WO2014057151A1 - Uso de la cepa cect 7426 para provocar quorum quenching de la señal autoinductor-2 (ai-2) - Google Patents

Uso de la cepa cect 7426 para provocar quorum quenching de la señal autoinductor-2 (ai-2) Download PDF

Info

Publication number
WO2014057151A1
WO2014057151A1 PCT/ES2013/070662 ES2013070662W WO2014057151A1 WO 2014057151 A1 WO2014057151 A1 WO 2014057151A1 ES 2013070662 W ES2013070662 W ES 2013070662W WO 2014057151 A1 WO2014057151 A1 WO 2014057151A1
Authority
WO
WIPO (PCT)
Prior art keywords
staphylococcus
streptococcus
lactobacillus
corynebacterium
bacteria
Prior art date
Application number
PCT/ES2013/070662
Other languages
English (en)
French (fr)
Inventor
Ana María OTERO CASAL
Manuel ROMERO BERNÁRDEZ
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2014057151A1 publication Critical patent/WO2014057151A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to the use of a bacterial strain of the species Tenacibaculum discolor for the control of infectious diseases and to inhibit the formation of biofilms produced by bacteria, through the inhibition of the signals of quorum sensing type Autoinductor-2 (AI -2). Therefore, the invention could be framed in the field of molecular biology.
  • Quretunary sensing consists in the production and release of signal molecules to the medium, where they accumulate by controlling the expression of multiple genes.
  • QS quorum sensing
  • bacterial populations can coordinate to carry out important biological functions, many of them involved in the virulence of important pathogens, such as: mobility, swarming, aggregation, luminescence, antibiotic biosynthesis, virulence factor expression, symbiosis , formation and differentiation of biofilms, or transfer of plasmids by conjugation, among others.
  • AHLs N-acyl-homoserin lactones
  • Gram-positive bacteria use several molecules of a peptide nature. While the AHL receptors are usually cytoplasmic, the oligopeptide receptors present in Gram positive are usually in the membrane, so signal transduction occurs through a phosphorylation cascade.
  • AI-2 Autoinductor-2
  • AI-2 could act as the most universal interspecific chemical language (Federle and Bassler, 2003. Journal of Clinical Investigation. 12 (9): 1291-1299).
  • AI-2 is a (2S, 4S) -2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate, while that of S. typhimurium is a (2R, 4S) -2-methyl -2,3,3- tetrahydroxytetrahydrofuran.
  • the AI-2 synthesizing protein is LuxS and the database search shows that this gene is widespread, being present in approximately 60 species (Williams et al., 2007.
  • QQ quorum quenching
  • Patent document ES2342807B2 describes the use of bacteria of the genus Tenacibaculum, and in particular of strain CECT 7426, to cause QQ through degradation of AHLs, the QS signals typical of Gram-negative bacteria, and therefore suggests their use for the treatment of bacterial infectious diseases and the inhibition of the formation of Biofilms in Gram-negative bacteria that use AHLs as a mechanism to coordinate their virulence or as a mechanism for the formation of biofilms.
  • Biofilms are biological films that develop and persist on surfaces, and are usually stable and difficult to remove due to the protective nature of the polysaccharide matrix in which microorganisms are embedded. They can be defined as a bacterial population enclosed within a matrix of polysaccharide that adheres to surfaces. They are generally found on the surfaces of industrial equipment that process or transport liquids, or on surfaces adjacent to such equipment. They are often found on the surface of medical implants or in devices inserted in the body. They can also form in areas of the body that are exposed to air; particularly in wounds and pleura.
  • One of the biological biofilms that presents greater complexity and of greater clinical relevance is dental plaque.
  • the present invention relates to the use of a strain of the Tenacibaculum discolor species, the crude cell extract or the supernatant of its cultures, or any combination thereof, to cause quorum quenching through the inhibition of quorum sensing signals type AI -2. Therefore, the use of this strain is useful to control bacterial infections caused by bacteria that use this mechanism to coordinate their virulence, without exerting selective pressure on the populations of pathogenic bacteria and thus avoiding the emergence of resistance. It also allows the inhibition of other bacterial colonization processes in which quorum sensing or QS type AI-2 signals such as biofilms formation are involved.
  • the present invention describes for the first time the ability of a bacterial strain of Tenacibaculum discolor to interfere with quorum sensing signals of type AI-2, and therefore to inhibit virulence or biofilm formation processes by important pathogens.
  • one aspect of the invention relates to the use of a bacterial strain deposited in the Spanish Type Culture Collection (CECT) with deposit number CECT 7426, the crude cell extract or the culture supernatant, or any combination thereof. , hereinafter “strain of the invention” or “strain 20J", to cause quorum quenching in bacteria producing the AI-2 signal.
  • CECT Spanish Type Culture Collection
  • Any bacterium regulates its gene expression in response to different environmental signals, an essential property to compete with other organisms.
  • gene regulation is crucial to allow the survival of the bacteria in the particular environment offered by its host.
  • Bacterial virulence genes are subject to complex regulatory mechanisms to ensure the expression of the appropriate gene at the appropriate time.
  • AI-2 are the most widespread QS signals in bacteria of all types, and are used by a multitude of human, plant and marine pathogenic bacteria, both Gram-positive and Gram-negative, to control the production of factors of virulence.
  • the AI-2 synthesizer protein is LuxS.
  • a search in the GenBank database demonstrates that there are numerous bacteria that have homologues of the LuxS gene of Vibrio harveyi, the reference species in the study of this type of signals, and that they are therefore AI-2 producing bacteria.
  • the Bacteria that possess homologs of the luxS gene of V. harveyi are shown in Table 1.
  • Table 1 Bacteria that have homologs of the luxS gene (gene responsible for producing the AI-2 signal) of V. harveyi (GenBank).
  • Al-2 producing bacteria means any species selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii,
  • Prevotella bryantii Prevotella buccae, Prevotella dentalis, Prevotella marshii, Prevotella melaninogenica, Prevotella multisaccharivorax, Prevotella ruminicola, Prevotella tannerae, Prevotella oralis, Prevotella timonensis, Proteus miraneri, Proteus penneri , Providencia stuartii, Rheinheimera nanhaiensis, Salmonella bongori, Salmonella enterica, Serratia marcescens, Serratia odoriferous, Serratia proteamaculans, Shewanella amazonensis, Baltic Shewanella, Shewanella benthica, Shewanella halifaxensis, Shewanella loihica, Shewanella oneidensis, Shewanella pealeana, Shewanella piezotolerans, Shewanella sediminis, Shewanella Violaceous, Shewanella woodyi,
  • AI-2 Gram negative producing bacteria means any species selected from the list consisting of: Acetohalobium arabaticum, Actinobacillus minor, Actinobacillus pleuropneumoniae, Actinobacillus ureae, Actinobacillus succinogenes, Aeromonas hydrophila, Alishewanella agri, Aliivibrio logei, Aliivibrio salmonicida, Bacteroides sp., Borrelia afzelii, Borrelia bissettii, Borrelia burgdorferi, Borrelia garinii, Borrelia valaisiana, Campylobacter jejuni, Campylobacter coli, Citrobacter koseri, Citrobacter rodentium, Citrobacter spider, Citrobacterium, Citrobacterium, Citrobacterium, Citrus Eikenella corrodens Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter hormaechei
  • the only species in which the production of QS signals type AHL (acyl homoserin lactones) has been described are those belonging to the genus Vibrio. Therefore, the species of the Vibrio genus are the only ones that produce both types of QS signals: AHL and AI-2.
  • AI-2 Gram positive bacterium means any species selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillis coagcula, Bacillis coagis, Bacillis coagis, Bacillis coagis, Bacillis coagis, Bacillis coagis, Bacillis coagis, Bacillis coagis, Bacillis coagus, Bacillis coagis , Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium au
  • the AI-2 producing bacteria produce biofilm or a virulence factor by an Al-2 mediated process.
  • the AI-2 signal producing bacteria are Gram positive.
  • the Gram positive bacteria are selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus bausillusnsus cousulansus, cousulansusus cousulansus ducumusususususus Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum
  • Gram positive bacteria are Staphylococcus aureus or Streptococcus mutans.
  • Staphylococcus aureus is a pathogen that can produce a wide range of diseases, ranging from skin infections and relatively benign mucous membranes, such as folliculitis, forunculosis or conjunctivitis, to life-threatening diseases, such as cellulite, deep abscesses, osteomyelitis, meningitis, sepsis, endocarditis or pneumonia. In addition, it can also affect the gastrointestinal tract, either by the physical presence of Staphylococcus aureus or by the intake of staphylococcal enterotoxin secreted by the bacteria. Currently, this microorganism is the main cause of nosocomial infections.
  • This situation is favored by the fact that this species inhabits both the mucous membranes and the skin of human beings, which allows through surgical wounds to penetrate the bloodstream of the patient through direct or indirect contact with health personnel, with an object contaminated or even with another patient.
  • This species forms biofilms that colonize catheters, drains and implants, favoring contamination and antibiotic resistance.
  • S. aureus also has a functional luxS gene, and has the ability to produce the AI-2 signal molecule.
  • Streptococcus mutans is an important pathogen of the oral cavity, which also forms biofilms and has been identified as one of those responsible for the formation of dental plaque.
  • Quretching or “QQ” is understood as the mechanism by which microbial communication, preferably pathogenic bacteria, interferes with signals based on a quorum sensing or QS system, preferably mediated by AI-2. .
  • This QQ mechanism negatively affects, for example, but not limited to, the expression of virulence factors of the microbial population without causing cell death. Since the bacterial strain of the invention is capable of interfering with AI-2 signals, and thus preventing the production of virulence factors by important pathogens, this will prevent said pathogen from coordinating its attack and therefore launching a infection. Therefore, the use of the strain of the invention can allow the treatment and prevention of infectious diseases caused by pathogens that produce the AI-2 quorum signal.
  • another aspect of the present invention relates to the use of the strain of the invention, the crude cell extract or the supernatant of its cultures, or any of its combinations, for the preparation of a medicament for the treatment and / or prevention of infections caused by bacteria producing the quorum sensing signal AI-2.
  • the AI-2 producing bacteria responsible for the infection produce biofilm or a virulence factor by an AI-2 mediated process.
  • the AI-2 signal producing bacteria responsible for the infection are Gram positive.
  • the Gram positive bacteria are selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus bausillusnsus cousulansus, cousulansusus cousulansus ducumusususususus Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium
  • infections caused by bacteria producing the AI-2 signal are due to the formation of bioflms.
  • Gram positive bacteria that form biofilm can be, but not limited to, bacteria from the oral cavity such as those that cause tooth decay and periodontal disease. Therefore, in a more preferred embodiment, the biofilm is dental plaque.
  • Biofilms or biofilms are communities of microorganisms that grow embedded in a matrix of exopolysaccharides and adhered to an inert surface or living tissue. It is a community of bacteria (of a single species or several), which adheres to a solid surface.
  • the role of the QS AI-2 molecule in the formation of biofilms of Gram-positive opportunistic pathogens has been demonstrated, for example, but not limited to, Staphylococcus aureus, S. epidermidis and different Streptococcus species, including the strain involved in the formation of dental plaque S. mutans.
  • AI-2 type signals would inhibit the formation of biofilms formed by QS-controlled processes, as demonstrated by the effect of different furanones, molecules capable of interfering in QS processes, on the formation of biofilms by Staphycoloccus aureus and Streptococcus mutans.
  • biofilm bacteria can produce exotoxins, groups of bacteria can be released into the bloodstream, they become resistant to the phagocytic action of The cells of the immune system and on the other hand, constitute a niche for the appearance of bacteria resistant to antibiotic treatments. This last aspect may be especially relevant since resistant bacteria originating in a biofilm could spread from patient to patient through the hands of the healthcare staff.
