WO2014054469A1 - 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム - Google Patents

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム Download PDF

Info

Publication number
WO2014054469A1
WO2014054469A1 PCT/JP2013/075765 JP2013075765W WO2014054469A1 WO 2014054469 A1 WO2014054469 A1 WO 2014054469A1 JP 2013075765 W JP2013075765 W JP 2013075765W WO 2014054469 A1 WO2014054469 A1 WO 2014054469A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
interest
region
focus point
ultrasonic
Prior art date
Application number
PCT/JP2013/075765
Other languages
English (en)
French (fr)
Inventor
弘孝 江田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP13843757.9A priority Critical patent/EP2904975B1/en
Priority to CN201380010051.6A priority patent/CN104125804B/zh
Priority to JP2014519333A priority patent/JP5568199B1/ja
Publication of WO2014054469A1 publication Critical patent/WO2014054469A1/ja
Priority to US14/259,350 priority patent/US9427208B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52033Gain control of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52073Production of cursor lines, markers or indicia by electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information

Definitions

  • the present invention relates to an ultrasonic observation apparatus that observes a tissue of a specimen using ultrasonic waves, an operation method of the ultrasonic observation apparatus, and an operation program of the ultrasonic observation apparatus.
  • Ultrasonic elastography is a technique that utilizes the fact that the hardness of cancer and tumor tissue in a living body varies depending on the progress of the disease and the living body.
  • the amount of strain and elastic modulus of the biological tissue at the examination location are measured using ultrasound while the examination location is pressed from the outside, and the measurement result is displayed as a tomographic image.
  • the ultrasonic elastography described above has a problem in that the pressure applied to the lower part of a blood vessel or a lymph vessel is difficult to be transmitted. Therefore, when a tumor is formed in the vicinity of the blood vessel, the boundary of the tumor is unclear and it is difficult to distinguish the invasion of the tumor into the blood vessel. As described above, in ultrasonic elastography, there are cases in which observation of a specimen such as differentiation of tissue characteristics cannot be performed with high accuracy.
  • ultrasonic elastography has a problem in that the reliability of measurement results is low because individual differences are likely to occur in the pressure and compression speed when the examiner compresses the examination location.
  • the present invention has been made in view of the above, and enables an ultrasonic observation apparatus and an ultrasonic observation apparatus capable of accurately distinguishing tissue properties and improving the reliability of observation results. It is an object to provide an operation method and an operation program for an ultrasonic observation apparatus.
  • an ultrasonic observation apparatus transmits an ultrasonic wave to a specimen and receives an ultrasonic wave reflected by the specimen.
  • a region-of-interest setting unit capable of setting information on the position and size of the region of interest in the specimen, and the region-of-interest size information set by the region-of-interest setting unit.
  • a focus point calculation unit that calculates a plurality of focus points, a transmission / reception unit that transmits / receives ultrasonic waves while focusing on the focus point calculated by the focus point calculation unit, and an ultrasonic wave received by the transmission / reception unit
  • a frequency analysis unit that calculates a plurality of frequency spectra by analyzing the frequency spectrum, and a frequency spectrum calculated by the frequency analysis unit.
  • a feature amount extraction unit that extracts a feature amount of the frequency spectrum by approximating a tone, an image processing unit that generates ultrasonic image data having a display mode corresponding to the feature amount extracted by the feature amount extraction unit, It is provided with.
  • the ultrasonic observation apparatus further includes a storage unit that stores a parameter associated with the size information of the region of interest in the above invention, wherein the focus point calculation unit is configured to perform the focus point calculation based on the parameter. Is calculated.
  • the size information of the region of interest is a depth direction size of the region of interest
  • the parameter is the number of focus points in the region of interest. It is characterized by that.
  • the focus point calculation unit divides the region of interest into a plurality of partial regions of interest according to the number of focus points, and calculates a focus point in each partial region of interest.
  • the transmission timing is determined according to the calculated focus point, and the transmission / reception unit transmits / receives ultrasonic waves to / from the sound ray in the region of interest by the number of times corresponding to the number of focus points on the sound ray.
  • the frequency analysis unit acquires a data group forming a part of an ultrasonic data array received by the transmission / reception unit, and fast Fourier transform is performed on the data group.
  • the frequency spectrum is calculated by performing conversion.
  • the frequency analysis unit generates an ultrasonic wave having a closest focus point on the sound ray from a plurality of ultrasonic waves transmitted and received with respect to one sound ray. And acquiring the data group.
  • the ultrasonic observation apparatus is characterized in that, in the above invention, the focus point calculation unit calculates a center position in the depth direction of the partial region of interest as a focus point.
  • the ultrasonic observation apparatus is characterized in that, in the above invention, the focus point calculation unit calculates the center of the data array in the depth direction in the partial region of interest as a focus point.
  • the ultrasonic observation apparatus is characterized in that, in the above invention, the focus point calculation unit calculates a predetermined data position in the data group as a focus point.
  • the ultrasonic observation apparatus further includes a B-mode image data generation unit that generates B-mode image data to be displayed by converting the amplitude of the ultrasonic wave reflected by the specimen into luminance in the above invention
  • the transmission / reception unit further performs transmission / reception of an ultrasonic wave focused on a focus point set for a B-mode image
  • the focus point calculation unit includes the focus point in the partial region of interest including the focus point for the B-mode image.
  • the focus point is not set according to the number.
  • the ultrasonic observation apparatus is characterized in that in the above invention, the ultrasonic observation apparatus further includes a display unit capable of displaying an image corresponding to the ultrasonic image data generated by the image processing unit.
  • An operation method of an ultrasonic observation apparatus is an operation method of an ultrasonic observation apparatus that transmits an ultrasonic wave to a specimen and receives an ultrasonic wave reflected by the specimen.
  • a region-of-interest setting step for setting the position and size of the region of interest, and a focus point calculating step for calculating a plurality of focus points in the region of interest based on the size information of the region of interest set in the region-of-interest setting step
  • a transmission / reception step for transmitting / receiving ultrasonic waves while focusing on the focus point calculated in the focus point calculation step, and analyzing the ultrasonic waves received in the transmission / reception step with reference to the focus point to thereby generate a plurality of frequency spectra.
  • the frequency analysis step for calculating the frequency and the frequency analysis step A feature amount extracting step for extracting a feature amount of the frequency spectrum by approximating a wave number spectrum; and an image processing step for generating ultrasonic image data having a display mode corresponding to the feature amount extracted in the feature amount extracting step; It is characterized by having.
  • An operation program for an ultrasonic observation apparatus includes transmitting an ultrasonic wave to a specimen and receiving an ultrasonic wave reflected by the specimen from the position of a region of interest in the specimen and A region of interest setting step for setting a size, a focus point calculating step for calculating a plurality of focus points in the region of interest based on the size information of the region of interest set in the region of interest setting step, and the focus point A transmission / reception step for transmitting / receiving ultrasonic waves while focusing on the focus point calculated in the calculation step, and a frequency analysis for calculating a plurality of frequency spectra by analyzing the ultrasonic waves received in the transmission / reception step with reference to the focus point Step and the frequency spectrum calculated in the frequency analysis step.
  • a feature amount extracting step for extracting a feature amount of the frequency spectrum by approximating a tone
  • an image processing step for generating ultrasonic image data having a display mode corresponding to the feature amount extracted in the feature amount extracting step; Is executed.
  • a plurality of focus points are calculated based on the size of the region of interest, and a feature amount is obtained by frequency analysis of ultrasonic waves transmitted / received to / from each focus point.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating the relationship between the reception depth of the echo signal and the amplification factor.
  • FIG. 3 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification process performed by the amplification correction unit.
  • FIG. 4 is a diagram illustrating a focus point information table stored in the focus point information storage unit.
  • FIG. 5 is a flowchart showing an outline of processing of the ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram illustrating a display example of a B-mode image on the display unit.
  • FIG. 7 is a flowchart illustrating an outline of processing performed by the focus point calculation unit.
  • FIG. 8 is a diagram schematically showing an outline of an ultrasonic transmission process performed by the ultrasonic probe.
  • FIG. 9 is a diagram schematically illustrating a configuration of a calculation echo signal per sound ray received by the transmission / reception unit from the ultrasonic probe.
  • FIG. 10 is a flowchart illustrating an outline of processing performed by the frequency analysis unit.
  • FIG. 11 is a diagram schematically showing a data array of sound rays.
  • FIG. 12 is a diagram for specifically explaining the FFT data group acquisition process performed by the frequency analysis unit.
  • FIG. 13 is a diagram illustrating an example (first example) of a frequency spectrum calculated by the frequency analysis unit.
  • FIG. 14 is a diagram illustrating an example (second example) of a frequency spectrum calculated by the frequency analysis unit.
  • FIG. 15 is a diagram illustrating a straight line determined from the feature amount after the attenuation correction is performed on the feature amount related to the straight line illustrated in FIG. 13.
  • FIG. 16 is a diagram illustrating a display example (first example) of a display image on the display unit.
  • FIG. 17 is a diagram illustrating a display example (second example) of a display image on the display unit.
  • FIG. 18 is a diagram schematically showing an overview of a focus point calculation process performed by the ultrasound observation apparatus according to Embodiment 2 of the present invention.
  • FIG. 19 is a diagram schematically showing an overview of a focus point calculation process performed by the ultrasound observation apparatus according to Embodiment 3 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic observation apparatus according to Embodiment 1 of the present invention.
  • An ultrasonic observation apparatus 1 shown in FIG. 1 is an apparatus that observes a specimen to be diagnosed using ultrasonic waves.
  • the ultrasonic observation apparatus 1 transmits and receives electrical signals between the ultrasonic probe 2 that outputs an ultrasonic pulse to the outside and receives an ultrasonic echo reflected from the outside, and the ultrasonic probe 2. Transmitting / receiving unit 3 for performing the calculation, calculation unit 4 for performing a predetermined calculation on the electrical echo signal converted from the ultrasonic echo, and generation of image data corresponding to the electrical echo signal converted from the ultrasonic echo An image processing unit 5 to be performed, an interface such as a keyboard, a mouse, a touch panel, and the like.
  • the image processing unit 5 is realized by using an input unit 6 that receives input of various information and a display panel made of liquid crystal or organic EL.
  • a display unit 7 that displays various types of information including an image generated by the computer 5
  • a storage unit 8 that stores various types of information including information related to tissue properties of a known specimen
  • a control unit that controls the operation of the ultrasound observation apparatus 1. And, equipped with a.
  • the ultrasonic probe 2 converts an electrical pulse signal received from the transmission / reception unit 3 into an ultrasonic pulse (acoustic pulse signal), and converts an ultrasonic echo reflected by an external specimen into an electrical echo signal.
  • a signal conversion unit 21 for conversion is included.
  • the ultrasonic probe 2 may be one that mechanically scans an ultrasonic transducer, or one that electronically scans a plurality of ultrasonic transducers.
  • the transmission / reception unit 3 is electrically connected to the ultrasonic probe 2 and transmits a pulse signal to the ultrasonic probe 2 and receives an echo signal as a reception signal from the ultrasonic probe 2.
  • the received echo signal includes an echo signal (hereinafter referred to as “B-mode image echo signal”) and a calculation unit used by the image processing unit 5 to generate B-mode image data by converting the amplitude of the echo signal into luminance. 4 switches an echo signal (hereinafter referred to as an “echo signal for calculation”) used for calculation. Switching between the B-mode image echo signal and the calculation echo signal is performed in units of frames or sound rays (line data) under the control of the control unit 9.
  • the transmission / reception unit 3 generates a pulse signal based on a focus point, a transmission timing, and a preset waveform set by a focus point calculation unit 42 to be described later, and transmits the generated pulse signal to the ultrasound probe 2.
  • the echo signal received by the ultrasound probe 2 is subjected to processing such as amplification and filtering, and then A / D converted to generate a digital RF signal of the B-mode image echo signal and the computation echo signal.
  • the transmission / reception unit 3 has a multi-channel circuit for beam synthesis corresponding to the plurality of ultrasonic transducers.
  • the transmission / reception unit 3 includes a signal amplification unit 31 that amplifies the echo signal. More specifically, the signal amplifying unit 31 performs STC (Sensitivity Time Control) correction in which an echo signal having a larger reception depth is amplified with a higher amplification factor.
  • FIG. 2 is a diagram illustrating the relationship between the reception depth of the echo signal and the amplification factor. The reception depth z shown in FIG. 2 is an amount calculated based on the elapsed time from the reception start point of the ultrasonic wave. As shown in FIG.
  • the amplification factor ⁇ (dB) increases linearly from ⁇ 0 to ⁇ th (> ⁇ 0 ) as the reception depth z increases. Further, the amplification factor ⁇ takes a constant value ⁇ th when the reception depth z is equal to or greater than the threshold value z th .
  • the value of the threshold value z th is such a value that the ultrasonic signal received from the specimen is almost attenuated and the noise becomes dominant. More generally, when the reception depth z is smaller than the threshold value z th , the amplification factor ⁇ may increase monotonously as the reception depth z increases.
  • the calculation unit 4 includes a region-of-interest setting unit 41 that sets information on the position and size of a region of interest (ROI) according to an input from the input unit 6, a focus point calculation unit 42 that sets transmission timing, and a transmission / reception unit 3
