WO2014057200A1 - Fabrication d'un vitrage feuillete muni d'un conducteur electrique - Google Patents

Fabrication d'un vitrage feuillete muni d'un conducteur electrique Download PDF

Info

Publication number
WO2014057200A1
WO2014057200A1 PCT/FR2013/052383 FR2013052383W WO2014057200A1 WO 2014057200 A1 WO2014057200 A1 WO 2014057200A1 FR 2013052383 W FR2013052383 W FR 2013052383W WO 2014057200 A1 WO2014057200 A1 WO 2014057200A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cooling
sheets
controlled cooling
sheet
Prior art date
Application number
PCT/FR2013/052383
Other languages
English (en)
Inventor
Alexandre HENNION
Philippe Frebourg
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP13789849.0A priority Critical patent/EP2906422B1/fr
Priority to CN201380003247.2A priority patent/CN103874579B/zh
Priority to JP2015536202A priority patent/JP6441805B2/ja
Priority to CA2886822A priority patent/CA2886822A1/fr
Priority to EA201590712A priority patent/EA028695B1/ru
Priority to US14/435,006 priority patent/US9616649B2/en
Priority to ES13789849.0T priority patent/ES2587914T3/es
Priority to BR112015006777-8A priority patent/BR112015006777B1/pt
Priority to MX2015004508A priority patent/MX351203B/es
Priority to KR1020157009021A priority patent/KR102164023B1/ko
Publication of WO2014057200A1 publication Critical patent/WO2014057200A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • B32B37/182Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only one or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10376Laminated safety glass or glazing containing metal wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/1099After-treatment of the layered product, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/08Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the cooling method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/0413Stresses, e.g. patterns, values or formulae for flat or bent glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles

Definitions

  • the invention relates to a method of manufacturing a laminated glazing unit comprising an electrical conductor between two of its glass sheets and comprising the cutting of an orifice or notch of one of its glass sheets for the passage of the conductor .
  • a laminated glazing unit comprises two sheets of glass (i.e. at least two glass sheets) and an interlayer sheet of polymeric material placed between the two sheets of glass.
  • the surfaces of the glass sheets are usually numbered with a laminated glazing unit comprising two sheets of glass 1 to 4 starting from the external surface of the glazing intended to be turned towards the outside of the vehicle and ending with the external surface of the glazing intended to be turned towards the inside of the vehicle.
  • the laminated windows considered in the present application are most often used as a windshield or roof of a motor vehicle but can also be mounted in the rear window or side window of a motor vehicle.
  • the electrical conductor passes between two sheets of glass and is either inside the interlayer of polymeric material or between this interlayer and one of the glass sheets of the laminated glazing.
  • the driver enters the laminated glazing in a first place and leaves a second location, at least one of these locations corresponding to a recessed area of the hole or notch type made in a sheet of laminated glazing.
  • a sheet of laminated glazing made according to the invention comprises a hole.
  • the invention is more particularly intended for producing a laminated glazing unit, a first sheet of which comprises a hole for the passage of a first end of an electrical conductor, the second sheet comprising no recessed area with respect to the hole of the first leaf.
  • the second end of the electrical conductor generally emerges from the laminated glazing by the outer edge of the laminated glazing, a notch possibly being made at this location to facilitate the passage of this second end.
  • This notch is generally made in the same sheet as that comprising the hole, the second sheet may then include no recessed area.
  • the hole is made according to the invention (application of local controlled cooling) while the notch can be made according to the invention or not.
  • the recessed area is made on one of the sheets before assembly.
  • the recessed area has an edge compressive stress reinforcing them mechanically.
  • a zone recess can also be performed on areas vis-à-vis the two glass sheets of the laminated glazing.
  • the glazings When they are used, the glazings are subjected to thermal or mechanical stresses, in particular when they are handled, to which they must resist in order to avoid breakage.
  • the windshields of a vehicle undergo mechanical forces at their periphery when mounted on a body, whether manually or via a robot.
  • the glazing In addition to the mechanical constraints, the glazing is subjected to thermal constraints during defrost cycles of the windshield. These stresses of thermal or mechanical origin, cause risks of breakage especially on the edges of the glazing.
  • compressive edge stresses are generated during the manufacture of the glazing. These edge constraints are known and specified in the specifications of the car manufacturers.
  • compressive stresses are preferably also generated around recessed portions. The reinforcement of the edge of the recessed portion makes this area more resistant to shocks and handling and also allows it to be used for attaching an accessory (antenna, etc.).
  • French Patent Application No. 1 159322 teaches a method for manufacturing a laminated glazing unit comprising at least two glass sheets and at least one intermediate layer of polymer material arranged between the sheets, the process comprising bending the sheets, cooling controlled sheets, assembling the glass sheets and the interlayer, said method comprising the following steps in the following order:
  • the controlled cooling comprising general controlled cooling and locally controlled cooling of an area including the cutting line, the Local controlled cooling being faster than general controlled cooling. Local controlled cooling produces edge stresses along the cutting line.
  • the glass sheets used in the context of the present invention may or may not be covered with one or more thin layers (as antireflection, antisolar, anti-abrasion, etc.).
  • a glass sheet comprises two main faces; it is the same for a laminated assembly.
  • laminated assembly may refer to the final laminated glazing.
  • an electrical conductor is in intimate contact with the spacer of polymeric material and passes through a recessed area which is a hole or notch.
  • the presence of edge compression stresses around the hole or notch is particularly important in this context.
  • the electrical conductor integrated in or against the intermediate sheet of polymer material increases slightly and locally the volume of material confined between the two sheets of glass. These will therefore slightly deform during the manufacture of the product, especially when the residual air is removed from between the glass sheets and the interlayer during the so-called "assembly" phase of the laminated glazing.
  • Constraints in glass products are generated when the glass is heated to a temperature from which it loses its behavior pure elastic and becomes slightly plastic, viscoelastic liquid type.
  • some areas are frozen before others. Due to thermal expansion, permanent compression and extension stresses occur within the sample as it cools.
  • the parts where the glass has frozen in the first place correspond to the parts where the compressive stresses are concentrated whereas the parts where the glass has frozen with delay concentrate the stress zones in extension.
  • edge stresses described in the present application are membrane stresses which can be defined at any point M of the material and for a given direction, such as the average of the stress field at this point and in this direction, the average being carried out in any the thickness of the sample.
  • the membrane stress component parallel to the edge is appropriate; the perpendicular component has a zero value.
  • any measurement method allowing a measurement of the average stresses along an edge and through the thickness of the sample is relevant.
  • the methods for measuring edge stresses use photoelasticity techniques. The two methods described in ASTM standards listed below allow the measurement of edge stress values:
  • the compressive stress values are determined between 0.1 and 2 mm of an edge and preferably between 0.5 and 1 mm of an edge.
  • the different glass sheets to be assembled to form a laminated glazing are curved together in the paired state (i.e. forming a pair so that a main surface of a sheet is contact with a main surface of the other sheet, the two sheets being generally superimposed on one another to form a stack), so that they both take the same curvatures during thermal bending.
  • the fact of simultaneously bending the paired sheets simultaneously to the paired state has the advantage that the different glass sheets may be of different thickness and color. Indeed, the two leaves will take the same curves despite their differences.
  • the drilling creating the recessed area can be performed before bending or bending on one or both of the glass sheets.
  • the optical quality of the final glazing is generally better when the drilling is carried out after bending, since the latter has not been influenced by the recessed area near it.
  • the drilling is performed on the two sheets of glass, it can be made so that the recessed areas of the glass sheets are vis-à-vis or not vis-à-vis in the laminated glazing.
  • the choice of the drilling location depends on the intended purpose.
  • the invention relates to a method of manufacturing a curved laminated glazing unit comprising two glass sheets, an intermediate layer of polymer material arranged between the glass sheets, and an electrical conductor, said method comprising simultaneous thermal bending of the glass sheets to the paired state followed by their cooling then the assembly of the laminated glazing by gluing the glass sheets to the intermediate layer on either side thereof, said cooling comprising a controlled cooling of the glass sheets to the paired state, the controlled cooling comprising a general controlled cooling and a locally controlled cooling of a cutting zone, the local controlled cooling being faster than the general controlled cooling, a cutting of one of the glass sheets along a line of cutting in the cutting area to form a recessed area, the electrical conductor being placed between the glass sheets and leaving the laminated glazing through the recessed area.
  • the polymeric material is generally polyvinyl butyral more generally referred to as PVB by those skilled in the art.
  • the object of the invention is in particular to propose a method of manufacturing a laminated glazing unit, at least one of its glass sheets, or even the two sheets of glass, is provided throughout its thickness with an edge cut along a line of cutting before assembly of the laminated glass sheets, said edge having edge compressive stresses.
  • the cut edge along the cutting line determines the recessed area and has the shape of a hole or a notch in the outer edge of the glazing.
  • the method according to the invention guarantees compressive stresses of the cut edge at a uniform and sufficient intensity along this edge.
  • the method according to the invention is preferably applied to a notch having a depth of at least 0.5 cm in the edge of a glass sheet towards the inside of said glass sheet. .
  • the notch is made in one of the glass sheets, without hollowed area in the other glass sheet at the same location (vis-à-vis the notch).
  • a recessed portion in a glass sheet is a hole or a notch through its entire thickness.
  • a hole (synonymous with orifice) has a closed outline on itself entirely inside the main faces of the cut glass sheet.
  • a notch constitutes a discontinuity of the outer edge of the glass sheet to form an inwardly recessed portion of the major faces of the glass sheet. It is like an open hole in the edge of the glass sheet.
  • any recessed area of a glass sheet is through, that is to say through the entire thickness of said glass sheet.
  • the recessed area in particular an orifice, can be made in a first sheet of glass, whereas no recessed area is made in the second sheet of glass vis-à-vis the recessed area of the first sheet of glass (when the two sheets of glass are assembled to form the laminated glazing).
  • the intermediate layer is preferably not cut with respect to the recessed area of the first glass sheet, except where appropriate in a contour corresponding to that of the electrical conductor to pass through it.
  • An orifice in a glass sheet for the passage of the electrical conductor may have a diameter of between 3 and 80 mm.
  • the method of the invention provides various advantages including:
  • Local controlled cooling is an inhomogeneous cooling of the main faces. It can be applied on only one or both major surfaces of the stack of matched sheets subjected to cooling.
  • Local controlled cooling of the cutting area is faster than the general controlled cooling of the sheets. Local cooling is applied at the cutting line before or after the cutting itself. This local cooling zone covers the entire cutting line generally at least 1 mm on either side of this line. Local cooling can be expanded to a neighboring area that will not necessarily directly undergo the cutting tool. For example, if you want to make a hole a few centimeters in diameter in a glass sheet after performing local cooling, local cooling can be performed over the entire area corresponding to the hole (in fact a little larger than the hole), while the cutout will be exerted only according to the contour the hole.
  • Local controlled cooling is achieved by convection, conduction, radiation, or a combination of these means.
  • the general controlled cooling is exerted directly after the bending.
  • the local controlled cooling is exerted between the beginning and the end of the general cooling.
  • the local controlled cooling is generally exerted in a cooling chamber preferably at the beginning of the general cooling of the glazing in the cooling chamber. Alternatively, it can be started at the end of the bending chamber.
  • a controlled cooling chamber exerts general controlled cooling. If the local controlled cooling is also exercised, this room is also equipped with the means necessary for the application of this local controlled cooling.
  • This means may for example be a nozzle blowing locally on one side of the paired glass sheets. It can also be a cold metal element (cooled internally by air for example) coming into contact with the local area to cool more quickly.
  • the bending and cooling are both performed on the two glass sheets arranged in a paired manner.
  • the two paired leaves can circulate in at least one bending chamber and then in at least one controlled cooling chamber, localized controlled cooling possibly starting in the last bending chamber or in a controlled cooling chamber.
  • the bending of the glass sheets can in particular be achieved by pressing and / or suction at the bending temperature, as taught by WO02064519, WO2006072721, WO2004 / 087590. This bending is performed on the glass sheets to be then assembled, so paired.
  • the two matched glass sheets can circulate in prebending chambers by gravity, then in a pressing and / or suction chamber and finally in controlled cooling chambers, the local controlled cooling starting possibly at the end of the bending or in the cooling chambers. Controlled cooling starts at a temperature above 580 ° C (usually between 650 and 580 ° C) and continues at least until the temperature drops to or below 520 ° C. It is carried out in the cooling chambers, possibly beginning in the last bending chamber.
  • the bending of the paired glass sheets is made without organic material between them taking into account the temperature required for thermal bending.
  • the thermal bending is performed before assembly with the interlayer of polymer material since the latter begins to degrade from 160 ° C with the formation of bubbles. If it were cooled from such a low temperature, it would also be impossible to generate permanent compressive edge stresses in the glass.
  • the bending is not necessarily carried out in a room, the bending tools can be in the open air.
  • the beginning of the general controlled cooling is controlled with a speed in the range of 0.3 to 8 ° C / second, and more preferably 0.3 to 2 ° C / second, at least up to that the temperature of the glass (between 650 and 580 ° C at the end of the bending) reaches 520 ° C. It is therefore to achieve this controlled cooling at least between 580 and 520 ° C.
  • the local controlled cooling is exerted on one side opposite one of the faces of the two matched glass sheets, or on two opposite sides of the two paired glass sheets and vis-à-vis.
  • the local controlled cooling is applied against the surface of a single sheet of glass, it produces its effects throughout the thickness of the two matched glass sheets, since the thickness of the paired sheets is not too great of course, and that the local cooling is of sufficient duration and intensity.
  • Controlled local cooling can be exerted on one side of the stack of sheets provided that local cooling is controlled faster, throughout the thickness, than the general controlled cooling. It can also be exercised on both sides vis-à-vis.
  • the local controlled cooling of the cutting zone, applied to the cutting line (before or after cutting), is sufficient in duration and intensity so that the edge stresses of the recessed area after cutting are greater than 4 MPa and preferably greater than 8 MPa. Routine tests make this easy.
  • the general controlled cooling of the glazing can in known manner use a heat transfer such as convection, radiation, conduction, or a combination of these three modes of heat transfer.
  • Compression zone means the area that has undergone local controlled cooling.
  • the differentiated and localized cooling of the glass sheets to obtain the zones of compression can be achieved by any means, for example by convection, or radiation, or conduction, or a combination of these means.
  • This local differentiated cooling consists in cooling more rapidly on the cut line or intended to be cut.
  • Convection consists of blowing cold air (air at a temperature below that of glass, typically below 450 ° C, and generally at room temperature) directed at the areas that are to be compressed.
  • cold air air at a temperature below that of glass, typically below 450 ° C, and generally at room temperature
  • the temperature of the injected air and / or the blowing intensity will be adjusted.
  • the local controlled cooling can be achieved by local blowing of cooler air than the ambient air surrounding the paired glass sheets. Conduction is intended to bring into contact the parts of the glass that we want to cool more rapidly, with a colder material than the surface of the glass.
  • the radiation heat exchange will allow a greater local cooling of the area vis-à-vis the material.
  • the differentiated and localized cooling of the glass sheets to obtain the zones of compression can also go through the use of caches which limit the cooling rate outside the areas where it is desired to establish compression stresses. Outside the caches are thus created zones, which will correspond to the zones of compression, for which the cooling of the glass is more important.
  • An example of a cover is an insulating material, in particular fibrous, of surface equivalent to that of the glazing and in which openings are made. The material is placed close to the hot glass during its cooling phase. Placed in a cold environment, the parts of the glazing facing the openings cool down faster than those hidden.
  • Coating materials that increase or decrease the surface emissivity of glass can therefore be used.
  • a less emissive coating may be used than the surface of the glass and placed against the glass surface outside the desired compression zones, these zones will then cool more slowly than the zones. to put in compression.
  • materials that increase or decrease the emissivity of the glass surface can be used to easily coat the surface of the glass. In this case they are preferably nontoxic, temperature resistant, and readily dispersible or water soluble.
  • the beginning of the general cooling is preferably controlled between 0.3 and 2 ° C per second from the end of bending temperature, between 580 ° C and 650 ° C, at the bending outlet until the temperature of the glass reaches 520 ° C or lower. Below 520 ° C, convective cooling of the entire glazing can be used to speed up the process. Below 480 ° C, it is unnecessary to continue to exercise local controlled cooling, the entire glazing can then undergo the same general cooling. The glass leaves a possible cooling chamber in general at less than 300 ° C.
  • the local controlled cooling is exerted by means of an air blast nozzle whose one end has a section of shape adapted to blow on the line to be cut, and is affixed against at least one of the sheets of glass at the line to be cut.
  • the orifice of the nozzle may have the shape of a disc or a crown.
  • the diameter of the disk is slightly greater than that of the circle to be cut and it is the whole surface inside the circle that will undergo local controlled cooling.
  • a crown nozzle one blows on a crown zone on the circle and not inside this crown.
  • the local controlled cooling is obtained by the application against or in the vicinity of the glass surface of a temporary coating material, in particular of the tissue type, increasing or decreasing the thermal radiation to or from the glass, and provided with at least one opening, this opening corresponding to the zone comprising the cutting line or to the remaining part of the glazing (zone not including the cutting line) according to the type of the material.
  • the differentiated cooling is here obtained by varying the difference in thermal radiation emitted by the glass as a result of the application. temporary coating material.
  • local controlled cooling is achieved by applying a contact material against the glass surface at a temperature below that of the glass, the contacting areas comprising the cutting line. It may be a cold metal element such as steel covered with a metal fabric to prevent thermal shock. This cold metal element can be traversed by a cooling fluid (air or water) to keep it cold.
  • the differential cooling (local cooling faster than the general cooling next to the area to be cut) is here obtained by adjusting the heat transfer differential by conduction emitted by the glass as a result of the application of the contact material.
  • the recessed area may be intended to accommodate a functional part (such as an antenna, a brake light, a camera, etc.) attached to one or both glass sheets assembled.
