WO2014059629A1 - 多模宽带天线模块及无线终端 - Google Patents

多模宽带天线模块及无线终端 Download PDF

Info

Publication number
WO2014059629A1
WO2014059629A1 PCT/CN2012/083096 CN2012083096W WO2014059629A1 WO 2014059629 A1 WO2014059629 A1 WO 2014059629A1 CN 2012083096 W CN2012083096 W CN 2012083096W WO 2014059629 A1 WO2014059629 A1 WO 2014059629A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency part
low
antenna module
broadband antenna
Prior art date
Application number
PCT/CN2012/083096
Other languages
English (en)
French (fr)
Inventor
徐慧梁
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to CN201280003788.0A priority Critical patent/CN103403962B/zh
Priority to ES12879150.6T priority patent/ES2564546T3/es
Priority to EP12879150.6A priority patent/EP2747201B1/en
Priority to JP2014541519A priority patent/JP6008352B2/ja
Priority to PCT/CN2012/083096 priority patent/WO2014059629A1/zh
Priority to US14/145,441 priority patent/US9300041B2/en
Publication of WO2014059629A1 publication Critical patent/WO2014059629A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to the field of radio communications, and in particular, to a multimode broadband antenna module and a wireless terminal.
  • An antenna is a device used in a radio device to transmit or receive electromagnetic wave signals.
  • wireless terminals such as mobile phones, personal digital assistance, and ⁇ 3/ ⁇ 4 have a particularly large impact.
  • the bandwidth characteristics of the antenna design have an important influence on the radiation characteristics.
  • the antenna achieves both signal propagation and energy radiation based on frequency resonance. If an antenna can resonate at multiple frequencies, the antenna will be able to operate at multiple frequencies. On the other hand, if the antenna has multiple resonant frequencies, designers and users can adjust the frequency and bandwidth according to their needs. If the antenna is capable of operating at multiple frequencies, the antenna is said to be a multimode wideband antenna.
  • the inventors have found that the most commonly used antenna is the Planar Inverted F Antenna (PIFA) antenna, and the bandwidth of the PIFA antenna is proportional to the height of the PIFA antenna. If it is necessary to widen the working bandwidth of the PIFA antenna to make it a multimode wideband antenna, it is necessary to increase the height of the PIFA antenna, which will inevitably affect the thickness of the wireless terminal such as a mobile phone, and cannot meet the needs of thinning the structure of a wireless terminal such as a mobile phone.
  • PIFA Planar Inverted F Antenna
  • a first aspect of the present invention provides a multimode broadband antenna module including a printed circuit board, a first radiator, and a second radiator, wherein
  • the first radiator includes a connecting portion, a low frequency portion and a high frequency portion, and a low frequency portion of the first radiator is connected to a high frequency portion of the first radiator, and one end of the connecting portion of the first radiator Connecting the low frequency signal of the first radiator to the connection of the high frequency signal, and the other end is electrically connected to the signal feeding end of the printed circuit board;
  • the second radiator includes a ground portion, a low frequency portion, and a high frequency portion, and a low frequency portion of the second radiator is connected to a high frequency portion of the second radiator, and one end of the ground portion of the second radiator Connecting the low frequency signal of the second radiator to the connection of the high frequency signal, and electrically connecting the other end to the first ground end of the printed circuit board;
  • a low frequency portion of the first radiator is spaced apart from a low frequency portion of the second radiator by a first predetermined distance
  • a high frequency portion of the first radiator is spaced apart from a high frequency portion of the second radiator by a second predetermined a distance such that a coupling capacitance effect is formed between the first radiator and the second radiator.
  • the ground portion of the second radiator is electrically connected to the first ground of the printed circuit board by an inductor.
  • the connecting portion of the first radiator is: a planar plate structure or a strip structure; the ground portion of the second radiator is a flat plate structure or Strip structure.
  • the low frequency portion of the first radiator is a strip structure having at least one bend
  • the high frequency portion of the first radiator is a planar plate structure
  • the electrical length of the low frequency portion of the first radiator is greater than the electrical length of the high frequency portion of the first radiator.
  • the low frequency portion of the first radiator is a planar plate structure
  • the high frequency portion of the first radiator is a strip structure having at least one bend
  • the electrical length of the low frequency portion of the first radiator is greater than the electrical length of the high frequency portion of the first radiator.
  • the low frequency portion of the second radiator and the high frequency portion of the second radiator are both a plate-like structure or a strip structure having at least one bend a low frequency portion of the second radiator surrounding a low frequency portion of the first radiator; a high frequency portion of the second radiator surrounding a high frequency portion of the first radiator The electrical length of the low frequency portion of the second radiator is greater than the electrical length of the high frequency portion of the second radiator.
  • the low frequency portion and the high frequency portion of the first radiator are symmetrically distributed on both sides of the connection, and the low frequency portion and the high portion of the first radiator
  • the frequency portions collectively form a planar T-shaped plate structure or a straight strip structure.
  • the low frequency portion and the high frequency portion of the second radiator are symmetrically distributed on both sides of the connection, and the low frequency portion and the high portion of the second radiator
  • the frequency portions are respectively: a strip structure or a plate-like structure that extends from the junction of the two ends and is bent toward the first radiator;
  • the opening formed by the bending of the low frequency portion of the second radiator is opposed to the opening formed by the bending of the high frequency portion of the second radiator.
  • At least a portion of the low frequency portion and the high frequency portion of the second radiator are in the same plane as the first radiator.
  • a portion of the low frequency portion of the second radiator that is in the same plane as the first radiator, and a low frequency portion of the second radiator The other part is at an angle of 90 degrees.
  • the multimode broadband antenna module further includes:
  • the third radiator is a strip structure or a straight strip structure having at least one bend, and one end of the third radiator is connected to the second ground end of the printed circuit board.
  • a multimode broadband antenna module where the multimode broadband antenna module includes a printed circuit board, a first radiator and a second radiator, and the multimode broadband
  • the working principle of the antenna module is that a coupling capacitance effect is formed between the first radiator and the second radiator, the higher order mode is excited, the operating frequency of the multimode broadband antenna module is broadened, and the thickness of the multimode broadband antenna module is small.
  • a second aspect of the present invention provides a wireless terminal, including a multimode broadband antenna module
  • the multimode broadband antenna module includes a printed circuit board, a first radiator and a second radiator, wherein the first radiator includes a connecting portion, a low frequency portion and a high frequency portion, wherein the low frequency portion of the first radiator is connected to the high frequency portion of the first radiator, and one end of the connecting portion of the first radiator is connected to the first radiator a connection between the low frequency signal and the high frequency signal, and the other end is electrically connected to the signal feeding end of the printed circuit board;
  • the second radiator includes a ground portion, a low frequency portion, and a high frequency portion, and a low frequency portion of the second radiator is connected to a high frequency portion of the second radiator, and one end of the ground portion of the second radiator Connecting the low frequency signal of the second radiator to the connection of the high frequency signal, and electrically connecting the other end to the first ground end of the printed circuit board;
  • a low frequency portion of the first radiator is spaced apart from a low frequency portion of the second radiator by a first predetermined distance
  • a high frequency portion of the first radiator is spaced apart from a high frequency portion of the second radiator by a second predetermined a distance such that a coupling capacitance effect is formed between the first radiator and the second radiator.
  • the ground portion of the second radiator is electrically connected to the first ground end of the printed circuit board by an inductor.
  • the connecting portion of the first radiator is: a planar plate structure or a strip structure; the grounding portion of the second radiator is a flat plate structure or Strip structure.
  • the low frequency portion of the first radiator is a strip structure having at least one bend
  • the high frequency portion of the first radiator is a flat plate structure
  • the electrical length of the low frequency portion of the first radiator is greater than the electrical length of the high frequency portion of the first radiator.
  • the low frequency portion of the first radiator is a planar plate structure
  • the high frequency portion of the first radiator is a strip structure having at least one bend
  • the electrical length of the low frequency portion of the first radiator is greater than the electrical length of the high frequency portion of the first radiator.
  • the low frequency portion of the second radiator and the high frequency portion of the second radiator are each a plate-like structure having at least one bend Or a strip structure, the low frequency portion of the second radiator surrounds a low frequency portion of the first radiator; the high frequency portion of the second radiator surrounds a high frequency portion of the first radiator, the second radiation
  • the electrical length of the low frequency portion of the body is greater than the electrical length of the high frequency portion of the second radiator.
  • the low frequency portion and the high frequency portion of the first radiator are symmetrically distributed on both sides of the connection, and the low frequency portion and the high portion of the first radiator
  • the frequency portions collectively form a planar T-shaped plate structure or a straight strip structure.
  • the low frequency portion and the high frequency portion of the second radiator are symmetrically distributed on both sides of the connection, and the low frequency portion and the height of the second radiator
  • the frequency portions are respectively: a strip structure or a plate-like structure that extends from the junction of the two ends and is bent toward the first radiator;
  • the opening formed by the bending of the low frequency portion of the second radiator is opposed to the opening formed by the bending of the high frequency portion of the second radiator.
  • At least a portion of the low frequency portion and the high frequency portion of the second radiator are in the same plane as the first radiator.
  • a portion of the low frequency portion of the second radiator that is in the same plane as the first radiator, and a low frequency portion of the second radiator The other part is at an angle of 90 degrees.
  • the third radiator is a bent strip structure or a straight strip structure, and one end of the third radiator is connected to the printed circuit The second ground of the board.
  • a wireless terminal is provided, and a multimode broadband antenna module is disposed in a casing of the wireless terminal, where the multimode broadband antenna module includes a printed circuit board and a first radiation.
  • the multimode broadband antenna module works by forming a coupling capacitance effect between the first radiator and the second radiator, exciting a high-order mode, and broadening the operating frequency of the multimode broadband antenna module,
  • the multimode broadband antenna module has a small thickness and satisfies the need for a thinner structure of a wireless terminal such as a mobile phone.
  • FIG. 1 is a schematic structural diagram 1 of a multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 3 is a first embodiment of the present invention
  • FIG. 4 is a schematic structural diagram 2 of a first multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a first multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a first multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 7 is a simulation diagram of return loss of a first multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a second multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 9 is an echo of a first multimode broadband antenna module and a second multimode broadband antenna module according to an embodiment of the present invention; Loss simulation comparison map;
  • FIG. 10 is a schematic structural diagram 1 of a third multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 1 is a schematic structural diagram 2 of a third multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a return loss of a third multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram 1 of a fourth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram 2 of a fourth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a return loss of a fourth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 18 is a schematic structural diagram 1 of a fifth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 19 is a schematic structural diagram 2 of a fifth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 4 of a fifth multimode broadband antenna module according to an embodiment of the present invention
  • FIG. FIG. 2 is a simulation diagram of return loss simulation of a third multimode broadband antenna module and a fifth multimode broadband antenna module according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a wireless terminal according to an embodiment of the present invention.
  • 1 a printed circuit board; 1 1 a signal feed end; 1 2 - a first ground end;
  • An embodiment of the present invention provides a multimode broadband antenna module, where the multimode broadband antenna module includes a printed circuit board 1, a first radiator 2, and a second radiator 3, wherein
  • the first radiator 2 includes a connecting portion 21, a low frequency portion 22, and a high frequency portion 23, and the low frequency portion 22 of the first radiator is connected to the high frequency portion 23 of the first radiator, the first radiation
  • One end of the connecting portion 21 of the body is connected to the connection of the low frequency signal 22 and the high frequency signal 23 of the first radiator, and the other end is electrically connected to the signal feeding end 11 of the printed circuit board 1;
  • the second radiator 3 includes a ground portion 31, a low frequency portion 32, and a high frequency portion 33, and the low frequency portion 32 of the second radiator is connected to the high frequency portion 33 of the second radiator, the second radiation
  • One end of the grounding portion 3 1 of the body is connected to the junction of the low frequency signal 32 and the high frequency signal 33 of the second radiator, and the other end is electrically connected to the first ground end 12 of the printed circuit board 1.
  • the first radiator 2 and the second radiator 3, and the printed circuit board 1, three together, they form the multimode wideband antenna module.
  • the communication signal of the wireless terminal is transmitted and received through the multimode broadband antenna module.
  • the communication signal When the wireless terminal transmits a signal, the communication signal is converted into a high-frequency current through a processing of a communication module composed of a radio frequency circuit and a baseband circuit system disposed on the printed circuit board 1, and the high-frequency current passes through the printed circuit board 1.
  • the signal feed terminal 11 enters the antenna module and is then radiated out in the form of electromagnetic waves.
  • the electromagnetic wave signal from the external space of the wireless terminal is converted into a high-frequency current through the reception of the multimode broadband antenna module, and enters the printed circuit board 1 through the signal feeding end 11 on the printed circuit board 1.
  • the communication module is mainly composed of a radio frequency circuit and a baseband circuit, so that communication can be performed normally.
  • the low frequency portion 22 of the first radiator is spaced apart from the low frequency portion 32 of the second radiator by a first predetermined distance
  • the high frequency portion 23 of the first radiator and the second radiator is spaced apart by a second predetermined distance such that a coupling capacitance effect is formed between the first radiator and the second radiator, wherein the first predetermined distance and the second predetermined distance are both required Design and adjust according to the actual situation, the two can be the same or different.
  • the antenna module of the prior art generally includes only the printed circuit board 1 and the first radiator 2.
  • the operating frequency band of the antenna module is determined by the electrical length of the high frequency portion 23, the low frequency portion 22 and the connecting portion 21 of the first radiator of the antenna module.
  • the sum of the electrical lengths of the high frequency portion 23 and the connecting portion 21 of the antenna module is one quarter of the high frequency resonant wavelength of the antenna module, and similarly, the low frequency portion 22 and the connecting portion 21 of the antenna module
  • the sum of the electrical lengths is one quarter of the low frequency resonant wavelength of the antenna module.
  • the antenna module can only work at a corresponding resonant frequency of the high frequency resonant wavelength and a corresponding resonant frequency of the low frequency resonant wavelength, obviously, this
  • the multimode broadband antenna module has a small operating bandwidth.
  • the electrical length of the high frequency portion 23 of the first radiator is a+b, and the electrical length of the connecting portion is f+c, and the high frequency resonant wavelength of the first radiator 2 is 4. * [ ( a + b ) + ( f + c ) ];
  • the electrical length of the low frequency portion 22 of the first radiator is d + e, then the low frequency resonance wavelength of the first radiator 1 is 4 * [ ( d+e ) + ( f+c ) ].
  • the multimode broadband antenna module in the embodiment of the present invention further includes a second radiator 3 in addition to the printed circuit board 1 and the first radiator 2, and the low frequency portion 22 of the first radiator is adjacent to the second radiator.
  • the low frequency portion 32, the high frequency portion 23 of the first radiator is adjacent to the high frequency portion 33 of the third radiator. Since the low frequency portion 32 of the second radiator is close to the low frequency portion 22 of the first radiator, when the low frequency portion 22 of the first radiator has a low frequency signal, the low frequency portion 22 of the first radiator The low frequency portion 32 of the second radiator forms a coupling capacitance effect to excite a higher order mode, so that the working frequency band of the multimode broadband antenna module is widened and the operating frequency range is expanded.