  • An amplification correction unit 43 that performs amplification correction to make the amplification factor constant regardless of the reception depth with respect to the digital RF signal output from the signal, and fast Fourier transform (FFT) to the digital RF signal of the calculation echo signal output from the transmission / reception unit 3 )
  • FFT fast Fourier transform
  • the region-of-interest setting unit 41 sets the region of interest based on the information about the depth direction size of the region of interest designated by the input unit 6, the position of the region of interest, and the number of sound rays.
  • the focus point calculation unit 42 includes information on the size of the region of interest set by the region of interest setting unit 41 and a table of focus points stored in a focus point information storage unit 81 (described later) included in the storage unit 8. A plurality of focus points in the region of interest are calculated (position setting), and the number of transmissions and transmission timing of the calculation echo signal per sound ray are determined. The focus point calculation unit 42 determines the focus point, the number of transmissions, and the transmission timing of the B-mode image echo signal.
  • FIG. 3 is a diagram illustrating a relationship between the reception depth and the amplification factor in the amplification process performed by the amplification correction unit 43.
  • the amplification rate ⁇ (dB) in the amplification process performed by the amplification correction unit 43 takes the maximum value ⁇ th ⁇ 0 when the reception depth z is zero, and the reception depth z is zero from the threshold value z th. Decreases linearly until reaching 0 and is zero when the reception depth z is greater than or equal to the threshold z th .
  • the amplification correction unit 43 amplifies and corrects the digital RF signal with the amplification factor determined in this way, thereby canceling the influence of the STC correction in the signal amplification unit 31 and outputting a signal with a constant amplification factor ⁇ th. .
  • the relationship between the reception depth z and the amplification factor ⁇ performed by the amplification correction unit 43 differs depending on the relationship between the reception depth and the amplification factor in the signal amplification unit 31.
  • the frequency analysis unit 44 calculates a frequency spectrum at a plurality of locations (data positions) on the sound ray by performing fast Fourier transform on the FFT data group having a predetermined data amount for each sound ray.
  • the frequency spectrum shows different tendencies depending on the tissue properties of the specimen. This is because the frequency spectrum has a correlation with the size, density, acoustic impedance, and the like of the specimen as a scatterer that scatters ultrasonic waves.
  • the “tissue property” is, for example, any of cancer, endocrine tumor, mucinous tumor, pancreatitis, vasculature and the like.
  • the feature amount extraction unit 45 extracts the feature amount of the frequency spectrum by approximating the frequency spectrum of each data position calculated by the frequency analysis unit 44.
  • the feature amount extraction unit 45 approximates the approximation unit 451 and the approximation unit 451 to calculate a pre-correction feature amount before performing the attenuation correction process by performing an approximation process on the frequency spectrum calculated by the frequency analysis unit 44.
  • An attenuation correction unit 452 that extracts a feature amount by performing an attenuation correction process on the uncorrected feature amount.
  • “intensity” refers to any of parameters such as voltage, power, sound pressure, and acoustic energy.
  • the inclination a 0 has a correlation with the size of the ultrasonic scatterer, and it is generally considered that the larger the scatterer, the smaller the inclination.
  • the intercept b 0 has a correlation with the size of the scatterer, the difference in acoustic impedance, the density (concentration) of the scatterer, and the like. Specifically, it is considered that the intercept b 0 has a larger value as the scatterer is larger, a larger value as the acoustic impedance is larger, and a larger value as the density (concentration) of the scatterer is larger.
  • the intensity at the center frequency f MID (hereinafter simply referred to as “intensity”) c 0 is an indirect parameter derived from the slope a 0 and the intercept b 0 , and gives the spectrum intensity at the center in the effective frequency band. Therefore, the intensity c 0 is considered to have a certain degree of correlation with the brightness of the B-mode image in addition to the size of the scatterer, the difference in acoustic impedance, and the density of the scatterer.
  • the approximate expression calculated by the approximating unit 451 is not limited to a linear expression, and may be a quadratic or higher order polynomial.
  • is the attenuation rate
  • z is the ultrasonic reception depth
  • f is the frequency.
  • the attenuation amount A is proportional to the frequency f.
  • the specific value of the attenuation rate ⁇ is 0 to 1.0 (dB / cm / MHz), more preferably 0.3 to 0.7 (dB / cm / MHz) in the case of a living body. It depends on the type of organ.
  • a configuration in which the value of the attenuation rate ⁇ can be changed by an input from the input unit 6 is also possible.
  • the image processing unit 5 generates ultrasonic image data having a display mode corresponding to the feature amount extracted by the feature amount extraction unit 45.
  • the image treatment unit 5 includes a B-mode image data generation unit 51 that generates B-mode image data to be displayed by converting the amplitude of the echo signal for B-mode image into luminance, and the B-mode image data generation unit 51 and the calculation unit 4.
  • a display image data generation unit 52 that generates display image data using the output data.
  • the B-mode image data generation unit 51 performs signal processing using a known technique such as a bandpass filter, logarithmic conversion, gain processing, contrast processing, and the like on the digital signal, and also according to the image display range on the display unit 7.
  • the B-mode image data is generated by performing data thinning or the like according to the step width of the determined data.
  • the display image data generation unit 52 uses the B mode image data generated by the B mode image data generation unit 51 and the feature amount calculated by the feature amount extraction unit 45 to enhance the tissue property enhancement of the subject. Display image data including an image is generated.
  • the input unit 6 is realized by using an interface such as a keyboard, a mouse, and a touch panel.
  • the input unit 6 receives input of information specifying a region of interest by the user of the ultrasound observation apparatus 1 who has seen the image generated by the image processing unit 5.
  • the storage unit 8 includes a focus point information storage unit 81 that is stored in association with the depth direction size of the region of interest and the number of focus points, and an amplification factor that is referred to when the signal amplification unit 31 and the amplification correction unit 43 perform amplification processing.
  • a correction information storage unit 84 that stores correction information to be stored.
  • the focus point information storage unit 81 stores the size in the depth direction of the region of interest, which is size information of the region of interest, and the number of focus points in association with each other.
  • FIG. 4 is a diagram showing a focus point information table stored in the focus point information storage unit 81.
  • the number of focus points corresponds to the number of divided regions in the region of interest and to the number of ultrasonic transmissions on one sound ray.
  • the amplification factor information storage unit 82 stores the relationship between the amplification factor and the reception depth shown in FIGS.
  • the window function storage unit 83 stores at least one or a plurality of window functions such as Hamming, Hanning, and Blackman.
  • the correction information storage unit 84 stores information related to attenuation correction including equations (2) to (4).
  • the storage unit 8 is realized using a ROM in which an operation program of the ultrasound observation apparatus 1, a program for starting a predetermined OS, and the like are stored in advance, and a RAM in which calculation parameters and data of each process are stored.
  • the control unit 9 is realized by using a CPU having calculation and control functions.
  • the control unit 9 reads various programs including information stored and stored in the storage unit 8 and an operation program of the ultrasonic observation apparatus 1 from the storage unit 8, thereby performing various arithmetic processes related to the operation method of the ultrasonic observation apparatus 1. To control the ultrasonic observation apparatus 1 in an integrated manner.
  • Components other than the ultrasonic probe 2 of the ultrasonic observation apparatus 1 having the above functional configuration are realized by using one or a plurality of computers.
  • the operation program of the ultrasonic observation apparatus 1 can be recorded on a computer-readable recording medium such as a hard disk, flash memory, CD-ROM, DVD-ROM, or flexible disk and widely distributed.
  • FIG. 5 is a flowchart showing an outline of processing of the ultrasonic observation apparatus 1 having the above configuration.
  • the ultrasound observation apparatus 1 first measures a new specimen using the ultrasound probe 2 (step S1).
  • the signal amplifying unit 31 that has received the echo signal from the ultrasound probe 2 amplifies the echo signal (step S2).
  • the signal amplifying unit 31 performs amplification based on the relationship between the amplification factor and the reception depth shown in FIG.
  • the B-mode image data generation unit 51 generates B-mode image data using the B-mode image echo signal output from the transmission / reception unit 3 (step S3).
  • FIG. 6 is a diagram illustrating a display example of a B-mode image on the display unit 7.
  • a B-mode image 100 shown in the figure is a grayscale image in which values of R (red), G (green), and B (blue), which are variables when the RGB color system is adopted as a color space, are matched. .
  • the amplification correction unit 43 sets the reception depth for the signal output from the transmission / reception unit 3. Regardless of this, the correction is performed so that the amplification factor is constant (step S6).
  • the amplification correction unit 43 performs amplification processing based on the relationship between the amplification factor and the reception depth shown in FIG. Note that the region of interest in the B-mode image can be arbitrarily set by the user via the input unit 6.
  • step S5: No when the region of interest setting unit 41 does not set the region of interest in step S5 (step S5: No), when an instruction to end the process is input by the input unit 6 (step S7: Yes), the ultrasonic observation apparatus 1 ends the process.
  • step S5: No when the region of interest is not set (step S5: No), when the instruction to end the process is not input by the input unit 6 (step S7: No), the ultrasound observation apparatus 1 goes to step S5. Return.
  • FIG. 7 is a flowchart showing an outline of the transmission frequency and transmission timing determination processing performed by the focus point calculation unit 42.
  • the focus point calculation unit 42 acquires the depth direction size of the region of interest specified in step S5 (step S21).
  • the focus point calculation unit 42 refers to the focus point number table stored in the storage unit 8 and determines the number of focus points (number of transmissions) according to the acquired size of the region of interest in the depth direction. (Step S22).
  • the focus point calculation unit 42 divides the region of interest in the depth direction by the determined number of focus points, and sets the center position in the depth direction in each divided partial region of interest as a focus point (step) S23).
  • the focus point calculation unit 42 may calculate the center data position of the data array in the depth direction in each partial region of interest as the focus point.
  • the focus point calculation unit 42 determines the transmission timing so that the ultrasonic wave is focused at the position of each set focus point (step S24).
  • the focus point calculation unit 42 determines the number of transmissions and the transmission timing for acquiring the echo signal. Thereafter, the ultrasound observation apparatus 1 returns to the main routine shown in FIG.
  • the transmission / reception unit 3 transmits a preset pulse signal to the ultrasonic probe 2 at the determined transmission timing, and receives a received signal from the ultrasonic probe 2 as a reception signal. A certain computation echo signal is received (step S9).
  • FIG. 8 is a diagram schematically showing an outline of ultrasonic transmission processing performed by the ultrasonic probe 2.
  • FIG. 8 shows a case where the size w of the region of interest in the depth direction is 4 cm.
  • the number of focus points is 3 when the relationship between w and the number of focus points follows the focus point information table Tb shown in FIG.
  • the ultrasonic transducer 22 included in the ultrasonic probe 2 forms a sound field centered on three focus points set for each partial region of interest with respect to one sound ray.
  • the three ultrasonic waves are sequentially transmitted at a predetermined transmission timing, and the calculation echo signal is received.
  • the ultrasonic transducer 22 forms a sound field SF1 that is substantially symmetrical with respect to the traveling direction of the ultrasonic wave with the focus point FP (1) as the center at the first transmission / reception (first transmission / reception).
  • the ultrasonic transducer 22 forms a sound field SF2 that is substantially symmetric with respect to the traveling direction of the ultrasonic wave around the focus point FP (2) at the second transmission / reception (second transmission / reception). Furthermore, the ultrasonic transducer 22 forms a sound field SF3 that is substantially symmetric with respect to the traveling direction of the ultrasonic wave around the focus point FP (3) during the third transmission / reception (third transmission / reception).
  • FIG. 8 illustrates one sound ray at the center of the region of interest RA, but actually the same processing (transmission / reception of ultrasonic waves) is performed on all sound rays included in the region of interest RA. Of course.
  • FIG. 9 is a diagram schematically showing a configuration of a calculation echo signal per sound ray received by the transmission / reception unit 3 from the ultrasonic probe 2 in step S9.
  • the sound lines LD (1) to LD (3) shown in the figure are calculation echo signals received by the transmission / reception unit 3 during the first transmission / reception to the third transmission / reception, respectively. Means one piece of data.
  • the sound rays LD (1) to LD (3) are discretized at time intervals corresponding to the sampling frequency (for example, 50 MHz) in the A / D conversion performed by the transmission / reception unit 3.
  • the black rectangle shown in FIG. 9 means a data position representing the FFT data group acquired by the frequency analysis unit 44. This point will be described in detail in step S11 described later.
  • step S10: Yes when ultrasonic transmission / reception of a predetermined number of transmissions is completed for all sound rays (step S10: Yes), the frequency analysis unit 44 performs frequency analysis of the calculation echo signal (step S11). On the other hand, when the ultrasonic transmission / reception of the predetermined number of transmissions is not completed for all sound rays (step S10: No), the ultrasonic observation apparatus 1 returns to step S9.
  • the frequency analysis unit 44 sets the sound ray number L of the sound ray to be analyzed first as an initial value L 0 (step S31).
  • the initial value L 0 may be given, for example, to a sound ray that is first received by the transmission / reception unit 3, or for a sound ray corresponding to one of the left and right boundary positions of the region of interest set by the input unit 6. May be given.
  • the frequency analysis unit 44 calculates all frequency spectra on the sound ray of the computation echo signal received in step S10. First, the frequency analysis unit 44 sets an initial value Z 0 of a data position Z (corresponding to a reception depth) that represents a series of data groups (FFT data group) acquired for FFT calculation (step S32).
