WO2014057871A1 - Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound - Google Patents

Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound Download PDF

Info

Publication number
WO2014057871A1
WO2014057871A1 PCT/JP2013/077036 JP2013077036W WO2014057871A1 WO 2014057871 A1 WO2014057871 A1 WO 2014057871A1 JP 2013077036 W JP2013077036 W JP 2013077036W WO 2014057871 A1 WO2014057871 A1 WO 2014057871A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
liquid crystal
meth
glycidyl
Prior art date
Application number
PCT/JP2013/077036
Other languages
French (fr)
Japanese (ja)
Inventor
大晃 臼井
良爾 堀越
健介 宮崎
Original Assignee
協立化学産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協立化学産業株式会社 filed Critical 協立化学産業株式会社
Priority to KR1020157011942A priority Critical patent/KR102056074B1/en
Priority to JP2014540827A priority patent/JP6310852B2/en
Priority to CN201380052675.4A priority patent/CN104718231B/en
Publication of WO2014057871A1 publication Critical patent/WO2014057871A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/31Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a glycidyl ether compound, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
  • liquid crystal display device such as a liquid crystal panel
  • a liquid crystal sealant is applied to the outer periphery of one of the two substrates constituting the liquid crystal panel, and a predetermined amount of liquid crystal is dropped on either substrate.
  • a liquid crystal dropping method is widely used in which two substrates are bonded together under vacuum and then returned to atmospheric pressure to fill the liquid crystal and cure the liquid crystal sealant.
  • a radical polymerization reactive compound mainly composed of an epoxy acrylate compound is widely used as a liquid crystal sealant from the viewpoint of high-speed curing (see, for example, JP-A-2007-297470).
  • a seal is applied to the base in the form of a frame to form a frame seal, the liquid crystal is dropped inside the frame, vacuum is applied to the panel, and UV irradiation is performed to lightly cure the liquid crystal sealant.
  • heat curing is performed at a temperature equal to or higher than the NI point (Nematic (Isotropic point) of the liquid crystal to thermally cure the liquid crystal sealant and simultaneously align the liquid crystal.
  • the conventional radical polymerization reactive liquid crystal sealant mainly composed of an epoxy compound containing an epoxy / acrylic compound has not been able to sufficiently meet such a demand.
  • the problem of the present invention is that the liquid crystal sealing agent can be strongly bonded and cured even when the liquid crystal sealing agent is applied with a narrow seal width and the substrate is bonded in the liquid crystal dropping method, which affects the liquid crystal orientation. It is an object of the present invention to provide a glycidyl ether compound that is difficult to give, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
  • n 1 is a number in the range of 2-30, m is a number in the range of 1-5, X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms, Y is each independently an alkylene group having 2 to 4 carbon atoms, R is independently of each other a hydrogen atom, a glycidyl group, a methylglycidyl group, a group 1: —CH 2 —CH (OR 1 ) —CH 2 —O—R 2 or a group 2: —CH 2 —C (CH 3 ) (OR 1 ) —CH 2 —O—R 2 (wherein R 1 is a hydrogen atom or a (meth) acryloyl group, and R 2 is a (meth) acryloyl group),
  • R ′ independently of one another, is a hydrogen atom or a methyl group; In R, the total number
  • n 2 is a number in the range of 2-30, Y is each independently an alkylene group having 2 to 4 carbon atoms, R 11 is each independently a hydrogen atom, a glycidyl group or a methyl glycidyl group)
  • R 12 is independently of each other a hydrogen atom, a glycidyl group, a methyl glycidyl group, a group 1: —CH 2 —CH (OR 21 ) —CH 2 —O—R 22 or a group 2: —CH 2 —C (CH 3 ) a compound represented by (OR 21 ) —CH 2 —O—R 22 (wherein R 21 is a hydrogen atom or a (meth) acryloyl group, and R 22 is a (meth) acryloyl group).
  • It is a manufacturing method of the glycidyl ether type compound represented by Formula (1) of said [1] description including the process with which D is made to react.
  • the liquid crystal sealant in the liquid crystal dropping method, even when the liquid crystal sealant is applied with a narrow seal width and the substrate is bonded, the liquid crystal sealant can be strongly bonded and cured, which affects the liquid crystal orientation. It is possible to provide a glycidyl ether compound that is difficult to give, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • (meth) acryloyl means methacryloyl and / or acryloyl
  • (meth) acrylate means methacrylate and / or acrylate.
  • Compound A The glycidyl ether compound of the present invention (hereinafter also referred to as compound A) is represented by the following formula (1).
  • n 1 is a number in the range of 2 to 30, and m is a number in the range of 1 to 5.
  • X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms.
  • Y is each independently an alkylene group having 2 to 4 carbon atoms.
  • R is independently of each other a hydrogen atom, a glycidyl group, a methylglycidyl group, a group 1: —CH 2 —CH (OR 1 ) —CH 2 —O—R 2 or a group 2: —CH 2 —C (CH 3 ) (OR 1 ) —CH 2 —O—R 2 (wherein R 1 is a hydrogen atom or a (meth) acryloyl group, and R 2 is a (meth) acryloyl group).
  • R ′ is, independently of each other, a hydrogen atom or a methyl group.
  • R when the total number x of the total of the glycidyl group, the methyl glycidyl group, the group 1 and the group 2 is 2 or more, and the R includes the group 1 or the group 2, the glycidyl group And the ratio (y / z) of the average number y of the total of the methyl glycidyl groups and the total number z of the total of the groups 1 and 2 is 10/90 to 90/10.
  • N 1 is a number in the range of 3 to 25, preferably a number in the range of 5 to 20, more preferably a number in the range of 5 to 15, more preferably in the range of 7 to 10. Is a number. N 1 is derived from the number of repeating units of the compound represented by formula (2) (compound C), that is, n 2 .
  • m Is a number in the range of 1 to 5, preferably a number in the range of 1 to 4, more preferably a number in the range of 1 to 3, and still more preferably a number in the range of 1 to 2.
  • m can be estimated from the reaction equivalent ratio (preparation amount) of the compound C and the compound D which are raw materials of the compound A.
  • n 1 and m can also be measured by GPC.
  • Y is each independently an alkylene group having 2 to 4 carbon atoms, specifically, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, or the like. Y is preferably an ethylene group or a propylene group, and more preferably an ethylene group.
  • the average number x of the total of glycidyl group, methylglycidyl group, group 1 and group 2 is influenced by workability of the liquid crystal sealant such as coating property affected by viscosity, for example, crosslink density. From the viewpoint of physical properties such as strength after curing, it is 2 or more, preferably 2 to 2 m + 2, more preferably 2 m to 2 m + 2, and further preferably 2 m + 1 to 2 m + 2.
  • X represents the average molecular weight and molecular weight distribution of Compound A by high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS), and by measuring n 1 and m by GPC, Can be calculated.
  • HPLC high performance liquid chromatography
  • LC-MS liquid chromatography mass spectrometry
  • the ratio of the average number y of the total of the glycidyl group and the methyl glycidyl group and the average number z of the total of the group 1 and the group 2 (Y / z) is 10/90 to 90/10, preferably 20/80 to 80/20, more preferably 30/70 to 70/30, still more preferably 40/60 to 60/40. .
  • each R is independently a hydrogen atom, glycidyl group, methyl glycidyl group, group 1 or group 2, and preferably a hydrogen atom, glycidyl group or group 1.
  • R ' is preferably a hydrogen atom.
  • the viscosity of compound A is preferably 1000 to 1000000 mPa ⁇ s, more preferably 3000 to 700000 mPa ⁇ s, and still more preferably, from the viewpoint of securing an appropriate viscosity for the liquid crystal sealant. It is 5000 to 500000 mPa ⁇ s, more preferably 7000 to 250,000 mPa ⁇ s, and further preferably 9000 to 200000 mPa ⁇ s. The viscosity is measured at 25 ° C. using an E-type viscometer.
  • the viscosity of compound A can be adjusted, for example, by changing n 1 and m in compound A and / or changing the abundance ratio of hydroxyl groups in compound A.
  • the epoxy equivalent is preferably 100 to 3000 g / eq, more preferably 150 to 2000 g / eq from the viewpoint of strong adhesiveness.
  • the epoxy equivalent of compound A can be adjusted by the average molecular weight of compound A and the number of epoxy groups per repeating unit. For example, it can be adjusted by the ratio of epoxidizing the hydroxyl group of compound P and by the ratio of (meth) acrylate modification of the epoxy group of reactant Q.
  • Compound A is a liquid crystal dropping method, and even when it comes into contact with the liquid crystal in an uncured state, it hardly affects the alignment of the liquid crystal (change in the NI point is small) and does not easily disturb the alignment of the liquid crystal. Preferred as an agent.
  • Liquid crystal sealant containing compound A A liquid crystal sealant containing compound A (hereinafter also referred to as “composition”) is excellent in strong adhesion.
  • the content of compound A is preferably 10 to 10 in the reactive curable component of the liquid crystal sealant (for example, a component that can be cured by reaction with light and / or heating).
  • 100% by weight more preferably 20 to 100% by weight, still more preferably 30 to 100% by weight, still more preferably 40 to 100% by weight, still more preferably 50 to 100% by weight, More preferred is 60 to 100% by weight, still more preferred is 70 to 100% by weight, still more preferred is 80 to 100% by weight, still more preferred is 90 to 100% by weight, still more preferred is 100% by weight. It is.
  • the liquid crystal sealant containing the compound significantly improves the strong adhesiveness. That is, the liquid crystal sealant preferably contains, in addition to compound A, compound B having an ethylenically unsaturated group and / or an epoxy group other than compound A.
  • Examples of the compound B having an ethylenically unsaturated group include (meth) acrylate compounds, aliphatic acrylamide compounds, alicyclic acrylamide compounds, acrylamide compounds containing aromatics, and N-substituted acrylamide compounds.
  • Examples of (meth) acrylate compounds include fats represented by paracumylphenoxyethylene glycol (meth) acrylate, t-butyl (meth) acrylate, ethoxylated phenyl (meth) acrylate, benzyl (meth) acrylate, and glycidyl (meth) acrylate.
  • Examples of the ethylenically unsaturated group-containing compound include monofunctional, difunctional, trifunctional or polyfunctional radically polymerizable unsaturated compounds.
  • Monofunctional radically polymerizable unsaturated compounds include hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and isooctyl from the viewpoint of ensuring composition viscosity, film hardness, and flexibility.
  • One or more compounds selected from the group consisting of acrylate, lauryl (meth) acrylate, tert-butyl (meth) acrylate and diethylene glycol monoethyl ether (meth) acrylate are preferred, Runiru (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, one or more compounds selected from the group consisting of dicyclopentanyl (meth) acrylate and cyclohexyl (meth) acrylate are more preferred.
  • tricyclodecane dimethanol di (meth) acrylate dimethylol dicyclopentanedi (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, PO-modified bisphenol A di (meth) acrylate, polyester di (meth) acrylate, polyethylene glycol di (meth) acrylate, silicone
  • dimethylol dicyclopentane di (meth) acrylate and / or modified bisphenol A di (meth) acrylate is preferably used.
  • (meth) acrylates having no hydroxyl group and having a bisphenol A skeleton are preferable.
  • light acrylate BP-4EAL (EO addition product of bisphenol A), BP-4PA (PO addition of bisphenol A) Product diacrylate) and the like are commercially available.
  • Trifunctional or higher radical polymerizable unsaturated compounds include ECH-modified glycerol tri (meth) acrylate (trifunctional) and EO-modified glycerol tri (meth) acrylate from the viewpoint of ensuring composition viscosity, film hardness, and flexibility.
  • Trifunctional PO-modified glycerol tri (meth) acrylate (trifunctional), pentaerythritol tri (meth) acrylate (trifunctional), dipentaerythritol hexa (meth) acrylate (hexafunctional) and pentaerythritol tetra (meth) acrylate
  • One or more compounds selected from the group consisting of (tetrafunctional) are preferable, and EO-modified glycerol tri (meth) acrylate and / or dipentaerythritol hexa (meth) acrylate are more preferable.
  • the compound B having an epoxy group is preferably a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol AD type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, a naphthalene type epoxy compound, or a hydrogen thereof. It is at least one compound selected from the group consisting of an additive compound and an alicyclic epoxy compound, more preferably at least one selected from the group consisting of a bisphenol A type epoxy compound, a bisphenol F type epoxy compound and a naphthalene type epoxy compound. It is a seed compound, and more preferably a bisphenol A type epoxy compound.
  • Specific examples of the bisphenol A type epoxy compound include EPICLON 850S, 860, 1055, and EPICLON 850CRP manufactured by DIC.
  • Specific examples of the hydrogenated bisphenol A type epoxy compound include KRM-2408 manufactured by ADEKA and YX-8034 manufactured by JER.
  • Specific examples of the bisphenol F-type epoxy compound include EPICLON 830S manufactured by DIC.
  • Specific examples of naphthalene type epoxy compounds include EPICLON HP-4032D and HP-7200H manufactured by DIC.
  • Specific examples of the phenol novolac type epoxy compound include EPICLON N-740 and N-770 manufactured by DIC.
  • Specific examples of the cresol novolac type epoxy compound include EPICLON N-660 and N-670 manufactured by DIC.
  • alicyclic epoxy compound examples include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (Celoxide 2021P manufactured by Daicel), 1,2: 8,9-diepoxy limonene.
  • Celoxide 3000 manufactured by Daicel 1,2-epoxy-4-vinylcyclohexane
  • MeHPE3150 1,2-epoxy-4- (2 of 2,2-bis (hydroxymethyl) -1-butanol -Oxiranyl) cyclohexane adduct
  • a partial (meth) acrylate-modified epoxy compound obtained by reacting an epoxy group-containing compound with a (meth) acrylic acid compound can also be used.
  • a partial (meth) acrylated epoxy compound obtained by reacting an epoxy compound with (meth) acrylic acid is more preferred.
  • a partial (meth) acrylated epoxy resin obtained by reacting a bisphenol A type epoxy resin and (meth) acrylic acid is obtained, for example, as follows. First, bisphenol A type epoxy resin and (meth) acrylic acid are added in the presence of a basic catalyst, preferably in the presence of a trivalent organic phosphoric acid compound and / or an amine compound. ⁇ 90 equivalent% is reacted. Next, the reaction product is purified by removing the basic catalyst by filtration, centrifugation, and / or washing with water.
  • a known basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used.
  • a polymer-supported basic catalyst in which a basic catalyst is supported on a polymer can also be used.
  • the compound B preferably contains a radical curable compound containing an ethylenically unsaturated group-containing compound as a preferred example.
  • the liquid crystal sealant of the present invention contains a photopolymerization initiator (a compound that is activated by absorbing light energy and generates radicals) as a radical generation source when photopolymerizing compound A and / or compound B. be able to.
  • a polymerization initiator is not specifically limited, A well-known compound can be used as a polymerization initiator.
  • benzoins As polymerization initiators, benzoins, acetophenones, benzophenones, thioxanthones, ⁇ -acyloxime esters, phenylglyoxylates, benzyls, azo compounds, diphenyl sulfide compounds, acylphosphine oxide compounds, benzoin ethers And anthraquinone polymerization initiators are preferable, and those having a reactive group that has low solubility in liquid crystals and does not gasify the decomposition product itself upon irradiation with light are preferable.
  • a preferable polymerization initiator of the present invention for example, the following:
  • EY Resin KR-2 manufactured by KS Corporation.
  • an amine curing agent such as an organic acid dihydrazide compound, imidazole and its derivatives, dicyandiamide, aromatic amine, epoxy-modified polyamine, polyaminourea and the like are preferable from the viewpoint of strong adhesiveness, and organic acid dihydrazide.
  • VDH (1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin), ADH (adipic acid dihydrazide), UDH (7,11-octadecadiene-1,18-dicarbohydrazide) and LDH (octadecane- 1,18-dicarboxylic acid dihydrazide) is preferred.
  • VDH 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin
  • ADH adipic acid dihydrazide
  • UDH 7,11-octadecadiene-1,18-dicarbohydra
  • photosensitizer examples include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreducible dyes from the viewpoint of curability.
  • photosensitizers include benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate.
  • Benzophenone derivatives such as 4,4′-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone; 2-chloroanthraquinone, 2-methylanthraquinone, etc.
  • Anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; other ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xanthone, uranyl compounds Etc.
  • These photosensitizers may be used alone or in combination of two or more.
  • a preferred photosensitizer is 2,4-diethylthioxanthone (for example, DETX-S manufactured by Nippon Kayaku).
  • the liquid crystal sealant of the present invention can contain a curing accelerator from the viewpoint of accelerating the curing reaction of the curable compound, and is preferably an imidazo such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole.
  • a curing accelerator from the viewpoint of accelerating the curing reaction of the curable compound, and is preferably an imidazo such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole.
  • a filler can be added from the viewpoints of viscosity control, further improvement in strength after curing, adhesion reliability, and suppression of linear expansion.
  • an inorganic filler and an organic filler can be used.
  • inorganic fillers calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, titanium oxide, alumina, zinc oxide, silicon dioxide, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride Is mentioned.
  • the organic filler include polymethyl methacrylate, polystyrene, a copolymer obtained by copolymerizing a monomer constituting these and another monomer, polyester fine particles, polyurethane fine particles, and rubber fine particles.
  • the average particle size of the particles constituting the filler is 0.1 to 3 ⁇ m, and more preferably 0.5 to 3 ⁇ m.
  • the average particle size of the filler is measured by a laser diffraction / scattering particle size distribution measuring device manufactured by HORIBA (for example, Partica LA-950V2 manufactured by HORIBA).
  • the liquid crystal sealant of the present invention can contain a silane coupling agent within the scope of the effects of the present invention.
  • the silane coupling agent is preferably tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxy.
  • Tetraalkoxysilanes such as silane, dimethoxydiisopropoxysilane, diethoxydiisopropoxysilane, diethoxydibutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, ethyltri Butoxysilane, cyclohexyltriethoxysilane, phenyltriisopropoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyl Trialkoxysilanes such as limethoxysilane; and at least one selected from the group consisting of dialkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, diethyldibutoxysilane, and phenylethy
  • the process for producing compound A of the present invention comprises: Following formula (2):
  • n 2 is a number in the range of 2 to 30, Y is independently an alkylene group having 2 to 4 carbon atoms, and R 11 is independently of each other a hydrogen atom, glycidyl Group C or a methyl glycidyl group),
  • X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms or an alkylidene group having 2 to 4 carbon atoms
  • R 12 s independently of one another are a hydrogen atom, a glycidyl group, Methyl glycidyl group, group 1: —CH 2 —CH (OR 21 ) —CH 2 —O—R 22 or group 2: —CH 2 —C (CH 3 ) (OR 21 ) —CH 2 —O—R 22 ( Wherein R 21 is a hydrogen atom or a (meth) acryloyl group, and R 22 is a (meth) acryloyl group)].
  • N 2 in Compound C may be selected so that n 1 of Compound A falls within the above-mentioned range from the viewpoint of strong adhesiveness of Compound A, and is a number in the range of 3 to 25, preferably 5 to 20 The number is in the range, more preferably in the range of 5 to 15, and still more preferably in the range of 7 to 10.