  • the high frequency portion 33 of the second radiator is close to the high frequency portion 23 of the first radiator, when the high frequency portion 23 of the first radiator has a high frequency signal, the first The high frequency portion 23 of the radiator forms a coupling capacitance effect with the high frequency portion 33 of the second radiator, which excites a higher order mode, so that the operating frequency band of the multimode broadband antenna module is widened and the operating frequency range is expanded.
  • the working principle of the multimode broadband antenna module relies on the coupling capacitance between the first radiator 2 and the second radiator 3 to widen the working bandwidth of the antenna module, the specific architecture of the wireless terminal and The thickness is required to design and adjust the thickness of the multimode broadband antenna module, but the related art personnel need to strictly adjust the distance between the portions of the first radiator 2 and the second radiator 3, so that the The mode wideband antenna module can operate in an operating frequency that satisfies multimode conditions.
  • the overall thickness of the multimode broadband antenna module can be controlled to 4 to 5 under the premise of satisfying the radiation index of the multimode broadband antenna module.
  • the wireless terminal provided with the multimode wideband antenna module can reduce the thickness, and finally the thickness of the wireless terminal is less than 1 cm, which is in line with the trend that the wireless terminal is thin and light.
  • the multimode wideband antenna module can work only by adjusting the length of the first radiator 2, the second radiator 3, or the interval between the first radiator 2 and the second radiator 3, The frequency band is adjusted. Therefore, the thickness of the first radiator 2 or the second radiator 3 of the multimode broadband antenna module can be arbitrarily set, and the thickness of the first radiator 2 or the second radiator 3 can be reduced as much as possible. To reduce the material of the first radiator 2 or the second radiator 3 during the manufacturing process. The amount of use; similarly, the widths of the first radiator 2 and the second radiator 3 can also be arbitrarily set, further reducing the amount of material used for the first radiator 2 or the second radiator 3.
  • the hand of the wireless terminal is often changed.
  • the influence of the left hand on the transmission and reception performance of the wireless terminal may be the same as when the wireless terminal is held by the right hand.
  • the right hand has different effects on the transmit and receive performance of the wireless terminal.
  • the transmission and reception performance of the wireless terminal is greatly affected, the communication capability of the wireless terminal may be reduced, and the user experience of the wireless terminal is reduced.
  • the signal feeding end can be disposed at an intermediate position of the edge of the printed circuit board, so that the user can not receive the signal of the wireless terminal regardless of whether the user is holding the wireless terminal with the left hand or the right.
  • the multimode broadband antenna module provided in the embodiment of the present invention occupies a clearance area of 60 mm in length, 10 mm in width, and 5 mm in height.
  • the length of the clearing area is equal to the side length of the printed circuit board 1 on which the multimode broadband antenna module is disposed, and the other side of the printed circuit board 1 is about 100 mm long.
  • a multimode broadband antenna module where the multimode broadband antenna module includes a printed circuit board, a first radiator and a second radiator, and the multimode broadband antenna module works.
  • the principle is that a coupling capacitance effect is formed between the first radiator and the second radiator, the higher order mode is excited, the operating frequency of the multimode broadband antenna module is broadened, and the thickness of the multimode broadband antenna module is small, and the mobile phone is satisfied. The need for a thinner structure of the wireless terminal.
  • the embodiment of the invention provides a multimode broadband antenna module, as shown in FIG.
  • the multimode broadband antenna module includes a printed circuit board 1, a first radiator 2, and a second radiator 3, wherein
  • the first radiator 2 includes a connecting portion 21, a low frequency portion 22, and a high frequency portion 23, and the low frequency portion 22 of the first radiator is connected to the high frequency portion 23 of the first radiator, the first radiation
  • One end of the connecting portion 21 of the body is connected to the connection of the low frequency signal 22 and the high frequency signal 23 of the first radiator, and the other end is electrically connected to the signal feeding end 11 of the printed circuit board 1;
  • the second radiator 3 includes a ground portion 31, a low frequency portion 32, and a high frequency portion 33, and the low frequency portion 32 of the second radiator is connected to the high frequency portion 33 of the second radiator, the second radiation
  • One end of the grounding portion 3 1 of the body is connected to the junction of the low frequency signal 32 and the high frequency signal 33 of the second radiator, and the other end is electrically connected to the first ground end 12 of the printed circuit board 1.
  • the communication signal of the wireless terminal is transmitted and received through the multimode wideband antenna module.
  • the communication signal When the wireless terminal transmits a signal, the communication signal is converted into a high-frequency current through a processing of a communication module composed of a radio frequency circuit and a baseband circuit system disposed on the printed circuit board 1, and the high-frequency current passes through the printed circuit board 1.
  • the signal feed terminal 11 enters the antenna module and is then radiated out in the form of electromagnetic waves.
  • the electromagnetic wave signal from the external space of the wireless terminal is converted into a high-frequency current through the reception of the multimode broadband antenna module, and enters the printed circuit board 1 through the signal feeding end 11 on the printed circuit board 1.
  • the communication module is mainly composed of a radio frequency circuit and a baseband circuit, so that communication can be performed normally.
  • the low frequency portion 22 of the first radiator is spaced apart from the low frequency portion 32 of the second radiator by a first predetermined distance
  • the high frequency portion 23 of the first radiator and the second radiator is spaced apart by a second predetermined distance such that a coupling capacitance effect is formed between the first radiator and the second radiator, wherein the first predetermined distance and the second predetermined distance are both required Design and adjust according to the actual situation, the two can be the same or different.
  • the working principle of the widening working frequency band of the multimode broadband antenna module is to extend the antenna module by the coupling capacitance between the first radiator 1 and the second radiator 3 on the basis of ensuring the electrical length of the first radiator 2
  • the working bandwidth, so the thickness of the multimode broadband antenna module can be designed and adjusted according to the specific architecture of the wireless terminal and its thickness requirements, but the related art personnel need to strictly adjust the first radiator 2 and the second radiator 3
  • the distance between the various parts is such that the multimode wideband antenna module can operate in an operating frequency that satisfies multimode conditions.
  • the overall thickness of the multimode broadband antenna module can be controlled to 4 to 5 under the premise of satisfying the radiation index of the multimode broadband antenna module.
  • the wireless terminal provided with the multimode wideband antenna module can reduce the thickness, and finally the thickness of the wireless terminal is less than 1 cm, which is in line with the trend that the wireless terminal is thin and light.
  • the embodiment of the present invention further provides various specific implementation forms of the above multimode broadband antenna module, as follows:
  • the specific structure of the first multimode broadband antenna module is:
  • the low frequency portion 22 of the first radiator is a strip structure having at least one bend, and the high frequency portion 23 of the first radiator has a planar plate-like structure, and the low frequency portion 22 of the first radiator The electrical length is greater than the electrical length of the high frequency portion 23 of the first radiator.
  • the low frequency portion 32 of the second radiator and the high frequency portion 33 of the second radiator are plate-like structures having at least one bend, and the low frequency portion 32 of the second radiator surrounds the first radiation
  • the low frequency portion 22 of the body; the high frequency portion 33 of the second radiator surrounds the high frequency portion 23 of the first radiator, and the electrical length of the low frequency portion 32 of the second radiator is greater than the height of the second radiator The electrical length of the frequency portion 33.
  • the operating frequency band of the antenna module at this time is the electrical part of the high frequency portion 23, the low frequency portion 22 and the connecting portion 21 of the first radiator of the antenna module.
  • the length determines, specifically, the sum of the electrical lengths of the high frequency portion 23 and the connecting portion 2 1 of the antenna module is one quarter of the high frequency resonant wavelength of the antenna module, and similarly, the low frequency portion 22 of the antenna module And the sum of electrical lengths of the connecting portion 21 is the antenna module At least one quarter of the low-frequency resonant wavelength.
  • the antenna module can only work at the corresponding resonant frequency of the high-frequency resonant wavelength and the corresponding resonant frequency of the low-frequency resonant wavelength.
  • the working bandwidth of the multi-mode broadband antenna module is relatively high. small.
  • the electrical length of the high frequency portion 22 of the first radiator is n+o, and the electrical length of the connecting portion 21 is g+h, then the high frequency resonant wavelength of the first radiator 1 is 4* [ ( n+o ) + ( g+h) ];
  • the electrical length of the low frequency portion 22 of the first radiator is i + j+k+1+m, then the low frequency of the first radiator 2
  • the resonant wavelength is 4* [ ( i + j+k+1+m ) + ( g+h) ].
  • the multimode broadband antenna module in the embodiment of the present invention further includes a second radiator 3 in addition to the printed circuit board 1 and the first radiator 2, and the low frequency portion 11 of the first radiator is adjacent to the second radiator.
  • the low frequency portion 32, the high frequency portion 23 of the first radiator is adjacent to the high frequency portion 33 of the third radiator. Since the low frequency portion 32 of the second radiator is close to the low frequency portion 22 of the first radiator, when the low frequency portion 22 of the first radiator has a low frequency signal, the low frequency portion 22 of the first radiator The low frequency portion 32 of the second radiator forms a coupling capacitance effect to excite a higher order mode, so that the working frequency band of the multimode broadband antenna module is widened and the operating frequency range is expanded.
  • the interval between the low frequency portion 11 of the first radiator and the low frequency portion 32 of the second radiator is ei , ei is approximately 0.5 mm; the first radiation The interval between the high frequency portion 23 of the body and the low frequency portion 33 of the second radiator is e 2 , and e 2 is approximately 3 mm.
  • the total electrical length of the antenna can be maintained by setting a certain portion of the antenna to be bent, and the resonant wavelength of the antenna can be further maintained while ensuring that the size of the antenna is small.
  • the second radiator 3 of the first multimode broadband antenna module may also be a strip structure having at least one bend, as shown in FIG.
  • the structure and shape of the low-frequency portion 22 of the first radiator 2 and the high-frequency portion 23 of the first radiator can be arbitrarily set.
  • the arbitrarily set premise is: maintaining the length of the low frequency portion 22 of the first radiator to be twice the length of the high frequency portion 23 of the first radiator; The effect of the coupling capacitance effect between a radiator 2 and the second radiator 3 does not change.
  • the low frequency portion 22 of the first radiator is interchanged with the shape of the high frequency portion 23, that is, the low frequency portion 22 of the first radiator is a planar plate-like structure, and the high frequency portion 23 of the first radiator is A strip structure having at least one bend, as shown in FIG.
  • the length of the low frequency portion 22 of the first radiator of the first multimode broadband antenna module needs to be ensured. It is approximately twice the length 23 of the high frequency portion of the first radiator.
  • the low-frequency operating frequency (return loss is less than -6dB (decibel)) of the first multimode broadband antenna module can be as low as 824MHz (megahertz), and the low-frequency operating bandwidth is 824MHz. Near 1200MHz.
  • the high-frequency operating frequency (return loss is less than -6dB (decibel)) of the multimode wideband antenna module can be up to 2500MHz or more, and the high-frequency operating bandwidth is from about 1600MHz to more than 2500MHz.
  • the frequency bands commonly used in commercial stage at present include Global System of Mobile communication (GSM), GSM850 (824 MHz ⁇ 894MHz), GSM900 (880 MHz ⁇ 960MHz), Global Positioning System (Global Positioning System) GPS (1575MHz), Digital Video Broadcasting (DVB) - H (1670 MHz - 1675MHz), Data Communication Subsystem (DCS) (1710 MHz - 1880MHz), personal communication Service (Persona 1 Communications Service, PCS), Universal Mobile Telecommunications System (UMTS) or 3rd generation mobile communication technology (3rd_generation, 3G) (1920 MHz - 2175MHz), Bluetooth or A total of eight frequency bands, such as a wireless local area network (WLAN) 802.11b/g (2400 MHz to 2484 MHz), etc., it can be seen that the working frequency band of the multimode broadband antenna module proposed by the embodiment of the present invention can be Fully covering the above eight frequency bands, the multimode broadband antenna module of the embodiment of the present invention can Foot most wireless terminal business needs for working band.
  • WLAN wireless
  • LTE Long Term Evolution
  • the operating frequency band of LTE is 69 ⁇ z_960MHz, and 1710MHz_2700MHz.
  • the multimode broadband antenna module is disposed in a casing of a wireless terminal such as a mobile phone. Under the action of the casing, the working frequency band of the multimode broadband antenna module can be shifted to a low frequency band as a whole, so that the low frequency can cover LTE of 698 MHz.
  • Working frequency specifically:
  • f is the frequency of the resonant electromagnetic wave of the multimode wideband antenna module.
  • f is the wavelength of the resonant electromagnetic wave of the multimode wideband antenna module, which is directly related to the size of the multimode wideband antenna module. Therefore, once the size of the multimode wideband antenna module is fixed, the multimode wideband antenna module The f is fixed, so f is also a constant. Further, the V " 1 " of the wireless terminal housing is generally larger than the vacuum, in order to make the equal sides Equally, S must be reduced, that is, the resonant frequency is biased toward the low frequency, that is, the overall return loss curve of the multimode wideband antenna module is shifted to the left.
  • the working frequency band of the multimode broadband antenna module can cover the working frequency band of LTE. It is noted that the interval between the low frequency portion 2 2 of the first radiator and the low frequency portion 32 of the second radiator is 0.5 mm or so, and the height of the first radiator is high. The interval between the frequency portion 2 3 and the high frequency portion 33 of the second portion is about 2 - 3 mm.
  • the second radiator 3 of the multimode broadband antenna module can also be electrically connected to the first ground through the inductor 4. End 1 2 , this is a second multimode wideband antenna module.
  • the second multimode wideband antenna module provided with the inductor 4 has the lowest Operating frequencies as low as below 800 MHz, the same maximum operating frequency is also reduced.
  • the inductor 4 can be set in the first The root of the two radiators 3 can reduce the size of the multimode broadband antenna module, so that the multimode broadband antenna module can better meet the needs of increasingly thin and light wireless terminals.
  • the embodiment of the present invention further provides a third multimode broadband antenna module, as shown in FIG. 10 or FIG. 1 1 , the specific structure of the third multimode broadband antenna module is:
  • the first radiator has a flat plate-like "T"-type structure, and the low-frequency portion 22 has the same shape as the high-frequency portion 23, and is symmetrically distributed on both sides of the junction.
  • the low frequency portion 32 of the second radiator is the same shape as the high frequency portion 33, symmetrically distributed on both sides of the junction, and the low frequency portion 32 and the high frequency portion 33 of the second radiator are respectively : a plate-like structure that extends a distance from the junction of the two and is bent toward the first radiator 2;
  • the connecting portion 2 1 of the first radiator 2 of the third multimode broadband antenna module The electrical length is P, as shown in Fig. 10, the electrical length of the high-frequency portion 23 of the first radiator is r + s + t, so the high-frequency resonance wavelength of the first radiator is 4 * [ ( r + s + t ) +p]; since the high frequency portion 23 and the low frequency portion 22 of the first radiator are symmetric structures, the low frequency resonance wavelength of the first radiator is 4 * [ ( r + s + t ) + p] That is, the high frequency portion 23 of the first radiator overlaps with the operating frequency band of the low frequency portion 22, and at this time, the third multimode broadband antenna module has a small operating frequency range.
  • the interval 61 between the low-frequency portion 22 of the first radiator and the low-frequency portion 32 of the second radiator is about 0.5 mm. Since the structure is a symmetrical structure, the high-frequency portion 2 of the first radiator 5 ⁇ The spacing e 2 between the high-frequency portion of the second radiator is also about 0.5 mm.
  • the low frequency working frequency band (the return loss is less than _6 dB (decibel)) of the multimode broadband antenna module is approximately 800 to nearly 1 1 00MHz
  • high frequency operating frequency band (return loss is less than -6 dB (decibel)) is roughly 1 900MHz to nearly 2500MHz.
  • the opening formed by the bending of the low-frequency portion 32 of the second radiator is opposed to the opening formed by the bending of the high-frequency portion 33 of the second radiator. Further, at least a portion of the low frequency portion 32 and the high frequency portion 33 of the second radiator are substantially flush with the first radiator 2.
  • the portion of the low-frequency portion 32 of the second radiator that is in the same plane as the first radiator 2 and the The other portions of the low frequency portion 32 of the two radiators are generally at an angle of 90 degrees.
  • the low frequency portion 32 and the high frequency portion 33 of the second radiator may also have a strip structure as shown in FIG.
  • the embodiment of the present invention further provides a fourth multimode broadband antenna module, wherein the low frequency portion 22 and the high frequency portion 23 of the first radiator of the fourth multimode broadband antenna module have a straight strip structure.