  • FIG. 11 is a diagram schematically showing a data array of sound rays.
  • the first data of the computation echo signals LD (1) to LD (i max ) corresponding to the first transmission / reception to the i max transmission / reception is represented by the data position Z.
  • the initial value Z 0 is set, and the data position is set with the step width D. Therefore, the black area of each computation echo signal shown in FIG. 11 indicates the data position, and the step width D is 15.
  • the position of the initial value Z 0 can be arbitrarily set.
  • the data position Z corresponding to the upper end position of the region of interest may be set as the initial value Z 0 .
  • the frequency analysis unit 44 acquires an FFT data group at the data position Z (step S33).
  • the frequency analysis unit 44 compares the data position Z to be acquired with the position of the focus point FP (i) of each calculation echo signal, and uses the calculation echo signal with the shortest distance to the focus point to use the data position Z.
  • the FFT data group is acquired.
  • the FFT data group needs to have a power number of 2 data.
  • the number of data in the FFT data group is 2 n (n is a positive integer).
  • FIG. 12 is a diagram for specifically explaining the processing in step S33.
  • FIG. 12 shows a case where the number of transmissions i max in one sound ray is 3.
  • the region of interest RA is the same as that described with reference to FIG.
  • the frequency analysis unit 44 compares the data position Z to be acquired with the position of the focus point of each computation echo signal, and in the sound ray LD (1) at the time of the first transmission / reception, a part from the initial value Z 0 is obtained.
  • FFT data groups F 1 ,..., F i , F i + 1 (i is a positive integer) at the data position included in the region of interest RA (1) are acquired.
  • the frequency analysis unit 44 acquires FFT data groups F i + 2 and F i + 3 at the data positions included in the partial region of interest RA (2) in the sound ray LD (2) at the time of the second transmission / reception.
  • the frequency analysis unit 44 also includes the FFT data group F i + 4 included in the last data position of the sound ray LD (3) from the partial region of interest RA (3) in the sound ray LD (3) at the time of the third transmission / reception. , ..., F K-1 and F K are acquired.
  • the frequency analysis unit 44 causes the window function stored in the window function storage unit 83 to act on the acquired FFT data group (step S34). In this way, the frequency analysis unit 44 applies a window function to the acquired FFT data group, thereby preventing the FFT data group from becoming discontinuous at the boundary and preventing the occurrence of artifacts. Can do.
  • the frequency analysis unit 44 determines whether or not the FFT data group at the data position Z is a normal data group (step S35).
  • the normal FFT data group means that there are N data ahead of the data position Z and M data behind the data position Z. In the case shown in FIG. 12, all FFT data groups except for the FFT data groups F 1 and F K are normal.
  • step S35 If the result of determination in step S35 is that the FFT data group at the data position Z is normal (step S35: Yes), the frequency analysis unit 44 proceeds to step S37 described later.
  • step S35: No If the result of determination in step S35 is that the FFT data group at the data position Z is not normal (step S35: No), the frequency analysis unit 44 generates a normal FFT data group by inserting zero data for the shortage amount (step S35: No). Step S36).
  • the FFT function group determined to be not normal in step S35 is subjected to a window function before adding zero data. For this reason, discontinuity of data does not occur even if zero data is inserted into the FFT data group.
  • step S36 the frequency analysis unit 44 proceeds to step S37 described later.
  • step S37 the frequency analysis unit 44 obtains a frequency spectrum by performing an FFT operation using the FFT data group (step S37).
  • FIGS. 13 and 14 are diagrams illustrating examples of frequency spectra calculated by the frequency analysis unit 44.
  • the horizontal axis f is the frequency
  • the vertical axis I is the intensity.
  • the lower limit frequency f LOW and the upper limit frequency f HIGH of the frequency spectrum are the frequency band of the ultrasonic probe 2 and the pulse signal transmitted by the transmitting / receiving unit 3.
  • f LOW 3 MHz
  • f HIGH 10 MHz.
  • the curve and the straight line are composed of a set of discrete points. Note that the straight line L 1 shown in FIG. 13 and the straight line L 2 shown in FIG. 14 will be described in a pre-correction feature amount extraction process (step S 12) described later.
  • the frequency analysis unit 44 adds the predetermined step width D to the data position Z to calculate the data position Z of the next FFT data group to be analyzed (step S38).
  • the step width D here is desirably matched with the step width used when the B-mode image data generation unit 51 generates the B-mode image data, but when the amount of calculation in the frequency analysis unit 44 is desired to be reduced. A value larger than the step width used by the B-mode image data generation unit 51 may be set.
  • the frequency analysis unit 44 determines whether or not the data position Z is larger than the final data position Z max (step S39).
  • the final data position Z max may be the data length of the calculation echo signals LD (1) to LD (n), or may be the data position corresponding to the lower end of the region of interest.
  • the frequency analysis unit 44 increases the sound ray number L by 1 (step S40).
  • the frequency analyzing unit 44 returns to step S33.
  • [X] represents the maximum integer not exceeding X.
  • step S41: Yes If sound ray number L of after incrementing is larger than the final sound ray number L max in step S40 (step S41: Yes), the frequency analysis unit 44 ends the frequency analysis process. Thereafter, the ultrasound observation apparatus 1 returns to the main routine shown in FIG. On the other hand, if the sound ray number L after increased in step S41 is equal to or less than the final acoustic ray number L max (step S41: No), the frequency analyzing unit 44 returns to step S32.
  • the frequency analysis unit 44 performs K FFT operations for each of (L max ⁇ L 0 +1) sound rays.
  • the final sound ray number L max may be given to the last sound ray received by the transmission / reception unit 3, for example, or may be given to the sound ray corresponding to either the left or right boundary of the region of interest.
  • P is the total number of FFT operations (L max ⁇ L 0 +1) ⁇ K performed by the frequency analysis unit 44 for all sound rays.
  • the feature amount extraction unit 45 extracts the feature amount of the frequency spectrum by approximating the frequency spectrum calculated by the frequency analysis unit 44 (steps S12 and S13).
  • the approximating unit 451 extracts a pre-correction feature quantity by performing regression analysis on the P frequency spectra calculated by the frequency analyzing unit 44 as an approximating process. Specifically, the approximating unit 451 calculates a linear expression that approximates the frequency spectrum of the frequency band f LOW ⁇ f ⁇ f HIGH by regression analysis, and thereby the slope a 0 and the intercept b that characterize the linear expression. 0 and intensity c 0 are extracted as pre-correction feature values.
  • a straight line L 1 shown in FIG. 13 and a straight line L 2 shown in FIG. 14 are regression lines obtained by performing regression analysis on the frequency spectrum curves C 1 and C 2 , respectively, in this step S12.
  • the attenuation correction unit 452 calculates a feature amount by performing an attenuation correction process on the pre-correction feature amount extracted by the approximation unit 451.
  • the data sampling frequency is 50 MHz
  • the data sampling period is 20 (nsec).
  • the number of data steps from the first data of the calculation echo signal LD (j) up to the data position of the FFT data group to be processed is k, the data position Z is 0.0153 k (mm).
  • FIG. 15 is a diagram showing a straight line determined from the feature amount after the attenuation correction is performed on the feature amount related to the straight line L 1 shown in FIG.
  • the straight line L 1 ′ has a larger slope and the same intercept value as compared to the straight line L 1 .
  • the attenuation correction unit 452 performs attenuation correction, thereby suppressing the signal intensity from being lowered due to the influence of attenuation in an area where the reception depth is large, and suppressing the image from becoming dark, and uniform brightness over the entire screen. Images can be obtained.
  • step S ⁇ b> 13 the display image data generation unit 52 generates display image data by using the B mode image data generated by the B mode image data generation unit 51 and the feature amount calculated by the feature amount extraction unit 45. (Step S14).
  • FIG. 16 is a diagram illustrating a display example of a display image on the display unit 7.
  • the display image 200 shown in the figure includes an information display unit 201 that displays various types of information regarding the specimen, and an image display unit 202 that displays a tissue property emphasized image that emphasizes tissue properties.
  • the information display unit 201 displays, for example, specimen identification information (ID number, name, sex, etc.), feature amount information, and ultrasonic image quality information such as gain and contrast.
  • specimen identification information ID number, name, sex, etc.
  • feature amount information information such as gain and contrast.
  • ultrasonic image quality information such as gain and contrast.
  • the tissue property emphasizing image 300 displayed on the image display unit 202 has a feature amount b equal to R (red), G (green), and B (blue) with respect to the B-mode image 100 shown in FIG. Is a grayscale image assigned to.
  • the user of the ultrasound observation apparatus 1 can grasp the tissue properties of the region of interest more accurately.
  • the ultrasonic observation apparatus 1 ends the series of processes. Note that the ultrasound observation apparatus 1 may periodically repeat the processes of steps S1 to S15.
  • the tissue property enhancement image 300 shown in FIG. 16 is merely an example.
  • the tissue property enhanced image can be displayed as a color image.
  • the color space may be configured with complementary color system variables such as cyan, magenta, and yellow, and a feature amount may be assigned to each variable.
  • the tissue property enhanced image data may be generated by mixing B-mode image data and color image data at a predetermined ratio.
  • tissue property enhanced image data may be generated by replacing only the region of interest with color image data.
  • a plurality of focus points are calculated based on the size of the region of interest, and feature quantities are extracted by performing frequency analysis on ultrasonic waves transmitted and received with respect to each focus point. Therefore, it is possible to accurately distinguish the tissue properties and improve the reliability of the observation results.
  • the frequency feature amount can be calculated with high accuracy.
  • B-mode image data is generated based on a signal that has been subjected to STC correction that is amplified at an amplification factor according to the reception depth, while the effect of STC correction is canceled to cancel the amplification factor. Since the frequency spectrum is calculated after performing the amplification correction to make the frequency constant regardless of the reception depth, and the frequency spectrum is linearly approximated by regression analysis, the attenuation correction is applied. Can be correctly eliminated, and a decrease in the frame rate of the image data generated based on the received ultrasonic wave can be prevented.
  • FIG. 17 is a diagram showing another display example of the display image on the display unit 7.
  • the display image 400 shown in the figure includes an information display unit 401, a first image display unit 402 that displays a B-mode image, and a second image display unit 403 that displays a tissue property emphasized image.
  • the B mode image 100 is displayed on the first image display unit 402
  • the tissue property emphasized image 300 is displayed on the second image display unit 403.
  • the difference between the two images can be recognized on one screen.
  • the image displayed on the first information display unit 401 and the image displayed on the second image display unit 403 may be interchanged.
  • the display may be switched between the display image 200 and the display image 400 by an input from the input unit 6.
  • the second embodiment of the present invention differs from the first embodiment in the focus point calculation process in the focus point calculation unit.
  • the configuration of the ultrasonic observation apparatus according to the second embodiment is the same as the configuration of the ultrasonic observation apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasonic observation apparatus 1.
  • FIG. 18 is a diagram schematically showing an overview of the focus point calculation process in the second embodiment.
  • the number of transmissions for one sound ray is i max .
  • the region of interest RB shown in FIG. 18, i max number of partial regions of interest RB (1), is divided., The RB (i max).
  • the frequency feature amount is highly accurate. Can be calculated.
  • the third embodiment of the present invention differs from the first embodiment in the focus point calculation process in the focus point calculation unit.
  • the configuration of the ultrasonic observation apparatus according to the third embodiment is the same as the configuration of the ultrasonic observation apparatus 1 described in the first embodiment. Therefore, in the following description, the same reference numerals are given to the components corresponding to the components of the ultrasound observation apparatus 1.
  • FIG. 19 is a diagram schematically showing an overview of the focus point calculation process in the third embodiment.
  • the number of transmissions for one sound ray is i max .
  • the region of interest RC shown in FIG. 19 i max number of partial regions of interest RC (1), ⁇ ⁇ ⁇ , is divided into RC (i max).
  • the focus point calculation unit 42 applies the partial interest region including the focus point of the B-mode image echo signal. Do not set the focus point of the computation echo signal.
  • the frequency analysis unit 44 acquires an FFT data group in the partial region of interest where the focus point of the calculation echo signal is not set using the B-mode image echo signal.
  • the focus point FP (B) of the B-mode image echo signal LD (B) is set in the partial region of interest RC (2).
  • the transmission / reception unit 3 does not set a focus point in all the calculation echo signals LD (1) to LD (i max ) for the partial region of interest RC (2).
  • the frequency analysis unit 44 acquires the FFT data group in the partial region of interest RC (2) from the B-mode image echo signal LD (B).
  • the frequency feature amount is highly accurate. Can be calculated.
  • the present invention should not be limited only by the above-described first to third embodiments.
  • the number of transmissions of ultrasonic waves per sound ray may be reduced according to the calculation load.
  • the corrected frequency spectrum when extracting the feature quantity of the frequency spectrum, after the attenuation correction is applied to the frequency spectrum calculated by the frequency analysis unit, the corrected frequency spectrum may be approximated by regression analysis. .
  • control unit 9 may collectively perform the amplification correction process by the amplification correction unit 43 and the attenuation correction process by the attenuation correction unit 452. This process is equivalent to changing the definition of the attenuation amount A of the attenuation correction process in step S13 in FIG. 5 to the following equation (6) without performing the amplification correction process in step S6 in FIG. .
  • a ′ 2 ⁇ zf + ⁇ (z) (6)
  • ⁇ (z) on the right side is the difference between the amplification factors ⁇ and ⁇ 0 at the reception depth z
  • ⁇ (z) ⁇ ⁇ ( ⁇ th ⁇ 0 ) / z th ⁇ z + ⁇ th ⁇ 0 (z ⁇ z th )
  • ⁇ (z) 0 (z> z th ) (8) It is expressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 超音波観測装置は、検体内の関心領域の位置および大きさに関する情報を設定可能な関心領域設定部と、関心領域設定部が設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出部と、フォーカスポイント算出部が算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信部と、送受信部が受信した超音波を、フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析部と、周波数解析部が算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出部と、特徴量抽出部が抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理部と、を備える。

