WO2014054268A1 - Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system - Google Patents

Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system Download PDF

Info

Publication number
WO2014054268A1
WO2014054268A1 PCT/JP2013/005832 JP2013005832W WO2014054268A1 WO 2014054268 A1 WO2014054268 A1 WO 2014054268A1 JP 2013005832 W JP2013005832 W JP 2013005832W WO 2014054268 A1 WO2014054268 A1 WO 2014054268A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic pen
coordinate detection
image display
light
coordinate
Prior art date
Application number
PCT/JP2013/005832
Other languages
French (fr)
Japanese (ja)
Inventor
剛 桑山
井上 真一
秀彦 庄司
裕也 塩崎
貴彦 折口
一哉 古割
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014054268A1 publication Critical patent/WO2014054268A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • the present disclosure relates to an attachment for an electronic pen attached to an electronic pen for inputting characters and drawings to an image display device, an electronic pen system, and an image display system including the electronic pen system.
  • position coordinates There is an image display device that has a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen”.
  • electronic pen a technique for detecting the position of the electronic pen in the image display region is used.
  • position coordinates the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
  • a position coordinate detection period is provided in one field, and light emission generated in a plasma display panel (hereinafter referred to as “panel”) in the position coordinate detection period is detected by an optical sensor built in the electronic pen.
  • panel a plasma display panel
  • an image display device that detects the coordinate position of an electronic pen is disclosed.
  • an electronic pen is used in contact with the image display surface in order to detect light emitted on the image display surface with an optical sensor.
  • Patent Document 2 discloses an electronic pen including a pen tip portion that is pressed against an image display surface when the electronic pen is used, and a contact state detection unit that detects a contact state between the pen tip portion and the image display surface. Has been.
  • Patent Document 3 discloses a laser pointer that points to a point on the object by irradiating the object with laser light from a position away from the object.
  • the attachment for an electronic pen in the present disclosure is detachably attached to an electronic pen having a light receiving element.
  • the attachment for an electronic pen includes a trunk portion in which an opening for detachably attaching to the electronic pen is formed, and a condenser lens attached to the trunk portion. And the light which injects in a trunk
  • the electronic pen system includes an electronic pen having a light receiving element that receives light and outputs a light reception signal, and an attachment for the electronic pen.
  • the light incident on the body part passes through the condenser lens and is condensed on the light receiving element of the electronic pen attached to the opening.
  • the light receiving element receives the light collected by the condenser lens.
  • the image display system includes an electronic pen, an image display device, and an electronic pen attachment.
  • the image display device generates a plurality of subfields including a coordinate detection subfield that emits light for detecting the position coordinates of the electronic pen on the image display surface.
  • the attachment for the electronic pen is attached to the electronic pen, and the light emitted from the image display device is condensed on the light receiving element of the electronic pen through the condenser lens. Then, the image display system calculates the position coordinates of the electronic pen on the image display surface based on the light emission of the coordinate detection subfield, and performs drawing based on the calculated position coordinates.
  • FIG. 1 is a circuit block diagram schematically illustrating a configuration example of an image display system according to the first embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view illustrating an example of the structure of the panel used in the image display system according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • FIG. 1 is a circuit block diagram schematically illustrating a configuration example of an image display system according to the first embodiment of the present disclosure.
  • FIG. 2 is an exploded perspective view illustrating an example of the structure of the panel used in the image
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a three-view diagram illustrating an appearance of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 10 is a two-view diagram and a cross-sectional view illustrating the shape of the periphery of the tip of the main body case of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 10 is a two-view diagram and a cross-sectional view illustrating the shape of the periphery of the tip of the main body case of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 11 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip cap of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 12 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip portion of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 13 is an exploded view around the tip of the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 14 is a two-view diagram and a cross-sectional view illustrating the shape of the attachment for the electronic pen according to the first embodiment of the present disclosure.
  • FIG. 15 is a perspective view illustrating an appearance of an electronic pen equipped with the electronic pen attachment according to the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view illustrating the structure of the tip portion of the electronic pen equipped with the electronic pen attachment according to the first embodiment of the present disclosure.
  • FIG. 17 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure.
  • FIG. 18 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure.
  • FIG. 19 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure.
  • FIG. 17 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure.
  • FIG. 18 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used remotely in the image display system according to the
  • FIG. 20 is a diagram schematically illustrating an example of an operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure.
  • FIG. 21 is a diagram schematically illustrating an example of an operation when an input with the electronic pen is performed in the image display system according to the first embodiment of the present disclosure.
  • FIG. 22 is a plan view, a side view, and a plan sectional view showing the shape of the electronic pen attachment according to the second embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view showing the structure of the tip of the electronic pen equipped with the electronic pen attachment in the second embodiment of the present disclosure.
  • FIG. 1 is a circuit block diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
  • the image display system 100 includes an image display device 30, a drawing device 40, an electronic pen 50, and an electronic pen attachment 80.
