WO2014057838A1 - モータ搭載自動車のアンチロックブレーキ制御システム - Google Patents

モータ搭載自動車のアンチロックブレーキ制御システム Download PDF

Info

Publication number
WO2014057838A1
WO2014057838A1 PCT/JP2013/076658 JP2013076658W WO2014057838A1 WO 2014057838 A1 WO2014057838 A1 WO 2014057838A1 JP 2013076658 W JP2013076658 W JP 2013076658W WO 2014057838 A1 WO2014057838 A1 WO 2014057838A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
motor
braking
wheel
regenerative braking
Prior art date
Application number
PCT/JP2013/076658
Other languages
English (en)
French (fr)
Inventor
村松誠
山崎達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2014057838A1 publication Critical patent/WO2014057838A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • B60T8/17616Microprocessor-based systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an anti-lock brake control system for motor-equipped vehicles such as an electric vehicle that is driven by an electric motor and a hybrid vehicle equipped with an electric motor and an engine.
  • Non-Patent Document 1 there is a relationship as shown in Fig. 4 of Non-Patent Document 1 between the friction coefficient between the tire and the road surface and the slip ratio. Depending on the road surface condition, the road surface friction coefficient has a characteristic with respect to the slip ratio. In ABS (anti-lock brake system) control or the like, the wheel is controlled in the vicinity of the maximum friction coefficient to improve the vehicle performance.
  • HEV hybrid vehicle
  • EV electric vehicle
  • Non-patent Documents 1 and 2 ABS control using both a friction brake and a regenerative brake has been proposed.
  • Non-patent Document 1 In the control (Patent Document 1) in which the regenerative torque is limited and the braking force is generated by the friction brake, kinetic energy cannot be recovered or becomes small. Further, in a friction brake using hydraulic pressure as a medium, since the hydraulic pressure (friction torque) is raised and lowered by opening and closing the valve, it is difficult to control the brake torque in detail. In the control (Non-patent Document 1 and Patent Document 2) in which ABS is performed by coordinating the friction brake and the regenerative brake, not only the control logic but also the control device becomes complicated, which may increase the cost. In addition, when regenerative braking is difficult, ABS control is performed by the friction brake, so it is difficult to reduce the performance (size) of the friction brake itself.
  • the anti-lock brake control system for motor-equipped automobiles generates a motor 6 for individually driving the left and right drive wheels 2 and a regenerative braking torque corresponding to the braking command value of the brake command means 46.
  • Regenerative braking means 54 means 61 for calculating the vehicle speed from each wheel speed; means 62 for calculating the wheel slip ratio from the vehicle speed and wheel speed; and any of the wheel slip ratio and the rate of change of the slip ratio.
  • a motor-equipped vehicle provided with a lock determination means 50 for determining that a wheel tends to be locked from either or both of the above,
  • the lock determining means 50 determines that the wheel tends to be locked
  • the regenerative braking by the regenerative braking means 54 is performed so that the regenerative braking torque is smaller than the regenerative braking torque corresponding to the braking command value and the wheel is not locked.
  • Regenerative braking antilock control means 48a for controlling the braking torque is provided.
  • the regenerative braking is performed by the regenerative braking means 54 even during sudden braking in which the antilock brake operation is performed, kinetic energy can be efficiently recovered. Further, since the braking force of the regenerative braking means 54 can be controlled linearly and has a good response compared to the friction brake 9, it is possible to control the brake torque near the target slip ratio, That is, the braking performance can be improved. Further, since it is not necessary to finely control the friction brake means 9, complicated hydraulic control equipment required for the hydraulic brake that is representative of the conventional friction brake means becomes unnecessary, and the friction brake 9 itself can be reduced in size (braking force). In combination with (miniaturization), an effect of reducing the weight of the entire vehicle, the weight under the spring, and the cost can be expected.
  • the “target slip ratio” is the slip ratio at which the friction coefficient with the road surface is maximized.
  • the brake command means 46 distributes, for example, a brake command value output from the brake operation means 17 such as a brake pedal operated by the driver as a brake command value for each motor 6 and a brake command value for the friction brake 9. It is a brake command distribution means to be given to the regenerative brake means 54.
  • a brake command value output from the brake operation means 17 such as a brake pedal operated by the driver as a brake command value for each motor 6 and a brake command value for the friction brake 9. It is a brake command distribution means to be given to the regenerative brake means 54.
  • regenerative braking permission determining means 51 for determining that the regenerative braking determined by the regenerative braking means 54 is impossible, and the drive circuit for the motor 6
  • Short-circuit brake means 55 for generating a braking force on the motor 6 by short-circuiting the motor may be provided.
  • the regenerative braking means 54 may not be able to obtain a sufficient regenerative torque due to a large amount of remaining battery power.
  • the short-circuit brake means 55 is provided, even when the regenerative brake means 54 does not function sufficiently, the braking force can be secured by the motor 6 without using the friction brake 9, and the friction brake 9 can be downsized.
  • a variable resistor 43 is provided in a short-circuit for supplying a short-circuit current of the motor 6, and during the operation of the short-circuit brake means 55, a braking force is generated by a change in the resistance value of the variable resistor 43.
  • Short-circuit brake control means 49 for increasing or decreasing the value may be provided.
  • the regenerative braking availability determination means 51 may monitor the remaining battery level and determine that regenerative braking is not possible according to the remaining battery level. Since most of the reasons why regenerative braking cannot be performed are the remaining battery power, there is no problem even if it is determined whether or not regenerative braking can be performed only by monitoring the remaining battery power, and the determination can be performed appropriately.
  • the automobile may have a friction brake 9, and the braking force by the friction brake 9 may be limited to an upper limit value or less at which the wheel does not lock.
  • the friction brake 9 cannot be omitted.
  • the friction brake 9 by restricting the braking force by the friction brake 9 to an upper limit value or less at which the wheel 2 is not locked, the wheel lock due to the excessive effect of the friction brake 9 can be avoided. Even if the braking force by the friction brake 9 is limited, it is possible to avoid unexpected braking force by using it together with the regenerative braking means 54 or the short-circuit braking means 55.
  • the motor 6 may be a motor constituting the in-wheel motor device 8.
  • the motor 6 may be installed on the chassis and transmit the driving force to the wheels via a drive transmission system 57 such as a constant velocity joint.
  • the in-wheel motor device 8 has a heavy unsprung weight, Weight reduction is required to improve running performance. Therefore, in the present invention, it is possible to reduce the size of the friction brake by regenerative braking even during the anti-lock brake operation, which leads to a reduction in the unsprung weight, and the effect of reducing the weight of the friction brake 9 according to the present invention is reduced. More effective.
  • FIG. 1 is a plan view showing a conceptual configuration of a motor-equipped automobile equipped with the antilock brake control system of this embodiment.
  • the motor-equipped vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 that are the left and right front wheels are driven wheels.
  • the front wheel 3 is a steering wheel.