  • Dental or bacterial plaque also called dental biofilm, is a soft, sticky layer that is found in the mouth and grows by sticking in the lower part of the teeth, near the gums. It is a heterogeneous accumulation of a varied microbial, aerobic and anaerobic community, surrounded by an intercellular matrix of polymers of salivary and microbial origin. These microorganisms can adhere or deposit between the teeth and / or on the walls of the teeth. If the microorganisms get the necessary substrates to survive and persist for a long time on the dental surface, they can organize and cause tooth decay, gingivitis or periodontal disease (gum disease).
  • Biofilms are also the first cause of biological contamination of drinking water distribution systems, and other pipelines, with biofilms control in fire systems being especially important.
  • another aspect of the invention relates to the use of the strain of the invention, the crude cell extract or the supernatant of its cultures, or any combination thereof, to inhibit the ex vivo formation of biofilms produced by bacteria producing bacteria.
  • the AI-2 signal Such ex vivo training refers to the formation of biofilms outside the human or animal body.
  • the use of the bacterial strain of the invention in combination with antibiotics or other antibacterial agents may be an interesting strategy in the prevention and / or treatment of infectious diseases caused by multi-resistant pathogens and in the inhibition of ex vivo formation. of biofilms. Therefore, another preferred embodiment of the invention relates to all the uses described in the present invention of the strain of the invention, of the crude cell extract or of the culture supernatant, or of any combination thereof, in combination with antibiotics or other antibacterial agents
  • the strain of the invention does not intervene in the survival of the pathogen, but affects the virulence signals and / or signals responsible for the formation of biofilms by the same.
  • said signals are produced by a multitude of pathogens, whereby the strain of the invention can be used to prevent multiple bacterial infections at the same time and therefore to improve the health, survival or productivity of animals in general. Therefore, another aspect of the present invention relates to the use of the strain of the invention, the crude cell extract or the supernatant of its cultures, or any combination thereof, for the preparation of an additive for animal feed.
  • “Additive for animal feed” means any substance, microorganism and / or preparation that is intentionally added to feed or water in contact with animals in order to perform one or more of the following functions: positively influence production, the activity, health or welfare of animals, either through the prevention of infections, or through their performance in the gastrointestinal flora or digestibility of feed, positively influence the survival of animals, positively influence the characteristics of animal products, positively influence the characteristics of feed, meet the nutritional needs of animals, or positively influence the environmental impacts of animal production.
  • the animal feed additive is used to positively influence the productivity of healthy animals, improve animal health and / or prevent bacterial infections by AI-2 producing bacteria. More preferably, said AI-2 producing bacteria are Gram positive.
  • An additive for animal feed can take the form of live microorganisms or cell extract obtained from them, among others.
  • the animal feed additive is a probiotic.
  • Probiotic means any additive for animal feed that includes live microorganisms added that remain active in the intestine and exert physiological effects. Ingested in sufficient quantities, they have very beneficial effects, such as contributing to the balance of the intestinal bacterial flora of the host and boosting the immune system.
  • composition of the invention which comprises an element selected from the list consisting of:
  • Another aspect of the invention relates to the use of the composition of the invention for the preparation of a medicament for the treatment and / or prevention of infections caused by bacteria producing the AI-2 signal.
  • the AI-2 producing bacteria responsible for the infection produce biofilm or a virulence factor by an AI-2 mediated process.
  • the bacteria producing the AI-2 signal are Gram positive.
  • the Gram positive bacteria are selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus bausillusnsus cousulansus, cousulansusus cousulansus ducumusususususus Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium
  • infections caused by bacteria producing the AI-2 signal are due to the formation of bioflms.
  • the biofilm is dental plaque.
  • the bacteria producing the AI-2 signal are Gram positive.
  • Gram positive bacteria are selected from the list consisting of: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Cor
  • composition of the invention further comprises at least one antibiotic and / or another antibacterial agent.
  • antibacterial agent or “antibiotic” is a synthetic or natural chemical substance (synthesized by fungi or bacteria) that inhibits growth (bacteriostatic) or kills (bactericide) bacteria.
  • the antibiotics or antibacterial agents referred to in the present invention are compounds that do not compromise the viability and survival of the strain of the invention.
  • Examples of this type of antibiotics or antibacterial agents are, but are not limited to: amikacin, gentamicin, kanamycin, neomycin, netilmicin, streptomycin, tobramycin, paromomycin, geldanamicin, herbimycin, loracarbef, ertapenem, doripenem, imipenem / cilastatin, cilastamine, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin, cilastatin,
  • composition of the invention may further comprise a pharmaceutically acceptable carrier and / or an excipient.
  • excipient refers to a substance that helps the absorption of the elements of the composition of the invention, stabilizes said elements, activates or aids the preparation of the composition in the sense of giving it consistency.
  • the excipients could have the function of keeping the ingredients together, such as, for example, starches, sugars or cellulose, the sweetening function, the coloring function, the protective function of the composition, for example, to isolate it from air and / or moisture, the filling function of a tablet, capsule or any other form of presentation, such as, for example, is the case of dibasic calcium phosphate, the disintegrating function to facilitate the dissolution of the components and its absorption, without excluding other types of excipients not mentioned in this paragraph.
  • the "pharmaceutically acceptable carrier” is a substance that is used in the composition to dilute any of the components included therein to a certain volume or weight.
  • the pharmacologically acceptable carrier is an inert substance or action analogous to any of the elements included in the composition of the present invention.
  • the function of the vehicle is to facilitate the incorporation of other elements, allow a better dosage and administration or give consistency and form to the composition.
  • the pharmacologically acceptable carrier is the diluent.
  • composition of the present invention can be formulated for administration to an animal, preferably a mammal, including man, in a variety of ways known in the state of the art.
  • preparations include any solid composition (tablets, pills, capsules, granules, etc.) or liquid (solutions, suspensions or emulsions) for oral, topical or parenteral administration.
  • the composition of the present invention may also be in the form of sustained release formulations of drugs or any other conventional release system, so it may be contained, but not limited to, in nanoparticles, liposomes or nanospheres, in a polymeric material, in a polymeric material.
  • Another aspect of the present invention relates to the use of the composition of the invention for the preparation of an additive for animal feed.
  • the animal feed additive is a probiotic.
  • dication refers to any substance used for prevention, relief, treatment or cure of infections in man, animals and plants.
  • this term refers to a preparation comprising at least one bacterial strain of the invention, the crude cell extract of a culture of the bacterial strain of the invention, the supernatant of a culture of the bacterial strain of the invention or the composition of the invention. Infections are caused by pathogenic bacteria that produce AI-2, preferably Gram positive.
  • the medicament referred to in the present invention can be for human or veterinary use.
  • the "medicine for human use” is any substance or combination of substances that is presented as having properties for the treatment or prevention of diseases in humans or that can be used in humans or administered to humans in order to restore, correct or modify physiological functions by exerting a pharmacological, immunological or metabolic action, or establishing a medical diagnosis.
  • veterinary medicinal product is any substance or combination of substances that is presented as having curative properties or preventive with regard to animal diseases or that can be administered to the animal in order to restore, correct or modify its physiological functions by exercising a pharmacological, immunological or metabolic action, or to establish a veterinary diagnosis, including, but not limited to, the premixes Medications
  • Medicated premix or “premix for medicated foods” means any veterinary medicinal product prepared in advance with a view to the subsequent manufacture of medicated foods.
  • Medicated food means any mixture of veterinary medicine (s) and food (s) prepared prior to marketing and intended to be administered to animals without transformation, due to curative or preventive properties or of other properties of the medicine.
  • the medicaments of the invention comprise the bacterial strain of the invention, the crude cell extract of a culture of the bacterial strain of the invention, the supernatant of a culture of the bacterial strain of the invention or the composition of the invention in a therapeutically amount effective, which is capable of preventing or treating bacterial infectious diseases caused by AI-2 producing bacteria or inhibiting the formation of biofilms caused by these bacteria.
  • a "therapeutically effective amount” is the level, amount or concentration of strain of the invention, of crude cell extract of a culture of the bacterial strain of the invention or of supernatant of a culture of the bacterial strain of the invention, which produces the desired effect by treating and / or preventing an infection caused by AI-2 producing bacteria, preferably Gram positive.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as, for example, age, weight, sex, tolerance or type of infection presented by the individual to whom the medication of the invention is to be administered.
  • prevention refers to preventing the occurrence of damage whose cause is bacterial infections. or the formation of biofilms caused by AI-2 producing bacteria, preferably Gram positive.
  • treatment is to combat the effects caused by bacterial infections or by the formation of biofilms caused by bacteria producing AI-2, to stabilize the state of man, animal or plant, or Prevent further damage.
  • AI-2 producing bacteria is Gram positive.
  • infection is the clinical term to describe the colonization of a host organism by microorganisms of other species. In the clinical use of the term infection, the colonizing organism is detrimental to the normal functioning and survival of the host.
  • FIG. 1 Effect of the ECCs (Raw Cell Extract) of strain 20J at a concentration of 100 micrograms per ml_ on the formation of biofilms in microwell plates with Streptococcus mutans (a) and Staphylococcus aureus (b) measured as a cell index with a Xcelligence System (Roche).
  • Controls culture medium (ICC + Sac 0.1% or TSB + 0.25% Glu).
  • the quorum quenching furanone C30 molecule was also tested at a concentration of 0.1 micromolar.
  • FIG. 3 Growth, measured as optical density, of V. harveyi BB170 in AB medium with different concentrations of Crude Cellular Extract (CCE) of the Tenacibaculum discolor 20J strain.
  • Example 1 Interference of Raw Extracts of strain 20J with the formation of biofilms of Gram-positive bacteria.
  • the 20J strain was selected for its high ability to degrade a wide range of AHL signals, signals produced by Gram negative bacteria to communicate and coordinate their actions. It was evaluated whether extracts of strain 20J could interfere with the formation of biofilms. Some crucial oral pathogens such as S. mutants, related to caries formation, are Gram positive bacteria that do not produce AHLs and therefore are not expected to be affected by the action of CCEs (raw cell extracts) of strain 20J . However, since dental plaque is a consortium of Gram positive and Gram negative bacteria, it was studied whether the action of the CCEs of strain 20J could interfere with the formation of this type of biofilms. The experiments were carried out using an XCelligence system (Roche) for online monitoring of biofilm formation in the wells.
  • Example 2 Interference of the cellular extracts of 20J with the QS systems mediated by AI-2.