  • a functional part such as an antenna, a brake light, a camera, etc.
  • the laminated glazing can be shaped at the edge of the cutout of the recessed area, for example bevelled on at least one of the sheets, or on both sheets.
  • the cutting step is obtained by cutting means known as a saw (including a diamond hole saw), a milling machine (in particular diamond), a water jet. Depending on the cutting means chosen, one can cut a glass sheet or the stack of two paired glass sheets on one or both sides of said stack.
  • a saw including a diamond hole saw
  • a milling machine in particular diamond
  • a water jet Depending on the cutting means chosen, one can cut a glass sheet or the stack of two paired glass sheets on one or both sides of said stack.
  • the general controlled cooling generates compression stresses on the outer edges of the glass sheets, forming a peripheral belt of compressive stresses. They are generally between 4 and 20 MPa.
  • the edge compressive stress belt generally has a width on each main face of the glazing from 0.1 to 3 cm from the outer edge.
  • the laminated glazing according to the invention may be symmetrical with respect to a median longitudinal plane passing through the middle of its transverse front band and the middle of its rear transverse band (the "longitudinal” direction corresponding to the direction of movement of the vehicle, the direction “Transversal” being perpendicular), especially in the case of a windshield or a rear window.
  • This plan also passes through its center of gravity.
  • the controlled cooling (general and local) is exerted while paired glass sheets have just been bent at their bending temperature.
  • the entire cooling process is usually done directly from the bending temperature. Outside areas undergoing controlled local cooling, the temperature of the glass drops generally bending temperature up to room temperature without ever rising (monotonous drop in temperature).
  • the cutting can be performed on the flat glass sheet before thermal bending, or after cooling on the curved glass sheet.
  • the cutting is done before bending while the leaves are flat and at room temperature, after bending and cooling.
  • the cutting is generally performed at room temperature.
  • the cut must cross the two sheets in the same place, it is not essential to disassemble the sheets for this cut. However, it is possible to divide the leaves and make the cut on each of them independently. If one of the leaves is to be cut in one place while the other is not to be cut in the same place, the leaves are de-pared and the cutting is done on the sheet to be cut. Each sheet may have to be cut at a different location from the final glazing, in which case local controlled cooling is carried out for each of these areas while the leaves are paired, then, after cooling, the leaves are de-pared for individual cutting. the desired location if it was not done before bending.
  • the electrical conductor leaving by a recessed area (or two recessed areas).
  • the electrical conductor leaving by a recessed area (or two recessed areas).
  • the polymeric material serving as interlayer between the two glass sheets may be cut at the location corresponding to the recessed area, before assembly of the laminated glazing, especially if the recessed area is of small size, as of area less than 1 cm 2 . However, this is not necessary if only one sheet is cut in one place while the other is not in the same place. In this case, it is even better to leave the spacer in place to ensure good resistance to impact glazing.
  • the electrical conductor is at the interface between the uncut glass and the interlayer of polymeric material, it is possible to make an orifice in said interlayer in order to pass the electrical conductor through said orifice. This orifice should be just large enough to let the electrical conductor pass. It therefore has substantially the size of the electrical conductor.
  • the recessed area in particular an orifice, is made in a first sheet of glass, no recessed area being made in the second sheet of glass vis-à-vis the recessed area of the first sheet of glass (once the laminated glazing assembled), the interlayer being uncut vis-à-vis the recessed area of the first glass sheet except in a contour corresponding to that of the electrical conductor passing through it.
  • the electrical conductor can be placed in the interlayer or glued on the insert before assembly of the laminated glazing. If the electrical conductor is stuck on the spacer, the polymer material will flow during assembly to at least partially encapsulate the electrical conductor.
  • the electrical conductor can also be glued on a sheet of glass before assembly of the laminated glazing. In this case, during assembly, the polymer material will flow to at least partially encapsulate the electrical conductor.
  • the electric glazing may be provided with one to ten or more electrical conductors.
  • the different electrical conductors equipping the laminated glazing can be arranged parallel to each other.
  • the electrical conductor may for example be a thin individual cable of conductive metal, in particular of cuprous metal. It can be naked or surrounded by an insulator.
  • the electrical conductor may be a web containing a plurality of metallic electrical cables. This sheet may be made of a polymeric material in which several parallel metallic cables are embedded. The web is prepared before being applied to the interlayer or to one of the glass sheets.
  • the electrical conductor (bare cable, insulated cable, layer, etc.) may have a thickness (perpendicular to the glazing) in the range from 0.05 to 1 mm, in particular from 0.08 to 0.5 mm.
  • the electrical conductor may comprise several conductive metal cables, for example 2 or 3 or 4 or 5 or 6 cables, or more.
  • FIG. 1 represents a sectional view of a laminated glazing unit that can be made according to the invention.
  • the laminated glazing comprises a first glass sheet 1, a second glass sheet 2 and an interlayer film 3 made of thermoplastic polymer, disposed between the two sheets of glass.
  • the interlayer film is for example a PVB film, standard or with acoustic damping properties.
  • the first sheet of glass includes a first through hole 4.
  • the first sheet of glass 1 may be positioned on the inner side as well as the outer side of the vehicle, depending on the application.
  • the interlayer film may comprise a through hole coinciding with the first through hole 4 of the first glass sheet, as shown in FIG. 4.
  • the laminated glazing unit also comprises at least one conducting wire 5 (FIG. 1) which is embedded in the interlayer film 3 or which is arranged between the interlayer film 3 and the first glass sheet 1, or which is arranged between the interlayer film 3 and the second glass sheet 2. This gives it a protection that is integrated in the laminated glazing.
  • the conducting wire 5 is disposed between the interlayer film 3 and the second glass sheet 2
  • the interlayer film 3 may be provided with a through hole which coincides with the first hole 4 of the first glass sheet 1 to allow the passage of the conductive wire 5 through the interlayer film 3 and through the first glass sheet 1.
  • the lead wire 5 has an end 50 which is intended to be connected to an accessory 6, for example an electrical accessory, preferably via a connector (7 in FIGS. 2, 4 and 5).
  • the other end 51 of the conductor wire 5 is intended to be connected to a power supply and / or an electrical device on the vehicle, preferably via a connector (9 in FIGS. 4 and 5).
  • One end 50 of the conductive wire 5 leaves the laminated glazing through the first through hole 4.
  • the first through hole 4 is for example circular, for ease of manufacture. It must be as small as possible to allow the laminated glazing to meet the standard R43 and large enough to allow the passage of the conductor wire, or even the connector, through it. Thus, preferably, the first through hole 4 has a diameter of between 3 and 80 mm.
  • the connector 7, 9 protects the end of the conductor wire 5 during transport and handling.
  • the connector 7, 9 is preferably as compact as possible while being mechanically stable and being able to ensure a reliable electrical connection in a vehicle environment, in particular by resisting various potential aggressions such as vibrations, large temperature variations, oxidizing atmosphere, etc.
  • the son or son 5 are embedded in a plastic film forming a thin and flexible web.
  • the plastic film can be transparent (which makes it possible to have a very discreet product), black (which avoids adding black enamel to the glass to hide the conductive threads), or color (which can to improve the appearance of the finished product, once integrated into a glazing).
  • the use of such a web further provides ease of handling during assembly.
  • the sheet is preferably equipped with connectors at each of its ends before assembly of the glazing.
  • the web may be coated with PVB or an adhesive to allow its adhesion to the first sheet of glass.
  • the tablecloth must be thin enough not to put in permanent bending the glass during assembly and thus to avoid any breakage of the glass at the edge of the hole or holes through which the sheet.
  • the glass has edge stresses at the periphery of the exit holes of the ends of the conductive wires.
  • the accessory 6 to which is intended to be connected or the conductive son 5 can be fixed on the laminated glazing, as shown in Figure 1, or near the laminated glazing, for example on a mirror support.
  • the accessory 6 is for example a rain or humidity sensor, a brightness sensor, a camera, an antenna, a lighting device, a fan or a GPS positioning device.
  • the conductive wire 5 allows the power supply of the accessory 6 and / or the supply of information transmitted by the accessory 6 to the electrical device of the vehicle.
  • the conductive wire 5 is for example copper.
  • the one or more leads 5 may be shielded.
  • first sheet of glass 1 may comprise as many through holes as conductive son and the end 50 of each conductive wire 5 can then leave the laminated glazing through a first through hole dedicated to the first sheet of glass.
  • FIGS. 2a, 2b, 2c are a detail view, according to three respective embodiments, of the laminated glazing unit according to the invention with several conductive wires.
  • the first glass sheet 1 comprises a single first through hole 4, of circular shape, through which the ends 50 of the conductive son 5 intended to be connected to an accessory.
  • the first sheet of glass 1 comprises a single first through-hole 4, in the form of a slot, through which the ends 50 of the conductive wires 5 intended to be connected to an accessory exit.
  • the first sheet of glass 1 comprises three first through-holes 4, of circular shape, through which each ends the end 50 of a conductive wire 5 intended to be connected to an accessory.
  • the circular through holes can be made by cutting with a hole saw.
  • the slot-shaped through-holes may be made by waterjet drilling or machining with a diamond bur.
  • the end 50 or of the conductive son 5 intended to be connected to the accessory 6 can be inserted into a connector 7, as shown in Figures 2a to 2c, which facilitates the connection to the accessory 6, particularly when this takes place well after the manufacture of the laminated glazing.
  • Figure 3 is a detail view of the edge of the laminated glazing according to one embodiment of the invention.
  • the first glass sheet 1 may comprise a second through hole or a notch 8 at the glazing edge, as shown in FIG. 3.
  • This notch 8 allows the other end 51 of the conductive wire 5 to be pulled out for connection to a power supply. electrical and / or electrical device on the vehicle.
  • This other end 51 can be inserted into a connector 9 ( Figures 4 and 5) for ease of connection later to the vehicle.
  • the second through-hole of the first glass sheet 1 may be made on the edge of the first glass sheet 1, for example in the form of a notch 8, as shown in FIG. 3, or near the edge of the first sheet of glass 1.
  • the end 51 of the conductive wire 5 leaves the laminated glazing unit by the edge of the laminated glazing unit, as represented in FIG.
  • the laminated glazing unit further comprises at least one opaque enamel band coinciding with the one or more conductor wires, hiding the view or the conductive wires from outside and / or inside the vehicle.
  • the conductive wires embedded in the interlayer film can be very thin (a few tens to a few hundred microns) and the conductor or the sheet containing the conductor having a fine width (a few millimeters to about fifteen millimeters), the strip of Enamel can be much thinner than when a chute is used.
  • the enamel band is also much more a chute, which significantly improves the field of vision and visual comfort.
  • the laminated glazing may also include an accessory 6 attached to the laminated glazing.
  • the accessory 6 may be fixed on the edges of the first through hole or holes 4 of the first glass sheet 1, for example by snapping or gluing, or near the first through hole or holes
  • the accessory may also be housed inside the through hole 4 of the first glass sheet 1 and be fixed, for example by gluing, to the second glass sheet 2, in front 2 or 3 of the laminated glazing following the positioning of the first and second glass sheets in the laminated glazing.
  • the second glass sheet may also comprise a through-hole (15, FIG. 5).
  • the first through hole 4 of the first glass sheet 1 and the through hole 15 of the second glass sheet 2 preferably have substantially the same diameter and face each other.
  • the interlayer film is then also provided with a through hole which coincides with the first holes 4, 15 of the first and second glass sheets 1, 2, as shown in FIG. 5.
  • Figures 4 and 5 are sectional views, according to two respective embodiments, a laminated glazing according to the invention with an antenna accessory mounted on the glazing. These figures are exemplary embodiments of a laminated glazing unit comprising an antenna.
  • An antenna base 10 is fixed on the laminated glazing unit by fixing means 13, for example glue, via support means 12.
  • the antenna base 1 1 comprises a connector 1 1 to which the conductive wire is connected.
  • the first glass sheet 1 is turned towards the outside of the vehicle.
  • the watertightness is ensured by the fastening means 13 which completely surround the through holes.
  • the second glass sheet also comprises a through-hole 15.
  • the through-hole 15 coincides with the first through-hole 4 and further includes a notch 16 to facilitate the passage of the conducting wire 5.
  • Figure 6 illustrates a schematic device 3 adapted to blow on one side of the superimposed sheets. At this stage, the leaves have already been curved, the orifice provided in one of them having not yet been pierced. The sheets are represented during cooling immediately following the bending operation. Nozzle 3 exerts local controlled cooling during general controlled cooling. Here, air is blown at room temperature over a disk-shaped area for subsequent recessing on the sheet shown in the upper position. The blowing time is between 40 and 90 seconds approximately.
  • the blowing time is independent of the surface to be cooled in a differentiated manner but on the other hand depends on the thickness of the glass.
  • the 40 seconds of local cooling are established for sheets of thickness each of 2.1 mm.
  • the blowing nozzle has a shape termination adapted to the geometric shape of the local zone of compressive stresses to be obtained. It may especially have the shape of a square or rectangular outline.
  • the nozzle 3 comprises a central air supply duct 30, an axisymmetrical duct 31, around the central supply duct 30.
  • the duct 31 opens in the end of the nozzle on a cylindrical bell 33 whose wall consists of a flexible felt made of metal fibers.
  • the free end 34 of the bell is placed against the surface of the glass.
  • Cold air is supplied via the supply duct 30 to the bell 34 to be released against the surface of the glass to be cooled and then exhaust via the duct 31. After cooling, the two leaves are separated (separated). The recess is then made by cutting one of the glass sheets in a manner known to those skilled in the art. Then, are performed the assembly steps with the interlayer, degassing the assembly and autoclaving, the metal conductor having been judiciously placed between the two sheets of glass. This treatment leads to a bond between the interlayer and the glass sheets on each side of the interlayer.
  • Figure 7 illustrates the same device as that of Figure 6, except that the glass sheet in the upper position has been previously drilled individually while it was flat and not yet curved. The two leaves were then matched and then bulged simultaneously in the superimposed state.
  • the local controlled cooling was applied as shown in Fig. 7 during the general controlled cooling applied to all the sheets.
  • the blowing time is between about 10 and 90 seconds. It can be seen that the blowing zone applying the local controlled cooling is larger than the orifice itself.
  • FIG. 8 illustrates a schematic device 70 adapted for conduction cooling a local area by a main face of a stack of two superimposed sheets 73 and 74.
  • the leaves have already been curved, the orifice provided in one of them not yet pierced.
  • the sheets are represented during cooling immediately following the bending operation.
  • Local controlled cooling is exerted during general controlled cooling.
  • a metal pipe 71 closed at its lower end, is traversed by cold air as indicated by the arrows.
  • the contact with the glass between the metal pipe and the glass is softened with a felt 72 refractory fibers to reduce the risk of breakage by thermal shock. This leads to the formation of a local zone of compressive stresses at the point of contact between the felt 72 and the glass.
  • the two sheets 73 and 74 are separated (the two sheets are separated).
  • the recess is then produced by cutting one of the sheets in a manner known to those skilled in the art. Then, are performed the assembly steps with the interlayer, degassing the assembly and autoclaving, the metal conductor having been judiciously placed between the two sheets of glass. This treatment leads to a bond between the interlayer and the glass sheets on each side of the interlayer.
  • FIG. 9 illustrates a laminated glazing unit that can be made according to the invention.
  • the laminated glazing comprises a first glass sheet 80, a second glass sheet 81 and an interlayer film 82 of thermoplastic polymer (PVB) disposed between the two glass sheets.
  • the first glass sheet 80 comprises a through hole 83, while at the same place the other glass sheet is not pierced.
  • the laminated glazing comprises a conductive wire 85 which is disposed between the interlayer film 82 and the second glass sheet 81. This gives him integrated protection in the laminated glazing.
  • the interlayer film 82 is provided with a through orifice 86 which opens into the interior of the hole 83 of the first sheet of glass 80 to allow the passage of the conductor wire 85 through the intermediate film 82 and through the first glass sheet 80.
  • this orifice 86 has a contour corresponding to that of the conductive wire.
  • the lead 85 has one end intended to be connected to an accessory 87, the other end emerging from the outer edge glazing 88.
  • the other end of the lead 85 is intended to be connected to a power supply and / or a electrical device on the vehicle, preferably via a connector.
  • the through hole 83 is for example circular, for ease of manufacture. It must be small enough to allow the laminated glazing to meet the R43 standard and large enough to allow the passage of the conductor wire, or even the connector, through.
  • the first hole 83 has a diameter of between 3 and 80 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un vitrage feuilleté bombé comprenant deux feuilles de verre, une couche intercalaire en matériau polymère agencée entre les feuilles de verre, et un conducteur électrique, ledit procédé comprenant le bombage thermique simultané des feuilles de verre à l'état apparié suivi de leur refroidissement puis de l'assemblage du vitrage feuilleté par collage des feuilles de verre à la couche intercalaire de part et d'autre de celle-ci, ledit refroidissement comprenant un refroidissement contrôlé des feuilles de verre à l'état apparié, le refroidissement contrôlé comprenant un refroidissement contrôlé général et un refroidissement contrôlé local d'une zone de découpe, le refroidissement contrôlé local étant plus rapide que le refroidissement contrôlé général,une découpe de l'une des feuilles de verre selon une ligne de découpe dans la zone de découpe pour former une zone évidée, le conducteur électrique étant placé entre les feuilles de verre et sortant du vitrage feuilleté par la zone évidée.