  • the left and right wheels 2 and 2 serving as driving wheels are driven by independent traveling motors 6.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor device 8 that is an assembly part.
  • the motor 6 is installed close to the wheel 2, and a part or the whole of the in-wheel motor device 8 is disposed in the wheel 2.
  • Each wheel 2 and 3 is provided with a friction brake 9 such as an electric type.
  • the vehicle body 1 includes an ECU 21 that is an electric control unit that performs overall control and cooperative control of the entire vehicle, and inverter devices 22 (two in the illustrated example) that respectively control the motors 6 for traveling according to instructions from the ECU 21. It is mounted on.
  • the ECU 21 includes a computer, a program executed by the computer, and various electronic circuits.
  • the weak electric system in the inverter device 22 is also configured by a computer, a program executed by the computer, and an electronic circuit.
  • the ECU 21 and the weak electric system of each inverter device 22 may be configured by a common computer or an electronic circuit on a common board. Further, the two inverter devices 22 may be provided on the same base or casing so as to have a common part.
  • the ECU 21 includes torque distribution means 23 and brake control means 24.
  • the torque distribution means 23 is a signal of an accelerator opening output from the accelerator operation means 16, a deceleration command output from the brake operation means 17, and steering. From the turning command output by the means 15, an acceleration / deceleration command to be given to the left and right wheel driving motors 6, 6 is generated as a torque command value and output to each inverter device 22.
  • the accelerator operation means 16 and the brake operation means 17 are composed of pedals such as an accelerator pedal and a brake pedal, respectively, and sensors that detect the operation amount of the pedal.
  • the steering means 15 includes a steering wheel and a sensor that detects a rotation angle thereof.
  • the battery 19 is a secondary battery, and is used as a drive for the motor 6 and a power source for the electrical system of the entire vehicle.
  • the inverter device 22 includes a power circuit unit 28 that is a power conversion circuit unit provided for each motor 6, and a motor control unit 29 that controls the power circuit unit 28.
  • the power circuit unit 28 mainly includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power used to drive the motor 6, and a PWM driver 32 that is a means for controlling the inverter 31.
  • a regenerative brake circuit 33 and a short-circuit brake circuit 34 are provided.
  • the motor 6 is a three-phase synchronous motor, for example, an IPM type (embedded magnet type) synchronous motor or the like.
  • the inverter 31 includes a plurality of drive elements 31a and 31b, which are semiconductor switching elements, and drives the three phases (U, V, and W phases) of the motor 6 by a combination of on and off of the drive elements 31a and 31b. Outputs current in a pulse waveform. Flywheel diodes (not shown) that are bypassed when the drive elements 31a and 31b are turned off are connected to the drive elements 31a and 31b in alignment. When all the drive elements 31a and 31b are turned off, the inverter 31 forms a diode bridge by a flywheel diode, and becomes a regenerative connection configuration for rectifying the AC power of the motor 6.
  • the regenerative brake circuit 33 includes an accelerator switching means 37 that performs an opening / closing operation, a first diode 38, and a positive circuit 35 out of a positive circuit 35 and a negative circuit 36 that connect the battery 19 and the inverter 31.
  • the switching means 39 for adjusting the regenerative brake and the second diode 40 are provided in parallel between the positive circuit 35 and the negative circuit 36, and the smoothing circuit 41 using a smoothing capacitor is provided.
  • Each switching means 37 and 39, and each switching means 42 and 45 described later are configured by switching elements such as switching transistors.
  • the first diode 38 is for bypassing the current flowing from the inverter 31 to the battery 19 side when the accelerator switching means 37 is open.
  • the second diode 40 is a bypass that permits a current flow from the negative side circuit 36 to the positive side circuit 35 when the switching means 39 for regenerative braking is in an open state.
  • the regenerative brake circuit 32 has a coil that constitutes a boosting circuit for charging, but illustration and description thereof are omitted.
  • the accelerator switching means 37 When the motor 6 is driven, the accelerator switching means 37 is closed and the regenerative brake switching means 39 is opened. As a result, the current of the battery 19 flows to the inverter 31 and the motor 6 and returns to the battery 19.
  • the inverter 31 When performing regenerative braking, the inverter 31 is in a regenerative connection configuration, the accelerator switching means 37 is opened, and the regenerative brake switching means 39 is opened.
  • the current generated by the motor 6 flows to the battery 19 via the first diode 38, and regenerative braking is performed.
  • the magnitude of the braking force generated by the motor 6 is adjusted by finely repeatedly opening and closing the switching means 39 for adjusting the regenerative brake to adjust the current conduction period, that is, by adjusting the time ratio. .
  • the short circuit brake circuit 34 is configured by connecting a series circuit of switching means 42 for short circuit brake and a resistor 43 for power consumption between the positive side circuit 35 and the negative side circuit 36.
  • a variable resistor is used as the power consumption resistor 43.
  • the positive circuit 35 and the negative circuit 36 may be provided with switching means 45 for switching between regenerative braking and short circuit braking.
  • the inverter 31 When short-circuit braking is performed, the inverter 31 is set in a regenerative connection form, the short-circuit brake switching means 42 is closed, and the regenerative brake switching means 39 is opened. As a result, the current generated by the motor 6 flows in a short-circuited manner through the power consumption resistor 43, and a braking force is generated by the motor 6.
  • the resistor 43 is a variable resistor, and the braking force generated in the motor 6 is changed by adjusting the resistance value.
  • the switching means 45 for switching between regenerative braking and short-circuit braking is closed, regenerative braking is also performed at the same time. However, when the battery 19 is fully charged, only short-circuit braking is performed. For this reason, the switching means 45 for switching is not necessarily provided. However, if the switching means 45 is left open, only short-circuit braking is performed, and the braking force is adjusted by adjusting the resistance value of the variable resistor 43. Is easily done.
  • the brake control unit 24 includes a brake command unit 46 serving as a brake command distribution unit, a friction brake control unit 47, a regenerative brake control unit 48, and a short-circuit brake control unit 49.
  • the lock determination unit 50, the regenerative brake control unit 49, A brake availability determination unit 51 and a control type switching unit 52 are provided.
  • the lock determination unit 50, the regenerative brake control unit 48, and the short-circuit brake control unit 49 constitute an antilock brake control system 53.
  • the regenerative brake control means 48 and the regenerative brake circuit 33 constitute a regenerative brake means 54
  • the short-circuit brake control means 49 and the short-circuit brake circuit 34 constitute a short-circuit brake means 55.
  • the brake command means 46 distributes the brake command amount to the brake command means 46, the friction brake control means 47, the regenerative brake control means 48, and the short-circuit brake control means 49 in accordance with the braking command output from the brake operation means 17.
  • the regenerative brake control means 48 is given all of the command amount of the braking command output from the brake operation means 17 to the regenerative brake control means 48, and the friction brake is applied when a predetermined condition is met. A part or all of the command amount of the braking command output from the brake operation unit 17 is supplied to the control unit 47 to the friction brake control unit 47.