Abstract

La invención se refiere al uso de una cepa bacteriana de la especie Tenacibaculum discolor, del extracto celular crudo o del sobrenadante de sus cultivos, para provocar quorum quenching en bacterias a través de la inhibición de señales tipo AI-2, y más concretamente para el tratamiento y/o prevención de enfermedades infecciosas y para inhibir la formación de biofilms, producidos por dichas bacterias.

Description

USO DE LA CEPA CECT 7426 PARA PROVOCAR QUORUM QUENCHING DE LA SEÑAL AUTOINDUCTOR-2 (AI-2)
DESCRIPCIÓN
La presente invención se refiere al uso de una cepa bacteriana de la especie Tenacibaculum discolor para el control de enfermedades infecciosas y para inhibir la formación de biofilms producidos por bacterias, a través de la inhibición de las señales de quorum sensing tipo Autoinductor-2 (AI-2). Por tanto, la invención se podría encuadrar en el campo de la biología molecular.
ESTADO DE LA TÉCNICA ANTERIOR
Numerosas especies bacterianas usan un mecanismo de regulación genética coordinada dependiente de la densidad celular. Este mecanismo, conocido como "quorum sensing" (QS), consiste en la producción y liberación de moléculas señal al medio, donde se acumulan controlando la expresión de múltiples genes. Mediante la comunicación por QS las poblaciones bacterianas pueden coordinarse para ejecutar importantes funciones biológicas, muchas de ellas implicadas en la virulencia de importantes patógenos, como: movilidad, "swarming", agregación, luminiscencia, biosíntesis de antibióticos, expresión de factores de virulencia, simbiosis, formación y diferenciación de biofilms, o transferencia de plásmidos por conjugación, entre otros.
En bacterias Gram negativas, las señales de QS más estudiadas y conocidas son las N-acil-homoserin lactonas (AHLs), mientras que las bacterias Gram positivas usan varias moléculas de naturaleza peptídica. Mientras que los receptores de AHLs suelen ser citoplasmáticos, los receptores de los oligopéptidos presentes en Gram positivos suelen estar en la membrana, por lo que la transducción de señales ocurre mediante una cascada de fosforilación. Existe un tercer tipo de señal de QS, el autoinductor denominado Autoinductor- 2 (AI-2). Éste consiste en realidad en una familia de moléculas de estructura similar al diéster furanosil borato descrito por primera vez para Vibrio harveyi, que se encuentra tanto en bacterias Gram positivas como Gram negativas y que son sintetizadas por la proteína LuxS. Por ello, se ha propuesto que AI-2 podría actuar como el lenguaje químico interespecífico más universal (Federle y Bassler, 2003. Journal of Clinical Investigation. 1 12(9): 1291 -1299). Para V. harveyi, AI-2 es un (2S,4S)-2-metil-2,3,3,4-tetrahidroxitetrahidrofurano-borato, mientras que el de S. typhimurium es un (2R,4S)-2-metil-2, 3,3,4- tetrahidroxitetrahidrofurano. La proteína sintetizadora de AI-2 es LuxS y la búsqueda en bases de datos muestra que este gen está muy extendido, estando presente en aproximadamente 60 especies (Williams et al., 2007. Philosophical Transactions of the Royal Society B: Biological Sciences 362: 1 1 19-1 134). En algunas de estas bacterias, los sistemas de QS mediados por AI-2 controlan importantes funciones, incluyendo factores de virulencia y formación de biopelículas (Zhang y Dong, 2004. Molecular Microbiology 53: 1563-1571 ). Así, por ejemplo, se ha mostrado que la deleción del gen luxS en S. mutans afecta a la formación del biofilm (Merritt et al., 2003. Infection and lmmunity l\ {A) 1972-1979).
Dentro de las bacterias en las que se ha descrito la presencia de señales AI-2, existen distintos patógenos, tanto Gram-positivos como Gram-negativos, en los que además ya se ha demostrado un efecto fisiológico de AI-2 y/o de la mutación de su sintetasa (LuxS), tales como: Borrelia burgdorferi, Campilobacter jejuni, Clostridium perfringens, Escherichia coli, Helicobacter pilori, Neisseria meningitidis, Salmonella entérica, Serratia marcescens, Shigella flexneri, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus suis, Streptococcus anginosus, Streptococcus intermedius, Vibrio cholerae, Vibrio vulnificus, Proteus mirabilis, Listeria monocytogenes, Eikenella corrodens, Staphylococcus epidermidis, Staphylococcus aureus, Bacilllus subtilis, Klebsiella pneumoniae, Photorhabdus luminescens, Bacteroides sps, Aeromonas hydrophila y Haemophilus influenzae. Otras bacterias no patógenas pero con importancia biotecnológica en las que también se ha demostrado dicho efecto fisiológico de AI-2 y/o de la mutación de su sintetasa LuxS son Lactobacillus rhamnosus y Lactobacillus reuteri (Vendeviile, A. et al. 2005. Nature Reviews Microbiology 3:383-396; Hardie, K.R. and Heurlier, K. 2008. Nature Reviews Microbiology 6:635-643). En concreto, en Staphylococcus epidermidis y Streptococcus suis, se ha demostrado que las señales AI-2 juegan un papel esencial tanto en la formación de biofilms como en la virulencia de estas bacterias (Xu L, et al. 2006. Infection and Immumty 74(1 ): 488-96). A pesar de que algunos estudios no pudieron demostrar el papel de AI-2 en la expresión de factores de virulencia de S. aureus, estudios más recientes demuestran que esta molécula interviene en la formación de polisacáridos capsulares, que constituyen la base para la formación de biopelículas (Zhao, L. et al., 2010. Infection and immunity 78 (8): 3506-3515). Además, en Streptococcus mutans, S. oralis o S. gordonii, que poseen homólogos de luxS, una mutación de este gen produce biofilms de estructura alterada, demostrándose que las señales AI-2 regulan el proceso de producción de biopelículas en estos patógenos (Yoshida, A; et al. 2005. Applied and Environmental Microbiology 71 (5): 2372-2380). Adicionalmente, se ha descrito el gen luxS en otras bacterias orales tales como Actinobacillus antinomycetemcomitans, con lo que potencialmente deberían producir la señal AI-2.
Como las poblaciones de especies bacterianas coordinadas por QS obtienen importantes ventajas competitivas en sus múltiples interacciones con otros procariotas y eucariotas, sus competidores han desarrollado mecanismos para interferir con su comunicación por sistemas QS. A estos mecanismos se les conoce como "quorum quenching" (QQ).
El documento de patente ES2342807B2 describe el uso de bacterias del género Tenacibaculum, y en concreto de la cepa CECT 7426, para provocar QQ a través de la degradación de AHLs, las señales de QS típicas de bacterias Gram negativas, y por tanto sugiere su uso para el tratamiento de enfermedades infecciosas bacterianas y la inhibición de la formación de biofilms en bacterias Gram negativas que utilicen AHLs como mecanismo de coordinación de su virulencia o como mecanismo para la formación de biofilms.
Se han descrito también estrategias de QQ dirigidas a bacterias Gram positivas cuyo objetivo es el bloqueo del regulador agr (accesory gene regulation) o del gen luxS, que está asociado con la síntesis de AI-2 (Voung et al., 2003. The Journal of Infectious Diseases 188: 706-718; Merritt et al., 2003. Infection and lmmunity l\ {A) 1972-1979).
Una de las actividades bacterianas de mayor importancia clínica y ecológica en la que intervienen los procesos de "quorum sensing" es la formación de biofilms, que requiere la producción, por parte de los microorganismos, de estas moléculas señal difusibles.
Los biofilms son películas biológicas que se desarrollan y persisten en las superficies, y que suelen ser estables y difíciles de eliminar debido a la naturaleza protectora de la matriz de polisacárido en la que están embebidos los microorganismos. Pueden definirse como una población bacteriana encerrada dentro de una matriz de polisacárido que se adhiere a las superficies. Se encuentran generalmente en las superficies de los equipamientos industriales que procesan o transportan líquidos, o en las superficies adyacentes a tales equipamientos. A menudo se encuentran en la superficie de los implantes médicos o en los dispositivos insertados en el organismo. También se pueden formar en áreas del cuerpo que están expuestas al aire; en particular en heridas y en la pleura. Uno de los biofilms biológicos que presenta mayor complejidad y de mayor relevancia clínica es la placa dental.
Los medicamentos convencionales, como por ejemplo, los antibióticos, son poco eficaces en infecciones que cursan a través de la formación de biofilms, debido a las barreras de difusión o al estado metabólico de los microorganismos en el biofilm. Por tanto, mecanismos de interferencia del QS, es decir el QQ, solos o en combinación con antibióticos, constituyen una estrategia interesante en la inhibición de la formación de biofilms, así como en el tratamiento de enfermedades infecciosas por patógenos multirresistentes (March & Bentley, 2004. Current Opinión in Biotechnology 15:495-502). Por ejemplo, se ha propuesto que puede ser útil en el tratamiento de enfermedades, tanto en los animales como en las plantas, provocadas por los géneros Staphylococcus, Pseudomonas, Borrelia, Salmonella, Burkholderia, Serratia, Chromobacterium, Pectobacterium, Erwinia, Agrobacterium, o por otras enterobacterias.
Además, el interés de las estrategias de QQ para el tratamiento de enfermedades infecciosas es que, al no afectar directamente a la supervivencia del patógeno sino a la expresión de los factores de virulencia, no ejercen presión selectiva evitando la aparición de resistencias. Por esta razón, este tipo de estrategia ha sido denominada "anti-infectiva" o "anti-patogénica" en contraste con los "antibióticos" o "antibacterianos" cuyo objetivo es la muerte celular.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere al uso de una cepa de la especie Tenacibaculum discolor, del extracto celular crudo o del sobrenadante de sus cultivos, o cualquiera de sus combinaciones, para provocar quorum quenching a través de la inhibición de las señales de quorum sensing tipo AI-2. Por tanto, el empleo de esta cepa es útil para controlar las infecciones bacterianas provocadas por bacterias que utilicen este mecanismo de coordinación de su virulencia, sin ejercer presión selectiva sobre las poblaciones de las bacterias patógenas y evitando así la aparición de resistencias. También permite la inhibición de otros procesos de colonización bacteriana en los que están implicadas las señales de quorum sensing o QS tipo AI-2 como la formación de biofilms. La presente invención describe por primera vez la capacidad de una cepa bacteriana de Tenacibaculum discolor para interferir con las señales de quorum sensing de tipo AI-2, y por tanto para inhibir procesos de virulencia o de formación de biofilms por parte de importantes patógenos.
Por tanto, un aspecto de la invención se refiere al uso de una cepa bacteriana depositada en la Colección Española de Cultivos Tipo (CECT) con número de depósito CECT 7426, del extracto celular crudo o del sobrenadante de sus cultivos, o cualquiera de sus combinaciones, de ahora en adelante "cepa de la invención" o "cepa 20J", para provocar quorum quenching en bacterias productoras de la señal AI-2.
La cepa depositada en la Colección Española de Cultivos Tipo (CECT) con número de depósito CECT 7426 es la cepa descrita en la solicitud de patente ES2342807B2.