  • the low frequency portion 22 has the same shape as the high frequency portion 23 and is symmetrically distributed on both sides of the junction of the two.
  • the low frequency portion 32 of the second radiator is the same shape as the high frequency portion 33, symmetrically distributed on both sides of the junction, and the low frequency portion 32 and the high frequency portion 33 of the second radiator are: a plate-like structure extending from the junction of the two and extending in a direction toward the first radiator 2;
  • the electrical length of the connecting portion 21 of the first radiator 2 of the fourth multimode broadband antenna module is u
  • the electrical length of the high frequency portion 23 of the first radiator is v+w
  • the high-frequency resonance wavelength of a radiator is 4* [ ( v+w) +u]
  • the low-frequency resonance wavelength of the first radiator is 4* [ ( v+w ) +u].
  • the operating band of the multimode wideband antenna module needs to be broadened by the coupling capacitance effect generated by the spacing between the second radiator and the first radiator.
  • the interval 61 between the low frequency portion 22 of the first radiator and the low frequency portion 32 of the second radiator is about 0.5 mm. Since the structure is a symmetrical structure, the high frequency portion 23 of the first radiator The interval e 2 between the high frequency portions 33 of the two radiators is also about 0.5 mm.
  • the low frequency working frequency band (the return loss is lower than _6 dB (decibel)) of the multimode broadband antenna module is approximately 850 MHz to 1100 MHz. Between the left and right, the high frequency operating band (return loss is less than _6dB (decibel)) is roughly between 1700MHz and 2300MHz.
  • the opening formed by the bending of the low-frequency portion 32 of the second radiator is opposed to the opening formed by the bending of the high-frequency portion 33 of the second radiator. Further, at least a portion of the low frequency portion 32 and the high frequency portion 33 of the second radiator are substantially flush with the first radiator 2.
  • the portion of the low-frequency portion 32 of the second radiator that is in the same plane as the first radiator 2 and the The other portions of the low frequency portion 32 of the two radiators are generally at an angle of 90 degrees.
  • the low frequency portion 32 and the high frequency portion 33 of the second radiator may also have a strip structure as shown in FIG.
  • the third or fourth multimode The low frequency of the working frequency band of the broadband antenna module fails to cover to 690 MHz, but since the multimode broadband antenna module is disposed in the casing of the wireless terminal such as a mobile phone, the multimode broadband antenna module is operated by the casing.
  • the working frequency band can be shifted to the low frequency band as a whole, so that the low frequency can cover the working frequency band of LTE of 6 98 MHz.
  • the working frequency bands of the third and fourth multimode broadband antenna modules of FIG. 10 and FIG. 14 can cover the working frequency band of LTE.
  • a third radiator may also be disposed at the second ground end 13 of the printed circuit board 1 of the multimode broadband antenna module as shown in FIG. 10 or FIG. 5 ,
  • the third radiator 5 may be a strip structure having at least one bend, and one end of the third radiator 5 is connected to the printed circuit board The second ground terminal 13 of 1.
  • the third radiator 5 is used to further widen the working frequency band of the multimode broadband antenna module, and the third radiator 5 is equivalent to a monopole antenna, and its resonant frequency, that is, its operating frequency, is determined by its electrical length. Generally, the electrical length of the third radiator 5 is one quarter of the operating wavelength corresponding to its operating frequency.
  • the electrical length of the third radiator 5 may be an electrical length corresponding to the inoperable frequency of the first radiator 2 and the third radiator 5, thereby further expanding the multimode broadband antenna module.
  • the role of working bandwidth Since the wavelength of the electromagnetic wave is inversely proportional to the frequency, and the electrical length of the third radiator 5 is one quarter of the wavelength corresponding to the operating frequency thereof, the smaller the operating frequency of the third radiator 5, the larger the electrical length thereof
  • the third operating body 5 has a higher operating frequency, and the electrical length thereof is smaller.
  • the third radiator 5 is generally used to widen the bandwidth of the high frequency band, and at this time, the electrical length of the third radiator 5 is small.
  • the length of the third radiator 5 is about 35.7 GHz
  • the length of the third radiator 5 is about 37.5 mm.
  • the use of a structure having a plurality of bends allows the third radiator 5 to have a larger length in a smaller arrangement area, meeting the demand for its length.
  • the third radiator 5 may have a straight strip structure.
  • the third radiator 5 or even the entire multimode broadband antenna module is attached to the antenna holder provided in the wireless terminal, and the third radiator 5 is disposed away from the multimode broadband antenna module.
  • the other structure of the block is where to prevent signal interference between the radiators. If the area reserved on the antenna mount does not meet the requirements of the third radiator 5, the other end of the third radiator 5 may be extended to the insulative housing attached to the wireless terminal.
  • the fifth multimode broadband of FIG. 2 is compared.
  • the return loss curve of the antenna module (dotted line) and the return loss curve of the third multimode wideband antenna module (solid line) show that the high-frequency operating bandwidth of the fifth multimode broadband antenna module is lower than that of the third
  • the high-frequency operating bandwidth of the multimode broadband antenna module indicates that the third radiator 5 can effectively widen the working bandwidth of the antenna, so that the multimode broadband antenna module in Fig. 18, Fig. 19 or Fig. 20, Fig. 2 1 It can better meet the needs of different users for the working frequency band of the antenna module.
  • the connecting portion 21 of the first radiator 2 of the above various multimode broadband antenna modules may be a flat plate structure or a strip structure. Since the connecting portion 21 has a conducting effect, when the connecting portion 21 of the first radiator 2 is a flat plate-like structure, the thickness of the planar plate-like structure can be arbitrarily set, and even the flat plate can be formed. The thickness of the structure is reduced to approximate a plane; similarly, the thickness and width of the strip structure can be arbitrarily set, and the thickness and width of the strip structure can be reduced to approximate the wire of the strip structure.
  • the grounding portion 31 of the second radiator 3 of the above various multimode broadband antenna modules may also be a planar plate structure or a strip structure. Since the grounding portion acts as a conductor, when the grounding portion 31 of the second radiator 3 is a flat plate-like structure, the thickness of the planar plate-like structure can be arbitrarily set, and even the thickness of the planar plate-like structure can be The thickness is reduced to make it approximate to a plane. Similarly, the thickness and width of the strip structure can be arbitrarily set, and the thickness and width of the strip structure can be reduced to approximate the wire of the strip structure.
  • the user of the wireless terminal is often changed.
  • the influence of the left hand on the transmission and reception performance of the wireless terminal may be different from the effect of the right hand on the transmission and reception performance of the wireless terminal when the wireless terminal is held by the right hand.
  • the transmission and reception performance of the wireless terminal is greatly affected, the communication capability of the wireless terminal may be reduced, and the user experience of the wireless terminal is reduced.
  • the signal feeding end can be disposed at an intermediate position of the edge of the printed circuit board, so that the user can not receive the signal of the wireless terminal regardless of whether the user is holding the wireless terminal with the left hand or the right.
  • first radiator 2 or the second radiator 3 of the third multimode broadband antenna module and the fourth multimode broadband antenna module are symmetric structures, which not only reduces the process requirements, but further improves the wireless terminal.
  • the head model effect is not only reduces the process requirements, but further improves the wireless terminal.
  • the various multimode broadband antenna modules provided in the embodiments of the present invention occupy a clearance area of 60 mm in length, 10 mm in width, and 5 mm in height.
  • the length of the clearance area is equal to the side length of the printed circuit board 1 on which the multimode broadband antenna module is disposed, and the other side of the printed circuit board 1 is about 100 mm long.
  • the low frequency portion 22 and the high frequency portion 23 of the first radiator of the first multimode broadband antenna module, the third multimode broadband antenna module, and the fourth multimode broadband antenna module may be according to actual needs.
  • the low frequency portion 32 and the high frequency portion 33 of the second radiator of the first multimode broadband antenna module, the third multimode broadband antenna module and the fourth multimode broadband antenna module may be designed, combined, and similarly According to actual needs, it can be designed and combined by itself. It is also possible to select whether or not to set the third radiator 5 according to actual needs.
  • An embodiment of the present invention provides a wireless terminal, including a multimode broadband antenna module and a casing.
  • the multimode broadband antenna module is disposed in the casing.
  • the multimode broadband antenna module includes printing. a circuit board 1, a first radiator 2 and a second radiator 3, wherein
  • the first radiator 2 includes a connecting portion 21, a low frequency portion 22, and a high frequency portion 23, and the low frequency portion 22 of the first radiator is connected to the high frequency portion 23 of the first radiator, the first radiation
  • One end of the connecting portion 21 of the body is connected to the low of the first radiator a connection between the frequency signal 22 and the high frequency signal 23, and the other end is electrically connected to the signal feeding end 11 of the printed circuit board 1;
  • the second radiator 3 includes a ground portion 31, a low frequency portion 32, and a high frequency portion 33, and the low frequency portion 32 of the second radiator is connected to the high frequency portion 33 of the second radiator, the second One end of the grounding portion 3 1 of the radiator is connected to the junction of the low frequency signal 32 and the high frequency signal 33 of the second radiator, and the other end is electrically connected to the first ground end 12 of the printed circuit board 1.
  • the communication signal of the wireless terminal is transmitted and received through the multimode wideband antenna module.
  • the communication signal When the wireless terminal transmits a signal, the communication signal is converted into a high-frequency current through a processing of a communication module composed of a radio frequency circuit and a baseband circuit system disposed on the printed circuit board 1, and the high-frequency current passes through the printed circuit board 1.
  • the signal feed terminal 11 enters the antenna module and is then radiated out in the form of electromagnetic waves.
  • the electromagnetic wave signal from the external space of the wireless terminal is converted into a high-frequency current through the receiving of the multimode broadband antenna module, and enters the printed circuit board through the signal feeding end 1 1 on the printed circuit board 1.
  • the communication module on 1 is mainly composed of a radio frequency circuit and a baseband circuit, so that communication can be performed normally.
  • the low frequency portion 22 of the first radiator is spaced apart from the low frequency portion 32 of the second radiator by a first predetermined distance
  • the high frequency portion 23 of the first radiator and the second radiator is spaced apart by a second predetermined distance such that a coupling capacitance effect is formed between the first radiator and the second radiator, wherein the first predetermined distance and the second predetermined distance are both required Design and adjust according to the actual situation, the two can be the same or different.
  • the antenna module of the prior art generally only includes the printed circuit board 1 and the first radiator 2.
  • the operating frequency band of the antenna module at this time is the electrical part of the high frequency portion 23, the low frequency portion 22 and the connecting portion 2 1 of the first radiator of the antenna module.
  • the length determines, specifically, the sum of the electrical lengths of the high frequency portion 23 and the connecting portion 21 of the antenna module is one quarter of the high frequency resonant wavelength of the antenna module.
  • the antenna module The sum of the electrical lengths of the low frequency portion 22 and the connecting portion 21 of the block is one quarter of the low frequency resonant wavelength of the antenna module.
  • the antenna module can only operate at the corresponding resonant frequency of the high frequency resonant wavelength and the low frequency resonant wavelength.
  • the multimode broadband antenna module has a small operating bandwidth at this time.
  • the electrical length of the high frequency portion 23 of the first radiator is a+b, and the electrical length of the connecting portion is f+c, and the high frequency resonant wavelength of the first radiator 2 is 4. * [ ( a + b ) + ( f + c ) ] ;
  • the electrical length of the low frequency portion 22 of the first radiator is d + e, then the low frequency resonance wavelength of the first radiator 2 is 4 * [ ( d+e ) + ( f+c ) ].
  • the multimode broadband antenna module in the embodiment of the present invention further includes a second radiator 3 in addition to the printed circuit board 1 and the first radiator 2, and the low frequency portion 22 of the first radiator is adjacent to the second radiator.
  • the low frequency portion 32, the high frequency portion 23 of the first radiator is adjacent to the high frequency portion 33 of the third radiator. Since the low frequency portion 32 of the second radiator is close to the low frequency portion 22 of the first radiator, when the low frequency portion 21 of the first radiator has a low frequency signal, the low frequency portion 22 of the first radiator The low frequency portion 32 of the second radiator forms a coupling capacitance effect to excite a higher order mode, so that the working frequency band of the multimode broadband antenna module is widened and the operating frequency range is expanded.
  • the high frequency portion 33 of the second radiator is close to the high frequency portion 23 of the first radiator, when the high frequency portion 23 of the first radiator has a high frequency signal, the first The high frequency portion 23 of the radiator forms a coupling capacitance effect with the high frequency portion 33 of the second radiator, which excites a higher order mode, so that the operating frequency band of the multimode broadband antenna module is widened and the operating frequency range is expanded.
  • the working principle of the multimode broadband antenna module relies on the coupling capacitance between the first radiator 2 and the second radiator 3 to widen the working bandwidth of the antenna module, the specific architecture of the wireless terminal and The thickness is required to design and adjust the thickness of the multimode broadband antenna module, but the related art personnel need to strictly adjust the distance between the portions of the first radiator 2 and the second radiator 3, so that the The mode wideband antenna module can operate in an operating frequency that satisfies multimode conditions.
  • the multimode broadband antenna module can be provided on the premise that the radiation index of the multimode broadband antenna module is satisfied.
  • the overall thickness is controlled to be about 4 to 5 mm, so that the wireless terminal provided with the multimode wideband antenna module can reduce the thickness, and finally the thickness of the wireless terminal is less than 1 cm, which is in line with the trend of slimming of the wireless terminal.
  • the multimode wideband antenna module can work only by adjusting the length of the first radiator 2, the second radiator 3, or the interval between the first radiator 2 and the second radiator 3, The frequency band is adjusted. Therefore, the thickness of the first radiator 2 or the second radiator 3 of the multimode broadband antenna module can be arbitrarily set, and the thickness of the first radiator 2 or the second radiator 3 can be reduced as much as possible. To reduce the amount of material used for the first radiator 2 or the second radiator 3 during the manufacturing process; similarly, the widths of the first radiator 2 and the second radiator 3 can also be arbitrarily set, further reducing The amount of material used for the first radiator 2 or the second radiator 3.
  • the hand of the wireless terminal is often changed.
  • the influence of the left hand on the transmission and reception performance of the wireless terminal may be the same as when the wireless terminal is held by the right hand.
  • the right hand has different effects on the transmit and receive performance of the wireless terminal.
  • the transmission and reception performance of the wireless terminal is greatly affected, the communication capability of the wireless terminal may be reduced, and the user experience of the wireless terminal is reduced.
  • the signal feeding end can be disposed at an intermediate position of the edge of the printed circuit board, so that the user can not receive the signal of the wireless terminal regardless of whether the user is holding the wireless terminal with the left hand or the right.
  • the multi-mode broadband antenna module provided in the embodiment of the present invention occupies a clearance area of 60 mm in length, 10 mm in width, and 5 mm in height.
  • the length of the clearance area is equal to the side length of the printed circuit board 1 on which the multimode broadband antenna module is disposed, and the other side of the printed circuit board 1 is about 100 mm long.
  • the multi-mode broadband antenna module in the wireless terminal has a plurality of specific structures. For details, refer to the description in the second embodiment, and details are not described herein again.
  • a wireless terminal is provided, and a multimode broadband antenna module is disposed in a casing of the wireless terminal, where the multimode broadband antenna module includes a printed circuit board, a first radiator, and a second The radiation body, the multimode broadband antenna module works by forming a coupling capacitance effect between the first radiator and the second radiator, exciting a higher order mode, broadening the operating frequency of the multimode broadband antenna module, and the multimode
  • the broadband antenna module has a small thickness and satisfies the need for a thinner structure of a wireless terminal such as a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transmitters (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明实施例公开了一种多模宽带天线模块及无线终端,涉及无线电通讯领域,该多模宽带天线模块不仅可以具有较大范围的工作带宽,并且尺寸较小。所述多模宽带天线模块包括印刷电路板和天线本体,所述天线本体包括:电性连接所述印刷电路板的第一辐射体和第二辐射体,其中,所述第一辐射体包括连接部分、低频部分和高频部分,所述第二辐射体包括接地部分、低频部分和高频部分,所述第一辐射体的低频部分与所述第二辐射体的低频部分间隔第一预定距离,所述第一辐射体的高频部分与所述第二辐射体的高频部分间隔第二预定距离,以使得所述第一辐射体与所述第二辐射体之间形成耦合电容效应。