  • the brake command means 46 In addition to the braking command output from the brake operating means 17, the brake command means 46, if the vehicle has an automatic stop control means (not shown) for automatically stopping the vehicle by danger detection or the like, is an automatic constant stop control means. As with the brake operation means 17, the above distribution is also performed for the braking command output by.
  • the friction brake control means 47 is means for distributing and giving the command amount of the braking command given from the brake command means 46 to each friction brake 9.
  • the friction brake control means 47 has a function of limiting the braking force by each friction brake 9 to an upper limit value or less at which the wheel does not lock. Specifically, the friction brake control means 47 restricts the upper limit value of the braking force of each friction brake 9 by the value set in the upper limit restriction means 47a.
  • the upper limit restricting means 47a stores a value that is determined to be a value that the wheel does not lock by design or the like.
  • the friction brake control means 47 may be a dedicated ECU provided independently of the main ECU. However, in this embodiment, when there is a dedicated ECU, the main ECU and other dedicated ECUs are provided. And the ECU 21 will be described as the ECU 21.
  • the lock determination means 50 determines that the wheel tends to be locked based on one or both of the slip ratio of the wheel calculated by the slip ratio calculation means 62 and the rate of change of the slip ratio.
  • the slip ratio calculating means 62 calculates a wheel slip ratio from the vehicle speed and the wheel rotational speed.
  • the vehicle speed is obtained from vehicle speed calculation means 61 that calculates the vehicle speed from each wheel speed.
  • the wheel rotation speed is obtained from rotation detection means provided on a wheel bearing (not shown) or the like.
  • the sudden braking determination value for the wheel lock is set to an appropriate value by design.
  • the regenerative brake control means 48 is means for switching the switching means 37 and 39 of the regenerative brake circuit 33 to the regenerative open / close state when a braking command is given from the brake command means 46 to the regenerative brake control means 48.
  • the regenerative braking control means 48 is provided with regenerative braking antilock control means 48a.
  • the regenerative braking anti-lock control means 48a reduces the regenerative braking by the regenerative braking means 54 to be smaller than the regenerative braking torque corresponding to the braking command value when the lock determination means 50 determines that the wheel tends to be locked.
  • the regenerative braking torque is controlled so that the wheels do not lock.
  • the regenerative braking availability determination means 51 is a means for determining that the regenerative braking determined by the regenerative braking means 54 is impossible.
  • the regenerative braking availability determination means 51 gives the braking type switching means 52 the result of determining that regenerative braking is not possible.
  • the brake type switching means 52 closes the switching means 39 of the regenerative brake circuit 33 or opens the switching means 45 for switching between regenerative braking and short-circuit braking in response to the determination result that regenerative braking is not possible. As a result, short circuit braking by the short circuit brake circuit 34 is performed.
  • the short circuit brake control means 49 adjusts the braking force by the short circuit brake means 55 by changing the resistance value of the variable resistor 43 for power consumption of the short circuit brake circuit 34.
  • the regenerative braking availability determination unit 51 monitors the remaining battery level by, for example, the remaining battery level monitoring unit 56, and determines that regenerative braking is not possible if it is equal to or greater than the threshold.
  • the regenerative braking is performed by the regenerative braking means 54 even during a sudden braking in which the antilock brake operation is performed, the kinetic energy can be efficiently recovered. Further, since the braking force of the regenerative braking means 54 can be controlled linearly and has a good response compared to the friction brake 9, it is possible to control the brake torque near the target slip ratio, That is, the braking performance can be improved. Further, since it is not necessary to finely control the friction brake means 9, complicated hydraulic control equipment required for the hydraulic brake that is representative of the conventional friction brake means is not required, and the friction brake 9 itself can be reduced in size (braking force). In combination with (miniaturization), an effect of reducing the weight of the entire vehicle, the weight under the spring, and the cost can be expected.
  • the “target slip ratio” is a slip ratio at which the maximum braking force can be obtained without causing tire lock.
  • the regenerative braking means 54 may not be able to obtain a sufficient regenerative torque due to a large amount of remaining battery power.
  • the short-circuit brake means 55 is provided, even when the regenerative brake means 54 does not function sufficiently, the braking force by the motor 6 can be ensured regardless of the friction brake 9, and the friction brake 9 can be downsized.
  • the power consumption resistor 43 of the short-circuit brake means 55 is a variable resistor, the braking force for short-circuit braking can be increased or decreased by changing the resistance value.
  • the variable resistor 43 By providing the variable resistor 43 in this way, the braking force can be finely controlled by the short-circuit brake means 55, and the responsiveness is better than that of the friction brake 9, so that the brake torque control near the target slip ratio is possible. This makes it possible to improve the motion performance of the vehicle, that is, the braking performance.
  • the regenerative braking availability determination means 51 monitors the remaining battery level and determines that regenerative braking is not possible in accordance with the remaining battery level. Therefore, there is no problem even if the determination of whether or not the regenerative braking is possible is performed only by monitoring the battery remaining amount, and the determination can be performed appropriately.
  • the automobile has the friction brake 9, and the braking force by the friction brake 9 is limited to an upper limit value or less at which the wheel does not lock.
  • the friction brake 9 cannot be omitted.
  • the friction brake 9 by restricting the braking force by the friction brake 9 to an upper limit value or less at which the wheel 2 is not locked, the wheel lock due to the excessive effect of the friction brake 9 can be avoided. Even if the braking force by the friction brake 9 is limited, the use of the regenerative brake means 54 or the short-circuit brake means 55 together can prevent the braking force from becoming insufficient.
  • the motor 6 constitutes an in-wheel motor device 8.
  • the unsprung weight is heavy, and the weight reduction is required for improving the running performance. Therefore, it is possible to reduce the size of the friction brake 9 by regenerative braking during the anti-lock brake operation in this embodiment, which leads to a reduction in the unsprung weight, and the effect of reducing the weight of the friction brake 9 is further reduced. Effectively demonstrated.
  • the motor 6 constitutes the in-wheel motor device 8
  • the motor 6 is installed on a chassis (not shown).
  • the present invention can also be applied to a vehicle that transmits the driving force to the wheels 2 via the driving transmission system 57.
  • the drive transmission system 57 is, for example, provided with constant velocity joints 58 at both ends of the drive shaft.
  • the present invention can be applied not only to an electric vehicle equipped with only a motor that is a driving source, but also to a hybrid vehicle equipped with an engine and a motor. The effect of the function is demonstrated.
  • Friction brake control means 48 ... Regenerative brake control means 48a ... Regenerative braking antilock control means 49 ... Short-circuit brake control Means 50 ... Lock judgment means 51 ... Regenerative braking availability judgment means 52 ... Control type switching means 54 ; Regenerative brake means 55 ... Short-circuit brake means 61 ... Vehicle speed calculation means 62 ... Slip rate calculation means