Cualquier bacteria regula su expresión génica en respuesta a diferentes señales medioambientales, una propiedad esencial para competir con otros organismos. En el caso particular de bacterias patógenas, la regulación génica es crucial para permitir la supervivencia de la bacteria en el particular ambiente que le ofrece su hospedador. Los genes de virulencia bacterianos están sujetos a complejos mecanismos de regulación para asegurar la expresión del gen apropiado en el momento apropiado. Los AI-2 son las señales de QS más extendidas en bacterias de todo tipo, y son empleadas por multitud de bacterias patógenas humanas, de plantas y marinas, tanto Gram-positivas como Gram- negativas, para el control de la producción de factores de virulencia.
La proteína sintetizadora de AI-2 es LuxS. Una búsqueda en la base de datos GenBank demuestra que existen numerosas bacterias que poseen homólogos del gen luxS de Vibrio harveyi, la especie de referencia en el estudio de este tipo de señales, y que por tanto son bacterias productoras de AI-2. Las bacterias que poseen homólogos del gen luxS de V. harveyi se muestran en la Tabla 1 .
PROTEOBACTERIA
Porcentaje de homología (%) con el gen luxS de V. harveyi
Vibrio harveyi ATCC BAA-1116 100
AHivibrio ¡ogei 98
AHivibrio saimonicida LFÍ1238 86
Alishewaneüa agri BL06 80
Citrobacter koseri ATCC BAA-895 78
Citrobacter rodentium ¡CC168 78
Citrobacter sp, 30 2 78
Cronobacter sakazakii ES1 77
Cronobacter turicensis z3032 78
Dickeya dadantii 3937 78
Enterobacter cancerogenus A TCC 35316 77
Enterobacter cloacae EcWSUl 77
Enterobacter hormaechei ATCC 49162 77
Enterobacter mori LMG 25706 77
Enterobacter radicincitans DSM 16656 77
Enterobacter sp. Ag1 78
Escherichia aibertü TW07627 79
Escherichia cois CFT073 78
Escherichia cois 0157:H7 str. EDL933 77
Escherichia hermannii NBRC 105704 77
Fe rn monas baleárica DSM 9799 82
Haemophilus parainfiuenzae ATCC 33392 78
Haemophilus pitt aniae HK 85 78 Moritella sp. PE36 78
Neissería cinérea ATCC 14685 81
Neisseria f!avescens NRL30Q31/H210 80
Neissería gonorrhoeae FA 1090 81
Neissería lactamica ATCC 23970 81
Neissería macacae ATCC 33926 80
Neisseria meningitidis NM3081 81
Neissería mucosa ATCC 25996 80
Neissería polysaccharea ATCC 43768 81
Neissería sicca ATCC 29256 80
Neisseria su bf lava NJ9703 80
Oceanimonas sp. GK1 79
Pantoea sp. aB 76
Photobacteríum leiognathi subsp. mandapamensis 81 svers.1.1
Photobacteríum phosphoreum 78
Photobacteríum profundum 3TCK 85
Proteus mirabiiis HI4320 78
Proteus pennerí ATCC 35198 78
Providencia stuartii MRSN 2154 78
Rheinheimera nanhaiensis E407-8 81
Salmonella bongori NCTC 12419 77
Saimoneila entérica subsp. arízonae serovar 62:z4,z23 str. 76 RSK2980
Serratia odorífera DSM 4582 77
Serratia proteamaculans 568 76
Shewaneila amazonensis SB2B 78
Shewaneila báltica OS625 78
Shewaneila benthica KT99 78
Shewaneila halifaxensis HAW-EB4] 76
Shewaneila loihica PV-4 78 Shewanelía oneidensis MR-1 78
Shewanelía peaieana ATCC 700345 77
Shewanelía piezotolerans WP3 77
Shewanelía sedimínis HAW-EB3 77
Shewanelía violácea DSS12 78
Shewanelía woodyi ATCC 51908 78
Shigella flexneri 1235-66 78
Vibrio aestuarianus 85
Vibrio aíginoiyticus 12G01 95
Vibrio anguillarum 775 85
Vibrio angustum S14 82
Vibrio brasíliensis LMG 20546 91
Vibrio campbeiili DS40M4 99
Vibrio cholerae 01 biovar El Tor str. N 16961 86
Vibrio cincinnatiensis 86
Vibrio diazotrophicus 87
Vibrio fischeri ES114 87
Vibrio fíuvialis 85
Vibrio furnissii 85
Vibrio ichthyoenteri ATCC 700023 87
Vibrio mediterránea 89
Vibrio metschnikovii 84
Vibrio mimicus VM603 85
Vibrio nereís 89
Vibrio nigripuichritudo ATCC 27043 85
Vibrio ordalii ATCC 33509 85
Vibrio parahaemoiyticus RIMD 2210633 94
Vibrio pomeroyi 90
Vibrio scophthalmi LMG 19158 88
Vibrio shilonii AK1 88
Vibrio sinaioensis DSM 21326 89 Vibrio splendidus LGP32 90
Vibrio tubíashii 90
Vibrio vuinificus CMCP6 90
Vibrio xuií 92
Yersinia rohdei ATCC 43380 79
SPIROCHAETALES, FIRMICUTES,
ACTINOBACTERIDAE
Porcentaje de homología (%) con el gen luxS de V. harveyi
Vibrio arveyi ATCC BAA-1116 100
Acetohaíohium arabatícum DSM 5501 83
Actsnomyces georgiae F0490 94
Actmomyces odontolyticus ATCC 17982 93
Actsnomyces sp. oral taxon 178 str. F0338 94
Aerococcus virídans ATCC 11563 93
Alkaliphilus oremlandii OhILAs 84
Arthrobacter arilaitensís Re 117 91
Bacillus cellulosiiyticus DSM 2522 83
Bacillus coagulans 36D1 83
Bacillus macauensis ZFHKF-1 83
Bacillus selenitireducens MLS10 83
Bacillus smithii 7_3_47FAA 83
Bifídobacteríum longum subsp. longum BBMN6 41
Bifídobacteríum breve CECT 7263 41
Brachybacteríum faecium DSM 4810 84
Ciostridium botuiinum A3 str. Loch Maree 88
Ciostridium celiuiovorans 743B 88
Ciostridium períringens ATCC 13124 88
Ciostridium sporogenes ATCC 15579 88 Enterococcus faecium E980 89
Gemella haemolysans ATCC 10379 84
Gemella morbillorum M424 84
Gemella sanguinis M325 84
Kurthia sp. JC8E 91
Lactobacillus amylovorus GRL 1112 88
Lactobacillus buc neri NRRL B-3Q929 88
Lactobacillus crispatus JV-V01 88
Lactobacillus farciminis KCTC 3681 88
Lactobacillus gasseri MV-22 88
Lactobacillus helveticus H10 88
Lactobacillus johnsonii NCC 533 88
Lactobacillus kefiranofaciens ZW3 88
Lactobacillus mucosae LM1 88
Lactobacillus uitunensis DSM 16047 88
Lactobacillus versmoidensis KCTC 3814 88
Lentibacilius sp. Grbi 83
Listeria monocytogenes HCC23 83
Oenococcus oeni PSU-1 88
Ornithinibaciiius scapharcae TW25 83
Paenibaciiius alvei DSM 29 88
Pediococcus pentosaceus ATCC 25745 88
Planococcus antarctícus DSM 14505 84
Planococcus donghaensis MPA1U2 83
Propionibacteríum acnés KPA171202 83
Ruminococcus fiavefaciens 46
Soiibacillus siivestris StLB046 83
Sporosarcina newyorkensis 2681 83
Staphyiococcus ariettae CVD059 83
Staphylococcus aureus RF122 84
Staphylococcus capitis SK14 84 Staphylococcus caprae C87 84
Staphylococcus carnosus subsp. carnosus TM3Q0 84
Staphylococcus epidermidis VCU121 84
Staphylococcus haemolyticus JCSC1435 84
Staphylococcus homínis VCU122 84
Staphylococcus lugdunensis HKU09-01 83
Staphylococcus pettenkoferi VCU012 84
Staphylococcus pseudintermedius ED99 84
Staphylococcus saprophyticus subsp. saprophyticus ATCC 84 15305
Staphylococcus simiae CCM 7213 88
Staphylococcus warneri L37603 84
Streptococcus anginosas SK52 = DSM 20563 40
Streptococcus criceti HS-6 40
Streptococcus cristatus ATCC 51100 38
Streptococcus gordonü str. Challis substr. CH1 38
Streptococcus mutans NN2025 38
Streptococcus parasanguínis F0405 37
Streptococcus ratti FA-1 37
Streptococcus sanguinis SK405 39
Thermoanaerobacterium saccharolyticum JW/SL-YS485 84
Thermoanaerobacterium thermosaccharolyticum DSM 571 84
Campyiobacter jejuni subsp. jejuni CG8486 75
Campyiobacter coli 317/04 75
Corynebacterium cases UCMA 3821 37
Corynebacterium pseudogenitalium A TCC 33035 39
Corynebacterium ammoniagenes DSM 20306 38
Corynebacterium tuberculostearícum SK141 39
Corynebacterium aurimucosum ATCC 700975 38
Corynebacterium glucuronolyticum ATCC 51867 38
Corynebacterium accolens ATCC 49725 38 Corynebactenum kroppenstedíii DSM 44385 39
Corynebactenum striatum ATCC 6940 35
Corynebactenum glutamicum ATCC 13032 29
Gordonia polyisoprenivorans NBRC 16320 41
Mycobacieríum sp. MOTT36Y 33
Mycobacieríum intracellulare ATCC 13950 33
Helicobacter cinaedi CCUG 18818 68
Helicobacter hepáticas ATCC 51449 69
Helicobacter biíis ATCC 43879 66
Heücobacter winghamensis ATCC BAA-430 70
Helicobacter canadensis MIT 98-5491 66
Helicobacter pullorum MIT 98-5489 65
Helicobacter pylori B38 41
Borrelia valaisíana VS116 33
Borrelia burgdoríerí B31 33
Borrelia bissettii DN127 33
Borrelia afzelii PKo 33
Borrelia garínii BgVir 33
Actinobacillus minor NM305 74
Actinobacillus pieuropneumoniae serovar 1 str. 4074] 72
Actinobacillus ureae ATCC 25976 72
Actinobacillus succinogenes 130Z 72
Prevotella ruminicola 100
Prevotelia brevis 96
Prevotella tannerae ATCC 51259 34
Prevotelia bryantií B14 32
Porphyromonas asaccharoiytica PR426713P-I 34
Prevotelia buccae ATCC 33574 32
Porphyromonas uenonis 60-3 34
Prevotella ruminicola 23 33
Prevotella bergensis DSM 17361 31 Prevote!la multisaccharivorax DSM 17128 32
Prevote!la meianinogenica ATCC 25845 33
Prevote!ia marshii DSM 16973 33
Prevoteíía oraíis A TCC 33269 31
Prevoteíía timonensis CRIS 5C-B 1 32
Prevoteíía dentaiis DSM 3688 33
Porphyromonas gingivaíis ATCC 33277 29
Tabla 1 : Bacterias que poseen homólogos del gen luxS (gen responsable de producción de la señal AI-2) de V. harveyi (GenBank).
Además, existen bacterias no mostradas en la Tabla 1 pero para las que ya se ha demostrado un efecto fisiológico de AI-2 y/o de la mutación de su sintetasa (LuxS), tales como Serratia marcescens, Streptococcus pneumoniae, Streptococcus oralis, Streptococcus pyogenes, Streptococcus suis, Streptococcus intermedius, Eikenella corrodens, Bacillus subtilis, Klebsiella pneumoniae, Photorhabdus luminescens, Bacteroides sp., Aeromonas hydrophila, Haemophilus influenzae, Lactobacillus rhamnosus y Lactobacillus reuteri (Vendeviile, A. et al. 2005. Nature Reviews Microbiology 3:383-396; Hardie, K.R. and Heurlier, K. 2008. Nature Reviews Microbiology 6:635-643).
Por tanto, en la presente invención se entiende por "bacteria productora de Al- 2" cualquier especie seleccionada de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum,
Acetohalobium arabaticum, Actinobacillus minor, Actinobacillus pleuropneumoniae, Actinobacillus ureae, Actinobacillus succinogenes, Aeromonas hydrophila, Alishewanella agri, Aliivibrio logei, Aliivibrio salmonicida, Bacteroides sp., Borrelia afzelii, Borrelia bissettii, Borrelia burgdorferi, Borrelia garinii, Borrelia valaisiana, Campylobacter jejuni, Campylobacter coli, Citrobacter koseri, Citrobacter rodentium, Citrobacter sp., Cronobacter sakazakii, Cronobacter turicensis, Dickeya dadantii, Eikenella corrodens Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter hormaechei, Enterobacter morí, Enterobacter radicincitans, Enterobacter sp., Escherichia albertii, Escherichia coli, Escherichia hermannii, Ferrimonas baleárica, Haemophilus influenzae, Haemophilus parainfluenzae, Haemophilus pittmaniae, Helicobacter bilis, Helicobacter canadensis, Helicobacter cinaedi, Helicobacter hepaticus, Helicobacter pullorum, Helicobacter pylori, Helicobacter winghamensis, Klebsiella pneumoniae, Moritella sp, Neisseria cinérea, Neisseria flavescens, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria macacae, Neisseria meningitidis, Neisseria mucosa, Neisseria polysaccharea, Neisseria sicca, Neisseria subflava, Oceanimonas sp, Pantoea sp., Photobacterium leiognathi, Photobacterium phosphoreum, Photobacterium profundum, Photorhabdus luminescens, Porphyromonas asaccharolytica, Porphyromonas gingivalis, Porphyromonas uenonis, Prevotella bergensis, Prevotella brevis, Prevotella bryantii, Prevotella buccae, Prevotella dentalis, Prevotella marshii, Prevotella melaninogenica, Prevotella multisaccharivorax, Prevotella ruminicola, Prevotella tannerae, Prevotella oralis, Prevotella timonensis, Proteus mirabilis, Proteus penneri, Providencia stuartii, Rheinheimera nanhaiensis, Salmonella bongori, Salmonella entérica, Serratia marcescens, Serratia odorífera, Serratia proteamaculans, Shewanella amazonensis, Shewanella báltica, Shewanella benthica, Shewanella halifaxensis, Shewanella loihica, Shewanella oneidensis, Shewanella pealeana, Shewanella piezotolerans, Shewanella sediminis, Shewanella violácea, Shewanella woodyi, Shigella flexneri, Vibrio aestuarianus, Vibrio alginolyticus, Vibrio anguillarum, Vibrio angustum, Vibrio brasiliensis, Vibrio campbellii, Vibrio cholerae, Vibrio cincinnatiensis, Vibrio diazotrophicus, Vibrio fischeri, Vibrio fluvialis, Vibrio furnissii, Vibrio harveyi, Vibrio ichthyoenteri, Vibrio mediterranei, Vibrio metschnikovii, Vibrio mimicus, Vibrio nereis, Vibrio nigripulchritudo, Vibrio ordalii, Vibrio parahaemolyticus, Vibrio pomeroyi, Vibrio scophthalmi, Vibrio shilonii, Vibrio sinaloensis, Vibrio splendidus, Vibrio tubiashii, Vibrio vulnificus, Vibrio xuii, Yersinia rohdei.
