WO2014057899A1 - 表面処理剤及び表面処理方法 - Google Patents

表面処理剤及び表面処理方法 Download PDF

Info

Publication number
WO2014057899A1
WO2014057899A1 PCT/JP2013/077203 JP2013077203W WO2014057899A1 WO 2014057899 A1 WO2014057899 A1 WO 2014057899A1 JP 2013077203 W JP2013077203 W JP 2013077203W WO 2014057899 A1 WO2014057899 A1 WO 2014057899A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
metal
film
metal material
treatment agent
Prior art date
Application number
PCT/JP2013/077203
Other languages
English (en)
French (fr)
Inventor
和史 安田
秀公 平澤
建二 柘植
晃宏 水野
良平 靜
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Priority to US14/434,701 priority Critical patent/US9701806B2/en
Priority to ES13844902.0T priority patent/ES2663391T3/es
Priority to EP13844902.0A priority patent/EP2907897B1/en
Publication of WO2014057899A1 publication Critical patent/WO2014057899A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a surface treatment agent and a surface treatment method for treating the surface of a metal material.
  • Laminate film laminated on the surface of metal material is excellent in workability, corrosion resistance, content barrier property, etc., and unlike coating, there is no volatilization of organic solvent etc. in the application process to metal material, which is preferable in terms of production environment Therefore, it is widely used as a surface protective material for metal materials for packaging, such as food cans, design cans, capacitor cases, battery members, etc., which are pre-coated in coils or sheets.
  • the material obtained by laminating the surface of the metal material is laminated because the adhesion between the metal material and the laminate film is not sufficient.
  • the laminate film may be peeled off from the metal material. Such peeling of the laminate film from the metal material is a major cause of deteriorating the aesthetics of the laminated material and lowering the corrosion resistance of the laminated material.
  • Patent Document 1 a surface treatment layer is formed by a metal surface treatment composition on the surface of a metal material prior to laminating, and a laminate film, a metal material, A technique for improving the adhesion of the resin is disclosed.
  • Patent Document 2 discloses a basic zirconium compound and / or cerium compound, a carboxyl group-containing resin, and an oxazoline group-containing composition as a metal surface treatment composition used for the surface treatment of a surface treatment agent for an aluminum-based metal substrate.
  • a metal surface treatment composition that contains an acrylic resin and does not contain fluorine is disclosed, and a metal material obtained by laminating an aluminum metal substrate treated with such a metal surface treatment composition It is described that it can be applied to.
  • Patent Documents 3 and 4 indicate that a material in which a laminate film is bonded to the surface of a metal material is used as a battery member for a lithium ion battery.
  • a material in which a laminate film is bonded to the surface of a metal material is used as a battery member, it is necessary to sufficiently withstand long-term use. Requires very high adhesion.
  • the outstanding corrosion resistance is calculated
  • Patent Documents 1 to 4 have been highly evaluated for laminate adhesion, all of them have insufficient corrosion resistance.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a surface treatment agent capable of imparting excellent corrosion resistance while improving adhesion between a resin-containing layer such as a laminate film and the surface of a metal material. And providing a surface treatment method.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, it was found that the above problems can be solved by using a surface treatment agent containing a carboxyl group and a hydroxyl group-containing acrylic resin, an oxazoline group-containing compound and specific metal particles for the surface treatment of the metal material.
  • the invention has been completed.
  • the present invention is a surface treatment agent for treating the surface of a metal material, comprising an acrylic resin containing a carboxyl group and a hydroxyl group, an oxazoline group-containing compound and metal particles,
  • a surface treatment agent for treating the surface of a metal material, comprising an acrylic resin containing a carboxyl group and a hydroxyl group, an oxazoline group-containing compound and metal particles,
  • the particles are particles containing at least one metal selected from the group consisting of Nb, Ca and Nd.
  • the metal particles are preferably niobium oxide sol.
  • the content of the metal particles is preferably 0.05 to 2.5% by mass in terms of metal oxide with respect to the total amount of the surface treatment agent.
  • a mass ratio of the content of the acrylic resin containing the carboxyl group and the hydroxyl group and the content of the oxazoline group-containing compound and the content of the metal particles in terms of metal oxide (the carboxyl group and the hydroxyl group
  • the total content of the acrylic resin and the content of the oxazoline group-containing compound / the content of the metal particles in terms of metal oxide) is preferably 0.4 to 7.5.
  • the present invention also provides a surface treatment method in which a surface treatment film is formed by performing a surface treatment with the surface treatment agent.
  • the surface treatment film preferably contains 20 to 600 mg / m 2 of metal derived from the metal particles in terms of metal oxide.
  • the present invention it is possible to provide a surface treatment agent and a surface treatment method capable of imparting excellent corrosion resistance while enhancing adhesion between a resin-containing layer such as a laminate film and the surface of a metal material.
  • the metal material treated with the surface treating agent of the present invention can be preferably used as a metal member for a battery that requires excellent hydrofluoric acid resistance and alkali resistance.
  • the surface treating agent for treating the surface of the metal material of the present embodiment contains an acrylic resin containing a carboxyl group and a hydroxyl group, an oxazoline group-containing compound and metal particles, and the metal particles are made of Nb, Ca and Nd. It is a particle containing at least one metal selected from the group consisting of:
  • the metal material treated with the surface treatment agent of the present embodiment includes a film composed of a surface treatment film on the surface of the metal material.
  • membrane is set as a "metal material.”
  • the surface treatment film formed on the metal material has very good adhesion to both the resin film and the metal material, and thus can be widely applied to metal materials that require laminating. It is effective for improving the adhesion between the surface of the metal member for use and the resin film.
  • the corrosion resistance of the metal material is also formed by forming a film including the surface treatment film on the surface of the metal material. Can be increased.
  • the surface treating agent of this embodiment can be used for various metal materials such as iron, SUS, aluminum, aluminum alloy, copper, and copper alloy.
  • the metal material can be used for various purposes such as cans, heat exchangers, battery metal members, etc., as long as a layer containing an organic resin is laminated on the surface treatment film. It can be preferably used for a metal member.
  • a battery metal member it is comprised from the metal used as battery members, such as a battery packaging material and an electrode, for example, aluminum, aluminum alloy, copper, copper alloy, SUS etc. are mentioned.
  • the metal member for a battery As a metal member for a battery, it is rich in workability, excellent in corrosion resistance, and further exhibits excellent adhesion with a resin film by using the surface treatment agent of this embodiment, so aluminum, aluminum alloy, copper It is preferable to use a copper alloy.
  • the shape of the metal member for batteries is not particularly limited, and can be adjusted to a desired shape according to the application.
  • the acrylic resin having a carboxyl group is a resin having a repeating unit derived from a carboxyl group-containing (meth) acrylic monomer.
  • the carboxyl group-containing (meth) acrylic monomer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, and maleic acid. These may use only 1 type and may use 2 or more types together.
  • a dense surface treatment film improves the hydrofluoric acid resistance and alkali resistance of the metal material.
  • the carboxyl group remaining in the surface treatment film contributes to the improvement of the adhesion between the surface treatment film and the resin film, the surface treatment film and the metal material surface, and the surface treatment film and the chemical conversion film.
  • the acrylic resin having a carboxyl group also has a hydroxyl group.
  • the acrylic resin having a hydroxyl group is a resin having a repeating unit derived from a hydroxyl group-containing (meth) acrylic monomer.
  • the hydroxyl group-containing (meth) acrylic monomer is not particularly limited.
  • the acrylic resin has both a carboxyl group and a hydroxyl group, the carboxyl group and the hydroxyl group are hydrogen-bonded in the surface treatment film, contributing to the formation of a denser surface treatment film.
  • the weight molecular weight of the acrylic resin containing a carboxyl group and a hydroxyl group is preferably 2,000 to 100,000.
  • the acid value as a resin solid content of an acrylic resin containing a carboxyl group and a hydroxyl group is 400 to 750 mgKOH / g, more preferably 500 to 650 mgKOH / g.
  • the acid value satisfies the above range, not only the adhesion to the resin-containing layer such as a laminate film but also the adhesion to the surface of the metal material or the chemical conversion film is improved.
  • the hydroxyl value of the acrylic resin containing a carboxyl group and a hydroxyl group is 50 to 200 mgKOH / g, more preferably 70 to 120 mgKOH / g.
  • the hydroxyl value satisfies the above range, not only the adhesion with a resin-containing layer such as a laminate film but also the adhesion with the surface of a metal material or a chemical conversion film is improved.
  • the oxazoline group-containing compound is not particularly limited as long as it has an oxazoline group. That is, the oxazoline group-containing compound is not limited as long as it contains a plurality of oxazoline groups in the molecule.
  • the main chain is an oxazoline group-containing resin having an acrylic skeleton, and the main chain is an oxazoline group-containing resin having a styrene / acryl skeleton.
  • An oxazoline group-containing resin having a styrene skeleton as the main chain and an oxazoline group-containing resin having an acrylonitrile / styrene skeleton as the main chain can be used.
  • the oxazoline group-containing acrylic resin commercially available products can be used.
  • the oxazoline value of the oxazoline group-containing resin is preferably 120 to 240 g (solid content) / equivalent.
  • the oxazoline value (g (solid content) / equivalent) is defined as the resin mass per mol of the oxazoline group.
  • the oxazoline group of the oxazoline group-containing compound reacts with the carboxyl group of the acrylic resin containing the carboxyl group and the hydroxyl group, thereby contributing to the formation of a dense surface treatment film. Alkali resistance) can be improved. Moreover, the oxazoline group remaining in the surface treatment film contributes to improving the adhesion between the resin-containing layer such as a laminate film and the surface treatment film.
  • the metal particles are particles containing a metal (element) as a simple metal, a metal compound such as a metal oxide or a metal hydroxide, or a mixture thereof.
  • the metal particles contained in the surface treatment agent according to this embodiment are particles containing at least one metal (element) selected from Nb, Ca, and Nd.
  • metal particles as a metal particle.
  • size of the metal particles those having a number average particle diameter of 5 to 500 nm are preferable because they can be stably dispersed in the surface treatment agent.
  • shape of the metal particles any shape such as a spherical shape, a substantially spherical shape, a scale shape, a needle shape, a foil piece shape, and a plate shape can be used as long as it is suitable for the purpose of the present invention.
  • the number average particle diameter of the metal particles can be measured based on a dynamic light scattering method.
  • the metal particles are preferably metal particles made of a metal oxide because they are easy to handle and obtain.
  • the metal particles are preferably particles containing Nb, more preferably niobium oxide sol, since the corrosion resistance (particularly hydrofluoric acid resistance and alkali resistance) of the metal material can be improved.
  • the adhesion between the surface treatment film and the metal material improves the adhesion between the surface treatment film and the metal material, the adhesion between the surface treatment film and the resin-containing layer such as a laminate film, and improve the corrosion resistance (particularly hydrofluoric acid resistance and alkali resistance) of the metal material.
  • the metal particles are included in the surface treatment agent. Furthermore, it is preferable to adjust the content of each component of the surface treatment agent within the following range.
  • the content of the acrylic resin containing a carboxyl group and a hydroxyl group with respect to the total solid content in the surface treatment agent is preferably 10 to 80% by mass from the viewpoint of enhancing the effect of the present embodiment.
  • the content of the acrylic resin containing a carboxyl group and a hydroxyl group is more preferably 15 to 75% by mass, and still more preferably 40 to 70% by mass.
  • the content of the oxazoline group-containing compound with respect to the total solid content in the surface treatment agent is preferably 1 to 40% by mass from the viewpoint of enhancing the effect of the present embodiment.
  • the content of the oxazoline group-containing compound is more preferably 5 to 35% by mass, and still more preferably 5 to 15% by mass.
  • the mass ratio of the acrylic resin containing carboxyl group and hydroxyl group and the oxazoline group-containing compound in the surface treatment agent is the effect of this embodiment. From the viewpoint of increasing the thickness, it is preferably 0.5 to 10.
  • the solid content mass ratio (acrylic resin containing carboxyl group and hydroxyl group / oxazoline group-containing compound) is more preferably 0.5 to 5.
  • the content of the metal particles in the surface treatment agent enhances the adhesion between the resin-containing layer such as a laminate film and the surface of the metal material, and also has high corrosion resistance (particularly hydrofluoric acid resistance and alkali resistance) to the metal material. From the viewpoint of imparting the amount of metal, it is preferably 0.05 to 3.5% by mass in terms of metal oxide based on the total amount of the surface treatment agent.
  • the content of the metal particles is more preferably 0.05 to 2.5% by mass, and further preferably 0.1 to 1.5% by mass.
  • the mass ratio of the total content of the acrylic resin containing carboxyl groups and hydroxyl groups and the content of the oxazoline group-containing compound to the content of metal particles in terms of metal oxide is between the resin-containing layer such as a laminate film and the surface of the metal material.
  • the resin-containing layer such as a laminate film and the surface of the metal material.
  • it is preferably from 0.1 to 10.
  • the mass ratio total content of acrylic resin containing carboxyl group and hydroxyl group and oxazoline group-containing compound / content of metal particles in terms of metal oxide
  • the mass ratio total content of acrylic resin containing carboxyl group and hydroxyl group and oxazoline group-containing compound / content of metal particles in terms of metal oxide
  • the total solid content of the surface treatment agent is preferably 0.05 to 8% by mass from the viewpoint of further enhancing the above effects.
  • the total solid content of the surface treatment agent is more preferably 0.6 to 5% by mass.
  • the surface treatment agent may contain, for example, a catalyst, a viscosity modifier, an antibacterial agent, a surfactant, a defoaming agent, a rust preventive agent, and the like as components other than the above components as long as the effects of the present embodiment are not impaired. .
  • a chemical conversion film may be formed on the surface of the metal material by chemical conversion treatment with a chemical conversion treatment agent containing zirconium, vanadium and aluminum.
  • a chemical conversion treatment agent containing zirconium, vanadium and aluminum.
  • the chemical conversion treatment agent used in the case of performing a chemical conversion treatment performed before the surface treatment of the metal material with the surface treatment agent according to the present embodiment contains zirconium, vanadium and aluminum ions, and the zirconium ion in the chemical conversion treatment agent.
  • the content of is preferably 50 to 20,000 ppm by mass in terms of metal, more preferably 100 to 10,000 ppm by mass, and even more preferably 200 to 10,000 ppm by mass.
  • the vanadium ion content is preferably 10 to 20,000 mass ppm in terms of metal, more preferably 50 to 10,000 mass ppm, and still more preferably 100 to 8,000 mass ppm.
  • Zirconium, vanadium, and aluminum contained in the chemical conversion treatment agent all exist as various ions including complex ions. Therefore, in this specification, each content of zirconium, titanium, and vanadium means the value of various ions in terms of metal elements.
  • zirconium ions change due to the chemical conversion reaction, and as a result, zirconium precipitates mainly composed of zirconium oxide are deposited on the surface of the metal material.
  • zirconium compound that is a supply source of zirconium ions include zirconium compounds such as fluorozirconic acid and zirconium fluoride, and salts of lithium, sodium, potassium, ammonium, and the like.
  • a zirconium compound such as zirconium oxide dissolved in a fluoride such as hydrofluoric acid can be used. When these compounds contain fluorine like these zirconium compounds, these compounds have a function of etching the surface of the metal material.
  • a chemical conversion film containing vanadium is formed together with zirconium.
  • a vanadium compound that is a supply source of the vanadium element a vanadium compound having vanadium valence of 2 to 5 can be used.
  • metavanadate, ammonium metavanadate, sodium metavanadate, vanadium pentoxide, vanadium oxychloride, vanadyl sulfate, vanadyl nitrate, vanadyl phosphate, vanadium oxide, vanadium dioxide, vanadium oxyacetylacetonate, vanadium chloride, etc. Can be mentioned.
  • vanadium precipitates mainly composed of vanadium oxide are deposited on the surface of the metal material. More specifically, vanadium ions are converted into vanadium oxide by a reduction reaction, and thereby vanadium precipitates are deposited on the surface of the metal material.
  • Vanadium precipitates unlike zirconium precipitates that have the property of covering the entire surface except for a part of the surface of the metal material, are likely to deposit on segregated materials on the surface of the metal material where zirconium precipitates are difficult to form. Has characteristics. Thereby, a dense chemical conversion film having a high covering property can be formed by the zirconium precipitate and the vanadium precipitate.
  • the chemical conversion treatment agent contains aluminum ions.
  • aluminum ions are also eluted from the metal material into the chemical conversion treatment agent.
  • the chemical conversion treatment reaction can be promoted by positively adding aluminum ions.
  • Examples of a supply source of aluminum ions include aluminum nitrates such as aluminum nitrate, aluminum sulfate, aluminum fluoride, aluminum oxide, alum, aluminum silicate and sodium aluminate, and fluoroaluminum salts such as sodium fluoroaluminate.
  • the content of zirconium ions is preferably 50 to 20,000 ppm by mass, more preferably 100 to 10,000 ppm by mass, and 200 to 10,000 ppm. More preferably, it is ppm by mass.
  • the vanadium ion content is preferably 10 to 20,000 mass ppm in terms of metal, more preferably 50 to 10,000 mass ppm, and even more preferably 100 to 8,000 mass ppm. Satisfying these, the chemical conversion film formed with the chemical conversion treatment agent containing the above components and the above-mentioned surface treatment film are combined, so that the adhesion between the surface of the metal material and the resin-containing layer such as a laminate film is sufficient.
  • the corrosion resistance (particularly hydrofluoric acid resistance and alkali resistance) of the metal material can be sufficiently increased.
  • the aluminum ion content is preferably 50 to 1,000 ppm by mass.
  • a more preferable content of aluminum ions is 100 to 500 ppm by mass.
  • the chemical conversion treatment agent may contain free fluorine ions. Free fluorine ions facilitate the etching of the aluminum metal surface in the initial stage.
  • Hydrofluoric acid ammonium hydrofluoride, zirconium hydrofluoric acid and titanium hydrofluoric acid and their salts; sodium fluoride, aluminum fluoride, fluoride Metal fluorides such as zirconium and titanium fluoride; ammonium fluoride and the like.
  • zirconium fluoride, aluminum fluoride, or the like is used as a supply source of free fluorine ions, these also serve as a supply source of zirconium ions or aluminum ions.
  • the metal material is aluminum and the chemical conversion treatment agent contains free fluorine ions
  • the free fluorine ions combine with aluminum deposited from the aluminum metal surface to form aluminum fluoride.
  • the content of aluminum fluoride in the chemical conversion treatment agent gradually increases. If the aluminum fluoride is not contained in the chemical conversion treatment agent before the chemical conversion treatment, the state of the chemical conversion treatment agent will change greatly as the chemical conversion treatment of the aluminum metal surface is continuously performed. It may inhibit the formation of a film. For this reason, it is preferable to contain the aluminum fluoride used as a supply source of a free fluorine ion and aluminum ion in a surface treating agent.
  • the chemical conversion treatment agent may contain components other than the above components as long as the effects of the present embodiment are not impaired.
  • metal ions such as manganese, zinc, cerium, trivalent chromium, magnesium, strontium, calcium, tin, copper and iron, and rust inhibitors such as phosphorus compounds such as phosphonic acid, phosphoric acid and condensed phosphoric acid, Including polyacrylic acid, acrylic acid-maleic acid copolymer, polycarboxylic acid compounds such as carboxyl group-containing acrylic resins, polyamine compounds such as polyvinylamine and polyallylamine, and various silane coupling agents such as aminosilane and epoxysilane. May be.
  • the chemical conversion treatment agent used in the case of performing the chemical conversion treatment performed before the surface treatment with the surface treatment agent according to the present embodiment is a chemical conversion treatment film in which a pH change occurs due to an etching reaction in the vicinity of the surface of the metal material when chemical conversion treatment is performed. It can be used as a type of chemical conversion treatment agent (sometimes referred to as “reactive chemical conversion treatment agent”) in which a chemical conversion treatment film is formed by the precipitation of the components. Moreover, the said chemical conversion treatment agent is a type of chemical conversion treatment agent (it may be called a "coating-type chemical conversion treatment agent") by which a chemical conversion treatment film is formed on the metal material surface by applying and drying on the metal material surface. It can also be used.
  • the pH of the chemical conversion treatment agent is preferably 1-6. If pH is 1 or more, a chemical conversion film can be formed without causing excessive etching by the chemical conversion treatment agent. Further, if the pH is 6 or less, a chemical conversion film having a sufficient film amount can be formed without insufficient etching.
  • pH of a chemical conversion treatment agent can be adjusted using common acids and alkalis, such as a sulfuric acid, nitric acid, an organic acid, ammonia, an amine compound.
  • the method of chemical conversion treatment is not particularly limited, and any method such as a spray method, a dipping method, a roll coating method, a bar coating method, or the like may be used.
  • the temperature of the chemical conversion treatment agent is preferably 5 to 70 ° C.
  • the preferred chemical conversion treatment time is 5 to 300 seconds, more preferably 10 to 120 seconds.
  • the surface treatment as the next step may be performed after washing with water after the chemical conversion treatment, or the surface treatment may be performed without washing with water.
  • the temperature for the heat drying is preferably 40 to 280 ° C, more preferably 80 to 180 ° C. Further, the heat drying time is preferably 10 to 300 seconds, more preferably 30 to 150 seconds.
  • the method of applying the surface treatment agent on the surface of the metal material without forming the chemical conversion film or after forming the chemical conversion film is not particularly limited. For example, roll coating, bar coating, spraying, immersion The method by a processing method etc. is mentioned. After the surface treatment of the metal material with any of the above surface treatment agents to form a surface treatment film on the surface of the metal material, the surface treatment of the metal material is performed by heating at 40 to 160 ° C. for 2 to 60 seconds. Dry the film. A metal material provided with the surface treatment film is obtained by drying.
  • the surface treatment film preferably contains 5 to 700 mg / m 2 of metal derived from the metal particles in terms of metal oxide.
  • the metal oxide conversion is to convert the mass of the metal (element) to the mass of the metal oxide on the assumption that all of the metal (element) in the metal particle exists as a metal oxide.
  • the surface-treated film preferably contains 20 to 600 mg / m 2, more preferably 25 to 350 mg / m 2 of metal derived from the metal particles in terms of metal oxide. The amount of the surface treatment film can be adjusted by controlling the viscosity of the surface treatment agent.
  • Resin-containing layer Although it does not specifically limit as organic resin which forms a resin content layer, Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polycarbonate (PC), polyphenylene sulfide (PPS), triacetyl cellulose (TAC) ), Polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyester, polyolefin, polyurethane, nylon, acrylic, and other organic resins.
  • the resin-containing layer may be formed by applying a coating liquid containing an organic resin on the surface treatment film, or may be a laminate film containing an organic resin stuck on the surface treatment film.
  • membrane is not specifically limited
  • the spray method, the immersion method, the roll coat method, and the bar coat method can be mentioned.
  • a method for attaching the laminate film on the surface treatment film is not particularly limited, and examples thereof include a dry lamination method and an extrusion lamination method.
  • a metal material is obtained by forming an organic resin layer such as a laminate film on a surface treatment film of a metal material. As described above, this metal material has excellent adhesion between the surface treatment film and an organic resin layer such as a laminate film, and adhesion between the surface treatment film and the metal material. The adhesiveness between the organic resin layers is high. Moreover, as above-mentioned, the corrosion resistance (especially hydrofluoric acid resistance and alkali resistance) of a metal material is very high by the surface treatment film formed on the surface of the metal material.
  • the metal material can be suitably used as a battery member.
  • the battery member is, for example, a packaging material or an electrode for a lithium ion battery.
  • Lithium ion batteries (particularly lithium ion batteries for automobiles) require a high level of adhesion (adhesion between the laminate film and the metal material) and corrosion resistance with respect to the packaging material from the viewpoint of safety.
  • a surface treatment may be applied to one surface of a metal for an electrode and a laminate film may be attached, and in that case, a high level of adhesion and corrosion resistance are also required.
  • an alkaline electrolyte may be used as an electrolyte from the viewpoint of stably operating the battery.
  • alkaline electrolytes are highly corrosive, and so packaging materials and electrodes for lithium ion batteries are required to have very high alkali resistance.
  • the metal material manufactured using the present invention has very high alkali resistance and can be preferably used as a packaging material or electrode for a lithium ion battery using an alkaline electrolyte.
  • a solution obtained by dissolving an electrolyte in an aprotic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is used, and LiPF6 is used as a lithium salt of the electrolyte. LiBF4 or the like may be used.
  • These lithium salts generate hydrofluoric acid by hydrolysis. Since hydrofluoric acid is highly corrosive, packaging materials and electrodes for lithium ion batteries are required to have very high hydrofluoric acid resistance.
  • the metal material produced using the present invention has very high hydrofluoric acid resistance, and can be preferably used as a packaging material or electrode for a lithium ion battery using the lithium salt as described above.
  • a copper plate material C1020P manufactured by Nippon Test Panel Co., Ltd., “copper” in the table
  • a thickness of 0.5 mm was added to the chemical conversion treatment agent prepared as described above at 50 ° C.
  • a 0.5 mm thick copper plate material C1020P manufactured by Nippon Test Panel Co., Ltd., “Copper” in the table
  • the chemical conversion treatment was carried out by immersing at 60 ° C. for 60 seconds, followed by drying at 100 ° C. for 60 seconds without further washing with water.
  • each component is blended so that the contents of the acrylic resin containing a carboxyl group and a hydroxyl group, the oxazoline group-containing compound, and the metal particles are as shown in Tables 1, 3, 5, and 7.
  • the surface treating agents of Examples 1 to 49 and Comparative Examples 1 to 8 were prepared.
  • the content of the acrylic resin, the content of the oxazoline group-containing compound, and the content of the metal particles in the table are the content relative to the total amount of the surface treatment agent, and the unit is mass%. The sum of these values is the total solid concentration.
  • the content of metal particles in the table is the content of metal particles in terms of metal oxide.
  • acrylic resin in the table
  • acrylic resin in the table
  • EMA1012 carboxyl group and hydroxyl group-containing acrylic resin, manufactured by Nippon Paint Co., Ltd., acid value 521 mgKOH / g as a resin solid content
  • oxazoline group-containing compound (“oxazoline” in the table) is an oxazoline group-containing acrylic copolymerized with “Epocross WS300” ((meth) acrylic acid alkyl ester).
  • niobium As the resin, manufactured by Nippon Shokubai Co., Ltd., oxazoline number 130 g (solid content) / equivalent), and metal particles, those shown in Tables 1, 3, 5 and 7 were used.
  • niobium a niobium sol having a solid content concentration of 10% and a dispersed particle diameter of 15 nm (product name; BIRAL Nb series, manufactured by Taki Chemical Co., Ltd.), as calcium, an apatite sol having a solid content concentration of 15% and a dispersed particle diameter of 20 nm ( Product name: apatite colloid (manufactured by Nippon Chemical Industry Co., Ltd.), neodymium as a neodymium sol (product name; viral Nd series, manufactured by Taki Chemical Co., Ltd.) having a solid content concentration of 10% and a dispersed particle diameter of 20%, and cerium as a solid content Cerium sol having a concentration of 10% and a dispersed particle
  • Examples 1 to 20 and Comparative Examples 1 to 5 an aluminum alloy plate was directly immersed in the surface treatment agent prepared as described above at room temperature for 10 seconds, and in Examples 21 to 36, an aluminum alloy subjected to chemical conversion treatment. The plate was immersed for 10 seconds at room temperature. In Examples 37 to 43 and Comparative Examples 6 to 8, the copper plate was directly immersed for 10 seconds at room temperature. In Examples 44 to 49, the chemically treated copper plate was immersed for 10 seconds at room temperature. The surface treatment was applied. Next, the aluminum alloy plate and the copper plate subjected to the surface treatment are subjected to a baking treatment at a baking temperature at which the temperature of the aluminum alloy plate and the copper plate itself is 150 ° C. for 5 minutes in a drying furnace. Alloy plates and copper plates (test plates) were prepared.
  • the test plate was cut into two metal plates of 150 mm ⁇ 50 mm.
  • the metal plates were overlapped with each other on the resin film surfaces, and pressure-bonded at 240 ° C. and 7 kgf / cm 2 for 60 seconds using a hot press. By this operation, the films were completely melted and bonded.
  • the pressed metal plate was cut out to 150 mm ⁇ 5 mm, and used as a test piece.
  • a “Tensilon tensile tester” (trade name, manufactured by Toyo Baldwin)
  • the peel strength (kgf / 5 mm width) applied when the film surface of the test piece was peeled off was measured. This is the initial adhesion, and the results are shown in Tables 2, 4, 6 and 8.
  • the pressure-bonded metal plate was cut out to 150 mm ⁇ 5 mm to obtain a new test piece.
  • This test piece was put into an autoclave and heat-treated in pressurized steam at 125 ° C. for 30 minutes (retort treatment).
  • retort treatment a “Tensilon tensile tester” (trade name, manufactured by Toyo Baldwin Co., Ltd.)
  • the peel strength kgf / 5 mm width
  • the surface treating agent of the present invention it is possible to obtain a metal material that is excellent in corrosion resistance (hydrofluoric acid resistance and alkali resistance) while enhancing the adhesion between the organic resin layer such as a resin film and the surface of the metal material. Therefore, the surface treatment agent of the present invention can be preferably applied to the production of packaging materials and electrodes for lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

金属素材の表面と樹脂含有層との密着性を高めつつ、優れた耐食性を付与できる表面処理剤及び表面処理方法を提供すること。 金属素材の表面を処理するための表面処理剤であって、カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物及び金属粒子を含有し、前記金属粒子が、Nb、Ca及びNdからなる群より選択される少なくとも一種の金属を含む粒子であることを特徴とする表面処理剤。また、前記金属粒子は、酸化ニオブゾルであることが好ましい。

Description

表面処理剤及び表面処理方法
 本発明は、金属素材の表面を処理するための表面処理剤及び表面処理方法に関する。
 従来から、金属素材の表面を保護し、意匠を施すために、金属素材表面にラミネート加工を施すことが行われている。金属素材表面に積層されるラミネートフィルムは、加工性、耐食性及び内容物のバリア性等に優れ、また塗料と異なり金属素材への塗布工程において有機溶剤等の揮発がなく、生産環境面で好ましいことから、食品缶、意匠缶、コンデンサーケース、電池部材等、コイルやシート状でプレコートされる包装用の金属素材の表面保護材として、多く用いられている。
 ところで、ラミネートフィルムは、上述のような優れた特性を有する一方で、金属素材の表面にラミネート加工を施した材料においては、金属素材とラミネートフィルムとの密着性が十分でないために、ラミネートされた材料に包装材としての高度な加工を施したり、加工後の包装材に内容物を加えて加熱処理を施したりする際に、金属素材からラミネートフィルムが剥離することがあった。このような、金属素材からのラミネートフィルムの剥離は、ラミネートされた材料の美観を損ね、ラミネートされた材料の耐食性を低下させる大きな原因となっていた。
 ラミネートされた材料におけるこのような問題を解決するため、特許文献1には、ラミネート加工に先立って、金属素材の表面に金属表面処理組成物による表面処理層を形成し、ラミネートフィルムと金属素材との密着性を向上させる技術が開示されている。また、特許文献2には、アルミニウム系金属基材の表面処理剤の表面処理に用いられる金属表面処理組成物として、塩基性ジルコニウム化合物及び/又はセリウム化合物と、カルボキシル基含有樹脂と、オキサゾリン基含有アクリル樹脂と、を含み、フッ素を含有しない金属表面処理組成物が開示されており、更に、このような金属表面処理組成物によって処理したアルミニウム金属基材にラミネート加工を施した金属材を電池外装用に適用できることが記載されている。
 特許文献3及び4には、ラミネートフィルムが金属素材の表面に接着した材料を、リチウムイオン電池用の電池部材として使用することが示されている。このように、ラミネートフィルムが金属素材の表面に接着した材料を、電池部材として使用する場合には、長期間に渡る使用にも十分に耐える必要があることから、ラミネートフィルムと金属素材との間に非常に高い密着性が求められる。また、上記材料を電池部材として使用する場合には、電解液に晒され続けることになることから、優れた耐食性(特に、耐フッ酸性及び耐アルカリ性)も求められる。
特開2008-183523号公報 特開2009-84516号公報 特開2011-76735号公報 特開2011-187386号公報
 しかしながら、特許文献1~4に記載されたラミネートされた材料では、ラミネート密着性については高い評価が得られているものがあるものの、耐食性については、いずれも不十分なものであった。
 本発明は、上記課題を解決するためになされたものであり、その目的は、ラミネートフィルム等の樹脂含有層と金属素材の表面との密着性を高めつつ、優れた耐食性を付与できる表面処理剤及び表面処理方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、金属素材の表面の表面処理に、カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物及び特定の金属粒子を含有する表面処理剤を用いることで上記課題を解決できることを見出し、本発明を完成するに至った。
 上記目的を達成するために本発明は、金属素材の表面を処理するための表面処理剤であって、カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物及び金属粒子を含有し、前記金属粒子が、Nb、Ca及びNdからなる群より選択される少なくとも一種の金属を含む粒子であることを特徴とする表面処理剤を提供する。
 前記金属粒子が、酸化ニオブゾルであることが好ましい。
 前記金属粒子の含有量が、表面処理剤全量に対し、金属酸化物換算で0.05~2.5質量%であることが好ましい。
 前記カルボキシル基及び水酸基を含有するアクリル樹脂の含有量と前記オキサゾリン基含有化合物の含有量の合計量と、前記金属粒子の金属酸化物換算での含有量との質量比(前記カルボキシル基及び水酸基を含有するアクリル樹脂の含有量と前記オキサゾリン基含有化合物の含有量の合計量/前記金属粒子の金属酸化物換算での含有量)が、0.4~7.5であることが好ましい。
 また、本発明は、前記表面処理剤で表面処理を行って表面処理皮膜を形成させる表面処理方法を提供する。
 前記表面処理皮膜が、前記金属粒子に由来する金属を、金属酸化物換算で20~600mg/m2含むことが好ましい。
 本発明によれば、ラミネートフィルム等の樹脂含有層と金属素材の表面との密着性を高めつつ、優れた耐食性を付与できる表面処理剤及び表面処理方法を提供することができる。本発明の表面処理剤で処理した金属材料は、優れた耐フッ酸性及び耐アルカリ性の求められる電池用金属部材として好ましく使用することができる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
<表面処理剤>
 本実施形態の金属素材の表面を処理するための表面処理剤は、カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物及び金属粒子を含有し、前記金属粒子が、Nb、Ca及びNdからなる群より選択される少なくとも一種の金属を含む粒子であることを特徴とする。
 本実施形態の表面処理剤で処理された金属素材は、金属素材の表面上に表面処理皮膜から構成される皮膜を備える。なお、本明細書では、表面処理皮膜を有する金属素材の表面処理皮膜上に樹脂フィルム等の樹脂含有層を積層したものを、「金属材料」とする。
 本実施形態では、金属素材上に形成される表面処理皮膜は、樹脂フィルムとも金属素材とも非常に良好な密着性を有するため、ラミネート加工を要する金属素材に広く適用することができるが、特に電池用金属部材の表面と樹脂フィルムとの密着性を高めることに有効である。
 また、金属素材の表面上に、上記表面処理皮膜を含む皮膜が形成されることで、金属材料の耐食性(特に、金属材料を電池用部材として用いる場合に求められる耐フッ酸性及び耐アルカリ性)も高めることができる。
[金属素材]
 本実施形態の表面処理剤は、鉄、SUS、アルミニウム、アルミニウム合金、銅、銅合金等の種々の金属素材に用いることができる。金属素材の用途としても、表面処理皮膜上に有機樹脂を含む層が積層されるものであれば、缶、熱交換器、電池用金属部材等、種々の用途に用いることができるが、中でも電池用金属部材に好ましく使用することができる。電池用金属部材としては、電池用包装材や電極等の電池部材として用いられる金属から構成され、例えば、アルミニウム、アルミニウム合金、銅、銅合金、SUS等が挙げられる。電池用金属部材としては、加工性に富み、耐食性に優れ、更に本実施形態の表面処理剤を用いることによって、樹脂フィルムと非常に良好な密着性を発揮することから、アルミニウム、アルミニウム合金、銅、銅合金を用いることが好ましい。また、電池用金属部材の形状は特に限定されず用途等に応じて所望の形状に調製できる。
[カルボキシル基及び水酸基を含有するアクリル樹脂]
 カルボキシル基を有するアクリル樹脂はカルボキシル基含有(メタ)アクリルモノマーに由来する繰り返し単位を有する樹脂である。カルボキシル基含有(メタ)アクリルモノマーとしては、特に限定されるものではなく、例えば、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、マレイン酸を挙げることができる。これらは、1種のみを用いてもよく、2種以上を併用してもよい。
 カルボキシル基の一部は後述するオキサゾリン基含有化合物のオキサゾリン基と反応することで、緻密な表面処理皮膜の形成に寄与する。緻密な表面処理皮膜は、金属材料の耐フッ酸性、耐アルカリ性を高める。また、表面処理皮膜中に残存したカルボキシル基は、表面処理皮膜と樹脂フィルム、表面処理皮膜と金属素材表面、及び表面処理皮膜と化成皮膜の密着力の向上に寄与する。
 上記カルボキシル基を有するアクリル樹脂は水酸基も有する。水酸基を有するアクリル樹脂は、水酸基含有(メタ)アクリルモノマーに由来する繰り返し単位を有する樹脂である。上記水酸基含有(メタ)アクリルモノマーは、特に限定されるものではなく、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル、アリルアルコール、メタクリルアルコール、(メタ)アクリル酸ヒドロキシエチルとε-カプロラクトンとの付加物等を挙げることができる。これらは、1種のみを用いてもよく、2種以上を併用してもよい。
 アクリル樹脂がカルボキシル基と水酸基の両方を有することで、カルボキシル基と水酸基とが表面処理皮膜中で水素結合して、より緻密な表面処理皮膜の形成に寄与する。
 カルボキシル基及び水酸基を含有するアクリル樹脂の重量分子量は、2,000~100,000であることが好ましい。
 カルボキシル基及び水酸基を含有するアクリル樹脂の樹脂固形分としての酸価は400~750mgKOH/gであり、より好ましくは500~650mgKOH/gである。酸価が上記範囲を満たしていることでラミネートフィルム等の樹脂含有層との密着性のみならず、金属素材表面や化成皮膜との密着性も良好となる。
 カルボキシル基及び水酸基を含有するアクリル樹脂の水酸基価は50~200mgKOH/gであり、より好ましくは70~120mgKOH/gである。水酸基価が上記範囲を満たしていることで、ラミネートフィルム等の樹脂含有層との密着性のみならず、金属素材表面や化成皮膜との密着性も良好となる。
[オキサゾリン基含有化合物]
 オキサゾリン基含有化合物としては、オキサゾリン基を有しているものであれば、特に限定されない。即ち、オキサゾリン基含有化合物は、オキサゾリン基を分子中に複数含有する化合物であれば限定されず、例えば、主鎖がアクリル骨格のオキサゾリン基含有樹脂、主鎖がスチレン/アクリル骨格のオキサゾリン基含有樹脂、主鎖がスチレン骨格のオキサゾリン基含有樹脂、及び主鎖がアクリロニトリル/スチレン骨格のオキサゾリン基含有樹脂等を用いることができる。本実施形態においては、主鎖がアクリル骨格のオキサゾリン基含有樹脂を用いることが好ましい。オキサゾリン基含有アクリル樹脂としては、市販のものを用いることができ、例えば、「エポクロスWS300」(商品名、株式会社日本触媒製)、「エポクロスWS500」(商品名、株式会社日本触媒製)、「エポクロスWS700」(商品名、株式会社日本触媒製)、及び「NK Linker FX」(商品名、新中村化学工業株式会社製)を用いることができる。オキサゾリン基含有化合物としてオキサゾリン基含有樹脂を用いる場合、オキサゾリン基含有樹脂のオキサゾリン価は、120~240g(固形分)/当量であることが好ましい。なお、オキサゾリン価(g(固形分)/当量)は、オキサゾリン基1mol当たりの樹脂質量として定義される。
 オキサゾリン基含有化合物のオキサゾリン基は、上記カルボキシル基及び水酸基を含有するアクリル樹脂のカルボキシル基と反応することで、緻密な表面処理皮膜の形成に寄与し、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)を向上させることができる。また、表面処理皮膜に残存するオキサゾリン基は、ラミネートフィルム等の樹脂含有層と表面処理皮膜との密着性向上に寄与する。
[金属粒子]
 金属粒子とは、金属(元素)を金属単体や、金属酸化物や金属水酸化物等の金属化合物や、これらの混合物として含む粒子である。
 本実施形態に係る表面処理剤に含まれる金属粒子は、Nb、Ca及びNdから選択される少なくとも一種の金属(元素)を含む粒子である。金属粒子が表面処理剤中に含まれることで、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)が向上する。この効果は、金属粒子自体の有する防錆性や、金属粒子がカルボキシル基及び水酸基を含有するアクリル樹脂やオキサゾリン基含有化合物と反応して無機架橋が生成するために奏されると推測される。また、金属粒子として、複数の種類の金属粒子を混合して用いてもよい。
 金属粒子の大きさとしては、表面処理剤中に安定に分散して存在しうることから、数平均粒子径が5~500nmであるものが好ましい。金属粒子の形状としては、本発明の目的に適するものであれば、真球状、略球状、鱗片状、針状、箔片状、板状等いずれの形状も用いることができる。なお、金属粒子の数平均粒子径は動的光散乱法に基づき測定できる。
 金属粒子としては、取り扱いや入手が容易であることから金属酸化物からなる金属粒子であることが好ましい。また、金属粒子としては、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)を向上させることができることから、Nbを含む粒子であることが好ましく、酸化ニオブゾルであることがより好ましい。
 表面処理皮膜と金属素材との間の密着性、表面処理皮膜とラミネートフィルム等の樹脂含有層との間の密着性を高め、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)を高めるために、上記金属粒子を表面処理剤に含有させる。更に、表面処理剤の各成分の含有量等を下記の範囲に調整することが好ましい。
 表面処理剤中の全固形分含有量に対するカルボキシル基及び水酸基を含有するアクリル樹脂の含有量は、本実施形態の効果を高められる観点から、10~80質量%であることが好ましい。また、前記カルボキシル基及び水酸基を含有するアクリル樹脂の含有量は15~75質量%であることがより好ましく、40~70質量%であることが更に好ましい。
 表面処理剤中の全固形分含有量に対するオキサゾリン基含有化合物の含有量は、本実施形態の効果を高められる観点から、1~40質量%であることが好ましい。また、前記オキサゾリン基含有化合物の含有量は5~35質量%であることがより好ましく、5~15質量%であることが更に好ましい。
 表面処理剤中の、カルボキシル基及び水酸基を含有するアクリル樹脂とオキサゾリン基含有化合物との固形分の質量比(カルボキシル基及び水酸基を含有するアクリル樹脂/オキサゾリン基含有化合物)は、本実施形態の効果を高められる観点から、0.5~10であることが好ましい。また、上記固形分質量比(カルボキシル基及び水酸基を含有するアクリル樹脂/オキサゾリン基含有化合物)は0.5~5であることがより好ましい。
 表面処理剤中の金属粒子の含有量は、ラミネートフィルム等の樹脂含有層と金属素材の表面との間の密着力を高められるとともに、金属材料に高い耐食性(特に、耐フッ酸性及び耐アルカリ性)を付与する観点から、表面処理剤全量に対し金属酸化物換算で0.05~3.5質量%であることが好ましい。また、金属粒子の上記含有量は0.05~2.5質量%であることがより好ましく、0.1~1.5質量%であることが更に好ましい。
 表面処理剤中の、カルボキシル基及び水酸基を含有するアクリル樹脂の含有量及びオキサゾリン基含有化合物の含有量の合計量と、金属粒子の金属酸化物換算での含有量との質量比(カルボキシル基及び水酸基を含有するアクリル樹脂の含有量及びオキサゾリン基含有化合物の含有量の合計量/金属粒子の金属酸化物換算での含有量)は、ラミネートフィルム等の樹脂含有層と金属素材の表面との間の密着力を高められるとともに、金属材料に高い耐食性(特に、耐フッ酸性及び耐アルカリ性)を付与する観点から、0.1~10であることが好ましい。また、前記質量比(カルボキシル基及び水酸基を含有するアクリル樹脂及びオキサゾリン基含有化合物の含有量の合計量/金属粒子の金属酸化物換算での含有量)は0.4~7.5であることがより好ましい。
 表面処理剤の全固形分含有量は、上記の効果が更に高められる観点から、0.05~8質量%であることが好ましい。また、表面処理剤の全固形分含有量は0.6~5質量%であることがより好ましい。表面処理剤には、本実施形態の効果を阻害しない範囲で上記成分以外の成分として、例えば、触媒、粘度調整剤、抗菌剤、界面活性剤、消包剤、防錆剤等を含んでもよい。
[化成処理]
 本発明に係る表面処理剤により金属素材を表面処理する前に、ジルコニウム、バナジウム及びアルミニウムを含有する化成処理剤で化成処理することで、金属素材の表面に化成皮膜を形成してもよい。このように、金属素材の表面に化成処理を行った後に表面処理を行うことで、金属素材表面上には化成皮膜と表面処理皮膜とから構成される複層皮膜が形成される。
 金属素材を、本実施形態に係る表面処理剤で表面処理する前に行う化成処理を行う場合に用いられる化成処理剤は、ジルコニウム、バナジウム及びアルミニウムイオンを含有し、化成処理剤中の、ジルコニウムイオンの含有量は金属換算で50~20,000質量ppmであることが好ましく、100~10,000質量ppmであることがより好ましく、200~10,000質量ppmであることが更に好ましい。バナジウムイオンの含有量は金属換算で10~20,000質量ppmであることが好ましく、50~10,000質量ppmであることがより好ましく、100~8,000質量ppmであることが更に好ましい。化成処理剤に含まれるジルコニウム、バナジウム、アルミニウムは、いずれも錯イオン等を含む各種イオンとして存在する。そのため、本明細書において、ジルコニウム、チタニウム及びバナジウムの各含有量は、各種イオンの金属元素換算の値を意味する。
 ジルコニウムイオンは化成反応により変化し、これにより、金属素材の表面に酸化ジルコニウムを主体としたジルコニウム析出物が析出する。ジルコニウムイオンの供給源であるジルコニウム化合物としては、フルオロジルコニウム酸、フッ化ジルコニウム等のジルコニウム化合物の他、これらのリチウム、ナトリウム、カリウム、アンモニウム等の塩が挙げられる。また、酸化ジルコニウム等のジルコニウム化合物をフッ化水素酸等のフッ化物で溶解させたものを用いることもできる。これらのジルコニウム化合物のように、フッ素を有する場合には、これらの化合物は金属素材の表面をエッチングする機能を有する。
 化成処理剤中に、ジルコニウムイオンとバナジウムイオンとを含むことにより、ジルコニウムとともに、バナジウムを含有する化成皮膜が形成される。バナジウム元素の供給源であるバナジウム化合物としては、バナジウムの価数が2~5価のバナジウム化合物を用いることができる。具体的には、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、五酸化バナジウム、オキシ三塩化バナジウム、硫酸バナジル、硝酸バナジル、燐酸バナジル、酸化バナジウム、二酸化バナジウム、バナジウムオキシアセチルアセトネート、塩化バナジウム等が挙げられる。
 化成処理剤がバナジウムイオンを含むことで、金属素材の表面に酸化バナジウムを主体としたバナジウム析出物が析出する。より詳しくは、バナジウムイオンは、還元反応によって酸化バナジウムに変換され、これにより、金属素材表面にバナジウム析出物が析出する。
 バナジウム析出物は、金属素材の表面の一部を除いて全体的に被覆する特性を有するジルコニウム析出物と異なり、ジルコニウム析出物が形成され難い金属素材の表面の偏析物等の上に析出し易い特性を有する。これにより、ジルコニウム析出物、バナジウム析出物によって緻密で高い被覆性を有する化成皮膜を形成できる。