Description

FABRICATION D'UN VITRAGE FEUILLETE MUNI D'UN CONDUCTEUR
ELECTRIQUE
L'invention concerne un procédé de fabrication d'un vitrage feuilleté comprenant un conducteur électrique entre deux de ses feuilles de verre et comprenant la découpe d'un orifice ou d'une encoche d'une de ses feuilles de verre pour le passage du conducteur.
Un vitrage feuilleté comprend deux feuilles de verre (c'est-à-dire au moins deux feuilles de verre) et une feuille intercalaire en matériau polymère placée entre les deux feuilles de verre.
Selon l'état de la technique, les éléments nécessitant une connexion électrique (que ce soit pour assurer une fonction d'alimentation en énergie ou de communication) et rapportés sur la face intérieure du vitrage doivent être reliés aux faisceaux du véhicule par un câble disposé le long de la face intérieure du vitrage. Les solutions existantes pour cacher et protéger les câbles d'alimentation et de communication, bien connues dans le cas des pare-brise au niveau du rétroviseur (capteur de pluie, de luminosité, caméras...) consistent à :
- mettre un aplat d'émail noir en recouvrement de la zone en face 2 ou 4 du vitrage feuilleté pour protéger la vue depuis l'extérieur du véhicule ;
- installer un boîtier et une goulotte en plastique pour recouvrir le dispositif électrique ainsi que les conducteurs électriques à l'intérieur du véhicule.
Rappelons que l'on numérote habituellement les surfaces des feuilles de verre d'un vitrage feuilleté comprenant deux feuilles de verre de 1 à 4 en partant de la surface externe du vitrage destinée à être tournée vers l'extérieur du véhicule et en finissant par la surface externe du vitrage destinée à être tournée vers l'intérieur du véhicule.
L'aspect des vitrages automobile actuels est fortement affecté dès que les éléments actifs doivent être positionnés à l'intérieur du vitrage. En effet, si l'habillage des dispositifs électriques est acceptable lorsqu'ils sont cachés par le rétroviseur intérieur, ils deviennent problématiques aux autres endroits. En effet, les caches et goulottes sont relativement volumineux et masquent une partie de la zone de vision du vitrage; de plus, ils sont en plastique et en saillie et donnent un aspect peu valorisant à l'ensemble. La suppression de la goulotte en plastique ainsi que de tout objet encombrant la vue de l'intérieur du véhicule permettrait d'acquérir un niveau esthétique plus élevé correspondant plus aux exigences des constructeurs automobile.
On a maintenant eu l'idée d'utiliser un vitrage feuilleté pour acheminer un conducteur électrique d'un endroit à l'autre du véhicule sans nécessité d'utiliser une goulotte nécessairement en saillie à l'intérieur du véhicule. Les vitrages feuilletés considérés dans la présente demande font le plus souvent office de pare-brise ou de toit de véhicule automobile mais peuvent également être montés en lunette arrière ou vitre latérale de véhicule automobile. Le conducteur électrique passe entre deux feuilles de verre et il est soit à l'intérieur de l'intercalaire en matériau polymère soit entre cet intercalaire et l'une des feuilles de verre du vitrage feuilleté. Le conducteur rentre dans le vitrage feuilleté par un premier endroit et en ressort par un deuxième endroit, l'un au moins de ces endroits correspondant à une zone évidée du type trou ou encoche réalisée dans une feuille du vitrage feuilleté. Généralement, une feuille du vitrage feuilleté réalisé selon l'invention comprend un trou. L'invention est plus particulièrement destinée à la réalisation d'un vitrage feuilleté dont une première feuille comprend un trou pour le passage d'une première extrémité d'un conducteur électrique, la deuxième feuille ne comprenant aucune zone évidée vis-à-vis du trou de la première feuille. Dans ce cas, la deuxième extrémité du conducteur électrique ressort généralement du vitrage feuilleté par le bord extérieur du vitrage feuilleté, une encoche pouvant éventuellement être réalisée à cet endroit pour faciliter le passage de cette seconde extrémité. Cette encoche est généralement réalisée dans la même feuille que celle comprenant le trou, la seconde feuille pouvant alors ne comprendre aucune zone évidée. Le trou est réalisé selon l'invention (application d'un refroidissement contrôlé local) alors que l'encoche peut être réalisée selon l'invention ou non.
Selon le procédé de l'invention, la zone évidée est réalisée sur l'une des feuilles avant assemblage. La zone évidée présente bien une contrainte de compression de bord renforçant ceux-ci sur le plan mécanique. Une zone évidée peut également être réalisée sur des zones en vis-à-vis des deux feuilles de verre du vitrage feuilleté.
Lors de leur utilisation, les vitrages sont soumis à des sollicitations thermiques ou mécaniques, en particulier lors de leur manipulation, auxquelles ils doivent résister pour éviter leur casse. Par exemple, les pare-brise d'un véhicule subissent des efforts mécaniques en leur périphérie lors de leur montage sur une carrosserie, que ce soit manuellement ou via un robot. Outre les contraintes mécaniques, le vitrage est soumis à des contraintes d'origine thermique lors des cycles de dégivrage du pare-brise. Ces sollicitations d'origine thermique ou mécanique, occasionnent des risques de casse notamment sur les bords du vitrage. Afin de garantir une bonne résistance mécanique du vitrage, des contraintes de bords en compression sont générées lors de la fabrication du vitrage. Ces contraintes de bords sont connues et spécifiées dans le cahier des charges des constructeurs automobile. Outre les bords extérieurs d'un vitrage présentant des contraintes de compression, des contraintes de compression sont de préférence également générées en pourtour de parties évidées. Le renforcement du bord de la partie évidée rend cette zone plus résistante aux chocs ainsi qu'aux manipulations et permet en outre de l'utiliser pour la fixation d'un accessoire (antenne, etc).
La demande de brevet français n°1 159322 enseigne un procédé de fabrication d'un vitrage feuilleté comprenant au moins deux feuilles de verre et au moins une couche intercalaire en matériau polymère agencée entre les feuilles, le procédé comprenant le bombage des feuilles, le refroidissement contrôlé des feuilles, l'assemblage des feuilles de verre et de la couche intercalaire, ledit procédé comprenant les étapes suivantes dans l'ordre suivant:
• bombage des feuilles de verre,
• refroidissement contrôlé des feuilles de verre,
• formation d'un assemblage feuilleté comprenant les feuilles de verre et la couche intercalaire,
· découpe de l'assemblage feuilleté dans toute son épaisseur selon une ligne sur une de ses faces principales,
le refroidissement contrôlé comprenant un refroidissement contrôlé général et un refroidissement contrôlé local d'une zone comprenant la ligne de découpe, le refroidissement contrôlé local étant plus rapide que le refroidissement contrôlé général. Le refroidissement contrôlé local produit des contraintes de bord le long de la ligne de découpe.
Les feuilles de verre utilisés dans le cadre de la présente invention peuvent être recouvertes ou non d'une ou plusieurs couches minces (comme anti-reflet, antisolaire, anti-abrasion, etc).
Une feuille de verre comprend deux faces principales ; il en est de même pour un assemblage feuilleté. L'expression « assemblage feuilleté » peut désigner le vitrage feuilleté final.
Dans le cadre de la présente invention, un conducteur électrique est en contact intime avec l'intercalaire en matériau polymère et passe au travers d'une zone évidée qui est un trou ou une encoche. La présence de contraintes de compression de bord au pourtour du trou ou de l'encoche est particulièrement importante dans ce contexte. En effet, le conducteur électrique intégré à ou contre la feuille intercalaire en matériau polymère augmente légèrement et localement le volume de matière confiné entre les deux feuilles de verre. Ces dernières vont donc légèrement se déformer lors de la fabrication du produit, plus particulièrement lorsque l'air résiduel est retiré d'entre les feuilles de verres et la feuille intercalaire durant la phase dite « d'assemblage » du vitrage feuilleté. Cette légère déformation locale des deux feuilles de verre au voisinage du conducteur pourra être atténuée lors des étapes de fabrication où le vitrage est chauffé (comme lors du passage à l'autoclave), le polymère se ramollissant alors et étant susceptible de fluer. Néanmoins, il reste toujours une déformation résiduelle des deux feuilles qui génère des contraintes de déformations locales le long du conducteur électrique et plus spécifiquement au niveau des bords de l'orifice ou de l'encoche où ce conducteur ressort d'entre les feuilles de verre. Les contraintes résiduelles de compression au bord de cet orifice ou encoche doivent donc être suffisantes pour résister aux contraintes mécaniques ou thermomécaniques de chargement externe décrites plus haut mais aussi aux contraintes induites par les déformations permanentes des deux feuilles de verre dues à la présence du conducteur.
Les contraintes dans les produits verriers sont générées lorsque le verre est chauffé à une température à partir de laquelle il perd son comportement élastique pur et devient légèrement plastique, du type liquide viscoélastique. Lors du refroidissement et en fonction de l'inhomogénéité thermique initiale de l'échantillon et/ou de l'hétérogénéité du refroidissement lui-même, certaines zones se figent avant d'autres. A cause de la dilatation thermique, des contraintes permanentes de compression et d'extension apparaissent au sein de l'échantillon lors de son refroidissement. Qualitativement, les parties où le verre s'est figé en premier lieu correspondent aux parties où se concentrent les contraintes de compression alors que les parties où le verre s'est figé avec retard concentrent les zones de contraintes en extension. Les contraintes de bord décrites dans la présente demande sont des contraintes de membrane qui peuvent se définir en tout point M du matériau et pour une direction donnée, comme la moyenne du champ contrainte en ce point et selon cette direction, la moyenne étant effectuée dans toute l'épaisseur de l'échantillon. En bord d'échantillon, seule la composante de contraintes de membrane parallèle au bord est appropriée ; la composante perpendiculaire a une valeur nulle. Aussi toute méthode de mesure permettant une mesure des contraintes moyennes le long d'un bord et à travers l'épaisseur de l'échantillon est pertinente. Les méthodes de mesure des contraintes de bord utilisent les techniques de photoélasticimétrie. Les deux méthodes décrites dans des normes ASTM citées ci-dessous permettent de mesurer les valeurs de contraintes de bord :
la méthode utilisant le compensateur de Babinet et décrite dans la norme ASTM C1279 - 2009 - 01 , procédure B; les mesures effectuées avec des appareils du commerce comme le Sharples modèle S-67 commercialisé par la société Sharples Stress Engineers, Preston, UK et utilisant un compensateur dit de Sénarmont ou Jessop-Friedel. Le principe de la mesure est décrit dans la norme ASTM F218 - 2005 - 01 ; Dans le cadre de la présente demande, les valeurs de contraintes en compression sont déterminées par la méthode décrite dans la norme ASTM F218 - 2005 - 01 .
Généralement les valeurs de contrainte en compression sont déterminées entre 0,1 et 2 mm d'un bord et de préférence entre 0,5 et 1 mm d'un bord. Selon l'invention, les différentes feuilles de verre devant être assemblées pour former un vitrage feuilleté sont bombées ensemble à l'état appariées (c'est-à-dire formant une paire de sorte qu'une surface principale d'une feuille est en contact avec une surface principale de l'autre feuille, les deux feuilles étant généralement superposées l'une sur l'autre pour former un empilement), de façon à ce qu'elles prennent bien toute deux les mêmes courbures lors du bombage thermique. Le fait de bomber simultanément à l'état apparié les deux feuilles destinées à être assemblées présente l'avantage de ce que les différentes feuilles de verre peuvent être d'épaisseur et de teinte éventuellement différents. En effet, les deux feuilles vont bien prendre les mêmes courbures malgré leurs différences.
Selon l'invention, le perçage créant la zone évidée peut être réalisé avant bombage ou après bombage sur l'une des feuilles de verre ou sur les deux. La qualité optique du vitrage final est généralement meilleure lorsque le perçage est réalisé après bombage, car ce dernier n'a pas été influencé par la zone évidée à proximité de celle-ci. Pour le cas où le perçage est réalisé sur les deux feuilles de verre, il peut être réalisé de sorte que les zones évidées des feuilles de verre soient en vis-à-vis ou non en vis-à-vis dans le vitrage feuilleté. Le choix de l'endroit de perçage dépend de la finalité visée.
L'invention concerne un procédé de fabrication d'un vitrage feuilleté bombé comprenant deux feuilles de verre, une couche intercalaire en matériau polymère agencée entre les feuilles de verre, et un conducteur électrique, ledit procédé comprenant le bombage thermique simultané des feuilles de verre à l'état apparié suivi de leur refroidissement puis de l'assemblage du vitrage feuilleté par collage des feuilles de verre à la couche intercalaire de part et d'autre de celle-ci, ledit refroidissement comprenant un refroidissement contrôlé des feuilles de verre à l'état apparié, le refroidissement contrôlé comprenant un refroidissement contrôlé général et un refroidissement contrôlé local d'une zone de découpe, le refroidissement contrôlé local étant plus rapide que le refroidissement contrôlé général, une découpe de l'une des feuilles de verre selon une ligne de découpe dans la zone de découpe pour former une zone évidée, le conducteur électrique étant placé entre les feuilles de verre et sortant du vitrage feuilleté par la zone évidée. Le matériau polymère est généralement un polyvinyle de butyral plus généralement appelé PVB par l'homme du métier.
L'invention a notamment pour but de proposer un procédé de fabrication d'un vitrage feuilleté dont au moins une de ses feuilles de verre, voire les deux feuilles de verre, est doté dans toute son épaisseur d'un bord découpé selon une ligne de découpe, avant assemblage des feuilles de verre en feuilleté, ledit bord présentant des contraintes de compression de bord. Le bord découpé selon la ligne de découpe détermine la zone évidée et a la forme d'un orifice ou d'une encoche dans le bord extérieur du vitrage. Le procédé selon l'invention garantit des contraintes de compression du bord découpé selon une intensité homogène et suffisante le long de ce bord. Dans le cas d'une encoche, le procédé selon l'invention est de préférence appliqué à une encoche ayant une profondeur d'au moins 0,5 cm dans le bord d'une feuille de verre vers l'intérieur de ladite feuille de verre. Généralement, l'encoche est réalisée dans une seule des feuilles de verre, sans zone évidée dans l'autre feuille de verre au même endroit (vis-à-vis de l'encoche).
