WO2014058175A1 - 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법 - Google Patents

미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법 Download PDF

Info

Publication number
WO2014058175A1
WO2014058175A1 PCT/KR2013/008818 KR2013008818W WO2014058175A1 WO 2014058175 A1 WO2014058175 A1 WO 2014058175A1 KR 2013008818 W KR2013008818 W KR 2013008818W WO 2014058175 A1 WO2014058175 A1 WO 2014058175A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioscaffold
electrolyzed water
acidic electrolyzed
scaffold
animal
Prior art date
Application number
PCT/KR2013/008818
Other languages
English (en)
French (fr)
Inventor
우흥명
카말 엘 딘 하니 후세인
박경미
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to US14/112,722 priority Critical patent/US9232804B2/en
Publication of WO2014058175A1 publication Critical patent/WO2014058175A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/0231Chemically defined matrices, e.g. alginate gels, for immobilising, holding or storing cells, tissue or organs for preservation purposes; Chemically altering or fixing cells, tissue or organs, e.g. by cross-linking, for preservation purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases

Definitions

  • the present invention relates to a composition for sterilizing bioscaffolds containing slightly acidic electrolyzed water (SAEW) as an active ingredient, and a method for sterilizing bioscaffolds using the same.
  • SAEW slightly acidic electrolyzed water
  • Tissue engineering is an immune rejection reaction and argument that can be a side effect of heterologous (animal-human) organ transplantation, which is currently proposed as an alternative to allogeneic (human-human) organ transplantation. It is expected to be able to overcome common diseases, etc., has recently received much attention in the field of regenerative medicine.
  • tissue engineering a bioscaffold method using a decellularization technique has been in the spotlight.
  • the bioscaffold removes cellular components, thereby minimizing immune rejection during transplantation, cell growth and differentiation.
  • liver disease is very high in Asia, particularly in East Asia and Southeast Asia (de Villa V, Lo CM. Liver transplantation for hepatocellular carcinoma in Asia.Oncologist 2007; 12 ( 11): 1321-1331).
  • approximately 30 million people have liver disease, and approximately 27,000 people die each year from liver disease (Uygun Be, Soto-Gutierrez A, Yagi H, et al. Oran reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix.Nat Med. 2010; 16 (7): 814-820).
  • Liver transplantation is the best way to treat patients with severe liver damage.
  • Scaffolds consist of proteins, glycosaminoglycans (GAGs) and growth factors. Scaffolds provide an ideal microenviroment and can inoculate cells with scaffolds to promote cell migration, proliferation and differentiation (Tayor KR, Gallo RL Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation.FASEB J. 2006; 20 (1): 9-22).
  • sterilization with fungicides is essential to reduce or eliminate the recipient's immune response to such bioscaffolds and to prevent the transmission of the common infectious disease from the donor organ to the recipient after transplantation.
  • each agent has a good bactericidal / disinfecting effect, but the effect of removing the heteroimmune antigen is low and affects the extracellular matrix properties of the transplanted organ.
  • the function as a very high value three-dimensional culture scaffold may not be performed, and the transplanted organ may not be suitable for the purpose of transplantation.
  • the ethylene oxide treatment affects the mechanical properties of the extracellular matrix, resulting in an immune response to the bioscaffold in the host after transplantation, and irradiation of gamma rays produces free radicals with high cytotoxicity from residual lipids.
  • oxidants such as peracetic acid
  • Electron beam irradiation results in denaturation of major structural proteins such as collagen, resulting in the degradation of extracellular matrix.
  • Alcohol the most commonly used fungicide, affects the structure of the surface of transplanted organs, resulting in increased collagen loss. It affects the mechanical properties of the extra substrate.
  • SAEW Slightly acidic electrolyzed water
  • SAEW slightly acidic electrolyzed water
  • the present invention is to provide a composition for sterilizing a bioscaffold containing microacidic electrolyzed water as an active ingredient, and a method for sterilizing a bioscaffold using the same.
  • the present invention provides a bioscaffold sterilizing composition comprising slightly acidic electrolyzed water (SAEW) as an active ingredient.
  • SAEW slightly acidic electrolyzed water
  • the non-acidic electrolyzed water according to the present invention has an excellent bactericidal effect on the bioscaffold, the effect of removing the immunogen, and very little effect on extracellular matrix such as glycosaminoglycans and collagen, and is sterilized by the non-acidic electrolyzed water.
  • Scaffolds can be useful for the sterilization of bioscaffolds because they have very high cell engraftment capacity and no toxicity.
  • FIG. 1 is a diagram confirming the characteristics of the pig liver scaffold before and after decellularization (A: visually confirmed before decellularization; B: visually confirmed after decellularization; C: scaffolds through H & E staining before decellularization) Observation of the scaffolds through D & A staining before decellularization; F: Scaffolds through DAPI staining after decellularization; F: Observation of scaffolds through DAPI staining after decellularization Results: G: PCR product observed before or after decellularization).
  • FIG. 2 shows the results of culturing pig liver scaffolds treated with slightly acidic electrolyzed water (SAEW) according to the present invention in DMEM medium and Columbia blood medium containing 10% fetal bovine serum. It is observed with.
  • SAEW slightly acidic electrolyzed water
  • Figure 3 is a diagram confirming the characteristics of the liver liver scaffold treated with non-acidic electrolyzed water according to the present invention (A: DNA content; B: DNA electrophoresis results; C: collagen content; D: glycosaminoglycan content )
  • FIG. 4 is a diagram showing the engraftment of the fibroblasts to the pig liver scaffold treated with non-acidic electrolyzed water according to the present invention
  • Fig. 4A the ratio of the attachment of fibroblasts to the pig liver scaffold
  • Figure 4B The number of fibroblasts attached to the porcine liver scaffold; fibroblasts observed through C DAPI staining of FIG. 4
  • a porcine liver scaffold treated with ethanol
  • b porcine liver scaffold treated with PAA (peracetic acid)
  • c Porcine liver scaffold treated with the non-acidic electrolyzed water of the present invention.
  • FIG. 5 is a diagram confirming the proliferation rate of fibroblasts and the release of cytostatic factor of the scaffold in the culture medium cultured sterile scaffold in accordance with the present invention
  • Fig. A cytotoxicity test results
  • B fibroblasts Incubation in scaffold for 24 hours, followed by staining with anti-Ki67-antibody and DAPI
  • C fibroblasts incubated in scaffold for 48 hours, then stained with anti-Ki67-antibody and DAPI
  • D Results of positive cell ratio for anti-Ki-67 antibody
  • the present invention provides a bioscaffold sterilizing composition comprising slightly acidic electrolyzed water (SAEW) as an active ingredient.
  • SAEW slightly acidic electrolyzed water
  • a scaffold is a term used in tissue engineering, and refers to a structure using a combination of cells and various substances by seating a living cell
  • a bio scaffold is a taxon of a living body structure, that is, a living organ. It refers to a structure (template) leaving only the outline of the microstructure and organs after decellularization to remove the cells.
  • the non-acidic electrolyzed water of the present invention is also referred to as weakly acidic electrolyzed water or non-acidic hypochlorous acid electrolyzed water.
  • the sterilization and disinfection power of the non-acidic electrolyzed water is determined by free residual chlorine, and the free residual chlorine is present as Cl 2 , hypochlorous acid (HOCl) and chlorate ion (OCl ⁇ ).
  • Hypochlorite water is classified into strong acid hypochlorite water (pH 2.7 or less, effective chlorine concentration 20 to 60ppm) and unacidic hypochlorite water (pH 5.0 to 6.5, effective chlorine concentration 10 to 30ppm), and the stability of effective chlorine is not acidic. Hypochlorous acid water is excellent.
  • the pH of the non-acidic electrolyzed water of the present invention is 5.0 to 6.8, preferably 6.2 to 6.4.
  • the oxidation-reduction potential (ORP) of the non-acidic electrolyzed water is 500 to 800 mV, preferably 780 to 797 mV.
  • the non-acidic electrolyzed water according to the present invention is obtained by electrolyzing a diluted hydrochloric acid solution, and chlorine ions (Cl 2 ) formed by oxidation of chlorine ions (Cl ⁇ ) at the positive electrode react with H 2 0 to form hypochlorous acid ( HOCl) can be produced.
  • the dilute concentration of the hydrochloric acid is not particularly limited but may be 3 to 10% (v / v) of the total hydrochloric acid solution, preferably 6% (v / v).
  • the chlorine concentration of the non-acidic electrolyzed water according to the present invention may be 5 to 50 mg / L, preferably 20 to 30 mg / L.
  • the bioscaffold of the present invention is derived from the organs of mammals, more preferably canines, felines, boars, bovines, deers, giraffes, pelicans, camels, hippos, horses It can be prepared from organs of barley, animal, rhinoceros, weasel, rabbit, rodent or primate.
  • the organ may be liver, stomach, small intestine, large intestine, bladder, ureter, heart, pancreas, spleen and kidney, but is not limited thereto, and is preferably a scaffold made from pig liver.
  • the bio scaffold of the present invention may be a decellularized bio scaffold.
  • the non-acidic electrolyzed water according to the present invention has excellent ability to sterilize bioscaffolds, so that when the bioscaffold is immersed in the non-acidic electrolyzed water, pathogenic infectious agents such as bacteria / viruses, etc., infected with the heterologous animal which is the material source of the bioscaffold can be removed. This can prevent the transmission of the common infectious disease to the host after bioscaffold transplantation (see FIG. 2).
  • the non-acidic electrolyzed water according to the present invention is excellent in the ability to reduce or eliminate immune antigens, so that when the bioscaffold is immersed in the non-acidic electrolyzed water, immune antigens derived from donor organs, including DNA, can be removed ( See A and B of FIG. 3).
  • the non-acidic electrolyzed water according to the present invention has little effect on extracellular matrix such as glycosaminoglycans and collagen, so that the engraftment of cells can be increased (see FIGS. 3C and 4 and 4).
  • the bioscaffold sterilized with the non-acidic electrolyzed water according to the present invention does not have any toxicity to the cells, but rather, by sterilizing with the non-acidic electrolyzed water, the extracellular matrix secretes water-soluble factors that stimulate the proliferation of the cells (see FIG. 5). ).
  • the non-acidic electrolyzed water according to the present invention has an excellent bactericidal effect on the bio scaffold, an effect of removing the immunogen, and very little effect on extracellular matrix such as glycosaminoglycan and collagen. Since the scaffold sterilized with acidic electrolyzed water is very excellent in cell engraftment ability and does not have any toxicity, it can be usefully used for sterilizing bioscaffolds.
  • the present invention also provides a bioscaffold sterilization method comprising applying a bioscaffold to the composition.
  • “Application” in the present invention is a concept that includes immersing, dispersing, applying, coating and treating a composition in a bioscaffold.
  • the microacidic electrolyzed water according to the present invention has a sterilization ability that decreases with time, and thus, it is better to replace it every 10 minutes to 60 minutes, preferably every 15 minutes, to maintain the sterilization ability.
  • the immersion time of the scaffold in the non-acidic electrolyzed water is 60 minutes to 3 hours, preferably 90 minutes to 120 minutes.
  • a pig liver scaffold was prepared.
  • pig livers were collected from 40-50 kg of hybrid pigs.
  • the collected mesenchyme was separated, trimmed into 5g sections (2.5 ⁇ 1.5 ⁇ 0.2: 0.3 cm), and then washed twice with PBS buffer containing heparin for 1 hour using a shaker at 120 rpm under 4 ° C.
  • the washed sections were then decellularized with a 0.1% SDS (sodium dodecyl sulfate, Sigma-aldrich) solution for 72 hours using a shaker at 120 rpm under 4 ° C.
  • the 0.1% SDS solution used for decellularization was replaced every 8 hours, and after decellularization, all sections were washed three times with PBS to remove SDS remaining in the sections.
  • FIGS. 1A and B The visual observation of the pig liver scaffold before and after decellularization is shown in FIGS. 1A (before decellularization) and B (after decellularization).
  • liver sample was cut to 4 ⁇ m, and H & E staining was performed to evaluate the efficiency of preserving the structure of the tissue and removing the cell structure.
  • the tissues were subjected to DAPI staining (Vector Laboratories, Burlingame, CA, USA).
  • PCR was performed by extracting DNA of decellularized liver or fresh liver (undecellularized liver).