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 左右の駆動輪2を個別に駆動するモータ6と、回生ブレーキ手段54とを備えたモータ搭載自動車に適用する。車輪のスリップ率およびこのスリップ率の変化率のいずれか一方または両方から、車輪がロック傾向にあると判定するロック判定手段50を設ける。ロック判定手段50により車輪がロック傾向であると判定された場合に、前記回生ブレーキ手段54による回生制動を、前記制動指令値に応じた回生制動トルクより小さく、かつ車輪がロックしないように回生制動トルクを制御する回生制動アンチロック制御手段48aを設ける。

Description

モータ搭載自動車のアンチロックブレーキ制御システム 関連出願
 この出願は、2012年10月11日出願の特願2012-225615の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電動のモータで走行する電気自動車や、電動のモータとエンジンとを搭載したハイブリップ車等のモータ搭載自動車におけるアンチロックブレーキ制御システムに関する。
 ハイブリッド車(HEV)や電気自動車(EV)などのモータを走行駆動源として搭載した車両では、制動時にモータを発電機として使用(回生ブレーキ)し、運動エネルギーを電気エネルギーとして蓄え、力行時にモータの電源と使用することで、燃費を向上させている。
 一方で、タイヤと路面の摩擦係数とスリップ率の間には、非特許文献1のfig.4に示すような関係がある。路面の状況によってことなるが、スリップ率に対し路面の摩擦係数はピークを持つような特性がある。ABS(アンチロックブレーキシステム)制御等では摩擦係数最大値付近で車輪を制御するようにし車両の運動性能を向上させている。
 しかし、HEVやEVなどの車両では、ABSが作動するような急制動時には、モータによる回生トルクをゼロ若しくは小さくし、摩擦ブレーキによって各車輪がロックしないように制御が行われるのが一般的である(例えば、特許文献1)。
 他に摩擦ブレーキと回生ブレーキを併用するABS制御も提案されている(非特許文献1、特許文献2)。
特開平11-078839号公報 特開2010-247782号公報
坂井真一郎、堀洋一、「油圧ABSと協調した回生ブレーキ制御による空転防止効果の改善」、電気学会産業応用部門大会講演論文集 巻:2000、 号:1、 頁:557-560 草野清信、「電気自動車用回生ブレーキの電気・機械特性の数値解析」、宮城教育大学紀要、第41巻、2006、頁107-121
 上記のようにABS制御中は、回生トルクを制限し摩擦ブレーキによって制動力を発生させる制御(特許文献1)では、運動エネルギーの回収は出来なくなるか、または小さくなる。また、油圧を媒体として使用する摩擦ブレーキでは、バルブ開閉によって油圧(摩擦トルク)を上下させているため、細かなブレーキトルクの制御は困難である。
 摩擦ブレーキと回生ブレーキを協調させてABSを行う制御(非特許文献1,特許文献2)では、制御ロジックだけでなく制御機器も複雑になり、コスト高の可能性がある。
 また、回生ブレーキが困難な場合には摩擦ブレーキによってABS制御を行うため、摩擦ブレーキ自体の性能(サイズ)ダウンは難しい。
 この発明の目的は、アンチロックブレーキ動作時に、回生によるエネルギー回収が効率良く行えて、車両の制動性能も向上させることができ、また摩擦ブレーキの小型化が可能になるモータ搭載自動車のアンチロックブレーキ制御システムを提供することである。
 この発明のモータ搭載自動車のアンチロックブレーキ制御システムは、左右の駆動輪2を個別に駆動するモータ6と、ブレーキ指令手段46の制動指令値に応じた回生制動トルクを前記各モータ6に生じさせる回生ブレーキ手段54と、各車輪回転数から車速を算出する手段61と、前記車速と車輪回転数から車輪のスリップ率を算出する手段62と、車輪のスリップ率およびこのスリップ率の変化率のいずれか一方または両方から、車輪がロック傾向にあると判定するロック判定手段50を備えたモータ搭載自動車であって、
 前記ロック判定手段50により車輪がロック傾向であると判定された場合に、前記回生ブレーキ手段54による回生制動を、前記制動指令値に応じた回生制動トルクより小さく、かつ車輪がロックしないように回生制動トルクを制御する回生制動アンチロック制御手段48aを設けている。
 この構成によると、アンチロックブレーキ動作を行う急制動時にも、回生ブレーキ手段54による回生制動を行うため、運動エネルギーの回収が効率良く行える。また、摩擦ブレーキ9と比較して回生ブレーキ手段54の制動力はリニアに制御可能であり応答性も良いことから、目標とするスリップ率近辺でのブレーキトルク制御が可能となり、車両の運動性能、つまり制動性能を向上させることが可能となる。さらに、摩擦ブレーキ手段9を細かく制御する必要がないため、従来の摩擦ブレーキ手段の代表である油圧ブレーキで必要であった複雑な油圧制御機器が不要となり、摩擦ブレーキ9自体の小型化(制動力小化)と併せて、車両全体の重量、バネ下の重量、およびコストを低減する効果が期待できる。
 上記の「目標とするスリップ率」は、路面との摩擦係数が最大となるスリップ率である。
 前記ブレーキ指令手段46は、例えば、運転者が操作するブレーキペダル等のブレーキ操作手段17が出力する制動指令値を、各モータ6への制動指令値および摩擦ブレーキ9の制動指令値として分配して回生ブレーキ手段54に与える制動指令分配手段である。
 なお、デフ等の差動歯車装置を介して1つのモータで複数の車輪を駆動(制動)する車両において回生ブレーキのみで制動力を作用させる場合には、一輪がロックすると他のロックしていない車輪には制動トルクが作用しなくなるため、上記構成は適切ではない。
 この発明において、前記回生ブレーキ手段54による定められた回生制動が不可であることを判定する回生制動可否判定手段51と、回生制動が不可であると判定された場合に、前記モータ6の駆動回路を短絡させてこのモータ6に制動力を発生させる短絡ブレーキ手段55とを設けても良い。