Description

多模宽带天线模块及无线终端 技术领域 本发明涉及无线电通讯领域, 尤其涉及一种多模宽带天线模块及无线 终端。 背景技术 天线是无线电设备中用来发射或接收电磁波信号的装置。 近年来, 用 于无线通信的移动终端天线的设计和性能,越来越影响移动通信的发展方 向,其中,对无线终端如手机,掌上电脑 (Personal Digital Assistance) , ΜΡ3/ΜΡ4的影响尤其大。 天线设计的带宽特性对辐射特性有重要的影响。 天线实现信号传播和能量辐射均基于频率的谐振。如果一个天线能在多个 频率都能谐振, 则该天线将可以在多个频率工作。 另一方面, 如果天线存 在多个谐振频率, 设计者和使用者可以根据自己的需要调节频率和带宽。 如果该天线能够工作在多个频率下, 则称该天线为多模宽带天线。
发明人在实现本发明的过程中发现, 现有的最常用的天线是平面倒 F 型 (Planar Inverted F Antenna, 筒称 PIFA) 天线, 而 PIFA天线的带 宽工作带宽与 PIFA天线的高度成正比。若需要拓宽 PIFA天线的工作带宽 使其成为多模宽带天线, 则需要增大 PIFA天线的高度, 势必会影响到手 机等无线终端的厚度, 无法满足手机等无线终端的结构薄型化的需要。 发明内容 本发明所要解决的技术问题在于提供一种多模宽带天线模块和无线 终端, 该多模宽带天线模块不仅可以具有较大范围的工作带宽, 并且尺寸 较小。
本发明的第一方面提供了一种多模宽带天线模块包括印刷电路 板、 第一辐射体和第二辐射体, 其中, 所述第一辐射体包括连接部分、 低频部分和高频部分, 所述第 一辐射体的低频部分与所述第一辐射体的高频部分连接, 所述第一 辐射体的连接部分的一端连接所述第一辐射体的低频信号和高频信 号的连接处, 另一端电性连接所述印刷电路板的信号馈电端;
所述第二辐射体包括接地部分、 低频部分和高频部分, 所述第 二辐射体的低频部分与所述第二辐射体的高频部分连接, 所述第二 辐射体的接地部分的一端连接所述第二辐射体的低频信号和高频信 号的连接处, 另一端电性连接所述印刷电路板的第一接地端;
所述第一辐射体的低频部分与所述第二辐射体的低频部分间隔 第一预定距离, 所述第一辐射体的高频部分与所述第二辐射体的高 频部分间隔第二预定距离, 以使得所述第一辐射体与所述第二辐射 体之间形成耦合电容效应。
在第一方面的第一种可能的实现方式中, 所述第二辐射体的接 地部分, 通过电感电性连接至所述印刷电路板的第一接地端。
在第一方面的第二种可能的实现方式中, 所述第一辐射体的连 接部分为:平面板状结构或条形结构; 所述第二辐射体的接地部分 为, 平面板状结构或条形结构。
在第一方面的第三种可能的实现方式中, 所述第一辐射体的低 频部分为具有至少一处弯折的条状结构, 所述第一辐射体的高频部 分为平面板状结构, 所述第一辐射体的低频部分的电气长度大于所 述第一辐射体的高频部分的电气长度。
在第一方面的第四种可能的实现方式中, 所述第一辐射体的低 频部分为平面板状结构, 所述第一辐射体的高频部分为具有至少一 处弯折的条状结构, 所述第一辐射体的低频部分的电气长度大于所 述第一辐射体的高频部分的电气长度。
在第一方面的第五种可能的实现方式中, 所述第二辐射体的低 频部分和所述第二辐射体的高频部分均为具有至少一处弯折的板状 结构或条形结构, 所述第二辐射体的低频部分围绕所述第一辐射体 的低频部分; 所述第二辐射体的高频部分围绕第一辐射体的高频部 分, 所述第二辐射体的低频部分的电气长度大于所述第二辐射体的 高频部分的电气长度。
在第一方面的第六种可能的实现方式中, 所述第一辐射体的低 频部分与高频部分对称分布于这两者连接处的两侧, 所述第一辐射 体的低频部分与高频部分共同构成平面 T 形板状结构或直条状结 构。
在第一方面的第七种可能的实现方式中, 所述第二辐射体的低 频部分和高频部分对称分布于这两者连接处的两侧, 所述第二辐射 体的低频部分和高频部分分别为: 从这两者连接处开始延伸一段距 离并向所述第一辐射体方向弯折的条状结构或板状结构;
所述第二辐射体的低频部分的弯折形成的开口与所述第二辐射 体的高频部分的弯折形成的开口相对。
在第一方面的第八种可能的实现方式中, 所述第二辐射体的低 频部分和高频部分至少有一部分与所述第一辐射体处于同一平面。
在第一方面的第九种可能的实现方式中, 所述第二辐射体的低 频部分上的、 与所述第一辐射体位于同一平面的部分, 与所述第二 辐射体的低频部分的其他部分, 呈 90度夹角。
在第一方面的第十种可能的实现方式中, 所述多模宽带天线模 块还包括:
第三辐射体, 所述第三辐射体为具有至少一处弯折的条状结构 或直条结构, 所述第三辐射体的一端连接所述印刷电路板的第二接 地端。
在本发明第一方面的实施例的技术方案中,提供了一种多模宽带天线 模块, 所述多模宽带天线模块包括印刷电路板、 第一辐射体和第二 辐射体, 该多模宽带天线模块的工作原理为第一辐射体与第二辐射体之 间形成耦合电容效应, 激发高次模,拓宽了该多模宽带天线模块的工作频 率, 并且该多模宽带天线模块的厚度较小, 满足手机等无线终端的结构薄 型化的需要。
本发明的第二方面提供了一种无线终端, 包括多模宽带天线模 块和壳体, 所述多模宽带天线模块设置于所述壳体内, 所述多模宽 带天线模块包括印刷电路板、 第一辐射体和第二辐射体, 其中, 所述第一辐射体包括连接部分、 低频部分和高频部分, 所述第 一辐射体的低频部分与所述第一辐射体的高频部分连接, 所述第一 辐射体的连接部分的一端连接所述第一辐射体的低频信号和高频信 号的连接处, 另一端电性连接所述印刷电路板的信号馈电端;
所述第二辐射体包括接地部分、 低频部分和高频部分, 所述第 二辐射体的低频部分与所述第二辐射体的高频部分连接, 所述第二 辐射体的接地部分的一端连接所述第二辐射体的低频信号和高频信 号的连接处, 另一端电性连接所述印刷电路板的第一接地端;
所述第一辐射体的低频部分与所述第二辐射体的低频部分间隔 第一预定距离, 所述第一辐射体的高频部分与所述第二辐射体的高 频部分间隔第二预定距离, 以使得所述第一辐射体与所述第二辐射 体之间形成耦合电容效应。
在第二方面的第一种可能的实现方式中, 所述第二辐射体的接地部 分通过电感电性连接至所述印刷电路板的第一接地端。
在第二方面的第二种可能的实现方式中, 所述第一辐射体的连 接部分为:平面板状结构或条形结构; 所述第二辐射体的接地部分 为, 平面板状结构或条形结构。
在第二方面的第三种可能的实现方式中,所述第一辐射体的低频 部分为具有至少一处弯折的条状结构, 所述第一辐射体的高频部分 为平面板状结构, 所述第一辐射体的低频部分的电气长度大于所述 第一辐射体的高频部分的电气长度。
在第二方面的第四种可能的实现方式中, 所述第一辐射体的低频部 分为平面板状结构, 所述第一辐射体的高频部分为具有至少一处弯 折的条状结构, 所述第一辐射体的低频部分的电气长度大于所述第 一辐射体的高频部分的电气长度。
在第二方面的第五种可能的实现方式中, 所述第二辐射体的低频部 分和所述第二辐射体的高频部分均为具有至少一处弯折的板状结构 或条形结构, 所述第二辐射体的低频部分围绕所述第一辐射体的低 频部分; 所述第二辐射体的高频部分围绕第一辐射体的高频部分, 所述第二辐射体的低频部分的电气长度大于所述第二辐射体的高频 部分的电气长度。
在第二方面的第六种可能的实现方式中, 所述第一辐射体的低频部 分与高频部分对称分布于这两者连接处的两侧, 所述第一辐射体的 低频部分与高频部分共同构成平面 T形板状结构或直条状结构。
在第二方面的第七种可能的实现方式中, 所述第二辐射体的低频 部分和高频部分对称分布于这两者连接处的两侧, 所述第二辐射体 的低频部分和高频部分分别为: 从这两者连接处开始延伸一段距离 并向所述第一辐射体方向弯折的条状结构或板状结构;
所述第二辐射体的低频部分的弯折形成的开口与所述第二辐射 体的高频部分的弯折形成的开口相对。
在第二方面的第八种可能的实现方式中, 所述第二辐射体的低频部 分和高频部分至少有一部分与所述第一辐射体处于同一平面。
在第二方面的第九种可能的实现方式中, 所述第二辐射体的低频部 分上的、 与所述第一辐射体位于同一平面的部分, 与所述第二辐射 体的低频部分的其他部分, 呈 90度夹角。
在第二方面的第十种可能的实现方式中, 第三辐射体, 所述第三辐 射体为弯折的条状结构或直条结构, 所述第三辐射体的一端连接所 述印刷电路板的第二接地端。
在本发明第二方面的实施例的技术方案中, 提供了一种无线终端, 该 无线终端的壳体内设置有多模宽带天线模块,所述多模宽带天线模块包 括印刷电路板、 第一辐射体和第二辐射体, 该多模宽带天线模块的工 作原理为第一辐射体与第二辐射体之间形成耦合电容效应, 激发高次模, 拓宽了该多模宽带天线模块的工作频率,并且该多模宽带天线模块的厚度 较小, 满足手机等无线终端的结构薄型化的需要。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中的多模宽带天线模块的结构示意图一; 图 2为本发明实施例中的多模宽带天线模块的结构示意图二; 图 3为本发明实施例中的第一种多模宽带天线模块的结构示意图一; 图 4为本发明实施例中的第一种多模宽带天线模块的结构示意图二; 图 5为本发明实施例中的第一种多模宽带天线模块的结构示意图三; 图 6为本发明实施例中的第一种多模宽带天线模块的结构示意图四; 图 7 为本发明实施例中的第一种多模宽带天线模块的回波损耗仿真 图;
图 8为本发明实施例中的第二种多模宽带天线模块的结构示意图; 图 9为本发明实施例中的第一种多模宽带天线模块与第二种多模宽带 天线模块的回波损耗仿真比对图;
图 1 0为本发明实施例中的第三种多模宽带天线模块结构示意图一; 图 1 1为本发明实施例中的第三种多模宽带天线模块的结构示意图二; 图 1 2为本发明实施例中的第三种多模宽带天线模块的结构示意图三; 图 1 3 为本发明实施例中的第三种多模宽带天线模块的回波损耗仿真 图;
图 1 4为本发明实施例中的第四种多模宽带天线模块的结构示意图一; 图 1 5为本发明实施例中的第四种多模宽带天线模块的结构示意图二; 图 1 6为本发明实施例中的第四种多模宽带天线模块的结构示意图三; 图 1 7 为本发明实施例中的第四种多模宽带天线模块的回波损耗仿真 图;
图 1 8为本发明实施例中的第五种多模宽带天线模块的结构示意图一; 图 1 9为本发明实施例中的第五种多模宽带天线模块的结构示意图二; 图 2 0为本发明实施例中的第五种多模宽带天线模块的结构示意图三; 图 2 1为本发明实施例中的第五种多模宽带天线模块的机构示意图四; 图 2 2 为本发明实施例中的第三种多模宽带天线模块和第五种多模宽 带天线模块的回波损耗仿真比对图。
图 2 3为本发明实施例中的无线终端的结构示意图。
附图标记说明:
1一印刷电路板; 1 1一信号馈电端; 1 2—第一接地端;
1 3—第二接地端; 2—第一辐射体; 2 1—连接部分;
2 2—第一辐射体的低频 2 3—第一辐射体的 3—第二辐射体;
部分; 高频部分;
3 1—接地部分; 32—第二辐射体的 3 3—第二辐射体的高频 低频部分; 部分;
4一电感; 5—第三辐射体。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而 不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有 做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范 围。
实施例一
本发明实施例提供一种多模宽带天线模块,所述多模宽带天线模块包 括印刷电路板 1、 第一辐射体 2和第二辐射体 3 , 其中,
所述第一辐射体 2包括连接部分 21、低频部分 22和高频部分 23 , 所述第一辐射体的低频部分 22与所述第一辐射体的高频部分 23 连 接, 所述第一辐射体的连接部分 21 的一端连接所述第一辐射体的低 频信号 22和高频信号 23 的连接处, 另一端电性连接所述印刷电路 板 1 的信号馈电端 11 ;
所述第二辐射体 3包括接地部分 31、低频部分 32和高频部分 33 , 所述第二辐射体的低频部分 32与所述第二辐射体的高频部分 33 连 接, 所述第二辐射体的接地部分 3 1 的一端连接所述第二辐射体的低 频信号 32和高频信号 33 的连接处, 另一端电性连接所述印刷电路 板 1 的第一接地端 12。
如图 1所示, 第一辐射体 2和第二辐射体 3 , 以及印制电路板 1 , 三 者共同组成所述多模宽带天线模块。无线终端的通讯信号通过该多模宽带 天线模块进行发射和接收。
无线终端发射信号时, 通讯信号经过设置在所述印刷电路板 1上的射 频电路和基带电路系统组成的通讯模块的处理, 转变为高频电流, 该高频 电流通过印制电路板 1上的信号馈电端 11进入天线模块, 之后以电磁波 的形式辐射出去。
无线终端接收信号时, 来自无线终端外部空间的电磁波信号经该多模 宽带天线模块的接收转变成高频电流,通过印制电路板 1上的信号馈电端 11 进入到设置于印刷电路板 1 上的通讯模块, 该通讯模块主要由射频电 路和基带电路组成, 从而使得通讯可以正常进行。
需要说明的是,所述第一辐射体的低频部分 22与所述第二辐射体 的低频部分 32 间隔第一预定距离, 所述第一辐射体的高频部分 23 与所述第二辐射体的高频部分 33 间隔第二预定距离, 以使得所述第 一辐射体与所述第二辐射体之间形成耦合电容效应, 其中, 所述第 一预定距离与所述第二预定距离均需根据实际情况进行设计、 调整, 二者可相同也可不同。
现有技术中的天线模块通常仅包括印刷电路板 1和第一辐射体 2。 当 天线模块仅包括印刷电路板 1和第一辐射体 2时,此时天线模块的工作频 段由该天线模块的第一辐射体的高频部分 23、低频部分 22和连接部分 21 的电气长度决定, 具体地, 该天线模块的高频部分 23和连接部分 21的电 气长度之和为该天线模块的高频谐振波长的四分之一, 类似的, 该天线模 块的低频部分 22和连接部分 21的电气长度之和为该天线模块的低频谐振 波长的四分之一, 此时, 该天线模块只能工作在高频谐振波长的对应谐振 频率以及低频谐振波长的对应谐振频率附近, 显然, 此时该多模宽带天线 模块工作带宽较小。