 また、化成処理剤は、アルミニウムイオンを含む。アルミニウムイオンは、処理対象の金属素材がアルミニウムである場合には金属素材からも化成処理剤中に溶出するが、それとは別に、アルミニウムイオンを積極的に添加することで化成処理反応を促進できる。アルミニウムイオンの供給源としては、硝酸アルミニウム、硫酸アルミニウム、フッ化アルミニウム、酸化アルミニウム、明礬、珪酸アルミニウム及びアルミン酸ナトリウム等のアルミン酸塩や、フルオロアルミニウム酸ナトリウム等のフルオロアルミニウム塩が挙げられる。
 上述したように化成処理剤では、ジルコニウムイオンの含有量が金属換算で50~20,000質量ppmであることが好ましく、100~10,000質量ppmであることがより好ましく、200~10,000質量ppmであることが更に好ましい。バナジウムイオンの含有量が金属換算で10~20,000質量ppmであることが好ましく、50~10,000質量ppmであることがより好ましく、100~8,000質量ppmであることが更に好ましい。これらを満たし、上記成分を含む化成処理剤で形成された化成皮膜と、前述の表面処理皮膜とが組み合わされることで、金属素材の表面とラミネートフィルム等の樹脂含有層との密着力を充分に高め、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)を充分に高めることができる。
 アルミニウムイオンの含有量は50~1,000質量ppmであることが好ましい。また、アルミニウムイオンのより好ましい含有量は100~500質量ppmである。
 また、化成処理剤には遊離フッ素イオンが含まれていてもよい。遊離フッ素イオンは、初期段階におけるアルミニウム金属表面のエッチングを促進する。
 遊離フッ素イオンの供給源としては、フッ化水素酸、フッ化水素アンモニウム、ジルコニウムフッ化水素酸及びチタニウムフッ化水素酸等のフッ化水素酸並びにその塩;フッ化ナトリウム、フッ化アルミニウム、フッ化ジルコニウム及びフッ化チタニウム等の金属フッ化物;フッ化アンモニウム等が挙げられる。遊離フッ素イオンの供給源としてフッ化ジルコニウムやフッ化アルミニウム等を用いた場合は、これらはジルコニウムイオンやアルミニウムイオンの供給源ともなることになる。
 金属素材がアルミニウムであって、化成処理剤に遊離フッ素イオンが含まれる場合、遊離フッ素イオンは、アルミニウム金属表面から析出したアルミニウムと結合してフッ化アルミニウムを形成する。アルミニウム金属の化成処理を連続して行うと、化成処理剤中のフッ化アルミニウムの含有量が徐々に増加することになる。化成処理前の化成処理剤にフッ化アルミニウムが含まれていなければ、アルミニウム金属表面の化成処理を連続して行うにつれて、化成処理剤の状態が大きく変化することになり、この変化が安定した化成皮膜の形成を阻害する場合がある。このため、遊離フッ素イオン及びアルミニウムイオンの供給源となるフッ化アルミニウムを表面処理剤に含有させることが好ましい。
 化成処理剤には、本実施形態の効果を阻害しない範囲で上記成分以外の成分を含んでもよい。例えば、マンガン、亜鉛、セリウム、3価クロム、マグネシウム、ストロンチウム、カルシウム、スズ、銅及び鉄等の金属イオン、並びに、ホスホン酸、リン酸及び縮合リン酸等のリン化合物等の防錆剤や、ポリアクリル酸、アクリル酸-マレイン酸共重合体、カルボキシル基含有アクリル樹脂等のポリカルボン酸化合物、ポリビニルアミン、ポリアリルアミン等のポリアミン化合物、アミノシラン及びエポキシシラン等の各種シランカップリング剤等を含んでいてもよい。
 本実施形態に係る表面処理剤で表面処理する前に行う化成処理を行う場合に用いられる化成処理剤は、金属素材表面を化成処理する際に表面近傍でエッチング反応によるpH変動が起こり化成処理皮膜となる成分が析出することで化成処理皮膜が形成されるタイプの化成処理剤(「反応型化成処理剤」と呼ばれることがある。)として使用することができる。また、前記化成処理剤は、金属素材表面に塗布し乾燥させることで金属素材表面に化成処理皮膜が形成されるタイプの化成処理剤(「塗布型化成処理剤」と呼ばれることがある。)として使用することもできる。
 化成処理剤のpHは1~6であることが好ましい。pHが1以上であれば化成処理剤によるエッチング過多を起こさずに化成皮膜を形成できる。またpHが6以下であれば、エッチング不足とならずに十分な皮膜量の化成皮膜を形成できる。なお、化成処理剤のpHは、硫酸、硝酸、有機酸、アンモニア、アミン化合物等の一般的な酸やアルカリを用いて調整できる。
 化成処理の方法は特に限定されず、スプレー法や浸漬法、ロールコート法、バーコート法等のいずれの方法でもよい。化成処理剤の温度は、好ましくは5~70℃である。また、前記反応型化成処理剤として使用する場合において、好ましい化成処理の時間は、5~300秒であり、より好ましくは10~120秒である。化成処理後に水洗を行った後に次工程である表面処理を行ってもよいし、水洗を行わずに表面処理を行うこともできる。
 化成処理を行った場合、次工程の表面処理を行う前に、化成皮膜を加熱乾燥することが好ましい。加熱乾燥の温度は、好ましくは40~280℃であり、より好ましくは80~180℃である。また、加熱乾燥の時間は、好ましくは10~300秒であり、より好ましくは30~150秒である。これら化成処理条件及び加熱乾燥条件を満たすことにより、優れた化成皮膜を形成できる。
[表面処理方法]
 化成皮膜を形成することなく、あるいは化成皮膜を形成した後に、金属素材の表面上に表面処理剤を塗布する方法は特に限定されず、例えば、ロールコート法、バーコート法、スプレー処理法、浸漬処理法等による方法が挙げられる。金属素材を前記のいずれかの表面処理剤で表面処理して金属素材の表面に表面処理皮膜を形成させた後は、40~160℃において、2~60秒加熱して、金属素材の表面処理皮膜を乾燥させる。乾燥させることで表面処理皮膜を備える金属素材が得られる。
 表面処理皮膜は、前記金属粒子に由来する金属を、金属酸化物換算で5~700mg/m2含むことが好ましい。金属酸化物換算とは、金属粒子中の金属(元素)のすべてが金属酸化物として存在するものと仮定して、金属(元素)の質量を金属酸化物の質量に換算することである。表面処理皮膜中における金属粒子の含有量が上記の範囲に調整されることで、ラミネートフィルム等の有機樹脂層と金属素材の表面との間の密着力を高められるとともに、金属材料に高い耐フッ酸性、耐アルカリ性を付与することができる。また、表面処理皮膜は、前記金属粒子に由来する金属を、金属酸化物換算で20~600mg/m2含むことがより好ましく、25~350mg/m2含むことが更に好ましい。表面処理剤の粘度を制御することにより、表面処理皮膜の皮膜量を調整することができる。
[樹脂含有層]
 樹脂含有層を形成する有機樹脂としては、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、トリアセチルセルロース(TAC)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリエステル、ポリオレフィン、ポリウレタン、ナイロン、アクリル等の有機樹脂を挙げることができる。樹脂含有層は、有機樹脂を含むコーティング液を表面処理皮膜上に塗布して形成させてもよいし、有機樹脂を含むラミネートフィルムを表面処理皮膜上に貼り付けてもよい。
 有機樹脂を含むコーティング液を表面処理皮膜上に塗布する方法は特に限定されないが、スプレー法や浸漬法、ロールコート法、バーコート法を挙げることができる。
 ラミネートフィルムを表面処理皮膜上に貼り付ける方法は特に限定されないが、ドライラミネート法、押出ラミネート法を挙げることができる。
[金属材料]
 金属素材の表面処理皮膜上に、ラミネートフィルム等の有機樹脂層が形成されたものが、金属材料である。上記の通り、この金属材料では、表面処理皮膜とラミネートフィルム等の有機樹脂層との間の密着性、表面処理皮膜と金属素材との間の密着性に優れる結果、金属素材の表面とラミネートフィルム等の有機樹脂層との間の密着性が高い。また、上記の通り、金属素材の表面に形成された表面処理皮膜により、金属材料の耐食性(特に、耐フッ酸性及び耐アルカリ性)は非常に高い。
 金属素材の表面とラミネートフィルム等の有機樹脂層との間の密着性が高く、金属材料が耐フッ酸性、耐アルカリ性に優れる結果、上記金属材料は電池部材として好適に使用することができる。電池部材とは、例えば、リチウムイオン電池用の包装材や電極である。リチウムイオン電池(特に自動車用のリチウムイオン電池)では、包装材に対して、安全性の観点から高レベルの密着性(ラミネートフィルムと金属素材間の密着性)及び耐食性が求められる。また、リチウムイオン電池用電極においても、電極用の金属の片面に表面処理が施されてラミネートフィルムが貼り付けられる場合があり、その場合には、やはり高レベルの密着性及び耐食性が求められる。
 リチウムイオン電池においては、電池を安定に動作させる観点から、電解質としてアルカリ性の電解質を使用する場合がある。通常、アルカリ性の電解質は腐食性が強いため、リチウムイオン電池用の包装材や電極には、非常に高い耐アルカリ性が要求される。本願発明を用いて製造された金属材料は、耐アルカリ性が非常に高く、アルカリ性の電解質を用いたリチウムイオン電池用の包装材や電極として好ましく使用できる。
 リチウムイオン電池においては、電解液として、炭酸プロピレン、炭酸エチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等の非プロトン性の溶媒に、電解質を溶解したものが用いられ、電解質のリチウム塩として、LiPF6、LiBF4等が用いられる場合がある。これらのリチウム塩は、加水分解によりフッ酸を発生させる。フッ酸は、腐食性が強いため、リチウムイオン電池用の包装材や電極には非常に高い耐フッ酸性が要求される。本願発明を用いて製造された金属材料は、耐フッ酸性が非常に高く、上記のようなリチウム塩を用いたリチウムイオン電池用の包装材や電極として好ましく使用できる。
 次に、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれに限定されるものではない。なお、特に断りがない限り、部、%及びppmは、全て質量基準である。
[化成処理剤の調製]