 回生ブレーキ手段54は、バッテリ残量が多いなどの理由によって回生トルクが十分に得られないときがある。しかし、短絡ブレーキ手段55を設けておけば、回生ブレーキ手段54が十分に機能しない場合にも、摩擦ブレーキ9によらずにモータ6による制動力確保が図れ、摩擦ブレーキ9の小型化が図れる。
 短絡ブレーキ手段55を設ける場合に、前記モータ6の短絡電流を流す短絡用回路に可変抵抗43を設け、前記短絡ブレーキ手段55の作用中には、前記可変抵抗43の抵抗値の変化によって制動力を増減させる短絡ブレーキ制御手段49を設けても良い。このように可変抵抗43を設けることで、短絡ブレーキ手段55によっても制動力を制御でき、摩擦ブレーキ9と比較して応答性も良く、このため目標とするスリップ率近辺でのブレーキトルク制御が可能となり、車両の運動性能、つまり制動性能を向上させることが可能となる。
 前記回生制動可否判定手段51が、バッテリ残量を監視し、バッテリ残量に応じて回生制動が不可であると判定するものであっても良い。回生制動が行えない要因は殆どがバッテリ残量であるため、バッテリ残量の監視のみで回生制動の可否の判定を行っても支障がなく、またその判定が適切に行える。
 この発明において、前記自動車が摩擦ブレーキ9を有し、この摩擦ブレーキ9による制動力を、車輪がロックしない上限値以下に制限しても良い。
 一般の制動時、特に走行停止させるときの制動等のために、回生制動や短絡制動のみでは確実性が満足できず、摩擦ブレーキ9を省略することはできない。しかし、摩擦ブレーキ9を設けた場合に、この摩擦ブレーキ9による制動力を、車輪2がロックしない上限値以下に制限しておくことで、摩擦ブレーキ9の効き過ぎによる車輪ロックが回避できる。摩擦ブレーキ9による制動力を制限しても、回生ブレーキ手段54、あるいは短絡ブレーキ手段55と併用することで、制動力不測になることを回避できる。
 前記モータ6は、インホイールモータ装置8を構成するモータであっても良い。前記モータ6は、車台上に設置されて等速ジョイント等の駆動伝達系57を介して車輪に駆動伝達するものであっても良いが、インホイールモータ装置8ではバネ下重量が重くなり、その軽量化が走行性の向上のために求められている。そのため、この発明における、アンチロックブレーキ動作時にも回生制動させることで摩擦ブレーキを小型化できることが、バネ下重量の軽量化につながり、この発明の摩擦ブレーキ9の小型化による軽量化の効果が、より一層効果的に発揮される。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1の実施形態に係るアンチロックブレーキ制御システムを備えたモータ搭載自動車の平面視で示す概念構成の説明図である。 同モータ搭載自動車のインホイールモータ装置の正面図と制御系のブロック図とを組み合わせた説明図である。 同アンチロックブレーキ制御システムの概念構成のブロック図である。 この発明のアンチロックブレーキ制御システムを搭載するモータ搭載自動車の他の例の平面視で示す説明図である。
 この発明の第1の実施形態を図1ないし図3と共に説明する。図1は、この実施形態のアンチロックブレーキ制御システムを装備したモータ搭載自動車の概念構成を示す平面図である。このモータ搭載自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ装置8を構成している。インホイールモータ装置8は、モータ6が車輪2に近接して設置されており、一部または全体が車輪2内に配置される。各車輪2,3には、電動式等の摩擦ブレーキ9がそれぞれ設けられている。
 制御系を説明する。自動車全般の統括制御,協調制御を行う電気制御ユニットであるECU21と、このECU21の指令に従って各走行用のモータ6の制御をそれぞれ行うインバータ装置22(図示の例では2つ)とが、車体1に搭載されている。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。インバータ装置22における弱電系も、コンピュータとこれに実行されるプログラム、および電子回路により構成される。なお、ECU21と各インバータ装置22の弱電系とは、互いに共通のコンピュータや共通の基板上の電子回路で構成されていても良い。また、2つのインバータ装置22は、互いに共通部分を有するように、同じ基盤や筐体に設けられていても良い。
 ECU21は、トルク配分手段23とブレーキ制御手段24を有していて、トルク配分手段23は、アクセル操作手段16の出力するアクセル開度の信号と、ブレーキ操作手段17の出力する減速指令と、操舵手段15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令をトルク指令値として生成し、各インバータ装置22へ出力する。アクセル操作手段16およびブレーキ操作手段17は、それぞれアクセルペダルおよびブレーキペダル等のペダルと、そのペダルを動作量を検出するセンサとでなる。操舵手段15は、ステアリングホイールとその回転角度を検出するセンサとでなる。バッテリ19は、二次電池であって、モータ6の駆動および車両全体の電気系統の電源として用いられる。
 図2に示すように、インバータ装置22は、各モータ6に対して設けられた電力変換回路部であるパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。パワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御する手段であるPWMドライバ32とで主に構成され、この他に回生ブレーキ回路33および短絡ブレーキ回路34を有している。
 図3において、モータ6は、3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、半導体スイッチング素子である複数の駆動素子31a,31bで構成され、これら駆動素子31a,31bのオンオフの組み合わせにより、モータ6の3相(U,V,W相)の各相の駆動電流をパルス波形で出力する。各駆動素子31a,31bには、これら駆動素子31a,31bのオフ時にバイパスさせるフライホイールダイオード(図示せず)が整列に接続されている。全ての駆動素子31a,31bをオフとすると、インバータ31はフライホイールダイオードによるダイオードブリッジを構成し、モータ6の交流電力を整流する回生用接続形態となる。