Description

超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
 本発明は、超音波を用いて検体の組織を観測する超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムに関する。
 従来、超音波を用いた乳がん等の検査技術として、超音波エラストグラフィという技術が知られている(例えば、特許文献1を参照)。超音波エラストグラフィは、生体内のがんや腫瘍組織の硬さが病気の進行状況や生体によって異なることを利用する技術である。この技術では、外部から検査箇所を圧迫した状態で、超音波を用いてその検査箇所における生体組織の歪量や弾性率を計測し、この計測結果を断層像として画像表示している。
国際公開第2005/122906号
 しかしながら、上述した超音波エラストグラフィでは、血管やリンパ管などの脈管の下部には押し付ける圧力が伝わりにくいという問題があった。そのため、脈管の近傍に腫瘍が形成されている場合、腫瘍の境界が不明りょうであり、脈管内への腫瘍の浸潤の鑑別も難しかった。このように、超音波エラストグラフィでは、組織性状の鑑別等の検体の観測を精度よく行うことができない場合があった。
 また、超音波エラストグラフィでは、検査者が検査箇所を圧迫する際の圧力や圧迫速度に個人差が生じやすいため、測定結果の信頼性が低いという問題もあった。
 本発明は、上記に鑑みてなされたものであって、組織性状を精度よく鑑別することを可能にするとともに、観測結果の信頼性を向上させることができる超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波観測装置は、検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置であって、前記検体内の関心領域の位置および大きさに関する情報を設定可能な関心領域設定部と、前記関心領域設定部が設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出部と、前記フォーカスポイント算出部が算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信部と、前記送受信部が受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析部と、前記周波数解析部が算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出部と、前記特徴量抽出部が抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理部と、を備えたことを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記関心領域の大きさ情報に関連付けられたパラメータを記憶する記憶部をさらに備え、前記フォーカスポイント算出部は、前記パラメータに基づいて前記フォーカスポイントを算出することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記関心領域の大きさ情報は、該関心領域の深さ方向の大きさであり、前記パラメータは、前記関心領域内のフォーカスポイント数であることを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記フォーカスポイント算出部は、前記フォーカスポイント数に応じて前記関心領域を複数の部分関心領域に分割し、各部分関心領域におけるフォーカスポイントを算出し、算出したフォーカスポイントに応じて送信タイミングを決定し、前記送受信部は、前記関心領域内の音線に対して該音線上のフォーカスポイント数に相当する回数だけ超音波の送受信を行うことを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記周波数解析部は、前記送受信部が受信した超音波のデータ配列の一部をなすデータ群を取得し、該データ群に対して高速フーリエ変換を施すことによって周波数スペクトルを算出することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記周波数解析部は、1つの音線に対して送受信された複数の超音波から、該音線上で最も近いフォーカスポイントが存在する超音波を用いて前記データ群を取得することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記フォーカスポイント算出部は、前記部分関心領域の深さ方向の中心位置をフォーカスポイントとして算出することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記フォーカスポイント算出部は、前記部分関心領域における深さ方向のデータ配列の中心をフォーカスポイントとして算出することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記フォーカスポイント算出部は、前記データ群における所定のデータ位置をフォーカスポイントとして算出することを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記検体によって反射された超音波の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部をさらに備え、前記送受信部は、Bモード画像用として設定されるフォーカスポイントにフォーカスした超音波の送受信をさらに行い、前記フォーカスポイント算出部は、前記Bモード画像用のフォーカスポイントを含む前記部分関心領域において前記フォーカスポイント数に応じたフォーカスポイントを設定しないことを特徴とする。
 本発明に係る超音波観測装置は、上記発明において、前記画像処理部が生成した超音波画像データに対応する画像を表示可能な表示部をさらに備えたことを特徴とする。
 本発明に係る超音波観測装置の作動方法は、検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置の作動方法であって、前記検体内の関心領域の位置および大きさを設定する関心領域設定ステップと、前記関心領域設定ステップで設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出ステップと、前記フォーカスポイント算出ステップで算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信ステップと、前記送受信ステップで受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析ステップと、前記周波数解析ステップで算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出ステップと、前記特徴量抽出ステップで抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理ステップと、を有することを特徴とする。
 本発明に係る超音波観測装置の作動プログラムは、検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置に、前記検体内の関心領域の位置および大きさを設定する関心領域設定ステップと、前記関心領域設定ステップで設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出ステップと、前記フォーカスポイント算出ステップで算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信ステップと、前記送受信ステップで受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析ステップと、前記周波数解析ステップで算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出ステップと、前記特徴量抽出ステップで抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理ステップと、を実行させることを特徴とする。
 本発明によれば、超音波画像に設定する関心領域において、関心領域の大きさに基づいた複数のフォーカスポイントを算出し、各フォーカスポイントに対し送受信した超音波を周波数解析することによって特徴量を抽出するため、組織性状を精度よく鑑別することを可能にするとともに、観測結果の信頼性を向上させることができる。
図1は、本発明の実施の形態1に係る超音波観測装置の構成を示すブロック図である。 図2は、エコー信号の受信深度と増幅率との関係を示す図である。 図3は、増幅補正部が行う増幅処理における受信深度と増幅率との関係を示す図である。 図4は、フォーカスポイント情報記憶部が記憶するフォーカスポイント情報テーブルを示す図である。 図5は、本発明の実施の形態1に係る超音波観測装置の処理の概要を示すフローチャートである。 図6は、表示部におけるBモード画像の表示例を示す図である。 図7は、フォーカスポイント算出部が行う処理の概要を示すフローチャートである。 図8は、超音波探触子が行う超音波送信処理の概要を模式的に示す図である。 図9は、送受信部が超音波探触子から受信する1音線あたりの演算用エコー信号の構成を模式的に示す図である。 図10は、周波数解析部が行う処理の概要を示すフローチャートである。 図11は、音線のデータ配列を模式的に示す図である。 図12は、周波数解析部が行うFFTデータ群取得処理を具体的に説明する図である。 図13は、周波数解析部が算出した周波数スペクトルの例(第1例)を示す図である。 図14は、周波数解析部が算出した周波数スペクトルの例(第2例)を示す図である。 図15は、図13に示す直線に関連する特徴量に対して減衰補正を行った後の特徴量から定まる直線を示す図である。 図16は、表示部における表示画像の表示例(第1例)を示す図である。 図17は、表示部における表示画像の表示例(第2例)を示す図である。 図18は、本発明の実施の形態2に係る超音波観測装置が行うフォーカスポイント算出処理の概要を模式的に示す図である。 図19は、本発明の実施の形態3に係る超音波観測装置が行うフォーカスポイント算出処理の概要を模式的に示す図である。
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波観測装置の構成を示すブロック図である。同図に示す超音波観測装置1は、超音波を用いて診断対象である検体を観測する装置である。
 超音波観測装置1は、外部へ超音波パルスを出力するとともに、外部で反射された超音波エコーを受信する超音波探触子2と、超音波探触子2との間で電気信号の送受信を行う送受信部3と、超音波エコーを変換した電気的なエコー信号に対して所定の演算を施す演算部4と、超音波エコーを変換した電気的なエコー信号に対応する画像データの生成を行う画像処理部5と、キーボード、マウス、タッチパネル等のインタフェースを用いて実現され、各種情報の入力を受け付ける入力部6と、液晶または有機EL等からなる表示パネルを用いて実現され、画像処理部5が生成した画像を含む各種情報を表示する表示部7と、既知検体の組織性状に関する情報を含む各種情報を記憶する記憶部8と、超音波観測装置1の動作制御を行う制御部9と、を備える。
 超音波探触子2は、送受信部3から受信した電気的なパルス信号を超音波パルス(音響パルス信号)に変換するとともに、外部の検体で反射された超音波エコーを電気的なエコー信号に変換する信号変換部21を有する。超音波探触子2は、超音波振動子をメカ的に走査させるものであってもよいし、複数の超音波振動子を電子的に走査させるものであってもよい。
 送受信部3は、超音波探触子2と電気的に接続され、パルス信号を超音波探触子2へ送信するとともに、超音波探触子2から受信信号であるエコー信号を受信する。受信したエコー信号は、画像処理部5がエコー信号の振幅を輝度に変換することによってBモード画像データを生成するために用いるエコー信号(以下、「Bモード画像用エコー信号」という)および演算部4が演算を施すために用いるエコー信号(以下、「演算用エコー信号」という)を切り替える。Bモード画像用エコー信号と演算用エコー信号の切り替えは、制御部9の制御のもと、フレーム単位または音線(ラインデータ)単位で行う。