  • the molecular weight (weight average molecular weight) of the compound C in which R 11 is a hydrogen atom is preferably 2000 or less.
  • Y in the compound C is an alkylene group having 2 to 4 carbon atoms, specifically, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, or the like.
  • Y is preferably an ethylene group or a propylene group, and more preferably an ethylene group.
  • Compounds C and D are commercially available or can be easily prepared from commercially available compounds according to known methods.
  • compound C in which R 11 is a hydrogen atom and Y is an ethylene group those having various numbers of repeating units (n 2 ) as polyethylene glycol are available, and compounds having a desired range of n 2 May be appropriately selected.
  • N 2 can also be calculated in the same manner as n 1 .
  • the molecular weight of polyethylene glycol is preferably 2000 or less.
  • compound C in which R 11 is a hydrogen atom and Y is a propylene group compounds having various numbers of repeating units are available as polypropylene ether glycol.
  • polypropylene ether glycol examples include EXCENOL420, EXCENOL720, EXCENOL1020, EXCENOL2020 (above, manufactured by Asahi Glass Co., Ltd.) and the like can be mentioned.
  • the molecular weight of polypropylene ether glycol is preferably 2000 or less.
  • compound C in which R 11 is a hydrogen atom and Y is a trimethylene group can be obtained, for example, as polytrimethylene ether glycol having various numbers of repeating units according to the method described in JP2013-515144A. It can be manufactured.
  • the molecular weight of polytrimethylene ether glycol is preferably 2000 or less.
  • compound C in which R 11 is a hydrogen atom and Y is a tetramethylene group those having various numbers of repeating units as polytetramethylene ether glycol are available.
  • PTMG650, PTMG850, PTMG1000, PTMG1300, PTMG1500, PTMG1800, PTMG2000 (above, manufactured by Mitsubishi Chemical Corporation) and the like can be mentioned.
  • the molecular weight of polytetramethylene ether glycol is preferably 2000 or less.
  • R 11 in Compound C and R 12 in Compound D from the viewpoint of strong adhesion of Compound A, it is preferable that one of R 11 and R 12 is a hydrogen atom and the other is a glycidyl group.
  • the compound C and the compound D are produced by, for example, reacting the compound C and the compound D in the presence of an alkali, and then reacting the reaction product of the compound C and the compound D with the presence of an appropriate catalyst.
  • an appropriate catalyst such as epichlorohydrin.
  • the reaction described above is adjusted so that m in compound A is a number in the range of 1 to 5, preferably 1 to 4, more preferably 1 to 3, and more preferably 1 to 2.
  • the number of m can be controlled as follows when the synthesis intermediate P is synthesized in the case of the example.
  • the equivalent ratio of the compounds C1-1 and D1 is 1: 2.5.
  • this ratio is 1: 2.0 or 1: 1.5, the number of m is Increase.
  • one of R 11 in Compound C and R 12 in Compound D is a hydrogen atom, and the other is a glycidyl group.
  • the alkali is preferably an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an alkali metal carbonate such as sodium carbonate or potassium carbonate from the viewpoint of rapid progress of the reaction and synthesis cost. More preferred. These alkalis are preferably used as an aqueous solution, but in some cases, a powder or solid alkali can be added simultaneously with water or separately.
  • the amount of alkali used is such that when R 11 is a hydrogen atom and R 12 is a glycidyl group from the viewpoint of rapid progress of the reaction and synthesis cost, the alkali may be equal to or more than the equivalent of the hydroxyl group, and R 11 is glycidyl.
  • R 12 is a hydrogen atom
  • a catalytic amount is sufficient, and it is 0.0001 to 0.1 equivalent, more preferably 0.0001 to 0.01 equivalent of the hydroxyl group of compound D.
  • the amount of alkali used is 0.0003 equivalent to 1 equivalent of hydroxyl group.
  • the amount of the compound such as epichlorohydrin used is preferably 0.5 to 20 equivalents, more preferably 0.5 to 15 equivalents, from the viewpoint of rapid progress of the reaction and synthesis cost.
  • Catalysts include tertiary amines such as trimethylamine, trioctylamine and tridecylamine, tetramethylammonium, methyltrioctylammonium, methyltridecylammonium and benzyltrimethylammonium from the viewpoints of reaction time, catalyst cost and catalytic activity.
  • a quaternary ammonium salt such as tetramethylammonium chloride, methyltrioctoctylammonium chloride, methyltridecylammonium chloride, and benzyltrimethylammonium chloride is preferred, and a quaternary ammonium salt is more preferred.
  • the amount of the catalyst used is preferably 0.01 to 10% by weight with respect to the total amount of compounds such as Compound C, Compound D and epichlorohydrin, from the viewpoint of appropriately securing the reaction rate while suppressing side reactions. %, More preferably 0.1 to 5% by weight.
  • the reaction with the alkali is preferably performed at 50 to 250 ° C., more preferably at 70 to 200 ° C., and further preferably at 100 to 170 ° C.
  • the reaction with the compound such as epichlorohydrin is preferably The reaction is performed at 25 to 100 ° C, more preferably 30 to 80 ° C, and further preferably 40 to 60 ° C.
  • a solvent inert to the reaction such as hydrocarbon, ether or ketone can be used, but when an excessive amount of a compound such as epichlorohydrin is used, a compound such as epichlorohydrin is used as the solvent. These solvents are not essential.
  • Purification of compound A after completion of the reaction can be performed by a conventional method, for example, by distilling off an excess of epichlorohydrin and the like, and adding a water-insoluble solvent such as hydrocarbon as necessary,
  • the desired compound A can be obtained by removing the sodium chloride and catalyst produced by washing with water.
  • the production method of the compound A of the present invention is a compound C1 (polyalkylene ether glycol diglycidyl ether in which R 11 in the compound C is a glycidyl group; for example, polyethylene glycol Diglycidyl ether), and R 12 in compound D is a compound D1 (for example, bisphenol A) in which R 12 is a hydrogen atom, the compound C1 and the compound D1 are reacted to form the compound C1 and the compound D1.
  • step 1 for obtaining the reactant P
  • step 2 for obtaining a reactant Q in which part or all of the hydroxyl groups of the reactant P are epoxidized by epoxidizing the hydroxyl group of the reactant P.
  • step 3 compound A in which group 1 or group 2 is introduced into R can be obtained through step 3 in which reactant Q is further reacted with (meth) acrylic acid in the presence of a basic catalyst.
  • a basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used from the viewpoint of improving the reaction rate, rapid progress of the reaction, and catalyst cost. It is also possible to use a polymer-supported basic catalyst in which is supported on a polymer.
  • the basic catalyst is preferably a trivalent organic phosphorus compound and / or an amine compound.
  • the basic atom of the basic catalyst is phosphorus and / or nitrogen.
  • the basic catalyst a known basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used.
  • a polymer-supported basic catalyst in which a basic catalyst is supported on a polymer can also be used.
  • the basic catalyst is preferably a trivalent organic phosphorus compound and / or an amine compound.
  • the basic atom of the basic catalyst is phosphorus and / or nitrogen.
  • trivalent organic phosphorus compounds include alkylphosphines such as triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine and salts thereof, triphenylphosphine, tri-m-tolylphosphine, tris (2, Arylphosphines such as 6-dimethoxyphenyl) phosphine and salts thereof, phosphorous acid triesters such as triphenylphosphite, triethylphosphite and tris (nonylphenyl) phosphite and salts thereof.
  • alkylphosphines such as triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine and salts thereof
  • triphenylphosphine tri-m-tolylphosphine
  • tris (2, Arylphosphines such as 6-dimethoxyphenyl
  • amine compounds include secondary amines such as diethanolamine, tertiary amines such as triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol, trisdiethylaminomethylphenol, 1,5,7-triazabicyclo [4.
  • dec-5-ene TBD
  • 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene Me-TBD
  • 1,8-diazabicyclo DBU
  • 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene 1,5-diazabicyclo [4.3.0]
  • Examples include strongly basic amines such as non-5-ene (DBN) and 1,1,3,3-tetramethylguanidine and salts thereof. Of these, 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) is preferable.
  • the salt of the amine compound include benzyltrimethylammonium chloride and benzyltriethylammonium chloride.
  • the polymer for supporting the basic catalyst is not particularly limited, and a polymer obtained by crosslinking polystyrene with divinylbenzene, a polymer obtained by crosslinking acrylic resin with divinylbenzene, or the like is used.
  • These polymers are the solvent (for example, methyl ethyl ketone, methyl isobutyl ketone, toluene etc.) used for reaction with the epoxy resin obtained by the manufacturing method including the process 1 or processes 1 and 2, and a raw material, a product. Is insoluble.
  • a polymer-supported basic catalyst is obtained by chemically bonding a basic catalyst to an insoluble polymer or introducing a basic catalyst into a monomer, polymerizing the monomer, and then three-dimensionally crosslinking with a crosslinking monomer such as divinylbenzene.
  • a crosslinking monomer such as divinylbenzene.
  • polymer-supported basic catalyst examples include diphenylphosphinopolystyrene, 1,5,7-triazabicyclo [4.4.0] dec-5-enepolystyrene, N, N- (diisopropyl) aminomethylpolystyrene. N- (methylpolystyrene) -4- (methylamino) pyridine and the like. These polymer-supported basic catalysts may be used alone or in combination of two or more.
  • polymer-supported basic catalyst a commercially available one may be used.
  • examples of commercially available polymer-supported basic catalysts include PS-PPh 3 (diphenylphosphinopolystyrene, manufactured by Biotage), PS-TBD (1,5,7-triazabicyclo [4.4.0] deca-5. -Enpolystyrene, manufactured by Biotage Corporation).
  • the polymer-supported basic catalyst is used in an amount of 0.5 to 5.0 milliequivalents of the polymer-supported basic catalyst with respect to 1 equivalent of epoxy of the epoxy resin obtained by the production method including Step 1 or 2. Preferably, it is 1.0 to 3.0 milliequivalent. It is preferable from the viewpoint of reaction rate, reaction time, and catalyst cost that the ratio of the polymer-supported basic catalyst is within the above range.
  • the temperature in the reaction step of the epoxy resin obtained by the production method including step 1 or steps 1 and 2 and (meth) acrylic acid is preferably 60 to 120 ° C., more preferably 80 to 120 ° C. More preferably, it is 90 to 110 ° C.
  • the reaction between the epoxy resin obtained by the production method including Step 1 or Steps 1 and 2 and (meth) acrylic acid is because the partially esterified epoxy resin obtained by this reaction is cured by active energy rays such as ultraviolet rays. It is desirable to carry out the reaction in a container that shields from ultraviolet rays.
  • the reaction between the epoxy resin obtained by the production method including Step 1 or Steps 1 and 2 and (meth) acrylic acid is a reflux solvent exhibiting good solvent properties with respect to the epoxy resin in order to prevent gas phase polymerization. Although it may be performed in the presence of the solvent, in this case, since it is necessary to remove the solvent after completion of the reaction, it is preferably performed without a solvent. Examples of the reflux solvent include acetone and methyl ethyl ketone.
  • the partially esterified epoxy resin removes the polymer-supported basic catalyst. Can be obtained.
  • a method for removing the polymer-supported basic catalyst it is preferable to use filtration or centrifugation.
  • Examples of the method for filtering the polymer-supported basic catalyst include a method of filtering the polymer-supported basic catalyst using, for example, a nylon mesh NY-10HC (manufactured by Sefar, Switzerland) having an opening of 10 ⁇ m.
  • Examples of the method of centrifuging the polymer-supported basic catalyst include a method of removing the polymer-supported basic catalyst by solid-liquid separation using a centrifuge.
  • Comparative Example 1-2 (Compound B) 340 g of bisphenol A type epoxy resin (EXA850CRP, manufactured by DIC Corporation; also used as the compound of Comparative Example 1-1), 90.4 g of methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.5 g of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) And BHT 100 mg were mixed and stirred at 100 ° C. for 6 hours. 418g of compound B of pale yellow transparent viscous substance was obtained.
  • EXA850CRP bisphenol A type epoxy resin
  • DIC Corporation also used as the compound of Comparative Example 1-1
  • methacrylic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • triphenylphosphine manufactured by Tokyo Chemical Industry Co., Ltd.
  • BHT 100 mg were mixed and stirred at 100 ° C. for 6 hours. 418g of compound B of pale yellow transparent viscous substance was obtained.
  • Example 1-1 Compound A-1 (1) Compound C1-1 (145 g (1 equivalent / epoxy group)) and bisphenol A (Compound D1) (570 g (2.5 equivalents)) are placed in an eggplant type flask so that the liquid temperature becomes 150 ° C. Stir with heating. 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours. The solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water.
  • Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 290 g of reaction product P-1 was obtained.
  • reaction product Q-1 pale yellow viscous compound A-1 (reaction product Q-1).
  • Example 1-2 Compound A-2
  • Compound C1-2 230 g (1 equivalent / epoxy group)
  • bisphenol A Compound D1
  • 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours.
  • the solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water.
  • Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is filtered off. 366 g of reaction product P-2 was obtained.
  • reaction product Q-2 The reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 241 g of pale yellow viscous compound A-2 (reaction product Q-2).
  • Example 1-3 (Compound A-3)
  • Denasel EX-830 (compound C1-3) (268 g (1 equivalent / epoxy group)) and bisphenol A (compound D1) (570 g (2.5 equivalents)) manufactured by Nagase ChemteX Corporation in an eggplant type flask
  • the mixture was heated and stirred so that the liquid temperature became 150 ° C. 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours.
  • the solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water.
  • Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 375 g of reaction product P-3 was obtained.
  • reaction product Q-3 pale yellow viscous compound A-3
  • Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 154 g of reactant P-4 was obtained.
  • reaction product Q-4 pale yellow viscous compound A-4 (reaction product Q-4).
  • Example 1-5 Compound A-5
  • a mixture of 320 g of compound A-3 (reactant Q-3), 43.05 g of methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.25 g of triphenylphosphine (basic catalyst, produced by Tokyo Chemical Industry Co., Ltd.), and 50 mg of BHT was mixed at 100 ° C. For 8 hours. 357 g of light yellow viscous compound A-5 was obtained.
  • Examples 2-1 to 9 and Comparative Example 2-1 Each of Compound A-1 to 5 (Examples 1-1 to 5) and Compound B (Comparative Example 1-2), EY Resin KR-2 (manufactured by QSM), Zefaak F351 (manufactured by Gantz Kasei), Seahoster KE-C50HG (manufactured by Nippon Shokubai Co., Ltd.), KBM-403 (silane coupling agent: manufactured by Shin-Etsu Chemical Co., Ltd.), and Amicure VDH (1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, Ajinomoto Fine Techno Were mixed in the blending amounts (parts by weight) shown in Table 1, and then sufficiently kneaded using a three-roll mill (C-43 / 4 ⁇ 10 manufactured by Inoue Seisakusho). Examples 2-1 to 9-9 The liquid crystal sealant of Comparative Example 2-1 was obtained
  • Viscosity measurement The viscosity was measured at 25 ° C. using an E-type viscometer (RE105U manufactured by Toki Sangyo Co., Ltd.). The rotor and the number of rotations were selected as follows. Compound A-1: 3 ° ⁇ R7.7 rotor, 5 rpm Compound A-2: 3 ° ⁇ R7.7 rotor, rotation speed 10 rpm Compound A-3: 3 ° ⁇ R14 rotor, rotation speed 5 rpm Compound A-4: 3 ° ⁇ R14 rotor, rotation speed 20 rpm Compound A-5: 3 ° ⁇ R7.7 rotor, 5 rpm EPICLON850CRP: 3 ° x R14 rotor, rotation speed 20rpm Compound B: 3 ° ⁇ R7.7 rotor, rotation speed 10 rpm
  • the NI point is measured using a differential scanning calorimeter (DSC, manufactured by PerkinElmer, Inc., PYRIS6), 10 mg of a liquid crystal sample for evaluation is enclosed in an aluminum sample pan, and the measurement is performed at a temperature rising rate of 5 ° C./min. went. In addition, 10 mg of the liquid crystal was sealed in an aluminum sample pan, and a measurement was performed under a temperature rising rate of 5 ° C./min.
  • DSC differential scanning calorimeter
  • the difference TE-TB between the blank endothermic peak top (phase transition temperature) TB and the endothermic peak top (phase transition temperature) TE of the liquid crystal for evaluation was defined as the NI point change.
  • the NI point change is as small as possible.
  • the rubbing process was performed as follows. Alignment liquid Sunever SE-7492 (Nissan Chemical Co., Ltd.) was added dropwise (0.3 MPa, 5.3 sec) to an TN6070 base (ITP base manufactured by FPD Solutions) and dried using pure water. A coater reached 5000 rpm in 10 seconds, and was applied uniformly under the condition of keeping for 20 seconds (conditions in which the orientation film thickness was 7000 to 8000 mm). After application, pre-baking (85 ° C., 1 min) on a hot plate and post-baking (230 ° C., 60 min) in an oven were performed.
  • the substrate was fed at a rotation speed of 500 rpm at a speed of 600 mm / min, and a rubbing treatment was performed with an indentation amount of 0.4 mm.
  • the rubbing direction was defined so that the facing substrate was a twist (cross) of 90 °.
  • the rubbed substrate was immersed in pure water and subjected to ultrasonic cleaning.
  • the glass substrate was dried in an oven at 120 ° C. to obtain a rubbed ITO glass substrate with an alignment film.
  • sticker point application part
  • the confirmation was performed with an optical microscope, and the polarizing plate was observed in a crossed Nicol state with a test cell sandwiched between them, and the liquid crystal (hereinafter, blank liquid crystal) in the middle part of the seal and the seal was compared with the liquid crystal state at the time of sealing.
  • a non-uniform part that is different from the state of the blank liquid crystal found when sealing If it is not observed at the time of sealing, or if it is a part of the sealing and less than 50 ⁇ m from the sealing, The case where it is a part at the time of sealing and 50 ⁇ m or more from the time of sealing, or the whole circumference at the time of sealing and less than 50 ⁇ m from the time of sealing is evaluated as ⁇ , The case of 50 ⁇ m or more from the whole circumference at the time of sealing and from the time of sealing was evaluated as x. In addition, it is thought that said non-uniform
  • FIGS. 1 and 2 show the alignment state of the liquid crystal during sealing of compounds A-3 (FIG. 1) and A-5 (FIG. 2). When it is not observed at all, it is a part at the time of sealing and less than 50 ⁇ m ( ⁇ ) from the time of sealing.
  • FIG. 3 shows the alignment state of the liquid crystal when the compound B is sealed, and the non-uniform portion different from the blank liquid crystal state found at the time of sealing is 50 ⁇ m or more ( ⁇ ) over the entire periphery of the sealing and from the sealing time. It is.
  • FIG. 4 shows an outline of the test method.
  • Each of the liquid crystal sealants of Examples 2-1 to 9 and Comparative Examples 2-1 to 3 is 15 mm ⁇ 3 mm, 15 mm ⁇ 21 mm on an ITO glass substrate (30 mm ⁇ 30 mm ⁇ 0.5 mmt) dispersed with a 6 ⁇ m spacer. Spot coating was performed so that the diameter of the liquid crystal sealant after bonding to the position was 1.5 to 2.5 mm ⁇ .
  • a glass substrate (23 mm ⁇ 23 mm ⁇ 0.5 mmt) was bonded, and ultraviolet rays (UV irradiation device: UVX-01224S1, manufactured by USHIO INC., 30 seconds at 100 mW / cm 2/365 nm) were irradiated at an illuminance of 3000 mJ / cm 2.
  • UV irradiation device UVX-01224S1, manufactured by USHIO INC., 30 seconds at 100 mW / cm 2/365 nm
  • heat curing was performed in a hot air oven at 120 ° C. for 1 hour to prepare a test piece for evaluating the adhesive strength.
  • the glass substrate of the test piece was fixed, the ITO glass substrate 15 mm ⁇ 25 mm was punched out at a speed of 5 mm / min, and the adhesive strength was evaluated.
  • Table 1 The evaluation results are shown in Table 1.