 回生ブレーキ回路33は、バッテリ19とインバータ31とを接続する正側回路35と負側回路36のうち、正側回路35に、開閉動作を行うアクセル用のスイッチング手段37と第1のダイオード38とを並列に接続し、かつ正側回路35と負側回路36との間に、回生ブレーキ調整用のスイッチング手段39と第2のダイオード40とを並列に設け、かつ平滑コンデンサによる平滑回路41を設けて構成される。各スイッチング手段37,39、および後に説明する各スイッチング手段42,45は、スイッチングトランジスタ等のスイッチング素子で構成される。第1のダイオード38は、アクセル用のスイッチング手段37が開状態のときに、インバータ31からバッテリ19側への電流を流すバイパス用である。第2のダイオード40は、回生ブレーキ用のスイッチング手段39が開状態のときに、負側回路36から正側回路35への電流の流れを許可するバイパス用である。なお、回生ブレーキ回路32は、充電用の昇圧回路を構成するコイルを有するが、これについては図示および説明を省略する。
 モータ6の駆動を行うときは、アクセル用のスイッチング手段37を閉とし、回生ブレーキ用のスイッチング手段39を開とする。これによりバッテリ19の電流が、インバータ31およびモータ6へ流れてバッテリ19へ戻る。回生制動を行うときは、インバータ31を回生接続形態とすると共に、アクセル用のスイッチング手段37を開とし、回生ブレーキ用のスイッチング手段39を開とする。モータ6で発電した電流は、第1のダイオード38を介してバッテリ19へ流れ、回生制動がなされる。このとき、回生ブレーキ調整用のスイッチング手段39を細かく繰り返して開閉させて電流の導通期間を調整することによって、すなわち時比を調整することによって、モータ6で発生する制動力の大きさを調整する。
 短絡ブレーキ回路34は、前記正側回路35と負側回路36との間に、短絡ブレーキ用のスイッチング手段42と電力消費用の抵抗43との直列回路を接続して構成される。電力消費用の抵抗43には可変抵抗を用いている。なお、前記正側回路35と負側回路36に、回生制動と短絡制動の切換用のスイッチング手段45を設けても良い。
 短絡制動を行わせるときは、インバータ31を回生接続形態とすると共に、短絡ブレーキ用のスイッチング手段42を閉、回生ブレーキ用のスイッチング手段39を開とする。これにより、モータ6で発電した電流が、電力消費用の抵抗43を介して短絡して流れ、モータ6により制動力が発生する。抵抗43は可変抵抗であり、抵抗値を調整することでモータ6に発生する制動力が変わる。このとき、回生制動・短絡制動の切換用のスイッチング手段45が閉であると、回生制動も同時に行われることになるが、バッテリ19が満充電の場合は、短絡制動だけが行われる。そのため、上記切換用のスイッチング手段45は必ずしも設けなくても良いが、スイッチング手段45を開としておくと、短絡制動のみが行われることになり、可変抵抗43の抵抗値の調節による制動力の調整が容易に行われる。
 ブレーキ制御手段24は、制動指令分配手段となるブレーキ指令手段46と、摩擦ブレーキ制御手段47、回生ブレーキ制御手段48、および短絡ブレーキ制御手段49とを有し、この他にロック判定手段50、回生制動可否判定手段51、および制御形式切換手段52を有する。ロック判定手段50、回生ブレーキ制御手段48、および短絡ブレーキ制御手段49は、アンチロックブレーキ制御システム53を構成する。
 また、回生ブレーキ制御手段48と回生ブレーキ回路33とで回生ブレーキ手段54が構成され、短絡ブレーキ制御手段49と短絡ブレーキ回路34とで短絡ブレーキ手段55が構成される。
 ブレーキ指令手段46は、ブレーキ操作手段17が出力する制動指令に応じて、その制動指令量をブレーキ指令手段46、摩擦ブレーキ制御手段47、回生ブレーキ制御手段48、および短絡ブレーキ制御手段49に配分して指令する手段であり、基本的には回生ブレーキ制御手段48に、ブレーキ操作手段17が出力する制動指令の指令量を全て回生ブレーキ制御手段48へ与え、定められた条件に合う場合に摩擦ブレーキ制御手段47へ、ブレーキ操作手段17が出力する制動指令の一部の指令量、または全ての指令量を摩擦ブレーキ制御手段47に与える。ブレーキ指令手段46は、ブレーキ操作手段17が出力する制動指令の他に、車両が危険検出等によって自動停止を行わせる自動停止制御手段(図示せず)を有する場合は、その自動定停止御手段が出力する制動指令についても、ブレーキ操作手段17の場合と同様に前記配分を行う。
 摩擦ブレーキ制御手段47は、ブレーキ指令手段46から与えられた制動指令の指令量を、各摩擦ブレーキ9に配分して与える手段である。摩擦ブレーキ制御手段47は、各摩擦ブレーキ9による制動力を、車輪がロックしない上限値以下に制限する機能を備える。具体的には、摩擦ブレーキ制御手段47は、上限規制手段47aに設定された値によって各摩擦ブレーキ9の制動力の上限値を規制する。上限規制手段47aに、設計等により車輪がロックしない値であると定めた値を記憶させておく。なお、摩擦ブレーキ制御手段47は、メインのECUとは独立して設けられた専用のECUであっても良いが、この実施形態では、専用のECUがある場合は、メインのECUとその他の専用のECUとを含めてECU21として説明する。
 ロック判定手段50は、スリップ率算手段62によって算出された車輪のスリップ率およびこのスリップ率の変化率のいずれか一方または両方から、車輪がロック傾向にあると判定する。スリップ率算手段62は、車速と車輪回転数から車輪のスリップ率を算出する。車速は、各車輪回転数から車速を算出する車速算出手段61から得る。車輪回転数は、車輪用軸受(図示せず)等に設けられた回転検出手段から得る。前記車輪ロックに対する急制動判定値は、設計によって適宜の値に定められる。