Selon l'invention, une partie évidée dans une feuille de verre est un trou ou une encoche traversant l'intégralité de son épaisseur. Un trou (synonyme de orifice) présente un contour fermé sur lui-même entièrement à l'intérieur des faces principales de la feuille de verre découpée. Une encoche constitue une discontinuité du bord externe de la feuille de verre pour former une partie évidée vers l'intérieur des faces principales de la feuille de verre. C'est en quelque sorte un trou ouvert dans le bord de la feuille de verre. Dans le cadre de l'invention, toute zone évidée d'une feuille de verre est traversante c'est-à- dire traverse toute l'épaisseur de ladite feuille de verre.
La zone évidée, notamment un orifice, peut être réalisée dans une première feuille de verre, alors qu'aucune zone évidée n'est réalisée dans la deuxième feuille de verre vis-à-vis de la zone évidée de la première feuille de verre (lorsque les deux feuilles de verre sont assemblées pour former le vitrage feuilleté). Dans ce cas, la couche intercalaire est de préférence non-découpée vis-à-vis de la zone évidée de la première feuille de verre, sauf le cas échéant selon un contour correspondant à celui du conducteur électrique devant passer à travers elle. Un orifice dans une feuille de verre pour le passage du conducteur électrique peut avoir un diamètre compris entre 3 et 80 mm.
Dans le cadre de la présente demande, on distingue les deux types de refroidissements suivants appliqués aux feuilles de verre lorsqu'elles sont à l'état juxtaposés:
a) le « refroidissement contrôlé général » qui permet de générer des contraintes en compression sur les bords externes des feuilles afin d'obtenir une résistance mécanique suffisante au niveau de ces bords. Ce refroidissement est exercé globalement à l'ensemble du vitrage ; ce type de refroidissement global est bien connu de l'homme du métier ; b) selon l'invention, un « refroidissement contrôlé local » est exercé, afin de générer des contraintes en compressions sur les bords de la ligne déjà découpée ou qui sera découpée. Ce refroidissement contrôlé local est plus rapide que le refroidissement général.
Ainsi, le procédé de l'invention procure divers avantages notamment :
- bonne compatibilité de forme entre les deux feuilles de verre du fait de leur bombage simultané à l'état apparié, ce qui garantit une meilleure qualité d'assemblage,
- existence de contraintes de compression sur les bords créés par la découpe du fait du refroidissement contrôlé local plus intense sur la zone recouvrant la ligne prévue pour la découpe ;
Le refroidissement contrôlé local constitue un refroidissement inhomogène des faces principales. Il peut être appliqué sur une seule ou les deux surfaces principales de l'empilement des feuilles appariées soumises au refroidissement.
Le refroidissement contrôlé local de la zone de découpe (comprenant la ligne de découpe) est plus rapide que le refroidissement contrôlé général des feuilles. Le refroidissement local est appliqué au niveau de la ligne de découpe, avant ou après la découpe elle-même. Cette zone de refroidissement local recouvre toute la ligne de découpe généralement d'au moins 1 mm de part et d'autre de cette ligne. Le refroidissement local peut être élargit à une zone voisine qui ne subira pas nécessairement directement l'outil de découpe. A titre d'exemple, si l'on souhaite réaliser un trou de quelques centimètres de diamètre dans une feuille de verre après avoir réalisé le refroidissement local, on peut réaliser le refroidissement local sur toute la surface correspondant au trou (en fait de façon un peu plus étendue que le trou), alors que la découpe ne sera exercée que selon le contour du trou. Dans le cas d'un trou de relativement grande dimension (trou dans lequel un cylindre de 50 mm de diamètre pourrait passer), il est préférable d'exercer le refroidissement contrôlé local seulement sur la ligne destinée à être découpée ou déjà découpée. Il est en effet inutile d'exercer ce refroidissement contrôlé local sur toute la surface évidée ou destinée à être évidée, si celle-ci est grande.
Le refroidissement contrôlé local est obtenu par convection, conduction, rayonnement, ou une combinaison de ces moyens.
Le refroidissement contrôlé général est exercé directement après le bombage. Généralement, le refroidissement contrôlé local est exercé entre le début et la fin du refroidissement général. Cependant, il n'est pas exclu de commencer le refroidissement local vers la fin du bombage alors que le refroidissement général n'a pas commencé. Ainsi, le refroidissement contrôlé local est généralement exercé dans une chambre de refroidissement de préférence au début du refroidissement général du vitrage dans la chambre de refroidissement. En variante, il peut être commencé en fin de chambre de bombage.
Une chambre de refroidissement contrôlé exerce le refroidissement contrôlé général. Si le refroidissement contrôlé local y est aussi exercé, cette chambre est de plus équipée des moyens nécessaires à l'application de ce refroidissement contrôlé local. Ce moyen peut par exemple être une buse venant souffler localement sur une face des feuilles de verre appariées. Il peut aussi s'agir d'un élément métallique froid (refroidi intérieurement par de l'air par exemple) venant en contact avec la zone locale à refroidir plus rapidement.
Avantageusement, le bombage et le refroidissement sont tous deux réalisés sur les deux feuilles de verre agencées de façon appariées. Notamment, les deux feuilles appariées peuvent circuler dans au moins une chambre de bombage puis dans au moins une chambre de refroidissement contrôlé, le refroidissement contrôlé localisé débutant éventuellement dans la dernière chambre de bombage ou dans une chambre de refroidissement contrôlé.
Le bombage des feuilles de verre peut notamment être réalisé par pressage et/ou aspiration à la température de bombage, comme enseigné par les WO02064519, WO2006072721 , WO2004/087590. Ce bombage est réalisé sur les feuilles de verre devant être ensuite assemblées, de façon appariées. Notamment, les deux feuilles de verre appariées peuvent circuler dans des chambres de prébombage par gravité, puis dans une chambre de pressage et/ou aspiration et enfin dans des chambres de refroidissement contrôlé, le refroidissement contrôlé local débutant éventuellement en fin de bombage ou dans les chambres de refroidissement. Le refroidissement contrôlé commence à une température supérieure à 580°C (généralement entre 650 et 580°C) et se poursuit au moins jusqu'à ce que la température baisse à 520°C, voire en- dessous de cette température. Il est réalisé dans les chambres de refroidissement, en commençant éventuellement préalablement dans la dernière chambre de bombage.
Le bombage des feuilles de verre appariées est réalisé sans matière organique entre elles compte tenu de la température nécessaire au bombage thermique. Le bombage thermique est réalisé avant assemblage avec l'intercalaire en matériau polymère puisque ce dernier commence à se dégrader à partir de 160°C avec formation de bulles. Si l'on refroidissait à partir d'une telle basse température, il serait par ailleurs impossible de générer des contraintes permanentes de compression de bord dans le verre.
Le bombage n'est pas nécessairement exercé dans une chambre, les outils de bombage pouvant être à l'air libre.
De même, les refroidissements contrôlés général et local ne sont pas nécessairement exercés dans une chambre.
De préférence, le début du refroidissement contrôlé général est contrôlé avec une vitesse comprise dans le domaine de 0,3 à 8°C/seconde, et de manière encore préférée de 0,3 à 2°C/seconde, au moins jusqu'à ce que la température du verre (entre 650 et 580°C en sortie du bombage) atteigne 520°C. Il s'agit donc de réaliser ce refroidissement contrôlé au moins entre 580 et 520°C. Le refroidissement contrôlé local est exercé d'un seul côté en regard de l'une des faces des deux feuilles de verre appariées, ou bien des deux côtés opposés des deux feuilles de verre appariées et en vis-à-vis. Si le refroidissement contrôlé local est appliqué contre la surface d'une seule feuille de verre, il produit ses effets dans toute l'épaisseur des deux feuilles de verre appariées, dans la mesure où l'épaisseur des feuilles appariées n'est pas trop importante, bien entendu, et que le refroidissement local soit de durée et d'intensité suffisante. Le refroidissement local contrôlé peut être exercé d'un seul côté de l'empilement des feuilles à condition de garantir un refroidissement local contrôlé plus rapide, dans toute l'épaisseur, que le refroidissement contrôlé général. Il peut aussi être exercé des deux côtés en vis-à-vis.
Le refroidissement contrôlé local de la zone de découpe, appliqué sur la ligne de découpe (avant ou après découpe), est suffisant en durée et en intensité pour que les contraintes de bord de la zone évidée après découpe soient supérieures à 4 MPa et de préférence supérieures à 8 MPa. Des tests de routine permettent aisément cette mise au point.
Le refroidissement contrôlé général du vitrage peut de manière connue utiliser un transfert thermique tel que la convection, rayonnement, conduction, ou une combinaison de ces trois modes de transfert de chaleur.
Dans la présente demande, on peut appeler « zone en compression » ou
« zone de compression » la zone ayant subi le refroidissement contrôlé local.
Le refroidissement différencié et localisé des feuilles de verre pour obtenir les zones de compression peut être réalisé par tous moyens, par exemple par convection, ou rayonnement, ou encore conduction, ou bien une combinaison de ces moyens. Ce refroidissement différencié local consiste à refroidir plus rapidement sur la ligne découpée ou destinée à être découpée.
La convection consiste à souffler de l'air froid (air à température inférieure à celle du verre, typiquement inférieure à 450 °C, et généralement à température ambiante) dirigé sur les zones que l'on veut mettre en compression. Suivant la vitesse de refroidissement moyenne du vitrage, seront ajustées la température de l'air injecté et/ou l'intensité du soufflage. Ainsi, le refroidissement contrôlé local peut-être réalisé par soufflage local d'air plus froid que l'air ambiant entourant les feuilles de verre à l'état apparié. La conduction vise à mettre en contact les parties du verre que l'on veut refroidir plus rapidement, avec un matériau plus froid que la surface du verre.
Concernant le rayonnement, on peut utiliser un matériau plus froid que l'on vient placer en regard avec le verre. L'échange thermique par rayonnement va permettre un refroidissement local plus important de la zone en vis-à-vis du matériau.
Le refroidissement différencié et localisé des feuilles de verre pour obtenir les zones de compression peut également passer par l'utilisation de caches qui limitent la vitesse de refroidissement en dehors des zones où l'on veut établir des contraintes en compression. En dehors des caches sont ainsi créées des zones, qui correspondront aux zones de compression, pour lesquelles le refroidissement du verre est plus important. Un exemple de cache est un matériau isolant, en particulier fibreux, de surface équivalente à celle du vitrage et dans lequel sont pratiquées des ouvertures. Le matériau est placé proche du verre chaud lors de sa phase de refroidissement. Placé dans une ambiance froide, les parties du vitrage se trouvant en regard des ouvertures se refroidissent plus rapidement que celles qui sont cachées.
On peut utiliser par conséquent des matériaux de revêtement qui augmentent ou diminuent l'émissivité du verre en surface.
On peut utiliser un revêtement plus émissif que la surface du verre et le mettre contre des zones de compression souhaitées, ces zones se refroidiront alors plus vite.
A l'inverse de l'exemple ci-dessus, on peut utiliser un revêtement moins émissif que la surface du verre et le mettre contre la surface du verre en dehors des zones de compression souhaitées, ces zones se refroidiront alors plus lentement que les zones à mettre en compression.
Comme matériaux qui augmentent ou diminuent l'émissivité du verre en surface, on peut utiliser des matériaux permettant de revêtir facilement la surface du verre. Dans ce cas, ils sont de préférence non toxiques, résistants à la température, et sont facilement dispersibles ou solubles dans l'eau.
Le début du refroidissement général est contrôlé préférentiellement entre 0,3 et 2°C par seconde depuis la température de fin de bombage, entre 580°C et 650°C, en sortie de bombage jusqu'à ce que la température du verre atteigne 520°C, voire plus bas. En dessous de 520°C, on peut exercer un refroidissement convectif de l'ensemble du vitrage afin d'accélérer le processus. En dessous de 480°C, il est inutile de continuer à exercer le refroidissement contrôlé local, l'intégralité du vitrage pouvant alors subir le même refroidissement général. Le verre sort d'une éventuelle chambre de refroidissement en général à moins de 300°C.
A titre d'exemple, le refroidissement contrôlé local est exercé au moyen d'une buse de soufflage d'air dont une extrémité présente une section de forme adaptée pour souffler sur la ligne à découper, et est apposée contre au moins une des feuilles de verre au niveau de la ligne à découper. Par exemple, si la ligne à découper a la forme d'un cercle, l'orifice de la buse peut avoir la forme d'un disque ou d'une couronne. Dans le cas d'un disque, le diamètre du disque est légèrement supérieur à celui du cercle à découper et c'est toute la surface à l'intérieur du cercle qui subira le refroidissement contrôlé local. Dans le cas d'une buse en couronne, on souffle sur une zone en couronne sur le cercle et pas à l'intérieur de cette couronne.
En variante ou de manière combinée, le refroidissement contrôlé local est obtenu par l'application contre ou au voisinage de la surface du verre d'un matériau de revêtement provisoire notamment du type tissu augmentant ou diminuant le rayonnement thermique vers ou émis par le verre, et pourvu d'au moins une ouverture, cette ouverture correspondant à la zone comprenant la ligne de découpe ou bien à la partie restante du vitrage (zone ne comprenant pas la ligne de découpe) selon le type du matériau. Dans ce cas, le refroidissement différencié (refroidissement local plus intense sur la ligne de découpe que le refroidissement général à côté de la ligne de découpe) est ici obtenu en jouant sur la différence de rayonnement thermique émis par le verre en conséquence de l'application du matériau de revêtement provisoire.