 従来公知の調製方法に従って、化成処理剤中のジルコニウムイオン、バナジウムイオン、及びアルミニウムイオンの含有量が、表3及び7に示す通りとなるように各成分を配合して混合することにより(表中の数値の単位は質量ppm)、実施例21~36、及び実施例44~49の化成処理剤を調製した。実施例27~32、35、36、46,47、49についてはジルコニウムイオン、バナジウムイオン、及びアルミニウムイオンに加えてポリアクリル酸(PAA)を含有量が、表3及び7に示す通りとなるように配合した。なお、ジルコニウム供給源としてはフルオロジルコニウム酸を用い、バナジウム供給源としては硫酸バナジルを用い、アルミニウム供給源としてはフッ化アルミニウムを用いた。
[化成処理]
 実施例21~26、33及び34については、厚さ0.28mmのアルミニウム合金3004板材(日本テストパネル株式会社製、表中の「アルミ」)を、上述のようにして調製した化成処理剤中に50℃にて60秒間浸漬し、水洗することで、化成処理を実施した。実施例27~32、35及び36については、厚さ0.28mmのアルミニウム合金3004板材(日本テストパネル株式会社製、表中の「アルミ」)を、上述のようにして調製した化成処理剤中に30℃にて60秒間浸漬することで、化成処理を実施し、水洗せずに、更に100℃にて60秒間乾燥させた。実施例44、45及び48については、厚さ0.5mmの銅板材C1020P(日本テストパネル株式会社製、表中の「銅」)を、上述のようにして調製した化成処理剤中に50℃にて60秒間浸漬し、水洗することで、化成処理を実施し、更に化成処理後に100℃にて60秒間乾燥させた。実施例46、47及び49については、厚さ0.5mmの銅板材C1020P(日本テストパネル株式会社製、表中の「銅」)を、上述のようにして調製した化成処理剤中に30℃にて60秒間浸漬することで、化成処理を実施し、水洗せずに、更に化成処理後に100℃にて60秒間乾燥させた。
[表面処理剤の調製]
 従来公知の調製方法に従って、カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物、及び金属粒子の含有量が、表1、3、5及び7に示す通りとなるように各成分を配合して混合することにより、実施例1~49及び比較例1~8の表面処理剤を調製した。表中のアクリル樹脂の含有量、オキサゾリン基含有化合物の含有量及び金属粒子の含有量とは表面処理剤全量に対する含有量であり、単位は質量%である。これらの数値の合計が全固形分の濃度となる。表中の金属粒子の含有量とは金属粒子の金属酸化物換算での含有量である。なお、カルボキシル基及び水酸基を含有するアクリル樹脂(表中の「樹脂」)としては、「EMA1012」(カルボキシル基及び水酸基含有アクリル樹脂、日本ペイント株式会社製、樹脂固形分としての酸価521mgKOH/g、水酸基価86mgKOH/g、分子量95,000)、オキサゾリン基含有化合物(表中の「オキサゾリン」)としては、「エポクロスWS300」((メタ)アクリル酸アルキルエステルとの共重合タイプのオキサゾリン基含有アクリル樹脂、株式会社日本触媒製、オキサゾリン価130g(固形分)/当量)、金属粒子としては、表1、3、5及び7に示すものを用いた。ニオブとしては、固形分濃度10%かつ分散粒子径15nmであるニオブゾル(品名;バイラールNbシリーズ、多木化学株式会社製)、カルシウムとしては固形分濃度15%かつ分散粒子径20nmであるアパタイトゾル(品名;燐灰石コロイド、日本化学工業株式会社製)、ネオジムとしては固形分濃度10%かつ分散粒子径20nmであるネオジウムゾル(品名;バイラールNdシリーズ、多木化学株式会社製)、セリウムとしては固形分濃度10%かつ分散粒子径20nmであるセリウムゾル(品名;ニードラールシリーズ、多木化学株式会社製)、ジルコニウムとしては固形分濃度20%かつ分散粒子径20nmであるジルコニウムゾル(品名;バイラールZrシリーズ、多木化学株式会社製)を用いた。
[表面処理]
 上述のようにして調製した表面処理剤に、実施例1~20及び比較例1~5ではアルミニウム合金板を直接、室温で10秒間浸漬し、実施例21~36では化成処理を施したアルミニウム合金板を室温で10秒間浸漬し、実施例37~43及び比較例6~8では銅板を直接、室温で10秒間浸漬し、実施例44~49では化成処理を施した銅板を室温で10秒間浸漬することで表面処理を施した。次いで、表面処理を施したアルミニウム合金板及び銅板を、乾燥炉にて5分間、アルミニウム合金板及び銅板自体の温度が150℃となる焼付け温度で、焼付け処理を施すことで表面処理皮膜を備えるアルミニウム合金板及び銅板(試験板)を作製した。
[金属酸化物量]
 実施例1~49及び比較例1~8で作製した、試験板の表面に形成された表面処理皮膜中の金属酸化物量は、蛍光X線分析装置「XRF-1700」(株式会社島津製作所製)の測定結果から算出した。結果を表2、4、6及び8に示した。
[金属材料の製造]
 実施例1~49及び比較例1~8で表面処理を施し試験板に、加熱ローラーを用いて、「メリネックス850」(PETフィルム、アイシーアイジャパン社製、フィルム厚15μm)を150℃、ロール速度30m/minで圧着した。このフィルム貼り付け板を、コンベア式オーブンを用いて240℃で20秒間再加熱し、オーブンから取り出した直後に水冷した。
[密着力の測定]
 試験板を150mm×50mmの2枚の金属板になるように切断した。この金属板を樹脂フィルム面同士で重ね、ホットプレスを用いて、240℃、7kgf/cm2で60秒間圧着した。この操作により、フィルム同士は完全に溶融し、接着した。圧着した金属板を150mm×5mmに切り出し、試験片とした。「テンシロン引張り試験機」(商品名、東洋ボールドウィン社製)を用いて、この試験片のフィルム面を引き剥がす際にかかる剥離強度(kgf/5mm幅)を測定した。これが初期密着力であり、結果は表2、4、6及び8に示した。
 また、圧着した金属板を150mm×5mmに切り出し、新たな試験片を得た。この試験片をオートクレーブに入れ、125℃の加圧蒸気中で30分間加熱処理した(レトルト処理)。レトルト処理を行った試験片を、「テンシロン引張り試験機」(商品名、東洋ボールドウィン社製)を用いて、フィルム面を引き剥がす際に係る剥離強度(kgf/5mm幅)を測定した。これが2次密着力であり、結果は表2、4、6及び8に示した。
[耐フッ酸性]
 金属材料の樹脂フィルム面が外側になるようにして、カップ状(直径27mm、高さ17mm)に加工を行った。このカップを80℃に保持したフッ酸溶液(HFを18g/Lの濃度で含む)に2週間浸漬し、樹脂フィルム残存状態を目視にて下記の四段階で、金属材料の耐フッ酸性を評価した。結果は表2、4、6及び8に示した。
「A」:90%以上の樹脂フィルム残存の場合
「B」:70%以上90%未満の樹脂フィルム残存の場合
「C」:50%以上70%未満の樹脂フィルム残存の場合
「D」:50%未満の樹脂フィルム残存の場合
[耐アルカリ性]
 金属材料を40℃のLiOH水溶液(0.5mol%、pHが11)に10秒間浸漬し、樹脂フィルム残存状態を目視にて下記の四段階で金属材料の耐アルカリ性を評価した。結果は表2、4、6及び8に示した。
「A」:表面白化が見られず、残留樹脂フィルム80%以上の場合
「B」:表面白化が見られるが、残留樹脂フィルムが80%以上の場合
「C」:表面白化が見られ、残留樹脂フィルムが60%以上80%未満の場合
「D」:表面白化が見られ、残留樹脂フィルム60%未満の場合
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
 表1~8に示した通り、実施例1~49はいずれも、樹脂フィルムと金属素材表面との密着性が高く、かつ比較例1~8と比べて、金属材料の耐食性(耐フッ酸性及び耐アルカリ性)が良好であることが分かった。実施例1~49から、事前に金属素材の表面を化成処理するか否かに関わらず、本発明の表面処理剤によって表面処理を行うことで、金属素材の表面との密着性を高めつつ、優れた耐食性(耐フッ酸性及び耐アルカリ性)を付与できることが確認された。
 表1、2、6及び7の実施例1~5、14、15、37、38、42、43及び比較例1、6から、特定の金属粒子を用いなければ、本発明の効果を奏されないことが確認された。つまり、表面処理剤が、Nb、Ca及びNdからなる群より選択される少なくとも一種の金属を含む金属粒子を含有しなければ優れた耐食性(耐フッ酸性及び耐アルカリ性)という本発明の効果を奏さないことが確認された。
 表1、2、6及び7の実施例1~5、37、38及び比較例2、7から、表面処理剤がカルボキシル基及び水酸基を含有するアクリル樹脂を含有しなければ本発明の効果を奏さないことが確認された。また、実施例1~5、37、38と比較例3、8から、表面処理剤がオキサゾリン基含有化合物を含有しなければ優れた密着性、耐食性(耐フッ酸性及び耐アルカリ性)という本発明の効果を奏さないことが確認された。
 表1及び2の実施例8~10、16及び17から、表面処理剤の金属粒子の含有量が、金属酸化物換算で0.05~2.5質量%の範囲にあれば、密着性、耐食性(耐フッ酸性及び耐アルカリ性)という本発明の効果が高まることが確認された。
 表1及び2の実施例1~7から、表面処理剤のカルボキシル基及び水酸基を含有するアクリル樹脂の含有量とオキサゾリン基含有化合物の含有量の合計量と、金属粒子の含有量との質量比(表2、4、6及び8の「樹脂+オキサゾリン/金属粒子」)が、0.4~7.5の範囲にあれば、耐食性(耐フッ酸性及び耐アルカリ性)という本発明の効果が高まることが確認された。
 表1及び2の実施例1~7から、金属材料の表面処理皮膜の含む、金属粒子に由来する金属の量を金属酸化物換算した量(表2、4、6及び8の「金属酸化物量」)が20~600mg/m2の範囲で含むことで、耐食性(耐フッ酸性及び耐アルカリ性)という本発明の効果が高まることが確認された。
 本発明の表面処理剤によれば、樹脂フィルム等の有機樹脂層と金属素材の表面との密着性を高めつつ、耐食性(耐フッ酸性及び耐アルカリ性)にも優れた金属材料を得ることができるため、本発明の表面処理剤はリチウムイオン電池用の包装材や電極の製造に好ましく適用することができる。
 