 送受信部3は、後述するフォーカスポイント算出部42が設定するフォーカスポイント、送信タイミングおよび予め設定された波形に基づいてパルス信号を生成し、この生成したパルス信号を超音波探触子2へ送信するとともに、超音波探触子2で受信したエコー信号に、増幅、フィルタリング等の処理を施した後、A/D変換することによってBモード画像用エコー信号と演算用エコー信号のデジタルRF信号を生成する。なお、超音波探触子2が複数の超音波振動子を電子的に走査させるものである場合、送受信部3は、複数の超音波振動子に対応したビーム合成用の多チャンネル回路を有する。
 送受信部3は、エコー信号を増幅する信号増幅部31を有する。具体的には、信号増幅部31は、受信深度が大きいエコー信号ほど高い増幅率で増幅するSTC(Sensitivity Time Control)補正を行う。図2は、エコー信号の受信深度と増幅率との関係を示す図である。図2に示す受信深度zは、超音波の受信開始時点からの経過時間に基づいて算出される量である。図2に示すように、増幅率β(dB)は、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴ってβからβth(>β0)へ線形に増加する。また、増幅率βは、受信深度zが閾値zth以上である場合、一定値βthをとる。閾値zthの値は、検体から受信する超音波信号がほとんど減衰してしまい、ノイズが支配的になるような値である。より一般に、増幅率βは、受信深度zが閾値zthより小さい場合、受信深度zの増加に伴って単調増加すればよい。
 演算部4は、入力部6による入力に応じて関心領域(ROI)の位置および大きさに関する情報を設定する関心領域設定部41と、送信タイミングを設定するフォーカスポイント算出部42と、送受信部3が出力したデジタルRF信号に対して受信深度によらず増幅率を一定とする増幅補正を行う増幅補正部43と、送受信部3が出力した演算用エコー信号のデジタルRF信号に高速フーリエ変換(FFT)を施すことによってエコー信号の周波数解析を行う周波数解析部44と、周波数解析部44が行う周波数解析によって得られた周波数スペクトル(パワースペクトル)を近似することによって周波数スペクトルの特徴量を抽出する特徴量抽出部45と、を有する。
 関心領域設定部41は、入力部6によって指定入力される関心領域の深さ方向の大きさならびに関心領域の位置および音線数に関する情報をもとに関心領域を設定する。
 フォーカスポイント算出部42は、関心領域設定部41で設定された関心領域の大きさに関する情報と、記憶部8が有するフォーカスポイント情報記憶部81(後述)が記憶するフォーカスポイント数のテーブルとから、関心領域内の複数のフォーカスポイントの算出(位置設定)を行い、演算用エコー信号の1音線あたりの送信回数と送信タイミングを決定する。また、フォーカスポイント算出部42は、Bモード画像用エコー信号のフォーカスポイント、送信回数および送信タイミングを決定する。
 図3は、増幅補正部43が行う増幅処理における受信深度と増幅率との関係を示す図である。図3に示すように、増幅補正部43が行う増幅処理における増幅率β(dB)は、受信深度zがゼロのとき最大値βth-β0をとり、受信深度zがゼロから閾値zthに達するまで線形に減少し、受信深度zが閾値zth以上のときゼロである。このように定められる増幅率によって増幅補正部43がデジタルRF信号を増幅補正することにより、信号増幅部31におけるSTC補正の影響を相殺し、一定の増幅率βthの信号を出力することができる。なお、増幅補正部43が行う受信深度zと増幅率βの関係は、信号増幅部31における受信深度と増幅率の関係に応じて異なることは勿論である。
 周波数解析部44は、各音線に対し、所定のデータ量からなるFFTデータ群を高速フーリエ変換することによって音線上の複数の箇所(データ位置)における周波数スペクトルを算出する。周波数スペクトルは、検体の組織性状によって異なる傾向を示す。これは、周波数スペクトルが、超音波を散乱する散乱体としての検体の大きさ、密度、音響インピーダンス等と相関を有しているためである。ここで、「組織性状」とは、例えば癌、内分泌腫瘍、粘液性腫瘍、膵炎、脈管などのいずれかである。
 特徴量抽出部45は、周波数解析部44が算出した各データ位置の周波数スペクトルを近似することによってその周波数スペクトルの特徴量を抽出する。特徴量抽出部45は、周波数解析部44が算出した周波数スペクトルに対し、近似処理を行うことによって減衰補正処理を行う前の補正前特徴量を算出する近似部451と、近似部451が近似した補正前特徴量に対して減衰補正処理を行うことによって特徴量を抽出する減衰補正部452と、を有する。
 近似部451は、回帰分析によって周波数スペクトルを1次式で近似し、この近似した1次式を特徴付ける補正前特徴量を抽出する。具体的には、近似部451は、回帰分析によって1次式の傾きa0および切片b0を算出するとともに、周波数スペクトルにおける周波数帯域内の特定周波数における強度を補正前特徴量として算出する。本実施の形態1において、近似部451は、特定周波数として中心周波数fMID=(fLOW+fHIGH)/2を採用し、この中心周波数fMIDにおける強度(Mid-band fit)c0=a0MID+b0を算出するものとするが、これはあくまでも一例に過ぎない。ここでいう「強度」とは、電圧、電力、音圧、音響エネルギー等のパラメータのいずれかを指す。
 3つの特徴量のうち、傾きa0は、超音波の散乱体の大きさと相関を有し、一般に散乱体が大きいほど傾きが小さな値を有すると考えられる。また、切片b0は、散乱体の大きさ、音響インピーダンスの差、散乱体の密度(濃度)等と相関を有している。具体的には、切片b0は、散乱体が大きいほど大きな値を有し、音響インピーダンスが大きいほど大きな値を有し、散乱体の密度(濃度)が大きいほど大きな値を有すると考えられる。中心周波数fMIDにおける強度(以下、単に「強度」という)c0は、傾きa0と切片b0から導出される間接的なパラメータであり、有効な周波数帯域内の中心におけるスペクトル強度を与える。このため、強度c0は、散乱体の大きさ、音響インピーダンスの差、散乱体の密度に加えて、Bモード画像の輝度とある程度の相関を有していると考えられる。なお、近似部451が算出する近似式は1次式に限定されるわけではなく、2次以上の多項式でもよい。
 次に、減衰補正部452が行う補正について説明する。一般に、超音波の減衰量Aは、
 A=2αzf  ・・・(1)
と表すことができる。ここで、αは減衰率であり、zは超音波の受信深度であり、fは周波数である。式(1)からも明らかなように、減衰量Aは、周波数fに比例している。減衰率αの具体的な値は、生体の場合、0~1.0(dB/cm/MHz)、より好ましくは0.3~0.7(dB/cm/MHz)であり、観察対象の臓器の種類に応じて定まる。なお、本実施の形態1において、減衰率αの値を入力部6からの入力によって変更できる構成とすることも可能である。
 減衰補正部452は、近似部451が抽出した補正前特徴量(傾きa0,切片b0,強度c0)を、次のように補正する。
 a=a0+2αz  ・・・(2)
 b=b0  ・・・(3)
 c=c0+2αzfMID(=afMID+b)  ・・・(4)
式(2)、(4)からも明らかなように、減衰補正部452は、超音波の受信深度zが大きいほど、補正量が大きい補正を行う。また、式(3)によれば、切片に関する補正は恒等変換である。これは、切片が周波数0(Hz)に対応する周波数成分であって減衰しないためである。
 画像処理部5は、特徴量抽出部45が抽出した特徴量に対応した表示態様を有する超音波画像データを生成する。画像処置部5は、Bモード画像用エコー信号の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部51と、Bモード画像データ生成部51および演算部4によってそれぞれ出力されたデータを用いて表示画像データを生成する表示画像データ生成部52と、を有する。
 Bモード画像データ生成部51は、デジタル信号に対してバンドパスフィルタ、対数変換、ゲイン処理、コントラスト処理等の公知の技術を用いた信号処理を行うとともに、表示部7における画像の表示レンジに応じて定まるデータのステップ幅に応じたデータの間引き等を行うことによってBモード画像データを生成する。
 表示画像データ生成部52は、Bモード画像データ生成部51が生成したBモード画像データ、および特徴量抽出部45が算出した特徴量を用いることにより、被検体の組織性状を強調する組織性状強調画像を含む表示画像データを生成する。 
 入力部6は、キーボード、マウス、タッチパネル等のインタフェースを用いて実現される。入力部6は、画像処理部5によって生成された画像を見た超音波観測装置1のユーザによって関心領域を指定する情報の入力を受け付ける。
 記憶部8は、関心領域における深さ方向の大きさとフォーカスポイント数と関連付けて記憶するフォーカスポイント情報記憶部81と、信号増幅部31および増幅補正部43が増幅処理を行う際に参照する増幅率の情報を記憶する増幅率情報記憶部82と、周波数解析部44が行う周波数解析処理の際に使用する窓関数を記憶する窓関数記憶部83と、減衰補正部452が処理を行う際に参照する補正情報を記憶する補正情報記憶部84と、を有する。
 フォーカスポイント情報記憶部81は、関心領域の大きさ情報である関心領域の深さ方向の大きさとフォーカスポイント数とを関連付けて記憶している。図4は、フォーカスポイント情報記憶部81が記憶するフォーカスポイント情報テーブルを示す図である。同図に示すフォーカスポイント情報テーブルTbでは、関心領域の深さ方向の大きさwが大きくなるにつれてフォーカスポイント数が段階的に大きくなる。具体的には、w=1または2(cm)ではフォーカスポイント数が1、w=3(cm)ではフォーカスポイント数が2、w=4または5(cm)ではフォーカスポイント数が3である。このフォーカスポイント数は、関心領域における領域分割数に相当するとともに、1つの音線における超音波の送信回数に相当する。
 増幅率情報記憶部82は、図2および図3に示す増幅率と受信深度との関係を記憶する。
 窓関数記憶部83は、Hamming、Hanning、Blackmanなどの窓関数のうち少なくともいずれか一つまたは複数の窓関数を記憶している。
 補正情報記憶部84は、式(2)~(4)を含む減衰補正に関連した情報を記憶する。
 記憶部8は、超音波観測装置1の作動プログラムや所定のOSを起動するプログラム等が予め記憶されたROM、および各処理の演算パラメータやデータ等を記憶するRAM等を用いて実現される。
 制御部9は、演算および制御機能を有するCPUを用いて実現される。制御部9は、記憶部8が記憶、格納する情報および超音波観測装置1の作動プログラムを含む各種プログラムを記憶部8から読み出すことにより、超音波観測装置1の作動方法に関連した各種演算処理を実行することによって超音波観測装置1を統括して制御する。
 以上の機能構成を有する超音波観測装置1の超音波探触子2以外の構成要素は、1または複数のコンピュータを用いて実現される。
 なお、超音波観測装置1の作動プログラムは、ハードディスク、フラッシュメモリ、CD-ROM、DVD-ROM、フレキシブルディスク等のコンピュータ読み取り可能な記録媒体に記録して広く流通させることも可能である。
 図5は、以上の構成を有する超音波観測装置1の処理の概要を示すフローチャートである。図5において、超音波観測装置1は、まず超音波探触子2によって新規の検体の測定を行う(ステップS1)。
 続いて、超音波探触子2からエコー信号を受信した信号増幅部31は、そのエコー信号の増幅を行う(ステップS2)。ここで、信号増幅部31は、図2に示す増幅率と受信深度との関係に基づいて増幅を行う。
 この後、Bモード画像データ生成部51は、送受信部3から出力されたBモード画像用エコー信号を用いてBモード画像データを生成する(ステップS3)。
 続いて、制御部9は、Bモード画像データ生成部51が生成したBモード画像データに対応するBモード画像を表示部7に表示させる制御を行う(ステップS4)。図6は、表示部7におけるBモード画像の表示例を示す図である。同図に示すBモード画像100は、色空間としてRGB表色系を採用した場合の変数であるR(赤)、G(緑)、B(青)の値を一致させたグレースケール画像である。
 その後、入力部6による入力に応じて関心領域設定部41が関心領域の設定をした場合(ステップS5:Yes)、増幅補正部43は、送受信部3から出力された信号に対して受信深度によらず増幅率が一定となる補正を行う(ステップS6)。ここで、増幅補正部43は、図3に示す増幅率と受信深度との関係に基づいて増幅処理を行う。なお、Bモード画像中における関心領域は、入力部6を介してユーザが任意に設定することが可能である。