En variante ou de manière combinée, le refroidissement contrôlé local est obtenu par l'application contre la surface du verre d'un matériau de contact à la température inférieure à celle du verre, les zones en contact comprenant la ligne de découpe. Il peut s'agir d'un élément en métal froid comme en acier recouvert d'un tissu métallique pour éviter les chocs thermiques. Cet élément en métal froid peut être parcouru par un fluide de refroidissement (air ou eau) pour le maintenir froid. Le refroidissement différencié (refroidissement local plus rapide que le refroidissement général à côté de la zone à découper) est ici obtenu en jouant sur la différence de transfert thermique par conduction émis par le verre en conséquence de l'application du matériau de contact.
En plus du conducteur électrique, la zone évidée peut être destinée à accueillir une pièce fonctionnelle (comme une antenne, un feu stop, une caméra, etc ..) fixée à l'une ou aux deux feuilles de verre assemblées.
Le vitrage feuilleté peut être façonné en bord de la découpe de la zone évidée, par exemple chanfreiné sur au moins l'une des feuilles, ou sur les deux feuilles.
L'étape de découpe est obtenue par des moyens de découpe connus comme une scie (notamment une scie cloche diamantée), une fraiseuse (notamment diamantée), un jet d'eau. Selon le moyen de découpe choisi, on peut découper une feuille de verre ou l'empilement des deux feuilles de verre appariées d'un ou des deux côtés dudit empilement.
Le refroidissement contrôlé général génère des contraintes de compression sur les bords externes des feuilles de verre, formant une ceinture périphérique de contraintes de compression. Elles sont généralement comprises entre 4 et 20 MPa. La ceinture de contraintes de compression de bords présente généralement une largeur sur chaque face principale du vitrage de 0,1 à 3 cm à compter du bord extérieur.
Le vitrage feuilleté selon l'invention peut être symétrique par rapport à un plan longitudinal médian passant par le milieu de sa bande transversale avant et le milieu de sa bande transversale arrière (le sens « longitudinal » correspondant au sens de déplacement du véhicule, le sens « transversal » lui étant perpendiculaire), notamment dans le cas d'un pare-brise ou d'une lunette arrière. Ce plan passe aussi par son barycentre.
Le refroidissement contrôlé (général et local) est exercé alors que les feuilles de verre appariées viennent d'être bombées à leur température de bombage. Tout le processus de refroidissement est généralement réalisé directement à partir de la température de bombage. En dehors des zones subissant le refroidissement local contrôlé, la température du verre baisse généralement de la température de bombage jusqu'à la température ambiante sans jamais remonter (baisse monotone de la température).
La découpe peut être réalisée sur la feuille de verre plane avant son bombage thermique, ou après le refroidissement sur la feuille de verre bombée. La découpe est faite soit avant le bombage alors que les feuilles sont planes et à température ambiante, soit après le bombage et le refroidissement. La découpe est généralement réalisée à température ambiante.
Si la découpe doit traverser les deux feuilles au même endroit, il n'est pas indispensable de déparier les feuilles pour cette découpe. On peut néanmoins déparier les feuilles et réaliser la découpe sur chacune d'elles indépendamment. Si l'une des feuilles doit être découpée à un endroit alors que l'autre ne doit pas être découpée au même endroit, on déparie les feuilles et l'on procède à la découpe sur la feuille devant être découpée. Chaque feuille peut devoir être découpée à un endroit différent du vitrage final, auquel cas on procède à un refroidissement contrôlé local pour chacun de ces endroits alors que les feuilles sont appariées, puis, après refroidissement, on déparie les feuilles pour les découper chacune individuellement à l'endroit souhaité si cela n'a pas été fait avant le bombage.
Selon une première variante on peut procéder comme suit :
- préparation de deux feuilles de verre planes ; à ce stade, leur bord externe a été découpé mais elles n'ont pas encore de zone évidée ; puis
- découpe pour former une zone évidée sur une seule feuille ou sur les deux feuilles, au même endroit (feuilles appariées ou non) ou à des endroits différents ; puis
- bombage thermique des feuilles appariées ; puis
- refroidissement contrôlé général et, à chaque endroit découpé, refroidissement contrôlé local ; puis
- assemblage du vitrage feuilleté, le conducteur électrique sortant par une zone évidée (voire deux zones évidées).
Selon une seconde variante on peut procéder comme suit :
- préparation de deux feuilles de verre planes ; à ce stade, leur bord externe a été découpé mais elles n'ont pas encore de partie évidée ; puis
- bombage thermique des feuilles appariées ; puis - refroidissement contrôlé général et, à chaque endroit devant être découpé, refroidissement contrôlé local ; puis
- découpe à chaque endroit ayant subi le refroidissement contrôlé local, pour former une zone évidée sur une seule feuille ou sur les deux feuilles, au même endroit (feuilles appariées ou non) ou à des endroits différents ; puis
- assemblage du vitrage feuilleté, le conducteur électrique sortant par une zone évidée (voire deux zones évidées).
Quand on dit ci-dessus que les deux feuilles de verre ont été découpées « au même endroit », cela signifie que les zones évidées des deux feuilles sont en vis-à-vis dans l'assemblage feuilleté final.
Le matériau polymère jouant le rôle d'intercalaire entre les deux feuilles de verre peut être découpé à l'endroit correspondant à la zone évidée, avant assemblage du vitrage feuilleté, notamment si la zone évidée est de petite dimension, comme d'aire inférieure à 1 cm2. Cependant, ceci n'est pas nécessaire si une seule feuille est découpée en un endroit alors que l'autre ne l'est pas au même endroit. Dans ce cas, il est même préférable de laisser l'intercalaire en place afin d'assurer une bonne résistance à l'impact au vitrage. Dans le cas où le conducteur électrique est à l'interface entre le verre non découpé et l'intercalaire en matériau polymère, on peut réaliser un orifice dans ledit intercalaire afin de faire passer le conducteur électrique par ledit orifice. Cet orifice devrait être juste assez grand pour laisser passer le conducteur électrique. Il a donc sensiblement la taille du conducteur électrique. Dans ce cas d'espèce, la zone évidée, notamment un orifice, est réalisée dans une première feuille de verre, aucune zone évidée n'étant réalisée dans la deuxième feuille de verre vis-à-vis de la zone évidée de la première feuille de verre (une fois le vitrage feuilleté assemblé), la couche intercalaire étant non- découpé vis-à-vis de la zone évidée de la première feuille de verre sauf selon un contour correspondant à celui du conducteur électrique passant à travers elle.
Le conducteur électrique peut être placé dans l'intercalaire ou collé sur l'intercalaire avant assemblage du vitrage feuilleté. Si le conducteur électrique est collé sur l'intercalaire, le matériau polymère va fluer lors de l'assemblage pour encapsuler au moins partiellement le conducteur électrique. Le conducteur électrique peut également être collé sur une feuille de verre avant assemblage du vitrage feuilleté. Dans ce cas, lors de l'assemblage, le matériau polymère va fluer pour encapsuler au moins partiellement le conducteur électrique.
Le vitrage électrique peut être muni de un à dix conducteurs électriques, voire plus. Les différents conducteurs électriques équipant le vitrage feuilleté peuvent être disposés parallèlement entre eux.
Le conducteur électrique peut par exemple être un câble fin individuel en métal conducteur, notamment en métal cuivreux. Il peut être nu ou entouré d'un isolant. Le conducteur électrique peut être une nappe contenant une pluralité de câbles électriques métalliques. Cette nappe peut être en un matériau polymère dans lequel sont noyés plusieurs câbles métalliques parallèles. La nappe est préparée avant d'être appliquée à l'intercalaire ou à l'une des feuilles de verre. Le conducteur électrique (câble nu, câble isolé, nappe, etc) peut avoir une épaisseur (perpendiculairement au vitrage) dans le domaine allant de 0,05 à 1 mm, notamment de 0,08 à 0,5 mm. Le conducteur électrique peut comprendre plusieurs câbles métalliques conducteurs, par exemple 2 ou 3 ou 4 ou 5 ou 6 câbles, voire plus.
La figure 1 représente une vue en coupe d'un vitrage feuilleté pouvant être réalisé selon l'invention. Le vitrage feuilleté comprend une première feuille de verre 1 , une deuxième feuille de verre 2 et un film intercalaire 3 en polymère thermoplastique, disposé entre les deux feuilles de verre. Le film intercalaire est par exemple un film de PVB, standard ou avec des propriétés d'amortissement acoustique. La première feuille de verre comprend un premier trou traversant 4. La première feuille de verre 1 peut aussi bien être positionnée du côté interne que du côté externe du véhicule, selon les applications. De plus, le film intercalaire peut comprendre un trou traversant coïncidant avec le premier trou traversant 4 de la première feuille de verre, comme représenté sur la figure 4.
Le vitrage feuilleté comprend également au moins un fil conducteur 5 (figure 1 ) qui est noyé dans le film intercalaire 3 ou qui est disposé entre le film intercalaire 3 et la première feuille de verre 1 , ou encore qui est disposé entre le film intercalaire 3 et la deuxième feuille de verre 2. Cela lui procure une protection qui est intégrée au vitrage feuilleté. Lorsque le fil conducteur 5 est disposé entre le film intercalaire 3 et la deuxième feuille de verre 2, le film intercalaire 3 peut être muni d'un trou traversant qui coïncide avec le premier trou 4 de la première feuille de verre 1 pour permettre le passage du fil conducteur 5 à travers le film intercalaire 3 et à travers la première feuille de verre 1 . Le fil conducteur 5 a une extrémité 50 qui est destinée à être connectée à un accessoire 6, par exemple un accessoire électrique, de préférence via un connecteur (7 sur les figures 2, 4 et 5). L'autre extrémité 51 du fil conducteur 5 est destinée à être connectée à une alimentation électrique et/ou un dispositif électrique sur le véhicule, de préférence via un connecteur (9 sur les figures 4 et 5). Une extrémité 50 du fil conducteur 5 sort du vitrage feuilleté par le premier trou traversant 4. Le premier trou traversant 4 est par exemple circulaire, pour une facilité de fabrication. Il doit être le plus petit possible pour permettre au vitrage feuilleté de respecter la norme R43 et suffisamment grand pour permettre le passage du fil conducteur, voire du connecteur, à travers lui. Ainsi, de préférence, le premier trou traversant 4 a un diamètre compris entre 3 et 80 mm.
Le connecteur 7, 9 permet de protéger l'extrémité du fil conducteur 5 lors du transport et de la manutention. Le connecteur 7, 9 est de préférence le plus compact possible tout en étant stable mécaniquement et en étant capable d'assurer une connexion électrique fiable dans un environnement véhicule, en particulier en résistant aux diverses agressions potentielles telles que vibrations, variations de températures importantes, atmosphère oxydante, etc.
De préférence, le ou les fils conducteurs 5 sont enrobés dans un film plastique formant une nappe mince et souple. Le film plastique peut être transparent (ce qui permet d'avoir un produit très discret), noir (ce qui évite d'ajouter de l'émail noir sur le verre pour masquer les fils conducteurs), ou encore de couleur (ce qui peut permettre d'améliorer l'aspect du produit fini, une fois intégré dans un vitrage). L'utilisation d'une telle nappe procure de plus une facilité de manutention lors de l'assemblage. La nappe est de préférence équipée de connecteurs à chacune de ses extrémités avant assemblage du vitrage. De plus, afin de faciliter le montage, la nappe peut être enduite de PVB ou d'un adhésif pour permettre son adhésion à la première feuille de verre. Enfin, La nappe doit de plus être suffisamment fine pour ne pas mettre en flexion permanente le verre lors de l'assemblage et pour ainsi éviter toute casse du verre au niveau du bord du ou des trous par lesquels sort la nappe. Pour pallier à cela, le verre a des contraintes de bord en périphérie des trous de sortie des extrémités des fils conducteurs.
L'accessoire 6 auquel est destiné à être connecté le ou les fils conducteurs 5 peut être fixé sur le vitrage feuilleté, comme représenté sur la figure 1 , ou à proximité du vitrage feuilleté, par exemple sur un support de rétroviseur. L'accessoire 6 est par exemple un capteur de pluie ou d'humidité, un capteur de luminosité, une caméra, une antenne, un dispositif d'éclairage, un ventilateur ou encore un dispositif de positionnement par GPS. Le fil conducteur 5 permet l'alimentation électrique de l'accessoire 6 et/ou l'amenée d'informations émises par l'accessoire 6 vers le dispositif électrique du véhicule. Le fil conducteur 5 est par exemple en cuivre. En fonction des applications, par exemple pour la connexion à une caméra, le ou les fils conducteurs 5 peuvent être blindés.
En fonction du type d'accessoire, un ou plusieurs fils conducteurs 5 sont nécessaires. Dans le cas de plusieurs fils conducteurs 5, ils sont de préférence disposés les uns à côté des autres. Ils peuvent être reliés par un film transparent ou opaque sous forme d'une nappe. La première feuille de verre 1 peut comporter autant de trous traversant que de fils conducteurs et l'extrémité 50 de chaque fil conducteur 5 peut alors sortir du vitrage feuilleté par un premier trou traversant dédié de la première feuille de verre.
Les figures 2a, 2b, 2c sont une vue de détail, selon trois modes de réalisation respectifs, du vitrage feuilleté selon l'invention avec plusieurs fils conducteurs.
Sur la figure 2a, la première feuille de verre 1 comporte un unique premier trou traversant 4, de forme circulaire, par lequel sortent les extrémités 50 des fils conducteurs 5 destinées à être connectées à un accessoire.
Sur la figure 2b, la première feuille de verre 1 comporte un unique premier trou traversant 4, en forme de fente, par lequel sortent les extrémités 50 des fils conducteurs 5 destinées à être connectées à un accessoire. Sur la figure 2c, la première feuille de verre 1 comporte trois premiers trous traversant 4, de forme circulaire, par chacun desquels sort l'extrémité 50 d'un fil conducteur 5 destinée à être connectée à un accessoire.
Les trous traversant circulaires peuvent être réalisés par une découpe à l'aide d'une scie cloche. Les trous traversant en forme de fente peuvent être réalisés par perçage au jet d'eau ou par usinage par une fraise diamantée.