Claims (6)

  1.  金属素材の表面を処理するための表面処理剤であって、
     カルボキシル基及び水酸基を含有するアクリル樹脂、オキサゾリン基含有化合物及び金属粒子を含有し、
     前記金属粒子が、Nb、Ca及びNdからなる群より選択される少なくとも一種の金属を含む粒子であることを特徴とする表面処理剤。
  2.  前記金属粒子が、酸化ニオブゾルである請求項1記載の表面処理剤。
  3.  前記金属粒子の含有量が、表面処理剤全量に対し、金属酸化物換算で0.05~2.5質量%である請求項1又は2記載の表面処理剤。
  4.  前記カルボキシル基及び水酸基を含有するアクリル樹脂の含有量と前記オキサゾリン基含有化合物の含有量の合計量と、前記金属粒子の金属酸化物換算での含有量との質量比(前記カルボキシル基及び水酸基を含有するアクリル樹脂の含有量と前記オキサゾリン基含有化合物の含有量の合計量/前記金属粒子の金属酸化物換算での含有量)が、0.4~7.5である請求項1から3のいずれか記載の表面処理剤。
  5.  金属素材の表面に請求項1から4のいずれか記載の表面処理剤で表面処理を行って表面処理皮膜を形成させる表面処理方法。
  6.  前記表面処理皮膜が、前記金属粒子に由来する金属を、金属酸化物換算で20~600mg/m2含む請求項5記載の表面処理方法。
     
PCT/JP2013/077203 2012-10-12 2013-10-07 表面処理剤及び表面処理方法 WO2014057899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/434,701 US9701806B2 (en) 2012-10-12 2013-10-07 Surface treatment agent and surface treatment method
ES13844902.0T ES2663391T3 (es) 2012-10-12 2013-10-07 Agente de tratamiento de superficie y método de tratamiento de superficie
EP13844902.0A EP2907897B1 (en) 2012-10-12 2013-10-07 Surface treatment agent and surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227375 2012-10-12
JP2012227375A JP2014080637A (ja) 2012-10-12 2012-10-12 表面処理剤及び表面処理方法

Publications (1)

Publication Number Publication Date
WO2014057899A1 true WO2014057899A1 (ja) 2014-04-17

Family

ID=50477366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077203 WO2014057899A1 (ja) 2012-10-12 2013-10-07 表面処理剤及び表面処理方法

Country Status (6)

Country Link
US (1) US9701806B2 (ja)
EP (1) EP2907897B1 (ja)
JP (1) JP2014080637A (ja)
ES (1) ES2663391T3 (ja)
TW (1) TW201435008A (ja)
WO (1) WO2014057899A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054667A1 (ja) * 2020-09-09 2022-03-17 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料
CN114725629A (zh) * 2020-12-22 2022-07-08 双叶电子工业株式会社 接片引线及非水电解质器件
JP7544679B2 (ja) 2020-12-22 2024-09-03 双葉電子工業株式会社 タブリード及び非水電解質デバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400078B2 (en) 2015-09-25 2019-09-03 Tokyo Ohka Kogyo Co., Ltd. Surface treatment liquid
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN108493359B (zh) * 2018-03-16 2019-10-25 常州斯威克光伏新材料有限公司 一种动力锂离子电池用铝塑复合膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246688A (ja) * 2006-03-16 2007-09-27 Toppan Printing Co Ltd コーティング組成物、積層体および強浸透性内容物用包装材料
JP2008183523A (ja) 2007-01-30 2008-08-14 Nippon Paint Co Ltd 金属表面処理組成物を用いて処理されてなる金属材料
JP2009084516A (ja) 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2011065834A (ja) * 2009-09-16 2011-03-31 Toppan Printing Co Ltd リチウムイオン電池用外装材及びその製造方法
JP2011076735A (ja) 2009-09-29 2011-04-14 Toppan Printing Co Ltd リチウムイオン電池用包装材
JP2011187386A (ja) 2010-03-10 2011-09-22 Toppan Printing Co Ltd リチウムイオン電池用外装材
JP2011204674A (ja) * 2010-03-04 2011-10-13 Toray Ind Inc 電池外装用ポリエステルフィルムおよび電池外装用構成体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2045708A1 (en) 1990-06-27 1991-12-28 Allan S. Wilen Microwaveable packaging compositions
JP4901116B2 (ja) * 2004-03-04 2012-03-21 新日本製鐵株式会社 表面処理金属板
TWI511351B (zh) 2010-10-14 2015-12-01 Toppan Printing Co Ltd 鋰離子電池用外裝材料
JP5418478B2 (ja) 2010-11-30 2014-02-19 新日鐵住金株式会社 塗装亜鉛系めっき鋼板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246688A (ja) * 2006-03-16 2007-09-27 Toppan Printing Co Ltd コーティング組成物、積層体および強浸透性内容物用包装材料
JP2008183523A (ja) 2007-01-30 2008-08-14 Nippon Paint Co Ltd 金属表面処理組成物を用いて処理されてなる金属材料
JP2009084516A (ja) 2007-10-02 2009-04-23 Nippon Paint Co Ltd 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
JP2011065834A (ja) * 2009-09-16 2011-03-31 Toppan Printing Co Ltd リチウムイオン電池用外装材及びその製造方法
JP2011076735A (ja) 2009-09-29 2011-04-14 Toppan Printing Co Ltd リチウムイオン電池用包装材
JP2011204674A (ja) * 2010-03-04 2011-10-13 Toray Ind Inc 電池外装用ポリエステルフィルムおよび電池外装用構成体
JP2011187386A (ja) 2010-03-10 2011-09-22 Toppan Printing Co Ltd リチウムイオン電池用外装材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2907897A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054667A1 (ja) * 2020-09-09 2022-03-17 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料
JPWO2022054667A1 (ja) * 2020-09-09 2022-03-17
JP7322301B2 (ja) 2020-09-09 2023-08-07 日本ペイント・サーフケミカルズ株式会社 下地処理剤、及び金属材料
CN114725629A (zh) * 2020-12-22 2022-07-08 双叶电子工业株式会社 接片引线及非水电解质器件
JP7544679B2 (ja) 2020-12-22 2024-09-03 双葉電子工業株式会社 タブリード及び非水電解質デバイス

Also Published As

Publication number Publication date
EP2907897A4 (en) 2016-07-13
EP2907897A1 (en) 2015-08-19
ES2663391T3 (es) 2018-04-12
JP2014080637A (ja) 2014-05-08
TW201435008A (zh) 2014-09-16
EP2907897B1 (en) 2018-01-03
US9701806B2 (en) 2017-07-11
US20150232634A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2014057899A1 (ja) 表面処理剤及び表面処理方法
JP6055085B2 (ja) 化成処理剤及び金属表面処理方法
JP5089316B2 (ja) 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
AU2014355320B2 (en) Method for treating surface of zinc-aluminum-magnesium alloy-plated steel sheet
JP6146954B2 (ja) 化成処理剤及び化成処理皮膜
JP5718752B2 (ja) 金属表面処理剤及びその処理剤で処理してなる金属材料
KR101712253B1 (ko) 표면 처리 알루미늄판 및 유기 수지 피복 표면 처리 알루미늄판 그리고 이것을 이용하여 이루어지는 캔체 및 캔 덮개
JP5952877B2 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP5231738B2 (ja) 金属表面処理組成物を用いて処理されてなる金属材料
WO2016129640A1 (ja) 金属表面処理剤
JP5647326B1 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP3998056B2 (ja) 熱可塑性ポリエステル系樹脂被覆金属板の製造方法及び熱可塑性ポリエステル系樹脂被覆金属板
JP2004018930A (ja) 被覆金属材料、及び、ノンクロム金属表面処理方法
WO2017146040A1 (ja) 金属表面処理剤
JP2007182626A (ja) 複合被覆金属板、複合被覆処理剤、及び複合被覆金属板の製造方法
JP2004018929A (ja) 被覆金属材料、及び、ノンクロム金属表面処理方法
JP2003313676A (ja) ノンクロム金属表面処理剤、ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14434701

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013844902

Country of ref document: EP