 ステップS5で関心領域設定部41が関心領域の設定を行わない場合(ステップS5:No)において、処理を終了する指示が入力部6によって入力されたとき(ステップS7:Yes)、超音波観測装置1は処理を終了する。これに対し、関心領域の設定がなされていない場合(ステップS5:No)において、処理を終了する指示が入力部6によって入力されないとき(ステップS7:No)、超音波観測装置1はステップS5へ戻る。
 続いて、フォーカスポイント算出部42は、演算用エコー信号を取得するための送信回数と送信タイミングを決定する(ステップS8)。図7は、フォーカスポイント算出部42が行う送信回数と送信タイミングの決定処理の概要を示すフローチャートである。まず、フォーカスポイント算出部42は、ステップS5で指定された関心領域の深さ方向の大きさを取得する(ステップS21)。
 この後、フォーカスポイント算出部42は、記憶部8に記憶しているフォーカスポイント数テーブルを参照して、取得した関心領域の深さ方向の大きさに応じたフォーカスポイント数(送信回数)を決定する(ステップS22)。
 続いて、フォーカスポイント算出部42は、決定したフォーカスポイント数の分だけ関心領域を深さ方向に分割し、分割した各部分関心領域内における深さ方向の中心位置をフォーカスポイントとして設定する(ステップS23)。なお、ステップS23において、フォーカスポイント算出部42が、各部分関心領域内における深さ方向のデータ配列の中心データ位置をフォーカスポイントとして算出するようにしてもよい。
 最後に、フォーカスポイント算出部42は、設定された各フォーカスポイントの位置に超音波がフォーカスするように送信タイミングを決定する(ステップS24)。
 このようにして、フォーカスポイント算出部42は、エコー信号を取得するための送信回数と送信タイミングを決定する。この後、超音波観測装置1は、図5に示すメインルーチンへ戻る。
 以上説明したステップS8に続いて、送受信部3は、あらかじめ設定されているパルス信号を、決定済みの送信タイミングで超音波探触子2へ送信するとともに、超音波探触子2から受信信号である演算用エコー信号を受信する(ステップS9)。
 図8は、超音波探触子2が行う超音波送信処理の概要を模式的に示す図である。図8では、関心領域の深さ方向の大きさwが4cmの場合を示している。この場合において、wとフォーカスポイント数との関係が図4に示すフォーカスポイント情報テーブルTbにしたがうとき、フォーカスポイント数は3である。したがって、関心領域RAは3つの部分関心領域RA(1)、RA(2)、RA(3)に分割され、部分関心領域RA(j)(j=1,2,3)にはフォーカスポイントFP(j)が設定されている(上記ステップS23を参照)。
 図8に示す場合、超音波探触子2が有する超音波振動子22は、1つの音線に対し、部分関心領域ごとに設定される3つのフォーカスポイントを中心とする音場を形成するような3つの超音波を所定の送信タイミングで順次送信し、演算用エコー信号を受信する。具体的には超音波振動子22は、第1回目の送受信(第1送受信)時に、フォーカスポイントFP(1)を中心として超音波の進行方向に略対称な音場SF1を形成する。また、超音波振動子22は、第2回目の送受信(第2送受信)時に、フォーカスポイントFP(2)を中心として超音波の進行方向に略対称な音場SF2を形成する。さらに、超音波振動子22は、第3回目の送受信(第3送受信)時に、フォーカスポイントFP(3)を中心として超音波の進行方向に略対称な音場SF3を形成する。なお、図8では、関心領域RAの中央の1つの音線を例示しているが、実際には関心領域RAに含まれるすべての音線に対して上記同様の処理(超音波の送受信)を行うことは勿論である。
 図9は、ステップS9において送受信部3が超音波探触子2から受信する1音線あたりの演算用エコー信号の構成を模式的に示す図である。同図に示す音線LD(1)~LD(3)は、送受信部3が第1送受信時~第3送受信時においてそれぞれ受信した演算用エコー信号であり、各信号における白または黒の長方形は、1つのデータを意味している。また、音線LD(1)~LD(3)は、送受信部3が行うA/D変換におけるサンプリング周波数(例えば50MHz)に対応した時間間隔で離散化されている。なお、図9に示す黒の長方形は、周波数解析部44が取得するFFTデータ群を代表するデータ位置を意味している。この点については、後述するステップS11において詳細に説明する。
 その後、全音線に対して所定の送信回数の超音波送受信が完了した場合(ステップS10:Yes)、周波数解析部44は演算用エコー信号の周波数解析を行う(ステップS11)。一方、全音線に対して所定の送信回数の超音波送受信が完了していない場合(ステップS10:No)、超音波観測装置1はステップS9へ戻る。
 ここで、周波数解析部44が行う処理(ステップS11)について、図10に示すフローチャートを参照して詳細に説明する。まず、周波数解析部44は、最初に解析対象とする音線の音線番号Lを初期値L0とする(ステップS31)。初期値L0は、例えば送受信部3が最初に受信する音線に対して付与してもよいし、入力部6によって設定される関心領域の左右の一方の境界位置に対応する音線に対して付与してもよい。
 続いて、周波数解析部44は、ステップS10で受信した演算用エコー信号の音線上の全ての周波数スペクトルを算出する。まず、周波数解析部44は、FFT演算用に取得する一連のデータ群(FFTデータ群)を代表するデータ位置Z(受信深度に相当)の初期値Z0を設定する(ステップS32)。
 図11は、音線のデータ配列を模式的に示す図である。図11では、1つの音線における送信回数をimaxとして、第1送受信~第imax送受信に対応する演算用エコー信号LD(1)~LD(imax)の1番目のデータをデータ位置Zの初期値Z0として設定するとともに、ステップ幅Dでデータ位置を設定した場合を示している。このため、図11に示す各演算用エコー信号の黒領域はデータ位置を示しており、ステップ幅Dは15である。なお、初期値Z0の位置は任意に設定することができる。例えば、関心領域の上端位置に対応するデータ位置Zを初期値Z0として設定してもよい。
 その後、周波数解析部44は、データ位置ZのFFTデータ群を取得する(ステップS33)。周波数解析部44は、取得対象のデータ位置Zと各演算用エコー信号のフォーカスポイントFP(i)の位置を比較し、フォーカスポイントまでの距離が最も小さい演算用エコー信号を用いてそのデータ位置ZのFFTデータ群を取得する。ここで、FFTデータ群は、2のべき乗のデータ数を有している必要がある。以下、FFTデータ群のデータ数を2n(nは正の整数)とする。FFTデータ群のデータ数が2nであるとは、データ位置Zの前方に2n-1-1(=Nとする)個のデータがあり、データ位置Zの後方に2n-1(=Mとする)個のデータがあることを意味するものとする。
 図12は、ステップS33の処理を具体的に説明する図である。図12では、1つの音線における送信回数imaxが3である場合を示している。また、図12では、1つのFFTデータ群のデータ数を15としている。したがって、n=4、N=7、M=8である。さらに、関心領域RAは、図8を参照して説明したものと同じである。この場合、周波数解析部44は、取得対象のデータ位置Zと各演算用エコー信号のフォーカスポイントの位置を比較して、第1送受信時の音線LD(1)において、初期値Z0から部分関心領域RA(1)に含まれるデータ位置のFFTデータ群F1、・・・、Fi、Fi+1(iは正の整数)を取得する。また、周波数解析部44は、第2送受信時の音線LD(2)において、部分関心領域RA(2)に含まれるデータ位置のFFTデータ群Fi+2、Fi+3を取得する。また、周波数解析部44は、第3送受信時の音線LD(3)において、部分関心領域RA(3)から音線LD(3)の最後のデータ位置に含まれるFFTデータ群Fi+4、・・・、FK-1、FKを取得する。
 続いて、周波数解析部44は、取得したFFTデータ群に対し、窓関数記憶部83が記憶する窓関数を作用させる(ステップS34)。このように、周波数解析部44が、取得したFFTデータ群に対して窓関数を作用させることにより、FFTデータ群が境界で不連続になることを回避し、アーチファクトが発生するのを防止することができる。
 この後、周波数解析部44は、データ位置ZのFFTデータ群が正常なデータ群であるか否かを判定する(ステップS35)。FFTデータ群が正常であるとは、データ位置Zの前方にN個のデータがあり、データ位置Zの後方にM個のデータがある場合を意味する。図12に示す場合、FFTデータ群F1、FKを除くFFTデータ群は全て正常である。
 ステップS35における判定の結果、データ位置ZのFFTデータ群が正常である場合(ステップS35:Yes)、周波数解析部44は、後述するステップS37へ移行する。
 ステップS35における判定の結果、データ位置ZのFFTデータ群が正常でない場合(ステップS35:No)、周波数解析部44は、不足分だけゼロデータを挿入することによって正常なFFTデータ群を生成する(ステップS36)。ステップS35において正常でないと判定されたFFTデータ群は、ゼロデータを追加する前に窓関数が作用されている。このため、FFTデータ群にゼロデータを挿入してもデータの不連続は生じない。ステップS36の後、周波数解析部44は、後述するステップS37へ移行する。
 ステップS37において、周波数解析部44は、FFTデータ群を用いてFFT演算を行うことにより、周波数スペクトルを得る(ステップS37)。図13および図14は、周波数解析部44が算出した周波数スペクトルの例を示す図である。図13および図14では、横軸fが周波数であり、縦軸Iが強度である。図13および図14にそれぞれ示す周波数スペクトル曲線C1およびC2において、周波数スペクトルの下限周波数fLOWおよび上限周波数fHIGHは、超音波探触子2の周波数帯域、送受信部3が送信するパルス信号の周波数帯域などをもとに決定されるパラメータであり、例えばfLOW=3MHz、fHIGH=10MHzである。本実施の形態1において、曲線および直線は、離散的な点の集合からなる。なお、図13に示す直線L1および図14に示す直線L2については、後述する補正前特徴量抽出処理(ステップS12)で説明する。
 続いて、周波数解析部44は、データ位置Zに所定のステップ幅Dを加算して次の解析対象のFFTデータ群のデータ位置Zを算出する(ステップS38)。ここでのステップ幅Dは、Bモード画像データ生成部51がBモード画像データを生成する際に利用するステップ幅と一致させることが望ましいが、周波数解析部44における演算量を削減したい場合には、Bモード画像データ生成部51が利用するステップ幅より大きい値を設定してもよい。
 その後、周波数解析部44は、データ位置Zが最終データ位置Zmaxより大きいか否かを判定する(ステップS39)。ここで、最終データ位置Zmaxは、演算用エコー信号LD(1)~LD(n)のデータ長としてもよいし、関心領域の下端に対応するデータ位置としてもよい。判定の結果、データ位置Zが最終データ位置Zmaxより大きい場合(ステップS39:Yes)、周波数解析部44は、音線番号Lを1だけ増加する(ステップS40)。一方、データ位置Zが最終データ位置Zmax以下である場合(ステップS39:No)、周波数解析部44はステップS33へ戻る。このようにして、周波数解析部44は、演算用エコー信号LD(1)~LD(imax)に対して合計[{(Zmax-Z0)/D}+1](=K)個のFFTデータ群に対するFFT演算を行う。ここで、[X]は、Xを超えない最大の整数を表す。
 ステップS40でインクリメントした後の音線番号Lが最終音線番号Lmaxより大きい場合(ステップS41:Yes)、周波数解析部44は周波数解析処理を終了する。その後、超音波観測装置1は、図5に示すメインルーチンへ戻る。一方、ステップS41で増加した後の音線番号Lが最終音線番号Lmax以下である場合(ステップS41:No)、周波数解析部44はステップS32へ戻る。
 このようにして、周波数解析部44は、(Lmax-L0+1)本の音線の各々についてK回のFFT演算を行う。なお、最終音線番号Lmaxは、例えば送受信部3が受信する最終の音線に付与してもよいし、関心領域の左右のいずれか一方の境界に対応する音線に付与してもよい。以下、周波数解析部44が全ての音線に対して行うFFT演算の総数(Lmax-L0+1)×KをPとおく。
 以上説明したステップS11の周波数解析処理に続いて、特徴量抽出部45は、周波数解析部44が算出した周波数スペクトルを近似することによって周波数スペクトルの特徴量を抽出する(ステップS12、S13)。