  • DNA extraction was performed using DNeasy Blood and Tissue Kit (Qiagen, Hilden, germany). 5 mg of lyophilized sample was digested with protease K buffer at 56 ° C. for 24 hours on a hot plate. The digest was treated with AE buffer and ethanol. DNA was extracted using AE buffer and centrifuged for 4 minutes at 6000 rpm. 50 ng of genomic DNA extracted from the decellularized liver was extracted using a Tprofessional standard 96 gradient machine (Biometra, Goettingen, Germany). The PCR was performed using the primers shown in Table 1 below, and PCR was maintained at 94 ° C.
  • 1,3 ⁇ -Gal alpha 1,3 galactosyltrasferase
  • SLA-2 swine leukocyte antigen 2
  • SLA-DRA swine leukocyte antigen DR alpha
  • PERV Genes for immunological and pathogenic factors including porcine endogenous retrovirus-gag, were not found and could be used for potential xenografts.
  • the non-acidic electrolyzed water of the present invention is Cao et. al (Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs.Int J Food Microbiol. 2009; 130 (2): 88-93).
  • the pig liver scaffold prepared in Example 1 was divided into two groups, and the group sterilized for 30 minutes, 60 minutes, 90 minutes, and 120 minutes by immersion in the non-acidic electrolyzed water prepared in Example 2, respectively.
  • the microacidic electrolyzed water was replaced every 15 minutes to optimize the sterilization of the pig liver scaffold, and the sterilized pig liver scaffold was washed once with PBS.
  • DMEM Dulbecco's Modified Eagle's Medium
  • FBS fetal calf serum
  • fetal calf serum FBS, Hyclone, Logan, UT, USA
  • scaffolds treated in the same manner were incubated for 96 hours in Columbia blood agar (Fluka Chemie GmbH) to periodically monitor for signs of bacterial infection. In case of bacterial infection, discoloration and turbidity of the medium increases, and colonies of bacteria grow on the blood medium.
  • untreated liver, untreated decellularized pig liver and porcine liver scaffolds treated with PBS show discoloration and turbidity in both DMEM and blood media, and colony formation of bacteria. It was.
  • pig liver scaffold treated with ethanol it was confirmed that the bacteria grow when cultured in Columbia blood medium for 60 hours, and discoloration was observed when cultured for 72 hours in DMEM medium.
  • the extracted DNA was electrophoresed with 1% agarose gel to which 0.5% ethidium bromide was added, and then visualized by UV irradiation.
  • a 100 base pair ladder (GeneRuler 100bp plus DNA ladder, Fermentas) was used.
  • the scaffold sterilized with the non-acidic electrolyzed water according to the present invention (decellularized) compared to the control treated with PBS (32.11 ⁇ 2.88 ng / mg) or ethanol (25.7 ⁇ 3.63 ng / mg)
  • a lower amount of DNA content (16.85 ⁇ 0.74 ng / mg) was detected (A in FIG. 3).
  • the DNA content was 42.5 ⁇ 3.21 ng / ml, so it was confirmed that the efficiency of removing the DNA content of the non-acidic electrolyzed water of the present invention was 60.29 ⁇ 6.68% (when PAA treatment, the DNA content was 2.9 ⁇ 1.20 ng / mg, DNA removal efficiency is 93.13 ⁇ 2.82%).
  • liver scaffold that was not treated with the electrolytic electrolyzed water showed a clear DNA band of 1500 base pairs or more, whereas the scaffold sterilized with the non-acidic electrolyzed water did not show the DNA band (FIG. 3B).
  • the non-acidic electrolyzed water of the present invention is excellent in removing not only the DNA of the remaining donor organ cells of the scaffold that acts as an immune antigen, but also the DNA of bacteria / viruses that are likely to remain in the scaffold.
  • it can be very useful for sterilization of bioscaffolds and sterilization methods for the removal of immunogens.
  • glycosaminoglycans GAGs
  • Blyscan kit dimethylmethylene blue dye-binding assay kit
  • the content of glycosaminoglycans in the decellularized liver (untreated scaffolds), PBS treated scaffolds and the sterile scaffolds of the present invention were determined according to the manufacturer's instructions.
  • 5 mg of lyophilized sample was homogenized and dissolved.
  • An aliquot of 100 ⁇ L in each sample was added to 1 mL of dimethyl methylene blue solution and shaken with a shaker at 25 ° C. for 30 minutes.
  • the scaffold treated with PAA was 43 ⁇ 0.80% of the glycosaminoglycan content of the untreated scaffold and 56 of the glycosaminoglycan content of the untreated decellularized scaffold. It was confirmed that ⁇ 1.04%. In addition, it was confirmed that the scaffold treated with PBS was 68.7 ⁇ 0.320% of the glycosaminoglycan content of the untreated scaffold and 89.8 ⁇ 0.418% of the glycosaminoglycan content of the untreated decellularized scaffold.
  • the ethanol treated scaffold was 49.1 ⁇ 1.47% of the glycosaminoglycan content of the untreated scaffold and 64.16 ⁇ 1.92% of the glycosaminoglycan content of the untreated decellularized scaffold. .
  • the sterilized scaffold with microacidic electrolyzed water according to the present invention is 53.3 ⁇ 0.83% of the glycosaminoglycan content of the untreated scaffold and the glycosaminoglycan content of the untreated decellularized scaffold. 69.6 ⁇ 0.58% was confirmed.
  • Glycosaminoglycans are known to play an important role in the retention of growth factors and cytokines essential for cell growth, proliferation, and differentiation. Therefore, when sterilizing bioscaffolds with the non-acidic electrolyzed water of the present invention, Compared to the growth factors and cytokines, such as the extracellular matrix properties are not affected, while maintaining the engraftment ability of the cells can be obtained bactericidal effect.
  • untreated pig liver sections, scaffolds decellularized by the method of Example 1 lyophilized samples of pig liver scaffolds treated with PAA, PBS, ethanol and non-acidic electrolyzed water, respectively was prepared and incubated in 0.5 M acetic acid containing 0.1 mg / ml pepsin, followed by acidic pepsin-dissolving collagen. 100 ⁇ L of the acid neutralizing substance was added to the acid-pepsin extract. Thereafter, the extract was incubated overnight at 4 ° C and centrifuged. Thereafter, 1 mL Sircol dye reagent was added to the pellet and incubated at 25 ° C. for 30 minutes. After centrifugation was performed, the pellet was washed with acid-salt wash reagent and suspended in 1 mL of alkaline material. Thereafter, absorbance was measured at 540 nm. The results are shown in D of FIG.
  • the collagen content of the scaffold treated with the microacidic electrolyzed water according to the present invention was 111.13 ⁇ 2.19% compared to fresh liver.
  • the detection of more collagen than fresh liver in the scaffold treated with the non-acidic electrolyzed water means that a large amount of cellular protein has been removed from the scaffold.
  • ethanol treated scaffolds showed a collagen content of 87.54 ⁇ 4.07% compared to fresh liver.
  • ethanol which is a conventional bactericide, affects the collagen of the bioscaffold, but the non-acidic electrolyzed water does not have any adverse effect on the collagen content of the bioscaffold.
  • a small disc was made from a pig liver scaffold sterilized with non-acidic electrolyzed water and other sterile substances (PAA, ethanol), placed in a 96-well plate, fibroblasts collected from tissue culture dishes and counted, and then 10% fetal Serum was suspended in complete DMEM culture.
  • 100 ⁇ l of DMEM culture medium containing porcine fibroblasts was added to each scaffold disk, and a total of 50,000 fibroblasts were dispensed and incubated at 37 ° C. under a 5% CO 2 atmosphere for 3 hours. It was induced to adhere to the scaffold substrate.
  • the plates were again incubated at 37 ° C. under 5% CO 2 atmosphere for 12 hours. Then, 10 ⁇ L of MTT solution (3- [4,5-dimethylthiazol-2yl] -2,5-diphenyltetrazolium bromide; 5 mg / ml, Sigma Aldrich) dissolved in PBS was added to each well and 5% at 37 ° C. Incubated for 4 hours under CO 2 atmosphere. After removing the culture, 200 ⁇ L of DMSO was added to each well, and pipetted to dissolve formazan. After incubation for 10 minutes, 100 ⁇ L of the solution was transferred to another 96-well plate by pipetting. Finally, the absorbance of the sample was confirmed by using a spectrophotometer at a test wavelength of 570 nm and a reference wavelength of 630 nm.
  • MTT solution 3- [4,5-dimethylthiazol-2yl] -2,5-diphenyltetrazolium bromide; 5 mg / ml,
  • fibroblasts of pigs labeled with DAPI (4 ′, 6-diamidino-2-phenylindole; Sigma Aldrich, St Louis, MO, USA) were cultured in the same manner as above for 16 hours. Thereafter, this was observed with a phase-contrast fluorescence inverted microscopy (Olympus, Tokyo, Japan) to determine the number of attached cells. Cells labeled with DAPI were counted using Image J software (National Institutes of Health, Bethesda, MD, USA).
  • FIG. 4A the ratio of the fibroblasts divided into the scaffold substrate to maintain the metabolically activated state
  • FIG. 4B the number of the attached cells
  • FIG. 4C The result of staining with DAPI (4 ′, 6-diamidino-2-phenylindole; Sigma Aldrich, St Louis, MO, USA) is shown in FIG. 4.
  • MTT cell adhesion assay revealed that 76.65 ⁇ 2.66% of porcine fibroblasts were cultured for 3 hours after dispensing in a sterile scaffold sterilized with non-acidic electrolyzed water, followed by 16 hours. It was confirmed that the viability was shown. In contrast, the scaffolds sterilized with ethanol or PAA were 64.86 ⁇ 3.48% and 71.50 ⁇ 1.95%, respectively (FIG. 4A).
  • the number of cells were evaluated using DAPI-stained fibroblasts using phase-contrast fluorescence inverted microscopy, and then treated with non-acidic electrolyzed water. It was confirmed that the number of fibroblasts attached to one scaffold was higher than the scaffold treated with PAA or ethanol, so that the adhesion and cellular activity were excellent.
  • the microacidic electrolyzed water of the present invention when used for sterilization of the scaffold, promotes interaction with the extracellular matrix in the scaffold of cells dispensed on the scaffold and thus exhibits excellent adhesion and cell activity, thereby engrafting the cells. It can be very useful in the sterilization method to increase the sterilization method.
  • Conditioned cell culture medium was prepared from sterile scaffolds sterilized with the non-acidic electrolyzed water of the present invention. Briefly, serum-free DMEM cell culture medium was incubated overnight at 37 rpm under shaking at 37 ° C. with a scaffold treated with unacidic electrolyzed water to a concentration of 0.2 g / ml scaffold per ml of medium.
  • a cell culture medium prepared in the same manner as in the above-described method for producing a cell culture medium was set except that the scaffold was removed and cultured. After the culture was completed, the culture medium from which the scaffold was removed was filtered through a 0.4- ⁇ m filter to prepare a culture medium containing a water-soluble factor eluted from the extracellular matrix.
  • Pig skin fibroblasts were then harvested from tissue culture dishes and counted and then suspended in complete DMEM medium containing 10% fetal calf serum. A total of 10,000 fibroblasts were added to each well and cultured for 24 hours in a 5% CO 2 atmosphere at 37 ° C. to induce fibroblasts to adhere to the wells.
  • the culture medium in which the fibroblasts were cultured was aspirated and removed, and the above conditioned culture medium or unconditioned-control culture was added with 10% fetal calf serum and 1% penicillin-streptomycin (Gibco, Grand Island, NY, USA).
  • the medium was placed in a well with fibroblasts and the plate was incubated at 37 ° C. under 5% CO 2 atmosphere for 24 and 48 hours (change medium every 24 hours). After 24 hours, 10 ⁇ L of MTT solution (5 mg / ml in PBS) was added to each well and pipetted and rearranged for 4 hours at 37 ° C. under 5% CO 2 atmosphere.
  • the conditioned medium prepared from the scaffold sterilized with unacidic electrolyzed water showed higher proliferation rate of fibroblasts than in the non-conditioned medium.
  • the growth rate of fibroblasts in the medium prepared from the non-acidic electrolyzed water treated scaffolds was 131.29 ⁇ 5.49% (for 24 hours) and 141.46 ⁇ 4.78% (for 48 hours) [PAA treatment, 119.18 ⁇ 5.6% (24 hours culture), 127.43 ⁇ 6.68% (48 hours culture; ethanol treatment, 109.22 ⁇ 5.58% (24 hours culture), 113.95 ⁇ 6.67% (48 hours incubation).
  • the scaffold prepared as above After sterilization of the bioscaffold (decellularized liver tissue), the scaffold prepared as above emits a water soluble signal that stimulates biological cellular activity, excluding cytotoxicity that may result from the remaining non-acidic electrolyzed water in the scaffold. In order to evaluate the following experiment was performed.
  • the proportion of Ki-67 positive cells was 24 hours (37.6 ⁇ 1.45%) or 48 hours (70.2 ⁇ 1.33%) in conditioned media prepared from scaffolds treated with non-acidic electrolyzed water. Significantly higher in fibroblasts cultured during It was also confirmed that there was no significant difference in conditioned media prepared from scaffolds treated with PAA or conditioned media prepared from scaffolds treated with ethanol compared to the control.
  • the scaffold prepared as above emits a water soluble signal that stimulates biological cellular activity, excluding cytotoxicity which may result from the residual acidic electrolyzed water remaining in the scaffold.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법에 관한 것이다. 본 발명에 따른 미산성 전해수는 살균효과, 면역항원의 제거 효과가 뛰어나고, 글리코사미노글리칸, 콜라겐 등 세포외 기질에 미치는 영향이 매우 적고, 상기 미산성 전해수로 살균한 스캐폴드는 세포 생착 능력이 매우 우수하고 어떠한 독성도 없어 바이오 스캐폴드의 살균에 유용하게 사용될 수 있다.