L'extrémité 50 du ou des fils conducteurs 5 destinée à être connectée à l'accessoire 6 peut être insérée dans un connecteur 7, comme représenté sur les figures 2a à 2c, ce qui facilite la connexion à l'accessoire 6, en particulier lorsque celle-ci a lieu bien après la fabrication du vitrage feuilleté.
La figure 3 est une vue de détail du bord du vitrage feuilleté selon un mode de réalisation de l'invention.
La première feuille de verre 1 peut comprendre un deuxième trou traversant ou une encoche 8 en bord de vitrage, comme représenté sur la figure 3. Cette encoche 8 permet la sortie de l'autre extrémité 51 du fil conducteur 5 pour une connexion à une alimentation électrique et/ou un dispositif électrique sur le véhicule. Cette autre extrémité 51 peut être insérée dans un connecteur 9 (figures 4 et 5) pour une facilité de connexion ultérieure au véhicule. Le deuxième trou traversant de la première feuille de verre 1 peut être réalisé sur le bord de la première feuille de verre 1 , par exemple en forme d'encoche 8, comme représenté sur la figure 3, ou à proximité du bord de la première feuille de verre 1 .
Lorsque la première feuille de verre 1 ne comprend ni deuxième trou traversant ni encoche, l'extrémité 51 du fil conducteur 5 sort du vitrage feuilleté par la tranche du vitrage feuilleté, comme représenté sur la figure 1 .
De façon optionnelle, le vitrage feuilleté comprend en outre au moins une bande d'émail opaque coïncidant avec le ou les fils conducteurs, cachant à la vue le ou les fils conducteurs depuis l'extérieur et/ou l'intérieur du véhicule. Toutefois, les fils conducteurs noyés dans le film intercalaire pouvant être très fins (quelques dizaines à quelques centaines de microns) et le conducteur ou la nappe contenant le conducteur ayant une largeur fine (quelques millimètres à une quinzaine de millimètres), la bande d'émail peut être bien plus fine que lorsqu'une goulotte est utilisée. La bande d'émail est par ailleurs beaucoup plus fine qu'une goulotte, ce qui permet d'améliorer nettement le champ de vision et le confort visuel.
Le vitrage feuilleté peut également comprendre un accessoire 6 fixé sur le vitrage feuilleté. L'accessoire 6 peut être fixé sur les bords du ou des premiers trous traversant 4 de la première feuille de verre 1 , par exemple par encliquetage ou par collage, ou à proximité du ou des premiers trous traversant
4 de la première feuille de verre 1 , par exemple par collage. En variante, l'accessoire peut également être logé à l'intérieur du trou traversant 4 de la première feuille de verre 1 et être fixé, par exemple par collage, sur la deuxième feuille de verre 2, en face 2 ou 3 du vitrage feuilleté suivant le positionnement des première et deuxième feuille de verre dans le vitrage feuilleté.
Par ailleurs, la deuxième feuille de verre peut également comprendre un trou traversant (15, figure 5). Dans ce dernier cas, le premier trou traversant 4 de la première feuille de verre 1 et le trou traversant 15 de la deuxième feuille de verre 2 ont de préférence sensiblement le même diamètre et se font face. Le film intercalaire est alors également muni d'un trou traversant qui coïncide avec les premiers trous 4, 15 des première et deuxième feuilles de verre 1 , 2, comme représenté sur la figure 5.
Les figures 4 et 5 sont des vues en coupe, selon deux modes de réalisation respectifs, d'un vitrage feuilleté selon l'invention avec un accessoire d'antenne monté sur le vitrage. Ces figures sont des exemples de réalisation d'un vitrage feuilleté comprenant une antenne.
Un socle d'antenne 10 est fixé sur le vitrage feuilleté par des moyens de fixation 13, par exemple de la colle, via des moyens de support 12. Le socle d'antenne 1 1 comprend un connecteur 1 1 auquel est connecté le fil conducteur
5 via le connecteur 7.
Dans ces modes de réalisation, la première feuille de verre 1 est tournée vers l'extérieur du véhicule. L'étanchéité à l'eau est assurée par les moyens de fixation 13 qui entourent entièrement les trous traversants.
Dans le mode de réalisation de la figure 5, la deuxième feuille de verre comprend également un trou traversant 15. Sur la figure 5, le trou traversant 15 coïncide avec le premier trou traversant 4 et comporte en plus une encoche 16 pour faciliter le passage du fil conducteur 5. La figure 6 illustre un dispositif 3 schématique adapté pour souffler sur l'un des côtés des feuilles superposées. A ce stade, les feuilles ont déjà été bombées, l'orifice prévu dans l'une d'elles n'ayant pas encore été percé. Les feuilles sont représentées en cours de refroidissement suivant immédiatement l'opération de bombage. La buse 3 exerce un refroidissement contrôlé local au cours du refroidissement contrôlé général. Ici, on souffle de l'air à température ambiante sur une aire en forme de disque en vue de réaliser ultérieurement un évidement sur la feuille montrée en position supérieure. Le temps de soufflage est compris entre 40 et 90 secondes environ. La durée de soufflage est indépendante de la surface à refroidir de manière différenciée mais par contre dépend de l'épaisseur du verre. Les 40 secondes de refroidissement local sont établies pour des feuilles d'épaisseur chacune de 2,1 mm. La buse de soufflage a une terminaison de forme adaptée à la forme géométrique de la zone locale de contraintes en compression à obtenir. Elle peut notamment avoir la forme d'un contour carré ou rectangulaire. Sur la figure 6, la buse 3 comporte un conduit central d'alimentation en air 30, un conduit axisymétrique 31 , autour du conduit central d'alimentation 30. Le conduit 31 débouche en terminaison de la buse sur une cloche cylindrique 33 dont la paroi est constituée d'un feutre souple à base de fibres métalliques. L'extrémité libre 34 de la cloche est posée contre la surface du verre. De l'air froid est amené via le conduit d'alimentation 30 jusqu'à la cloche 34 pour être libéré contre la surface du verre à refroidir puis s'évacuer via le conduit 31 . Après le refroidissement, on déparie (on sépare) les deux feuilles. L'évidement est ensuite réalisé par découpe de l'un des feuilles de verre de façon connue de l'homme du métier. Ensuite, sont effectuées les étapes d'assemblage avec l'intercalaire, de dégazage de l'ensemble et de passage en autoclave, le conducteur métallique ayant été judicieusement placé entre les deux feuilles de verre. Ce traitement conduit à un collage entre l'intercalaire et les feuilles de verre de chaque côté de l'intercalaire.
La figure 7 illustre le même dispositif que celui de la figure 6, sauf que la feuille de verre en position supérieure a été préalablement percée individuellement alors qu'elle était plane et pas encore bombée. Les deux feuilles ont ensuite été appariées, puis bombées simultanément à l'état superposés. Lors du refroidissement suivant le bombage à la température de bombage, on a appliqué le refroidissement contrôlé local comme montré sur la figure 7 au cours du refroidissement contrôlé général appliqué à l'ensemble des feuilles. Le temps de soufflage est compris entre 10 et 90 secondes environ. On voit que la zone de soufflage appliquant le refroidissement contrôlé local est plus grande que l'orifice lui-même.
La figure 8 illustre un dispositif 70 schématique adapté pour refroidir par conduction une zone locale par une face principale d'un empilement de deux feuilles 73 et 74 superposées. A ce stade, les feuilles ont déjà été bombées, l'orifice prévu dans l'un d'eux n'ayant pas encore été percé. Les feuilles sont représentées en cours de refroidissement suivant immédiatement l'opération de bombage. Un refroidissement contrôlé local est exercé au cours du refroidissement contrôlé général. Un tuyau métallique 71 , fermé au niveau de son extrémité inférieure, est parcouru par de l'air froid comme indiqué par les flèches. Le contact avec le verre entre le tuyau métallique et le verre est adouci grâce à un feutre 72 en fibres réfractaires pour réduire le risque de casse par choc thermique. On aboutit ainsi à la formation d'une zone locale de contraintes en compression à l'endroit du contact entre le feutre 72 et le verre. Après le refroidissement, on déparie (on sépare) les deux feuilles 73 et 74. L'évidement est ensuite réalisé par découpe de l'une des feuilles de façon connue de l'homme du métier. Ensuite, sont effectuées les étapes d'assemblage avec l'intercalaire, de dégazage de l'ensemble et de passage en autoclave, le conducteur métallique ayant été judicieusement placé entre les deux feuilles de verre. Ce traitement conduit à un collage entre l'intercalaire et les feuilles de verre de chaque côté de l'intercalaire.
La figure 9 illustre un vitrage feuilleté pouvant être réalisé selon l'invention. Le vitrage feuilleté comprend une première feuille de verre 80, une deuxière feuille de verre 81 et un film intercalaire 82 en polymère thermoplastique (PVB), disposé entre les deux feuilles de verre. La première feuille de verre 80 comprend un trou traversant 83, alors qu'au même endroit l'autre feuille de verre n'est pas percée. Le vitrage feuilleté comprend un fil conducteur 85 qui est disposé entre le film intercalaire 82 et la deuxième feuille de verre 81 . Cela lui procure une protection intégrée au vitrage feuilleté. Le film intercalaire 82 est muni d'un orifice 86 traversant qui débouche dans l'intérieur du trou 83 de la première feuille de verre 80 pour permettre le passage du fil conducteur 85 à travers le film intercalaire 82 et à travers la première feuille de verre 80. Ainsi, cet orifice 86 a un contour correspondant à celui du fil conducteur. Le fil conducteur 85 a une extrémité destinée à être connectée à un accessoire 87, l'autre extrémité sortant du vitrage en bordure extérieure en 88. L'autre extrémité du fil conducteur 85 est destinée à être connectée à une alimentation électrique et/ou un dispositif électrique sur le véhicule, de préférence via un connecteur. Le trou traversant 83 est par exemple circulaire, pour une facilité de fabrication. Il doit être suffisamment petit pour permettre au vitrage feuilleté de respecter la norme R43 et suffisamment grand pour permettre le passage du fil conducteur, voire du connecteur, à travers. Ainsi, de préférence, le premier trou 83 a un diamètre compris entre 3 et 80 mm.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un vitrage feuilleté bombé comprenant deux feuilles de verre, une couche intercalaire en matériau polymère agencée entre les feuilles de verre, et un conducteur électrique, ledit procédé comprenant le bombage thermique simultané des feuilles de verre à l'état apparié suivi de leur refroidissement puis de l'assemblage du vitrage feuilleté par collage des feuilles de verre à la couche intercalaire de part et d'autre de celle-ci, caractérisé en ce que ledit refroidissement comprend un refroidissement contrôlé des feuilles de verre à l'état apparié, le refroidissement contrôlé comprenant un refroidissement contrôlé général et un refroidissement contrôlé local d'une zone de découpe, le refroidissement contrôlé local étant plus rapide que le refroidissement contrôlé général, une découpe de l'une des feuilles de verre selon une ligne de découpe dans la zone de découpe pour former une zone évidée, le conducteur électrique étant placé entre les feuilles de verre et sortant du vitrage feuilleté par la zone évidée.
2. Procédé selon la revendication précédente, caractérisé en ce que la découpe est réalisée avant le bombage thermique.
3. Procédé selon la revendication 1 , caractérisé en ce que la découpe est réalisée après le refroidissement.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement contrôlé local de la zone de découpe est suffisant en durée et en intensité pour que les contraintes de bord de la zone évidée après découpe soient supérieures à 4 MPa et de préférence supérieures à 8 MPa.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement contrôlé local est réalisé par soufflage local d'air plus froid que l'air ambiant entourant les feuilles de verre à l'état apparié.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le refroidissement contrôlé général est réalisé à une vitesse comprise dans le domaine de 0,3 à 8°C/seconde entre 580 et 520°C.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le conducteur électrique est une nappe contenant une pluralité de câbles électriques métalliques.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le conducteur électrique a une épaisseur dans une direction perpendiculaire au vitrage comprise dans le domaine allant de 0,05 à 1 mm, notamment de 0,08 à 0,5 mm.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone évidée forme un orifice.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone évidée comprend une encoche dans le bord extérieur de la feuille de verre la comprenant.
1 1 . Procédé selon la revendication précédente, caractérisé en ce que l'encoche a une profondeur d'au moins 0,5 cm vers l'intérieur de la feuille de verre la comprenant.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone évidée, notamment un orifice, est réalisée dans une première feuille de verre, aucune zone évidée n'étant réalisée dans la deuxième feuille de verre vis-à-vis de la zone évidée de la première feuille de verre.
13. Procédé selon la revendication précédente caractérisé en ce que la couche intercalaire est non-découpée vis-à-vis de la zone évidée de la première feuille de verre sauf le cas échéant selon un contour correspondant à celui du conducteur électrique passant à travers elle.
PCT/FR2013/052383 2012-10-12 2013-10-08 Fabrication d'un vitrage feuillete muni d'un conducteur electrique WO2014057200A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP13789849.0A EP2906422B1 (fr) 2012-10-12 2013-10-08 Fabrication d'un vitrage feuillete muni d'un conducteur electrique
CN201380003247.2A CN103874579B (zh) 2012-10-12 2013-10-08 制造设有导电体的叠层玻璃窗
JP2015536202A JP6441805B2 (ja) 2012-10-12 2013-10-08 電気伝導体を備えた積層グレージングの製造
CA2886822A CA2886822A1 (fr) 2012-10-12 2013-10-08 Fabrication d'un vitrage feuillete muni d'un conducteur electrique
EA201590712A EA028695B1 (ru) 2012-10-12 2013-10-08 Изготовление многослойного остекления, снабженного электрическим проводником
US14/435,006 US9616649B2 (en) 2012-10-12 2013-10-08 Manufacturing laminated glazing provided with an electrical conductor
ES13789849.0T ES2587914T3 (es) 2012-10-12 2013-10-08 Fabricación de un acristalamiento laminado provisto de un conductor eléctrico
BR112015006777-8A BR112015006777B1 (pt) 2012-10-12 2013-10-08 processo de fabricação de uma vidraça laminada recurvada
MX2015004508A MX351203B (es) 2012-10-12 2013-10-08 Fabricacion de acristalamiento laminado proporcionado con un conductor electrico.
KR1020157009021A KR102164023B1 (ko) 2012-10-12 2013-10-08 전기 전도체가 제공된 적층 글레이징의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259744 2012-10-12
FR1259744A FR2996803B1 (fr) 2012-10-12 2012-10-12 Fabrication d'un vitrage feuillete muni d'un conducteur electrique