具体地, 如图 2所示, 第一辐射体的高频部分 23的电气长度为 a+b, 连接部分的电气长度为 f+c, 则该第一辐射体 2 的高频谐振波长为 4* [ ( a+b ) + ( f+c ) ]; 类似的, 第一辐射体的低频部分 22的电气长度为 d+e, 则该第一辐射体 1的低频谐振波长为 4* [ ( d+e ) + ( f+c ) ]。 而本发明实施例中的多模宽带天线模块除了包括印刷电路板 1和第一 辐射体 2 , 还包括第二辐射体 3 , 并且第一辐射体的低频部分 22靠近所述 第二辐射体的低频部分 32 , 第一辐射体的高频部分 23靠近所述第三辐射 体的高频部分 33。 由于第二辐射体的低频部分 32靠近所述第一辐射体的 低频部分 22 , 故而当所述第一辐射体的低频部分 22上有低频信号时, 所 述第一辐射体的低频部分 22与所述第二辐射体的低频部分 32形成耦合电 容效应, 激发出高次模, 使得所述多模宽带天线模块的工作频段拓宽, 工 作频率范围扩大。
类似的, 由于第二辐射体的高频部分 33 靠近所述第一辐射体的高频 部分 23 , 故而当所述第一辐射体的高频部分 23上有高频信号时, 所述第 一辐射体的高频部分 23与第二辐射体的高频部分 33形成耦合电容效应, 激发出高次模, 使得所述多模宽带天线模块的工作频段拓宽, 工作频率范 围扩大。
需要说明的是, 由于该多模宽带天线模块的工作原理是依靠第一辐射 体 2和第二辐射体 3之间的耦合电容作用拓宽天线模块的工作带宽,故而 可根据无线终端的具体架构及其对厚度的要求来设计、调整所述多模宽带 天线模块的厚度,但相关技术人员需要严格调整第一辐射体 2和第二辐射 体 3的各部分之间的距离,以使得所述多模宽带天线模块可工作在满足多 模条件的工作频率里。
通常, 当无线终端对多模宽带天线模块的厚度有较为严格要求时, 在 满足该多模宽带天线模块的辐射指标的前提下,可将该多模宽带天线模块 的整体厚度控制在 4至 5毫米左右,使得设置有该多模宽带天线模块的无 线终端可降低厚度, 最终使得该无线终端的厚度不足 1厘米, 符合无线终 端轻薄化的趋势。
进一步的, 由于该多模宽带天线模块仅通过调整第一辐射体 2、 第二 辐射体 3的长度、 或第一辐射体 2和第二辐射体 3之间的间隔, 即可对其 的工作频段进行调整, 故而, 该多模宽带天线模块的第一辐射体 2或第二 辐射体 3的厚度可任意设置,则可将第一辐射体 2或第二辐射体 3的厚度 尽可能减小,以减少制作过程中对第一辐射体 2或第二辐射体 3的材料的 使用量; 类似的, 第一辐射体 2与第二辐射体 3的宽度也可任意设置, 更 进一步地减少了对第一辐射体 2或第二辐射体 3的材料的使用量。
当用户在使用手机等无线终端通话时, 由于用户的脑部靠近无线终端 的天线模块, 将降低无线终端的发射和接收性能, 无线终端整机辐射的发 射和接收性能都会降低。 在研发无线终端的过程中, 研发相关的技术人员 定量测量人脑对无线终端的发射和接收性能的影响,对无线终端进行优化 设计, 降低无线终端的发射和接收性能受到人脑的影响程度, 即减少人体 和天线模块的电磁耦合。
另外, 当用户在使用手机等无线终端时,会经常变换持无线终端的手, 用户使用左手拿着无线终端时,左手对无线终端的发射和接收性能的影响 可能与用右手拿着无线终端时右手对无线终端的发射和接收性能的影响 不一样。 当无线终端的发射和接收性能受到较大的影响时, 可能会降低无 线终端的通讯能力, 降低了用户对该无线终端的使用体验。
在本发明实施例中, 可将信号馈电端设置在印刷电路板的边缘的中 间位置, 使得用户无论是用左手还是右手持该无线终端, 该无线终端的收 发信号的能力都不会受到太大的影响, 用户的使用体验较好, 即无线终端 具有较好的头手模效应。
通常的, 本发明实施例中所提供的多模宽带天线模块所占的净空区域 为: 长 6 0毫米, 宽 1 0毫米, 高 5毫米。 其中, 该净空区域的长与印刷电 路板 1设置有该多模宽带天线模块的边长相等,该印刷电路板 1另一边长 为 1 00毫米左右。
在本发明实施例的技术方案中, 提供了一种多模宽带天线模块, 所述 多模宽带天线模块包括印刷电路板、 第一辐射体和第二辐射体, 该 多模宽带天线模块的工作原理为第一辐射体与第二辐射体之间形成耦合 电容效应, 激发高次模, 拓宽了该多模宽带天线模块的工作频率, 并且该 多模宽带天线模块的厚度较小, 满足手机等无线终端的结构薄型化的需 要。
实施例二
本发明实施例提供了一种多模宽带天线模块,如图 1所示, 所述多模宽带天线模块包括印刷电路板 1、第一辐射体 2和第二辐 射体 3 , 其中,
所述第一辐射体 2包括连接部分 21、低频部分 22和高频部分 23 , 所述第一辐射体的低频部分 22与所述第一辐射体的高频部分 23 连 接, 所述第一辐射体的连接部分 21 的一端连接所述第一辐射体的低 频信号 22和高频信号 23 的连接处, 另一端电性连接所述印刷电路 板 1 的信号馈电端 11 ;
所述第二辐射体 3包括接地部分 31、低频部分 32和高频部分 33 , 所述第二辐射体的低频部分 32与所述第二辐射体的高频部分 33 连 接, 所述第二辐射体的接地部分 3 1 的一端连接所述第二辐射体的低 频信号 32和高频信号 33 的连接处, 另一端电性连接所述印刷电路 板 1 的第一接地端 12。
如图 1所示, 第一辐射体 2和第二辐射体 3 , 以及印制电路板 1 , 三 者共同组成所述多模宽带天线模块。无线终端的通讯信号通过该多模宽带 天线模块进行发射和接收。
无线终端发射信号时, 通讯信号经过设置在所述印刷电路板 1上的射 频电路和基带电路系统组成的通讯模块的处理, 转变为高频电流, 该高频 电流通过印制电路板 1上的信号馈电端 11进入天线模块, 之后以电磁波 的形式辐射出去。
无线终端接收信号时, 来自无线终端外部空间的电磁波信号经该多模 宽带天线模块的接收转变成高频电流,通过印制电路板 1上的信号馈电端 11 进入到设置于印刷电路板 1 上的通讯模块, 该通讯模块主要由射频电 路和基带电路组成, 从而使得通讯可以正常进行。
需要说明的是,所述第一辐射体的低频部分 22与所述第二辐射体 的低频部分 32 间隔第一预定距离, 所述第一辐射体的高频部分 23 与所述第二辐射体的高频部分 33 间隔第二预定距离, 以使得所述第 一辐射体与所述第二辐射体之间形成耦合电容效应, 其中, 所述第 一预定距离与所述第二预定距离均需根据实际情况进行设计、 调整, 二者可相同也可不同。 由于该多模宽带天线模块的拓宽工作频段的工作原理是在保证第一 辐射体 2的电气长度的基础上,依靠第一辐射体 1和第二辐射体 3之间的 耦合电容作用拓宽天线模块的工作带宽,故而可根据无线终端的具体架构 及其对厚度的要求来设计、 调整所述多模宽带天线模块的厚度, 但相关技 术人员需要严格调整第一辐射体 2和第二辐射体 3的各部分之间的距离, 以使得所述多模宽带天线模块可工作在满足多模条件的工作频率里。
通常, 当无线终端对多模宽带天线模块的厚度有较为严格要求时, 在 满足该多模宽带天线模块的辐射指标的前提下,可将该多模宽带天线模块 的整体厚度控制在 4至 5毫米左右,使得设置有该多模宽带天线模块的无 线终端可降低厚度, 最终使得该无线终端的厚度不足 1厘米, 符合无线终 端轻薄化的趋势。
本发明实施例还进一步提供了上述多模宽带天线模块的多种具体实 现形式, 如下:
如图 3所示, 为所述多模宽带天线模块的第一种具体结构, 所述第一 种多模宽带天线模块的具体结构为:
所述第一辐射体的低频部分 22 为具有至少一处弯折的条状结 构, 所述第一辐射体的高频部分 23呈平面板状结构, 所述第一辐射 体的低频部分 22 的电气长度大于所述第一辐射体的高频部分 23 的 电气长度。
所述第二辐射体的低频部分 32 和所述第二辐射体的高频部分 33为具有至少一处弯折的板状结构, 所述第二辐射体的低频部分 32 围绕所述第一辐射体的低频部分 22 ; 所述第二辐射体的高频部分 33 围绕第一辐射体的高频部分 23 ,所述第二辐射体的低频部分 32的电 气长度大于所述第二辐射体的高频部分 33的电气长度。
当天线模块仅包括印刷电路板 1和第一辐射体 2时, 此时天线模块的 工作频段由该天线模块的第一辐射体的高频部分 2 3、 低频部分 22和连接 部分 2 1的电气长度决定, 具体地, 该天线模块的高频部分 2 3和连接部分 2 1 的电气长度之和为该天线模块的高频谐振波长的四分之一, 类似的, 该天线模块的低频部分 22和连接部分 21的电气长度之和为该天线模块的 低频谐振波长的四分之一, 此时, 该天线模块只能工作在高频谐振波长的 对应谐振频率以及低频谐振波长的对应谐振频率附近, 显然, 此时该多模 宽带天线模块工作带宽较小。
具体地, 如图 4所示, 第一辐射体的高频部分 22的电气长度为 n+o, 连接部分 21 的电气长度为 g+h, 则该第一辐射体 1 的高频谐振波长为 4* [ ( n+o ) + ( g+h) ]; 类似的, 第一辐射体的低频部分 22的电气长度为 i + j+k+1+m, 则该第一辐射体 2 的低频谐振波长为 4* [ ( i + j+k+1+m ) + ( g+h) ]。
而本发明实施例中的多模宽带天线模块除了包括印刷电路板 1 和第 一辐射体 2, 还包括第二辐射体 3, 并且第一辐射体的低频部分 11靠近所 述第二辐射体的低频部分 32, 第一辐射体的高频部分 23靠近所述第三辐 射体的高频部分 33。 由于第二辐射体的低频部分 32靠近所述第一辐射体 的低频部分 22, 故而当所述第一辐射体的低频部分 22上有低频信号时, 所述第一辐射体的低频部分 22与所述第二辐射体的低频部分 32形成耦合 电容效应, 激发出高次模, 使得所述多模宽带天线模块的工作频段拓宽, 工作频率范围扩大。
具体地, 在第一种多模宽带天线模块的具体结构中, 第一辐射体的低 频部分 11与第二辐射体的低频部分 32之间的间隔为 ei, ei大致为 0.5毫 米;第一辐射体的高频部分 23与第二辐射体的低频部分 33之间的间隔为 e2, e2大致为 3毫米。
当终端尺寸要求较小时, 可通过将天线的某一部分设置多处弯 折, 在保证该天线的尺寸较小的前提下保持天线的总的电气长度, 进一步保持天线的谐振波长。
进一步的,所述第一种多模宽带天线模块的第二辐射体 3也可为 具有至少一处弯折的条状结构, 如图 5所示。
类似的, 在第二辐射体 3的形状、 长度、 位置等不变的情况下, 可将第一辐射体 2的低频部分 22和第一辐射体的高频部分 23 的结 构、 形状任意设置, 但任意设置的前提为: 保持第一辐射体的低频 部分 22 的长度为第一辐射体的高频部分 23 的长度的两倍; 保证第 一辐射体 2与第二辐射体 3之间的耦合电容效应的效果不变。 例如, 将第一辐射体的低频部分 22与高频部分 23 的形状互换, 即所述第 一辐射体的低频部分 22为平面板状结构, 所述第一辐射体的高频部 分 23为具有至少一处弯折的条状结构, 如图 6所示。
需要说明的是, 在本发明实施例中, 为了使得多模宽带天线模块 的工作频段能够满足设计者的需要, 需保证第一种多模宽带天线模 块的第一辐射体的低频部分 22的长度大概为第一辐射体的高频部分 长度 23的两倍。
进一步的, 如图 7所示, 该第一种多模宽带天线模块的低频工作频率 (回波损耗低于 -6dB (分贝 )) 最低可达到 824MHz (兆赫兹) 左右, 低频 工作带宽为 824MHz 至接近 1200MHz。 该多模宽带天线模块的高频工作频 率 (回波损耗低于- 6dB (分贝 )) 最高可达到 2500MHz 以上, 高频工作带 宽为 1600MHz左右至 2500MHz以上。
众所周知, 现阶段商业常用的频段包括全球移动通讯系统 ( Global System of Mobile communication, 筒称 GSM), GSM850 ( 824 MHz ~894MHz ), GSM900 ( 880 MHz ~960MHz ), 全球定位系统 ( Global Positioning System, 筒称 GPS ) ( 1575MHz ), 数字视频广播 ( Digital Video Broadcasting, 筒称 DVB )- H( 1670 MHz—1675MHz ),数据通信子系统( Data Communication Subsystem, 筒称 DCS ) ( 1710 MHz —1880MHz ), 个人通讯服务 ( Per sona 1 Communications Service, 筒称 PCS ), 通用移动通信系统 ( Universal Mobile Telecommunications System , 筒称 UMTS ) 或第三代移动通信技 术 ( 3rd_generation, 筒称 3G ) ( 1920 MHz —2175MHz ), 蓝牙或无线局域 网络 ( Wireless Local Area Networks, 筒称 WLAN ) 802. llb/g ( 2400 MHz 一 2484MHz )等共计八个频段, 由此可见, 本发明实施例所提出的多模宽带 天线模块的工作频段可完全覆盖上述八个频段,本发明实施例的多模宽带 天线模块能满足绝大多数无线终端业务对工作频段的需求。
另夕卜, 长期演进 ( Long Term Evolution, 筒称 LTE ) 项目为目前热门 的一个工作频段, LTE的研究, 包含了一些普遍认为很重要的部分, 如等 待时间的减少、 更高的用户数据速率、 系统容量和覆盖的改善以及运营成 本的降低。 LTE的工作频段为 69譲 z_960MHz, 以及 1710MHz_2700MHz。 需要说明的是, 虽然由图 7中可看出, 该多模宽带天线模块的工作频 段的低频未能覆盖至 698MHz, 但该图为该多模宽带天线模块的回波损耗 的仿真图, 由于该多模宽带天线模块设置于手机等无线终端的壳体内, 在 该壳体的作用下, 该多模宽带天线模块的工作频段可整体向低频段偏移, 从而低频可以覆盖到 698MHz的 LTE的工作频段。 具体地:
众所周知, 对于电磁波而言, 有:
Figure imgf000016_0001
, 其中, v表示电磁波在某一介质中的传播速率, 体的介电常数, 0 代表真空情况下的光速, 即电磁波的传播速率, 为一 常量。
另夕卜, 对于电磁波而言, 还有: v = ^ ^ , 其中, f 为多模宽带天线模块的谐振的电磁波的波长, f
f 为多模宽带天线模块的谐振的电磁波的频率, 则根据上述两式, 有:
Figure imgf000016_0002
由于 eo是常量, f 为多模宽带天线模块的谐振的电磁波的波长, 与 多模宽带天线模块的尺寸有直接关系, 所以, 一旦多模宽带天线模块的尺 寸固定了, 多模宽带天线模块的 f也就固定了, 故而 f也为一常量。 进一步的, 无线终端外壳的 V "1" 一般大于真空, 为了使得等号两边 相等, S必须减小, 即谐振频率往低频偏, 即多模宽带天线模块的整体 的回波损耗曲线向左偏移。