  • the electronic pen attachment 80 is simply referred to as “attachment 80”.
  • the drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46.
  • the electronic pen 50 includes a contact switch 51, a light receiving element 52, a synchronization detection unit 56, a coordinate calculation unit 57, and a transmission unit 58.
  • the attachment 80 includes a condenser lens 82 and is detachably attached to the electronic pen 50.
  • the electronic pen 50 is used when the user inputs characters, drawings, and the like in the image display area of the image display device 30.
  • the attachment 80 is attached to the electronic pen 50 so that the electronic pen 50 can be used at a position away from the panel 10. Details of the drawing device 40, the electronic pen 50, and the attachment 80 will be described later. In the present embodiment, the combination of the electronic pen 50 and the attachment 80 is referred to as an “electronic pen system”.
  • the image display device 30 includes a display device that displays an image and a drive circuit that drives the display device.
  • a display device that displays an image
  • a drive circuit that drives the display device.
  • an image display apparatus 30 using a plasma display panel (hereinafter abbreviated as “panel”) 10 as a display device will be described as an example, but the display device may be a liquid crystal, an organic EL, or the like.
  • the image display device 30 includes, as drive circuits, an image signal processing unit 31, a data electrode drive unit 32, a scan electrode drive unit 33, a sustain electrode drive unit 34, a control unit (not shown) that controls the operation of each circuit block, And a power supply unit (not shown) for supplying necessary power to each circuit block.
  • the image signal processing unit 31 converts a signal obtained by synthesizing an image signal input from the outside and a drawing signal output from the drawing device 40, or one of the signals into image data, and outputs the image data to the data electrode driving unit 32. To do.
  • the image data is data indicating light emission / non-light emission for each subfield in each discharge cell.
  • the data electrode driver 32 generates a drive voltage waveform applied to the data electrode 22
  • the scan electrode driver 33 generates a drive voltage waveform applied to the scan electrode 12
  • the sustain electrode driver 34 applies to the sustain electrode 13. Generate a drive voltage waveform.
  • FIG. 2 is an exploded perspective view showing an example of the structure of the panel 10 used in the image display system 100 according to the first embodiment of the present disclosure.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustain electrode 13 are formed on a glass front substrate 11, a dielectric layer 15 is formed thereon, and a protective layer 16 is further formed thereon.
  • the front substrate 11 serves as an image display surface on which an image is displayed.
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed thereon, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
  • FIG. 3 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
  • the panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 2) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 2) extending in the first direction.
  • M data electrodes D1 to Dm (data electrodes 22 in FIG. 2) extending in a second direction intersecting the first direction are arranged.
  • the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
  • a set of three discharge cells emitting red, green, and blue colors adjacent to each other constitutes one pixel. Accordingly, m discharge cells ((m / 3) pixels) are formed on one pair of display electrodes 14, and n discharge cells are formed on one data electrode 22.
  • An area where (m ⁇ n) discharge cells are formed becomes an image display area of the panel 10.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
  • panel 10 emits light for detecting a plurality of image display subfields (shown in FIG. 4) for displaying an image on panel 10 and “positional coordinates” of electronic pen 50 in one field.
  • “Position coordinates” are the coordinates of the position indicated by the electronic pen 50 in the image display area of the panel 10 (coordinates indicating the position of the electronic pen 50).
  • the drive voltage waveform in the image display subfield is the same as the conventional drive voltage waveform, and each of the plurality of image display subfields has a predetermined luminance weight, and discharges light emission / non-light emission of each image display subfield.
  • An image is displayed on the panel 10 by controlling each cell.
  • Each image display subfield has an initialization period, an address period, and a sustain period.
  • the image display subfield is also simply referred to as a subfield.
  • a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used.
  • a “selective initialization operation” that generates an initialization discharge.
  • a forced initialization operation is performed in subfield SF1 and a selective initialization operation is performed in subfields SF2 to SF8 is shown.
  • the number of image display subfields in one field is, for example, eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2). is there.
  • the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
  • the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn.
  • an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied.
  • positive voltage Ve is applied to sustain electrodes SU1 to SUn, and gradually decreases from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4, which exceeds the discharge start voltage, for scan electrodes SC1 to SCn. Apply a falling ramp waveform voltage.
  • the initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1.
  • the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
  • a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm.
  • An address operation is performed in which a positive address pulse with a positive voltage Vd is applied to the electrode Dk.
  • the same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
  • the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
  • a discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
  • scan electrodes SC1 to SCn are applied with voltage 0 (V) applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm.
  • An erasing operation is performed in which an upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage falling from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2.
  • the wall voltage is adjusted to a suitable level.
  • the initialization discharge does not occur.
  • the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
  • each subfield after subfield SF3 the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
  • FIG. 5 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • the coordinate detection subfield includes synchronization detection subfield SFo, proximity y coordinate detection subfield SFy1, proximity x coordinate detection subfield SFx1, remote y coordinate detection subfield SFy2, and remote x coordinate.
  • a detection subfield SFx2 is included.