Se entiende por "bacteria productora de AI-2 Gram negativa" cualquier especie seleccionada de la lista que consiste en: Acetohalobium arabaticum, Actinobacillus minor, Actinobacillus pleuropneumoniae, Actinobacillus ureae, Actinobacillus succinogenes, Aeromonas hydrophila, Alishewanella agri, Aliivibrio logei, Aliivibrio salmonicida, Bacteroides sp., Borrelia afzelii, Borrelia bissettii, Borrelia burgdorferi, Borrelia garinii, Borrelia valaisiana, Campylobacter jejuni, Campylobacter coli, Citrobacter koseri, Citrobacter rodentium, Citrobacter sp., Cronobacter sakazakii, Cronobacter turicensis, Dickeya dadantii, Eikenella corrodens Enterobacter cancerogenus, Enterobacter cloacae, Enterobacter hormaechei, Enterobacter morí, Enterobacter radicincitans, Enterobacter sp., Escherichia albertii, Escherichia coli, Escherichia hermannii, Ferrimonas baleárica, Haemophilus influenzae, Haemophilus parainfluenzae, Haemophilus pittmaniae, Helicobacter bilis, Helicobacter canadensis, Helicobacter cinaedi, Helicobacter hepaticus, Helicobacter pullorum, Helicobacter pylori, Helicobacter winghamensis, Klebsiella pneumoniae, Moritella sp, Neisseria cinérea, Neisseria flavescens, Neisseria gonorrhoeae, Neisseria lactamica, Neisseria macacae, Neisseria meningitidis, Neisseria mucosa, Neisseria polysaccharea, Neisseria sicca, Neisseria subflava, Oceanimonas sp, Pantoea sp., Photobacterium leiognathi, Photobacterium phosphoreum, Photobacterium profundum, Photorhabdus luminescens, Porphyromonas asaccharolytica, Porphyromonas gingivalis, Porphyromonas uenonis, Prevotella bergensis, Prevotella brevis, Prevotella bryantii, Prevotella buccae, Prevotella dentalis, Prevotella marshii, Prevotella melaninogenica, Prevotella multisaccharivorax, Prevotella ruminicola, Prevotella tannerae, Prevotella oralis, Prevotella timonensis, Proteus mirabilis, Proteus penneri, Providencia stuartii, Rheinheimera nanhaiensis, Salmonella bongori, Salmonella entérica, Serratia marcescens, Serratia odorífera, Serratia proteamaculans, Shewanella amazonensis, Shewanella báltica, Shewanella benthica, Shewanella halifaxensis, Shewanella loihica, Shewanella oneidensis, Shewanella pealeana, Shewanella piezotolerans, Shewanella sediminis, Shewanella violácea, Shewanella woodyi, Shigella flexneri, Vibrio aestuarianus, Vibrio alginolyticus, Vibrio anguillarum, Vibrio angustum, Vibrio brasiliensis, Vibrio campbellii, Vibrio cholerae, Vibrio cincinnatiensis, Vibrio diazotrophicus, Vibrio fischeri, Vibrio fluvialis, Vibrio furnissii, Vibrio harveyi, Vibrio ichthyoenteri, Vibrio mediterranei, Vibrio metschnikovii, Vibrio mimicus, Vibrio nereis, Vibrio nigripulchritudo, Vibrio ordalii, Vibrio parahaemolyticus, Vibrio pomeroyi, Vibrio scophthalmi, Vibrio shilonii, Vibrio sinaloensis, Vibrio splendidus, Vibrio tubiashii, Vibrio vulnificus, Vibrio xuii, Yersinia rohdei.
Dentro de las bacterias productoras de AI-2 Gram negativas, las únicas especies en las que a su vez se ha descrito la producción de señales de QS tipo AHL (acil homoserín lactonas) son aquellas pertenecientes al género Vibrio. Por tanto, las especies del género Vibrio son las únicas que producen ambos tipos de señales de QS: AHL y AI-2.
Se entiende por "bacteria productora de AI-2 Gram positiva" cualquier especie seleccionada de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum.
En una realización preferida de la invención, las bacterias productoras de AI-2 producen biofilm o un factor de virulencia mediante un proceso mediado por Al- 2.
En otra realización preferida de la invención, las bacterias productoras de la señal AI-2 son Gram positivas. En una realización más preferida, las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnes, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum.
En una realización más preferida de la invención, las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
Staphylococcus aureus es un patógeno que puede producir una amplia gama de enfermedades, que van desde infecciones cutáneas y de las mucosas relativamente benignas, tales como foliculitis, forunculosis o conjuntivitis, hasta enfermedades de riesgo vital, como celulitis, abscesos profundos, osteomielitis, meningitis, sepsis, endocarditis o neumonía. Además, también puede afectar al aparato gastrointestinal, ya sea por presencia física de Staphylococcus aureus o por la ingesta de la enterotoxina estafilocócica secretada por la bacteria. En la actualidad, este microorganismo se encuentra como el principal causante de las infecciones nosocomiales. Esta situación se ve favorecida por el hecho de que esta especie habita tanto en las mucosas como en la piel de los seres humanos, lo que permite que a través de las heridas quirúrgicas pueda penetrar en el torrente sanguíneo del paciente por medio del contacto directo o indirecto con el personal sanitario, con un objeto contaminado o incluso con otro paciente. Esta especie forma biopelículas que colonizan catéteres, drenajes e implantes, favoreciendo la contaminación y la resistencia a antibióticos.
Las cepas habituales de Staphylococcus aureus son resistentes a la penicilina, dejando como los antibióticos más eficaces para combatirlos a los aminoglucósidos, las cefalosporinas, la oxacilina o la nafcilina. La aparición de cepas de S. aureus resistentes a la meticilina y vancomicina representa un serio problema sanitario. Su patogenicidad está determinada por la presencia de adhesinas asociadas a su superficie, superantígenos, exoenzimas y exotoxinas que están reguladas por distintos sistemas regulatorios, entre el que se encuentra el sistema de QS Agr (accessory gene regulator), mediado por señales de tipo peptídico, y que controla la expresión de aproximadamente 150 genes. S. aureus también presenta un gen luxS funcional, y posee la capacidad de producir la molécula señal AI-2.
Streptococcus mutans es un importante patógeno de la cavidad oral, que también forma biopelículas y que ha sido identificado como uno de los responsables de la formación de la placa dental.
En la presente invención se entiende por "quorum quenching" o "QQ" el mecanismo mediante el cual se interfiere en la comunicación microbiana, preferiblemente de bacterias patógenas, mediada por señales basadas en un sistema quorum sensing o QS, preferiblemente mediado por AI-2. Este mecanismo QQ afecta negativamente a, por ejemplo, aunque sin limitarnos, la expresión de factores de virulencia de la población microbiana sin provocar la muerte celular. Dado que la cepa bacteriana de la invención es capaz de interferir con las señales AI-2, y por tanto de impedir la producción de factores de virulencia por parte de importantes patógenos, ello impedirá que dicho patógeno pueda coordinar su ataque y por tanto lanzar una infección. Por ello, el uso de la cepa de la invención puede permitir el tratamiento y la prevención de enfermedades infecciosas provocadas por patógenos que produzcan la señal de quorum AI-2.
Por tanto, otro aspecto de la presente invención se refiere al uso de la cepa de la invención, del extracto celular crudo o del sobrenadante de sus cultivos, o de cualquiera de sus combinaciones, para la elaboración de un medicamento para el tratamiento y/o prevención de infecciones provocadas por bacterias productoras de la señal de quorum sensing AI-2. En una realización preferida, las bacterias productoras de AI-2 responsables de la infección producen biofilm o un factor de virulencia mediante un proceso mediado por AI-2. Preferiblemente, las bacterias productoras de la señal AI-2 responsables de la infección son Gram positivas. En una realización más preferida, las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnes, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum. En una realización más preferida de la invención, las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
En una realización aun más preferida, las infecciones provocadas por bacterias productoras de la señal AI-2 son debidas a la formación de bioflms. Las bacterias Gram positivas que forman biofilm pueden ser, pero sin limitarse, bacterias de la cavidad oral tales como las causantes de caries y enfermedad periodontal. Por ello, en una realización más preferida, el biofilm es placa dental.
Los biofilms bacterianos son una causa común de infecciones bacterianas, tanto en humanos, como en animales y plantas. Los biofilms o biopelículas, tal y como se definen en esta memoria, son comunidades de microorganismos que crecen embebidos en una matriz de exopolisacáridos y adheridos a una superficie inerte o un tejido vivo. Es una comunidad de bacterias (de una única especie o varias), que se adhiere a una superficie sólida. Se ha demostrado el papel de la molécula de QS AI-2 en la formación de biopelículas de los patógenos oportunistas Gram-positivos como por ejemplo, aunque sin limitarnos, Staphylococcus aureus, S. epidermidis y de distintas especies de Streptococcus, incluyendo la cepa involucrada en la formación de la placa dental S. mutans. La inhibición de las señales tipo AI-2 permitiría inhibir la formación de biopelículas formadas por procesos controlados por QS, tal y como demuestra el efecto de distintas furanonas, moléculas capaces de interferir en los procesos de QS, sobre la formación de biopelículas por parte de Staphycoloccus aureus y Streptococcus mutans.
Los mecanismos por los que el biofilm produce los síntomas de la enfermedad todavía no están completamente establecidos, pero se ha sugerido que las bacterias del biofilm pueden producir exotoxinas, se pueden liberar grupos de bacterias al torrente sanguíneo, se vuelven resistentes a la acción fagocitaria de las células del sistema inmune y por otro lado, constituyen un nicho para la aparición de bacterias resistentes a los tratamientos antibióticos. Este último aspecto puede ser especialmente relevante dado que las bacterias resistentes originadas en un biofilm podrían extenderse de paciente a paciente a través de las manos del personal sanitario.
La placa dental o bacteriana, llamada también biofilm dental, es una capa blanda y pegajosa que se encuentra en la boca y que crece adhiriéndose en la parte baja de los dientes, cerca de las encías. Se trata de una acumulación heterogénea de una comunidad microbiana variada, aerobia y anaerobia, rodeada por una matriz intercelular de polímeros de origen salival y microbiano. Estos microorganismos pueden adherirse o depositarse entre los dientes y/o sobre las paredes de las piezas dentarias. Si los microorganismos consiguen los sustratos necesarios para sobrevivir y persisten mucho tiempo sobre la superficie dental, pueden organizarse y causar caries, gingivitis o enfermedad periodontal (enfermedades de las encías). Por otro lado, como se ha explicado anteriormente, la contaminación biológica de superficies por formación de biofilms es común, pudiendo desarrollarse el biofilm sobre superficies hidrófobas, hidrófilas, bióticas o abióticas, y conduce a la degradación del material, productos de contaminación, bloqueo mecánico e impedancia de la transferencia de calor en procesos acuáticos. Los biofilms son también la primera causa de la contaminación biológica de sistemas de distribución de agua potable, y otras conducciones, siendo especialmente importante el control de biofilms en los sistemas antiincendios.