所以该多模宽带天线模块的工作频段可以覆盖到 LTE的工作频段。 需要说明的是, 该第一种多模宽带天线模块的第一辐射体的低频部分 2 2与第二辐射体的低频部分 32之间的间隔为 0. 5毫米左右, 第一辐射体 的高频部分 2 3与第二部分的高频部分 3 3之间的间隔为 2 - 3毫米左右。
如图 8所示, 在图 3所提供的第一种多模宽带天线模块的基础上, 该 多模宽带天线模块的第二辐射体 3还可通过电感 4电性连接至所述第一接 地端 1 2 , 此为第二种多模宽带天线模块。
在所述第二辐射体 3上设置电感 4 , 可有效增大所述第二辐射体 3的 电气长度, 进而降低了第二辐射体 3的低频谐振频率以及高频谐振频率。 在第一种多模宽带天线模块与第二种多模宽带天线模块的尺寸相同的情 况下, 如图 9中的点画线所示, 设置有电感 4的第二种多模宽带天线模块 的最低工作频率低至 8 00MHz 以下, 同样最高工作频率也有所降低。 这意 味着当终端的尺寸要求较苛刻时, 在满足工作带宽要求的情况下, 可借助 感值大小适宜的电感 4进一步的缩小多模宽带天线模块的整体尺寸,通常 该电感 4可设置在第二辐射体 3的根部,可起到减小多模宽带天线模块的 尺寸的作用,使得多模宽带天线模块更能够满足日益轻薄化的无线终端的 需要。
本发明实施例还提供第三种多模宽带天线模块,如图 1 0或图 1 1所示, 所述第三种多模宽带天线模块的具体结构为:
所述第一辐射体呈平面板状的 " T " 型结构, 其低频部分 22与高 频部分 23形状相同, 对称分布于这两者连接处的两侧。
同时, 所述第二辐射体的低频部分 32与高频部分 33形状相同, 对称分布于这两者连接处的两侧, 所述第二辐射体的低频部分 32和 高频部分 3 3分别为: 从这两者连接处开始延伸一段距离并向所述第 一辐射体 2方向弯折的板状结构;
如图 1 1 , 该第三种多模宽带天线模块的第一辐射体 2的连接部分 2 1 的电气长度为 P , 如图 1 0所示, 第一辐射体的高频部分 2 3的电气长度为 r + s + t , 故而第一辐射体的高频谐振波长为 4 * [ ( r + s + t ) +p]; 由于第一 辐射体的高频部分 2 3与低频部分 22为对称结构,故而第一辐射体的低频 谐振波长为 4 * [ ( r + s + t ) +p] , 即第一辐射体的高频部分 2 3与低频部分 22 的工作频段发生了重合, 此时, 该第三种多模宽带天线模块的工作频 段范围较小。
故而, 需要借助第二辐射体 3与第一辐射体 2之间的间隔产生的耦合 电容效应拓宽该第二种多模宽带天线模块的工作频段。
此时, 第一辐射体的低频部分 22与第二辐射体的低频部分 32之间的 间隔 61为 0. 5 毫米左右, 由于该结构为对称结构, 故而, 第一辐射体的 高频部分 2 3与第二辐射体的高频部分 33之间的间隔 e2同样为 0. 5 毫米 左右。 如图 1 3所示, 为该多模宽带天线模块的回波损耗仿真图, 该多模 宽带天线模块的低频工作频段 (回波损耗低于 _6 dB (分贝 )) 大致为 800 至将近 1 1 00MHz , 高频工作频段 (回波损耗低于 -6 dB (分贝 )) 大致为 1 900MHz至将近 2500MHz之间。
具体地,所述第二辐射体的低频部分 32的弯折形成的开口与所 述第二辐射体的高频部分 33的弯折形成的开口相对。 并且, 所述第 二辐射体的低频部分 32和高频部分 33 至少有一部分与所述第一辐 射体 2大致处于同一平面。
进一步的, 出于制作方便、 调试筒单、 结构美观等因素的考虑, 所述第二辐射体的低频部分 32上的、 与所述第一辐射体 2位于同一 平面的部分, 与所述第二辐射体的低频部分 32的其他部分, 大致呈 90度夹角。
类似的,所述第二辐射体的低频部分 32和高频部分 33还可为条 状结构, 如图 12所示。
进一步的, 本发明实施例还提供了第四种多模宽带天线模块, 该 第四种多模宽带天线模块的第一辐射体的低频部分 22 和高频部分 23共同呈直条状结构, 其低频部分 22与高频部分 23形状相同, 对 称分布于这两者连接处的两侧。 同时, 所述第二辐射体的低频部分 32与高频部分 33形状相同, 对称分布于这两者连接处的两侧, 所述第二辐射体的低频部分 32和 高频部分 33分别为: 从这两者连接处开始延伸一段距离并向所述第 一辐射体 2方向弯折的板状结构;
如图 15 所示, 该第四种多模宽带天线模块的第一辐射体 2 的连接 部分 21的电气长度为 u, 第一辐射体的高频部分 23的电气长度为 v+w, 故而第一辐射体的高频谐振波长为 4* [ ( v+w) +u] ; 由于第一辐射体的高 频部分与低频部分为对称结构, 故而第一辐射体的低频谐振波长为 4* [ ( v+w ) +u]。
同样, 需要借助第二辐射体与第一辐射体之间的间隔产生的耦合电容 效应拓宽该多模宽带天线模块的工作频段。
此时, 第一辐射体的低频部分 22与第二辐射体的低频部分 32之间的 间隔 61为 0.5 毫米左右, 由于该结构为对称结构, 故而, 第一辐射体的 高频部分 23与第二辐射体的高频部分 33之间的间隔 e2同样为 0.5 毫米 左右。 如图 17所示, 为该第四种多模宽带天线模块的回波损耗仿真图, 该多模宽带天线模块的低频工作频段 (回波损耗低于 _6dB (分贝 )) 大致 为 850MHz至 1100MHz左右之间, 高频工作频段 (回波损耗低于 _6dB (分 贝 )) 大致为 1700MHz至 2300MHz之间。
具体地,所述第二辐射体的低频部分 32的弯折形成的开口与所 述第二辐射体的高频部分 33的弯折形成的开口相对。 并且, 所述第 二辐射体的低频部分 32和高频部分 33 至少有一部分与所述第一辐 射体 2大致处于同一平面。
进一步的, 出于制作方便、 调试筒单、 结构美观等因素的考虑, 所述第二辐射体的低频部分 32上的、 与所述第一辐射体 2位于同一 平面的部分, 与所述第二辐射体的低频部分 32的其他部分, 大致呈 90度夹角。
类似的,所述第二辐射体的低频部分 32和高频部分 33还可为条 状结构, 如图 16所示。
需要说明的是, 虽然由图 13或图 17中可看出, 第三种或第四种多模 宽带天线模块的工作频段的低频未能覆盖至 6 9 8MH z , 但由于该多模宽带 天线模块设置于手机等无线终端的壳体内, 在该壳体的作用下, 该多模宽 带天线模块的工作频段可整体向低频段偏移, 从而低频可以覆盖到 6 98MHz的 LTE的工作频段。 则图 1 0及图 1 4的第三种和第四种多模宽带 天线模块的工作频段可以覆盖到 LTE的工作频段。
如图 1 8或图 1 9所示, 还可在如图 1 0或图 1 1所示的多模宽带天线模 块的所述印刷电路板 1 的第二接地端 1 3处设置第三辐射体 5 , 此为第五 种多模宽带天线模块,所述第三辐射体 5可为具有至少一处弯折的条状结 构, 并且, 所述第三辐射体 5 的一端连接所述印刷电路板 1 的第二接 地端 13。
所述第三辐射体 5 用于进一步拓宽所述多模宽带天线模块的工作 频段, 第三辐射体 5 相当于一个单极天线, 由其的电气长度来决定 其谐振频率, 即其工作频率, 一般的, 所述第三辐射体 5 的电气长 度为其工作频率所对应的工作波长的四分之一。
在设计时, 可将所述第三辐射体 5的电气长度可为对应第一辐射体 2 和第三辐射体 5无法工作频率的电气长度, 由此, 可起到进一步拓宽多模 宽带天线模块的工作带宽的作用。 由于电磁波的波长与频率成反比, 而第 三辐射体 5的电气长度为其工作频率所对应的波长的四分之一, 则, 该第 三辐射体 5工作频率越小, 其电气长度越大; 该第三辐射体 5工作频率越 大, 其电气长度越小。 处于对无线终端的尺寸的小型化的考虑, 通常仅将 第三辐射体 5用于拓宽高频段的带宽,此时第三辐射体 5的电气长度较小。 例如设定第三辐射体 5的谐振频率为 2 GHz左右, 则此时第三辐射体 5的 长度为 37. 5毫米左右。
采用具有多处弯折的结构可使得第三辐射体 5在较小的设置区域内, 拥有较大的长度, 满足对其长度的需求。
另外, 还可如图 2 0或图 2 1所示, 当设置区域较大时, 所述第三辐射 体 5可为直条结构。
通常, 第三辐射体 5甚至整个多模宽带天线模块是贴附在无线终端内 设置有的天线支架上的, 并且, 第三辐射体 5设置在远离多模宽带天线模 块的其他结构的地方, 以防止各辐射体之间的信号干扰。 若天线支架上预 留的区域无法满足第三辐射体 5的需求,可将第三辐射体 5的另一端延伸 至贴附在无线终端的绝缘的壳体上。
由于图 1 8、 图 1 9或图 2 0、 图 2 1 中的第三辐射体 5设置于靠近第一 辐射体的高频部分 2 3 , 故而比对图 2 2的第五种多模宽带天线模块的回波 损耗曲线 (点画线) 和第三种多模宽带天线模块的回波损耗曲线 (实线) 可看出,第五种多模宽带天线模块的高频工作带宽比第三种多模宽带天线 模块的高频工作带宽大,说明了第三辐射体 5能够有效拓宽天线的工作带 宽, 使得图 1 8、 图 1 9或图 2 0、 图 2 1 中的多模宽带天线模块更能够满足 不同用户对天线模块的工作频段的使用需求。
需要说明的是, 上述各种多模宽带天线模块的第一辐射体 2的连接部 分 2 1可为平面板状结构或条形结构。 由于该连接部分 2 1起传导作用, 故 而, 当该第一辐射体 2的连接部分 2 1为平面板状结构时, 该平面板状结 构的厚度可以任意设定,甚至可将该平面板状结构的厚度减小使之近似为 平面; 类似的, 该条形结构的厚度和宽度也可任意设定, 可将该条形结构 的厚度和宽度缩小至该条形结构近似导线。
类似的, 上述各种多模宽带天线模块的所述第二辐射体 3的接地部分 3 1也可为平面板状结构或条形结构。 由于该接地部分起传导作用, 故而, 当该第二辐射体 3的接地部分 31为平面板状结构时, 该平面板状结构的 厚度可以任意设定, 甚至可将该平面板状结构的厚度缩小, 使之近似为平 面, 类似的, 该条形结构的厚度和宽度也可任意设定, 可将该条形结构的 厚度和宽度缩小至该条形结构近似导线。
当用户在使用手机等无线终端通话时, 由于用户的脑部靠近无线终端 的天线模块, 将降低无线终端的发射和接收性能, 无线终端整机辐射的发 射和接收性能都会降低。 在研发无线终端的过程中, 研发相关的技术人员 定量测量人脑对无线终端的发射和接收性能的影响,对无线终端进行优化 设计, 降低无线终端的发射和接收性能受到人脑的影响程度, 即减少人体 和天线模块的电磁耦合。
另外, 当用户在使用手机等无线终端时,会经常变换持无线终端的手, 用户使用左手拿着无线终端时,左手对无线终端的发射和接收性能的影响 可能与用右手拿着无线终端时右手对无线终端的发射和接收性能的影响 不一样。 当无线终端的发射和接收性能受到较大的影响时, 可能会降低无 线终端的通讯能力, 降低了用户对该无线终端的使用体验。
在本发明实施例中, 可将信号馈电端设置在印刷电路板的边缘的中 间位置, 使得用户无论是用左手还是右手持该无线终端, 该无线终端的收 发信号的能力都不会受到太大的影响, 用户的使用体验较好, 即无线终端 具有较好的头手模效应。
进一步的, 上述第三种多模宽带天线模块和第四种多模宽带天线模块 的第一辐射体 2或第二辐射体 3均为对称结构, 不仅降低了工艺要求, 还 进一步提升了无线终端的头手模效应。
通常的, 本发明实施例中所提供的各种多模宽带天线模块所占的净空 区域均为: 长 60毫米, 宽 1 0毫米, 高 5毫米。 其中, 该净空区域的长与 印刷电路板 1 设置有该多模宽带天线模块的边长相等, 该印刷电路板 1 另一边长为 1 00毫米左右。
需要说明的是, 上述第一种多模宽带天线模块、 第三种多模宽带天线 模块和第四种多模宽带天线模块的第一辐射体的低频部分 22和高频部分 23 可根据实际需要自行设计、 组合, 类似的, 上述第一种多模宽带天线 模块、第三种多模宽带天线模块和第四种多模宽带天线模块的第二辐射体 的低频部分 32和高频部分 33可根据实际需要自行设计、 组合, 也可根据 实际需要选择是否需要设置第三辐射体 5。
实施例三
本发明实施例提供了一种无线终端, 包括多模宽带天线模块和壳 体, 所述多模宽带天线模块设置于所述壳体内, 如图 23所示, 所述 多模宽带天线模块包括印刷电路板 1、第一辐射体 2和第二辐射体 3 , 其中,
所述第一辐射体 2包括连接部分 21、低频部分 22和高频部分 23 , 所述第一辐射体的低频部分 22与所述第一辐射体的高频部分 23 连 接, 所述第一辐射体的连接部分 21 的一端连接所述第一辐射体的低 频信号 22和高频信号 23 的连接处, 另一端电性连接所述印刷电路 板 1 的信号馈电端 11 ;
所述第二辐射体 3 包括接地部分 3 1、 低频部分 32和高频部分 33 , 所述第二辐射体的低频部分 32 与所述第二辐射体的高频部分 33 连接, 所述第二辐射体的接地部分 3 1 的一端连接所述第二辐射 体的低频信号 32和高频信号 33 的连接处, 另一端电性连接所述印 刷电路板 1 的第一接地端 12。
如图 2 3所示, 第一辐射体 2和第二辐射体 3 , 以及印制电路板 1 , 三 者共同组成所述多模宽带天线模块。无线终端的通讯信号通过该多模宽带 天线模块进行发射和接收。
无线终端发射信号时, 通讯信号经过设置在所述印刷电路板 1上的射 频电路和基带电路系统组成的通讯模块的处理, 转变为高频电流, 该高频 电流通过印制电路板 1上的信号馈电端 1 1进入天线模块, 之后以电磁波 的形式辐射出去。
无线终端接收信号时, 来自无线终端外部空间的电磁波信号经该多模 宽带天线模块的接收转变成高频电流,通过印制电路板 1上的信号馈电端 1 1 进入到设置于印刷电路板 1 上的通讯模块, 该通讯模块主要由射频电 路和基带电路组成, 从而使得通讯可以正常进行。
需要说明的是,所述第一辐射体的低频部分 22与所述第二辐射体 的低频部分 32 间隔第一预定距离, 所述第一辐射体的高频部分 23 与所述第二辐射体的高频部分 33 间隔第二预定距离, 以使得所述第 一辐射体与所述第二辐射体之间形成耦合电容效应, 其中, 所述第 一预定距离与所述第二预定距离均需根据实际情况进行设计、 调整, 二者可相同也可不同。
