KONF. FIRE RESISTANCE IN PLASTICS, 2007
E. WEIL; S. LEVCHIK: "Flame Retardants for Plastics and Textiles", 2009, HANSER VERLAG, pages: 85 - 119
INORG. CHEM., vol. 40, 2001, pages 895 - 899
INORG. CHEM., vol. 44, 2005, pages 658 - 665
INTERN. J. OF LNORG. MATER., vol. 3, 2001, pages 1033 - 1038
J. ALONGI, A. FRACHE: "Flame retardancy properties of .alpha.-zirconium phosphate based compounds", POLYMER DEGRADATION AND STABILITY, vol. 95, 27 April 2010 (2010-04-27), pages 1928 - 1933, XP055017029 *
JCS DALTON TRANS., 2001, pages 2459 - 2461
POLYMER, vol. 46, pages 7855 - 7866
RUSS. J. ORG. CHEM., vol. 40, no. 12, 2004, pages 1831 - 35
S. AYYAPPAN ET AL.: "Synthesis and Structural Characterization of a Chiral Open-Framework Tin(II) Phosphate, [CN3H6][Sn4P3O12] (GUAN-SnPO)", CHEM. MATER., vol. 10, no. 11, 17 October 1998 (1998-10-17), pages 3308 - 3310, XP002687806, ISSN: 0897-4756 *
W. T. A. HARRISON, M. L. F. PHILLIPS: "Hydrothermal Syntheses and Single-Crystal Structures of Some Novel Guanidinium-Zinc-Phosphates", CHEM. MATER., vol. 9, no. 8, 2002, XP002687807, ISSN: 0897-4756 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2956523B1 (de) * 2013-02-13 2018-12-26 J.M. Huber Corporation Flammschutzmittelzusammensetzung
EP3495451A1 (de) * 2013-02-13 2019-06-12 J.M. Huber Corporation Flammschutzmittelzusammensetzung
DE102015009598A1 (de) 2015-07-24 2017-01-26 Trupti Dave-Wehner Verfahren zur Herstellung eines halogenfreien Flammschutzmittels
EP3714020B1 (de) * 2017-11-24 2023-09-06 Tesa Se Herstellung einer haftklebemasse auf basis von acrylnitril-butadien-kautschuk
CN114752042A (zh) * 2022-05-24 2022-07-15 烟台大学 一种高分子量聚酯的制备方法及产品
CN114752042B (zh) * 2022-05-24 2023-08-04 烟台大学 一种高分子量聚酯的制备方法及产品

Also Published As

Publication number Publication date
PT2909215T (pt) 2017-05-10
DK2909215T3 (en) 2017-05-22
EP2909215B1 (de) 2017-03-29
JP2016502505A (ja) 2016-01-28
US9505793B2 (en) 2016-11-29
US20150252065A1 (en) 2015-09-10
US20160137678A9 (en) 2016-05-19
ES2623944T3 (es) 2017-07-12
CN104981473A (zh) 2015-10-14
PL2909215T3 (pl) 2017-07-31
KR20150080519A (ko) 2015-07-09
CN104981473B (zh) 2021-06-29
KR101828892B1 (ko) 2018-02-13
EP2909215A1 (de) 2015-08-26

Similar Documents

Publication Publication Date Title
EP2909215B1 (de) Azin-metallphosphate als flammhemmende mittel
EP3321343B1 (de) Flammschutzmittelzusammensetzungen enthaltend triazin-interkalierte metall-phosphate
EP2183314B1 (de) Phosphorhaltige triazin-verbindungen als flammschutzmittel
EP1396524B1 (de) Oberflächenmodifizierte Phosphinsäuresalze
EP2788284B1 (de) Mischungen von aluminium-hydrogenphosphiten mit aluminiumsalzen, verfahren zu ihrer herstellung sowie ihre verwendung
WO2014060004A1 (de) Verfahren zur herstellung von metall-2-hydroxydiphenyl-2' -(thio)phosphinaten und metall-diphenylen-(thio)phosphonaten, diese enthaltende zusammensetzungen sowie deren verwendung als flammschutzmittel
EP2788286B1 (de) Aluminium-hydrogenphosphite, ein verfahren zu ihrer herstellung sowie ihre verwendung
EP1479718B1 (de) Titanhaltige Phosphinat-Flammschutzmittel
DE102011120200A1 (de) Flammschutzmittel-Mischungen enthaltend Flammschutzmittel und Aluminiumphosphite, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19960671A1 (de) Flammschutzmittel-Kombination für thermoplastische Polymere I
EP3679095A1 (de) Synergistische flammschutzmittelkombinationen für polymerzusammensetzungen und deren verwendung
DE102015009598A1 (de) Verfahren zur Herstellung eines halogenfreien Flammschutzmittels
KR102300270B1 (ko) 아미드 유도체로부터 제조된 난연제 및 그의 제조 방법
JPH04234893A (ja) ポリマー用難燃剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015537148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14436329

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012775443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012775443

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157013070

Country of ref document: KR

Kind code of ref document: A