Description

미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법
본 발명은 미산성 전해수 (SAEW, slightly acidic electrolyzed water)을 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물, 및 이를 이용한 바이오 스캐폴드의 살균방법에 관한 것이다.
최근 고령화 사회로의 진입과 함께 다양한 질병 및 사고의 증가로 인해 성체의 장기 조직은 재생력의 한계에 부딪치게 되면서 그에 대한 필요성이 급증하고 있다. 이에 따라 이식용 장기의 부족으로 이식 가능한 대체 장기에 대한 연구가 활발히 이루어지고 있다. 그 중에서도 조직공학 (tissue engineering)을 이용한 방법은, 현재 동종 (사람-사람)간 장기 이식의 대체방법으로 제안되고 있는 이종 (동물-사람)간 장기 이식에서 발생할 수 있는 부작용인 면역 거부 반응과 인수 공통 질병 등을 극복할 수 있을 것으로 기대되어, 최근 재생의학 분야에서 많은 관심을 받고 있다. 특히 조직 공학의 한 방법으로서, 탈세포화 (decellularization) 기법을 이용한 바이오 스캐폴드 (bioscaffold) 방법이 각광받고 있는데, 바이오 스캐폴드는 세포 구성물이 제거되어 이식시 면역 거부 반응을 최소화하고, 세포 성장과 분화에 관여하는 세포외기질 (ECM)이 보존되며, 혈관 구조가 보존되어 세포 주입 후 산소 및 영양 공급이 가능할 뿐만 아니라, 원래 장기 그대로의 형태와 구조가 유지된다는 장점이 있기 때문이다.
한편, B 형 간염 바이러스 연관 말기 간질환 및 간암 (hepatocellular carcinoma)의 발생률은 아시아, 특히, 동아시아 및 동남아시아에서 매우 높다 (de Villa V, Lo CM. Liver transplantation for hepatocellular carcinoma in Asia. Oncologist 2007; 12 (11):1321-1331). 미국에서는 대략 3천만명이 간질환을 갖고 있고, 매년 대략 2만 7천명이 간질환으로 사망하는 것으로 보고되었다 (Uygun Be, Soto-Gutierrez A, Yagi H, et al. Oran reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814-820). 간 이식은 심각한 간 손상을 갖는 환자를 치료하기 위한 최고의 방법이다. 그러나, 간의 기부자가 부족하여 간 이식의 이용이 제한되고 있으며, 이에 따라 현재 간 이식을 기다리고 있는 환자의 수는 급격히 증가하고 있다 (Punch JD, Hayes DH, LaPorte FB, McBride V, Seely MS. Organ donation and utillization in the Unite states, 1996-2005. Am J Transplant. 2007; 7 (5 Pt 2):1327-1338). 많은 연구들은 스캐폴드가 세포외 기질(ECM)의 생물학적 특성을 모사한다고 보고하고 있다 (Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenviroments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47-55). 상기의 스캐폴드는 재생의학 및 조직 공학분야에서 제조되고 응용되고 있는 기술이다. 스캐폴드는 단백질, 글리코사미노글리칸 (GAGs) 및 성장 인자로 구성되어 있다. 스캐폴드는 이상적인 미소 서식 환경 (microenviroment)을 제공하고, 세포를 스캐폴드에 접종하여 세포의 이동, 증식 및 분화를 촉진시킬 수 있다 (Tayor KR, Gallo RL Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J.2006; 20(1):9-22).
동물 유래의 스캐폴드를 수여자에게 이식한 후, 숙주 면역 반응을 제거 또는 최소화하는 처리 및 이식 후 동물원성 질환의 전염을 제거하기 위한 처리가 이루어져야 한다 (Reing JE, Brown BN, Daly KA, et al. The effect of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626-8633; Hodde J, Janis A, Hiles M. Effects of sterilization on an extracellural matrix scaffold: part Ⅱ. Bioactivity and matrix interaction. J Mater Sci Mater Sci Mater Med. 2007;18(4):545-550). 많은 물질들이 소독을 위하여 사용되고 있으나, ECM의 특성에 부정적인 영향이 있으므로 이식을 위한 목적에는 적합하지 않다 (Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006;12(3):519-526; Siritientong T, Srichana T, Aramwit P. The effect of sterilization methods on the physical properties of silk sericin scaffolds. AAPS PharmSciTech. 2011;12(2):771-781.; Rosario DJ, Reilly GC, Ali Salah E, Glover M, Bullock AJ, Macneil S. Decellularization and sterilization of porcine rinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med. 2008;3(2):145-156). GAG, 콜라겐 및 성장인자를 고유의 상태로 보존하는 것은 스캐폴드가 대생물작용을 유지하는데 중요한 역할을 하므로 반드시 필요하다 (Hoganson DM, Owens GE, O’Doherty EM, et al. Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials.2010;31(27):6934-6940; Ning LJ, Zhang Y, Chen XH, et al. Preparation and characterization of decellularized tendon slices for tendon tissue engineering. J Biomed Mater Res A. 2012;100A(6):1448-1456). 많은 연구들은 스캐폴드의 DNA 함유와 숙주 면역 반응 사이의 관계를 결정하기 위하여 노력하고 있다. 이종 이식 후, 스캐폴드의 이종 이식 DNA는 염증 반응 및 조직 리프로그래밍에 관련된다고 보고되었다. 그러므로, DNA는 조직 및 기관으로부터 효과적으로 제거되어야한다 (Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-3243; Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33(6):1771-1781.). 상기한 바와 같이, 바이오 스캐폴드는 인간이 아닌 다른 동물종, 특히 돼지의 장기를 이용하여 제조되기 때문에, 이식 후 공여자 (donor) 장기로부터 수여자 (recipient)로의 인수공통 전염병의 감염 위험 및 이식 후 급성 면역반응의 발생 위험이 상시 존재하여 실용화에 커다란 장해요인이 되고 있다.
따라서, 이러한 바이오 스캐폴드에 대한 수여자의 면역반응을 감소 또는 제거시키고, 이식 후 공여자 장기로부터 수여자로의 인수공통 전염병의 전염을 방지하기 위해서는 살균제를 이용한 살균이 필수적이다.
기존에 사용되어온 살균제로는 여러 가지가 있는데, 각각의 제제는 살균/소독 효과가 우수할지라도, 이종면역 항원을 제거하는 효과는 낮고, 이식 장기의 세포외 기질 특성에 영향을 주므로 바이오 스캐폴드의 활용 방안으로서 가치가 매우 높은 3차원 배양 지지체로서의 기능을 수행할 수 없게 되어, 이식 장기가 이식 목적에 적합하지 않게 될 수 있다.
구체적으로, 에텔렌옥사이드 처리는 세포외 기질의 기계적인 특성에 영향을 주어, 이식 후 숙주에서 바이오 스캐폴드에 대한 면역반응을 유발하고, 감마선의 조사는 잔여 지질로부터 세포독성이 강한 자유 라디칼을 생성시켜 세포외 기질의 기계적, 생물학적 특성에 변형을 초래한다. 또한, 과아세트산 (peracetic acid)과 같은 산화제는 글리코사미노글리칸을 파괴하며, 이들이 세포의 성장인자들과 상호작용하는 것을 방해하여 세포의 변성 및 기능의 상실을 야기한다. 전자빔 조사기법은 콜라겐과 같은 주요 구조 단백질의 변성을 일으켜 세포외 기질의 분해를 초래하며, 가장 흔히 사용되는 살균제인 알코올은 이식 장기의 표면의 구조에 영향을 미쳐, 콜라겐 손실을 증가시키는 결과, 세포외 기질의 기계적 특성에 영향을 미친다.
한편, 자유 염소 원자를 포함하는 미산성 전해수 (SAEW, Slightly acidic electrolyzed water)는 저농도의 염산을 가수분해하여 제조되는 것이다. 다만, 미산성 전해수의 이식 장기 또는 바이오 스캐폴드의 이종면역 항원에 대한 영향, 세포외 기질에 미치는 영향이나 바이오 스캐폴드의 살균효과에 관하여서는 알려진 바가 없으며, 이에 대한 연구도 전무한 상태이다.
따라서, 기존의 바이오 스캐폴드 살균방법을 대체할 수 있으면서도, 이종면역 항원을 제거하고, 생체의 세포외 기질 특성에 악영향을 주지 않는 생체 적합성 살균방법의 개발의 필요성이 절실히 요구되고 있다.
본 발명자들은 살균작용이 강력하면서도, 면역항원의 제거 효과가 우수한 생체 적합성 살균방법에 대해 연구하던 중, 미산성 전해수 (SAEW, slightly acidic electrolyzed water)가 바이오 스캐폴드에 대하여 뛰어난 살균효과를 가질 뿐만 아니라 면역항원의 제거 효과가 우수하고, 생체의 세포외 기질 특성에 악영향을 주지 않는 것을 확인함으로써, 본 발명을 완성하였다.
따라서, 본 발명은 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드의 살균용 조성물, 및 이를 이용한 바이오 스캐폴드의 살균방법을 제공하고자 한다.
본 발명은 미산성 전해수 (SAEW, slightly acidic electrolyzed water)를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물을 제공한다.
본 발명에 따른 미산성 전해수는, 바이오 스캐폴드에 대한 살균효과, 면역항원의 제거 효과가 뛰어나고, 글리코스아미노글리칸, 콜라겐 등 세포외 기질에 미치는 영향이 매우 적고, 상기 미산성 전해수로 살균한 스캐폴드는 세포 생착 능력이 매우 우수하고 어떠한 독성도 없으므로 바이오 스캐폴드의 살균에 유용하게 사용될 수 있다.
도 1은 탈세포화 전후의 돼지 간 스캐폴드의 특성을 확인한 도이다 (A: 탈세포화 전 육안으로 확인한 결과; B: 탈세포화 후 육안으로 확인한 결과; C:탈세포화전 H&E 염색을 통하여 스캐폴드를 관찰한 결과; D:탈세포화 후 H&E 염색을 통하여 스캐폴드를 관찰한 결과; E: 탈세포화 전 DAPI 염색을 통하여 스캐폴드를 관찰한 결과; F: 탈세포화 후 DAPI 염색을 통하여 스캐포드를 관찰한 결과; G: 탈세포화 전 또는 탈세포화 후의 PCR 산물을 관찰한 결과).