现有技术中的天线模块通常仅包括印刷电路板 1和第一辐射体 2。 当 天线模块仅包括印刷电路板 1和第一辐射体 2时,此时天线模块的工作频 段由该天线模块的第一辐射体的高频部分 2 3、低频部分 22和连接部分 2 1 的电气长度决定, 具体地, 该天线模块的高频部分 2 3和连接部分 2 1的电 气长度之和为该天线模块的高频谐振波长的四分之一, 类似的, 该天线模 块的低频部分 22和连接部分 21的电气长度之和为该天线模块的低频谐振 波长的四分之一, 此时, 该天线模块只能工作在高频谐振波长的对应谐振 频率以及低频谐振波长的对应谐振频率附近, 显然, 此时该多模宽带天线 模块工作带宽较小。
具体地, 如图 2所示, 第一辐射体的高频部分 23的电气长度为 a+b , 连接部分的电气长度为 f+c , 则该第一辐射体 2 的高频谐振波长为 4 * [ ( a+b ) + ( f+c ) ] ; 类似的, 第一辐射体的低频部分 22的电气长度为 d+e , 则该第一辐射体 2的低频谐振波长为 4 * [ ( d+e ) + ( f+c ) ] 。
而本发明实施例中的多模宽带天线模块除了包括印刷电路板 1和第一 辐射体 2 , 还包括第二辐射体 3 , 并且第一辐射体的低频部分 22靠近所述 第二辐射体的低频部分 32 , 第一辐射体的高频部分 23靠近所述第三辐射 体的高频部分 33。 由于第二辐射体的低频部分 32靠近所述第一辐射体的 低频部分 22 , 故而当所述第一辐射体的低频部分 21上有低频信号时, 所 述第一辐射体的低频部分 22与所述第二辐射体的低频部分 32形成耦合电 容效应, 激发出高次模, 使得所述多模宽带天线模块的工作频段拓宽, 工 作频率范围扩大。
类似的, 由于第二辐射体的高频部分 33 靠近所述第一辐射体的高频 部分 23 , 故而当所述第一辐射体的高频部分 23上有高频信号时, 所述第 一辐射体的高频部分 23与第二辐射体的高频部分 33形成耦合电容效应, 激发出高次模, 使得所述多模宽带天线模块的工作频段拓宽, 工作频率范 围扩大。
需要说明的是, 由于该多模宽带天线模块的工作原理是依靠第一辐射 体 2和第二辐射体 3之间的耦合电容作用拓宽天线模块的工作带宽,故而 可根据无线终端的具体架构及其对厚度的要求来设计、调整所述多模宽带 天线模块的厚度,但相关技术人员需要严格调整第一辐射体 2和第二辐射 体 3的各部分之间的距离,以使得所述多模宽带天线模块可工作在满足多 模条件的工作频率里。
通常, 当无线终端对多模宽带天线模块的厚度有较为严格要求时, 在 满足该多模宽带天线模块的辐射指标的前提下,可将该多模宽带天线模块 的整体厚度控制在 4至 5毫米左右,使得设置有该多模宽带天线模块的无 线终端可降低厚度, 最终使得该无线终端的厚度不足 1厘米, 符合无线终 端轻薄化的趋势。
进一步的, 由于该多模宽带天线模块仅通过调整第一辐射体 2、 第二 辐射体 3的长度、 或第一辐射体 2和第二辐射体 3之间的间隔, 即可对其 的工作频段进行调整, 故而, 该多模宽带天线模块的第一辐射体 2或第二 辐射体 3的厚度可任意设置,则可将第一辐射体 2或第二辐射体 3的厚度 尽可能减小,以减少制作过程中对第一辐射体 2或第二辐射体 3的材料的 使用量; 类似的, 第一辐射体 2与第二辐射体 3的宽度也可任意设置, 更 进一步地减少了对第一辐射体 2或第二辐射体 3的材料的使用量。
当用户在使用手机等无线终端通话时, 由于用户的脑部靠近无线终端 的天线模块, 将降低无线终端的发射和接收性能, 无线终端整机辐射的发 射和接收性能都会降低。 在研发无线终端的过程中, 研发相关的技术人员 定量测量人脑对无线终端的发射和接收性能的影响,对无线终端进行优化 设计, 降低无线终端的发射和接收性能受到人脑的影响程度, 即减少人体 和天线模块的电磁耦合。
另外, 当用户在使用手机等无线终端时,会经常变换持无线终端的手, 用户使用左手拿着无线终端时,左手对无线终端的发射和接收性能的影响 可能与用右手拿着无线终端时右手对无线终端的发射和接收性能的影响 不一样。 当无线终端的发射和接收性能受到较大的影响时, 可能会降低无 线终端的通讯能力, 降低了用户对该无线终端的使用体验。
在本发明实施例中, 可将信号馈电端设置在印刷电路板的边缘的中 间位置, 使得用户无论是用左手还是右手持该无线终端, 该无线终端的收 发信号的能力都不会受到太大的影响, 用户的使用体验较好, 即无线终端 具有较好的头手模效应。
通常的, 本发明实施例中所提供的多模宽带天线模块所占的净空区 域为: 长 60毫米, 宽 10毫米, 高 5毫米。 其中, 该净空区域的长与印刷 电路板 1设置有该多模宽带天线模块的边长相等,该印刷电路板 1另一边 长为 1 00毫米左右。 进一步的,所述无线终端内的多模宽带天线模块具有多种具体结构, 具体参看实施例二中的描述, 在此不再赘述。
在本发明实施例的技术方案中, 提供了一种无线终端, 该无线终端的 壳体内设置有多模宽带天线模块, 所述多模宽带天线模块包括印刷电 路板、 第一辐射体和第二辐射体, 该多模宽带天线模块的工作原理为 第一辐射体与第二辐射体之间形成耦合电容效应, 激发高次模, 拓宽了该 多模宽带天线模块的工作频率, 并且该多模宽带天线模块的厚度较小, 满 足手机等无线终端的结构薄型化的需要。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种多模宽带天线模块, 所述多模宽带天线模块包括印刷电 路板、 第一辐射体和第二辐射体, 其特征在于,
所述第一辐射体包括连接部分、 低频部分和高频部分, 所述第一 辐射体的低频部分与所述第一辐射体的高频部分连接, 所述第一辐射 体的连接部分的一端连接所述第一辐射体的低频部分和高频部分的 连接处, 另一端电性连接所述印刷电路板的信号馈电端;
所述第二辐射体包括接地部分、 低频部分和高频部分, 所述第二 辐射体的低频部分与所述第二辐射体的高频部分连接, 所述第二辐射 体的接地部分的一端连接所述第二辐射体的低频信号和高频信号的 连接处, 另一端电性连接所述印刷电路板的第一接地端;
所述第一辐射体的低频部分与所述第二辐射体的低频部分间隔 第一预定距离, 所述第一辐射体的高频部分与所述第二辐射体的高频 部分间隔第二预定距离, 以使得所述第一辐射体与所述第二辐射体之 间形成耦合电容效应。
2、 根据权利要求 1所述的多模宽带天线模块, 其特征在于, 所述第二辐射体的接地部分,通过电感电性连接至所述印刷电路 板的第一接地端。
3、 如权利要求 1或 2所述的多模宽带天线模块, 其特征在于, 所述第一辐射体的连接部分为:平面板状结构或条形结构;
所述第二辐射体的接地部分为, 平面板状结构或条形结构。
4、 根据权利要求 3所述的多模宽带天线模块, 其特征在于, 所述第一辐射体的低频部分为具有至少一处弯折的条状结构,所 述第一辐射体的高频部分为平面板状结构, 所述第一辐射体的低频部 分的电气长度大于所述第一辐射体的高频部分的电气长度。
5、 如权利要求 3所述的多模宽带天线模块, 其特征在于, 所述第一辐射体的低频部分为平面板状结构,所述第一辐射体的 高频部分为具有至少一处弯折的条状结构, 所述第一辐射体的低频部 分的电气长度大于所述第一辐射体的高频部分的电气长度。
6、 根据权利要求 3至 5任一项所述的多模宽带天线模块, 其特 征在于,
所述第二辐射体的低频部分和所述第二辐射体的高频部分均为 具有至少一处弯折的板状结构或条形结构, 所述第二辐射体的低频部 分围绕所述第一辐射体的低频部分; 所述第二辐射体的高频部分围绕 第一辐射体的高频部分, 所述第二辐射体的低频部分的电气长度大于 所述第二辐射体的高频部分的电气长度。
7、 根据权利要求 3所述的多模宽带天线模块, 其特征在于, 所述第一辐射体的低频部分与高频部分对称分布于这两者连接 处的两侧,所述第一辐射体的低频部分与高频部分共同构成平面 T形 板状结构或直条状结构。
8、 根据权利要求 3或 7所述的多模宽带天线模块, 其特征在于, 所述第二辐射体的低频部分和高频部分对称分布于这两者连接 处的两侧, 所述第二辐射体的低频部分和高频部分分别为: 从这两者 连接处开始延伸一段距离并向所述第一辐射体方向弯折的条状结构 或板状结构;
所述第二辐射体的低频部分的弯折形成的开口与所述第二辐射 体的高频部分的弯折形成的开口相对。
9、 根据权利要求 8所述的多模宽带天线模块, 其特征在于, 所述第二辐射体的低频部分和高频部分至少有一部分与所述第 一辐射体处于同一平面。
10、 根据权利要求 9所述的多模宽带天线模块, 其特征在于, 所 述第二辐射体的低频部分上的、 与所述第一辐射体位于同一平面的部 分, 与所述第二辐射体的低频部分的其他部分, 呈 90度夹角。
11、 根据权利要求 1至 10任一项所述的多模宽带天线模块, 其 特征在于, 所述多模宽带天线模块还包括:
第三辐射体,所述第三辐射体为具有至少一处弯折的条状结构或 直条结构, 所述第三辐射体的一端连接所述印刷电路板的第二接地 端。
12、 一种无线终端, 包括多模宽带天线模块和壳体, 所述多模宽 带天线模块设置于所述壳体内, 所述多模宽带天线模块包括印刷电路 板、 第一辐射体和第二辐射体, 其特征在于,
所述第一辐射体包括连接部分、 低频部分和高频部分, 所述第一 辐射体的低频部分与所述第一辐射体的高频部分连接, 所述第一辐射 体的连接部分的一端连接所述第一辐射体的低频信号和高频信号的 连接处, 另一端电性连接所述印刷电路板的信号馈电端;
所述第二辐射体包括接地部分、 低频部分和高频部分, 所述第二 辐射体的低频部分与所述第二辐射体的高频部分连接, 所述第二辐射 体的接地部分的一端连接所述第二辐射体的低频信号和高频信号的 连接处, 另一端电性连接所述印刷电路板的第一接地端;
所述第一辐射体的低频部分与所述第二辐射体的低频部分间隔 第一预定距离, 所述第一辐射体的高频部分与所述第二辐射体的高频 部分间隔第二预定距离, 以使得所述第一辐射体与所述第二辐射体之 间形成耦合电容效应。
13、 根据权利要求 12所述的无线终端, 其特征在于,
所述第二辐射体的接地部分通过电感电性连接至所述印刷电路 板的第一接地端。
14、 根据权利要求 11或 12所述的无线终端, 其特征在于, 所述 第一辐射体的连接部分为:平面板状结构或条形结构;
所述第二辐射体的接地部分为, 平面板状结构或条形结构。
15、 根据权利要求 14所述的无线终端, 其特征在于,
所述第一辐射体的低频部分为具有至少一处弯折的条状结构,所 述第一辐射体的高频部分为平面板状结构, 所述第一辐射体的低频部 分的电气长度大于所述第一辐射体的高频部分的电气长度。
16、 根据权利要求 14所述的无线终端, 其特征在于,
所述第一辐射体的低频部分为平面板状结构,所述第一辐射体的 高频部分为具有至少一处弯折的条状结构, 所述第一辐射体的低频部 分的电气长度大于所述第一辐射体的高频部分的电气长度。
17、 根据权利要求 14- 16任一项所述的无线终端, 其特征在于, 所述第二辐射体的低频部分和所述第二辐射体的高频部分均为 具有至少一处弯折的板状结构或条形结构, 所述第二辐射体的低频部 分围绕所述第一辐射体的低频部分; 所述第二辐射体的高频部分围绕 第一辐射体的高频部分, 所述第二辐射体的低频部分的电气长度大于 所述第二辐射体的高频部分的电气长度。
18、 根据权利要求 14所述的无线终端, 其特征在于,
所述第一辐射体的低频部分与高频部分对称分布于这两者连接 处的两侧,所述第一辐射体的低频部分与高频部分共同构成平面 T形 板状结构或直条状结构。
19、 根据权利要求 14或 18所述的无线终端, 其特征在于, 所述第二辐射体的低频部分和高频部分对称分布于这两者连接 处的两侧, 所述第二辐射体的低频部分和高频部分分别为: 从这两者 连接处开始延伸一段距离并向所述第一辐射体方向弯折的条状结构 或板状结构;
所述第二辐射体的低频部分的弯折形成的开口与所述第二辐射 体的高频部分的弯折形成的开口相对。
20、 根据权利要求 19所述的无线终端, 其特征在于,
所述第二辐射体的低频部分和高频部分至少有一部分与所述第 一辐射体处于同一平面。
21、 根据权利要求 20所述的无线终端, 其特征在于, 所述第二 辐射体的低频部分上的、 与所述第一辐射体位于同一平面的部分, 与 所述第二辐射体的低频部分的其他部分, 呈 90度夹角。
22、 根据权利要求 12-21任一项所述的无线终端, 其特征在于, 所述多模宽带天线模块还包括:
第三辐射体, 所述第三辐射体为弯折的条状结构或直条结构, 所 述第三辐射体的一端连接所述印刷电路板的第二接地端。
PCT/CN2012/083096 2012-10-17 2012-10-17 多模宽带天线模块及无线终端 WO2014059629A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280003788.0A CN103403962B (zh) 2012-10-17 2012-10-17 多模宽带天线模块及无线终端
ES12879150.6T ES2564546T3 (es) 2012-10-17 2012-10-17 Módulo de antena de banda ancha multimodo y terminal inalámbrico
EP12879150.6A EP2747201B1 (en) 2012-10-17 2012-10-17 Multimode wideband antenna module and wireless terminal
JP2014541519A JP6008352B2 (ja) 2012-10-17 2012-10-17 マルチモードブロードバンドアンテナモジュールおよびワイヤレス端末
PCT/CN2012/083096 WO2014059629A1 (zh) 2012-10-17 2012-10-17 多模宽带天线模块及无线终端
US14/145,441 US9300041B2 (en) 2012-10-17 2013-12-31 Multimode broadband antenna module and wireless terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083096 WO2014059629A1 (zh) 2012-10-17 2012-10-17 多模宽带天线模块及无线终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/145,441 Continuation US9300041B2 (en) 2012-10-17 2013-12-31 Multimode broadband antenna module and wireless terminal