 回生ブレーキ制御手段48は、ブレーキ指令手段46から回生ブレーキ制御手段48に制動指令が与えられると、回生ブレーキ回路33の各スイッチング手段37,39を前記回生の開閉状態に切り換える手段である。回生ブレーキ制御手段48に、回生制動アンチロック制御手段48aが設けられている。
 回生制動アンチロック制御手段48aは、前記ロック判定手段50により車輪がロック傾向であると判定された場合に、前記回生ブレーキ手段54による回生制動を、前記制動指令値に応じた回生制動トルクより小さく、かつ車輪がロックしないように回生制動トルクを制御する。
 回生制動可否判定手段51は、回生ブレーキ手段54による定められた回生制動が不可であることを判定する手段である。回生制動可否判定手段51は、回生制動が不可であると判定した結果を制動形式切換手段52に与える。制動形式切換手段52は、回生制動が不可であるとの判定結果に応答して、回生ブレーキ回路33のスイッチング手段39を閉とし、またはさらに回生制動・短絡制動の切換用のスイッチング手段45を開くことなどにより、短絡ブレーキ回路34による短絡制動を行わせる。
 短絡ブレーキ制御手段49は、短絡ブレーキ回路34の電力消費用の可変抵抗43の抵抗値を変化させることによって、短絡ブレーキ手段55による制動力を調整する。
 前記回生制動可否判定手段51は、例えばバッテリ残量監視手段56によってバッテリ残量を監視し、閾値以上であると回生制動が不可であると判定する。
 この構成によると、アンチロックブレーキ動作を行う急制動時にも、回生ブレーキ手段54による回生制動を行うため、運動エネルギーの回収が効率良く行える。また、摩擦ブレーキ9と比較して回生ブレーキ手段54の制動力はリニアに制御可能であり応答性も良いことから、目標とするスリップ率近辺でのブレーキトルク制御が可能となり、車両の運動性能、つまり制動性能を向上させることが可能となる。さらに、摩擦ブレーキ手段9を細かく制御する必要がないため、従来の摩擦ブレーキ手段の代表である油圧ブレーキでは必要であった複雑な油圧制御機器が不要となり、摩擦ブレーキ9自体の小型化(制動力小化)と併せて、車両全体の重量、バネ下の重量、およびコストを低減する効果が期待できる。なお、上記の「目標とするスリップ率」は、タイヤロックが生じない最大の制動力が得られるスリップ率である。
 回生ブレーキ手段54は、バッテリ残量が多いなどの理由によって回生トルクが十分に得られないときがある。しかし、短絡ブレーキ手段55を設けたため、回生ブレーキ手段54が十分に機能しない場合にも、摩擦ブレーキ9によらずにモータ6による制動力確保が図れ、摩擦ブレーキ9の小型化が図れる。
 短絡ブレーキ手段55の電力消費用の抵抗43は可変抵抗としたため、その抵抗値の変化によって短絡制動の制動力を増減させることができる。このように可変抵抗43を設けることで、短絡ブレーキ手段55によっても制動力を細かく制御でき、摩擦ブレーキ9と比較して応答性も良く、このため目標とするスリップ率近辺でのブレーキトルク制御が可能となり、車両の運動性能、つまり制動性能を向上させることが可能となる。
 前記回生制動可否判定手段51は、バッテリ残量を監視し、バッテリ残量に応じて回生制動が不可であると判定するものであるが、回生制動が行えない要因は殆どがバッテリ残量であるため、バッテリ残量の監視のみで回生制動の可否の判定を行っても支障がなく、またその判定が適切に行える。
 この実施形態では、自動車が摩擦ブレーキ9を有し、この摩擦ブレーキ9による制動力を、車輪がロックしない上限値以下に制限している。一般の制動時、特に走行停止させるときの制動等のために、回生制動や短絡制動のみでは確実性が満足できず、摩擦ブレーキ9を省略することはできない。しかし、摩擦ブレーキ9を設けた場合に、この摩擦ブレーキ9による制動力を、車輪2がロックしない上限値以下に制限しておくことで、摩擦ブレーキ9の効き過ぎによる車輪ロックが回避できる。摩擦ブレーキ9による制動力を制限しても、回生ブレーキ手段54、あるいは短絡ブレーキ手段55と併用することで、制動力不足になることを回避できる。
 前記モータ6は、この実施形態ではインホイールモータ装置8を構成しており、インホイールモータ装置8ではバネ下重量が重くなり、その軽量化が走行性の向上のために求められている。そのため、この実施形態におけるアンチロックブレーキ動作時にも回生制動させることで摩擦ブレーキ9を小型化できることが、バネ下重量の軽量化につながり、摩擦ブレーキ9の小型化による軽量化の効果が、より一層効果的に発揮される。
 なお、上記実施形態では、モータ6がインホイールモータ装置8を構成する場合につき説明したが、この発明は、例えば図4に示すように、モータ6が車台(図示せず)上に設置されて車輪2に対して駆動伝達系57を介して車輪2に駆動伝達する形式の車両にも適用することができる。駆動伝達系57は、例えば駆動シャフトの両端に等速ジョイント58を設けたもの等である。
 また、この発明は、走行駆動源したモータのみを搭載した電気自動車に限らず、エンジンとモータとを搭載したハイブリッド車においても適用でき、モータ駆動で走行するときに、このアンチロックブレーキ制御システムの機能の効果が発揮される。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
1…車体
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ装置
9…摩擦ブレーキ
17…ブレーキ操作手段
19…バッテリ
21…ECU
22…インバータ装置
24…ブレーキ制御手段
31…インバータ
32…回生ブレーキ回路
33…短絡ブレーキ回路
37…アクセル用のスイッチング手段
39…回生ブレーキ調整用のスイッチング手段
41…平滑回路
42…短絡ブレーキ用のスイッチング手段
43…電力消費用の抵抗
45…回生制動と短絡制動の切換用のスイッチング手段
46…ブレーキ指令手段
47…摩擦ブレーキ制御手段
48…回生ブレーキ制御手段
48a…回生制動アンチロック制御手段
49…短絡ブレーキ制御手段
50…ロック判定手段
51…回生制動可否判定手段
52…制御形式切換手段
54…回生ブレーキ手段
55…短絡ブレーキ手段
61…車速算出手段
62…スリップ率算出手段