Abstract

The present invention provides a glycidyl ether compound that scarcely affects liquid crystal molecular alignment and makes it possible for a liquid crystal sealant to adhere strongly and cure even when a liquid crystal sealant is applied in a narrow seal width and bonded to a base in a one-drop-fill method. The present invention also provides a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.

Description

グリシジルエーテル系化合物、液晶シール剤及びグリシジルエーテル系化合物の製造方法Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound
 本発明は、グリシジルエーテル系化合物、グリシジルエーテル系化合物を含む液晶シール剤及びグリシジルエーテル系化合物の製造方法に関する。 The present invention relates to a glycidyl ether compound, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
 液晶パネル等の液晶表示装置の製造において、例えば、液晶パネルを構成する2枚の基盤のいずれかの基盤の外周に液晶シール剤を塗布し、いずれかの基盤上に所定量の液晶を滴下し、2枚の基盤を真空下で貼り合せた後に大気圧中に戻すことにより液晶を充填し、液晶シール剤を硬化させる液晶滴下工法が普及している。 In the manufacture of a liquid crystal display device such as a liquid crystal panel, for example, a liquid crystal sealant is applied to the outer periphery of one of the two substrates constituting the liquid crystal panel, and a predetermined amount of liquid crystal is dropped on either substrate. A liquid crystal dropping method is widely used in which two substrates are bonded together under vacuum and then returned to atmospheric pressure to fill the liquid crystal and cure the liquid crystal sealant.
 液晶滴下工法では、高速硬化の観点から、エポキシアクリレート系化合物を主剤とするラジカル重合反応性化合物が液晶シール剤として広く使用されている(例えば、特開2007-297470号公報参照)。 In the liquid crystal dropping method, a radical polymerization reactive compound mainly composed of an epoxy acrylate compound is widely used as a liquid crystal sealant from the viewpoint of high-speed curing (see, for example, JP-A-2007-297470).
 しかし、近年、スマートフォンやタブレット型端末などの普及により小型パネルの需要が増大し、デザイン性を向上させたパネル設計により、狭額縁化が進み、液晶シール剤の塗布の細線化の要求が増加している。例えば、従来のシール幅1.0~1.5mmを半減させるようなレベルが要求されている。かかる要求に対して、シール幅の狭小化によって接着面積は減少しても、耐久性の観点から接着強度を維持又はより向上できる液晶シール剤が必要となってきた。 However, in recent years, the demand for small panels has increased due to the widespread use of smartphones and tablet terminals, etc., and panel design with improved design has led to a narrower frame, increasing the demand for thinning of the liquid crystal sealant coating. ing. For example, a level that halves the conventional seal width of 1.0 to 1.5 mm is required. In response to such demands, there has been a need for a liquid crystal sealant that can maintain or improve the adhesive strength from the viewpoint of durability even if the adhesive area is reduced by narrowing the seal width.
 液晶滴下工法では基盤にシール剤を枠状に塗布して枠シールを形成し、枠の内側に液晶を滴下して、真空に引いてパネルを張り合わせ、UV照射して液晶シール剤を光硬化させた後に、液晶のNI点(Nematic Isotropic point)以上の温度で熱養生し、液晶シール剤を熱硬化すると同時に液晶を配向させる。 In the liquid crystal dripping method, a seal is applied to the base in the form of a frame to form a frame seal, the liquid crystal is dropped inside the frame, vacuum is applied to the panel, and UV irradiation is performed to lightly cure the liquid crystal sealant. After that, heat curing is performed at a temperature equal to or higher than the NI point (Nematic (Isotropic point) of the liquid crystal to thermally cure the liquid crystal sealant and simultaneously align the liquid crystal.
 TVのように大型パネルの場合は、パネルが大きい為、液晶滴下箇所から枠シールまでに一定以上の距離があり、液晶を滴下してパネルを貼り合わせてからUV照射するまでに液晶と液晶シール剤とが接触しないので液晶シール剤が光硬化してから液晶と接触していた。又は液晶と未硬化状態の液晶シール剤との接触時間が短かった。
 一方、小型パネルでは液晶滴下箇所から枠シールまでの距離が短い為、貼り合わせてからUV照射するまでに、液晶シール剤が未硬化の状態で液晶と接触する(接触時間が長い)。その為、従来よりも、液晶シール剤の未硬化状態での液晶汚染性が問題となる。
In the case of a large panel such as a TV, since the panel is large, there is a certain distance from the liquid crystal dripping point to the frame seal. Since the liquid crystal sealant was photocured, it was in contact with the liquid crystal because it did not come into contact with the liquid crystal. Alternatively, the contact time between the liquid crystal and the uncured liquid crystal sealant was short.
On the other hand, since the distance from the liquid crystal dropping point to the frame seal is short in the small panel, the liquid crystal sealant comes into contact with the liquid crystal in an uncured state between the bonding and UV irradiation (long contact time). Therefore, the liquid crystal contamination in the uncured state of the liquid crystal sealant becomes a problem than before.
 従来のエポキシ/アクリル系化合物を含むエポキシ化合物を主剤とするラジカル重合反応性の液晶シール剤は、かかる要請に十分に応えているとはいえなかった。 The conventional radical polymerization reactive liquid crystal sealant mainly composed of an epoxy compound containing an epoxy / acrylic compound has not been able to sufficiently meet such a demand.
 本発明の課題は、液晶滴下工法において、液晶シール剤を狭小なシール幅で塗布して基盤を貼り合せた際にも、液晶シール剤が強く接着硬化することができ、液晶配向性に影響を与え難いグリシジルエーテル系化合物、グリシジルエーテル系化合物を含む液晶シール剤及びグリシジルエーテル系化合物の製造方法を提供することである。 The problem of the present invention is that the liquid crystal sealing agent can be strongly bonded and cured even when the liquid crystal sealing agent is applied with a narrow seal width and the substrate is bonded in the liquid crystal dropping method, which affects the liquid crystal orientation. It is an object of the present invention to provide a glycidyl ether compound that is difficult to give, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
 本発明は以下の態様を包含する。
[1]下記式(1):
The present invention includes the following aspects.
[1] The following formula (1):
Figure JPOXMLDOC01-appb-C000004
[式中、nは2~30の範囲の数であり、mは1~5の範囲の数であり、
 Xは、酸素原子(O)、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基であり、
 Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、
 Rは、それぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR)-CH-O-R又は基2:-CH-C(CH)(OR)-CH-O-R(式中、Rは水素原子又は(メタ)アクリロイル基であり、Rは(メタ)アクリロイル基である)であり、
 R’は、それぞれ互いに独立に、水素原子又はメチル基であり、
 前記Rにおいて、前記グリシジル基、前記メチルグリシジル基、前記基1及び前記基2の合計の平均の個数xは2以上であり、
 前記Rが前記基1又は前記基2を含む場合、前記グリシジル基及びメチルグリシジル基の合計の平均の個数yと、前記基1及び前記基2の合計の平均の個数zの割合(y/z)は、10/90~90/10である]で表わされるグリシジルエーテル系化合物である。
[2]前記[1]記載のグリシジルエーテル系化合物を含む、液晶シール剤である。
[3]下記式(2):
Figure JPOXMLDOC01-appb-C000004
[Wherein n 1 is a number in the range of 2-30, m is a number in the range of 1-5,
X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms,
Y is each independently an alkylene group having 2 to 4 carbon atoms,
R is independently of each other a hydrogen atom, a glycidyl group, a methylglycidyl group, a group 1: —CH 2 —CH (OR 1 ) —CH 2 —O—R 2 or a group 2: —CH 2 —C (CH 3 ) (OR 1 ) —CH 2 —O—R 2 (wherein R 1 is a hydrogen atom or a (meth) acryloyl group, and R 2 is a (meth) acryloyl group),
Each R ′, independently of one another, is a hydrogen atom or a methyl group;
In R, the total number x of the total of the glycidyl group, the methyl glycidyl group, the group 1 and the group 2 is 2 or more,
When the R includes the group 1 or the group 2, the ratio of the average number y of the total of the glycidyl group and the methylglycidyl group and the average number z of the total of the group 1 and the group 2 (y / z ) Is 10/90 to 90/10].
[2] A liquid crystal sealant comprising the glycidyl ether compound according to [1].
[3] The following formula (2):
Figure JPOXMLDOC01-appb-C000005
(式中、nは2~30の範囲の数であり、
 Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、
 R11は、それぞれ互いに独立に、水素原子、グリシジル基又はメチルグリシジル基である)で表わされる化合物Cと、
 下記式(3):
Figure JPOXMLDOC01-appb-C000005
(Where n 2 is a number in the range of 2-30,
Y is each independently an alkylene group having 2 to 4 carbon atoms,
R 11 is each independently a hydrogen atom, a glycidyl group or a methyl glycidyl group)
Following formula (3):
Figure JPOXMLDOC01-appb-C000006
[式中、Xは、酸素原子、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基であり、
 R12は、それぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR21)-CH-O-R22又は基2:-CH-C(CH)(OR21)-CH-O-R22(式中、R21は水素原子又は(メタ)アクリロイル基であり、R22は(メタ)アクリロイル基である)である]で表わされる化合物Dとを反応させる工程を含む、前記[1]記載の式(1)で表されるグリシジルエーテル系化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000006
[Wherein X is an oxygen atom, an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms,
R 12 is independently of each other a hydrogen atom, a glycidyl group, a methyl glycidyl group, a group 1: —CH 2 —CH (OR 21 ) —CH 2 —O—R 22 or a group 2: —CH 2 —C (CH 3 ) a compound represented by (OR 21 ) —CH 2 —O—R 22 (wherein R 21 is a hydrogen atom or a (meth) acryloyl group, and R 22 is a (meth) acryloyl group). It is a manufacturing method of the glycidyl ether type compound represented by Formula (1) of said [1] description including the process with which D is made to react.
 本発明によれば、液晶滴下工法において、液晶シール剤を狭小なシール幅で塗布して基盤を貼り合せた際にも、液晶シール剤が強く接着硬化することができ、液晶配向性に影響を与え難いグリシジルエーテル系化合物、グリシジルエーテル系化合物を含む液晶シール剤及びグリシジルエーテル系化合物の製造方法を提供することができる。 According to the present invention, in the liquid crystal dropping method, even when the liquid crystal sealant is applied with a narrow seal width and the substrate is bonded, the liquid crystal sealant can be strongly bonded and cured, which affects the liquid crystal orientation. It is possible to provide a glycidyl ether compound that is difficult to give, a liquid crystal sealant containing the glycidyl ether compound, and a method for producing the glycidyl ether compound.
実施例における液晶配向性が○の場合の例(化合物A-3)を示す顕微鏡像である。It is a microscope image which shows the example (compound A-3) when the liquid crystal aligning property in an Example is (circle). 実施例における液晶配向性が○の場合の例(化合物A-5)を示す顕微鏡像である。It is a microscope image which shows the example (compound A-5) when the liquid crystal aligning property in an Example is (circle). 実施例における液晶配向性が×の場合の例(化合物B)を示す顕微鏡像である。It is a microscope image which shows the example (compound B) in case the liquid crystal orientation in an Example is x. 接着強度の試験方法の概要を示す概念図である。It is a conceptual diagram which shows the outline | summary of the test method of adhesive strength.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 また、(メタ)アクリロイルとは、メタクリロイル及び/又はアクリロイルを意味し、(メタ)アクリレートとは、メタクリレート及び/又はアクリレートを意味する。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . The numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. The amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
Moreover, (meth) acryloyl means methacryloyl and / or acryloyl, and (meth) acrylate means methacrylate and / or acrylate.
〔化合物A〕
 本発明のグリシジルエーテル系化合物(以下、化合物Aともいう)は、下記式(1)で表わされる。
[Compound A]
The glycidyl ether compound of the present invention (hereinafter also referred to as compound A) is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 式中、nは2~30の範囲の数であり、mは1~5の範囲の数である。
 Xは、酸素原子(O)、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基である。Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基である。
 Rは、それぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR)-CH-O-R又は基2:-CH-C(CH)(OR)-CH-O-R(式中、Rは水素原子又は(メタ)アクリロイル基であり、Rは(メタ)アクリロイル基である)である。R’は、それぞれ互いに独立に、水素原子又はメチル基である。
 前記Rにおいて、前記グリシジル基、前記メチルグリシジル基、前記基1及び前記基2の合計の平均の個数xは2以上であり、前記Rが前記基1又は前記基2を含む場合、前記グリシジル基及びメチルグリシジル基の合計の平均の個数yと、前記基1及び前記基2の合計の平均の個数zの割合(y/z)は、10/90~90/10である。
Figure JPOXMLDOC01-appb-C000007
In the formula, n 1 is a number in the range of 2 to 30, and m is a number in the range of 1 to 5.
X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms. Y is each independently an alkylene group having 2 to 4 carbon atoms.
R is independently of each other a hydrogen atom, a glycidyl group, a methylglycidyl group, a group 1: —CH 2 —CH (OR 1 ) —CH 2 —O—R 2 or a group 2: —CH 2 —C (CH 3 ) (OR 1 ) —CH 2 —O—R 2 (wherein R 1 is a hydrogen atom or a (meth) acryloyl group, and R 2 is a (meth) acryloyl group). R ′ is, independently of each other, a hydrogen atom or a methyl group.
In R, when the total number x of the total of the glycidyl group, the methyl glycidyl group, the group 1 and the group 2 is 2 or more, and the R includes the group 1 or the group 2, the glycidyl group And the ratio (y / z) of the average number y of the total of the methyl glycidyl groups and the total number z of the total of the groups 1 and 2 is 10/90 to 90/10.
 化合物Aにおいて、液晶滴下工法において、液晶シール剤を狭小なシール幅で塗布して基盤を貼り合せた際にも、液晶シール剤が強く接着硬化する性能(以下、強接着性ともいう)の観点から、nは、3~25の範囲の数であり、好ましくは5~20の範囲の数であり、更に好ましくは5~15の範囲の数であり、更に好ましくは7~10の範囲の数である。なお、nは、式(2)で表される化合物(化合物C)の繰り返し単位数、すなわちnに由来する。 In Compound A, in the liquid crystal dropping method, when the liquid crystal sealant is applied with a narrow seal width and the base is bonded, the liquid crystal sealant strongly adheres and cures (hereinafter also referred to as strong adhesiveness). N 1 is a number in the range of 3 to 25, preferably a number in the range of 5 to 20, more preferably a number in the range of 5 to 15, more preferably in the range of 7 to 10. Is a number. N 1 is derived from the number of repeating units of the compound represented by formula (2) (compound C), that is, n 2 .
 化合物Aにおいて、液晶シール剤の塗布性の(例えば、ディスペンサーでの描画速度及び生産タクトが低下しない)観点と液晶シール剤の配合性の(化合物Aの粘度を過剰に高くしない)観点から、mは、1~5の範囲の数であり、好ましくは1~4の範囲の数であり、更に好ましくは1~3の範囲の数であり、更に好ましくは1~2の範囲の数である。なお、mは、化合物Aの原料である化合物C及び化合物Dの反応当量比(仕込み量)から概算することができる。 From the viewpoint of the application property of the liquid crystal sealing agent in the compound A (for example, the drawing speed and production tact in the dispenser are not reduced) and the compounding property of the liquid crystal sealing agent (the viscosity of the compound A is not excessively increased), m Is a number in the range of 1 to 5, preferably a number in the range of 1 to 4, more preferably a number in the range of 1 to 3, and still more preferably a number in the range of 1 to 2. In addition, m can be estimated from the reaction equivalent ratio (preparation amount) of the compound C and the compound D which are raw materials of the compound A.
 なお、n及びmは、GPCによって測定することもできる。 Incidentally, n 1 and m can also be measured by GPC.
 Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、具体的には、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基等である。Yは、好ましくはエチレン基又はプロピレン基であり、より好ましくはエチレン基である。 Y is each independently an alkylene group having 2 to 4 carbon atoms, specifically, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, or the like. Y is preferably an ethylene group or a propylene group, and more preferably an ethylene group.
 化合物AにおけるRにおいて、グリシジル基、メチルグリシジル基、基1及び基2の合計の平均の個数xは、液晶シール剤の、例えば粘度が影響する塗布性等の作業性と、例えば架橋密度が影響する硬化後の強度等の物理的特性の観点から、2以上であり、好ましくは2~2m+2であり、より好ましくは2m~2m+2であり、更に好ましくは2m+1~2m+2である。 In R in Compound A, the average number x of the total of glycidyl group, methylglycidyl group, group 1 and group 2 is influenced by workability of the liquid crystal sealant such as coating property affected by viscosity, for example, crosslink density. From the viewpoint of physical properties such as strength after curing, it is 2 or more, preferably 2 to 2 m + 2, more preferably 2 m to 2 m + 2, and further preferably 2 m + 1 to 2 m + 2.
 なお、xは、高速液体クロマトグラフィー(HPLC)及び液体クロマトグラフ質量分析(LC-MS)によって、化合物Aの平均分子量及び分子量分布を測定し、GPCによって、n及びmを測定することによって、算出することができる。 X represents the average molecular weight and molecular weight distribution of Compound A by high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS), and by measuring n 1 and m by GPC, Can be calculated.
 化合物Aにおいて、前記Rが前記基1又は前記基2を含む場合、前記グリシジル基及びメチルグリシジル基の合計の平均の個数yと、前記基1及び前記基2の合計の平均の個数zの割合(y/z)は、10/90~90/10であり、好ましくは20/80~80/20、より好ましくは30/70~70/30、更に好ましくは40/60~60/40である。 In the compound A, when R includes the group 1 or the group 2, the ratio of the average number y of the total of the glycidyl group and the methyl glycidyl group and the average number z of the total of the group 1 and the group 2 (Y / z) is 10/90 to 90/10, preferably 20/80 to 80/20, more preferably 30/70 to 70/30, still more preferably 40/60 to 60/40. .
 化合物Aにおいて、強接着性の観点から、Rは、それぞれ独立に、水素原子、グリシジル基、メチルグリシジル基、基1又は基2であり、好ましくは、水素原子、グリシジル基又は基1である。また、R’は、好ましくは水素原子である。 In the compound A, from the viewpoint of strong adhesion, each R is independently a hydrogen atom, glycidyl group, methyl glycidyl group, group 1 or group 2, and preferably a hydrogen atom, glycidyl group or group 1. R 'is preferably a hydrogen atom.
 化合物Aを液晶シール剤に使用する場合、液晶シール剤に適度な粘性を確保する観点から、化合物Aの粘度は、好ましくは1000~1000000mPa・s、より好ましくは3000~700000mPa・s、更に好ましくは5000~500000mPa・s、更に好ましくは7000~250000mPa・s、更に好ましくは9000~200000mPa・sである。なお、粘度は25℃において、E型粘度計を用いて測定される。 When using compound A for the liquid crystal sealant, the viscosity of compound A is preferably 1000 to 1000000 mPa · s, more preferably 3000 to 700000 mPa · s, and still more preferably, from the viewpoint of securing an appropriate viscosity for the liquid crystal sealant. It is 5000 to 500000 mPa · s, more preferably 7000 to 250,000 mPa · s, and further preferably 9000 to 200000 mPa · s. The viscosity is measured at 25 ° C. using an E-type viscometer.
 なお、化合物Aの粘度は、例えば、化合物Aにおけるn及びmを変えること及び/又は化合物A中の水酸基の存在比を変更すること等によって調整できる。 The viscosity of compound A can be adjusted, for example, by changing n 1 and m in compound A and / or changing the abundance ratio of hydroxyl groups in compound A.
 化合物Aを液晶シール剤に使用する場合、強接着性の観点から、エポキシ当量は、好ましくは100~3000g/eq、より好ましくは150~2000g/eqである。 When Compound A is used for the liquid crystal sealant, the epoxy equivalent is preferably 100 to 3000 g / eq, more preferably 150 to 2000 g / eq from the viewpoint of strong adhesiveness.
 なお、化合物Aのエポキシ当量は、化合物Aの平均分子量と繰り返し単位当たりのエポキシ基の数で調整できる。例えば、化合物Pの水酸基をエポキシ化する比率により、及び反応物Qのエポキシ基の(メタ)アクリレート化変性する比率により調整することができる。 The epoxy equivalent of compound A can be adjusted by the average molecular weight of compound A and the number of epoxy groups per repeating unit. For example, it can be adjusted by the ratio of epoxidizing the hydroxyl group of compound P and by the ratio of (meth) acrylate modification of the epoxy group of reactant Q.