Por ello, otro aspecto de la invención se refiere al uso de la cepa de la invención, del extracto celular crudo o del sobrenadante de sus cultivos, o de cualquiera de sus combinaciones, para inhibir la formación ex vivo de biofilms producidos por bacterias productoras de la señal AI-2. Dicha formación ex vivo se refiere a la formación de biofilms fuera del cuerpo humano o animal.
Además, el uso de la cepa bacteriana de la invención en combinación con antibióticos u otros agentes antibacterianos puede ser una estrategia interesante en la prevención y/o el tratamiento de enfermedades infecciosas provocadas por patógenos multi-resistentes y en la inhibición de la formación ex vivo de biofilms. Por ello, otra realización preferida de la invención se refiere a todos los usos descritos en la presente invención de la cepa de la invención, del extracto celular crudo o del sobrenadante de sus cultivos, o de cualquiera de sus combinaciones, en combinación con antibióticos u otros agentes antibacterianos.
Como se ha mencionado anteriormente, la cepa de la invención no interviene en la supervivencia del patógeno, sino que afecta a las señales de virulencia y/o señales responsables de la formación de biofilms por parte del mismo. Además, dichas señales son producidas por multitud de patógenos, por lo que la cepa de la invención puede ser utilizada para prevenir múltiples infecciones bacterianas al mismo tiempo y por tanto para mejorar la salud, la supervivencia o la productividad de los animales de forma general. Por ello, otro aspecto de la presente invención se refiere al uso de la cepa de la invención, del extracto celular crudo o del sobrenadante de sus cultivos, o de cualquiera de sus combinaciones, para la elaboración de un aditivo para alimentación animal. Se entiende por "aditivo para alimentación animal" cualquier sustancia, microorganismo y/o preparado que se añade intencionadamente a los piensos o al agua en contacto con los animales a fin de realizar una o varias de las funciones siguientes: influir positivamente en la producción, la actividad, la salud o el bienestar de los animales, ya sea a través de la prevención de infecciones, o a través de su actuación en la flora gastrointestinal o la digestibilidad de los piensos, influir positivamente en la supervivencia de los animales, influir positivamente en las características de los productos animales, influir positivamente en las características del pienso, satisfacer las necesidades alimenticias de los animales, o influir positivamente en las repercusiones medioambientales de la producción animal. En una realización preferida de la invención, el aditivo para alimentación animal es utilizado para influir positivamente en la productividad de los animales sanos, mejorar la salud de los animales y/o prevenir infecciones bacterianas por parte de bacterias productoras de AI-2. Más preferiblemente, dichas bacterias productoras de AI-2 son Gram positivas.
Un aditivo para alimentación animal puede tomar la forma de microorganismos vivos o de extracto celular obtenido a partir de los mismos, entre otros.
Por ello, en una realización preferida de este aspecto de la invención, el aditivo para alimentación animal es un probiótico. Se entiende por "probiótico" cualquier aditivo para alimentación animal que comprende microorganismos vivos adicionados que permanecen activos en el intestino y ejercen efectos fisiológicos. Ingeridos en cantidades suficientes, tienen efectos muy beneficiosos, como contribuir al equilibrio de la flora bacteriana intestinal del huésped y potenciar el sistema inmunitario. Otro aspecto de la invención se refiere al uso de una composición, de ahora en adelante "composición de la invención", que comprende un elemento seleccionado de la lista que consiste en:
a. una cepa bacteriana depositada en la Colección Española de Cultivos Tipo con número de depósito CECT 7426,
b. el extracto celular crudo de un cultivo de la cepa bacteriana de a),
c. el sobrenadante de un cultivo de la cepa bacteriana de a), o cualquiera de sus combinaciones, para provocar quorum quenching en bacterias productoras de la señal AI-2.
Otro aspecto de la invención se refiere al uso de la composición de la invención para la elaboración de un medicamento para el tratamiento y/o prevención de infecciones provocadas por bacterias productoras de la señal AI-2. En una realización preferida, las bacterias productoras de AI-2 responsables de la infección producen biofilm o un factor de virulencia mediante un proceso mediado por AI-2. Preferiblemente, las bacterias productoras de la señal AI-2 son Gram positivas. En una realización más preferida, las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum. En una realización más preferida de la invención, las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
En una realización aun más preferida, las infecciones provocadas por bacterias productoras de la señal AI-2 son debidas a la formación de bioflms. En una realización aun más preferida, el biofilm es placa dental.
Otro aspecto de la invención se refiere al uso de la composición de la invención para inhibir la formación ex vivo de biofilms producidos por bacterias productoras de la señal AI-2. Preferiblemente, las bacterias productoras de la señal AI-2 son Gram positivas. En una realización más preferida, las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum. En una realización más preferida de la invención, las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
En otra realización preferida, la composición de la invención además comprende al menos un antibiótico y/u otro agente antibacteriano.
Un "agente antibacteriano" u "antibiótico" es una sustancia química sintética o natural (sintetizada por hongos o bacterias) que inhibe el crecimiento (bacteriostático) o mata (bactericida) a las bacterias.
Los antibióticos o agentes antibacterianos a los que se refiere la presente invención son compuestos que no comprometen la viabilidad y supervivencia de la cepa de la invención. Ejemplos de este tipo de antibióticos u agentes antibacterianos son, aunque sin limitarnos: amikacina, gentamicina, kanamicina, neomicina, netilmicina, estreptomicina, tobramicina, paromomicina, geldanamicina, herbimicina, loracarbef, ertapenem, doripenem, imipenem/cilastatin, meropenem, cefadroxilo, cefazolina, cefalotina, cefalexina, cefaclor, cefamandol, cefoxitina, cefprozil, cefuroxima, cefixima, cefdinir, cefditoren, cefoperazona, cefotaxima, cefpodoxima, ceftazidima, ceftibuten, ceftizoxima, ceftriaxona, cefepime, ceftobiprole, teicoplanin, vancomicina, azitromicina, claritromicina, diritromicina, eritromicina, roxitromicina, troleandomicina, telitromicina, espectinomicina, aztreonam, amoxicilina, ampicilina, azlocilina, carbenicilina, cloxacilina, dicloxacilina, flucloxacilina, mezlocilina, meticilina, nafcilina, oxacilina, penicilina, piperacilina, ticarcilina, bacitracina, colistina, ciprofloxacino, enoxacino, gatifloxacino, levofloxacino, lomefloxacino, moxifloxacino, norfloxacino, ofloxacin, trovafloxacino, grepafloxacino, sparfloxacino, temafloxacino, mafenide, sulfonamidocrisoidina, sulfacetamida, sulfadiazina, sulfametizol, sulfanilimidae, sulfasalazina, sulfisoxazol, trimetoprim, trimetoprim-sulfametoxazol (co-trimoxazol), demeclociclina, doxiciclina, minociclina, oxitetraciclina, tetraciclina, arsfenamina, cloranfenicol, clindamicina, lincomicina, etambutol , fosfomicina, ácidofusídico , furazolidona, isoniacida, linezolida, metronidazol, mupirocina, nitrofurantoina, platensimicina, pirazinamida, quinupristin/dalfopristin, rifampicina, tiamfenicol, tinidazol, dapsona y clofazimina.
La composición de la invención puede comprender además un vehículo farmacéuticamente aceptable y/o un excipiente.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción de los elementos de la composición de la invención, estabiliza dichos elementos, activa o ayuda a la preparación de la composición en el sentido de darle consistencia. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos, como por ejemplo es el caso de almidones, azúcares o celulosas, la función de endulzar, la función de colorante, la función de protección de la composición, como por ejemplo, para aislarla del aire y/o la humedad, la función de relleno de una pastilla, cápsula o cualquier otra forma de presentación, como por ejemplo, es el caso del fosfato de calcio dibásico, la función desintegradora para facilitar la disolución de los componentes y su absorción, sin excluir otro tipo de excipientes no mencionados en este párrafo.
El "vehículo farmacéuticamente aceptable", al igual que el excipiente, es una sustancia que se emplea en la composición para diluir cualquiera de los componentes comprendidos en ella hasta un volumen o peso determinado. El vehículo farmacológicamente aceptable es una sustancia inerte o de acción análoga a cualquiera de los elementos comprendidos en la composición de la presente invención. La función del vehículo es facilitar la incorporación de otros elementos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición. Cuando la forma de presentación es líquida, el vehículo farmacológicamente aceptable es el diluyente.
La composición de la presente invención puede formularse para su administración a un animal, preferiblemente a un mamífero, incluyendo al hombre, en una variedad de formas conocidas en el estado de la técnica. Como ejemplos de preparaciones se incluye cualquier composición sólida (comprimidos, pildoras, cápsulas, gránulos, etc.) o líquida (soluciones, suspensiones o emulsiones) para administración oral, tópica o parenteral. La composición de la presente invención también puede estar en forma de formulaciones de liberación sostenida de drogas o de cualquier otro sistema convencional de liberación, así puede estar contenida, aunque sin limitarnos, en nanopartículas, liposomas o nanosferas, en un material polimérico, en un implante biodegradable o no biodegradable o en micropartículas biodegradables, como por ejemplo, microesferas biodegradables.
Otro aspecto de la presente invención se refiere al uso de la composición de la invención para la elaboración de un aditivo para alimentación animal. En una realización preferida, el aditivo para alimentación animal es un probiótico.
El término "medicamento", tal y como se usa en esta memoria, hace referencia a cualquier sustancia usada para prevención, alivio, tratamiento o curación de infecciones en el hombre, animales y plantas. En el contexto de la presente invención este término se refiere a una preparación que comprenda al menos una cepa bacteriana de la invención, el extracto celular crudo de un cultivo de la cepa bacteriana de la invención, el sobrenadante de un cultivo de la cepa bacteriana de la invención o la composición de la invención. Las infecciones son provocadas por bacterias patógenas productoras de AI-2, preferiblemente Gram positivas.