Claims (6)

  1.  左右の駆動輪を個別に駆動するモータと、ブレーキ指令手段の制動指令値に応じた回生制動トルクを前記各モータに生じさせる回生ブレーキ手段と、各車輪回転数から車速を算出する手段と、前記車速と車輪回転数から車輪のスリップ率を算出する手段と、車輪のスリップ率およびこのスリップ率の変化率のいずれか一方または両方から、車輪がロック傾向にあると判定するロック判定手段とを備えたモータ搭載自動車であって、
     前記ロック判定手段により車輪がロック傾向であると判定された場合に、前記回生ブレーキ手段による回生制動を、前記制動指令値に応じた回生制動トルクより小さく、かつ車輪がロックしないように回生制動トルクを制御する回生制動アンチロック制御手段を設けたモータ搭載自動車のアンチロックブレーキ制御システム。
  2.  請求項1において、前記回生ブレーキ手段による定められた回生制動が不可であることを判定する回生制動可否判定手段と、回生制動が不可であると判定された場合に、前記モータの駆動回路を短絡させてこのモータに制動力を発生させる短絡ブレーキ手段とを設けたモータ搭載自動車のアンチロックブレーキ制御システム。
  3.  請求項2において、前記短絡ブレーキ手段における前記モータの短絡電流を流す短絡用回路に可変抵抗を設け、前記短絡ブレーキ手段の作用中には、前記可変抵抗の抵抗値の変化によって制動力を増減させる短絡ブレーキ制御手段を設けたモータ搭載自動車のアンチロックブレーキ制御システム。
  4.  請求項2または請求項3において、前記回生制動可否判定手段が、バッテリ残量を監視し、バッテリ残量に応じて回生制動が不可であると判定するモータ搭載自動車のアンチロックブレーキ制御システム。
  5.  請求項1ないし請求項4のいずれか1項において、前記自動車が摩擦ブレーキを有し、この摩擦ブレーキによる制動力を、車輪がロックしない上限値以下に制限したモータ搭載自動車のアンチロックブレーキ制御システム。
  6.  請求項1ないし請求項5のいずれか1項において、前記ブレーキ指令手段は、運転者が操作するブレーキ操作手段の出力する制動指令値を前記各モータへの制動指令値および摩擦ブレーキの制動指令値として分配して回生ブレーキ手段に与える制動指令分配手段であるモータ搭載自動車のアンチロックブレーキ制御システム。
PCT/JP2013/076658 2012-10-11 2013-10-01 モータ搭載自動車のアンチロックブレーキ制御システム WO2014057838A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-225615 2012-10-11
JP2012225615A JP2014079099A (ja) 2012-10-11 2012-10-11 モータ搭載自動車のアンチロックブレーキ制御システム

Publications (1)

Publication Number Publication Date
WO2014057838A1 true WO2014057838A1 (ja) 2014-04-17

Family

ID=50477305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076658 WO2014057838A1 (ja) 2012-10-11 2013-10-01 モータ搭載自動車のアンチロックブレーキ制御システム

Country Status (2)

Country Link
JP (1) JP2014079099A (ja)
WO (1) WO2014057838A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194290B2 (ja) * 2014-08-08 2017-09-06 本田技研工業株式会社 車両用制動システム
JP6325944B2 (ja) * 2014-08-22 2018-05-16 本田技研工業株式会社 車両用ブレーキシステム
WO2016042668A1 (ja) * 2014-09-19 2016-03-24 株式会社安川電機 車両用ブレーキシステム、車両
JP6547396B2 (ja) * 2015-04-30 2019-07-24 いすゞ自動車株式会社 ハイブリッド車両及びハイブリッド車両の制御方法
JP2019054559A (ja) * 2016-01-20 2019-04-04 ヤマハ発動機株式会社 ビークル
CN108725254B (zh) * 2017-04-18 2021-11-16 湖南中车时代电动汽车股份有限公司 一种控制电动汽车驱动防滑和制动防抱死的方法及系统
CN109808501B (zh) * 2017-11-22 2022-08-02 河南森源重工有限公司 一种电动汽车制动能量回收的方法及其系统
JP7353733B2 (ja) * 2018-05-07 2023-10-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 液圧制御ユニット
CN110654356B (zh) * 2018-06-28 2021-09-21 比亚迪股份有限公司 制动电机的控制方法和装置,车辆
CN111731105B (zh) * 2019-03-25 2021-09-14 长城汽车股份有限公司 车辆防抱死能量回收控制方法及装置
JP7211330B2 (ja) 2019-10-23 2023-01-24 トヨタ自動車株式会社 制動制御装置
US11654875B2 (en) 2020-01-21 2023-05-23 Ford Global Technologies, Llc Regenerative braking and anti-lock braking control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322803A (ja) * 1997-05-12 1998-12-04 Toyota Motor Corp 車両用制動装置
JP2007062448A (ja) * 2005-08-29 2007-03-15 Advics:Kk 車両用ブレーキ装置
JP2010207053A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 電動車両のモータ制御装置
WO2012128102A1 (ja) * 2011-03-18 2012-09-27 Ntn株式会社 モータ駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322803A (ja) * 1997-05-12 1998-12-04 Toyota Motor Corp 車両用制動装置
JP2007062448A (ja) * 2005-08-29 2007-03-15 Advics:Kk 車両用ブレーキ装置
JP2010207053A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 電動車両のモータ制御装置
WO2012128102A1 (ja) * 2011-03-18 2012-09-27 Ntn株式会社 モータ駆動装置

Also Published As

Publication number Publication date
JP2014079099A (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
WO2014057838A1 (ja) モータ搭載自動車のアンチロックブレーキ制御システム
US10654369B2 (en) Motor vehicle accessory to increase power supply and reduce fuel requirements
CN102325675B (zh) 用于车辆的防抱死刹车系统
JP4631477B2 (ja) 車両の回生制動制御装置
JP4576434B2 (ja) 車両の左右輪差動トルク発生装置
US8395335B2 (en) Method and system for eliminating fuel consumption during dynamic braking of electric drive machines
JP5840464B2 (ja) 電気自動車
US8857542B2 (en) Method and apparatus to eliminate fuel use for electric drive machines during trolley operation
CN101767535A (zh) 独立四驱电动汽车的驱动/制动系统及方法
AU2012348038A1 (en) Method and apparatus to eliminate fuel use for electric drive machines during trolley operation
KR20180026179A (ko) Ecm 시스템의 페일세이프 장치 및 그 방법
JP2006197756A (ja) 車両の回生制動制御装置
JP4710299B2 (ja) 車両のモータトラクション制御装置
KR101541711B1 (ko) 차량 및 그것의 제동 제어 방법
JP4569266B2 (ja) 車両のモータトラクション制御装置
Baumann et al. A two-wheel driven power train for improved safety and efficiency in electric motorbikes
CN104494462B (zh) 电动汽车驱动电机控制方法
JP4765877B2 (ja) 車両のモータトラクション制御装置
JP4182944B2 (ja) 車両のモータトラクション制御装置
KR102318189B1 (ko) 원격제어가 가능한 브레이크 시스템
JP2011088492A (ja) ハイブリッド車両のトラクション制御装置
CN115107732A (zh) 用于在速度控制期间检测意外加速的车辆监测策略
JP2006136174A (ja) 車両のモータトラクション制御装置
JP2013158200A (ja) パッシブトルクスプリット4輪駆動車
JP2000274270A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845101

Country of ref document: EP

Kind code of ref document: A1