Publications (1)

Publication Number Publication Date
WO2014059629A1 true WO2014059629A1 (zh) 2014-04-24

Family

ID=49565852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083096 WO2014059629A1 (zh) 2012-10-17 2012-10-17 多模宽带天线模块及无线终端

Country Status (6)

Country Link
US (1) US9300041B2 (zh)
EP (1) EP2747201B1 (zh)
JP (1) JP6008352B2 (zh)
CN (1) CN103403962B (zh)
ES (1) ES2564546T3 (zh)
WO (1) WO2014059629A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104681928A (zh) * 2013-11-30 2015-06-03 深圳富泰宏精密工业有限公司 多频天线结构
CN104681976B (zh) * 2013-11-30 2019-05-21 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN104701609B (zh) * 2013-12-05 2018-01-05 宏碁股份有限公司 具有耦合馈电多频天线元件的通信装置
CN104733852B (zh) * 2013-12-23 2020-04-17 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置
CN104396086B (zh) 2014-03-28 2016-09-28 华为终端有限公司 一种天线及移动终端
JP6462247B2 (ja) 2014-06-26 2019-01-30 Necプラットフォームズ株式会社 アンテナ装置、無線通信装置および帯域調整方法
CN104810622A (zh) * 2015-04-17 2015-07-29 苏州工业园区新明亚电子科技有限公司 基于金属边框的双馈天线
CN106505293A (zh) * 2015-09-08 2017-03-15 上海莫仕连接器有限公司 一种移动装置以及用于该移动装置的耦合天线
CN107293858B (zh) 2016-03-31 2021-04-23 上海莫仕连接器有限公司 天线装置
CN106571528B (zh) * 2016-10-25 2020-09-29 瑞声科技(南京)有限公司 多频带天线系统及电子设备
TWI648906B (zh) * 2017-05-04 2019-01-21 啓碁科技股份有限公司 行動裝置和天線結構
CN110034397A (zh) * 2019-04-24 2019-07-19 北京邮电大学 一种mimo手机天线辐射单元及mimo手机天线
WO2023208344A1 (en) 2022-04-27 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Wideband radiator with high antenna port isolation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174730A (zh) * 2006-11-03 2008-05-07 鸿富锦精密工业(深圳)有限公司 印刷式天线
CN102158245A (zh) * 2011-01-26 2011-08-17 惠州Tcl移动通信有限公司 一种多频段手机
US20120249393A1 (en) * 2011-03-30 2012-10-04 Hiroyuki Hotta Antenna device and electronic device including antenna device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650294B2 (en) * 2001-11-26 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Compact broadband antenna
US6621455B2 (en) 2001-12-18 2003-09-16 Nokia Corp. Multiband antenna
JP2003347815A (ja) * 2002-05-23 2003-12-05 Nec Corp 携帯無線機
FI116332B (fi) * 2002-12-16 2005-10-31 Lk Products Oy Litteän radiolaitteen antenni
FI20055353A0 (fi) * 2005-06-28 2005-06-28 Lk Products Oy Sisäinen monikaista-antenni
US20070182636A1 (en) 2006-02-06 2007-08-09 Nokia Corporation Dual band trace antenna for WLAN frequencies in a mobile phone
CN101557030B (zh) * 2008-04-10 2012-08-08 广达电脑股份有限公司 多频天线
CN102044748B (zh) * 2009-10-12 2013-04-17 宏碁股份有限公司 移动通信装置及其天线
CN102055065A (zh) * 2009-11-11 2011-05-11 宏碁股份有限公司 移动通信装置及其天线
WO2011073802A2 (en) * 2009-12-18 2011-06-23 American University In Cairo Circuitry-isolated mems antennas: devices and enabling technology
CN201741791U (zh) * 2010-07-20 2011-02-09 加利电子(无锡)有限公司 笔记本电脑电容性耦合天线
JP2012028906A (ja) * 2010-07-21 2012-02-09 Mitsumi Electric Co Ltd アンテナ装置
KR101718032B1 (ko) * 2010-11-01 2017-03-20 엘지전자 주식회사 이동 단말기
KR101781451B1 (ko) * 2010-11-01 2017-09-25 엘지전자 주식회사 이동통신 단말기
TWI450445B (zh) * 2011-02-24 2014-08-21 Acer Inc 適用於lte頻帶的小型化天線
TWI450441B (zh) * 2011-02-25 2014-08-21 Acer Inc 行動通訊裝置及其天線結構
JP5901130B2 (ja) * 2011-03-29 2016-04-06 富士通コンポーネント株式会社 アンテナ装置、回路基板及びメモリカード

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174730A (zh) * 2006-11-03 2008-05-07 鸿富锦精密工业(深圳)有限公司 印刷式天线
CN102158245A (zh) * 2011-01-26 2011-08-17 惠州Tcl移动通信有限公司 一种多频段手机
US20120249393A1 (en) * 2011-03-30 2012-10-04 Hiroyuki Hotta Antenna device and electronic device including antenna device

Also Published As

Publication number Publication date
JP6008352B2 (ja) 2016-10-19
CN103403962B (zh) 2016-10-26
EP2747201B1 (en) 2015-12-30
EP2747201A1 (en) 2014-06-25
US9300041B2 (en) 2016-03-29
ES2564546T3 (es) 2016-03-23
EP2747201A4 (en) 2014-10-15
JP2014533474A (ja) 2014-12-11
US20140111386A1 (en) 2014-04-24
CN103403962A (zh) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2014059629A1 (zh) 多模宽带天线模块及无线终端
WO2022206237A1 (zh) 天线组件及电子设备
CN107482304B (zh) 移动装置
US7319432B2 (en) Multiband planar built-in radio antenna with inverted-L main and parasitic radiators
US8203489B2 (en) Dual-band antenna
US8711051B2 (en) Antenna device and wireless communication apparatus
US7821470B2 (en) Antenna arrangement
US20100013730A1 (en) Antenna arrangement
EP2575207B1 (en) Communication electronic device and antenna structure thereof
EP2381529B1 (en) Communications structures including antennas with separate antenna branches coupled to feed and ground conductors
JP2014533474A5 (zh)
JP4534199B2 (ja) アンテナ装置及びこれを用いた通信機器
US9203142B2 (en) Mobile communication antenna device and mobile communication terminal device
Gomez-Villanueva et al. Ultra-wideband planar inverted-F antenna (PIFA) for mobile phone frequencies and ultra-wideband applications
CN103985957B (zh) 一种宽带多频段内置手机天线
CN202817178U (zh) 双频单级天线及其移动终端
CN104767026B (zh) 一种覆盖七频段的小型移动通信设备天线
TWI508375B (zh) 天線模組
CN110165395B (zh) 一种小型化紧凑型三频带天线
Elfergani et al. Dual-band printed folded dipole balanced antenna for 700/2600MHz LTE bands
US8659481B2 (en) Internal printed antenna
TWI376839B (en) Multiband antenna
KR101054615B1 (ko) 휴대 단말용 다중 대역 안테나 및 이를 구비한 휴대용 단말
CN217215075U (zh) 天线装置和无人飞行器
Quan et al. A triple-band monopole planar antenna for DCS1800 and WiMAX applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012879150

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014541519

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE