WO2014057970A1 - 電解加工装置 - Google Patents

電解加工装置 Download PDF

Info

Publication number
WO2014057970A1
WO2014057970A1 PCT/JP2013/077462 JP2013077462W WO2014057970A1 WO 2014057970 A1 WO2014057970 A1 WO 2014057970A1 JP 2013077462 W JP2013077462 W JP 2013077462W WO 2014057970 A1 WO2014057970 A1 WO 2014057970A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
electrode
processing apparatus
magnets
electrolytic processing
Prior art date
Application number
PCT/JP2013/077462
Other languages
English (en)
French (fr)
Inventor
哲平 小林
浅野 伸
田村 和久
洋介 向井
智史 新谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/432,287 priority Critical patent/US9943919B2/en
Priority to KR1020157008444A priority patent/KR101704314B1/ko
Priority to DE112013004957.0T priority patent/DE112013004957B4/de
Priority to CN201380051503.5A priority patent/CN104718043B/zh
Publication of WO2014057970A1 publication Critical patent/WO2014057970A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/28Moving electrode in a plane normal to the feed direction, e.g. orbiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/32Maintaining desired spacing between electrode and workpiece, e.g. by means of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/38Influencing metal working by using specially adapted means not directly involved in the removal of metal, e.g. ultrasonic waves, magnetic fields or laser irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • B23H9/16Making holes using an electrolytic jet

Definitions

  • the present invention relates to an electrolytic processing apparatus that melts and processes a workpiece by energizing an electrode and the workpiece through an electrolytic solution.
  • Drilling of difficult-to-cut materials that are difficult to machine is generally performed by electrolytic machining or electrical discharge machining.
  • cooling holes are formed in the turbine blades of the gas turbine to circulate a cooling medium in order to cool the turbine blades.
  • the shape of the cooling holes be curved along the geometric shape of the turbine blade.
  • the conventional electrolytic machining method for turbine blades is suitable for forming a straight hole, it is difficult to form a curved machining hole, that is, a curved hole.
  • Patent Document 1 discloses a bent hole processing device that has been devised to process bent holes.
  • the machining amount is made different at the circumferential position of the machining electrode tool by covering with an insulating member except for a part of the surface of the machining electrode tool.
  • the current density generated between the workpiece and the machining electrode tool is increased, and the electric field is unevenly distributed in the machining electrode tool. Therefore, the amount of processing increases at the portion where the current density increases, and a bent hole is formed by the processing electrode tool progressing on the side where the processing amount is large.
  • the present invention provides an electrolytic processing apparatus capable of easily forming a bent hole having a desired shape.
  • the electrolytic processing apparatus extends in a cylindrical shape, is made of a conductive material having flexibility, and the electrolytic solution is directed from the proximal side toward the distal side toward the inner side.
  • the electrolytic solution flows out from the tip of the electrode, and an electric current is passed between the electrode and the workpiece through the electrolytic solution, and the workpiece is dissolved while the workpiece is melted. Will be formed.
  • a magnetic field is applied to the electrode by the magnetic field generator, and Lorentz force acts on the charged particles in the current flowing through the electrode.
  • the electrode is bent in a direction perpendicular to the direction in which the magnetic field is applied and the direction in which the current flows, and the processed hole can be formed as a bent hole.
  • the bending strength and bending direction of the electrode can be changed according to the strength of the magnetic field and the applied direction.
  • the magnetic field generating unit may have at least a pair of magnets arranged to face each other.
  • Such a magnetic field generator can reliably apply a magnetic field in a direction crossing the extending direction of the electrode, and the electrode can be bent to easily form the processed hole as a curved hole having a desired shape.
  • the electrolytic processing apparatus may further include a first movement mechanism that allows the magnetic field generation unit to move in a direction orthogonal to the opposing direction of the pair of magnets.
  • Such a first moving mechanism can move the magnetic field generation unit to a position corresponding to the position of the electrode so as to reliably apply a magnetic field to the electrode. For this reason, the electrode can be reliably bent and the processed hole can be easily formed as a bent hole having a desired shape.
  • the electrolytic processing apparatus may further include a rotation mechanism that allows the magnetic field generation unit to rotate about an axis extending in a direction orthogonal to the facing direction of the pair of magnets. Good.
  • the electrolytic processing apparatus further includes a support member that supports the pair of magnets in the magnetic field generation unit and includes a ring guide formed annularly around the axis, The member may be movable and rotatable by the first moving mechanism and the rotating mechanism.
  • the pair of magnets are supported by the annular ring guide, so that even when the bent hole needs to be formed three-dimensionally, the electrode is bent in accordance with the shape of the target bent hole.
  • the direction of the magnetic field generator can be changed by the first moving mechanism and the rotating mechanism. Therefore, a magnetic field can be reliably applied to the electrode, and a bent hole having a desired shape can be easily formed.
  • the magnetic field generation unit is formed by arranging a plurality of the pair of magnets arranged so as to sandwich the electrodes so as to surround the electrodes, each of the pair of magnets being an electromagnet, A magnetic field control unit that controls the magnitude of the magnetic field generated for each of the magnets may be further included.
  • a plurality of pairs of electromagnets are arranged in a ring shape, and the magnitude of the magnetic field can be controlled for each pair of electromagnets by the magnetic field control unit. That is, by selecting any one pair of electromagnets to generate a magnetic field, it is possible to continuously change the direction in which the magnetic field is applied to the electrodes. Therefore, even when the bent hole needs to be formed three-dimensionally, a magnetic field is reliably applied to the electrode so as to bend the electrode in accordance with the shape of the desired bent hole, and the desired shape is obtained.
  • the bent hole can be easily formed.
  • the electrolytic processing apparatus may further include a second moving mechanism for bringing the magnets close to and away from each other in the pair of magnets of the magnetic field generation unit.
  • the strength of the magnetic field can be changed by adjusting the distance between the magnets, and a Lorentz force of a desired magnitude can be obtained, and the desired curve can be obtained by bending the electrode.
  • a bent hole having a shape can be easily formed.
  • a current control unit that controls the magnitude of the current flowing from the current supply unit to the electrode may be further provided.
  • the magnitude of the Lorentz force acting on the charged particles in the current flowing through the electrode can be changed, and the electrode can be bent to easily form a curved hole having a desired shape. it can.
  • a plurality of the electrodes are arranged at intervals in a direction intersecting the extending direction of the electrodes, and the magnetic field is applied to each of the plurality of electrodes at a position different in the extending direction.
  • the magnetic field generator may be disposed.
  • each electrode can be bent independently at the same time. Therefore, a plurality of bent holes having a desired shape can be formed simultaneously.
  • the electrolytic processing apparatus calculates a difference between a detection unit that detects the position of the electrode, an input from the detection unit, and a preset target processing position, A misalignment control unit that changes the magnitude of the magnetic field so as to reduce the difference may be further included.
  • Such a position deviation control unit makes it possible to perform feedback control so that the machining position of the bent hole approaches the target machining position. For this reason, the bent hole of a desired shape can be formed more reliably.
  • the electrolytic processing apparatus calculates an auxiliary magnetic field generator that applies a magnetic field in a direction intersecting the extending direction with respect to the electrode, and a deflection amount of the electrode.
  • a deflection amount reducing mechanism having a deflection amount control unit that changes the magnitude of the magnetic field applied from the auxiliary magnetic field generation unit so as to reduce the deflection amount.
  • the magnitude of the magnetic field applied to the electrode from the auxiliary magnetic field generator is changed by the deflection control reduction mechanism so as to reduce the deflection generated in the electrode, that is, the Lorentz force acting on the charged particles in the current is changed.
  • the electrode can be bent, and the bent hole can be easily processed.
  • the electrolytic processing apparatus includes an auxiliary magnetic field generating unit that applies a magnetic field in a direction intersecting the extending direction with respect to the electrode, and the auxiliary magnetic field generating unit is disposed on the electrode.
  • a bending amount reducing mechanism having a reciprocating mechanism that reciprocates along the extending direction may be further provided.
  • auxiliary magnetic field generating portion when the electrode advances toward the tip side and bending occurs when processing the bent hole in the workpiece, the reciprocating mechanism assists in the electrode extending direction.
  • the electrode By applying a magnetic field while reciprocating the magnetic field generation unit, the electrode can be bent by Lorentz force. Therefore, the bending generated in the electrode can be reduced in a squeeze manner, and the bending hole can be easily processed.
  • the electrolytic processing apparatus 1 is an apparatus for forming a processed hole 101 in a bent hole with respect to the workpiece 100.
  • the workpiece 100 is a turbine blade of a gas turbine
  • the machining hole 101 of the workpiece 100 is a cooling hole for cooling the turbine blade.
  • the electrolytic processing apparatus 1 includes an electrode 3 that forms a machining hole 101 in a workpiece 100, a current supply unit 6 that supplies current to the electrode 3, and a magnetic field applied to the electrode 3.
  • a magnetic field generation unit 7 that moves the electrode 3 forward and backward, and a guide unit 5 that guides the electrode 3 when the electrode 3 is advanced.
  • the electrolytic processing apparatus 1 also includes a support member 8 that supports the magnetic field generator 7, a support shaft moving mechanism (first moving mechanism) 14 that moves the supporting member 8, and a support arm moving mechanism (first moving mechanism) 15. It has.
  • the moving mechanism 4 moves the electrode 3 forward and backward with respect to the workpiece 100.
  • the moving mechanism 4 is disposed on the tip 100a side of the turbine blade, which is the workpiece 100, and is configured to be movable back and forth with respect to the tip 100a.
  • the moving mechanism 4 moves the electrode 3 forward and backward using a driving source such as an electric motor (not shown).
  • a driving source such as an electric motor (not shown).
  • the acceleration of the forward / backward movement of the moving mechanism 4, that is, the output of the driving source is controlled by a pushing force control device (not shown).
  • the moving mechanism 4 has a plurality of gripping portions 4a for gripping the base end 3b of the electrode 3 on the surface on the workpiece 100 side.
  • the grip 4a has a cylindrical shape with a hollow inside, and the base 3b of the electrode 3 is inserted into one end of the grip 4a so that the electrode 3 can be gripped.
  • gripping part 4a is connected to the electrolyte solution flow path not shown.
  • the electrolyte solution W is supplied into the grip portion 4a through the electrolyte solution passage.
  • the supply amount of the electrolytic solution W can be arbitrarily adjusted by a flow rate control device (not shown).
  • As the electrolytic solution W for example, sulfuric acid, nitric acid, saline, or the like is used.
  • the guide unit 5 is disposed between the moving mechanism 4 and the tip 100a of the workpiece 100 (the tip shroud of the turbine blade).
  • the guide unit 5 guides the electrode 3 advanced and retracted by the moving mechanism 4 with respect to the tip 100a of the workpiece 100 so as to be in a predetermined traveling direction.
  • the guide portion 5 is provided with a plurality of guide holes 5a that allow the moving mechanism 4 side and the workpiece 100 side to communicate with each other.
  • the electrodes 3 are inserted through the guide holes 5a from the moving mechanism 4 side toward the workpiece 100 side.
  • the electrodes 3 are advanced by the moving mechanism 4, so that the electrode 3 is at a desired position at the tip 3 a of the workpiece 100 according to the arrangement of the guide holes 5 a and at a desired angle with respect to the tip 3 a.
  • the electrode 3 can be introduced.
  • the electrode 3 forms a machining hole 101 (turbine blade cooling hole) in the workpiece 100 by electrolytic machining.
  • the electrode 3 has a cylindrical shape extending along the axis, and is made of a flexible conductive material such as stainless steel, copper, titanium, or the like.
  • the hollow portion on the inner peripheral side of the electrode 3 (inside the electrode 3) communicates with the hollow portion of the grip portion 4 a of the moving mechanism 4.
  • the electrolytic solution W used for electrolytic processing flows through the electrode 3 from the proximal end 3b side (moving mechanism 4 side) toward the distal end 3a side (workpiece 100 side).
  • the electrode 3 has a cylindrical shape (see FIG. 3).
  • the electrode 3 may have, for example, a rectangular shape with a polygonal cross section.
  • the outer peripheral surface of the electrode 3 is covered with an insulating layer (not shown) made of, for example, a polyester resin having electrical insulation, and the electrode 3 is exposed on the end surface on the tip 3a side.
  • the electrode 3 can be energized between the workpiece 100 at the exposed portion.
  • the current supply unit 6 is a power supply device that is connected to the electrode 3 by the cable 6a, supplies current to the electrode 3, and distributes current from the proximal end 3b of the electrode 3 toward the distal end 3a.
  • the magnetic field generator 7 applies a magnetic field to the electrode 3 in a direction that intersects the extending direction of the electrode 3.
  • the magnetic field generating unit 7 includes a pair of magnets 9 arranged to face each other so as to sandwich the electrode 3 and the workpiece 100 into which the electrode 3 is inserted.
  • the magnet 9 may be an electromagnet or a permanent magnet.
  • the pair of magnets 9 are disposed at the tip 3 a of the electrode 3.
  • the direction in which the pair of magnets 9 is opposed is the X direction
  • the direction along the direction in which the electrode 3 extends is the Y direction
  • the direction orthogonal to the X direction and the Y direction is the Z direction.
  • the support member 8 includes a stage 11 disposed on one side in the Y direction (the lower side in FIG. 2), a support shaft 12 extending from the stage 11 to the other side in the Y direction, and attached to the support shaft 12 as Z. It has a support arm 13 that extends to one side of the direction (left side in FIG. 2) and supports the magnetic field generation unit 7.
  • the stage 11 is a base that supports the magnetic field generator 7 via the support shaft 12 and the support arm 13 on one side in the Y direction.
  • the support shaft 12 has a rod shape and is provided on the stage 11 so as to be movable in the Z direction, and supports the support arm 13 on one side in the Z direction.
  • the support arm 13 has a pair of magnets 9 attached thereto, a pair of magnet support portions 17 extending in the X direction so as to be separated from the pair of magnets 9, and the other end in the Z direction from the end of each of the magnet support portions 17.
  • a pair of arm portions 18 extending toward the side, and an arm portion connecting portion 19 that connects the other end portions in the Z direction of the pair of arm portions 18 in the X direction, and is a frame viewed from the Y direction. It has a shape.
  • the support shaft moving mechanism 14 is provided on the stage 11 and allows the support shaft 12 to move in the Z direction. Although details of the support shaft moving mechanism 14 are not shown, the support shaft 12 is moved by, for example, a motor or an actuator.
  • the support arm moving mechanism 15 is provided on the support shaft 12 and allows the support arm 13 to move in the Y direction. Although details of the support arm moving mechanism 15 are not shown, the support arm 13 is moved by, for example, a motor or an actuator.
  • the electrolytic solution W flows out from the tip 3 a of the electrode 3, and the current is passed between the electrode 3 and the workpiece 100 via the electrolytic solution W, so that the workpiece 100 is melted. As a result, the machining hole 101 is formed in the workpiece 100.
  • a magnetic field is applied to the electrode 3 in the X direction by the magnetic field generator 7, Lorentz force F acts on charged particles in the current flowing through the electrode 3, and the electrode 3 is bent in the Z direction (one point in FIG. 2). (See chain line).
  • a force acts in a direction away from the support shaft 12 on one side in the Z direction, and the electrode 3 is bent in this direction, whereby a bent hole is formed as a machining hole 101 in the workpiece 100. can do.
  • the bending strength and bending direction of the electrode 3 can be changed by adjusting the strength of the magnetic field and the direction in which the magnetic field is applied.
  • the magnetic field generator 7 has a pair of magnets 9. Since the pair of magnets 9 are arranged so as to face each other and sandwich the electrode 3, it is possible to reliably apply a magnetic field in the direction intersecting the extending direction of the electrode 3, that is, in the X direction, The processed hole 101 can be easily formed as a desired bent hole.
  • the magnetic field generator 7 can be moved to a position corresponding to the position of the electrode 3 by the support shaft moving mechanism 14 and the support arm moving mechanism 15 so that the magnetic field is reliably applied to the electrode 3. For this reason, the electrode 3 can be bent more reliably.
  • the electrode 3 is bent using the Lorentz force F acting on the charged particles by the magnetic field generation unit 7, and a desired shape of the bent hole is easily formed in the workpiece 100 as the processed hole 101. Can be formed.
  • the magnetic field generation part 7 does not need to have a pair of magnets 9, for example, the magnet 9 may be one.
  • support shaft moving mechanism 14 and the support arm moving mechanism 15 are not necessarily provided.
  • the magnet moving mechanism 23 is provided in the arm connecting portion 19 in the support member 28, and the arm connecting portion 29 can be expanded and contracted in the X direction.
  • the magnet moving mechanism 23 for example, a motor or an actuator is provided, and the arm connecting portion 29 is expanded and contracted to bring the pair of magnets 9 close to and away from each other in the X direction.
  • the distance between the pair of magnets 9 and the electrode 3 disposed between the pair of magnets 9 is reduced by bringing the pair of magnets 9 close to each other by the magnet moving mechanism 23.
  • the Lorentz force F acting on the charged particles in the current of the electrode 3 is proportional to the magnitude of the applied magnetic field. Accordingly, when the distance between the magnet 9 and the electrode 3 is reduced, the magnetic field is increased, so that the Lorentz force F is increased and a larger force is applied to the electrode 3. In this way, the degree of bending of the electrode 3 can be increased.
  • the distance between the pair of magnets 9 and the electrode 3 is increased, the magnetic field is decreased, and thus the Lorentz force F is decreased and the electrode 3 is reduced.
  • the force acting on the electrode 3 is reduced, and the degree of bending of the electrode 3 can be reduced.
  • the electrolytic processing apparatus 1 of the first embodiment is used as a basic configuration, and a pair of magnets in which the Y direction and the Z direction perpendicular to the X direction in which the pair of magnets 9 in the magnetic field generating unit 7 are opposed are the rotation axes. This is different from the first embodiment in that it further includes a rotation mechanism 33 that enables rotation of 9.
  • the rotation mechanism 33 rotates the support shaft 12 in the support member 8 to rotate the support arm 13 together with the support shaft 12 with the Y direction as the rotation axis. Further, in the attachment portion between the support arm 13 and the support shaft 12, the support arm 13 is rotated relative to the support shaft 12 with the Z direction as the rotation axis. Although details of the rotation mechanism 33 are not shown, the pair of magnets 9 are rotated via the support arm 13 by, for example, a motor or an actuator.
  • the workpiece 100 is a turbine blade
  • the surface is curved to form a three-dimensional shape
  • the machining hole 101 itself is also formed into a three-dimensional bent hole. Need to be done.
  • the orientation of the pair of magnets 9 can be changed according to the progress of the electrode 3 so as to match the shape of the target processing hole 101 by the rotation mechanism 33. Thereby, a magnetic field can be reliably applied to the electrode 3 to bend the electrode 3, and the processed hole 101 can be formed into a curved hole having a desired three-dimensional shape.
  • the support member 48 supports the pair of magnets 9 and has a ring guide 43 having an annular shape around the axis O1 extending in the Y direction, and the ring guide 43 around the axis O1.
  • a ring guide support portion 44 that rotatably guides and a hanging tool 45 that supports the ring guide support portion 44 from the other side in the Y direction (the upper side in FIG. 6).
  • the ring guide 43 has an annular shape centered on the axis O1, and supports the pair of magnets 9 connected in an annular shape centered on the axis O1.
  • the pair of magnets 9 are integrated with the ring guide 43 to form one annular member with the ring guide 43 and the magnet 9.
  • the ring guide 43 is made of a nonmagnetic material and does not interfere with the magnetic field generated by the magnet 9 and applied to the electrode 3.
  • the ring guide 43 and the pair of magnets 9 are held in a state where the workpiece 100 is covered from the outer periphery.
  • the ring guide support portion 44 includes a ring guide 43 that forms an annular member as a whole and a pair of guide rollers 44a that sandwich the pair of magnets 9 from both sides in the Y direction.
  • the guide roller 44a causes the ring guide 43 to move along the axis O1. It is rotatably supported at the center.
  • the ring guide support portion 44 is disposed 180 degrees away from the position where the guide roller 44a is provided around the axis O1, and has a holding portion 44b that wraps and supports the ring guide 43 from the outer periphery.
  • the hanger 45 is made of a wire or the like that supports the guide roller 44a and the holding portion 44b from one side in the Y direction so as to be hung from above.
  • the hanger 45 is provided with a hanger moving mechanism (first movement mechanism) 46 that can move itself in the Y direction, and a rotating mechanism 47 that can rotate around the axis O1.
  • the magnet 9 is moved between one side and the other side in the Y direction via 45, and rotated around the axis O1, that is, the Y direction.
  • the pair of magnets 9 are supported by the ring guide 43, so that the processing hole 101 can be suspended even when it is necessary to form a three-dimensional bent hole. While the tool 45 is moved in the Y direction by the lifting tool moving mechanism 46 and the rotating mechanism 47, the direction of the magnetic field generating unit 7 can be changed in accordance with the shape of the target bent hole.
  • the rotation mechanism 47 may rotate the ring guide 43 and the magnet 9 by providing the rotation mechanism 47 in the holding portion 44 b in the ring guide support portion 44 instead of the hanging tool 45.
  • a plurality of magnetic field generating portions 57 are arranged in a ring shape around an axis O2 in which a pair of magnets 9 extends in the Y direction, and covers the workpiece 100 from the outer periphery.
  • a plurality of pairs of magnets 9 arranged so as to sandwich the electrode 3 are arranged in a ring shape so as to surround the electrode 3.
  • the adjacent magnets 9 are continuously attached in the circumferential direction.
  • the magnets 9 are electromagnets, and the magnetic field generator 57 further includes a magnetic field controller 53 that controls the magnitude of the magnetic field generated in each pair of magnets 9.
  • the support member 58 is made of a wire or the like that is supported from one side in the Y direction so as to suspend a plurality of magnets 9 arranged in an annular shape.
  • the support member 58 is provided with a support member moving mechanism (first moving mechanism) 56 that allows the support member 58 to move in the Y direction, so that a plurality of annular magnets 9 can move in the Y direction. It has become.
  • first moving mechanism first moving mechanism
  • the magnetic field control unit 53 controls the magnitude of the magnetic field for each pair of magnets 9. Specifically, the magnitude of the magnetic field is controlled by changing the voltage and current applied to each pair of magnets 9 by a power supply device (not shown).
  • the magnetic field control unit 53 can control the magnitude of the magnetic field for each pair of magnets. That is, since any one of the pair of magnets 9 can be selected to generate a magnetic field, the direction in which the magnetic field is applied to the electrode 3 is continued in the circumferential direction of the axis O2 without rotating the magnet 9 about the axis O2. It will be possible to change it. Therefore, even when the machining hole 101 needs to be formed into a three-dimensional bent hole, the magnet 9 is moved in the Y direction by the support member moving mechanism 56 to match the target bent hole shape. Thus, the direction of the magnetic field by the magnetic field generator 57 can be changed.
  • the electrode 3 can be bent in a desired direction, and a bent hole having a desired shape can be easily formed.
  • the magnets 9 do not have to be provided continuously, and may be provided with a gap in the circumferential direction of the axis O2.
  • the magnetic field generation direction can be smoothly changed so that the magnetic field is generated by the other pair of magnets 9 adjacent to the pair of magnets 9 in the circumferential direction.
  • the electrodes 3 are arranged at intervals in the Z direction.
  • a plurality of magnetic field generators 67 are arranged opposite to each other so as to sandwich the workpiece 100 into which each electrode 3 is inserted by forming each electrode 3 and the machining hole 101 (in this embodiment, It has three pairs of magnets 9.
  • the pair of magnets 9 are arranged at the tip 3a of each electrode 3 in a state where the tip 3a of each electrode 3 is arranged at a different position in the Y direction.
  • the magnets 9) are arranged at different positions in the Y direction.
  • a magnetic field is applied to each of the plurality of electrodes 3 by the magnetic field generator 67 at different positions in the Y direction. For this reason, the magnetic field generated in the magnet 9 that applies a magnetic field to one electrode 3 does not act on the other electrode 3. That is, each electrode 3 can be simultaneously and independently bent into a desired shape. Therefore, the plurality of processed holes 101 can be simultaneously formed as bent holes having a desired shape.
  • an electrolytic processing apparatus 71 according to a seventh embodiment of the present invention will be described.
  • symbol is attached
  • a detection unit 73 that detects the position of the electrode 3 and a positional deviation control unit that changes the magnitude of the magnetic field by an input from the detection unit 73. 74.
  • the detection unit 73 is a device that detects the position of the electrode 3.
  • the detection unit 73 for example, an X-ray imaging apparatus using X-rays, a thermography, a radiation inspection apparatus, an ultrasonic flaw detector, a magnetic resonance imaging apparatus (MRI), or the like is used.
  • MRI magnetic resonance imaging apparatus
  • the position of the electrode 3 may be detected by detecting the change in the magnetic field.
  • the positional deviation control unit 74 receives an input from the detection unit 73, calculates a difference between this input value and a preset target machining value, and changes the magnetic field so as to reduce this difference.
  • feedback control can be performed so that the processing hole 101 approaches the target processing position by the detection unit 73 and the positional deviation control unit 74, and a curved hole having a desired shape can be more reliably formed. Can be formed.
  • detection unit 73 and the misregistration control unit 74 of the present embodiment may be applied to the second to sixth embodiments.
  • the electrolytic processing apparatus 1 of the first embodiment is used as a basic configuration, and further includes a bending amount reducing mechanism 83 that reduces the bending amount of the electrode 3 inside the processing hole 101 during processing.
  • the bending amount reducing mechanism 83 includes an auxiliary magnetic field generation unit 87 that applies a magnetic field to the electrode 3, and a bending amount that changes the magnitude of the magnetic field applied to the electrode 3 from the auxiliary magnetic field generation unit 87. And a control unit 85.
  • the auxiliary magnetic field generation unit 87 has a plurality of (four in this embodiment) magnets 89 arranged in pairs so as to sandwich the electrode 3 and the workpiece 100 into which the electrode 3 is inserted from both sides in the Z direction. is doing.
  • a plurality of pairs of magnets 89 are provided at intervals in the Y direction.
  • a magnetic field is applied to the electrode 3 in the Z direction that intersects the extending direction of the electrode 3.
  • the magnet 89 may be an electromagnet or a permanent magnet.
  • the paired magnets 89 may be disposed so as to sandwich the electrode 3 from the X direction, or may sandwich the electrode 3 from the Z direction and the X direction.
  • the bend amount control unit 85 calculates and stores in advance the bend amount of the electrode 3 caused by the advance of the electrode 3, and from the magnet 89 of the auxiliary magnetic field generation unit 87 to the electrode 3 so as to reduce this bend amount. Changes the strength of the applied magnetic field.
  • the bending amount of the electrode 3 can be calculated by regarding it as a cantilever beam having the base end 3b of the electrode 3 as a fulcrum. Note that when the magnitude of the magnetic field in the auxiliary magnetic field generator 87 is changed, for example, the distance between the electrode 3 and the magnet 89 may be changed using a mechanism such as the magnet moving mechanism 23 of the second embodiment. Alternatively, when the magnet 89 is an electromagnet, the magnitude of voltage and current applied to the magnet 89 may be changed.
  • a method of applying a magnetic field so as to reduce the deflection amount of the electrode 3 calculated in advance is to apply a predetermined magnetic field preset in each pair of magnets 89.
  • a magnetic field may be intermittently applied like a pulse wave to only necessary magnets 89 in a pair, or may be periodically applied by a sine wave or the like.
  • an electrolytic processing apparatus 81 when the processing hole 101 of the workpiece 100 is processed as a bent hole while the electrode 3 advances toward the tip 3a side, bending may occur in the processing hole 101. In this case, the smoothness of the processing of the processing hole 101 may be impaired.
  • the magnetic field is applied to the electrode 3 from the auxiliary magnetic field generator 87 so as to reduce the bending generated in the electrode 3 by the bending amount reducing mechanism 83, and the electrode 3 can be bent by the Lorentz force F1. Therefore, the processing hole 101 can be easily processed as a bent hole.
  • the apparatus like the detection part 73 demonstrated in 7th embodiment instead of calculation of a beam. That is, it is possible to detect the position of the electrode 3 using an X-ray imaging apparatus, thermography, radiation inspection apparatus, ultrasonic flaw detector, magnetic resonance imaging apparatus (MRI), etc., and calculate the deflection amount from the detected value. is there.
  • the magnets 89 do not have to be provided in pairs, and may be provided only on one side in the Z direction and the X direction, for example.
  • the deflection amount reducing mechanism 83 of the present embodiment may be applied to the second to seventh embodiments.
  • the electrolytic processing apparatus 1 of the first embodiment is a basic configuration, and further includes a deflection amount reducing mechanism 93 different from that of the eighth embodiment.
  • the deflection amount reducing mechanism 93 is capable of reciprocating the auxiliary magnetic field generating unit 97 that applies a magnetic field to the electrode 3 and the auxiliary magnetic field generating unit 97 in the Y direction that is the extending direction of the electrode 3. And a reciprocating mechanism 94.
  • the auxiliary magnetic field generator 97 has a pair of magnets 99 so as to sandwich the electrode 3 and the workpiece 100 into which the electrode 3 is inserted from both sides in the Z direction. A magnetic field is applied to the electrode 3 in the Z direction that intersects the extending direction of the electrode 3.
  • the magnet 89 may be an electromagnet or a permanent magnet.
  • the pair of magnets 99 may be disposed so as to sandwich the electrode 3 from the X direction, or may sandwich the electrode 3 from the Z direction and the X direction.
  • the reciprocating mechanism 94 reciprocates the pair of magnets 99 along the Y direction. Although details of the reciprocating mechanism 94 are not shown, the magnet 99 is moved by, for example, a motor or an actuator. In the present embodiment, the magnetic field generator 7 disposed on the tip 3 a side of the electrode 3 reciprocates between the base end 3 b of the electrode 3.
  • the electrode 3 when the electrode 3 is bent when the bent hole is processed in the workpiece 100, the extending direction of the electrode 3 by the pair of magnets 99 of the auxiliary magnetic field generation unit 97.
  • the electrode 3 By applying a magnetic field while reciprocating, the electrode 3 can be bent by the Lorentz force F1. Therefore, the amount of bending can be reduced by squeezing the electrode 3, and the processing hole 101 can be processed more easily as a bent hole.
  • the magnets 99 may not be provided in pairs, and may be provided only on one side in the Z direction and the X direction, for example.
  • the deflection amount reducing mechanism 93 of the present embodiment may be applied to the second to seventh embodiments.
  • the Lorentz force F acting on the charged particles in the current flowing through the electrode 3 can be increased.
  • the Lorentz force F can be decreased. Therefore, the bending force acting on the electrode 3 can be controlled in this way, and the processed hole 101 can be processed into a desired bent hole.
  • the guide unit 5 that guides the electrode 3 during processing is not necessarily provided.
  • Electrolytic processing apparatus 3 Electrode 3a Tip 3b Base end 4 Movement mechanism 4a Holding part 5 Guide part 5a Guide hole 6 Current supply part 6a Cable 7 Magnetic field generation part 8 Support member 9 Magnet 11 Stage 12 Support axis 13 Support arm 14 Support axis movement Mechanism (first moving mechanism) 15 Support arm moving mechanism (first moving mechanism) 17 Magnet support part 18 Arm part 19 Arm part connection part O Axis W Electrolytic solution 21 Electrolytic processing device 23 Magnet movement mechanism (second movement mechanism) 28 support member 29 arm part connection part 31 electrolytic processing apparatus 33 rotating mechanism 41 electrolytic processing apparatus 43 ring guide 44 ring guide support part 44a guide roller 44b holding part 45 lifting tool 46 lifting tool moving mechanism (first moving mechanism) 47 Rotating Mechanism 48 Supporting Member O1 Axis 51 Electrolytic Processing Device 53 Magnetic Field Control Unit 56 Supporting Member Moving Mechanism (First Moving Mechanism) 57 Magnetic Field Generation Unit 58 Support Member O2 Axis 61 Electrolytic Processing Device 67 Magnetic Field Generation Unit 71 Electrolytic Processing Device 73 Detection Unit 74 Position Shif

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

 所望の形状の曲がり孔を容易に形成することができる電解加工装置を提供することを目的とし、本発明の電解加工装置では、筒状をなして延在し、可撓性を有する導電性材料からなり、内側を基端(3b)側から先端(3a)側に向かって電解液(W)が流通する電極(3)と、電極(3)に対して電極(3)の延在方向(Y方向に沿う方向)に電流を流通させる電流供給部(6)と、電極(3)に対して上記延在方向に交差する方向(X方向)に磁界を印加する対向して配置された少なくとも一対の磁石(9)を有する磁界発生部(7)と、を備える構成とした。

Description

電解加工装置
 本発明は、電解液を介して電極と被加工材との間を通電することにより、被加工材を溶解させて加工する電解加工装置に関する。
 本願は、2012年10月10日に、日本に出願された特願2012-224973号に基づき優先権を主張し、その内容をここに援用する。
 機械加工が困難な難削材の穿孔加工は、一般的に電解加工法や放電加工法によって行われている。特に、高アスペクト比を有する難削材に対して穿孔加工をする際には電解加工法を用いることが好ましい。
 ところで、例えばガスタービンのタービン翼内には、このタービン翼を冷却すべく冷却媒体を流通させるための冷却孔が形成されている。この冷却孔による冷却効率を高めるためには、冷却孔の形状をタービン翼の幾何形状に沿って湾曲させることが好ましい。しかしながら、従来のタービン翼に対する電解加工法は直線孔を形成することには適しているものの、湾曲形状の加工孔、即ち、曲がり孔を形成することは困難であった。
 特許文献1には、曲がり孔を加工すべく工夫を施した曲がり孔加工装置が開示されている。この曲がり孔加工装置では、加工用電極工具の表面における一部を除いて絶縁部材で覆うことにより加工用電極工具の周方向位置で加工量に差を持たせている。即ち、絶縁部材で覆われていない部分においては被加工材と加工用電極工具との間に発生する電流密度が大きくなることで、加工用電極工具に電場偏在が生じる。よって、この電流密度が大きくなる部分で加工量が多くなり、この加工量の多い側に加工用電極工具が進行していくことで曲がり孔が形成される。
特開平7-51948号公報
 しかしながら、特許文献1に記載の技術では、加工用電極工具の表面の絶縁部材で覆われている部分と覆われていない部分との加工量の差によって進行方向が決定されるため、曲がり孔の形成方向を任意に調整することができない。即ち、加工用電極工具の表面の絶縁部材で覆われている部分と覆われていない部分との面積はそれぞれ固定であるため、上記加工量の差を可変にすることができず、所望の形状の曲がり孔を形成することが困難である。また、この特許文献1に記載の技術では、加工用電極工具の使用による劣化によって電場偏在に変化が生じる可能性があり、この点からもやはり所望の形状の曲がり孔を形成することが困難である。
 本発明は、所望の形状の曲がり孔を容易に形成することができる電解加工装置を提供する。
 本発明の第一の態様によれば、電解加工装置は、筒状をなして延在し、可撓性を有する導電性材料からなり、内側を基端側から先端側に向かって電解液が流通する電極と、前記電極に対して該電極の延在方向に電流を流通させる電流供給部と、前記電極に対して前記延在方向に交差する方向に磁界を印加する磁界発生部と、を備える。
 このような電解加工装置によると、電極の先端から電解液が流出し、この電解液を介して電極と被加工材との間が通電され、被加工材が溶解されながら被加工材に加工孔が形成されていく。この際、磁界発生部によって電極に磁界が印加され、電極に流通する電流中の荷電粒子にローレンツ力が作用する。この結果電極は磁界の印加される方向、及び電流の流通する方向に直交する方向に曲げられ、加工孔を曲がり孔として形成できる。そして、磁界の強さ、印加される方向に応じて電極の曲げの強さ、曲げの方向を変化させることもできる。
 また、前記磁界発生部が、対向して配置された少なくとも一対の磁石を有していてもよい。
 このような磁界発生部によって、電極の延在方向に交差する方向に磁界を確実に印加でき、電極を湾曲させて、加工孔を所望の形状の曲がり孔として容易に形成することができる。
 本発明の第二の態様によれば、電解加工装置は、前記磁界発生部を前記一対の磁石の対向方向に直交する方向に移動可能とする第一移動機構をさらに備えていてもよい。
 このような第一移動機構によって、電極に対して磁界を確実に印加するように磁界発生部を電極の位置に対応する位置に移動させることができる。このため、電極を確実に湾曲させて、加工孔を所望の形状の曲がり孔として容易に形成することができる。
 本発明の第三の態様によれば、電解加工装置は、前記磁界発生部を前記一対の磁石の対向方向に直交する方向に延びる軸線回りに回転移動可能とする回転機構をさらに備えていてもよい。
 このような回転機構によって、曲がり孔を形成する被加工材の表面が曲面状となって三次元的な形状をなしている等で、曲がり孔自体も三次元的に形成される必要がある場合にも、目的とする曲がり孔の形状に合わせて電極を湾曲させるように磁界発生部の向きを変化させることができる。よって、電極に対して磁界を確実に印加して、所望の形状の曲がり孔を容易に形成することができる。
 本発明の第四の態様によれば、電解加工装置は、前記磁界発生部における前記一対の磁石を支持し、前記軸線回りに環状に形成されたリングガイドを有する支持部材をさらに備え、前記支持部材を前記第一移動機構及び前記回転機構によって移動、回転可能としてもよい。
 このように一対の磁石が環状をなすリングガイドに支持されていることで、曲がり孔が三次元的に形成される必要がある場合にも、目的とする曲がり孔の形状に合わせて電極を湾曲させるように第一移動機構及び回転機構によって磁界発生部の向きを変化させることができる。よって電極に対して磁界を確実に印加して、所望の形状の曲がり孔を容易に形成することができる。
 さらに、前記磁界発生部は、前記電極を挟み込むように配置された前記一対の磁石が、該電極を取り囲むように環状に複数配列されてなり、前記一対の磁石はそれぞれ電磁石であって、前記一対の磁石毎に発生する前記磁界の大きさの制御を行う磁界制御部をさらに有していてもよい。
 このように一対の電磁石が環状に複数配置されて、さらに磁界制御部によって一対の電磁石毎に磁界の大きさを制御することができる。即ち、いずれかの一対の電磁石を選択して磁界を発生させることで、電極に磁界を印加する方向を連続的に変化させていくことが可能となる。従って、曲がり孔が三次元的に形成される必要がある場合にも、目的とする曲がり孔の形状に合わせて電極を湾曲させるように電極に対して磁界を確実に印加して、所望の形状の曲がり孔を容易に形成することができる。
 本発明の第五の態様によれば、電解加工装置は、前記磁界発生部の前記一対の磁石において、該磁石同士を近接及び離間させる第二移動機構をさらに備えていてもよい。
 このような第二移動機構によって、磁石同士の距離を調節することで磁界の強さを変化させることができ、所望の大きさのローレンツ力を得ることが可能となり、電極を湾曲させて所望の形状の曲がり孔を容易に形成することができる。
 さらに、前記電流供給部から前記電極に流通させる前記電流の大きさを制御する電流制御部をさらに備えていてもよい。
 このような電流制御部によって、電極に流通する電流中の荷電粒子に作用するローレンツ力の大きさを変化させることができ、電極を湾曲させて所望の形状の曲がり孔を容易に形成することができる。
 また、前記電極の前記延在方向に交差する方向に互いに間隔をあけて前記電極が複数配置され、前記複数の電極の各々に対して前記延在方向に異なる位置で前記磁界を印加するように前記磁界発生部が配置されてもよい。
 このように複数の電極の各々に対して、異なる位置で磁界発生部によって磁界を印加させるため、一の電極に対して、他の電極に磁界を印加する磁界発生部からの磁界が作用してしまうことが無い。即ち、各々の電極を同時に独立に湾曲させることが可能となる。よって、複数の所望の形状の曲がり孔を同時に形成することができる。
 本発明の第六の態様によれば、電解加工装置は、前記電極の位置を検出する検出部と、前記検出部からの入力と予め設定された目標加工位置との差分を演算して、前記差分を低減するように前記磁界の大きさを変化させる位置ずれ制御部とをさらに備えていてもよい。
 このような位置ずれ制御部によって、曲がり孔の加工位置が目標加工位置に近づくようにフィードバック制御を行うことが可能となる。このため、より確実に所望の形状の曲がり孔を形成することができる。
 本発明の第七の態様によれば、電解加工装置は、前記電極に対して前記延在方向に交差する方向に磁界を印加する補助磁界発生部と、前記電極の撓み量を演算して、該撓み量を低減するように前記補助磁界発生部から印加される磁界の大きさを変化させる撓み量制御部とを有する撓み量低減機構をさらに備えていてもよい。
 電極が先端側に向かって進行しながら被加工材に曲がり孔を加工する際に、曲がり孔内で撓みが発生することがあり、これによって加工の円滑性が妨げられてしまう可能性がある。ここで、電極に生じた撓みを低減するように、撓み制御低減機構によって補助磁界発生部から電極に印加される磁界の大きさを変化させ、即ち電流中の荷電粒子に作用するローレンツ力を変化させて電極を湾曲させることが可能となり、曲がり孔を容易に加工できる。
 本発明の第八の態様によれば、電解加工装置は、前記電極に対して前記延在方向に交差する方向に磁界を印加する補助磁界発生部と、前記補助磁界発生部を前記電極の前記延在方向に沿って往復動させる往復機構とを有する撓み量低減機構をさらに備えていてもよい。
 このような補助磁界発生部によって、電極が先端側に向かって進行しながら被加工材に曲がり孔を加工する際に撓みが発生してしまった場合に、往復機構によって電極の延在方向に補助磁界発生部を往復動しながら磁界を印加することで、ローレンツ力によって電極を湾曲させることが可能となる。よって、電極に生じた撓みをしごくようにして低減することができ、曲がり孔の加工の容易化が可能となる。
 上記した電解加工装置によると、磁界発生部によって電流中の荷電粒子に作用するローレンツ力を用いて電極を湾曲させ、所望の形状の曲がり孔を容易に形成することが可能となる。
本発明の第一実施形態に係る電解加工装置を示す正面図である。 本発明の第一実施形態に係る電解加工装置の要部を示す概略斜視図である。 本発明の第一実施形態に係る電解加工装置の要部を示す概略上面図である。 本発明の第二実施形態に係る電解加工装置の要部を示す概略上面図である。 本発明の第三実施形態に係る電解加工装置の要部を示す概略斜視図である。 本発明の第四実施形態に係る電解加工装置の要部を示す概略斜視図である。 本発明の第四実施形態の変形例に係る電解加工装置の要部を示す概略斜視図である。 本発明の第五実施形態に係る電解加工装置の要部を示す概略斜視図である。 本発明の第六実施形態に係る電解加工装置の要部を示す概略正面図である。 本発明の第七実施形態に係る電解加工装置の要部を示す概略正面図である。 本発明の第八実施形態に係る電解加工装置の要部を示す概略正面図である。 本発明の第九実施形態に係る電解加工装置の要部を示す概略正面図である。
〔第一実施形態〕
 以下、本発明の第一実施形態に係る電解加工装置1について説明する。
 電解加工装置1は、被加工材100に対して、加工孔101を曲がり孔に形成するための装置である。本実施形態では、被加工材100はガスタービンのタービン翼であり、被加工材100の加工孔101は、タービン翼を冷却するための冷却孔となっている。
 図1に示すように、この電解加工装置1は、被加工材100へ加工孔101を形成する電極3と、電極3へ電流を供給する電流供給部6と、電極3に対して磁界を印加する磁界発生部7と、電極3を進退させる移動機構4と、電極3を進行させる際にこの電極3を案内するガイド部5とを備えている。またこの電解加工装置1は、磁界発生部7を支持する支持部材8と、支持部材8を移動させる支持軸移動機構(第一移動機構)14及び支持アーム移動機構(第一移動機構)15とを備えている。
 移動機構4は、電極3を被加工材100に対して進退させる。そして、本実施形態ではこの移動機構4は被加工材100であるタービン翼の先端100a側に配置され、この先端100aに対して進退移動可能に構成されている。
 そしてこの移動機構4は、例えば図示しない電動機等の駆動源を用いて電極3の進退移動を行なう。移動機構4の進退移動の加速度、即ち、駆動源の出力は、図示しない押し込み力制御装置によって制御されている。これによって、移動機構4が電極3を進退させる際、即ち、加工孔101に向かって電極3を押し込む際の押し込み力を任意に調整可能である。
 さらに、この移動機構4は、被加工材100側の面に電極3の基端3bを把持する複数の把持部4aを有している。この把持部4aは、内部が中空状とされた筒状をなしており、その一端側に電極3の基端3bが挿入されることで電極3を把持可能としている。また、把持部4aの他端側は、不図示の電解液流通路に接続されている。この電解液流通路を介して把持部4aの内部に電解液Wが供給される。この電解液Wの供給量は、図示しない流量制御装置によって任意に調整可能である。なお、電解液Wとしては、例えば硫酸、硝酸、食塩水等が用いられる。
 ガイド部5は、移動機構4と被加工材100の先端100a(タービン翼のチップシュラウド)との間に配置されている。ガイド部5は、移動機構4によって進退される電極3を被加工材100の先端100aに対して所定の進行方向となるように案内する。このガイド部5には、移動機構4側と被加工材100側とを互いに連通する複数のガイド孔5aが穿設されている。これらガイド孔5aにはそれぞれ電極3が移動機構4側から被加工材100側に向かって挿通されている。そして、この状態でこれら電極3が移動機構4によって進行されることで、ガイド孔5aの配置に応じて被加工材100の先端3aにおける所望の位置に、かつ、先端3aに対して所望の角度で電極3を導入することができる。
 電極3は、被加工材100に加工孔101(タービン翼の冷却孔)を電解加工により形成する。電極3は、軸線に沿って延びる筒状をなしており、例えばステンレス、銅、チタン等の可撓性を有する導電性材料から構成されている。この電極3の内周側の中空部分(電極3の内部)は、移動機構4の把持部4aの中空部分と連通している。これによって、電極3の内部には、基端3b側(移動機構4側)から先端3a側(被加工材100側)に向かって、電解加工に供される電解液Wが流通される。なお、本実施形態では電極3は円筒状をなしている(図3参照)が、例えば断面多角形の角筒状をなしていてもよい。
 また、電極3の外周面は、例えば電気絶縁性を有するポリエステル系の樹脂等からなる絶縁層(不図示)によって被覆されており、先端3a側の端面では電極3が露出し、この先端3aの露出部分で電極3が被加工材100との間で通電可能となっている。
 電流供給部6は、ケーブル6aによって電極3と接続されて、電極3に電流を供給して電極3の基端3bから先端3aに向かって電流を流通させる電源装置である。
 次に磁界発生部7及び、これを支持する支持部材8について説明する。
 図2及び図3に示すように、磁界発生部7は、電極3に対して電極3の延在方向に交差する方向に磁界を印加する。
 また、この磁界発生部7は、電極3、及び電極3が挿通された被加工材100を挟むように対向して配置された一対の磁石9を有している。なお、この磁石9は電磁石であってもよいし永久磁石であってもよい。また、本実施形態では一対の磁石9は、電極3の先端3aに配置されている。
 ここで、一対の磁石9が対向する方向をX方向とし、X方向に直交し、電極3が延在する方向に沿う方向をY方向とし、これらX方向及びY方向に直交する方向をZ方向とする。
 支持部材8は、Y方向の一方側(図2の紙面下側)に配置されたステージ11と、このステージ11からY方向の他方側に延びる支持軸12と、支持軸12に取り付けられてZ方向の一方側(図2の紙面左側)に延びるとともに、磁界発生部7を支持する支持アーム13とを有している。
 ステージ11は、Y方向の一方側で、支持軸12及び支持アーム13を介して磁界発生部7を支持する土台である。
 支持軸12は、棒状をなしてステージ11上にZ方向に移動可能に設けられ、Z方向の一方側で支持アーム13を支持している。
 支持アーム13は、一対の磁石9を取り付けて、これら一対の磁石9から互いに離間するようにX方向に延びる一対の磁石支持部17と、この磁石支持部17各々の端部からZ方向の他方側に向かって延びる一対の腕部18と、これら一対の腕部18のZ方向の他方側の端部同士をX方向に連結する腕部連結部19とを有し、Y方向から見て枠状をなしている。
 支持軸移動機構14は、ステージ11に設けられて、支持軸12をZ方向に移動可能とする。また、この支持軸移動機構14の詳細は図示しないが、例えばモータやアクチュエータ等によって支持軸12を移動させる。
 支持アーム移動機構15は、支持軸12に設けられて支持アーム13をY方向に移動可能とする。また、この支持アーム移動機構15の詳細は図示しないが、例えばモータやアクチュエータ等によって支持アーム13を移動させる。
 このような電解加工装置1においては、電極3の先端3aから電解液Wが流出し、この電解液Wを介して電極3と被加工材100との間が通電され、被加工材100が溶解されながら被加工材100に加工孔101が形成されていく。この際、磁界発生部7によって電極3にX方向に磁界が印加され、電極3に流通する電流中の荷電粒子にローレンツ力Fが作用し、電極3はZ方向に曲げられる(図2の一点鎖線参照)。
 そして、本実施形態ではZ方向の一方側となる支持軸12から離間する方向に力が作用し、この方向に電極3が曲げられることで、被加工材100に加工孔101として曲がり孔を形成することができる。
 さらに、磁界の強さ、磁界の印加される方向を調整することによって電極3の曲げの強さ、曲げの方向を変化させることができる。
 また、磁界発生部7は、一対の磁石9を有している。これら一対の磁石9が対向して電極3を挟みこむように配置されているため、電極3の延在方向に交差する方向、即ちX方向に磁界を確実に印加でき、電極3を湾曲させて、加工孔101を所望の曲がり孔として容易に形成することができる。
 さらに、支持軸移動機構14及び支持アーム移動機構15によって、電極3に対して磁界を確実に印加するように、磁界発生部7を電極3の位置に対応する位置に移動させることができる。このため、電極3をより確実に湾曲させることができる。
 本実施形態の電解加工装置1によると、磁界発生部7によって荷電粒子に作用するローレンツ力Fを用いて電極3を湾曲させ、加工孔101として所望の形状の曲がり孔を被加工材100に容易に形成することが可能となる。
 なお、磁界発生部7は一対の磁石9を有していなくともよく、例えば磁石9は一つであってもよい。
 また、支持軸移動機構14及び支持アーム移動機構15は必ずしも設けなくともよい。
〔第二実施形態〕
 次に、本発明の第二実施形態に係る電解加工装置21について説明する。
 なお、第一実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、さらに磁界発生部7における一対の磁石9同士の位置を調整可能な磁石移動機構(第二移動機構)23をさらに備えている点で第一実施形態とは異なっている。
 図4に示すように、磁石移動機構23は、支持部材28における腕部連結部19に設けられて、この腕部連結部29を、X方向に伸縮可能とする。この磁石移動機構23の詳細は図示しないが、例えばモータやアクチュエータを有し、腕部連結部29を伸縮させることで、X方向に一対の磁石9同士を近接及び離間させる。
 このような電解加工装置21によると、一対の磁石9を磁石移動機構23によって近接させることでこれら一対の磁石9間に配置された電極3との間の距離が小さくなる。
 ここで電極3の電流中の荷電粒子に作用するローレンツ力Fは、印加される磁界の大きさに比例する。従って、磁石9と電極3との距離が小さくなると磁界が大きくなり、よってローレンツ力Fが増大してより大きな力を電極3に及ぼす。このようにして、電極3の湾曲度合いを大きくすることができる。
 一方で、一対の磁石9を磁石移動機構23によって離間させることで、これら一対の磁石9と電極3との間の距離は大きくなり、磁界が小さくなり、よってローレンツ力Fが低下して電極3に作用する力が減少し、電極3の湾曲度合いを小さくすることができる。
〔第三実施形態〕
 次に、本発明の第三実施形態に係る電解加工装置31について説明する。
 なお、第一実施形態及び第二実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、第一実施形態の電解加工装置1を基本構成として、磁界発生部7における一対の磁石9が対向するX方向に直交するY方向及びZ方向を回転軸線として、これら一対の磁石9を回転可能とする回転機構33をさらに備えている点で、第一実施形態とは異なっている。
 図5に示すように、回転機構33は、支持部材8における支持軸12を回転させることで、Y方向を回転軸線として支持アーム13を支持軸12とともに回転させる。また、支持アーム13と支持軸12との間の取り付け部分において、Z方向を回転軸線として支持アーム13を支持軸12に対して相対的に回転させる。そしてこの回転機構33の詳細は図示しないが、例えばモータやアクチュエータ等によって、支持アーム13を介して一対の磁石9を回転させる。
 このような電解加工装置31によると、被加工材100はタービン翼であるため、表面が曲面状となって三次元的な形状をなして、加工孔101自体も三次元的な曲がり孔に形成される必要がある。ここで、回転機構33によって、目標とする加工孔101の形状に合うように、一対の磁石9の向きを電極3の進行に合わせて変化させることができる。これにより、電極3に対して磁界を確実に印加して電極3を湾曲させ、加工孔101を所望の三次元的な形状をなす曲がり孔に形成することができる。
 なお、本実施形態の回転機構33を第二実施形態の電解加工装置21に適用してもよい。
〔第四実施形態〕
 次に、本発明の第四実施形態に係る電解加工装置41について説明する。
 なお、第一実施形態から第三実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、支持部材48が第一実施形態から第三実施形態とは異なっている。
 図6に示すように、支持部材48は、一対の磁石9を支持するとともに、Y方向に延在する軸線O1を中心とした環状をなすリングガイド43と、このリングガイド43を軸線O1回りに回転可能に案内するリングガイド支持部44と、このリングガイド支持部44をY方向の他方側(図6の紙面上側)から支持する吊り具45とを有している。
 リングガイド43は、軸線O1を中心に環状をなして、一対の磁石9同士を軸線O1を中心とした環状に接続することで支持している。換言すると、一対の磁石9はこのリングガイド43と一体となってリングガイド43と磁石9とで一つの環状部材を形成している。また、このリングガイド43は非磁性体よりなり、磁石9によって発生して電極3に印加される磁界を妨害しない。そして、リングガイド43及び一対の磁石9は、被加工材100を外周から覆った状態で保持されている。
 リングガイド支持部44は、全体として環状部材を形成するリングガイド43及び一対の磁石9をY方向両側から挟み込む一対のガイドローラ44aを有し、このガイドローラ44aによって、リングガイド43を軸線O1を中心に回転可能に支持している。
 またこのリングガイド支持部44は、ガイドローラ44aが設けられた位置とは軸線O1回りに180度離間して配置され、リングガイド43を外周から包み込んで支持する保持部44bを有している。
 吊り具45は、ガイドローラ44a及び保持部44bを上方から吊り下げるようにしてY方向の一方側より支持するワイヤ等よりなる。
 そしてこの吊り具45には、自身をY方向に移動可能とする吊り具移動機構(第一移動機構)46と、軸線O1回りに回転可能とする回転機構47とが設けられており、吊り具45を介して磁石9をY方向の一方側と他方側との間で移動させ、また軸線O1、即ちY方向を中心に回転させる。
 このような電解加工装置41によると、リングガイド43によって一対の磁石9が支持されていることで、加工孔101が三次元的な形状の曲がり孔に形成される必要がある場合にも、吊り具45を吊り具移動機構46及び回転機構47によって磁石9をY方向に移動させながら、目標とする曲がり孔の形状に合わせて磁界発生部7の向きを変化させることが可能である。
 従って、電極3に対して磁界を確実に印加して電極3を湾曲させ、所望の形状の曲がり孔を容易に形成することができる。
 ここで、図7に示すように、回転機構47は、吊り具45ではなくリングガイド支持部44における保持部44bに設けることで、リングガイド43及び磁石9を回転させてもよい。
〔第五実施形態〕
 次に、本発明の第五実施形態に係る電解加工装置51について説明する。
 なお、第一実施形態から第四実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、磁界発生部57、及び支持部材58の構成が第一実施形態から第四実施形態とは異なっている。
 図8に示すように、磁界発生部57は、一対の磁石9がY方向に延在する軸線O2を中心とした環状をなして複数が配置され、被加工材100を外周から覆っている。換言すると、電極3を挟み込むように配置された一対の磁石9が、電極3を取り囲むように環状に複数配列されてなる。また本実施形態では、隣り合う磁石9同士が周方向に連続的に取り付けられている。そして、これら磁石9は電磁石であり、磁界発生部57は、各々の一対の磁石9において発生する磁界の大きさを制御する磁界制御部53をさらに有している。
 支持部材58は、環状に配置された複数の磁石9を吊り下げるようにしてY方向の一方側から支持するワイヤ等よりなる。
 そして、この支持部材58には、自身をY方向に移動可能とする支持部材移動機構(第一移動機構)56が設けられて、環状をなす複数の磁石9のY方向への移動が可能となっている。
 磁界制御部53は、一対の磁石9毎に磁界の大きさを制御する。具体的には不図示の電源装置によって、各々の一対の磁石9へ印加される電圧や電流を変化させることで磁界の大きさを制御する。
 このような電解加工装置51によると、磁界制御部53によって、一対の磁石毎に磁界の大きさを制御することができる。即ち、いずれかの一対の磁石9を選択して磁界を発生させることができるため、磁石9を軸線O2回りに回転させることなく、電極3に磁界を印加する方向を軸線O2の周方向に連続的に変化させていくことが可能となる。従って、加工孔101が三次元的な形状の曲がり孔に形成される必要がある場合にも、支持部材移動機構56によって磁石9をY方向に移動させながら、目標とする曲がり孔の形状に合わせて磁界発生部57による磁界の向きを変化させることができる。
 従って、電極3に対して磁界を確実に印加して、電極3を所望の方向へ湾曲させ、所望の形状の曲がり孔を容易に形成することができる。
 なお、磁界発生部57では、磁石9は連続的に設けられていなくともよく、軸線O2の周方向に隙間をあけて設けられていてもよいが、連続的に設けられている方が、一対の磁石9で磁界が生じている状態から、この一対の磁石9に周方向に隣接する他の一対の磁石9で磁界が生じるように、磁界の発生方向を滑らかに変化させることができる。
〔第六実施形態〕
 次に、本発明の第六実施形態に係る電解加工装置61について説明する。
 なお、第一実施形態から第五実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、第一実施形態の電解加工装置1を基本構成として、複数の電極3によって複数の加工孔101の加工を同時に行う。
 図9に示すように、電極3は、Z方向に互いに間隔をあけて配置されている。
 磁界発生部67は、各々の電極3、及び加工孔101が形成されることで各々の電極3が挿通された被加工材100を挟むように、対向して配置された複数(本実施形態では三対)の磁石9を有している。
 また本実施形態では、各電極3の先端3aがY方向に異なる位置に配置された状態で、一対の磁石9が各電極3の先端3aに配置されていることで、これら複数対(三対)の磁石9は各々がY方向に異なる位置に配置されている。
 このような電解加工装置61によると、複数の電極3の各々に対してY方向に異なる位置で磁界発生部67によって磁界を印加させる。このため、一の電極3に磁界を印加する磁石9において発生する磁界が、他の電極3に対して作用してしまうことが無い。即ち、各々の電極3を同時に独立に、所望の形状に湾曲させることが可能となる。よって、複数の加工孔101を、所望の形状の曲がり孔として同時に形成することができる。
 なお、第二実施形態から第五実施形態においても、本実施形態のように複数の電極3を用いて同時に加工孔101を形成することが可能である。
〔第七実施形態〕
 次に、本発明の第七実施形態に係る電解加工装置71について説明する。
 なお、第一実施形態から第六実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、第一実施形態の電解加工装置1を基本構成として、電極3の位置を検出する検出部73と、この検出部73からの入力によって磁界の大きさを変化させる位置ずれ制御部74とをさらに備えている。
 図10に示すように、検出部73は電極3の位置を検出する装置である。この検出部73には例えばX線を用いたレントゲン撮影装置や、サーモグラフィー、放射線検査装置、超音波探傷器、磁気共鳴画像装置(MRI)などが用いられる。また、例えば電極3に磁界が印加された際には磁場に変化が生じるため、この磁場の変化を検知することで、電極3の位置を検出してもよい。
 位置ずれ制御部74は、検出部73からの入力を受け、この入力値と、予め設定された目標加工値との差分を演算し、この差分を低減するように磁界を変化させる。
 このような電解加工装置71によると、検出部73、位置ずれ制御部74によって、加工孔101を目標加工位置に近づくようにフィードバック制御を行うことができ、より確実に所望の形状の曲がり孔を形成することができる。
 なお、磁界の大きさを変化させる際には、第二実施形態の磁石移動機構23を用いて電極3と磁石9との距離を変化させてもよいし、磁石9が電磁石である場合には、磁石9に印加する電圧や、電流の大きさを変化させてもよい。
 また、本実施形態の検出部73、位置ずれ制御部74は、第二実施形態から第六実施形態に適用してもよい。
〔第八実施形態〕
 次に、本発明の第八実施形態に係る電解加工装置81について説明する。
 なお、第一実施形態から第七実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、第一実施形態の電解加工装置1を基本構成として、加工中の加工孔101内部での電極3の撓み量を低減する撓み量低減機構83をさらに備えている。
 図11に示すように、撓み量低減機構83は、電極3に磁界を印加する補助磁界発生部87と、この補助磁界発生部87から電極3に印加される磁界の大きさを変化させる撓み量制御部85とを有している。
 補助磁界発生部87は、電極3、及び電極3が挿通された被加工材100をZ方向の両側から挟み込むように対をなして配置された磁石89を複数(本実施形態では四対)有している。これら対をなす磁石89はY方向に間隔をあけて複数設けられている。そして電極3に対して電極3の延在方向に交差するZ方向に磁界を印加する。またこの磁石89は電磁石であってもよいし永久磁石であってもよい。
 なお、これら対をなす磁石89は、X方向から電極3を挟み込むように配置されてもよいし、Z方向及びX方向から電極3を挟み込んでもよい。
 撓み量制御部85は、電極3の進行によって生じる電極3の撓み量を予め演算して記憶しているとともに、この撓み量を低減するように、補助磁界発生部87の磁石89から電極3に印加される磁界の強さを変化させる。ここで、電極3の撓み量は、電極3の基端3bを支点とした片持ちの梁とみなすことで演算可能である。なお、補助磁界発生部87での磁界の大きさを変化させる際には、例えば第二実施形態の磁石移動機構23のような機構を用いて電極3と磁石89との距離を変化させてもよいし、磁石89が電磁石である場合には、磁石89に印加する電圧、及び電流の大きさを変化させてもよい。
 またこの撓み量制御部85では、予め演算した電極3の撓み量を低減するように磁界を印加する方法は、各々の対をなす磁石89において予め設定された所定の磁界を印加するようにしてもよいし、対をなす磁石89のうち必要なもののみにパルス波のように間欠的に磁界を印加してもよいし、正弦波等で周期的に印加してもよい。
 このような電解加工装置81によると、電極3が先端3a側に向かって進行しながら被加工材100の加工孔101を曲がり孔として加工する際に、加工孔101内で撓みが発生することがあり、この際には加工孔101の加工の円滑性が損なわれてしまうことがある。ここで、撓み量低減機構83によって、電極3に生じた撓みを低減するように補助磁界発生部87から電極3に磁界が印加され、ローレンツ力F1によって電極3を湾曲させることが可能となる。従って、加工孔101を曲がり孔として容易に加工することができる。
 なお、電極3の撓み量については、梁の計算ではなく、第七実施形態で説明した検出部73のような装置を適用してもよい。即ち、レントゲン撮影装置、サーモグラフィー、放射線検査装置、超音波探傷器、磁気共鳴画像装置(MRI)などを用いて、電極3の位置を検出し、この検出値から撓み量を演算することも可能である。
 また、補助磁界発生部87では、磁石89は対をなして設けられていなくともよく、例えばZ方向、X方向の一方側にのみ設けられていてもよい。
 また、本実施形態の撓み量低減機構83は、第二実施形態から第七実施形態に適用してもよい。
〔第九実施形態〕
 次に、本発明の第九実施形態に係る電解加工装置91について説明する。
 なお、第一実施形態から第八実施形態と共通の構成要素には同一の符号を付して詳細説明を省略する。
 本実施形態では、第一実施形態の電解加工装置1を基本構成として、第八実施形態とは異なる撓み量低減機構93をさらに備えている。
 図12に示すように、撓み量低減機構93は、電極3に磁界を印加する補助磁界発生部97と、この補助磁界発生部97を電極3の延在方向となるY方向に往復動可能とする往復機構94とを有している。
 補助磁界発生部97は、電極3、及び電極3が挿通された被加工材100をZ方向の両側から挟み込むように、一対の磁石99を有している。そして電極3に対して電極3の延在方向に交差するZ方向に磁界を印加する。またこの磁石89は電磁石であってもよいし永久磁石であってもよい。
 なお、一対の磁石99は、X方向から電極3を挟み込むように配置されてもよいし、Z方向及びX方向から電極3を挟み込んでもよい。
 往復機構94は、一対の磁石99をY方向に沿って往復動させる。この往復機構94の詳細は図示しないが、例えばモータやアクチュエータによって磁石99を移動させるものである。また、本実施形態では、電極3の先端3a側に配置された磁界発生部7と、電極3の基端3bとの間で往復動する。
 このような電解加工装置91によると、被加工材100に曲がり孔を加工する際に、電極3が撓んでしまった場合に、補助磁界発生部97の一対の磁石99によって電極3の延在方向に往復動しながら磁界を印加することで、ローレンツ力F1によって電極3を湾曲させることが可能となる。従って、電極3をしごくようにして撓み量を低減することができ、加工孔101を曲がり孔としてさらに容易に加工可能となる。
 なお、電極3の撓み量については、第八実施形態同様に、梁の計算ではなく第七実施形態で説明した検出部73のような装置を適用してもよい。
 また、補助磁界発生部97では、磁石99は対をなして設けられていなくともよく、例えばZ方向、X方向の一方側にのみ設けられていてもよい。
 また、本実施形態の撓み量低減機構93は、第二実施形態から第七実施形態に適用してもよい。
 以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
 例えば、上述の実施形態における電流供給部6から電極3へ流通させる電流の大きさを制御する電流制御部をさらに備えていてもよい。そしてこのような電流制御部によって電流を増大させた場合には電極3に流通する電流中の荷電粒子に作用するローレンツ力Fの大きさを大きくできる。一方で、電流を減少させるとこのローレンツ力Fを減少させることができる。よって、このようにして電極3に作用する曲げの力を制御でき、加工孔101を所望の曲がり孔に加工することができる。
 なお、このように電極3の電流を増大させた場合には、単位時間当たりの電解量が増大するため、加工孔101の孔径が大きくなってしまうが、例えば電極3の進行速度を増大させることで孔径が増大してしまうことを防止できる。
 また上述の実施形態では、磁界発生部7(57、67)によって磁界を電極3に印加しているため、加工の際に電極3を案内するガイド部5は必ずしも設けなくともよい。
 上記した電解加工装置によると、磁界発生部によって電流中の荷電粒子に作用するローレンツ力を用いて電極を湾曲させ、所望の形状の曲がり孔を容易に形成することが可能となる。
 1   電解加工装置
 3   電極
 3a  先端
 3b  基端
 4   移動機構
 4a  把持部
 5   ガイド部
 5a  ガイド孔
 6   電流供給部
 6a  ケーブル
 7   磁界発生部
 8   支持部材
 9   磁石
 11  ステージ
 12  支持軸
 13  支持アーム
 14  支持軸移動機構(第一移動機構)
 15  支持アーム移動機構(第一移動機構)
 17  磁石支持部
 18  腕部
 19  腕部連結部
 O   軸線
 W   電解液
 21  電解加工装置
 23  磁石移動機構(第二移動機構)
 28  支持部材
 29  腕部連結部
 31  電解加工装置
 33  回転機構
 41  電解加工装置
 43  リングガイド
 44  リングガイド支持部
 44a ガイドローラ
 44b 保持部
 45  吊り具
 46  吊り具移動機構(第一移動機構)
 47  回転機構
 48  支持部材
 O1  軸線
 51  電解加工装置
 53  磁界制御部
 56  支持部材移動機構(第一移動機構)
 57  磁界発生部
 58  支持部材
 O2  軸線
 61  電解加工装置
 67  磁界発生部
 71  電解加工装置
 73  検出部
 74  位置ずれ制御部
 81  電解加工装置
 83  撓み量低減機構
 85  撓み量制御部
 87  補助磁界発生部
 89  磁石
 91  電解加工装置
 93  撓み量低減機構
 94  往復機構
 97  補助磁界発生部
 99  磁石
 100  被加工材
 100a  先端
 101   加工孔  

Claims (12)

  1.  筒状をなして延在し、可撓性を有する導電性材料からなり、内側を基端側から先端側に向かって電解液が流通する電極と、
     前記電極に対して該電極の延在方向に電流を流通させる電流供給部と、
     前記電極に対して前記延在方向に交差する方向に磁界を印加する磁界発生部と、
     を備える電解加工装置。
  2.  前記磁界発生部が、対向して配置された少なくとも一対の磁石を有する請求項1に記載の電解加工装置。
  3.  前記磁界発生部を前記一対の磁石の対向方向に直交する方向に移動可能とする第一移動機構をさらに備える請求項2に記載の電解加工装置。
  4.  前記磁界発生部を前記一対の磁石の対向方向に直交する方向に延びる軸線回りに回転移動可能とする回転機構をさらに備える請求項2又は3に記載の電解加工装置。
  5.  前記磁界発生部における前記一対の磁石を支持し、前記軸線回りに環状に形成されたリングガイドを有する支持部材をさらに備える請求項4に記載の電解加工装置。
  6.  前記磁界発生部は、前記電極を挟み込むように配置された前記一対の磁石が、該電極を取り囲むように環状に複数配列されてなり、
     前記一対の磁石はそれぞれ電磁石であって、
     前記一対の磁石毎に発生する磁界の大きさの制御を行う磁界制御部をさらに有する請求項2又は3に記載の電解加工装置。
  7.  前記磁界発生部の前記一対の磁石同士を、近接及び離間させる第二移動機構をさらに備える請求項2から4のいずれか一項に記載の電解加工装置。
  8.  前記電流供給部から前記電極に流通させる前記電流の大きさを制御する電流制御部をさらに備える請求項1から7のいずれか一項に記載の電解加工装置。
  9.  前記電極の前記延在方向に交差する方向に互いに間隔をあけて前記電極が複数配置され、
     前記複数の電極の各々に対して前記延在方向に異なる位置で前記磁界を印加するように前記磁界発生部が配置される請求項1から8のいずれか一項に記載の電解加工装置。
  10.  前記電極の位置を検出する検出部と、
     前記検出部からの入力と予め設定された目標加工位置との差分を演算して、前記差分を低減するように前記磁界の大きさを変化させる位置ずれ制御部とをさらに備える請求項1から9のいずれか一項に記載の電解加工装置。
  11.  前記電極に対して前記延在方向に交差する方向に磁界を印加する補助磁界発生部と、前記電極の撓み量を演算して、該撓み量を低減するように前記補助磁界発生部から印加される磁界の大きさを変化させる撓み量制御部とを有する撓み量低減機構をさらに備える請求項1から10のいずれか一項に記載の電解加工装置。
  12.  前記電極に対して前記延在方向に交差する方向に磁界を印加する補助磁界発生部と、前記補助磁界発生部を前記電極の前記延在方向に沿って往復動させる往復機構とを有する撓み量低減機構をさらに備える請求項1から10のいずれか一項に記載の電解加工装置。
PCT/JP2013/077462 2012-10-10 2013-10-09 電解加工装置 WO2014057970A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/432,287 US9943919B2 (en) 2012-10-10 2013-10-09 Electrochemical machining apparatus
KR1020157008444A KR101704314B1 (ko) 2012-10-10 2013-10-09 전해 가공 장치
DE112013004957.0T DE112013004957B4 (de) 2012-10-10 2013-10-09 Elektrochemische Bearbeitungsvorrichtung
CN201380051503.5A CN104718043B (zh) 2012-10-10 2013-10-09 电解加工装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-224973 2012-10-10
JP2012224973A JP5984611B2 (ja) 2012-10-10 2012-10-10 電解加工装置

Publications (1)

Publication Number Publication Date
WO2014057970A1 true WO2014057970A1 (ja) 2014-04-17

Family

ID=50477437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077462 WO2014057970A1 (ja) 2012-10-10 2013-10-09 電解加工装置

Country Status (6)

Country Link
US (1) US9943919B2 (ja)
JP (1) JP5984611B2 (ja)
KR (1) KR101704314B1 (ja)
CN (1) CN104718043B (ja)
DE (1) DE112013004957B4 (ja)
WO (1) WO2014057970A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241751B2 (en) 2016-06-30 2022-02-08 General Electric Company Drilling tool for use in machining a conductive work piece

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200478206Y1 (ko) 2014-05-02 2015-09-09 한전케이피에스 주식회사 가스터빈 블레이드의 냉각유로 형성을 위한 전해가공용 지그
US9943921B2 (en) * 2015-07-30 2018-04-17 General Electric Company Electrochemical machining system and method of machining a conductive work piece
CN107523856B (zh) 2016-06-17 2020-11-06 通用电气公司 对工件进行加工的系统和方法以及制品
US10391570B2 (en) * 2016-09-08 2019-08-27 Makino Milling Machine Co., Ltd. Small hole electric discharge machine
JP7141816B2 (ja) * 2017-07-18 2022-09-26 三菱重工業株式会社 電解加工方法、孔あき部材の製造方法、加工用電極、及び、電解加工システム
CN109719358B (zh) * 2017-10-31 2020-08-14 镱钛科技股份有限公司 电解加工装置
KR102150300B1 (ko) * 2018-07-17 2020-09-01 전북대학교산학협력단 금속 내부 곡선 가공 시스템
KR102117500B1 (ko) * 2018-08-09 2020-06-01 조선대학교산학협력단 마그네틱 전극 유도를 이용한 전기화학 가공장치 및 이를 이용한 전기화학 가공방법
KR102117494B1 (ko) * 2018-08-09 2020-06-09 조선대학교산학협력단 전기화학 가공장치용 전극 툴
CN109277655B (zh) * 2018-09-12 2020-02-21 南京航空航天大学 多图案镂空薄片金属带电解喷射加工装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230732A (en) * 1975-08-30 1977-03-08 Mtu Muenchen Gmbh Device for electrolytic precision perforation
JP2008522852A (ja) * 2004-12-15 2008-07-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 工作物を加工するための方法
JP2012035369A (ja) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd 電解加工装置
JP2012106320A (ja) * 2010-11-19 2012-06-07 Denso Corp 形状加工を行う放電加工装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751948A (ja) 1993-08-05 1995-02-28 Nissan Motor Co Ltd 曲がり穴加工方法および曲がり穴加工装置
JP2005040917A (ja) * 2003-07-24 2005-02-17 Mitsubishi Electric Corp 放電加工装置
EP1695783B1 (de) 2005-02-28 2008-04-16 Siemens Aktiengesellschaft Verfahren zum Ermitteln der Lage eines elektrochemisch gebohrten Kanals
DE102005015107A1 (de) * 2005-04-01 2006-10-05 Robert Bosch Gmbh Magnetische Elektrodenführung zur funkenerosiven Bearbeitung
US8535491B2 (en) 2009-09-18 2013-09-17 General Electric Company Electrochemical machining assembly with curved electrode
JP5506453B2 (ja) 2010-02-26 2014-05-28 三菱重工業株式会社 動作状態診断システム、監視装置、監視方法、プログラム及び記録媒体
CN102554376A (zh) * 2011-10-31 2012-07-11 北京理工大学 可变磁场辅助电化学复合加工装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230732A (en) * 1975-08-30 1977-03-08 Mtu Muenchen Gmbh Device for electrolytic precision perforation
JP2008522852A (ja) * 2004-12-15 2008-07-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 工作物を加工するための方法
JP2012035369A (ja) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd 電解加工装置
JP2012106320A (ja) * 2010-11-19 2012-06-07 Denso Corp 形状加工を行う放電加工装置及び方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241751B2 (en) 2016-06-30 2022-02-08 General Electric Company Drilling tool for use in machining a conductive work piece

Also Published As

Publication number Publication date
JP2014076506A (ja) 2014-05-01
DE112013004957T5 (de) 2015-06-25
JP5984611B2 (ja) 2016-09-06
CN104718043B (zh) 2016-12-14
US20150251262A1 (en) 2015-09-10
DE112013004957B4 (de) 2023-06-29
KR101704314B1 (ko) 2017-02-07
CN104718043A (zh) 2015-06-17
KR20150046342A (ko) 2015-04-29
US9943919B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5984611B2 (ja) 電解加工装置
CN108213649B (zh) 一种磁场控制式电弧机器人增材成形方法及装置
JP6008792B2 (ja) 電解加工工具、及び電解加工システム
JP4763717B2 (ja) 工作物を加工するための方法
KR101200871B1 (ko) 교반장치 부착 용해로
EP2274953B1 (en) Inductive heating using permanent magnets for hardening of gear teeth and components alike
JP3923427B2 (ja) 放電加工装置及び放電加工方法
JP2015523217A (ja) 調節可能な回転式アーク溶接方法およびシステム
WO2018196346A1 (zh) 一种金属表面改性装置
AU2015272005A1 (en) Welding apparatus having a wire pulser
CN106670628B (zh) 重熔设备和重熔方法
US4650959A (en) Welding wire feeding apparatus with orbital mounting assembly
JP6008517B2 (ja) 電解加工装置
EP2658671A1 (en) Method and apparatus for welding with curtain electrodes and strip electrodes
KR101168306B1 (ko) 용접 캐리지
CN110248759A (zh) 电弧点调节杆安装结构、多关节焊接机器人以及焊接装置
JP2018024019A (ja) 熱に敏感な材料を含むワークピースを溶接する方法および装置
JP5621961B2 (ja) サブマージアーク溶接方法及び装置
JP6663802B2 (ja) 電解加工装置、及び電解加工方法
CN110576239A (zh) 旋转电弧的电弧铣削加工装置及加工方法
WO2018217857A2 (en) Improved wire feeder
JP2914583B2 (ja) プラズマアーク発生装置
CN114393280B (zh) 基于非对称纵向磁场传感的大曲率焊缝偏差识别方法
WO2013121503A1 (ja) セプタム電磁石および粒子線治療装置
JP2007007856A (ja) 放電加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432287

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157008444

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013004957

Country of ref document: DE

Ref document number: 1120130049570

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845282

Country of ref document: EP

Kind code of ref document: A1