Publications (1)

Publication Number Publication Date
WO2014057200A1 true WO2014057200A1 (fr) 2014-04-17

Family

ID=47666245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052383 WO2014057200A1 (fr) 2012-10-12 2013-10-08 Fabrication d'un vitrage feuillete muni d'un conducteur electrique

Country Status (14)

Country Link
US (1) US9616649B2 (fr)
EP (1) EP2906422B1 (fr)
JP (1) JP6441805B2 (fr)
KR (1) KR102164023B1 (fr)
CN (1) CN103874579B (fr)
BR (1) BR112015006777B1 (fr)
CA (1) CA2886822A1 (fr)
EA (1) EA028695B1 (fr)
ES (1) ES2587914T3 (fr)
FR (1) FR2996803B1 (fr)
MX (1) MX351203B (fr)
PL (1) PL2906422T3 (fr)
PT (1) PT2906422T (fr)
WO (1) WO2014057200A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10434846B2 (en) 2015-09-07 2019-10-08 Sabic Global Technologies B.V. Surfaces of plastic glazing of tailgates
US10597097B2 (en) 2015-09-07 2020-03-24 Sabic Global Technologies B.V. Aerodynamic features of plastic glazing of tailgates
US10690314B2 (en) 2015-09-07 2020-06-23 Sabic Global Technologies B.V. Lighting systems of tailgates with plastic glazing
FR3103808A1 (fr) 2019-12-03 2021-06-04 Saint-Gobain Glass France Outil de refroidissement local
US11267173B2 (en) 2015-09-07 2022-03-08 Sabic Global Technologies B.V. Molding of plastic glazing of tailgates
WO2022208008A1 (fr) 2021-04-02 2022-10-06 Saint-Gobain Glass France Procede de decoupe d'un vitrage feuillete au moyen d'une source laser
US11466834B2 (en) 2015-11-23 2022-10-11 Sabic Global Technologies B.V. Lighting systems for windows having plastic glazing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2996802B1 (fr) * 2012-10-12 2014-11-21 Saint Gobain Vitrage feuillete
FR3050685B1 (fr) 2016-04-27 2021-02-12 Saint Gobain Procede d'assemblage d'un vitrage feuillete comprenant un composant surmoule
FR3068349B1 (fr) 2017-06-29 2021-10-29 Saint Gobain Bombage de feuilles de verre comprenant un refroidissement localise
CN109890611A (zh) * 2017-10-04 2019-06-14 法国圣戈班玻璃厂 具有倒角通孔的复合玻璃板
PE20201312A1 (es) * 2018-04-25 2020-11-24 Saint Gobain Panel de material compuesto con elemento funcional electricamente conmutable en capa intermedia termoplastica
FR3089148B1 (fr) * 2018-12-04 2020-12-11 Saint Gobain Vitrage feuillete a element en gradin peripherique en materiau polymere ayant une permeabilite a la vapeur d’eau maximale requise
FR3110908B1 (fr) * 2020-05-28 2022-05-27 Saint Gobain Element vitre, dispositif avec element vitre et camera thermique associee
EP4043255A1 (fr) * 2021-02-11 2022-08-17 Inalfa Roof Systems Group B.V. Panneau de toit transparent comportant une unité centrale isolée

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101618A5 (fr) * 1970-07-20 1972-03-31 Saint Gobain
DE2332915B1 (de) * 1973-06-28 1974-05-02 Glas- Und Spiegelmanufaktur N. Kinon Gmbh, 5100 Aachen Elektrisch beheizbare Verbundglasscheibe
DE4324847A1 (de) * 1993-07-23 1995-01-26 Webasto Schade Gmbh Verfahren zur Herstellung einer geschlossenen gewölbten Abdeckung aus mehreren Glaselementen
EP1710104A2 (fr) * 2005-04-08 2006-10-11 GM Global Technology Operations, Inc. Véhicule et vitrage feuilleté pour véhicule

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1259550A (fr) * 1960-03-18 1961-04-28 Saint Gobain Feuille de verre trempée, utilisable notamment pour le vitrage des véhicules automobiles
JPS4716604Y1 (fr) * 1970-10-08 1972-06-10
US4124367A (en) * 1977-11-16 1978-11-07 Ppg Industries, Inc. Method of making bent laminated glass windshields with drilled apertures
US4702042A (en) * 1984-09-27 1987-10-27 Libbey-Owens-Ford Co. Cutting strengthened glass
US4656791A (en) * 1984-09-27 1987-04-14 Libbey-Owens-Ford Company Abrasive fluid jet cutting support
FR2610316B1 (fr) * 1987-01-29 1992-11-13 Saint Gobain Vitrage Volumes de verre trempes par contact avec contraintes de bord renforcees
DE4404165C1 (de) * 1994-02-10 1995-11-02 Sekurit Saint Gobain Deutsch Verfahren und Vorrichtungen zum Kontaktvorspannen einer Glasscheibe
US6043782A (en) * 1995-12-18 2000-03-28 Ppg Industries Ohio, Inc. Antenna connector arrangement
DE19547935C1 (de) * 1995-12-22 1997-03-20 Sekurit Saint Gobain Deutsch Verfahren zum Biegen und/oder Vorspannen von Glasscheiben und Formring zur Durchführung des Verfahrens
BE1013109A3 (fr) * 1999-11-08 2001-09-04 Glaverbel Faconnage de vitrages.
DE10105200A1 (de) 2001-02-06 2002-08-14 Saint Gobain Verfahren und Vorrichtung zum paarweisen Biegen von Glasscheiben
FR2852951B1 (fr) 2003-03-26 2007-02-16 Saint Gobain Procede de bombage de feuilles de verre par pressage et aspiration
FR2880343B1 (fr) 2004-12-31 2007-06-22 Saint Gobain Procede de bombage de feuilles de verre par aspiration
WO2006129504A1 (fr) * 2005-06-03 2006-12-07 Asahi Glass Company, Limited Procede et appareil destines a couper du verre feuillete
DE102006056501B4 (de) * 2006-11-30 2012-05-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Verbundglasscheibe mit einer in ein Durchgangsloch eingesetzten Befestigungseinrichtung für eine Antenne
JP5019072B2 (ja) * 2008-09-18 2012-09-05 旭硝子株式会社 車両用窓ガラスの給電構造及び車両用窓ガラス並びに車両用窓ガラスの製造方法
DE102009011265B4 (de) * 2009-03-05 2010-11-18 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Ganzglasdach für ein Kraftfahrzeug
KR101505330B1 (ko) * 2010-07-07 2015-03-23 쌩-고벵 글래스 프랑스 전기 가열성 코팅을 갖는 복합 창유리
FR2981295B1 (fr) 2011-10-14 2020-02-21 Saint-Gobain Glass France Fabrication d'un vitrage feuillete
FR2981325B1 (fr) 2011-10-14 2013-10-25 Saint Gobain Toit de vehicule en verre comprenant des zones locales de contrainte en compression
FR2996802B1 (fr) 2012-10-12 2014-11-21 Saint Gobain Vitrage feuillete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2101618A5 (fr) * 1970-07-20 1972-03-31 Saint Gobain
DE2332915B1 (de) * 1973-06-28 1974-05-02 Glas- Und Spiegelmanufaktur N. Kinon Gmbh, 5100 Aachen Elektrisch beheizbare Verbundglasscheibe
DE4324847A1 (de) * 1993-07-23 1995-01-26 Webasto Schade Gmbh Verfahren zur Herstellung einer geschlossenen gewölbten Abdeckung aus mehreren Glaselementen
EP1710104A2 (fr) * 2005-04-08 2006-10-11 GM Global Technology Operations, Inc. Véhicule et vitrage feuilleté pour véhicule

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597097B2 (en) 2015-09-07 2020-03-24 Sabic Global Technologies B.V. Aerodynamic features of plastic glazing of tailgates
US10690314B2 (en) 2015-09-07 2020-06-23 Sabic Global Technologies B.V. Lighting systems of tailgates with plastic glazing
US10717348B2 (en) 2015-09-07 2020-07-21 Sabic Global Technologies B.V. Surfaces of plastic glazing of tailgates
US10948152B2 (en) 2015-09-07 2021-03-16 Sabic Global Technologies B.V. Lighting systems of tailgates with plastic glazing
US11845240B2 (en) 2015-09-07 2023-12-19 Sabic Global Technologies B.V. Three shot plastic tailgate
US10434846B2 (en) 2015-09-07 2019-10-08 Sabic Global Technologies B.V. Surfaces of plastic glazing of tailgates
US11267173B2 (en) 2015-09-07 2022-03-08 Sabic Global Technologies B.V. Molding of plastic glazing of tailgates
US11458709B2 (en) 2015-09-07 2022-10-04 Sabic Global Technologies B.V. Three shot plastic tailgate
US11466834B2 (en) 2015-11-23 2022-10-11 Sabic Global Technologies B.V. Lighting systems for windows having plastic glazing
US11766965B2 (en) 2015-11-23 2023-09-26 Sabic Global Technologies B.V. Illuminated graphic in an automotive plastic glazing
WO2021111084A1 (fr) 2019-12-03 2021-06-10 Saint-Gobain Glass France Outil de refroidissement local d'une feuille de verre
FR3103808A1 (fr) 2019-12-03 2021-06-04 Saint-Gobain Glass France Outil de refroidissement local
FR3121438A1 (fr) 2021-04-02 2022-10-07 Saint-Gobain Glass France Procede de decoupe d’un vitrage feuillete au moyen d’une source laser
WO2022208008A1 (fr) 2021-04-02 2022-10-06 Saint-Gobain Glass France Procede de decoupe d'un vitrage feuillete au moyen d'une source laser

Also Published As

Publication number Publication date
JP6441805B2 (ja) 2018-12-19
FR2996803A1 (fr) 2014-04-18
MX351203B (es) 2017-10-05
CA2886822A1 (fr) 2014-04-17
EP2906422B1 (fr) 2016-05-25
KR102164023B1 (ko) 2020-10-12
ES2587914T3 (es) 2016-10-27
KR20150068384A (ko) 2015-06-19
EA028695B1 (ru) 2017-12-29
MX2015004508A (es) 2015-07-06
EA201590712A1 (ru) 2015-08-31
US20150283797A1 (en) 2015-10-08
CN103874579A (zh) 2014-06-18
JP2016500629A (ja) 2016-01-14
FR2996803B1 (fr) 2014-11-21
BR112015006777A2 (pt) 2017-07-04
PT2906422T (pt) 2016-08-17
CN103874579B (zh) 2016-05-18
EP2906422A1 (fr) 2015-08-19
BR112015006777B1 (pt) 2021-02-17
US9616649B2 (en) 2017-04-11
PL2906422T3 (pl) 2016-11-30

Similar Documents

Publication Publication Date Title
EP2906422B1 (fr) Fabrication d'un vitrage feuillete muni d'un conducteur electrique
EP2766184B1 (fr) Fabrication d'un vitrage feuillete
EP0724955B1 (fr) Procédé de fabrication d'une vitre de verre feuilleté destinée aux véhicules automobiles et capable de réfléchir les rayonnements infrarouges
EP1613561B1 (fr) Vitrage comprenant des lignes de rupture
EP2508042B1 (fr) Vitrage a fils conducteurs integres par ultrasons
EP2766246B1 (fr) Toit de vehicule en verre comprenant des zones locales de contrainte en compression
EP2961634B1 (fr) Renfort d'orifice de vitrage
CA3067614A1 (fr) Bombage de feuilles de verre comprenant un refroidissement localise
EP4069651A1 (fr) Outil de refroidissement local d'une feuille de verre
FR3037001A1 (fr) Vitrage feuillete a feuilles de verre semi-trempees muni d'une portion de joint profile ayant un insert de renforcement mecanique
BE1020755A3 (fr) Toit vitre de vehicule automobile.
FR2978698A1 (fr) Vitrage a effet decoratif
BE1015056A3 (fr) Vitrage chauffant pour vehicule.
EP0783961A1 (fr) Vitrage feuilleté de protection solaire, de protection mécanique de protection au feu et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013789849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2886822

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006777

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157009021

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201502076

Country of ref document: ID

Ref document number: MX/A/2015/004508

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015536202

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14435006

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201590712

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112015006777

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150326