El medicamento al que se refiere la presente invención puede ser de uso humano o veterinario. El "medicamento de uso humano" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades para el tratamiento o prevención de enfermedades en seres humanos o que pueda usarse en seres humanos o administrarse a seres humanos con el fin de restaurar, corregir o modificar las funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico médico. El "medicamento de uso veterinario" es toda sustancia o combinación de sustancias que se presente como poseedora de propiedades curativas o preventivas con respecto a las enfermedades animales o que pueda administrarse al animal con el fin de restablecer, corregir o modificar sus funciones fisiológicas ejerciendo una acción farmacológica, inmunológica o metabólica, o de establecer un diagnóstico veterinario, incluyendo, pero sin limitarse, a las premezclas medicamentosas. Se entiende por "premezcla medicamentosa" o "premezcla para alimentos medicamentosos", todo medicamento veterinario preparado de antemano con vistas a la fabricación ulterior de alimentos medicamentosos. Se entiende por "alimento medicamentoso" a toda mezcla de medicamento(s) veterinario(s) y de alimento(s) preparada previamente a su comercialización y destinada a ser administrada a los animales sin transformación, en razón de las propiedades curativas o preventivas o de otras propiedades del medicamento.
Los medicamentos de la invención comprenden la cepa bacteriana de la invención, el extracto celular crudo de un cultivo de la cepa bacteriana de la invención, el sobrenadante de un cultivo de la cepa bacteriana de la invención o la composición de la invención en una cantidad terapéuticamente efectiva, que es capaz de prevenir o tratar enfermedades infecciosas bacterianas provocadas por bacterias productoras de AI-2 o de inhibir la formación de biofilms provocados por estas bacterias. Una "cantidad terapéuticamente efectiva" es el nivel, cantidad o concentración de cepa de la invención, de extracto celular crudo de un cultivo de la cepa bacteriana de la invención o de sobrenadante de un cultivo de la cepa bacteriana de la invención, que produzca el efecto deseado tratando y/o previniendo una infección provocada por bacterias productoras de AI-2, preferiblemente Gram positivas. La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo, tolerancia o tipo de infección que presente el individuo al que le va a ser administrado el medicamento de la invención.
El término "prevención", tal como se entiende en la presente invención, se refiere a evitar la aparición de daños cuya causa sean infecciones bacterianas o la formación de biofilms provocados por bacterias productoras de AI-2, preferiblemente Gram positivas.
El término "tratamiento", tal como se entiende en la presente invención, supone combatir los efectos causados por infecciones bacterianas o por la formación de biofilms provocados por bacterias productoras de AI-2, para estabilizar el estado del hombre, animal o planta, o prevenir daños posteriores. Preferiblemente, la bacteria productora de AI-2 es Gram positiva.
El término "infección" es el término clínico para describir la colonización de un organismo huésped por microorganismos de otras especies. En la utilización clínica del término infección, el organismo colonizador es perjudicial para el funcionamiento normal y supervivencia del huésped.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
DESCRIPCIÓN DE LAS FIGURAS
FIG. 1. Efecto de los ECCs (Extracto Celular Crudo) de la cepa 20J a una concentración de 100 microgramos por ml_ sobre la formación de biofilms en placas de micropocillos con Streptococcus mutans (a) y Staphylococcus aureus (b) medidas como índice celular con un Xcelligence System (Roche). Controles: medio de cultivo (ICC+Sac 0.1 % o TSB+0,25% Glu). La molécula de quorum quenching furanona C30 (Fur-C30) también se ensayó a una concentración de 0,1 micromolar. FIG. 2. Evolución temporal (5-24 horas) de la producción de luz en diferentes cepas de la especie marina bioluminiscente Vibrio harveyi cultivadas en medio AB en placas de micropocillos (columnas de la izquierda, C) y en medio AB con la adición de CCEs (Extracto Celular Crudo) de la cepa 20J (columnas de la derecha, 100 ug / mi de proteína). La cepa BB120 es la cepa salvaje en la que los tres sistemas de QS que controlan la producción de luz están activos (AHL+, AI-2+, CAI-1 +). El efecto QQ de los extractos de la cepa 20J (20J-CCE) se hace evidente en el retraso en la aparición de la luz. En la cepa BB170 sólo los canales de AI-2 y CAI-1 están activos, y por lo tanto la producción de luz en esta cepa biosensora no se ve afectada por la actividad de QQ mediada por AHL. En esta cepa también es evidente que la adición de los ECCs de la cepa 20J retrasa la producción de luz. Por último, en la cepa JMH597 sólo el canal de AI-2 está activo (AHL-, AI-2 +, CAI-1 -) y no se produce luz en la columna de la derecha. Estos resultados son consistentes con la hipótesis de la presencia de actividad QQ contra AI-2 en el extracto de la cepa 20J (20J-CCE).
FIG. 3. Crecimiento, medido como densidad óptica, de V. harveyi BB170 en medio AB con distintas concentraciones de Extracto Celular Crudo (CCE) de la cepa Tenacibaculum discolor 20J. Estos resultados demuestran que los cambios producidos por el ECC de 20J en la producción de luz por esta cepa (Figura 2) no derivan de una acción sobre el crecimiento, sino sobre el sistema de señales que controla los genes de la luciferasa.
EJEMPLOS
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto que tanto la cepa 20J como sus extractos son capaces de interferir con las señales AI-2 en una cepa biosensora de V. harveyi, y además que son capaces de inhibir la formación de biofilms por parte de importantes patógenos Gram positivos como S. mutans (típico de la cavidad oral y responsable de la formación de caries y de placa dental) y S. aureus, que utilizan la señal AI-2 como mediadora para la formación de estos biofilms. Estos ejemplos específicos que se proporcionan sirven para ilustrar la naturaleza de la presente invención y se incluyen solamente con fines ilustrativos, por lo que no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ilustran la invención sin limitar el campo de aplicación de la misma.
Ejemplo 1. -Interferencia de Extractos Crudos de la cepa 20J con la formación de biofilms de bacterias Gram-positivas.
La cepa 20J fue seleccionada por su alta capacidad para degradar un amplio rango de señales AHLs, señales producidas por bacterias Gram negativas para comunicarse y coordinar sus acciones. Se evaluó si extractos de la cepa 20J podían interferir con la formación de biofilms. Algunos patógenos orales cruciales como S. mutants, relacionados con la formación de caries, son bacterias Gram positivas que no producen AHLs y que por tanto no se espera que se vean afectadas por la acción de los CCEs (extractos celulares crudos) de la cepa 20J. Sin embargo, dado que la placa dental es un consorcio de bacterias Gram positivas y Gram negativas, se estudió si la acción de los CCEs de la cepa 20J podría interferir con la formación de este tipo de biofilms. Los experimentos se llevaron a cabo empleando un XCelligence system (Roche) para la monitorización online de la formación de biofilm en los pocilios. Se añadieron 8 μί de CCE a 200 μί de una mezcla 1 :1 de medio:saliva. También se ensayó la misma cantidad de CEE sobre cultivos puros de S. mutans (responsable de la formación de caries) y una cepa de S. aureus (dos bacterias que no producen AHLs, sino AI-2). La furanona C30, una molécula que interfiere con los sistemas de QS basados en AHL y con los basados en AI-2, también se testó como control positivo. La adición de extractos de la cepa 20J produjo una fuerte inhibición en la formación de biofilms por parte de S. mutans (Figura 1 a). La furanona también produjo una inhibición en la formación de biofilm, pero en un grado mucho menor que el extracto de 20J. Un efecto inhibitorio similar se observó sobre los biofilms de Staphylococcus aureus (Figura 1 b). También se observó un efecto inhibitorio similar en los biofilms orales (datos no mostrados), aunque la reducción del índice celular no fue tan dramático como para los biofilms de S. aureus y S. mutans.
Se llevó a cabo un segundo experimento en el que se testaron los CCEs de las cepas 20J y 177, esta última una cepa de α-Proteobacteria depositada en la Colección Española de Cultivos Tipo (CECT) con número de depósito CECT 7733 y descrita en el documento de patente ES2372247 B2. Se confirmó el efecto inhibitorio de los extractos CCEs de 20J sobre la formación de biofilms de S. mutans y S. aureus (datos no mostrados). Además, para confirmar que el efecto observado en la inhibición de la formación de biofilms no era debido a una inhibición del crecimiento de los patógenos por parte de la cepa 20J, se evaluó la adición de extractos de la cepa 20J a cultivos planctónicos (sin condiciones de inducción de formación de biofilm) de los patógenos mediante monitorización de la D.O. (densidad óptica). No se observó inhibición del crecimiento de los patógenos en cultivo, por lo que se constató que el efecto inhibitorio observado en la formación de biofilms en los pocilios es debido a la interferencia de 20J con los mecanismos de adherencia de los patógenos, y no a un efecto inhibitorio en su crecimiento. Sin embargo, esto no significa que los extractos CCEs de 20J actúen específicamente a través de la interferencia con los procesos de QQ implicados en la formación de biofilms. El CCE de la cepa 177 no tuvo un efecto significativo sobre la formación de biofilm por parte de estas dos especies patógenas.
Ejemplo 2.- Interferencia de los extractos celulares de 20J con los sistemas de QS mediados por AI-2.
Dado que ninguna de las cepas testadas en los experimentos de biofilms producen AHLs, pero sí AI-2, una hipótesis alternativa para explicar la interferencia con la formación de biofilms es que los CEEs de 20J interfieren con los canales de QS de AI-2 a través del mismo o distinto mecanismo que el que afecta los canales de QS mediados por AHLs. Para ello, se emplearon cepas mutantes de V. harveyi que tienen afectados distintos canales de QS. V. harveyi tiene 3 canales de QS distintos que actúan simultáneamente para controlar la producción de bioluminiscencia: un canal mediado por AHL, un canal mediado por AI-2 y un tercer canal mediado por una señal llamada CAI. Se añadieron extractos crudos de 20J a cultivos de la cepa salvaje (BB120), de la cepa BB170, que sólo detecta señales AI-2 y CAI, y a cultivos de la cepa JMH597, que detecta únicamente AI-2. Como se observa en la Figura 2, la adición de extractos de 20J (columna derecha para cada cepa sensora) retrasa considerablemente la producción de luz en la cepa salvaje y la cepa BB170, mientras que la producción de luz está completamente inhibida en la cepa JMH597, que depende exclusivamente de la acción de AI-2 para la producción de luz. Estos resultados demuestran que los extractos celulares de la cepa 20J interfieren con las señales AI-2 en V. harveyi, lo cual explica su efecto inhibitorio sobre la formación de biofilms por parte de S. mutans y S. aureus.
Por último, se midió el crecimiento de la cepa biosensora BB170 (AH-, AI-2+, CA-1 +) en presencia de distintas concentraciones de extracto de la cepa 20J (Figura 3). No se observó inhibición del crecimiento. Al contrario, altas concentraciones de extractos de la cepa 20J estimularon el crecimiento de la cepa biosensora, lo cual aceleraría, y no retrasaría, la producción de luz, a no ser que el sistema de QS-AI2 esté siendo bloqueado por el extracto celular.