 化合物Aは、液晶滴下工法で、未硬化の状態で液晶と接触した場合でも、液晶の配向性に影響を与え難く(NI点変化が小さく)、液晶の配向性を阻害し難いので、液晶シール剤として好ましい。 Compound A is a liquid crystal dropping method, and even when it comes into contact with the liquid crystal in an uncured state, it hardly affects the alignment of the liquid crystal (change in the NI point is small) and does not easily disturb the alignment of the liquid crystal. Preferred as an agent.
〔化合物Aを含む液晶シール剤〕
 化合物Aを含む液晶シール剤(以下、「組成物」ともいう)は強接着性に優れる。
[Liquid crystal sealant containing compound A]
A liquid crystal sealant containing compound A (hereinafter also referred to as “composition”) is excellent in strong adhesion.
 強接着性及び液晶配向性の観点から、液晶シール剤の反応硬化性成分(例えば、光及び/又は加熱等によって反応して硬化しうる成分)中、化合物Aの含有量は、好ましくは10~100重量%であり、より好ましくは20~100重量%であり、更に好ましくは30~100重量%であり、更に好ましくは40~100重量%であり、更に好ましくは50~100重量%であり、更に好ましくは60~100重量%であり、更に好ましくは70~100重量%であり、更に好ましくは80~100重量%であり、更に好ましくは90~100重量%であり、更に好ましくは100重量%である。 From the viewpoint of strong adhesion and liquid crystal orientation, the content of compound A is preferably 10 to 10 in the reactive curable component of the liquid crystal sealant (for example, a component that can be cured by reaction with light and / or heating). 100% by weight, more preferably 20 to 100% by weight, still more preferably 30 to 100% by weight, still more preferably 40 to 100% by weight, still more preferably 50 to 100% by weight, More preferred is 60 to 100% by weight, still more preferred is 70 to 100% by weight, still more preferred is 80 to 100% by weight, still more preferred is 90 to 100% by weight, still more preferred is 100% by weight. It is.
 例えば、液晶シール剤の主剤として使用される従来のエチレン性不飽和基及び/又はエポキシ基を有する化合物B(例えば、ビスフェノールA型エポキシ樹脂のエポキシ基の一部をメタクリレート化したオリゴマー)と共に化合物Aを配合した液晶シール剤は、化合物Bだけの場合に比べて強接着性が大きく向上する。すなわち、液晶シール剤は、化合物Aに加えて、化合物A以外のエチレン性不飽和基及び/又はエポキシ基を有する化合物Bを含むことが好ましい。 For example, Compound A together with Compound B having a conventional ethylenically unsaturated group and / or epoxy group (for example, an oligomer in which a part of epoxy group of bisphenol A type epoxy resin is methacrylated) used as a main component of liquid crystal sealant Compared with the case of compound B alone, the liquid crystal sealant containing the compound significantly improves the strong adhesiveness. That is, the liquid crystal sealant preferably contains, in addition to compound A, compound B having an ethylenically unsaturated group and / or an epoxy group other than compound A.
 エチレン性不飽和基を有する化合物Bとしては、(メタ)アクリレート化合物、脂肪族アクリルアミド化合物、脂環式アクリルアミド化合物、芳香族を含むアクリルアミド化合物やN-置換アクリルアミド系化合物が挙げられる。 Examples of the compound B having an ethylenically unsaturated group include (meth) acrylate compounds, aliphatic acrylamide compounds, alicyclic acrylamide compounds, acrylamide compounds containing aromatics, and N-substituted acrylamide compounds.
 (メタ)アクリレート化合物としては、パラクミルフェノキシエチレングリコール(メタ)アクリレート、t-ブチル(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレートに代表される脂肪族(メタ)アクリレート、芳香環含有(メタ)アクリレートが挙げられる。 Examples of (meth) acrylate compounds include fats represented by paracumylphenoxyethylene glycol (meth) acrylate, t-butyl (meth) acrylate, ethoxylated phenyl (meth) acrylate, benzyl (meth) acrylate, and glycidyl (meth) acrylate. Group (meth) acrylate, aromatic ring-containing (meth) acrylate.
 エチレン性不飽和基含有化合物としては、一官能性、二官能性、三官能性又は多官能性ラジカル重合性不飽和化合物が挙げられる。 Examples of the ethylenically unsaturated group-containing compound include monofunctional, difunctional, trifunctional or polyfunctional radically polymerizable unsaturated compounds.
 一官能性ラジカル重合性不飽和化合物としては、組成物粘度、膜硬度、可とう性の確保の観点から、ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシルオキシエチル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、tert-ブチル(メタ)アクリレート及びジエチレングリコールモノエチルエーテル(メタ)アクリレートからなる群から選ばれる1種以上の化合物が好ましく、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレートからなる群から選ばれる1種以上の化合物がより好ましい。 Monofunctional radically polymerizable unsaturated compounds include hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, and isooctyl from the viewpoint of ensuring composition viscosity, film hardness, and flexibility. (Meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyloxyethyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isomyristyl (meth) One or more compounds selected from the group consisting of acrylate, lauryl (meth) acrylate, tert-butyl (meth) acrylate and diethylene glycol monoethyl ether (meth) acrylate are preferred, Runiru (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, one or more compounds selected from the group consisting of dicyclopentanyl (meth) acrylate and cyclohexyl (meth) acrylate are more preferred.
 二官能性ラジカル重合性不飽和化合物としては、組成物粘度、膜硬度、可とう性の確保の観点から、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート及びトリエチレングリコールジ(メタ)アクリレートからなる群から選ばれる1種以上の化合物が好ましく、ジメチロールジシクロペンタンジ(メタ)アクリレート及び/又は変性ビスフェノールAジ(メタ)アクリレートがより好ましい。中でも、水酸基を持たずビスフェノールA骨格をもつ(メタ)アクリレートが好ましく、共栄社化学(株)から、ライトアクリレートBP-4EAL(ビスフェノールAのEO付加物ジアクリレート)、BP-4PA(ビスフェノールAのPO付加物ジアクリレート)等が市販されている。 As a bifunctional radically polymerizable unsaturated compound, from the viewpoint of ensuring composition viscosity, film hardness, and flexibility, tricyclodecane dimethanol di (meth) acrylate, dimethylol dicyclopentanedi (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, PO-modified bisphenol A di (meth) acrylate, polyester di (meth) acrylate, polyethylene glycol di (meth) acrylate, silicone One or more compounds selected from the group consisting of di (meth) acrylate and triethylene glycol di (meth) acrylate are preferred, and dimethylol dicyclopentane di (meth) acrylate and / or modified bisphenol A di (meth) acrylate is preferably used. Yo Preferred. Among them, (meth) acrylates having no hydroxyl group and having a bisphenol A skeleton are preferable. From Kyoeisha Chemical Co., Ltd., light acrylate BP-4EAL (EO addition product of bisphenol A), BP-4PA (PO addition of bisphenol A) Product diacrylate) and the like are commercially available.
 三官能以上のラジカル重合性不飽和化合物としては、組成物粘度、膜硬度、可とう性の確保の観点から、ECH変性グリセロールトリ(メタ)アクリレート(三官能)、EO変性グリセロールトリ(メタ)アクリレート(三官能)、PO変性グリセロールトリ(メタ)アクリレート(三官能)、ペンタエリスリトールトリ(メタ)アクリレート(三官能)、ジペンタエリスリトールヘキサ(メタ)アクリレート(六官能)及びペンタエリスリトールテトラ(メタ)アクリレート(四官能)からなる群から選ばれる1種以上の化合物が好ましく、EO変性グリセロールトリ(メタ)アクリレート及び/又はジペンタエリスリトールヘキサ(メタ)アクリレートがより好ましい。 Trifunctional or higher radical polymerizable unsaturated compounds include ECH-modified glycerol tri (meth) acrylate (trifunctional) and EO-modified glycerol tri (meth) acrylate from the viewpoint of ensuring composition viscosity, film hardness, and flexibility. (Trifunctional), PO-modified glycerol tri (meth) acrylate (trifunctional), pentaerythritol tri (meth) acrylate (trifunctional), dipentaerythritol hexa (meth) acrylate (hexafunctional) and pentaerythritol tetra (meth) acrylate One or more compounds selected from the group consisting of (tetrafunctional) are preferable, and EO-modified glycerol tri (meth) acrylate and / or dipentaerythritol hexa (meth) acrylate are more preferable.
 エポキシ基を有する化合物Bとしては、好ましくは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ナフタレン型エポキシ化合物、これらの水素添加化合物及び脂環型エポキシ化合物からなる群より選ばれる少なくとも1種の化合物であり、より好ましくは、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物及びナフタレン型エポキシ化合物からなる群より選ばれる少なくとも1種の化合物であり、更に好ましくは、ビスフェノールA型エポキシ化合物である。 The compound B having an epoxy group is preferably a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol AD type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, a naphthalene type epoxy compound, or a hydrogen thereof. It is at least one compound selected from the group consisting of an additive compound and an alicyclic epoxy compound, more preferably at least one selected from the group consisting of a bisphenol A type epoxy compound, a bisphenol F type epoxy compound and a naphthalene type epoxy compound. It is a seed compound, and more preferably a bisphenol A type epoxy compound.
 ビスフェノールA型エポキシ化合物の具体的な例として、DIC社製EPICLON850S、860、1055、EPICLON850CRPなどがある。水素化ビスフェノールA型エポキシ化合物の具体的な例として、ADEKA社製KRM-2408、JER社製のYX-8034などがある。ビスフェノールF型エポキシ化合物の具体的な例として、DIC社製EPICLON830Sなどがある。ナフタレン型エポキシ化合物の具体的な例として、DIC社製EPICLONのHP-4032D、HP-7200Hなどがある。フェノールノボラック型エポキシ化合物の具体的な例として、DIC社製EPICLON N-740、N-770などがある。クレゾールノボラック型エポキシ化合物の具体的な例として、DIC社製のEPICLON N-660、N-670などがある。脂環型エポキシ化合物の具体的な例として、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(ダイセル社製セロキサイド2021P)、1,2:8,9-ジエポキシリモネン(ダイセル社製セロキサイド3000)、1,2-エポキシ-4-ビニルシクロヘキサン(ダイセル社製セロキサイド2000)、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(ダイセル社製EHPE3150)などがある。 Specific examples of the bisphenol A type epoxy compound include EPICLON 850S, 860, 1055, and EPICLON 850CRP manufactured by DIC. Specific examples of the hydrogenated bisphenol A type epoxy compound include KRM-2408 manufactured by ADEKA and YX-8034 manufactured by JER. Specific examples of the bisphenol F-type epoxy compound include EPICLON 830S manufactured by DIC. Specific examples of naphthalene type epoxy compounds include EPICLON HP-4032D and HP-7200H manufactured by DIC. Specific examples of the phenol novolac type epoxy compound include EPICLON N-740 and N-770 manufactured by DIC. Specific examples of the cresol novolac type epoxy compound include EPICLON N-660 and N-670 manufactured by DIC. Specific examples of the alicyclic epoxy compound include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (Celoxide 2021P manufactured by Daicel), 1,2: 8,9-diepoxy limonene. (Celoxide 3000 manufactured by Daicel), 1,2-epoxy-4-vinylcyclohexane (Celoxide 2000 manufactured by Daicel), 1,2-epoxy-4- (2 of 2,2-bis (hydroxymethyl) -1-butanol -Oxiranyl) cyclohexane adduct (EHPE3150 manufactured by Daicel).
 エチレン性不飽和基及びエポキシ基を有する化合物Bとして、エポキシ基含有化合物を(メタ)アクリル酸系化合物と反応させて得られる部分(メタ)アクリレート変性エポキシ化合物を使用することもでき、ビスフェノールA型エポキシ化合物と(メタ)アクリル酸とを反応して得られる部分(メタ)アクリル化エポキシ化合物がより好ましい。 As the compound B having an ethylenically unsaturated group and an epoxy group, a partial (meth) acrylate-modified epoxy compound obtained by reacting an epoxy group-containing compound with a (meth) acrylic acid compound can also be used. A partial (meth) acrylated epoxy compound obtained by reacting an epoxy compound with (meth) acrylic acid is more preferred.
 ビスフェノールA型エポキシ樹脂と(メタ)アクリル酸とを反応して得られる部分(メタ)アクリル化エポキシ樹脂は、例えば、次のようにして得られる。
 まずビスフェノールA型エポキシ樹脂と(メタ)アクリル酸を塩基性触媒、好ましくは3価の有機リン酸化合物及び/又はアミン化合物の存在下で、エポキシ基1当量に対して(メタ)アクリル酸を10~90当量%を反応させる。次いで、この反応生成物を濾過、遠心分離及び/又は水洗等の処理により塩基性触媒を除去して精製する。塩基性触媒として、エポキシ樹脂と(メタ)アクリル酸との反応により用いられる公知の塩基性触媒を使用することができる。また塩基性触媒をポリマーに担持させた、ポリマー担持塩基性触媒を使用することもできる。
A partial (meth) acrylated epoxy resin obtained by reacting a bisphenol A type epoxy resin and (meth) acrylic acid is obtained, for example, as follows.
First, bisphenol A type epoxy resin and (meth) acrylic acid are added in the presence of a basic catalyst, preferably in the presence of a trivalent organic phosphoric acid compound and / or an amine compound. ˜90 equivalent% is reacted. Next, the reaction product is purified by removing the basic catalyst by filtration, centrifugation, and / or washing with water. As the basic catalyst, a known basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used. A polymer-supported basic catalyst in which a basic catalyst is supported on a polymer can also be used.
 化合物Aに、エチレン性不飽和基が含まれていない場合は、化合物Bとして、ラジカル硬化性化合物である、上述を好適例とするエチレン性不飽和基含有化合物を含むことが好ましい。 When the compound A does not contain an ethylenically unsaturated group, the compound B preferably contains a radical curable compound containing an ethylenically unsaturated group-containing compound as a preferred example.
 本発明の液晶シール剤は、化合物A及び/又は化合物Bを光重合させる際のラジカル発生源として光重合開始剤(光のエネルギーを吸収することによって活性化し、ラジカルを発生する化合物)を含有することができる。重合開始剤は特に限定されず、重合開始剤として公知の化合物が使用できる。重合開始剤として、ベンゾイン類、アセトフェノン類、ベンゾフェノン類、チオキサントン類、α-アシロキシムエステル類、フェニルグリオキシレート類、ベンジル類、アゾ系化合物、ジフェニルスルフィド系化合物、アシルホスフィンオキシド系化合物、ベンゾインエーテル類及びアントラキノン類の重合開始剤が挙げられ、好ましくは、液晶への溶解性が低く、また、それ自身で光照射時に分解物がガス化しないような反応性基を有するものが好ましい。本発明の好ましい重合開始剤としては、例えば、下記: The liquid crystal sealant of the present invention contains a photopolymerization initiator (a compound that is activated by absorbing light energy and generates radicals) as a radical generation source when photopolymerizing compound A and / or compound B. be able to. A polymerization initiator is not specifically limited, A well-known compound can be used as a polymerization initiator. As polymerization initiators, benzoins, acetophenones, benzophenones, thioxanthones, α-acyloxime esters, phenylglyoxylates, benzyls, azo compounds, diphenyl sulfide compounds, acylphosphine oxide compounds, benzoin ethers And anthraquinone polymerization initiators are preferable, and those having a reactive group that has low solubility in liquid crystals and does not gasify the decomposition product itself upon irradiation with light are preferable. As a preferable polymerization initiator of the present invention, for example, the following:
Figure JPOXMLDOC01-appb-C000008
で表されるもの、例えばEYレジンKR-2(ケイエスエム社製)等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
And, for example, EY Resin KR-2 (manufactured by KS Corporation).
 硬化剤としては、強接着性の観点から、アミン系硬化剤、例えば、有機酸ジヒドラジド化合物、イミダゾール及びその誘導体、ジシアンジアミド、芳香族アミン、エポキシ変性ポリアミン、ポリアミノウレア等が好ましく、有機酸ジヒドラジドであるVDH(1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン)、ADH(アジピン酸ジヒドラジド)、UDH(7,11-オクタデカジエン-1,18-ジカルボヒドラジド)及びLDH(オクタデカン-1,18-ジカルボン酸ジヒドラジド)が好ましい。これらの硬化剤は、単独で用いても、複数で用いてもよい。 As the curing agent, an amine curing agent such as an organic acid dihydrazide compound, imidazole and its derivatives, dicyandiamide, aromatic amine, epoxy-modified polyamine, polyaminourea and the like are preferable from the viewpoint of strong adhesiveness, and organic acid dihydrazide. VDH (1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin), ADH (adipic acid dihydrazide), UDH (7,11-octadecadiene-1,18-dicarbohydrazide) and LDH (octadecane- 1,18-dicarboxylic acid dihydrazide) is preferred. These curing agents may be used alone or in combination.
 光増感剤としては、硬化性の観点から、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ及びジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。光増感剤として、具体的には、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、α,α-ジメトキシ-α-フェニルアセトフェノンのようなベンゾイン誘導体;ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジエチルアミノ)ベンゾフェノンのようなベンゾフェノン誘導体;2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントンのようなチオキサントン誘導体;2-クロロアントラキノン、2-メチルアントラキノンのようなアントラキノン誘導体;N-メチルアクリドン、N-ブチルアクリドンのようなアクリドン誘導体;その他、α,α-ジエトキシアセトフェノン、ベンジル、フルオレノン、キサントン、ウラニル化合物などが挙げられる。これらの光増感剤は、単独で使用しても、又は二種以上を組み合わせて使用してもよい。好ましい光増感剤は、2,4-ジエチルチオキサントン(例えば、日本化薬製DETX-S)である。 Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreducible dyes from the viewpoint of curability. Specific examples of photosensitizers include benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, α, α-dimethoxy-α-phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate. Benzophenone derivatives such as 4,4′-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone; 2-chloroanthraquinone, 2-methylanthraquinone, etc. Anthraquinone derivatives; acridone derivatives such as N-methylacridone and N-butylacridone; other α, α-diethoxyacetophenone, benzyl, fluorenone, xanthone, uranyl compounds Etc. These photosensitizers may be used alone or in combination of two or more. A preferred photosensitizer is 2,4-diethylthioxanthone (for example, DETX-S manufactured by Nippon Kayaku).
 本発明の液晶シール剤は、硬化性化合物の硬化反応を促進する観点から硬化促進剤を含有でき、好ましくは、2-メチルイミダゾール、2-エチルイミダゾール及び2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール及び1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)の第3級アミン類;トリフェニルホスフィン等のホスフィン類;オクチル酸スズ等の金属化合物などが挙げられる。 The liquid crystal sealant of the present invention can contain a curing accelerator from the viewpoint of accelerating the curing reaction of the curable compound, and is preferably an imidazo such as 2-methylimidazole, 2-ethylimidazole and 2-ethyl-4-methylimidazole. Tert-amines, 2- (dimethylaminomethyl) phenol and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU); phosphines such as triphenylphosphine; octylic acid Examples thereof include metal compounds such as tin.
 本発明の液晶シール剤は、粘度制御、硬化後のさらなる強度向上、接着信頼性、線膨張性の抑制の観点から、フィラーを添加することができる。フィラーは、無機フィラー及び有機フィラーが使用できる。無機フィラーとして、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、酸化チタン、アルミナ、酸化亜鉛、二酸化ケイ素、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、及び窒化ケイ素が挙げられる。有機フィラーとして、ポリメタクリル酸メチル、ポリスチレン、これらを構成するモノマーと他のモノマーとを共重合させて得られる共重合体、ポリエステル微粒子、ポリウレタン微粒子、及びゴム微粒子が挙げられる。 In the liquid crystal sealant of the present invention, a filler can be added from the viewpoints of viscosity control, further improvement in strength after curing, adhesion reliability, and suppression of linear expansion. As the filler, an inorganic filler and an organic filler can be used. As inorganic fillers, calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, titanium oxide, alumina, zinc oxide, silicon dioxide, kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride Is mentioned. Examples of the organic filler include polymethyl methacrylate, polystyrene, a copolymer obtained by copolymerizing a monomer constituting these and another monomer, polyester fine particles, polyurethane fine particles, and rubber fine particles.
 非反応成分であるフィラーを配合することでアウトガスをより低減する観点から、フィラーを構成する粒子の平均粒子径は、0.1~3μmであり、より好ましくは0.5~3μmである。なお、フィラーの平均粒径は、HORIBA社製 レーザー回折/散乱式粒子径分布測定装置(例えば、HORIBA社製Partica LA-950V2)により測定される。 From the viewpoint of further reducing outgassing by adding a filler that is a non-reactive component, the average particle size of the particles constituting the filler is 0.1 to 3 μm, and more preferably 0.5 to 3 μm. The average particle size of the filler is measured by a laser diffraction / scattering particle size distribution measuring device manufactured by HORIBA (for example, Partica LA-950V2 manufactured by HORIBA).