도 2는 본 발명에 따른 미산성 전해수 (SAEW, slightly acidic electrolyzed water)로 서로 다른 시간 동안 처리한 돼지 간 스캐폴드를 10% 우태아 혈청을 포함하는 DMEM 배지 및 콜럼비아 혈액 배지에서 배양한 결과를 육안으로 관찰한 도이다.
도 3은 본 발명에 따른 미산성 전해수로 처리한 돼지간 스캐폴드의 특성을 확인한 도이다(A: DNA 함량; B: DNA를 전기영동 결과; C: 콜라겐 함량; D: 글리코사미노글리칸 함량)
도 4는 본 발명에 따른 미산성 전해수로 처리한 돼지 간 스캐폴드에의 섬유아세포의 생착성을 나타낸 도이다 (도 4의 A: 돼지 간 스캐폴드에 섬유아세포의 부착 비율; 도 4의 B: 돼지 간 스캐폴드에 섬유아세포의 부착 수; 도 4의 C DAPI 염색을 통한 섬유아세포 관찰한 결과 (a: 에탄올로 처리한 돼지 간 스캐폴드; b: PAA (peracetic acid)를 처리한 돼지 간 스캐폴드; c: 본 발명의 미산성 전해수를 처리한 돼지 간 스캐폴드).
도 5는 본 발명에 따른 미산성 전해수로 살균된 스캐폴드를 배양한 배양액에서 섬유아세포의 증식율 및 스캐폴드의 세포증식 인자 방출을 확인한 도이다 (도 A: 세포독성 실험 결과; B: 섬유아세포를 24 시간동안 스캐폴드에 배양한 후, 항-Ki67-항체 및 DAPI로 염색한 결과; C: 섬유아세포를 48 시간동안 스캐폴드에 배양한 후, 항-Ki67-항체 및 DAPI로 염색한 결과; D: 항-Ki-67 항체에 대한 양성세포 비율을 나타낸 결과)
본 발명은 미산성 전해수 (SAEW, slightly acidic electrolyzed water)를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명에서 스캐폴드란, 조직공학 (Tissue engineering)에 사용되는 용어로서, 생체 세포를 안착시켜 세포와 여러 가지 물질들의 조합을 이용한 어떤 구조물을 말하며, 바이오 스캐폴드란 생체 구조물 즉, 생체 장기를 탈세포화 (decellularization)시켜 세포를 제거한 후, 미세구조 및 장기의 윤곽만을 남긴 구조물(주형물)을 말한다.
본 발명의 미산성 전해수는 약산성 전해수 또는 미산성차아염소산 전해수라고도 한다. 상기 미산성 전해수의 살균, 소독력은 유리잔류염소에 의해 결정되는데, 상기 유리잔류염소는 Cl2, 차아염소산 (HOCl) 및 염소산이온 (OCl-)으로 존재한다. 차아염소산수는 강산성차아염소산수 (pH 2.7 이하, 유효염소농도 20 내지 60ppm)와 미산성차아염소산수 (pH 5.0 내지 6.5, 유효염소농도 10 내지 30ppm)로 분류되며, 유효염소의 안정성은 미산성차아염소산수가 우수하다.
본 발명의 미산성 전해수의 pH는 5.0 내지 6.8, 바람직하게는 6.2 내지 6.4 이다. 또한, 상기 미산성 전해수의 산화환원전위 (ORP, oxidation-reduction potential)는 500 내지 800mV이고, 바람직하게는 780 내지 797mV이다.
본 발명에 따른 미산성 전해수는 희석한 염산 용액을 전기분해하여 얻어지며, 상기 방법으로 양극에서 염소이온 (Cl-)이 산화되어 생성된 염소 (Cl2)가 H20와 반응하여 차아염소산 (HOCl)이 생성될 수 있다. 상기 염산의 희석 농도는 특별히 제한되는 것은 아니나 총 염산용액의 3 내지 10 % (v/v) 일 수 있고, 바람직하게는 6 % (v/v)이다.
본 발명에 따른 미산성 전해수의 염소 농도는 5 내지 50 mg/L일 수 있고, 바람직하게는 20 내지 30 mg/L이다.
본 발명의 바이오 스캐폴드는 포유동물의 장기로부터, 보다 바람직하게는 개과 동물, 고양이과 동물, 멧돼지과 동물, 소과 동물, 사슴과 동물, 기린과 동물, 페커리과 동물, 낙타과 동물, 하마과 동물, 말과 동물, 맥과 동물, 코뿔소과 동물,족제비과, 토끼과, 설치류 또는 영장류의 장기로부터 제조될 수 있다. 또한, 상기 장기는 간, 위, 소장, 대장, 방광, 요관, 심장, 췌장, 비장 및 신장일 수 있으나, 이에 제한되지 않고, 바람직하게는 돼지의 간으로부터 제조된 스캐폴드이다. 또한, 본 발명의 바이오 스캐폴드는 탈세포화된 바이오 스캐폴드일 수 있다.
본 발명에 따른 미산성 전해수는 바이오 스캐폴드를 살균하는 능력이 우수하여 바이오 스캐폴드를 미산성 전해수에 침지하면, 바이오 스캐폴드의 재료원인 이종 동물에 감염된 세균/바이러스 등의 병원성 감염원을 제거할 수 있어, 바이오 스캐폴드 이식 후 숙주로의 인수공통전염병의 전염을 예방할 수 있다 (도 2 참조).
또한, 본 발명에 따른 미산성 전해수는 면역 항원을 감소, 내지 제거하는 능력이 우수하여 바이오 스캐폴드를 미산성 전해수에 침지하면, DNA를 포함한, 공여 장기에서 유래하는 면역 항원을 제거할 수 있다 (도 3의 A 및 B 참조).
본 발명에 따른 미산성 전해수는 글리코사미노글리칸, 콜라겐 등 세포외 기질에 미치는 영향이 매우 적어 세포의 생착을 증가시킬 수 있다 (도 3의 C, D 및 도 4 참조).
또한, 본 발명에 따른 미산성 전해수로 살균한 바이오 스캐폴드는 세포에 어떠한 독성도 갖지 않으며, 오히려 미산성 전해수로 살균함으로써 세포외 기질이 세포의 증식을 자극하는 수용성 인자를 분비한다 (도 5 참조).
상기한 바와 같이, 본 발명에 따른 미산성 전해수는, 바이오 스캐폴드에 대한 살균효과, 면역항원의 제거 효과가 뛰어나고, 글리코스사미노글리칸, 콜라겐 등 세포외 기질에 미치는 영향이 매우 적고, 상기 미산성 전해수로 살균한 스캐폴드는 세포 생착 능력이 매우 우수하고 어떠한 독성도 없으므로 바이오 스캐폴드의 살균 방법에 유용하게 사용될 수 있다.
또한, 본 발명은 상기 조성물에 바이오 스캐폴드를 적용시키는 단계를 포함하는 바이오 스캐폴드 살균방법을 제공한다.
본 발명에서 "적용"은 조성물을 바이오 스캐폴드에 침지, 분산, 도포, 코팅 및 처리하는 것을 포함하는 개념이다.
본 발명에 따른 미산성 전해수는 시간이 지날수록 살균 능력이 감소하므로, 살균 능력의 지속을 위하여 매 10분 내지 60분, 바람직하게는 매 15분마다 교체하여 주는 것이 좋으며, 바이오 스캐폴드의 완전한 살균을 위한, 스캐폴드의 미산성 전해수에의 침지시간은 60분 내지 3시간이며, 바람직하게는 90분 내지 120분임이 바람직하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 돼지간 스캐폴드의 제조 및 특징 확인
1. 돼지간 스캐폴드의 제조
본 발명의 미산성 전해수의 효과 확인에 사용할 바이오 스캐폴드로, 돼지 간 스캐폴드를 제조하였다.
먼저, 40-50kg의 잡종 성돈으로부터 돼지의 간을 수집하였다. 수집한 간엽을 분리하여 5g 가량의 절편 (2.5 x 1.5 x 0.2:0.3 cm)으로 다듬은 다음, 4℃ 하에서 120 rpm의 쉐이커를 이용해 헤파린을 함유하는 PBS 완충액으로 1시간씩 2회 세척하였다. 다음으로 세척된 절편들을 4 ℃ 하에서 120 rpm의 쉐이커를 이용하여 0.1 % SDS (sodium dodecyl sulfate, Sigma-aldrich) 용액으로 72 시간 동안 탈세포화시켰다. 탈세포화에 사용된 0.1 % SDS 용액은 매 8시간 마다 교체해주었고, 탈세포 완료 후 모든 절편은 PBS로 3회 세척하여 절편에 남아있는 SDS를 제거하였다.
탈세포화 전후의 돼지 간 스캐폴드를 육안으로 관찰한 결과는 도 1의 A (탈세포화 전) 및 B (탈세포화 후)에 나타내었다.
2. H&E (hematoxylin and eosin) 및 DAPI 염색을 이용한 돼지간 스캐폴드의 특징 확인
표준 프로토콜에 따라 탈세포화 전 후의 간을 고정하고, 파라핀을 끼어넣고, 간을 절단하였다. 그리고 상기 간 시료를 4 μm로 자르고, H&E 염색을 수행하여 조직의 구조가 보존되고, 세포구성이 제거되는 효율을 평가하였다.
또한, 핵물질이 제거되었는지 확인하기 위하여, 조직을 DAPI 염색 (Vector Laboratories, Burlingame, CA, USA)을 수행하였다.
H&E를 이용하여 탈세포화 전후의 돼지간 스캐폴드를 관찰한 결과를 도 1의 C (탈세포화 전) 및 D (탈세포 화)에 나타내었다. 또한, DAPI 염색을 이용한 탈세포화 전후의 돼지간 스캐폴드를 관찰한 결과를 도 1의 E (탈세포화 전) 및 F (탈세포화 후)에 나타내었다.
도 1의 C 및 D에 나타난 바와 같이, 신선한 간 (탈세포화 전의 간)과 달리, 탈세포화된 간에서는 세포질이 존재하지 않고, 결합조직에 의하여 분리된 육각형 모양의 소엽 (hexagonal-shaped lobules)을 관찰할 수 있었다.
도 1의 E 및 F에 나타난 바와 같이, 탈세포화되기 전의 간에서는 핵이 관찰되었지만, 탈세포화 후의 간에서는 핵이 발견되지 않음을 확인하였다.
3. PCR을 통한 돼지간 스캐폴드의 특징 확인
탈세포화를 통하여 항원성 또는 병원성 에피토프의 제거가 되었는지 확인하기 위하여, 탈세포화된 간 또는 신선한 간 (탈세포화되지 않은 간)의 DNA를 추출하여 PCR을 수행하였다.
우선, DNA 추출은 DNeasy Blood and Tissue Kit (Qiagen, Hilden, germany)를 이용하였다. 5 mg의 동결건조된 시료를 핫 플레이트에서 56 ℃, 24시간 동안 프로테아제 K 완충액으로 분해시켰다. 분해물을 AE 완충액 및 에탄올로 처리하였다. AE 완충액을 이용하여 DNA를 추출하였고, 6000 rpm으로 4분 동안 원심분리하였다. 상기에서 추출된 탈세포화된 간의 50 ng의 게놈 DNA를 Tprofessional standard 96 gradient machine (Biometra, Goettingen, Germany)를 이용하여 PCR을 수행하였다. 상기 PCR 수행은 하기의 표 1에서 제시된 프라이머를 이용하여 수행하였고, PCR은 94 ℃에서 3분간 유지한 후, 94 ℃에서 30분, 어닐링 온도 (표 1에 제시된)에서 30초, 72 ℃에서 45 초를 한 주기로 34 주기를 수행하였고, 마지막 주기에서 72 ℃에소 10분 동안 유지하였다. PCR 산물을 에티디움 브로마이드로 염색된 1 % 아가로오즈 젤에서 확인하였다. 이의 결과를 도 1의 G에 나타내었다.
표 1
프라이머 기능 프라이머 서열 어닐링 온도 산물크기(bp)
1,3 α gal 이종이식 후높은 급성 거부 반응 관련 F:5`-GCTCCACCTGGCAGTCATAG-3`R:5`-GTCCTGGAGGATTCCCTTGA-3` 54.95 361
SLA-2 급성 면역 거부 반응 관련 F:5`-GRCACCTTGAGGTGCTGGG-3`R:5`-TGGCAGGTGTAGCTCTGCTC-3` 55.04 185
SLA-DRA 급성 면역 거부 반응 관련 F:5`-CGAGAAGAGGTGGCAAGACA-3`R:5`-GTCCTGGAGGATTCCCTTGA-3` 54.5 220
pvWF 이종이식 후 혈전증 관련 F:5`-GCCCCTTTGCAGGAGAAGAT-3`R:5`-ATACAGCCCTTTGCTGGCAT-3` 60.03 375
PERV 이종이식 후 감염 관련 F:5`-CTACCCCGAGATTGAGGAGC-3`R:5`-GGGGGATGGTTAGTTTTCCA-3` 54.9 317
β-actin 세포 마커 F:5`-TCCCTGGAGAAGAGCTACG-3`R:5`-TGTTGGCGTAGAGGTCCTTC-3` 60.5 280
도 1의 G에 나타난 바와 같이, 탈세포화된 간에서는 1,3 α-Gal (alpha 1,3 galactosyltrasferase), SLA-2 (swine leukocyte antigen 2), SLA-DRA (swine leukocyte antigen DR alpha), PERV (porcine endogenous retrovirus-gag)를 포함한 면역성 및 병원성 인자에 대한 유전자가 발견되지 않아 이를 잠재적인 이종이식에 이용할 수 있음을 확인하였다.
실시예 2. 본 발명의 미산성 전해수(SAEW, slightly acidic electrolyzed water)의 제조
본 발명의 미산성 전해수는 Cao et. al (Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol. 2009; 130 (2):88-93)에 기재된 방법으로 제조하였다.
먼저, 6 %의 염산 용액 및 2 M의 NaCl 용액을 분리막이 없는 전기분해장치 (Model D-7, Dolki Co. Ltd., Wonju, Korea)에 넣고 12 A의 전류를 가하여 미산성 전해수를 제조하였다. 제조된 미산성 전해수의 pH는 6.2 내지 6.4이고, 산화환원전위 (oxidation reduction potential, ORP)는 780-797 mV 이었으며, 염소 농도는 24 mg/L 였다. 제조된 미산성 전해수는 멸균된 병에 밀봉하여 하기의 실험에 사용하였다.
실시예 3. 본 발명의 미산성 전해수의 살균 효율
본 발명의 미산성 전해수의 살균 효율을 알아보기 위하여 Shearer et al. 에 기재된 실험방법을 이용하여 하기와 같은 실험을 수행하였다.
3-1. 미산성 전해수의 처리시간에 따른 돼지간 스캐폴드의 살균효율
먼저 상기 실시예 1에서 제조한 돼지간 스캐폴드를 2 군으로 나누어, 실시예 2에서 제조한 미산성 전해수에 침지하여 각각 30분, 60분, 90분, 및 120 분 동안 살균을 수행한 군을 실험군으로 하였고, 같은 방법의 미산성 전해수 대신 PBS, PAA (peracetic acid solution; Sigma-Aldrich, St Louis, MO, USA), 70 %의 에탄올 (Daejung Chemicals and Metals, Seoul, Korea)로 처리한 군을 대조군으로 하였다. 돼지 간 스캐폴드의 살균에 최적합하도록 미산성 전해수는 15분 마다 교체해주었고, 살균이 완료된 돼지 간 스캐폴드는 PBS로 1회 세척하였다.
이의 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 신선한 간(탈세포화되지 않은 무처리 간), 무처리 탈세포화된 돼지 간 및 PBS로 처리한 돼지 간 스캐폴드의 경우, DMEM 배지 및 혈액 배지 모두에서 변색 및 혼탁도의 증가, 세균의 집락 형성을 나타내었다. 그러나, 본 발명의 미산성 전해수를 처리한 돼지 간 스캐폴드의 경우, 90분 및 120분 동안 처리한 경우에 배지의 변색이나 혼탁도의 증가가 나타나지 않았으며, 혈액 배지 상에 세균의 집락도 형성되지 않았다. 따라서, 본 발명에 따른 미산성 전해수를 90분 이상 처리할 경우, 살균 효율이 매우 우수하다는 것을 알 수 있다.
3-2. 본 발명의 미산성 전해수의 처리 후, 스캐폴드의 배양시간에 따른 살균 효과 확인.
상기 3-1의 방법으로 처리된 실험군과 대조군의 돼지 간 스캐폴드를 10% 우태아혈청 (FBS, Hyclone, Logan, UT, USA)을 첨가한 DMEM (Dulbecco's Modified Eagle's Medium; invitrogen, Carlsbad, CA, USA)배지에 넣고 37 ℃ 하에서 배양하였다. 또한, 같은 방법으로 처리된 스캐폴드를 콜럼비아 혈액배지 (Columbia blood agar, Fluka Chemie GmbH)에서 96시간 동안 배양하여 세균 감염의 증후가 있는지 주기적으로 관찰하였다. 세균의 감염이 있을 경우 배지의 변색 및 혼탁도가 증가하며, 혈액 배지 상에는 세균의 집락이 성장하게 된다.
결과는 표 2에 나타내었다.
표 2
시간 Native liver 탈세포화된 간 PBS 처리 PAA 처리 에탄올 처리 SAEW 처리
DMEM+10 % FBS 6 + + + - - -
24 × × × - - -
36 × × × - - -
48 × × × - - -
60 × × × - - -
72 × × × - + -
96 × × × - × -
Columbia blood agar 6 + + + - - -
24 × × × - - -
36 × × × - - -
48 × × × - - -
60 × × × - + _
72 × × × - × -
96 × × × - × -
((-) 는 감염의 증상이 나타나지 않음; (+) 은 감염의 증상 나타남; (×) 는 관찰 시간 전에 감염의 증상이 나타남; 양성 대조군으로 아무것도 처리하지 않은 간, 탈세포화된 간 및 PBS로 처리한 간을 사용하였고, 음성대조군으로 스캐폴드가 없는 배지를 사용함)
표 2에 나타낸 바와 같이, 무처리 간, 무처리 탈세포화된 돼지 간 및 PBS로 처리한 돼지 간 스캐폴드의 경우, DMEM 배지 및 혈액 배지 모두에서 변색 및 혼탁도의 증가, 세균의 집락 형성을 나타내었다. 또한, 에탄올을 처리한 돼지 간 스캐폴드의 경우, 콜럼비아 혈액 배지에서 60시간 배양한 경우, 세균이 자라는 것을 확인하였고, DMEM 배지에서 72 시간 배양한 경우, 변색이 나타남을 확인하였다.
그러나, 본 발명의 미산성 전해수 및 PAA를 처리한 돼지 간 스캐폴드의 경우, 배지의 변색이나 혼탁도의 증가가 나타나지 않았으며, 혈액 배지 상에 세균의 집락도 형성되지 않았다. 따라서, 본 발명에 따른 미산성 전해수를 처리할 경우, 살균 효율이 매우 우수하다는 것을 알 수 있다.
실시예 4. 본 발명의 미산성 전해수의 스캐폴드에 대한 효과 확인
4-1. 본 발명의 미산성 전해수의 면역 항원 제거 효과
본 발명의 미산성 전해수의 면역 항원 제거 효과를 알아보기 위하여, 하기와 같은 실험을 수행하였다.
먼저, 아무런 처리를 하지 않은 돼지 간의 절편, 실시예 1의 방법으로 탈세포화한 스캐폴드, 상기 스캐폴드를 각각 0.1 % PAA (peracetic acid solution; Sigma-Aldrich, St Louis, MO, USA), PBS, 70 %의 에탄올 (Daejung Chemicals and Metals, Seoul, Korea) 및 미산성 전해수로 처리한 돼지간 스캐폴드의 동결 건조한 샘플을 준비하였다. 다음으로, DNeasy Blood & Tissue Kit (Quiagen, Hilden, Germanny)를 이용하여 상기 동결 건조한 샘플로부터 DNA를 추출하였다.
남아있는 DNA의 단편의 크기를 확인하기 위하여 추출된 DNA는 0.5 %의 브롬화 에티디움을 첨가한 1 %의 아가로오즈 젤로 전기영동하여 분리한 다음 UV를 조사하여 시각화하였다. DNA의 크기를 확인하기 위한 마커로는 100 염기쌍의 래더 (GeneRuler 100bp plus DNA ladder, Fermentas)를 사용하였다.
결과는 도 3에 나타내었다.
도 3에 나타낸 바와 같이, 본 발명에 따른 미산성 전해수로 살균한 스캐폴드(탈세포화 됨)에서는 PBS (32.11 ± 2.88 ng/mg) 또는 에탄올로 처리한 대조군 (25.7 ± 3.63 ng/mg)에 비하여 더욱 적은 양의 DNA 함량(16.85 ± 0.74 ng/mg)이 검출되었다(도 3의 A). 미처리한 스캐폴드에서는 DNA 함량은 42.5 ± 3.21 ng/ml이므로 본 발명의 미산성 전해수의 DNA 함량을 제거하는 효율은 60.29 ± 6.68%임을 확인하였다 (PAA 처리한 경우, DNA 함량은 2.9 ± 1.20 ng/mg이고, DNA 제거 효율은 93.13 ± 2.82 % 임).
또한, 전기영동에서도 미산성 전해수를 처리하지 않은 간 스캐폴드의 경우, 1500 염기쌍 이상의 뚜렷한 DNA 밴드를 보이는데 반하여 미산성 전해수로 살균한 스캐폴드에서는 DNA 밴드가 나타나지 않았다 (도 3의 B).
따라서, 본 발명의 미산성 전해수는 임상적으로 면역 항원으로 작용하는 스캐폴드의 잔류하는 공여장기 세포의 DNA 뿐만 아니라, 스캐폴드에 잔존할 가능성이 높은 세균/바이러스의 DNA를 제거하는 효과가 우수하므로, 바이오 스캐폴드의 살균 및 면역항원의 제거를 위한 살균방법에 매우 유용하게 사용될 수 있다.
4-2. 본 발명의 미산성 전해수가 바이오 스캐폴드의 글리코사미노글리칸 함량에 미치는 영향
본 발명의 미산성 전해수가 바이오 스캐폴드의 글리코사미노글리칸 (GAGs, glycosaminoglycans) 함량에 미치는 영향을 알아보기 위하여, 디메틸메틸렌 블루 염료-결합 어세이 키트(Blyscan kit; Biocolor Ltd.)를 사용하여 제조사의 지시에 따라 탈세포화된 간(무처리 스캐폴드), PBS 처리된 스캐폴드 및 본 발명의 미산성 전해수로 살균된 스캐폴드에서의 글리코사미노글리칸의 함량을 측정하였다. 우선, 5 mg의 동결건조된 시료를 균질화시키고 용해시켰다. 각각의 시료에서 100 μL의 분취량을 1 mL의 디메틸 메틸렌 블루 용액에 가하고, 25 ℃에서 30 분동안 쉐이커로 진동을 주었다. 이 후, 상기 용액을 10 분동안 10,000 X g로 원심분리하여 GAG dye 복합체 (complex)를 수집하고, 상등액을 제거하였다. 남아있는 펠렛을 1 mL의 제공된 분해 물질 (dissociation reagent)로 현탁시켜 655 nm에서 흡광도를 측정하였다. 글리코사미노글리칸의 표준치로는 키트에 제공되는 콘드로이틴 설페이트 (Chondroitin sulfate)를 사용하였다.
결과는 도 3의 C에 나타내었다.
도 3의 C에 나타낸 바와 같이, PAA로 처리한 스캐폴드는 무처리 스캐폴드의 글리코사미노글리칸 함량의 43 ± 0.80 %이고, 무처리 탈세포화된 스캐폴드의 글리코사미노글리칸 함량의 56 ± 1.04 % 임을 확인하였다. 또한, PBS를 처리한 스캐폴드는 무처리 스캐폴드의 글리코사미노글리칸 함량의 68.7 ± 0.320 %이고, 무처리한 탈세포화 스캐폴드의 글리코사미노글리칸 함량의 89.8 ± 0.418 %임을 확인하였다. 또한, 에탄올을 처리한 스캐폴드는 무처리 스캐폴드의 글리코사미노글리칸 함량의 49.1 ± 1.47 %이고, 무처리한 탈세포화된 스캐폴드의 글리코사미노 글리칸 함량의 64.16 ± 1.92 % 임을 확인하였다.
이에 반해, 본 발명에 따른 미산성 전해수로 살균된 스캐폴드는 무처리 스캐폴드의 글리코사미노글리칸 함량의 53.3 ± 0.83 %이고, 무처리한 탈세포화된 스캐폴드의 글리코사미노글리칸 함량의 69.6 ± 0.58 % 임을 확인하였다.
글리코스사미노글리칸은 세포의 성장, 증식, 분화에 필수적인 성장인자 및 사이토카인의 보유에 중요한 역할을 하는 것으로 알려져 있으므로, 본 발명의 미산성 전해수로 바이오 스캐폴드를 살균할 경우, 다른 살균물질에 비하여 성장인자 및 사이토카인 등 세포외 기질 특성에 영향을 미치지 않아 세포의 생착 능력을 유지하면서 살균 효과를 얻을 수 있다.
4-3. 본 발명의 미산성 전해수가 바이오 스캐폴드의 콜라겐 함량에 미치는 영향
본 발명의 미산성 전해수가 바이오 스캐폴드의 콜라겐 함량에 미치는 영향을 알아보기 위하여, Sircol collagen dye-binding assay kit (Biocolor Ltd.)를 사용하여 제조사의 지시에 따라 신선한 간, 탈세포화된 간 (무처리 스캐폴드), PBS, PAA 또는 에탄올로 처리한 간 스캐폴드 및 본 발명의 미산성 전해수로 살균된 스캐폴드에서의 총 콜라겐 수준을 각각 측정하였다.
보다 구체적으로, 아무런 처리를 하지 않은 돼지 간의 절편, 실시예 1의 방법으로 탈세포화한 스캐폴드, 상기 스캐폴드를 각각 PAA, PBS, 에탄올 및 미산성 전해수로 처리한 돼지간 스캐폴드의 동결 건조한 샘플을 준비하여, 0.1 mg/ml 펩신을 포함하는 0.5 M의 아세트 산에서 배양한 후, 산성 펩신-용해 콜라겐을 얻었다. 산성을 중성화시키는 물질 100 μL를 산성-펩신 추출물에 가하였다. 이 후, 상기 추출물을 4 ℃에서 하룻밤 동안 배양하여 원심분리하였다. 이 후, 1 mL Sircol dye reagent를 펠렛에 가하고, 25 ℃에서 30분동안 배양하였다. 원심분리를 수행한 후, 펠렛을 산성 염 세척 시약 (acid-salt wash reagent)으로 세척하고, 1 mL의 알칼리 물질에서 현탁시켰다. 이 후, 540 nm에서 흡광도를 측정하였다. 결과는 도 3의 D에 나타내었다.
도 3의 D에 나타낸 바와 같이, 본 발명에 따른 미산성 전해수로 처리한 스캐폴드의 콜라겐 함량은 신선한 간과 비교하여 111.13±2.19 %를 나타내었다. 미산성 전해수를 처리한 스캐폴드에서 신선한 간보다 콜라겐이 많이 검출되는 것은 스캐폴드에서 많은 양의 세포성 단백질이 제거되었음을 의미한다.
이에 비하여, 에탄올을 처리한 스캐폴드에서는 신선한 간과 비교하여 87.54 ± 4.07 %의 콜라겐 함량을 나타내었다.
상기 결과로부터, 기존의 살균물질인 에탄올은 바이오 스캐폴드의 콜라겐에 영향을 주나, 미산성 전해수는 바이오 스캐폴드의 콜라겐 함량에 있어 어떠한 악영향도 주지 않음을 알 수 있다.
실시예 5. 본 발명의 미산성 전해수가 바이오 스캐폴드의 세포 생착에 미치는 영향
본 발명의 미산성 전해수가 바이오 스캐폴드에의 세포의 부착성 (attachment) 및 세포활성 (viability) 에 미치는 영향을 알아보기 위하여, 하기와 같은 실험을 수행하였다.
먼저 미산성 전해수 및 다른 살균 물질 (PAA, 에탄올)로 살균 처리한 돼지 간 스캐폴드로 작은 디스크를 만들어 96-웰 플레이트에 넣고, 섬유아세포를 조직 배양 접시로부터 수집하여 계수한 다음, 10 % 우태아 혈청을 첨가한 완전 DMEM 배양액에 현탁시켰다. 다음으로, 각각의 스캐폴드 디스크에 돼지 섬유아세포가 현탁된 DMEM 배양액 100 μl를 가하여, 총 50,000여 개의 섬유아세포를 분주하고 37 ℃ 에서 5 % CO2 대기 하에 3시간 동안 배양하여 섬유아세포들이 스캐폴드 기질 (scaffold substrate)에 부착되도록 유도하였다. 스캐폴드에 부착된 세포들이 떨어지지 않도록 스캐폴드 기질을 조심스럽게 다른 웰로 이동시킨 후, 플레이트를 다시 37℃에서 5 % CO2 대기 하에 12시간 동안 배양하였다. 그 후, PBS에 용해시킨 10 μL의 MTT 용액 (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide; 5 ㎎/㎖, Sigma Aldrich)을 각 웰에 넣고 37 ℃에서 5 % CO2 대기 하에 4시간 동안 배양하였다. 배양액을 제거한 다음에는 200 μL의 DMSO를 각 웰에 가하고, 피펫팅을 하여 포르마잔을 녹였다. 10분간 배양한 뒤, 100 μL의 용액을 피펫팅으로 다른 96-웰 플래이트에 옮겼다. 마지막으로 분광광도계를 이용하여 시험 파장 570 nm, 기준 파장 630 nm로 샘플의 흡광도를 확인하였다.
또한, DAPI (4`,6-diamidino-2-phenylindole; Sigma Aldrich, St Louis, MO, USA)로 표지된 돼지의 섬유아세포를 16 시간 동안 상기와 같은 방법으로 배양하였다. 이 후, 위상 차 형광 도립 현미경 (phase-contrast fluorescence inverted microscopy; Olympus, Tokyo, Japan)으로 이를 관찰하여 부착된 세포의 수를 측정하였다. DAPI로 표지된 세포를 Image J software (National Institutes of Health, Bethesda, MD, USA)를 이용하여 세포의 수를 측정하였다.
상기의 결과로 분주한 섬유아세포가 스캐폴드 기질에 부착되어 대사적으로 활성화된 상태를 유지하고 있는 비율 (도 4의 A), 상기 부착된 세포의 수 (도 4의 B) 및 섬유아 세포를 DAPI (4`,6-diamidino-2-phenylindole; Sigma Aldrich, St Louis, MO, USA)로 염색한 결과 (도 4의 C)를 도 4에 나타내었다.
도 4의 A에 나타낸 바와 같이, MTT 세포부착 분석 결과, 미산성 전해수로 살균한 스캐폴드에 분주하고 3시간 동안 배양한 돼지 섬유아세포 중, 76.65 ± 2.66 %가 부착되었고, 그 후로도 16시간 동안 생존력을 보인 것을 확인하였다. 이에 비하여, 에탄올 또는 PAA로 살균한 스캐폴드의 경우, 각각 64.86 ± 3.48 % 및 71.50 ± 1.95 % 임을 확인하였다 (도 4의 A).
상기의 결과는 부착된 세포가 스캐폴드 내의 세포외 기질과 상호작용을 하였음을 의미한다.
또한, 도 4의 B 및 C에 나타난 바와 같이, DAPI로 염색한 섬유아세포를 위상-차 형광 도립 현미경 (phase-contrast fluorescence inverted microscopy)을 이용하여 세포의 수를 평가한 결과, 미산성 전해수로 처리한 스캐폴드에 부착된 섬유아세포의 수가 PAA 또는 에탄올로 처리한 스캐폴드보다 많아, 부착성 및 세포 활성이 우수함을 확인하였다.
따라서, 본 발명의 미산성 전해수는 스캐폴드의 살균에 사용될 경우, 스캐폴드에 분주한 세포의 스캐폴드 내 세포외 기질과 상호작용을 촉진하여 부착성 및 세포 활성을 우수하게 나타내므로, 세포의 생착을 높이기 위한 살균 방법에 매우 유용하게 사용될 수 있다.
실시예 6. 본 발명의 미산성 전해수로 살균한 바이오 스캐폴드의 세포에 대한 독성의 분석 및 세포증식을 촉진하는 용해성 인자 분비 확인.
6-1. 본 발명의 미산성 전해수로 살균한 바이오 스캐폴드의 세포에 대한 독성 분석
본 발명의 미산성 전해수로 살균한 바이오 스캐폴드의 세포에 대한 독성을 알아보기 위하여, 하기와 같은 실험을 수행하였다.
조건 세포 배양 배지 (conditioned cell culture medium)는 본 발명의 미산성 전해수로 살균된 스캐폴드로부터 제조되었다. 간략히 설명하면, 배지 1 ml당 스캐폴드 0.2 g/ml의 농도가 되도록, 미산성 전해수로 처리된 스캐폴드와 함께 무혈청 DMEM 세포 배양 배지를 37 ℃ 하에서 70 rpm의 속도로 쉐이킹하며 하룻밤 배양하였다. 비조건-대조군으로는, 스캐폴드를 빼고, 배양한 것을 제외하고는 위 조건 세포 배양 배지의 제조방법과 동일하게 제조한 세포 배양 배지를 설정하였다. 배양이 완료된 후, 스캐폴드를 제거한 배양 배지를 0.4-μm의 여과기로 여과하여, 세포외 기질로부터 용출된 수용성 인자를 포함하는 배양 배지를 제조하였다.
그 다음, 돼지 피부 섬유아세포들을 조직 배양 접시에서 수거하여 계수한 다음, 10 % 우태아 혈청이 포함된 완전 DMEM 배지에 현탁시켰다. 돼지 섬유아세포가 현탁된 DMEM 배양액 100 μl를 가하여, 총 10,000여 개의 섬유아세포를 각 웰에 넣고 37 ℃ 에서 5 % CO2 대기 하에 24시간 동안 배양하여 섬유아세포들이 웰에 부착되도록 유도하였다.
섬유아세포가 배양된 배양액은 흡인하여 제거하고, 10 %의 우태아 혈청 및 1 %의 페니실린-스트렙토마이신 (Gibco, Grand Island, NY, USA)을 첨가한 상기의 조건 배양 배지 또는 비조건-대조군 배양 배지를 섬유아세포가 부착된 웰에 넣고 플레이트를 37 ℃ 에서 5 % CO2 대기 하에 24시간 및 48시간 동안 배양하였다 (24시간 마다 배지를 교체함). 24시간 후에는, 10 μL의 MTT 용액 (5 mg/ml in PBS)을 각 웰에 가하여 피펫팅하고 37 ℃ 에서 5 % CO2 대기 하에 4시간 동안 재배양하였다. 배양액을 제거한 다음에는 200 μL의 DMSO를 각 웰에 가하고, 피펫팅을 하여 포르마잔을 녹였다. 마지막으로 분광광도계를 이용하여 시험 파장 570 nm, 기준파장 630 nm 로 샘플의 흡광도를 확인하였다.
결과는 도 5의 A에 나타내었다.
도 5의 A에 나타낸 바와 같이, 미산성 전해수로 살균된 스캐폴드로부터 제조된 조건 배지는 비-조건 배지에서보다 더 높은 섬유아세포의 증식율을 나타내었다.
구체적으로, 미산성 전해수를 처리한 스캐폴드로부터 제조된 배지에서 섬유아세포의 증식률은 비-조건 배지와 비교하여 131.29 ± 5.49% (24 시간 배양한 경우) 및 141.46 ± 4.78 % (48 시간 배양한 경우)임을 확인하였다 [PAA 처리한 경우, 119.18 ± 5.6 % (24시간 배양한 경우), 127.43 ± 6.68 % (48시간 배양한 경우; 에탄올 처리한 경우, 109.22 ± 5.58 % (24시간 배양한 경우), 113.95 ± 6.67 % (48시간 배양한 경우].
상기의 결과는 세포외 기질이 섬유아세포의 증식을 자극하는 수용성 인자를 분비하며, 미산성 전해수로 살균된 스캐폴드를 배양한 배양액이 섬유아세포의 증식에 어떠한 저해효과도 가지지 않음을 의미한다.
6-2.본 발명의 미산성 전해수로 살균한 바이오 스캐폴드의 세포증식을 촉진하는 용해성 인자 분비 확인.
바이오 스캐폴드 (탈세포화 간 조직)의 살균 후, 스캐폴드 내 잔류된 미산성 전해수로부터 기인할 수 있는 세포독성을 제외시키고, 위와 같이 제조된 스캐폴드가 생물학적 세포 활성을 자극하는 수용성 신호를 방출하는지 평가하기 위하여 하기와 같은 실험을 수행하였다.
실시예 6-1에 기재된 방법으로 조건 세포 배양 배지를 준비한 후, 돼지의 섬유아세포를 5000 개를 젤라틴으로 코팅된 4-웰 플레이트에서 24시간 동안 배양하였다. 이 후, 배지를 교체 후, 24시간마다 주기적으로 교체하였다. 스캐폴드로부터 추출한 용해성 증식 인자를 확인하기 위하여, 24시간 및 48시간 동안 배양한 후, 세포를 항-Ki-67 항체 (Abcam, Cambridge, UK)를 이용하여 면역 염색하였다. 또한, 이체항체로 텍사스 레드 염소 항-토끼 IgG (invitrogen)을 사용하였다. DAPI를 포함하는 마운팅 배지 (mounting medium)를 이용하여 핵을 배경 염색하였다. Ki-67 양성 세포의 비율을 250 DAPI-염색 세포와 비례하여 평균 양성 Ki-67 세포에 대한 비율로 구하였다.
이의 결과를 도 5의 B 내지 D에 나타내었다.
도 5의 B 내지 D에 나타난 바와 같이, Ki-67 양성 세포의 비율은 미산성 전해수를 처리한 스캐폴드에서부터 제조된 조건화된 배지에서 24시간 (37.6 ± 1.45 %) 또는 48시간 (70.2 ± 1.33 %)동안 배양한 섬유아세포에서 유의적으로 높음을 확인하였다. 또한, PAA를 처리한 스캐폴드로부터 제조된 조건화된 배지 또는 에탄올을 처리한 스캐폴드로부터 제조된 조건화된 배지에서는 대조군에 비하여 유의적인 차이가 없음을 확인하였다.
스캐폴드 내 잔류된 미산성 전해수로부터 기인할 수 있는 세포독성을 제외시키고, 위와 같이 제조된 스캐폴드가 생물학적 세포 활성을 자극하는 수용성 신호를 방출하는 것을 알 수 있다.