 まず、ステップS12において、近似部451は、近似処理として周波数解析部44が算出したP個の周波数スペクトルを回帰分析することにより、補正前特徴量を抽出する。具体的には、近似部451は、周波数帯域fLOW<f<fHIGHの周波数スペクトルを近似する1次式を回帰分析によって算出することにより、この1次式を特徴づける傾きa0,切片b0,強度c0を補正前特徴量として抽出する。図13に示す直線L1および図14に示す直線L2は、このステップS12において、周波数スペクトル曲線C1およびC2に対して回帰分析をそれぞれ行うことによって得られる回帰直線である。
 この後、ステップS13において、減衰補正部452は、近似部451が抽出した補正前特徴量に対して減衰補正処理を行うことによって特徴量を算出する。例えば、データのサンプリング周波数が50MHzである場合、データのサンプリング周期は20(nsec)である。ここで、音速を1530(m/sec)とすると、データのサンプリング距離間隔は、1530(m/sec)×20(nsec)/2=0.0153(mm)となる。処理対象のFFTデータ群のデータ位置までの演算用エコー信号LD(j)の1番目のデータからのデータステップ数がkであるとすると、そのデータ位置Zは0.0153k(mm)となる。減衰補正部452は、このようにして求まるデータ位置Zの値を上述した式(2)~(4)の受信深度zへ代入することにより、周波数スペクトルの特徴量である傾きa,切片b,強度cを算出する。図15は、図13に示す直線L1に関連する特徴量に対して減衰補正を行った後の特徴量から定まる直線を示す図である。図15に示す直線L1'を表す式は、
 I=af+b=(a0+2αZ)f+b0  ・・・(5)
である。この式(5)からも明らかなように、直線L1'は、直線L1と比較して、傾きが大きく、かつ切片の値が同じである。
 以上説明したように減衰補正部452が減衰補正を行うことにより、受信深度が大きい領域で減衰の影響により信号強度が下がり、画像が暗くなってしまうのを抑制し、画面全体にわたって均一な明るさの画像を得ることができる。
 ステップS13に続いて、表示画像データ生成部52は、Bモード画像データ生成部51が生成したBモード画像データ、特徴量抽出部45が算出した特徴量を用いることにより、表示画像データを生成する(ステップS14)。
 その後、表示部7は、表示画像データ生成部52が生成した表示画像を表示する(ステップS15)。図16は、表示部7における表示画像の表示例を示す図である。同図に示す表示画像200は、検体に関する各種情報を表示する情報表示部201と、組織性状を強調する組織性状強調画像を表示する画像表示部202とを有する。
 情報表示部201には、例えば検体の識別情報(ID番号、名前、性別等)、特徴量情報、ゲインやコントラスト等の超音波画質情報が表示される。ここで、特徴量情報として、関心領域の内部に位置するQ組のFFTデータ群の周波数スペクトルの特徴量の平均、標準偏差を利用した表示を行うことが可能である。具体的には、情報表示部201では、例えば「a=1.5±0.3(dB/MHz)、b=-60±2(dB/MHz)、c=-50±1.5(dB/MHz)」と表示することができる。
 画像表示部202に表示されている組織性状強調画像300は、図6に示すBモード画像100に対して、特徴量bをR(赤)、G(緑)、B(青)に対して均等に割り当てたグレースケール画像である。
 表示部7が表示画像200を表示することにより、超音波観測装置1のユーザは、より正確に関心領域の組織性状を把握することが可能となる。
 以上により、超音波観測装置1は、一連の処理を終了する。なお、超音波観測装置1が、ステップS1~S15の処理を周期的に繰り返すようにしてもよい。
 なお、図16に示す組織性状強調画像300はあくまでも一例に過ぎない。他にも、例えば3つの特徴量a、b、cをR(赤)、G(緑)、B(青)にそれぞれ割り当てることにより、組織性状強調画像をカラー画像によって表示することも可能である。この場合、組織性状に対して固有の色で表現されるため、ユーザは画像の色分布をもとに関心領域の組織性状を把握することができる。また、色空間をRGB表色系で構成する代わりに、シアン、マゼンダ、イエローのような補色系の変数によって構成し、各変数に対して特徴量を割り当ててもよい。また、Bモード画像データとカラー画像データとを所定の比率で混合させることによって組織性状強調画像データを生成してもよい。また、関心領域のみカラー画像データへ置換することによって組織性状強調画像データを生成してもよい。
 以上説明した本発明の実施の形態1によれば、関心領域の大きさに基づいた複数のフォーカスポイントを算出し、各フォーカスポイントに対し送受信した超音波を周波数解析することによって特徴量を抽出するため、組織性状を精度よく鑑別することを可能にするとともに、観測結果の信頼性を向上させることができる。
 また、本実施の形態1によれば、分割した領域ごとにフォーカスポイントに位置合わせを行っているため、送信ディレイの影響によってフォーカスポイント以外の周波数スペクトルが歪んでしまうという現象を抑制することができる。したがって、本実施の形態1によれば、周波数の特徴量を高精度で算出することができる。
 また、本実施の形態1によれば、受信深度に応じた増幅率で増幅するSTC補正を加えた信号をもとにBモード画像データを生成する一方、STC補正の影響を相殺して増幅率を受信深度によらず一定にする増幅補正を行ってから周波数スペクトルを算出し、この周波数スペクトルを回帰分析により線形近似した後で減衰補正を施しているため、超音波の伝播に伴う減衰の影響を正しく排除するとともに、受信した超音波をもとに生成する画像データのフレームレートの低下を防止することが可能となる。
 図17は、表示部7における表示画像の別な表示例を示す図である。同図に示す表示画像400は、情報表示部401と、Bモード画像を表示する第1画像表示部402と、組織性状強調画像を表示する第2画像表示部403とを有する。表示画像400では、第1画像表示部402にBモード画像100が表示され、第2画像表示部403に組織性状強調画像300が表示されている。このようにBモード画像と組織性状強調画像を並べて表示することにより、両画像の違いを一つの画面上で認識することができる。
 なお、表示画像400において、第1情報表示部401で表示する画像と第2画像表示部403で表示する画像を入れ替えることができるようにしてもよい。
 また、入力部6からの入力によって表示画像200と表示画像400との間で表示を切り換えることができるようにしてもよい。
(実施の形態2)
 本発明の実施の形態2は、フォーカスポイント算出部におけるフォーカスポイント算出処理が実施の形態1と異なる。本実施の形態2に係る超音波観測装置の構成は、実施の形態1で説明した超音波観測装置1の構成と同様である。そこで、以下の説明において、超音波観測装置1の構成要素と対応する構成要素には、同一の符号を付与するものとする。
 図18は、本実施の形態2におけるフォーカスポイント算出処理の概要を模式的に示す図である。図18において、1つの音線に対する送信回数はimaxである。また、図18に示す関心領域RBは、imax個の部分関心領域RB(1)、・・・、RB(imax)に分割されている。
 フォーカスポイント算出部42は、周波数解析部44が音線上で取得した複数のFFTデータ群をそれぞれ代表する所定のデータ位置Zを、該当する部分関心領域のフォーカスポイントFP(j)(j=1,2,・・・,imax)として算出し、演算用エコー信号の1音線あたりの送信回数と送信タイミングを決定する。
 以上説明した本発明の実施の形態2によれば、上述した実施の形態1と同様、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。
 また、本実施の形態2によれば、上述した実施の形態1と同様、送信ディレイの影響によってフォーカスポイント以外の周波数スペクトルが歪んでしまうという現象を抑制することにより、周波数の特徴量を高精度で算出することができる。
(実施の形態3)
 本発明の実施の形態3は、フォーカスポイント算出部におけるフォーカスポイント算出処理が実施の形態1と異なる。本実施の形態3に係る超音波観測装置の構成は、実施の形態1で説明した超音波観測装置1の構成と同様である。そこで、以下の説明において、超音波観測装置1の構成要素と対応する構成要素には同一の符号を付与するものとする。
 図19は、本実施の形態3におけるフォーカスポイント算出処理の概要を模式的に示す図である。図19において、1つの音線に対する送信回数はimaxである。また、図19に示す関心領域RCは、imax個の部分関心領域RC(1)、・・・、RC(imax)に分割されている。
 本実施の形態3では、Bモード画像用エコー信号のフォーカスポイントが関心領域内に含まれている場合、フォーカスポイント算出部42は、Bモード画像用エコー信号のフォーカスポイントを含む部分関心領域に対して演算用エコー信号のフォーカスポイントの設定を行わない。周波数解析部44は、演算用エコー信号のフォーカスポイントが設定されていない部分関心領域におけるFFTデータ群を、Bモード画像用エコー信号を用いて取得する。
 例えば、図19に示す場合、部分関心領域RC(2)はBモード画像用エコー信号LD(B)のフォーカスポイントFP(B)が設定されている。このため、送受信部3は、部分関心領域RC(2)に対しては、すべての演算用エコー信号LD(1)~LD(imax)においてフォーカスポイントを設定しない。周波数解析部44は、部分関心領域RC(2)内のFFTデータ群をBモード画像用エコー信号LD(B)から取得する。
 以上説明した本発明の実施の形態3によれば、上述した実施の形態1と同様、組織性状を精度よく鑑別することを可能にするとともに、測定結果の信頼性を向上させることができる。
 また、本実施の形態3によれば、上述した実施の形態1と同様、送信ディレイの影響によってフォーカスポイント以外の周波数スペクトルが歪んでしまうという現象を抑制することにより、周波数の特徴量を高精度で算出することができる。
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~3によってのみ限定されるべきものではない。例えば、本発明において、1音線あたりの超音波の送信回数は、演算負荷の状況に応じて減らすようにしてもよい。
 また、本発明において、周波数スペクトルの特徴量を抽出する際、周波数解析部が算出した周波数スペクトルに対して減衰補正を加えた後、補正後の周波数スペクトルを回帰分析によって近似するようにしてもよい。
 また、本発明において、制御部9が、増幅補正部43による増幅補正処理と減衰補正部452における減衰補正処理とを一括して行わせるようにしてもよい。この処理は、図5のステップS6における増幅補正処理を行わず、図5のステップS13における減衰補正処理の減衰量Aの定義を次式(6)のように変更して行うことと等価である。
 A'=2αzf+γ(z)  ・・・(6)
ここで、右辺のγ(z)は、受信深度zにおける増幅率βとβ0との差であり、
 γ(z)=-{(βth-β0)/zth}z+βth-β0 (z≦zth)  ・・・(7)
 γ(z)=0 (z>zth)  ・・・(8)
と表される。
 このように、本発明は、請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
 1 超音波観測装置
 2 超音波探触子
 3 送受信部
 4 演算部
 5 画像処理部
 6 入力部
 7 表示部
 8 記憶部
 9 制御部
 21 信号変換部
 22 超音波振動子
 31 信号増幅部
 41 関心領域設定部
 42 フォーカスポイント算出部
 43 増幅補正部
 44 周波数解析部
 45 特徴量抽出部
 51 Bモード画像データ生成部
 52 表示画像データ生成部
 81 フォーカスポイント情報記憶部
 82 増幅率情報記憶部
 83 窓関数記憶部
 84 補正情報記憶部
 100 Bモード画像
 200、400 表示画像
 201、401 情報表示部
 202 画像表示部
 300 組織性状強調画像
 402 第1画像表示部
 403 第2画像表示部
 451 近似部
 452 減衰補正部
 FP(j)(j=1,・・・,imax)、FP(B) フォーカスポイント
 RA、RB、RC 関心領域
 RA(j)、RB(j)、RC(j)(j=1,・・・,imax) 部分関心領域
 SF1、SF2、SF3 音場
 Tb フォーカスポイント情報テーブル