 本発明の液晶シール剤は、本発明の効果を奏する範囲内で、シランカップリング剤を含むことができる。 The liquid crystal sealant of the present invention can contain a silane coupling agent within the scope of the effects of the present invention.
 本発明の液晶シール剤の硬化強度の安定性の観点から、シランカップリング剤としては、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン、ジメトキシジイソプロポキシシラン、ジエトキシジイソプロポキシシラン、ジエトキシジブトキシシランなどのテトラアルコキシシラン類;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリエトキシシラン、エチルトリブトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリイソプロポキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシランなどのトリアルコキシシラン類;及びジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジブトキシシラン、フェニルエチルジエトキシシランなどのジアルコキシシラン類からなる群から選ばれる少なくとも1種のシランカップリング剤が好ましく、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリエトキシシラン、エチルトリブトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリイソプロポキシシラン、ビニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン及び3-メタクリロキシプロピルトリメトキシシランからなる群から選ばれる少なくとも1種のトリアルコキシシラン系シランカップリング剤が更に好ましく、3-グリシドキシプロピルトリメトキシシランが更に好ましい。 From the viewpoint of the stability of the curing strength of the liquid crystal sealant of the present invention, the silane coupling agent is preferably tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethoxydiethoxy. Tetraalkoxysilanes such as silane, dimethoxydiisopropoxysilane, diethoxydiisopropoxysilane, diethoxydibutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, ethyltri Butoxysilane, cyclohexyltriethoxysilane, phenyltriisopropoxysilane, vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyl Trialkoxysilanes such as limethoxysilane; and at least one selected from the group consisting of dialkoxysilanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, diethyldibutoxysilane, and phenylethyldiethoxysilane The silane coupling agent is preferably methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltriethoxysilane, ethyltributoxysilane, cyclohexyltriethoxysilane, phenyltriisopropoxysilane, vinyltrimethoxysilane, At least one trialkoxysilane-based sila selected from the group consisting of 3-glycidoxypropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane Coupling agents are more preferable, 3- glycidoxypropyltrimethoxysilane is more preferable.
〔化合物Aの製造方法〕
 本発明の化合物Aの製造方法は、
 下記式(2):
[Method for Producing Compound A]
The process for producing compound A of the present invention comprises:
Following formula (2):
Figure JPOXMLDOC01-appb-C000009
(式中、nは2~30の範囲の数であり、Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、R11は、それぞれ互いに独立に、水素原子、グリシジル基又はメチルグリシジル基である)で表わされる化合物Cと、
 下記式(3):
Figure JPOXMLDOC01-appb-C000009
(Wherein n 2 is a number in the range of 2 to 30, Y is independently an alkylene group having 2 to 4 carbon atoms, and R 11 is independently of each other a hydrogen atom, glycidyl Group C or a methyl glycidyl group),
Following formula (3):
Figure JPOXMLDOC01-appb-C000010
[式中、Xは、酸素原子(O)、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基であり、R12は、それぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR21)-CH-O-R22又は基2:-CH-C(CH)(OR21)-CH-O-R22(式中、R21は水素原子又は(メタ)アクリロイル基、R22は(メタ)アクリロイル基である)である]で表わされる化合物Dとを反応させる工程を含む。
Figure JPOXMLDOC01-appb-C000010
[Wherein, X is an oxygen atom (O), an alkylene group having 1 to 4 carbon atoms or an alkylidene group having 2 to 4 carbon atoms, and R 12 s independently of one another are a hydrogen atom, a glycidyl group, Methyl glycidyl group, group 1: —CH 2 —CH (OR 21 ) —CH 2 —O—R 22 or group 2: —CH 2 —C (CH 3 ) (OR 21 ) —CH 2 —O—R 22 ( Wherein R 21 is a hydrogen atom or a (meth) acryloyl group, and R 22 is a (meth) acryloyl group)].
 化合物Cにおけるnは、化合物Aの強接着性の観点から、化合物Aのnが前述した範囲に入るように選べばよく、3~25の範囲の数であり、好ましくは5~20の範囲の数であり、更に好ましくは5~15の範囲の数であり、更に好ましくは7~10の範囲の数である。また、R11が水素原子である化合物Cの分子量(重量平均分子量)は、好ましくは2000以下である。 N 2 in Compound C may be selected so that n 1 of Compound A falls within the above-mentioned range from the viewpoint of strong adhesiveness of Compound A, and is a number in the range of 3 to 25, preferably 5 to 20 The number is in the range, more preferably in the range of 5 to 15, and still more preferably in the range of 7 to 10. Moreover, the molecular weight (weight average molecular weight) of the compound C in which R 11 is a hydrogen atom is preferably 2000 or less.
 化合物CにおけるYは、炭素原子数2~4のアルキレン基であり、具体的には、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基等である。Yは、好ましくはエチレン基又はプロピレン基であり、より好ましくはエチレン基である。 Y in the compound C is an alkylene group having 2 to 4 carbon atoms, specifically, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, or the like. Y is preferably an ethylene group or a propylene group, and more preferably an ethylene group.
 化合物C及びDは市販されているか、又は市販の化合物から公知の方法に従い容易に調製することができる。例えば、R11が水素原子であり、Yがエチレン基である化合物Cは、ポリエチレングリコールとして種々の繰り返し単位数(n)を有するものが入手可能であり、所望の範囲のnを有する化合物を適宜選択すればよい。またnは、nと同様にして算出することもできる。ポリエチレングリコールの分子量は、好ましくは2000以下である。 Compounds C and D are commercially available or can be easily prepared from commercially available compounds according to known methods. For example, as compound C in which R 11 is a hydrogen atom and Y is an ethylene group, those having various numbers of repeating units (n 2 ) as polyethylene glycol are available, and compounds having a desired range of n 2 May be appropriately selected. N 2 can also be calculated in the same manner as n 1 . The molecular weight of polyethylene glycol is preferably 2000 or less.
 また、R11が水素原子であり、Yがプロピレン基である化合物Cは、ポリプロピレンエーテルグリコールとして種々の繰り返し単位数を有するものが入手可能である。例えば、EXCENOL420、EXCENOL720、EXCENOL1020、EXCENOL2020(以上、旭硝子社製)等を挙げることができる。ポリプロピレンエーテルグリコールの分子量は、好ましくは2000以下である。 Further, as compound C in which R 11 is a hydrogen atom and Y is a propylene group, compounds having various numbers of repeating units are available as polypropylene ether glycol. For example, EXCENOL420, EXCENOL720, EXCENOL1020, EXCENOL2020 (above, manufactured by Asahi Glass Co., Ltd.) and the like can be mentioned. The molecular weight of polypropylene ether glycol is preferably 2000 or less.
 また、R11が水素原子であり、Yがトリメチレン基である化合物Cは、例えば、特表2013-515144号公報に記載の方法に準じて、種々の繰り返し単位数を有するポリトリメチレンエーテルグリコールとして製造可能である。ポリトリメチレンエーテルグリコールの分子量は、好ましくは2000以下である。 In addition, compound C in which R 11 is a hydrogen atom and Y is a trimethylene group can be obtained, for example, as polytrimethylene ether glycol having various numbers of repeating units according to the method described in JP2013-515144A. It can be manufactured. The molecular weight of polytrimethylene ether glycol is preferably 2000 or less.
 また、R11が水素原子であり、Yがテトラメチレン基である化合物Cは、ポリテトラメチレンエーテルグリコールとして種々の繰り返し単位数を有するものが入手可能である。例えば、PTMG650、PTMG850、PTMG1000、PTMG1300、PTMG1500、PTMG1800、PTMG2000(以上、三菱化学社製)等を挙げることができる。ポリテトラメチレンエーテルグリコールの分子量は、好ましくは2000以下である。 Further, as compound C in which R 11 is a hydrogen atom and Y is a tetramethylene group, those having various numbers of repeating units as polytetramethylene ether glycol are available. For example, PTMG650, PTMG850, PTMG1000, PTMG1300, PTMG1500, PTMG1800, PTMG2000 (above, manufactured by Mitsubishi Chemical Corporation) and the like can be mentioned. The molecular weight of polytetramethylene ether glycol is preferably 2000 or less.
 化合物CにおけるR11及び化合物DにおけるR12は、それぞれ、化合物Aの強接着性の観点から、R11及びR12の一方が水素原子であり、他方がグリシジル基であることが好ましい。 From R 11 in Compound C and R 12 in Compound D, from the viewpoint of strong adhesion of Compound A, it is preferable that one of R 11 and R 12 is a hydrogen atom and the other is a glycidyl group.
 化合物Cと化合物Dとは、化合物Aを生成するように、例えば、化合物Cと化合物Dとをアルカリの存在下で反応させた後、化合物Cと化合物Dとの反応物を適当な触媒の存在下でエピクロロヒドリン等のグリシジル基又はメチルグリシジル基を導入可能な化合物と反応させる。上述の反応は、化合物Aにおけるmが、1~5、好ましくは1~4、更に好ましくは1~3、更に好ましくは1~2の範囲の数になるように調整する。 The compound C and the compound D are produced by, for example, reacting the compound C and the compound D in the presence of an alkali, and then reacting the reaction product of the compound C and the compound D with the presence of an appropriate catalyst. Below, it is made to react with the compound which can introduce | transduce glycidyl groups or methylglycidyl groups, such as epichlorohydrin. The reaction described above is adjusted so that m in compound A is a number in the range of 1 to 5, preferably 1 to 4, more preferably 1 to 3, and more preferably 1 to 2.
 mの数については、実施例の場合、合成中間体Pを合成する際に以下のようにして制御できる。例えば、実施例1-1において化合物C1-1とD1の当量比が1:2.5になっているが、この比を1:2.0や1:1.5にすると、mの数は増大する。逆に1:10や1:100、1:1000などとした場合でも、1未満にはならない。化合物Pにおいて、m=0は化合物DのRが水素原子であり、Xがイソプロピリデンであるもの(すなわちビスフェノールAそのもの)になる。 The number of m can be controlled as follows when the synthesis intermediate P is synthesized in the case of the example. For example, in Example 1-1, the equivalent ratio of the compounds C1-1 and D1 is 1: 2.5. When this ratio is 1: 2.0 or 1: 1.5, the number of m is Increase. Conversely, even when 1:10, 1: 100, 1: 1000, etc., it is not less than 1. In compound P, m = 0 is such that R of compound D is a hydrogen atom and X is isopropylidene (ie, bisphenol A itself).
 なお、反応性の観点から、化合物CにおけるR11及び化合物DにおけるR12の一方が水素原子であり、他方がグリシジル基であることが好ましい。 From the viewpoint of reactivity, it is preferable that one of R 11 in Compound C and R 12 in Compound D is a hydrogen atom, and the other is a glycidyl group.
 アルカリとしては、反応の迅速な進行と合成のコストの観点から、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩が好ましく、水酸化ナトリウムがより好ましい。これらのアルカリは、水溶液として用いることが好ましいが、場合によっては粉末または固形のアルカリを水と同時にあるいは別々に加えることもできる。 The alkali is preferably an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or an alkali metal carbonate such as sodium carbonate or potassium carbonate from the viewpoint of rapid progress of the reaction and synthesis cost. More preferred. These alkalis are preferably used as an aqueous solution, but in some cases, a powder or solid alkali can be added simultaneously with water or separately.
 アルカリの使用量は、反応の迅速な進行と合成のコストの観点から、R11が水素原子であり、R12がグリシジル基の場合、アルカリは水酸基の当量以上であればよく、R11がグリシジル基であり、R12が水素原子の場合、触媒量でよく、化合物Dの水酸基の0.0001~0.1当量、より好ましくは0.0001~0.01当量である。例えば、実施例1-1ではビスフェノールAが2.5当量=5.0当量の水酸基に対し、1.5gの4%水酸化ナトリウム溶液=0.0015当量の水酸化ナトリウムを使用しているので、水酸基1当量に対し、アルカリの使用量は0.0003当量となる。 The amount of alkali used is such that when R 11 is a hydrogen atom and R 12 is a glycidyl group from the viewpoint of rapid progress of the reaction and synthesis cost, the alkali may be equal to or more than the equivalent of the hydroxyl group, and R 11 is glycidyl. When R 12 is a hydrogen atom, a catalytic amount is sufficient, and it is 0.0001 to 0.1 equivalent, more preferably 0.0001 to 0.01 equivalent of the hydroxyl group of compound D. For example, in Example 1-1, 1.5 g of 4% sodium hydroxide solution = 0.015 equivalents of sodium hydroxide is used for 2.5 equivalents = 5.0 equivalents of hydroxyl groups of bisphenol A. The amount of alkali used is 0.0003 equivalent to 1 equivalent of hydroxyl group.
 エピクロロヒドリン等の化合物の使用量は、反応の迅速な進行と合成のコストの観点から、好ましくは0.5~20当量、より好ましくは0.5~15当量である。 The amount of the compound such as epichlorohydrin used is preferably 0.5 to 20 equivalents, more preferably 0.5 to 15 equivalents, from the viewpoint of rapid progress of the reaction and synthesis cost.
 触媒としては、反応時間、触媒コスト、触媒活性の観点から、トリメチルアミン、トリオクチルアミン、トリデシルアミンのような第三級アミン、テトラメチルアンモニウム、メチルトリオトクチルアンモニウム、メチルトリデシルアンモニウム、ベンジルトリメチルアンモニウムのような第四級アンモニウム塩基、塩化テトラメチルアンモニウム、塩化メチルトリオトクチルアンモニウム、塩化メチルトリデシルアンモニウム、塩化ベンジルトリメチルアンモニウムのような第四級アンモニウム塩が好ましく、第四級アンモニウム塩がより好ましい。 Catalysts include tertiary amines such as trimethylamine, trioctylamine and tridecylamine, tetramethylammonium, methyltrioctylammonium, methyltridecylammonium and benzyltrimethylammonium from the viewpoints of reaction time, catalyst cost and catalytic activity. A quaternary ammonium salt such as tetramethylammonium chloride, methyltrioctoctylammonium chloride, methyltridecylammonium chloride, and benzyltrimethylammonium chloride is preferred, and a quaternary ammonium salt is more preferred.
 触媒の使用量は、副反応を抑制しつつ反応速度を適切に確保する観点から、化合物C、化合物D及びエピクロロヒドリン等の化合物の合計量に対して、好ましくは0.01~10重量%、より好ましくは0.1~5重量%である。 The amount of the catalyst used is preferably 0.01 to 10% by weight with respect to the total amount of compounds such as Compound C, Compound D and epichlorohydrin, from the viewpoint of appropriately securing the reaction rate while suppressing side reactions. %, More preferably 0.1 to 5% by weight.
 上述のアルカリとの反応は、好ましくは50~250℃、より好ましくは70~200℃、更に好ましくは100~170℃で行われ、上述のエピクロロヒドリン等の化合物との反応は、好ましくは25~100℃、より好ましくは30~80℃、更に好ましくは40~60℃で行われる。反応に際しては炭化水素、エーテルまたはケトンのような反応に不活性な溶媒を用いることもできるが、エピクロロヒドリン等の化合物を過剰に用いた場合にはエピクロロヒドリン等の化合物が溶媒としても機能するため、これらの溶媒は必須ではない。 The reaction with the alkali is preferably performed at 50 to 250 ° C., more preferably at 70 to 200 ° C., and further preferably at 100 to 170 ° C. The reaction with the compound such as epichlorohydrin is preferably The reaction is performed at 25 to 100 ° C, more preferably 30 to 80 ° C, and further preferably 40 to 60 ° C. In the reaction, a solvent inert to the reaction such as hydrocarbon, ether or ketone can be used, but when an excessive amount of a compound such as epichlorohydrin is used, a compound such as epichlorohydrin is used as the solvent. These solvents are not essential.
 反応終了後の化合物Aの精製は常法によって行うことができ、例えば、過剰のエピクロロヒドリン等の化合物を留去し、必要に応じて炭化水素等の非水溶性溶媒を加えた後、水洗して生成する食塩および触媒を除去することによって目的の化合物Aを得ることができる。 Purification of compound A after completion of the reaction can be performed by a conventional method, for example, by distilling off an excess of epichlorohydrin and the like, and adding a water-insoluble solvent such as hydrocarbon as necessary, The desired compound A can be obtained by removing the sodium chloride and catalyst produced by washing with water.
 本発明の化合物Aの製造方法は、化合物C及び化合物Dとして汎用の原料を使用できる観点から、化合物CにおけるR11がグリシジル基である化合物C1(ポリアルキレンエーテルグリコールジグリシジルエーテル;例えば、ポリエチレングリコールジグリシジルエーテル)であり、化合物DにおけるR12が水素原子である化合物D1(例えば、ビスフェノールA)である場合、前記化合物C1と前記化合物D1とを反応させて、前記化合物C1と前記化合物D1の反応物Pを得る工程1と、反応物Pの水酸基をエポキシ化して、前記反応物Pの水酸基の一部又は全てがエポキシ化された反応物Qを得る工程2とを含むことが好ましい。 From the viewpoint that a general-purpose raw material can be used as the compound C and the compound D, the production method of the compound A of the present invention is a compound C1 (polyalkylene ether glycol diglycidyl ether in which R 11 in the compound C is a glycidyl group; for example, polyethylene glycol Diglycidyl ether), and R 12 in compound D is a compound D1 (for example, bisphenol A) in which R 12 is a hydrogen atom, the compound C1 and the compound D1 are reacted to form the compound C1 and the compound D1. It is preferable to include a step 1 for obtaining the reactant P and a step 2 for obtaining a reactant Q in which part or all of the hydroxyl groups of the reactant P are epoxidized by epoxidizing the hydroxyl group of the reactant P.
 この場合、さらに、反応物Qを、塩基性触媒存在下、(メタ)アクリル酸と反応させる工程3を経て、Rに基1又は基2が導入された化合物Aを得ることができる。 In this case, compound A in which group 1 or group 2 is introduced into R can be obtained through step 3 in which reactant Q is further reacted with (meth) acrylic acid in the presence of a basic catalyst.
 塩基性触媒としては、反応率の向上、反応の迅速な進行及び触媒コストの観点から、エポキシ樹脂と(メタ)アクリル酸との反応により用いられる塩基性触媒を使用することができ、塩基性触媒をポリマーに担持させた、ポリマー担持塩基性触媒を使用することもできる。塩基性触媒としては、3価の有機リン化合物及び/又はアミン化合物であることが好ましい。塩基性触媒の塩基性原子は、リン及び/又は窒素である。 As the basic catalyst, a basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used from the viewpoint of improving the reaction rate, rapid progress of the reaction, and catalyst cost. It is also possible to use a polymer-supported basic catalyst in which is supported on a polymer. The basic catalyst is preferably a trivalent organic phosphorus compound and / or an amine compound. The basic atom of the basic catalyst is phosphorus and / or nitrogen.
 塩基性触媒として、エポキシ樹脂と(メタ)アクリル酸との反応により用いられる公知の塩基性触媒を使用することができる。また塩基性触媒をポリマーに担持させた、ポリマー担持塩基性触媒を使用することもできる。塩基性触媒としては、3価の有機リン化合物及び/又はアミン化合物であることが好ましい。塩基性触媒の塩基性原子は、リン及び/又は窒素である。 As the basic catalyst, a known basic catalyst used by a reaction between an epoxy resin and (meth) acrylic acid can be used. A polymer-supported basic catalyst in which a basic catalyst is supported on a polymer can also be used. The basic catalyst is preferably a trivalent organic phosphorus compound and / or an amine compound. The basic atom of the basic catalyst is phosphorus and / or nitrogen.
 3価の有機リン化合物としては、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィンのようなアルキルホスフィン類及びその塩、トリフェニルホスフィン、トリ-m-トリルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のアリールホスフィン類及びその塩、トリフェニルホスファイト、トリエチルホスファイト、トリス(ノニルフェニル)ホスファイト等の亜リン酸トリエステル類及びその塩等が挙げられる。3価の有機リン化合物の塩としては、トリフェニルホスフィン・エチルブロミド、トリフェニルホスフィン・ブチルブロミド、トリフェニルホスフィン・オクチルブロミド、トリフェニルホスフィン・デシルブロミド、トリフェニルホスフィン・イソブチルブロミド、トリフェニルホスフィン・プロピルクロリド、トリフェニルホスフィン・ペンチルクロリド、トリフェニルホスフィン・ヘキシルブロミド等が挙げられる。中でも、トリフェニルホスフィンが好ましい。 Examples of trivalent organic phosphorus compounds include alkylphosphines such as triethylphosphine, tri-n-propylphosphine, tri-n-butylphosphine and salts thereof, triphenylphosphine, tri-m-tolylphosphine, tris (2, Arylphosphines such as 6-dimethoxyphenyl) phosphine and salts thereof, phosphorous acid triesters such as triphenylphosphite, triethylphosphite and tris (nonylphenyl) phosphite and salts thereof. Trivalent phosphine / ethyl bromide, triphenyl phosphine / butyl bromide, triphenyl phosphine / octyl bromide, triphenyl phosphine / decyl bromide, triphenyl phosphine / isobutyl bromide, triphenyl phosphine / Examples thereof include propyl chloride, triphenylphosphine / pentyl chloride, triphenylphosphine / hexyl bromide and the like. Of these, triphenylphosphine is preferable.
 アミン化合物としては、ジエタノールアミン等の第二級アミン、トリエタノールアミン、ジメチルベンジルアミン、トリスジメチルアミノメチルフェノール、トリスジエチルアミノメチルフェノール等の第3級アミン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(Me-TBD)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,1,3,3-テトラメチルグアニジン等の強塩基性アミン及びその塩が挙げられる。中でも、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)が好ましい。アミン化合物の塩としては、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウムが挙げられる。 Examples of amine compounds include secondary amines such as diethanolamine, tertiary amines such as triethanolamine, dimethylbenzylamine, trisdimethylaminomethylphenol, trisdiethylaminomethylphenol, 1,5,7-triazabicyclo [4. 4.0] dec-5-ene (TBD), 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene (Me-TBD), 1,8-diazabicyclo [ 5.4.0] Undec-7-ene (DBU), 6-dibutylamino-1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] Examples include strongly basic amines such as non-5-ene (DBN) and 1,1,3,3-tetramethylguanidine and salts thereof. Of these, 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) is preferable. Examples of the salt of the amine compound include benzyltrimethylammonium chloride and benzyltriethylammonium chloride.
 塩基性触媒を担持させるポリマーとしては、特に限定されず、ポリスチレンをジビニルベンゼンで架橋させたポリマーやアクリル樹脂をジビニルベンゼンで架橋させたポリマー等が用いられる。これらのポリマーは、工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸との反応に用いられる溶媒(例えばメチルエチルケトン、メチルイソブチルケトン、トルエン等)及び原料、生成物に不溶である。 The polymer for supporting the basic catalyst is not particularly limited, and a polymer obtained by crosslinking polystyrene with divinylbenzene, a polymer obtained by crosslinking acrylic resin with divinylbenzene, or the like is used. These polymers are the solvent (for example, methyl ethyl ketone, methyl isobutyl ketone, toluene etc.) used for reaction with the epoxy resin obtained by the manufacturing method including the process 1 or processes 1 and 2, and a raw material, a product. Is insoluble.
 ポリマー担持塩基性触媒は、塩基性触媒を不溶性ポリマーに化学結合させるか、塩基性触媒をモノマーに導入した後、モノマーを重合し、その後、ジビニルベンゼン等の架橋モノマーで3次元的に架橋することによって、メチルエチルケトン、メチルイソブチルケトン、トルエン等の溶媒に不溶なポリマー担持塩基性触媒を製造することができる。 A polymer-supported basic catalyst is obtained by chemically bonding a basic catalyst to an insoluble polymer or introducing a basic catalyst into a monomer, polymerizing the monomer, and then three-dimensionally crosslinking with a crosslinking monomer such as divinylbenzene. Can produce a polymer-supported basic catalyst that is insoluble in solvents such as methyl ethyl ketone, methyl isobutyl ketone, and toluene.
 ポリマー担持塩基性触媒として、具体的には、ジフェニルホスフィノポリスチレン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンポリスチレン、N,N-(ジイソプロピル)アミノメチルポリスチレン、N-(メチルポリスチレン)-4-(メチルアミノ)ピリジン等が挙げられる。これらのポリマー担持塩基性触媒は、単独でも、2種以上を併用してもよい。 Specific examples of the polymer-supported basic catalyst include diphenylphosphinopolystyrene, 1,5,7-triazabicyclo [4.4.0] dec-5-enepolystyrene, N, N- (diisopropyl) aminomethylpolystyrene. N- (methylpolystyrene) -4- (methylamino) pyridine and the like. These polymer-supported basic catalysts may be used alone or in combination of two or more.
 ポリマー担持塩基性触媒は、市販のものを用いてもよい。市販のポリマー担持塩基性触媒としては、例えばPS-PPh(ジフェニルホスフィノポリスチレン、バイオタージ社製)、PS-TBD(1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンポリスチレン、バイオタージ社製)が挙げられる。 As the polymer-supported basic catalyst, a commercially available one may be used. Examples of commercially available polymer-supported basic catalysts include PS-PPh 3 (diphenylphosphinopolystyrene, manufactured by Biotage), PS-TBD (1,5,7-triazabicyclo [4.4.0] deca-5. -Enpolystyrene, manufactured by Biotage Corporation).
 ポリマー担持塩基性触媒の使用割合は、工程1又は2を含む製造方法により得られるエポキシ樹脂のエポキシ1当量に対して、ポリマー担持製塩基触媒が0.5~5.0ミリ当量であることが好ましく、1.0~3.0ミリ当量であることがより好ましい。ポリマー担持塩基性触媒の使用割合が、上記範囲内であると反応率、反応時間及び触媒コストの観点から好ましい。 The polymer-supported basic catalyst is used in an amount of 0.5 to 5.0 milliequivalents of the polymer-supported basic catalyst with respect to 1 equivalent of epoxy of the epoxy resin obtained by the production method including Step 1 or 2. Preferably, it is 1.0 to 3.0 milliequivalent. It is preferable from the viewpoint of reaction rate, reaction time, and catalyst cost that the ratio of the polymer-supported basic catalyst is within the above range.
 本発明の製造方法において、工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸の反応工程における温度は、好ましくは60~120℃、より好ましくは80~120℃、さらに好ましくは90~110℃である。 In the production method of the present invention, the temperature in the reaction step of the epoxy resin obtained by the production method including step 1 or steps 1 and 2 and (meth) acrylic acid is preferably 60 to 120 ° C., more preferably 80 to 120 ° C. More preferably, it is 90 to 110 ° C.
 触媒存在下で、工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸とを反応させる場合、ゲル化を防止するために反応系内及び反応系上の気相の酸素濃度を適正に保つ必要がある。例えば、積極的に反応系内に空気を吹き込む場合は、触媒の酸化を引き起こし、活性の低下を招く場合があるので注意が必要である。 In the presence of a catalyst, when the epoxy resin obtained by the production method including step 1 or steps 1 and 2 is reacted with (meth) acrylic acid, the gas phase in the reaction system and on the reaction system in order to prevent gelation It is necessary to maintain an appropriate oxygen concentration. For example, when air is actively blown into the reaction system, it is necessary to be careful because it may cause oxidation of the catalyst and cause a decrease in activity.
 工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸との反応は、この反応によって得られる部分エステル化エポキシ樹脂が紫外線等の活性エネルギー線によって硬化することから、紫外線を遮光する容器内で反応を行うことが望ましい。また、工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸との反応は、気相重合を防止するために、エポキシ樹脂に対して良溶媒性を示す還流溶剤存在下で行なってもよいが、この場合は、反応終了後に溶媒を除去する必要があるため、無溶剤で行うことが好ましい。還流溶剤としては、アセトン、メチルエチルケトン等が挙げられる。 The reaction between the epoxy resin obtained by the production method including Step 1 or Steps 1 and 2 and (meth) acrylic acid is because the partially esterified epoxy resin obtained by this reaction is cured by active energy rays such as ultraviolet rays. It is desirable to carry out the reaction in a container that shields from ultraviolet rays. In addition, the reaction between the epoxy resin obtained by the production method including Step 1 or Steps 1 and 2 and (meth) acrylic acid is a reflux solvent exhibiting good solvent properties with respect to the epoxy resin in order to prevent gas phase polymerization. Although it may be performed in the presence of the solvent, in this case, since it is necessary to remove the solvent after completion of the reaction, it is preferably performed without a solvent. Examples of the reflux solvent include acetone and methyl ethyl ketone.
 本発明の製造方法において、工程1又は工程1及び2を含む製造方法により得られるエポキシ樹脂と(メタ)アクリル酸とを反応させた後、部分エステル化エポキシ樹脂は、ポリマー担持塩基性触媒を除去することにより得られる。ポリマー担持塩基性触媒を除去する方法としては、濾過又は遠心分離を用いることが好ましい。 In the production method of the present invention, after reacting the epoxy resin obtained by the production method including step 1 or steps 1 and 2 with (meth) acrylic acid, the partially esterified epoxy resin removes the polymer-supported basic catalyst. Can be obtained. As a method for removing the polymer-supported basic catalyst, it is preferable to use filtration or centrifugation.
 ポリマー担持塩基性触媒を濾過する方法としては、例えば目開き10μmのナイロンメッシュNY-10HC(スイスSefar社製)を用いてポリマー担持塩基性触媒を濾取する方法が挙げられる。 Examples of the method for filtering the polymer-supported basic catalyst include a method of filtering the polymer-supported basic catalyst using, for example, a nylon mesh NY-10HC (manufactured by Sefar, Switzerland) having an opening of 10 μm.
 ポリマー担持塩基性触媒を遠心分離する方法としては、遠心分離機を用いて固液分離することにより、ポリマー担持塩基性触媒を除去する方法が挙げられる。 Examples of the method of centrifuging the polymer-supported basic catalyst include a method of removing the polymer-supported basic catalyst by solid-liquid separation using a centrifuge.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「%」は重量基準である。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Unless otherwise specified, “%” is based on weight.
[比較例1-2](化合物B)
 ビスフェノールA型エポキシ樹脂(EXA850CRP、DIC株式会社製;比較例1-1の化合物としても使用)340g、メタクリル酸(東京化成社製)90.4g、トリフェニルホスフィン(東京化成社製)0.5g、及びBHT100mgを混合し100℃で6時間撹拌した。
 淡黄色透明粘稠物の化合物Bを418g得た。
[Comparative Example 1-2] (Compound B)
340 g of bisphenol A type epoxy resin (EXA850CRP, manufactured by DIC Corporation; also used as the compound of Comparative Example 1-1), 90.4 g of methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.5 g of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) And BHT 100 mg were mixed and stirred at 100 ° C. for 6 hours.
418g of compound B of pale yellow transparent viscous substance was obtained.
[合成例1](化合物C1-1)
 ポリエチレングリコール#200を200g(2当量/水酸基)、エピクロロヒドリン1110g(6当量)、ベンジルトリメチルアンモニウムクロリド37.1g(0.1当量)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した2リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。300gの48%溶液NaOHを2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム1Lを加え1Lの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、淡黄色透明液体の化合物C1-1を171g得た。
[Synthesis Example 1] (Compound C1-1)
200 g (2 equivalents / hydroxyl group) of polyethylene glycol # 200, 1110 g (6 equivalents) of epichlorohydrin, 37.1 g (0.1 equivalents) of benzyltrimethylammonium chloride, mechanical stirrer, thermometer, temperature controller, condenser, Place in a 2 liter three-necked round bottom flask equipped with a Dean-Stark trap and dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 300 g of 48% solution NaOH was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture. Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 171 g of pale yellow transparent liquid compound C1-1.
[合成例2](化合物C1-2)
 合成例1において、ポリエチレングリコール#200をポリエチレングリコール#300を300gとした以外は同様にして、淡黄色透明液体の化合物C1-2を222g得た。
[Synthesis Example 2] (Compound C1-2)
222 g of pale yellow transparent liquid compound C1-2 was obtained in the same manner as in Synthesis Example 1, except that polyethylene glycol # 200 was changed to 300 g of polyethylene glycol # 300.
[合成例3](化合物C1-4)
 ポリエチレングリコール#1000を250g(0.5当量/水酸基)、エピクロロヒドリン277g(6当量)、ベンジルトリメチルアンモニウムクロリド9.28g(0.1当量)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した1リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。75gの48%NaOH溶液を2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム500mLを加え500mLの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、白色ろう状固体の化合物C1-4を138g得た。
[Synthesis Example 3] (Compound C1-4)
250 g (0.5 eq / hydroxyl) of polyethylene glycol # 1000, 277 g (6 eq) of epichlorohydrin, 9.28 g (0.1 eq) of benzyltrimethylammonium chloride, mechanical stirrer, thermometer, temperature controller, condensation Place in a 1 liter three-necked round bottom flask equipped with a kettle, Dean-Stark trap and dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 75 g of 48% NaOH solution was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture. Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 500 mL of chloroform was added, and the mixture was washed 6 times with 500 mL of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 138 g of white waxy solid compound C1-4.
[実施例1-1](化合物A-1)
(1)化合物C1-1(145g(1当量/エポキシ基))、及びビスフェノールA(化合物D1)(570g(2.5当量))をナス型フラスコにいれ、液温が150℃になるように加熱攪拌した。4%NaOH水溶液1.5gを添加し、150℃で2時間攪拌した。液温が60℃以下になるまで冷却し、クロロホルム500mLを加え、1%NaOH水溶液1Lで6回洗浄し、水1Lで3回洗浄した。得られた有機相に硫酸マグネシウムを加え、乾燥後、ろ過などで固形分を濾別し、得られた有機相の溶媒を減圧留去により留去し、黄色粘稠物として合成中間体である反応物P-1を290g得た。
[Example 1-1] (Compound A-1)
(1) Compound C1-1 (145 g (1 equivalent / epoxy group)) and bisphenol A (Compound D1) (570 g (2.5 equivalents)) are placed in an eggplant type flask so that the liquid temperature becomes 150 ° C. Stir with heating. 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours. The solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water. Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 290 g of reaction product P-1 was obtained.
(2)反応物P-1(170g)、エピクロロヒドリン(495g)、及びベンジルトリメチルアンモニウムクロリド(16.5g)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した2リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。133gの48%NaOH溶液を2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム1Lを加え1Lの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、淡黄色粘稠物の化合物A-1(反応物Q-1)を206g得た。 (2) Reactant P-1 (170 g), epichlorohydrin (495 g), and benzyltrimethylammonium chloride (16.5 g) with mechanical stirrer, thermometer, temperature controller, condenser, Dean-Stark trap and The flask was placed in a 2 liter three-necked round bottom flask equipped with a dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 133 g of 48% NaOH solution was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture. Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 206 g of pale yellow viscous compound A-1 (reaction product Q-1).
[実施例1-2](化合物A-2)
(1)化合物C1-2(230g(1当量/エポキシ基))、及びビスフェノールA(化合物D1)(570g(2.5当量))をナス型フラスコにいれ、液温が150℃になるように加熱攪拌した。4%NaOH水溶液1.5gを添加し、150℃で2時間攪拌した。液温が60℃以下になるまで冷却し、クロロホルム500mLを加え、1%NaOH水溶液1Lで6回洗浄し、水1Lで3回洗浄した。得られた有機相に硫酸マグネシウムを加え、乾燥後、ろ過などで固形分を濾別し、得られた有機相の溶媒を減圧留去により留去し、黄色粘稠物として合成中間体である反応物P-2を366g得た。
[Example 1-2] (Compound A-2)
(1) Compound C1-2 (230 g (1 equivalent / epoxy group)) and bisphenol A (Compound D1) (570 g (2.5 equivalents)) are placed in an eggplant type flask so that the liquid temperature becomes 150 ° C. Stir with heating. 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours. The solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water. Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is filtered off. 366 g of reaction product P-2 was obtained.
(2)反応物P-2(203g)、エピクロロヒドリン(495g)、及びベンジルトリメチルアンモニウムクロリド(16.5g)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した2リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。133gの48%NaOH溶液を2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。
 添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム1Lを加え1Lの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、淡黄色粘稠物の化合物A-2(反応物Q-2)を241g得た。
(2) Reactants P-2 (203 g), epichlorohydrin (495 g), and benzyltrimethylammonium chloride (16.5 g) were added to a mechanical stirrer, thermometer, temperature controller, condenser, Dean-Stark trap and The flask was placed in a 2 liter three-necked round bottom flask equipped with a dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 133 g of 48% NaOH solution was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture.
Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 241 g of pale yellow viscous compound A-2 (reaction product Q-2).
[実施例1-3](化合物A-3)
(1)ナガセケムテックス社製デナコールEX-830(化合物C1-3)(268g(1当量/エポキシ基))、及びビスフェノールA(化合物D1)(570g(2.5当量))をナス型フラスコにいれ、液温が150℃になるように加熱攪拌した。4%NaOH水溶液1.5gを添加し、150℃で2時間攪拌した。液温が60℃以下になるまで冷却し、クロロホルム500mLを加え、1%NaOH水溶液1Lで6回洗浄し、水1Lで3回洗浄した。得られた有機相に硫酸マグネシウムを加え、乾燥後、ろ過などで固形分を濾別し、得られた有機相の溶媒を減圧留去により留去し、黄色粘稠物として合成中間体である反応物P-3を375g得た。
[Example 1-3] (Compound A-3)
(1) Denasel EX-830 (compound C1-3) (268 g (1 equivalent / epoxy group)) and bisphenol A (compound D1) (570 g (2.5 equivalents)) manufactured by Nagase ChemteX Corporation in an eggplant type flask The mixture was heated and stirred so that the liquid temperature became 150 ° C. 4 g NaOH aqueous solution 1.5g was added, and it stirred at 150 degreeC for 2 hours. The solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water. Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 375 g of reaction product P-3 was obtained.
(2)反応物P-3(200g)、エピクロロヒドリン(452g)、及びベンジルトリメチルアンモニウムクロリド(15.1g)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した2リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。122gの48%NaOH溶液を2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム1Lを加え1Lの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、淡黄色粘稠物の化合物A-3(反応物Q-3)を228g得た。 (2) Reactants P-3 (200 g), epichlorohydrin (452 g), and benzyltrimethylammonium chloride (15.1 g) with mechanical stirrer, thermometer, temperature controller, condenser, Dean-Stark trap and The flask was placed in a 2 liter three-necked round bottom flask equipped with a dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 122 g of 48% NaOH solution was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture. Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 228 g of pale yellow viscous compound A-3 (reaction product Q-3).
[実施例1-4](化合物A-4)
(1)化合物C1-4(130g(0.23当量/エポキシ基))、及びビスフェノールA(化合物D1)(131g(2.5当量))をナス型フラスコにいれ、液温が150℃になるように加熱攪拌した。4%NaOH水溶液0.3gを添加し、150℃で2時間攪拌した。液温が60℃以下になるまで冷却し、クロロホルム500mLを加え、1%NaOH水溶液1Lで6回洗浄し、水1Lで3回洗浄した。得られた有機相に硫酸マグネシウムを加え、乾燥後、ろ過などで固形分を濾別し、得られた有機相の溶媒を減圧留去により留去し、黄色粘稠物として合成中間体である反応物P-4を154g得た。
[Example 1-4] (Compound A-4)
(1) Compound C1-4 (130 g (0.23 equivalents / epoxy group)) and bisphenol A (Compound D1) (131 g (2.5 equivalents)) are placed in an eggplant type flask, and the liquid temperature becomes 150 ° C. The mixture was stirred with heating. 0.3 g of 4% NaOH aqueous solution was added and stirred at 150 ° C. for 2 hours. The solution was cooled to a temperature of 60 ° C. or lower, added with 500 mL of chloroform, washed 6 times with 1 L of 1% NaOH aqueous solution and 3 times with 1 L of water. Magnesium sulfate is added to the obtained organic phase, and after drying, the solid content is separated by filtration and the like, and the solvent of the obtained organic phase is distilled off by distillation under reduced pressure, which is a synthetic intermediate as a yellow viscous product 154 g of reactant P-4 was obtained.
(2)反応物P-4(140g)、エピクロロヒドリン(207g)、及びベンジルトリメチルアンモニウムクロリド(6.94g)を機械攪拌機、温度計、温度調節器、凝縮器、ディーン-スターク・トラップおよび滴下ロートを付した2リットルの三口丸底フラスコに入れた。次いで、混合物を70トール(torr)の高真空下攪拌しながら約50ないし55℃に加熱してエピクロロヒドリンを激しく還流した。56gの48%NaOH溶液を2時間にわたり混合物にゆっくりと添加した。共沸物が生成次第、水/エピクロロヒドリン混合物のうち、エピクロロヒドリンを反応系に戻しながら攪拌を続けた。添加終了後、3時間にわたり攪拌を継続した。次いで、反応混合物を室温に冷却しクロロホルム1Lを加え1Lの水で6回洗浄した。得られた有機相の溶媒を減圧留去により除去し、淡黄色粘稠物の化合物A-4(反応物Q-4)を142g得た。 (2) Reactant P-4 (140 g), epichlorohydrin (207 g), and benzyltrimethylammonium chloride (6.94 g) with mechanical stirrer, thermometer, temperature controller, condenser, Dean-Stark trap and The flask was placed in a 2 liter three-necked round bottom flask equipped with a dropping funnel. The mixture was then heated to about 50-55 ° C. with stirring under a high vacuum of 70 torr to vigorously reflux epichlorohydrin. 56 g of 48% NaOH solution was slowly added to the mixture over 2 hours. As soon as the azeotrope was formed, stirring was continued while returning epichlorohydrin to the reaction system in the water / epichlorohydrin mixture. Stirring was continued for 3 hours after the addition. Next, the reaction mixture was cooled to room temperature, 1 L of chloroform was added, and the mixture was washed 6 times with 1 L of water. The solvent of the obtained organic phase was removed by distillation under reduced pressure to obtain 142 g of pale yellow viscous compound A-4 (reaction product Q-4).
[実施例1-5](化合物A-5)
 化合物A-3(反応物Q-3)を320g、メタクリル酸(東京化成社製)43.05g、トリフェニルホスフィン(塩基性触媒、東京化成社製)0.25g、及びBHT50mgを混合し100℃で8時間撹拌した。淡黄色粘稠物の化合物A-5を357g得た。
[Example 1-5] (Compound A-5)
A mixture of 320 g of compound A-3 (reactant Q-3), 43.05 g of methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.25 g of triphenylphosphine (basic catalyst, produced by Tokyo Chemical Industry Co., Ltd.), and 50 mg of BHT was mixed at 100 ° C. For 8 hours. 357 g of light yellow viscous compound A-5 was obtained.
[実施例2-1~9及び比較例2-1]
 化合物A-1~5(実施例1-1~5)及び化合物B(比較例1-2)のそれぞれと、EYレジンKR-2(ケイエスエム社製)、ゼファアックF351(ガンツ化成社製)、シーホスターKE-C50HG(日本触媒社製)、KBM-403(シランカップリング剤:信越化学工業製)、及びアミキュアVDH(1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、味の素ファインテクノ社製)とを表1に示す配合量(重量部)にて混合後、3本ロールミル(井上製作所製C-43/4×10)を用いて充分に混練して実施例2-1~9及び比較例2-1の液晶シール剤を得た。
[Examples 2-1 to 9 and Comparative Example 2-1]
Each of Compound A-1 to 5 (Examples 1-1 to 5) and Compound B (Comparative Example 1-2), EY Resin KR-2 (manufactured by QSM), Zefaak F351 (manufactured by Gantz Kasei), Seahoster KE-C50HG (manufactured by Nippon Shokubai Co., Ltd.), KBM-403 (silane coupling agent: manufactured by Shin-Etsu Chemical Co., Ltd.), and Amicure VDH (1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, Ajinomoto Fine Techno Were mixed in the blending amounts (parts by weight) shown in Table 1, and then sufficiently kneaded using a three-roll mill (C-43 / 4 × 10 manufactured by Inoue Seisakusho). Examples 2-1 to 9-9 The liquid crystal sealant of Comparative Example 2-1 was obtained.
[試験条件]
 化合物A-1~5(実施例1-1~5)、EPICRON850CRP(比較例1-1)及び化合物B(比較例1-2)のそれぞれについて、粘度及びエポキシ当量を測定し、配向性を評価し、NI点変化を測定し、実施例2-1~9の液晶シール剤及び比較例2-1~3の液晶シール剤のそれぞれについて、接着強度を評価し、NI点変化を測定した。
[Test conditions]
For each of Compounds A-1 to 5 (Examples 1-1 to 5), EPICRON850CRP (Comparative Example 1-1) and Compound B (Comparative Example 1-2), the viscosity and epoxy equivalent were measured, and the orientation was evaluated. Then, the NI point change was measured, the adhesive strength was evaluated for each of the liquid crystal sealants of Examples 2-1 to 9 and Comparative example 2-1 to 3, and the NI point change was measured.
(1)粘度測定
 E型粘度計(東機産業社製 RE105U)を用いて、25℃で測定した。
 以下のようにローター及び回転数を選択した。
 化合物A-1:3°×R7.7ローター、回転数5rpm
 化合物A-2:3°×R7.7ローター、回転数10rpm
 化合物A-3:3°×R14ローター、回転数5rpm
 化合物A-4:3°×R14ローター、回転数20rpm
 化合物A-5:3°×R7.7ローター、回転数5rpm
 EPICLON850CRP:3°×R14ローター、回転数20rpm
 化合物B:3°×R7.7ローター、回転数10rpm
(1) Viscosity measurement The viscosity was measured at 25 ° C. using an E-type viscometer (RE105U manufactured by Toki Sangyo Co., Ltd.).
The rotor and the number of rotations were selected as follows.
Compound A-1: 3 ° × R7.7 rotor, 5 rpm
Compound A-2: 3 ° × R7.7 rotor, rotation speed 10 rpm
Compound A-3: 3 ° × R14 rotor, rotation speed 5 rpm
Compound A-4: 3 ° × R14 rotor, rotation speed 20 rpm
Compound A-5: 3 ° × R7.7 rotor, 5 rpm
EPICLON850CRP: 3 ° x R14 rotor, rotation speed 20rpm
Compound B: 3 ° × R7.7 rotor, rotation speed 10 rpm
(2)エポキシ当量測定
 JISK7236:2001記載の条件で測定した。
(2) Epoxy equivalent measurement It measured on the conditions of JISK7236: 2001.
(3)NI点変化測定
 化合物A-1~5(実施例1-1~5)、EPICRON850CRP(比較例1-1)、化合物B(比較例1-2)、実施例2-1~9の液晶シール剤及び比較例2-1~3の液晶シール剤のそれぞれをアンプル瓶に0.1g入れ、さらに、液晶(MLC-11900-080、メルク社製)1gを加えた。この瓶を120℃オーブンに1時間投入し、その後室温で静置して室温(25℃)に戻ってから液晶部分を取り出し0.2μmフィルターによりろ過し、評価用液晶サンプルとした。NI点の測定は、示差走査型熱量計(DSC、パーキンエルマー社製、PYRIS6)を使用し、評価用液晶サンプル10mgをアルミサンプルパンに封入し、昇温速度5℃/分の条件で測定を行った。なお、上記液晶10mgをアルミサンプルパンに封入し、昇温速度5℃/分の条件で測定を行った結果をブランクとした。
(3) NI Point Change Measurement Compounds A-1 to 5 (Examples 1-1 to 5), EPICRON 850CRP (Comparative Example 1-1), Compound B (Comparative Example 1-2), and Examples 2-1 to 9 0.1 g of each of the liquid crystal sealant and the liquid crystal sealants of Comparative Examples 2-1 to 3 was placed in an ampoule bottle, and 1 g of liquid crystal (MLC-11900-080, manufactured by Merck & Co.) was added. This bottle was placed in a 120 ° C. oven for 1 hour, and then allowed to stand at room temperature. After returning to room temperature (25 ° C.), the liquid crystal portion was taken out and filtered through a 0.2 μm filter to obtain a liquid crystal sample for evaluation. The NI point is measured using a differential scanning calorimeter (DSC, manufactured by PerkinElmer, Inc., PYRIS6), 10 mg of a liquid crystal sample for evaluation is enclosed in an aluminum sample pan, and the measurement is performed at a temperature rising rate of 5 ° C./min. went. In addition, 10 mg of the liquid crystal was sealed in an aluminum sample pan, and a measurement was performed under a temperature rising rate of 5 ° C./min.
 ブランクの吸熱ピークトップ(相転移温度)TBと、評価用液晶の吸熱ピークトップ(相転移温度)TEの差TE-TBをNI点変化とした。 The difference TE-TB between the blank endothermic peak top (phase transition temperature) TB and the endothermic peak top (phase transition temperature) TE of the liquid crystal for evaluation was defined as the NI point change.
 不純物を低減し液晶への溶出を抑制し、液晶の配向を安定に確保して、表示特性を向上する観点から、NI点変化は小さいほど好ましい。 From the viewpoint of reducing impurities, suppressing elution into the liquid crystal, ensuring stable alignment of the liquid crystal, and improving display characteristics, it is preferable that the NI point change is as small as possible.
(4)配向性評価
 2枚のラビング処理した配向膜(サンエバーSE-7492、日産化学工業社製)付きITOガラス基盤(60mm×70mm×0.7mmt)の片方の面上に化合物A-1を、15mm間隔で貼り合わせ後の直径が2mm以下になるように点塗布してシールして、他方の面を貼り合わせ、液晶を注入した後、120℃の熱風オーブンで1時間熱養生して配向性評価の為のパネルを作成した。
 化合物A-1を、化合物A-2~5、EPICLON850CRP、化合物Bにそれぞれ置き換えて、配向性評価の為のパネルを作成した。
(4) Evaluation of orientation Compound A-1 is applied on one surface of an ITO glass substrate (60 mm × 70 mm × 0.7 mmt) with two rubbing-treated alignment films (Sunever SE-7492, manufactured by Nissan Chemical Industries, Ltd.). , Spot-apply and seal so that the diameter after bonding at 15 mm intervals is 2 mm or less, and the other surface is bonded, liquid crystal is injected, and then heat-cured in a hot air oven at 120 ° C. for 1 hour for orientation A panel for sex evaluation was created.
Compound A-1 was replaced with compounds A-2 to 5, EPICLON 850CRP, and compound B, respectively, to prepare a panel for evaluating the orientation.
 ラビング処理は、以下のように行った。
 純水洗浄後乾燥させたTN6070基盤(FPDソリューションズ社製ITO基盤)にエアディスペンサーを用いて配向液サンエバーSE-7492(日産化学工業社製)を滴下(0.3MPa、5.3sec)後、スピンコーターにて10秒で5000rpmに達し、20秒キープする条件で均一塗布した(配向膜厚が7000~8000Åとなる条件)。塗布後、ホットプレート上でプリベーク(85℃、1min)、オーブンでポストベーク(230℃、60min)した。コットン布のラビングロールを用いて回転数500rpmにて600mm/minのスピードで基盤を送り、0.4mmの押し込み量でラビング処理を行った。対面する基盤が90°のツイスト(クロス)になるようにラビング方向を規定した。ラビング処理した基盤を純水に浸漬させ超音波洗浄を行った。120℃のオーブンで乾燥させて、ラビング処理した配向膜付きITOガラス基盤とした。
The rubbing process was performed as follows.
Alignment liquid Sunever SE-7492 (Nissan Chemical Co., Ltd.) was added dropwise (0.3 MPa, 5.3 sec) to an TN6070 base (ITP base manufactured by FPD Solutions) and dried using pure water. A coater reached 5000 rpm in 10 seconds, and was applied uniformly under the condition of keeping for 20 seconds (conditions in which the orientation film thickness was 7000 to 8000 mm). After application, pre-baking (85 ° C., 1 min) on a hot plate and post-baking (230 ° C., 60 min) in an oven were performed. Using a cotton cloth rubbing roll, the substrate was fed at a rotation speed of 500 rpm at a speed of 600 mm / min, and a rubbing treatment was performed with an indentation amount of 0.4 mm. The rubbing direction was defined so that the facing substrate was a twist (cross) of 90 °. The rubbed substrate was immersed in pure water and subjected to ultrasonic cleaning. The glass substrate was dried in an oven at 120 ° C. to obtain a rubbed ITO glass substrate with an alignment film.
 得られたパネルについて、シール(点塗布部分)際の液晶の配向状態の確認を行った。確認は光学顕微鏡で行い、偏光板をクロスニコルの状態でテストセルを挟み透過で観察し、シールとシールの中間部分の液晶(以下、ブランク液晶)とシール際の液晶の状態を比較した。
 シール際に見出されるブランク液晶の状態と異なる不均一な部分が、
 シール際に全く観察されない場合、又は、シール際の一部分で、かつ、シール際から50μm未満の場合を○と評価し、
 シール際の一部分で、かつ、シール際から50μm以上の場合、又は、シール際の全周で、且つ、シール際から50μm未満の場合を△と評価し、
 シール際の全周で、且つ、シール際から50μm以上の場合を×と評価した。
 なお、上記の不均一な部分は、液晶配向性が不良であることを示すと考えられる。
About the obtained panel, the alignment state of the liquid crystal in the case of a seal | sticker (point application part) was confirmed. The confirmation was performed with an optical microscope, and the polarizing plate was observed in a crossed Nicol state with a test cell sandwiched between them, and the liquid crystal (hereinafter, blank liquid crystal) in the middle part of the seal and the seal was compared with the liquid crystal state at the time of sealing.
A non-uniform part that is different from the state of the blank liquid crystal found when sealing,
If it is not observed at the time of sealing, or if it is a part of the sealing and less than 50 μm from the sealing,
The case where it is a part at the time of sealing and 50 μm or more from the time of sealing, or the whole circumference at the time of sealing and less than 50 μm from the time of sealing is evaluated as △,
The case of 50 μm or more from the whole circumference at the time of sealing and from the time of sealing was evaluated as x.
In addition, it is thought that said non-uniform | heterogenous part shows that liquid crystal orientation is unsatisfactory.
 図1、2は、化合物A-3(図1)及びA-5(図2)のシール際の液晶の配向状態で、シール際に見出されるブランク液晶の状態と異なる不均一な部分が、シール際に全く観察されない場合、又は、シール際の一部分で、かつ、シール際から50μm未満(○)である。図3は、化合物Bのシール際の液晶の配向状態で、シール際に見出されるブランク液晶の状態と異なる不均一な部分が、シール際の全周で、且つ、シール際から50μm以上(×)である。 FIGS. 1 and 2 show the alignment state of the liquid crystal during sealing of compounds A-3 (FIG. 1) and A-5 (FIG. 2). When it is not observed at all, it is a part at the time of sealing and less than 50 μm (◯) from the time of sealing. FIG. 3 shows the alignment state of the liquid crystal when the compound B is sealed, and the non-uniform portion different from the blank liquid crystal state found at the time of sealing is 50 μm or more (×) over the entire periphery of the sealing and from the sealing time. It is.
(5)接着強度の評価
 図4に試験方法の概要を示した。
 実施例2-1~9及び比較例2-1~3の液晶シール剤のそれぞれを、6μmスペーサーを散布したITOガラス基盤上(30mm×30mm×0.5mmt)の15mm×3mm、15mm×21mmの位置に貼り合わせ後の液晶シール剤の直径がそれぞれ1.5~2.5mmφになるように点塗布した。その後、ガラス基盤(23mm×23mm×0.5mmt)を貼り合わせ、紫外線(UV照射装置:UVX-01224S1、ウシオ電機社製、100mW/cm/365nmで30秒)を照度3000mJ/cm2で照射して硬化させ、その後、120℃の熱風オーブンで1時間熱硬化を行い、接着強度評価の為の試験片を作製した。島津製作所社製オートグラフAGS-500を用い、試験片のガラス基盤を固定し、ITOガラス基盤15mm×25mmの位置を5mm/minの速度で押し抜き、接着強度を評価した。評価結果を表1に示す。
(5) Evaluation of adhesive strength FIG. 4 shows an outline of the test method.
Each of the liquid crystal sealants of Examples 2-1 to 9 and Comparative Examples 2-1 to 3 is 15 mm × 3 mm, 15 mm × 21 mm on an ITO glass substrate (30 mm × 30 mm × 0.5 mmt) dispersed with a 6 μm spacer. Spot coating was performed so that the diameter of the liquid crystal sealant after bonding to the position was 1.5 to 2.5 mmφ. Thereafter, a glass substrate (23 mm × 23 mm × 0.5 mmt) was bonded, and ultraviolet rays (UV irradiation device: UVX-01224S1, manufactured by USHIO INC., 30 seconds at 100 mW / cm 2/365 nm) were irradiated at an illuminance of 3000 mJ / cm 2. After that, heat curing was performed in a hot air oven at 120 ° C. for 1 hour to prepare a test piece for evaluating the adhesive strength. Using an autograph AGS-500 manufactured by Shimadzu Corporation, the glass substrate of the test piece was fixed, the ITO glass substrate 15 mm × 25 mm was punched out at a speed of 5 mm / min, and the adhesive strength was evaluated. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 日本国特許出願2012-227417号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The entire disclosure of Japanese Patent Application No. 2012-227417 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (7)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、nは2~30の範囲の数であり、mは1~5の範囲の数であり、
     Xは、酸素原子、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基であり、
     Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、
     Rは、それぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR)-CH-O-R又は基2:-CH-C(CH)(OR)-CH-O-R(式中、Rは水素原子又は(メタ)アクリロイル基であり、Rは(メタ)アクリロイル基である)であり、
     R’は、それぞれ互いに独立に、水素原子又はメチル基であり、
     前記Rにおいて、前記グリシジル基、前記メチルグリシジル基、前記基1及び前記基2の合計の平均の個数xは2以上であり、
     前記Rが前記基1又は前記基2を含む場合、前記グリシジル基及びメチルグリシジル基の合計の平均の個数yと、前記基1及び前記基2の合計の平均の個数zの割合(y/z)は、10/90~90/10である]で表わされるグリシジルエーテル系化合物。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein n 1 is a number in the range of 2-30, m is a number in the range of 1-5,
    X is an oxygen atom, an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms,
    Y is each independently an alkylene group having 2 to 4 carbon atoms,
    R is independently of each other a hydrogen atom, a glycidyl group, a methylglycidyl group, a group 1: —CH 2 —CH (OR 1 ) —CH 2 —O—R 2 or a group 2: —CH 2 —C (CH 3 ) (OR 1 ) —CH 2 —O—R 2 (wherein R 1 is a hydrogen atom or a (meth) acryloyl group, and R 2 is a (meth) acryloyl group),
    Each R ′, independently of one another, is a hydrogen atom or a methyl group;
    In R, the total number x of the total of the glycidyl group, the methyl glycidyl group, the group 1 and the group 2 is 2 or more,
    When the R includes the group 1 or the group 2, the ratio of the average number y of the total of the glycidyl group and the methylglycidyl group and the average number z of the total of the group 1 and the group 2 (y / z ) Is 10/90 to 90/10].
  2.  請求項1記載のグリシジルエーテル系化合物を含む、液晶シール剤。 A liquid crystal sealant comprising the glycidyl ether compound according to claim 1.
  3.  前記液晶シール剤中、前記グリシジルエーテル系化合物の含有量が10~90重量%である、請求項2記載の液晶シール剤。 3. The liquid crystal sealant according to claim 2, wherein the content of the glycidyl ether compound in the liquid crystal sealant is 10 to 90% by weight.
  4.  前記液晶シール剤が、さらに、エチレン性不飽和基及び/又はエポキシ基を有する化合物B(但し、前記グリシジルエーテル系化合物は除く)を含む、請求項2又は3記載の液晶シール剤。 The liquid crystal sealant according to claim 2 or 3, wherein the liquid crystal sealant further comprises a compound B having an ethylenically unsaturated group and / or an epoxy group (excluding the glycidyl ether compound).
  5.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは2~30の範囲の数であり、
     Yは、それぞれ互いに独立に、炭素原子数2~4のアルキレン基であり、
     R11は、それぞれ互いに独立に、水素原子、グリシジル基又はメチルグリシジル基である)で表わされる化合物Cと、
     下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Xは、酸素原子、炭素原子数1~4のアルキレン基又は炭素原子数2~4のアルキリデン基であり、
     R12はそれぞれ互いに独立に、水素原子、グリシジル基、メチルグリシジル基、基1:-CH-CH(OR21)-CH-O-R22又は基2:-CH-C(CH)(OR21)-CH-O-R22(式中、R21は水素原子又は(メタ)アクリロイル基、R22は(メタ)アクリロイル基である)である]で表わされる化合物Dとを反応させる工程を含む、請求項1記載の式(1)で表されるグリシジルエーテル系化合物の製造方法。
    Following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (Where n 2 is a number in the range of 2-30,
    Y is each independently an alkylene group having 2 to 4 carbon atoms,
    R 11 is each independently a hydrogen atom, a glycidyl group or a methyl glycidyl group)
    Following formula (3):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein X is an oxygen atom, an alkylene group having 1 to 4 carbon atoms, or an alkylidene group having 2 to 4 carbon atoms,
    R 12 is independently of each other a hydrogen atom, a glycidyl group, a methyl glycidyl group, a group 1: —CH 2 —CH (OR 21 ) —CH 2 —O—R 22 or a group 2: —CH 2 —C (CH 3 ) (OR 21 ) —CH 2 —O—R 22 (wherein R 21 is a hydrogen atom or a (meth) acryloyl group, and R 22 is a (meth) acryloyl group)]. The manufacturing method of the glycidyl ether type compound represented by Formula (1) of Claim 1 including the process made to react.
  6.  前記化合物Cが前記式(2)においてR11がグリシジル基である化合物C1であり、前記化合物Dが前記式(3)においてR12が水素原子である化合物D1である場合、前記工程が、前記化合物C1と前記化合物D1とを反応させて、前記化合物C1と前記化合物D1の反応物Pを得る工程1と、前記反応物Pの水酸基をエポキシ化して、前記反応物Pの水酸基の一部又は全てがエポキシ化された反応物Qを得る工程2とを含む、請求項5記載の製造方法。 When the compound C is the compound C1 in which R 11 is a glycidyl group in the formula (2) and the compound D is the compound D1 in which R 12 is a hydrogen atom in the formula (3), Step 1 of reacting compound C1 and compound D1 to obtain reactant P of compound C1 and compound D1, epoxidizing the hydroxyl group of reactant P, The production method according to claim 5, comprising a step 2 of obtaining a reactant Q that is entirely epoxidized.
  7.  さらに、前記反応物Qを、塩基性触媒存在下、(メタ)アクリル酸と反応させる工程3を含む、請求項6記載の製造方法。 Furthermore, the manufacturing method of Claim 6 including the process 3 which makes the said reaction material Q react with (meth) acrylic acid in the presence of a basic catalyst.
PCT/JP2013/077036 2012-10-12 2013-10-04 Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound WO2014057871A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157011942A KR102056074B1 (en) 2012-10-12 2013-10-04 Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound
JP2014540827A JP6310852B2 (en) 2012-10-12 2013-10-04 Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound
CN201380052675.4A CN104718231B (en) 2012-10-12 2013-10-04 The manufacture method of glycidyl ether based compound, liquid crystal sealing agent and glycidyl ether based compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227417 2012-10-12
JP2012227417 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057871A1 true WO2014057871A1 (en) 2014-04-17

Family

ID=50477338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077036 WO2014057871A1 (en) 2012-10-12 2013-10-04 Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound

Country Status (5)

Country Link
JP (1) JP6310852B2 (en)
KR (1) KR102056074B1 (en)
CN (1) CN104718231B (en)
TW (1) TWI586695B (en)
WO (1) WO2014057871A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117887A (en) * 2014-03-31 2016-06-30 協立化学産業株式会社 Curable resin excellent in flexibility after curing, (meth)acryl curable resin and liquid crystal display sealing agent composition
WO2022270462A1 (en) * 2021-06-22 2022-12-29 積水化学工業株式会社 Sealing agent for liquid crystal display elements, and liquid crystal display element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601634B2 (en) * 2017-03-31 2019-11-06 協立化学産業株式会社 Modified resin and curable resin composition containing the same
JP7148332B2 (en) 2018-09-07 2022-10-05 積水化学工業株式会社 Liquid crystal display element sealant, vertical conduction material, and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161817A (en) * 1979-06-05 1980-12-16 Sumitomo Chem Co Ltd Preparation of epoxy resin
JPH09194567A (en) * 1996-01-25 1997-07-29 Namitsukusu Kk Sealing compound for liquid crystal display cell and liquid crystal display cell using the same
JP2006124698A (en) * 2001-05-16 2006-05-18 Sekisui Chem Co Ltd Curing resin composition, and sealant and end-sealing material for display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027502A1 (en) * 2002-09-19 2004-04-01 Mitsui Chemicals, Inc. Sealing composition for liquid crystal displays and process for production of liquid crystal display panels
US20050010022A1 (en) * 2003-07-09 2005-01-13 Yasuo Chiba Epoxy resin compositions
JP2007297470A (en) * 2006-04-28 2007-11-15 Dainippon Ink & Chem Inc Curable composition, its cured product, sealing agent for liquid crystal display element, liquid crystal display element and vinyl group-containing epoxy resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161817A (en) * 1979-06-05 1980-12-16 Sumitomo Chem Co Ltd Preparation of epoxy resin
JPH09194567A (en) * 1996-01-25 1997-07-29 Namitsukusu Kk Sealing compound for liquid crystal display cell and liquid crystal display cell using the same
JP2006124698A (en) * 2001-05-16 2006-05-18 Sekisui Chem Co Ltd Curing resin composition, and sealant and end-sealing material for display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117887A (en) * 2014-03-31 2016-06-30 協立化学産業株式会社 Curable resin excellent in flexibility after curing, (meth)acryl curable resin and liquid crystal display sealing agent composition
TWI680994B (en) * 2014-03-31 2020-01-01 日商協立化學產業股份有限公司 Composition of curable resin with excellent flexibility after curing, (meth)acrylic curable resin, and liquid crystal sealant
WO2022270462A1 (en) * 2021-06-22 2022-12-29 積水化学工業株式会社 Sealing agent for liquid crystal display elements, and liquid crystal display element
JP7253118B1 (en) * 2021-06-22 2023-04-05 積水化学工業株式会社 Sealant for liquid crystal display element and liquid crystal display element

Also Published As

Publication number Publication date
CN104718231B (en) 2017-03-29
KR20150068448A (en) 2015-06-19
TWI586695B (en) 2017-06-11
TW201428018A (en) 2014-07-16
KR102056074B1 (en) 2019-12-16
JPWO2014057871A1 (en) 2016-09-05
CN104718231A (en) 2015-06-17
JP6310852B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6248221B2 (en) Curable resin excellent in flexibility after curing, (meth) acrylated curable resin, and liquid crystal sealant composition
JP5624634B2 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP6754933B2 (en) Liquid crystal sealant applicable to flexible liquid crystal panels
JP6310852B2 (en) Glycidyl ether compound, liquid crystal sealant, and method for producing glycidyl ether compound
JP5736613B2 (en) Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same
JP2011221168A (en) Liquid crystal sealing agent, liquid crystal display panel including liquid crystal sealing agent, and producing method for the same
JP6601633B2 (en) (Meth) acrylate resin and curable resin composition containing the same
JP6601634B2 (en) Modified resin and curable resin composition containing the same
JP5032340B2 (en) Liquid crystal sealing agent and liquid crystal panel manufacturing method using the same
JP5897679B2 (en) Low-eluting epoxy resin, partially esterified epoxy resin, production method thereof, and curable resin composition containing the same
JP2016170242A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2016170241A (en) Liquid crystal sealant and liquid crystal display cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011942

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13845733

Country of ref document: EP

Kind code of ref document: A1