Claims

REIVINDICACIONES
1 . Uso de una composición que comprende un elemento seleccionado de la lista que consiste en:
a. una cepa bacteriana de Tenacibaculum discolor depositada en la Colección Española de Cultivos Tipo con número de depósito CECT 7426,
b. el extracto celular crudo de un cultivo de la cepa bacteriana de a), c. el sobrenadante de un cultivo de la cepa bacteriana de a), o cualquiera de sus combinaciones, para provocar quorum quenching en bacterias productoras de la señal AI-2.
2. Uso según la reivindicación 1 donde la composición es para la elaboración de un medicamento para el tratamiento y/o prevención de infecciones provocadas por bacterias productoras de la señal AI-2.
3. Uso según cualquiera de las reivindicaciones 1 ó 2, donde las bacterias productoras de la señal AI-2 son Gram positivas.
4. Uso según la reivindicación 3, donde las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amylovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum.
5. Uso según la reivindicación 4, donde las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
6. Uso según cualquiera de las reivindicaciones 2 a 5, donde las infecciones provocadas por bacterias productoras de la señal AI-2 son debidas a la formación de biofilms.
7. Uso según la reivindicación 6, donde el biofilm es placa dental.
8. Uso según la reivindicación 1 donde la composición es para inhibir la formación ex vivo de biofilms producidos por bacterias productoras de la señal AI-2.
9. Uso según la reivindicación 8, donde las bacterias productoras de la señal AI-2 son Gram positivas.
10. Uso según la reivindicación 9, donde las bacterias Gram positivas se seleccionan de la lista que consiste en: Actinomyces georgiae, Actinomyces odontolyticus, Actinomyces sp., Aerococcus viridans, Alkaliphilus oremlandii, Arthrobacter arilaitensis, Bacillus cellulosilyticus, Bacillus coagulans, Bacillus macauensis, Bacillus selenitireducens, Bacillus smithii, Bacillus subtilis, Bifidobacterium longum, Bifidobacterium breve, Brachybacterium faecium, Corynebacterium accolens, Corynebacterium ammoniagenes, Corynebacterium aurimucosum, Corynebacterium casei, Corynebacterium glucuronolyticum, Corynebacterium glutamicum, Corynebacterium kroppenstedtii, Corynebacterium pseudogenitalium, Corynebacterium striatum, Corynebacterium tuberculostearicum, Clostridium botulinum, Clostridium cellulovorans, Clostridium perfringens, Clostridium sporogenes, Enterococcus faecium, Gemella haemolysans, Gemella morbillorum, Gemella sanguinis, Gordonia polyisoprenivorans, Kurthia sp., Lactobacillus amyiovorus, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus farciminis, Lactobacillus gasseri, Lactobacillus helveticus, Lactobacillus johnsonii, Lactobacillus kefiranofaciens, Lactobacillus mucosae, Lactobacillus rhamnosus, Lactobacillus reuteri, Lactobacillus ultunensis, Lactobacillus versmoldensis, Lentibacillus sp., Listeria monocytogenes, Mycobacterium sp., Mycobacterium intracellulare, Oenococcus oeni, Ornithinibacillus scapharcae, Paenibacillus alvei, Pediococcus pentosaceus, Planococcus antarcticus, Planococcus donghaensis, Propionibacterium acnés, Ruminococcus flavefaciens, Solibacillus silvestris, Sporosarcina newyorkensis, Staphylococcus arlettae, Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus pseudintermedius, Staphylococcus saprophyticus, Staphylococcus simiae, Staphylococcus warneri, Streptococcus anginosus, Streptococcus criceti, Streptococcus cristatus, Streptococcus gordonii, Streptococcus intermedius, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus sanguinis, Streptococcus suis, Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum.
1 1 . Uso según la reivindicación 10, donde las bacterias Gram positivas son Staphylococcus aureus o Streptococcus mutans.
12. Uso según cualquiera de las reivindicaciones 1 a 1 1 , donde la composición además comprende al menos un antibiótico u otro agente antibacteriano.
13. Uso según la reivindicación 1 donde la composición es un aditivo para alimentación animal.
14. Uso según la reivindicación 13 donde el aditivo para alimentación animal es un probiótico.
PCT/ES2013/070662 2012-10-09 2013-09-23 Uso de la cepa cect 7426 para provocar quorum quenching de la señal autoinductor-2 (ai-2) WO2014057151A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201231552A ES2482666B1 (es) 2012-10-09 2012-10-09 Uso de la cepa CECT 7426 para provocar quorum quenching de la señal autoinductor-2 (AI-2)
ESP201231552 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014057151A1 true WO2014057151A1 (es) 2014-04-17

Family

ID=50476966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070662 WO2014057151A1 (es) 2012-10-09 2013-09-23 Uso de la cepa cect 7426 para provocar quorum quenching de la señal autoinductor-2 (ai-2)

Country Status (2)

Country Link
ES (1) ES2482666B1 (es)
WO (1) WO2014057151A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753646A (zh) * 2018-06-12 2018-11-06 上海交通大学医学院附属仁济医院 一株对革兰阳性耐药菌具有广谱抗菌活性的人葡萄球菌及其筛选方法和应用
CN113368137A (zh) * 2021-05-06 2021-09-10 华南农业大学 一种天然的细菌群体感应抑制剂及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108452667B (zh) * 2018-05-14 2019-03-19 大江环境股份有限公司 一种包含涅氏短状杆菌的生物活性填料
CN110012941B (zh) * 2019-05-23 2022-07-15 光明乳业股份有限公司 一种由类芽孢杆菌制备发酵豆浆的方法及其制备出的发酵豆浆与应用
CN111419829B (zh) * 2020-03-02 2023-08-18 东北农业大学 和厚朴酚在抑制猪链球菌或其生物被膜中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030229000A1 (en) * 2002-06-06 2003-12-11 Justin Merritt Quorum sensing and biofilm formation
ES2342807A1 (es) * 2008-08-01 2010-07-14 Universidade De Santiago De Compostela Uso de bacterias del genero tenacibaculum para quorum quenching.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030229000A1 (en) * 2002-06-06 2003-12-11 Justin Merritt Quorum sensing and biofilm formation
ES2342807A1 (es) * 2008-08-01 2010-07-14 Universidade De Santiago De Compostela Uso de bacterias del genero tenacibaculum para quorum quenching.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMERO M. ET AL.: "Acylhomoserine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobacterium-Bacteroides (CFB) group.", FEMS MICROBIOL LETT., vol. 304, March 2010 (2010-03-01), pages 131 - 139 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753646A (zh) * 2018-06-12 2018-11-06 上海交通大学医学院附属仁济医院 一株对革兰阳性耐药菌具有广谱抗菌活性的人葡萄球菌及其筛选方法和应用
CN108753646B (zh) * 2018-06-12 2021-10-22 上海交通大学医学院附属仁济医院 一株对革兰阳性耐药菌具有广谱抗菌活性的人葡萄球菌及其筛选方法和应用
CN113368137A (zh) * 2021-05-06 2021-09-10 华南农业大学 一种天然的细菌群体感应抑制剂及其应用
CN113368137B (zh) * 2021-05-06 2023-08-18 华南农业大学 一种天然的细菌群体感应抑制剂及其应用

Also Published As

Publication number Publication date
ES2482666A1 (es) 2014-08-04
ES2482666B1 (es) 2015-05-12

Similar Documents

Publication Publication Date Title
Schulze et al. Biofilms by bacterial human pathogens: Clinical relevance-development, composition and regulation-therapeutical strategies
Yadav et al. Dental caries: A microbiological approach
ES2960053T3 (es) Tratamiento de infección por Clostridium difficile
Slomka et al. Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept
Li et al. Efficacy and safety of probiotics in the treatment of C andida‐associated stomatitis
Teughels et al. Probiotics and oral healthcare
RU2617952C2 (ru) Композиция, содержащая N-ацетилцистеин в сочетании с пробиотическими бактериями, способная восстанавливать собственный барьерный эффект желудка, который утрачивается во время фармалогического лечения желудочной гиперацидности
Jain et al. Biofilms—a microbial life perspective: a critical review
Kim et al. Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm
ES2856831T3 (es) Una composición que comprende un antibiótico no peptídico y cisteamina
WO2014057151A1 (es) Uso de la cepa cect 7426 para provocar quorum quenching de la señal autoinductor-2 (ai-2)
ES2384195T3 (es) Agonistas de PPAR-gamma para la inducción de la expresión de péptidos antimicrobianos catiónicos como estimulantes inmunoprotectores
Nascimento Oral microbiota transplant: a potential new therapy for oral diseases
EP2712318A1 (en) Composition comprising probiotic bacteria capable of restoring the barrier effect of the stomach which is lost during pharmalogical treatment of gastric hyperacidity
Krzyściak et al. The role of human oral microbiome in dental biofilm formation
Lazar et al. Impact of dental plaque biofilms in periodontal disease: Management and future therapy
Ogata et al. Thoracic empyema caused by Campylobacter rectus
Cai et al. Biofilm ecology associated with dental caries: understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms
US20230270777A1 (en) Treatment of inflammatory bowel diseases through administration of enteric aerobization therapy
Stowik Contribution of probiotics Streptococcus salivarius strains K12 and M18 to oral health in humans: A review
Dutta et al. Introduction to bacterial biofilm and acute infections
Yang et al. Biofilm tolerance, resistance and infections increasing threat of public health
Jolivet‐Gougeon et al. Bacterial Persistence in Biofilms and Antibiotics: Mechanisms Involved
RU2713154C1 (ru) Антихеликобактерное средство и способ его применения
Tagg Developing a bacteriotherapy-based approach to control streptococcal infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846213

Country of ref document: EP

Kind code of ref document: A1