Claims (16)

  1. 미산성 전해수 (SAEW, slightly acidic electrolyzed water)를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물.
  2. 제 1항에 있어서, 상기 미산성 전해수는 HOCl, OCl- 및 Cl2을 포함하는 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  3. 제 1항에 있어서, 상기 미산성 전해수는 pH 5.0 내지 pH 6.8인 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  4. 제 1항에 있어서, 상기 미산성 전해수는 500 내지 800 mV의 산화환원전위(ORP, oxidation-reduction potential)를 갖는 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  5. 제 1항에 있어서, 상기 미산성 전해수는 희석된 염산을 전기분해하여 제조된 것임을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  6. 제 5항에 있어서, 상기 염산은 총 염산용액의 3 % (v/v) 내지 10 % (v/v)인 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  7. 제 1항에 있어서, 상기 바이오 스캐폴드는 포유동물의 장기로부터 제조된 것임을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  8. 제 7항에 있어서, 상기 포유동물은 개과 동물, 고양이과 동물, 멧돼지과 동물, 소과 동물, 사슴과 동물, 기린과 동물, 페커리과 동물, 낙타과 동물, 하마과 동물, 말과 동물, 맥과 동물, 코뿔소과 동물, 족제비과, 토끼과, 설치류 및 영장류로 이루어진 군중 선택된 1종 이상인 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  9. 제 7항에 있어서, 상기 장기는 간, 위, 소장, 대장, 방광, 요관, 심장, 췌장, 비장 및 신장으로 이루어진 군 중 선택된 1종 이상인 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  10. 제 1항에 있어서, 상기 바이오 스캐폴드는 탈세포화된 바이오 스캐폴드인 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  11. 제 1항에 있어서, 상기 미산성 전해수는 바이오 스캐폴드의 면역 항원을 제거하거나, 바이오 스캐폴드의 세포 생착 능력을 증가시키는 것을 특징으로 하는, 바이오 스캐폴드 살균용 조성물.
  12. 제 1 내지 제 11항 중 어느 한 항의 미산성 전해수를 포함하는 바이오 스캐폴드 살균용 조성물에 바이오 스캐폴드를 적용시키는 단계를 포함하는, 바이오 스캐폴드의 살균방법.
  13. 제 12항에 있어서, 상기 적용은 침지, 분산, 코팅, 도포 및 코팅으로 이루어진 군으로부터 선택된 1 종 이상인 것을 특징으로 하는, 바이오 스캐폴드의 살균방법.
  14. 제 13항에 있어서, 상기 침지는 60분 내지 3시간 동안 수행하는 것을 특징으로 하는, 바이오 스캐폴드의 살균방법.
  15. 제 12항에 있어서, 상기 미산성 전해수를 매 10분 내지 60분 마다 교체하여 주는 것을 특징으로 하는, 바이오 스캐폴드의 살균 방법.
  16. 제 12항에 있어서, 상기 미산성 전해수는 바이오 스캐폴드의 면역 항원을 제거하거나, 바이오 스캐폴드의 세포 생착 능력을 증가시키는 것을 특징으로 하는, 바이오 스캐폴드의 살균 방법.
PCT/KR2013/008818 2012-10-11 2013-10-02 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법 WO2014058175A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/112,722 US9232804B2 (en) 2012-10-11 2013-10-02 Compositions and methods for sterilizing bioscaffolds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0113110 2012-10-11
KR20120113110 2012-10-11
KR10-2012-0113072 2012-10-11
KR20120113072 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014058175A1 true WO2014058175A1 (ko) 2014-04-17

Family

ID=50477597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008818 WO2014058175A1 (ko) 2012-10-11 2013-10-02 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법

Country Status (3)

Country Link
US (1) US9232804B2 (ko)
KR (1) KR20140048801A (ko)
WO (1) WO2014058175A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655206B1 (ko) * 2014-06-26 2016-09-09 대한민국 (식품의약품안전처장) 도체의 살균방법
KR101628821B1 (ko) * 2015-03-02 2016-06-13 강원대학교산학협력단 탈세포화된 생체 조직 유래의 생체적합성 가용화 스캐폴드 추출물, 이의 제조방법 및 이의 용도
JP5866743B1 (ja) * 2015-06-19 2016-02-17 株式会社E・テック 衣服消毒装置及び衣服消毒方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081610A (ja) * 1996-09-06 1998-03-31 Clean Chem Kk 殺菌消毒液の製造方法及び殺菌消毒剤
KR0156000B1 (ko) * 1990-08-10 1998-10-15 오까사끼 도메 살균수 제조방법 및 장치
JP2001029435A (ja) * 1999-07-19 2001-02-06 Amano Corp 電解水を用いた消毒・殺菌方法および装置
US20090202977A1 (en) * 2005-08-26 2009-08-13 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596535B2 (ja) * 2004-04-21 2010-12-08 信越化学工業株式会社 殺菌剤組成物
US20120156307A1 (en) * 2010-12-16 2012-06-21 Apr Nanotechnologies S.A. Medical uses of nanoclustered water
US20120302950A1 (en) * 2011-05-26 2012-11-29 Carefusion 2200, Inc. Active pleurodesis catheter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0156000B1 (ko) * 1990-08-10 1998-10-15 오까사끼 도메 살균수 제조방법 및 장치
JPH1081610A (ja) * 1996-09-06 1998-03-31 Clean Chem Kk 殺菌消毒液の製造方法及び殺菌消毒剤
JP2001029435A (ja) * 1999-07-19 2001-02-06 Amano Corp 電解水を用いた消毒・殺菌方法および装置
US20090202977A1 (en) * 2005-08-26 2009-08-13 Regents Of The University Of Minnesota Decellularization and recellularization of organs and tissues

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KYUNG-MEE PARK ET AL.: "Novel Method of Sterilization of Porcine Liver Bio-Scaffold Using the Electrolyzed Wate", 24TH INTERNATIONAL CONGRESS OF THE TRANSPLANTATION SOCIETY, 19 July 2012 (2012-07-19) *

Also Published As

Publication number Publication date
KR20140048801A (ko) 2014-04-24
US20150056302A1 (en) 2015-02-26
US9232804B2 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP6480911B2 (ja) 組織移植片の脱細胞化方法
AU2012249538B2 (en) Method for enzymatic treatment of tissue products
Moradi et al. Evaluation of different sterilization methods for decellularized kidney tissue
KR100791502B1 (ko) 바이러스 불활화된 무세포 인체 이식재 생산방법
ES2836131T3 (es) Procedimiento de esterilización de un lisado de plaquetas
Bottagisio et al. A new strategy for the decellularisation of large equine tendons as biocompatible tendon substitutes
WO2014058175A1 (ko) 미산성 전해수를 유효성분으로 포함하는 바이오 스캐폴드 살균용 조성물 및 이를 이용한 바이오 스캐폴드의 살균 방법
WO2012141454A2 (en) Graft materials derived from mammalian cartilage
Lomas et al. Effects of a peracetic acid disinfection protocol on the biocompatibility and biomechanical properties of human patellar tendon allografts
KR20050047109A (ko) 초고정수압 인가에 의한 이식용 생체 조직의 처리방법
EP2236544A1 (en) Collagen Implant
EP3188596B1 (en) Human dermis, preparation and use thereof
WO2017090808A1 (ko) 콜라겐의 수득율을 높이는 방법 및 이를 이용하여 제조된 콜라겐
Pleasure et al. Eliminating a health hazard in prosthodontic treatment of patients with pulmonary tuberculosis
WO2021206303A1 (ko) 동물 조직 유래 생체 소재의 제조방법, 이에 따라 제조된 동물 조직 유래 생체 소재 및 이를 이용한 3차원 프린팅 방법
US7438850B2 (en) Sterilization method for the production of implantable or transplantable biological material
WO2019221564A1 (ko) 조직의 탈세포화 방법
CN114286694B (zh) 动物脂肪源性细胞外基质及动物脂肪源性细胞外基质保存液
Mohammed et al. Treatment of cyclophosphamide induced infertile male mice with HSCs that homed by honey, bovine colostrum and umbilical cord blood derived mesenchymal stem cells
RU2813729C1 (ru) Способ индукции спонтанной дифференцировки клеток периодонтальной связки и надкостницы в одонтогенном и остеогенном направлениях путем использования децеллюляризированного матрикса зуба и периодонтальной связки человека
KR101020111B1 (ko) 인체/동물유래 이식용 조직 처리용 세정 조성물
NL2033318B1 (en) Sterile human placental allografts and methods of making thereof
CN107630000B (zh) 一种家畜外周血来源巨噬细胞分离与培养的试剂盒
Abdelgawad et al. Pectin as a Biomaterial in Regenerative Endodontics—Assessing Biocompatibility and Antibacterial Efficacy against Common Endodontic Pathogens: An In Vitro Study
US20180193497A1 (en) Electroporation of tissue products

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14112722

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845821

Country of ref document: EP

Kind code of ref document: A1