Claims (13)

  1.  検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置であって、
     前記検体内の関心領域の位置および大きさに関する情報を設定可能な関心領域設定部と、
     前記関心領域設定部が設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出部と、
     前記フォーカスポイント算出部が算出したフォーカスポイントにフォーカスした超音波の送受信を行う送受信部と、
     前記送受信部が受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析部と、
     前記周波数解析部が算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出部と、
     前記特徴量抽出部が抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理部と、
     を備えたことを特徴とする超音波観測装置。
  2.  前記関心領域の大きさ情報に関連付けられたパラメータを記憶する記憶部をさらに備え、
     前記フォーカスポイント算出部は、
     前記パラメータに基づいて前記フォーカスポイントを算出することを特徴とする請求項1に記載の超音波観測装置。
  3.  前記関心領域の大きさ情報は、該関心領域の深さ方向の大きさであり、
     前記パラメータは、前記関心領域内のフォーカスポイント数であることを特徴とする請求項2に記載の超音波観測装置。
  4.  前記フォーカスポイント算出部は、
     前記フォーカスポイント数に応じて前記関心領域を複数の部分関心領域に分割し、各部分関心領域におけるフォーカスポイントを算出し、算出したフォーカスポイントに応じて送信タイミングを決定し、
     前記送受信部は、
     前記関心領域内の音線に対して該音線上のフォーカスポイント数に相当する回数だけ超音波の送受信を行うことを特徴とする請求項3に記載の超音波観測装置。
  5.  前記周波数解析部は、
     前記送受信部が受信した超音波のデータ配列の一部をなすデータ群を取得し、該データ群に対して高速フーリエ変換を施すことによって周波数スペクトルを算出することを特徴とする請求項4に記載の超音波観測装置。
  6.  前記周波数解析部は、
     1つの音線に対して送受信された複数の超音波から、該音線上で最も近いフォーカスポイントが存在する超音波を用いて前記データ群を取得することを特徴とする請求項5に記載の超音波観測装置。
  7.  前記フォーカスポイント算出部は、
     前記部分関心領域の深さ方向の中心位置をフォーカスポイントとして算出することを特徴とする請求項4~6のいずれか一項に記載の超音波観測装置。
  8.  前記フォーカスポイント算出部は、
     前記部分関心領域における深さ方向のデータ配列の中心をフォーカスポイントとして算出することを特徴とする請求項4~6のいずれか一項に記載の超音波観測装置。
  9.  前記フォーカスポイント算出部は、
     前記データ群における所定のデータ位置をフォーカスポイントとして算出することを特徴とする請求項5または6に記載の超音波観測装置。
  10.  前記検体によって反射された超音波の振幅を輝度に変換して表示するBモード画像データを生成するBモード画像データ生成部をさらに備え、
     前記送受信部は、
     Bモード画像用として設定されるフォーカスポイントにフォーカスした超音波の送受信をさらに行い、
     前記フォーカスポイント算出部は、
     前記Bモード画像用のフォーカスポイントを含む前記部分関心領域において前記フォーカスポイント数に応じたフォーカスポイントを設定しないことを特徴とする請求項4~8のいずれか一項に記載の超音波観測装置。
  11.  前記画像処理部が生成した超音波画像データに対応する画像を表示可能な表示部をさらに備えたことを特徴とする請求項1~10のいずれか一項に記載の超音波観測装置。
  12.  検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置の作動方法であって、
     前記検体内の関心領域の位置および大きさを設定する関心領域設定ステップと、
     前記関心領域設定ステップで設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出ステップと、
     前記フォーカスポイント算出ステップで算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信ステップと、
     前記送受信ステップで受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析ステップと、
     前記周波数解析ステップで算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出ステップと、
     前記特徴量抽出ステップで抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理ステップと、
     を有することを特徴とする超音波観測装置の作動方法。
  13.  検体に対して超音波を送信するとともに、前記検体によって反射された超音波を受信する超音波観測装置に、
     前記検体内の関心領域の位置および大きさを設定する関心領域設定ステップと、
     前記関心領域設定ステップで設定した関心領域の大きさ情報に基づいて、該関心領域内の複数のフォーカスポイントを算出するフォーカスポイント算出ステップと、
     前記フォーカスポイント算出ステップで算出したフォーカスポイントにフォーカスして超音波の送受信を行う送受信ステップと、
     前記送受信ステップで受信した超音波を、前記フォーカスポイントを基準に解析することによって複数の周波数スペクトルを算出する周波数解析ステップと、
     前記周波数解析ステップで算出した周波数スペクトルを近似することによって該周波数スペクトルの特徴量を抽出する特徴量抽出ステップと、
     前記特徴量抽出ステップで抽出した特徴量に対応した表示態様を有する超音波画像データを生成する画像処理ステップと、
     を実行させることを特徴とする超音波観測装置の作動プログラム。
PCT/JP2013/075765 2012-10-01 2013-09-24 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム WO2014054469A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13843757.9A EP2904975B1 (en) 2012-10-01 2013-09-24 Ultrasound observation device, operation method for ultrasound observation device, and operation program for ultrasound observation device
CN201380010051.6A CN104125804B (zh) 2012-10-01 2013-09-24 超声波观测装置与超声波观测装置的动作方法
JP2014519333A JP5568199B1 (ja) 2012-10-01 2013-09-24 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US14/259,350 US9427208B2 (en) 2012-10-01 2014-04-23 Ultrasonic observation apparatus, operation method of the same, and computer readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-219764 2012-10-01
JP2012219764 2012-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/259,350 Continuation US9427208B2 (en) 2012-10-01 2014-04-23 Ultrasonic observation apparatus, operation method of the same, and computer readable recording medium

Publications (1)

Publication Number Publication Date
WO2014054469A1 true WO2014054469A1 (ja) 2014-04-10

Family

ID=50434798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075765 WO2014054469A1 (ja) 2012-10-01 2013-09-24 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Country Status (5)

Country Link
US (1) US9427208B2 (ja)
EP (1) EP2904975B1 (ja)
JP (1) JP5568199B1 (ja)
CN (1) CN104125804B (ja)
WO (1) WO2014054469A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927367B1 (ja) * 2014-12-22 2016-06-01 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103847A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103849A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2019077937A1 (ja) * 2017-10-19 2019-04-25 株式会社日立製作所 超音波撮像装置、および、超音波撮像方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285241B2 (ja) * 2014-03-26 2018-02-28 富士フイルム株式会社 音響波処理装置、音響波処理装置の信号処理方法およびプログラム
CN105939672B (zh) * 2014-12-22 2018-10-23 奥林巴斯株式会社 超声波观测装置以及超声波观测装置的工作方法
CN106572843B (zh) 2014-12-25 2020-03-10 奥林巴斯株式会社 超声波观测装置以及超声波观测装置的工作方法
JP5953457B1 (ja) * 2015-03-23 2016-07-20 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN106170253B (zh) * 2015-03-23 2019-03-01 奥林巴斯株式会社 超声波观测装置以及超声波观测装置的工作方法
JP6561637B2 (ja) * 2015-07-09 2019-08-21 株式会社ソシオネクスト 超音波画像生成システムおよび超音波ワイヤレスプローブ
CN108472018B (zh) * 2015-12-24 2021-01-05 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法以及超声波观测装置的工作程序
CN108186045B (zh) * 2017-12-28 2021-01-19 深圳开立生物医疗科技股份有限公司 一种剪切波的激励方法及装置
US11275159B2 (en) 2019-01-08 2022-03-15 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Attenuation estimation using ultrasound
JP7100160B2 (ja) * 2019-01-30 2022-07-12 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
CN112674799B (zh) * 2021-01-05 2022-11-25 青岛海信医疗设备股份有限公司 超声弹性成像方法、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373135A (ja) * 1989-08-11 1991-03-28 Fujitsu Ltd 超音波診断装置
JPH07323029A (ja) * 1994-05-31 1995-12-12 Shimadzu Corp 超音波診断装置
JP2004321582A (ja) * 2003-04-25 2004-11-18 Toshiba Corp 超音波診断装置及び超音波診断支援プログラム
JP2005245788A (ja) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd 超音波ドプラ血流計
WO2005122906A1 (ja) 2004-06-18 2005-12-29 Hitachi Medical Corporation 超音波診断装置
WO2012063977A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2012157387A (ja) * 2011-01-28 2012-08-23 Toshiba Corp 超音波診断装置及び画像生成制御プログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301674A (en) * 1992-03-27 1994-04-12 Diasonics, Inc. Method and apparatus for focusing transmission and reception of ultrasonic beams
CN1242079A (zh) * 1996-12-24 2000-01-19 垓技术公司 带空间抖颤的超声扫描变换
US6217516B1 (en) * 1999-11-09 2001-04-17 Agilent Technologies, Inc. System and method for configuring the locus of focal points of ultrasound beams
US6893399B2 (en) * 2002-11-01 2005-05-17 Ge Medical Systems Global Technology Company, Llc Method and apparatus for B-mode image banding suppression
US20050154306A1 (en) * 2004-01-14 2005-07-14 Michael Burcher Dort process-based method and system for adaptive beamforming in estimating the aberration in a medium
WO2007063425A2 (en) * 2005-06-16 2007-06-07 University Health Network Methods of monitoring cellular death using low frequency ultrasound
US8002705B1 (en) * 2005-07-22 2011-08-23 Zonaire Medical Systems, Inc. Continuous transmit focusing method and apparatus for ultrasound imaging system
JP4730125B2 (ja) * 2006-02-22 2011-07-20 株式会社日立製作所 血流画像表示装置
CN101991461A (zh) * 2010-10-22 2011-03-30 无锡海鹰电子医疗系统有限公司 Hifu系统聚焦组织的方法
EP2599440B1 (en) * 2010-11-11 2018-08-22 Olympus Corporation Ultrasonic observation device, method for operating ultrasonic observation device, and operation program for ultrasonic observation device
US9398898B2 (en) * 2011-02-23 2016-07-26 Siemens Medical Solutions Usa, Inc. Multiple beam spectral doppler in medical diagnostic ultrasound imaging
US9052268B2 (en) * 2011-03-22 2015-06-09 Fujifilm Corporation Ultrasound diagnostic apparatus and method of producing ultrasound image

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373135A (ja) * 1989-08-11 1991-03-28 Fujitsu Ltd 超音波診断装置
JPH07323029A (ja) * 1994-05-31 1995-12-12 Shimadzu Corp 超音波診断装置
JP2004321582A (ja) * 2003-04-25 2004-11-18 Toshiba Corp 超音波診断装置及び超音波診断支援プログラム
JP2005245788A (ja) * 2004-03-04 2005-09-15 Matsushita Electric Ind Co Ltd 超音波ドプラ血流計
WO2005122906A1 (ja) 2004-06-18 2005-12-29 Hitachi Medical Corporation 超音波診断装置
WO2012063977A1 (ja) * 2010-11-11 2012-05-18 オリンパスメディカルシステムズ株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP2012157387A (ja) * 2011-01-28 2012-08-23 Toshiba Corp 超音波診断装置及び画像生成制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2904975A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927367B1 (ja) * 2014-12-22 2016-06-01 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103847A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2016103849A1 (ja) * 2014-12-22 2016-06-30 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5948527B1 (ja) * 2014-12-22 2016-07-06 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US10201329B2 (en) 2014-12-22 2019-02-12 Olympus Corporation Ultrasound observation apparatus, method for operating ultrasound observation apparatus, and computer-readable recording medium
WO2019077937A1 (ja) * 2017-10-19 2019-04-25 株式会社日立製作所 超音波撮像装置、および、超音波撮像方法

Also Published As

Publication number Publication date
CN104125804B (zh) 2015-11-25
EP2904975B1 (en) 2018-03-21
US9427208B2 (en) 2016-08-30
EP2904975A1 (en) 2015-08-12
JP5568199B1 (ja) 2014-08-06
US20140309531A1 (en) 2014-10-16
JPWO2014054469A1 (ja) 2016-08-25
EP2904975A4 (en) 2016-05-18
CN104125804A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5568199B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5114609B2 (ja) 超音波観測装置および超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5433097B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5054254B2 (ja) 超音波診断装置、超音波診断装置の作動方法および超音波診断装置の作動プログラム
US9028414B2 (en) Ultrasonic observation apparatus, operation method of the same, and computer readable recording medium
JP5430809B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5659324B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5974210B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
JP5054253B2 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
US20160074008A1 (en) Ultrasonic observation apparatus, operation method of ultrasonic observation apparatus, and computer readable recording medium
JP5927367B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014519333

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013843757

Country of ref document: EP