  • the proximity y coordinate detection subfield SFy1 and the remote y coordinate detection subfield SFy2 are collectively referred to as “y coordinate detection subfield SFy”, and the proximity x coordinate detection subfield SFx1 and the remote x coordinate detection are performed.
  • the subfield SFx2 is collectively referred to as “x coordinate detection subfield SFx”.
  • the position indicated by the electronic pen 50 in the image display area (hereinafter also referred to as “position of the electronic pen 50”) is represented by an x coordinate and ay coordinate.
  • the coordinate in the row direction is the x coordinate
  • the coordinate in the column direction is the y coordinate.
  • the x-coordinate detection subfield SFx and the y-coordinate detection subfield SFy are subfields that emit light for detecting the x-coordinate and y-coordinate, and display the x-coordinate detection pattern and the y-coordinate detection pattern on the panel 10. .
  • the user directly contacts the pen tip of the electronic pen 50 with the panel 10 (or at a position relatively close to the panel 10).
  • This is a subfield used for detecting the position coordinates of the electronic pen 50 during “proximity use”.
  • the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 are used to detect the position coordinate of the electronic pen 50 when the user uses the electronic pen 50 at a position away from the panel 10. Subfield to use.
  • wireless communication is performed between the electronic pen 50 and the drawing device 40.
  • the electronic pen 50 calculates the position coordinates of the electronic pen 50 inside the electronic pen 50 and transmits data of the calculated position coordinates from the electronic pen 50 to the drawing device 40 by wireless communication.
  • the electronic pen 50 receives the light emitted in the synchronization detection subfield SFo, thereby synchronizing with the image display device 30 and generating a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy. It becomes possible.
  • the synchronization detection subfield SFo has an initialization period Pio, an address period Pwo, and a synchronization detection period Po.
  • the selection initialization operation similar to the initialization period Pi2 of the subfield SF2 of the image display subfield is performed, and thus the description thereof is omitted.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • an address pulse of voltage Vd is applied to data electrodes D1 to Dm, and a scan pulse of voltage Va is applied to scan electrodes SC1 to SCn at time to0 to generate an address discharge in each discharge cell.
  • a scan pulse is applied simultaneously to all the scan electrodes SC1 to SCn to generate address discharges in all the discharge cells at the same time.
  • the data electrodes D1 to Dm Alternatively, the address pulse may be applied to each electrode from scan electrode SC1 to scan electrode SCn, and the address discharge may be sequentially generated in each discharge cell.
  • the time to0 is a time at which a scan pulse for generating the last address discharge in the address period Pwo is applied to the scan electrode 12 (for example, the scan electrode SCn).
  • voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained until time to1. During this period, after the address discharge is generated in the discharge cell, the state in which no discharge is generated is maintained.
  • the panel 10 is caused to emit light (synchronization detection light emission) a plurality of times as a reference when calculating the position coordinates in the electronic pen 50.
  • a plurality of times (all times in all image cells in the image display area of the panel 10) at predetermined time intervals (for example, time To1, time To2, time To3) (for example, four times of synchronization detection discharge is generated, and light emission for synchronization detection is generated in the panel 10 a plurality of times (for example, four times).
  • the synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo.
  • the electronic pen 50 detects a plurality of times (for example, four times) of light emission for synchronization detection that occurs at a predetermined time interval (for example, the time To1, the time To2, and the time To3). Create a coordinate reference signal.
  • the coordinate reference signal is a signal that serves as a reference when calculating the position coordinates (x, y) of the electronic pen.
  • the entire surface of the image display surface of the panel 10 illuminates all at the same timing, so the electronic pen 50 can be used regardless of the position coordinates of the electronic pen 50 in the image display area of the panel 10. This light emission can be received at the same timing.
  • the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is to prevent the electronic pen 50 from erroneously recognizing light emission due to the address discharge that occurs in the address period Pwo of the synchronization detection subfield SFo as light emission due to another discharge.
  • the time To0 is about 50 ⁇ sec
  • the time To1 is about 40 ⁇ sec
  • the time To2 is about 20 ⁇ sec
  • the time To3 is about 30 ⁇ sec.
  • each time is not limited to these numerical values, and may be set appropriately according to the specifications of the image display system.
  • the proximity y-coordinate detection subfield SFy1 is generated.
  • discharge cell row an aggregate of discharge cells constituting one row
  • pixel row an aggregate of pixels constituting one row
  • the discharge cell row and the pixel row are substantially the same.
  • a group of discharge cells constituting one column is referred to as a “discharge cell column”
  • a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”.
  • the proximity y-coordinate detection subfield SFy1 has an initialization period Piy, a y-coordinate detection period Py1, and an erasing period Pey.
  • the same selective initialization operation as in the initialization period Pi2 of the subfield SF2 of the image display subfield is performed to generate an initialization discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity y coordinate detection pattern display operation in the subsequent y coordinate detection period Py1.
  • the “first number” is “1” is shown, but the “first number” may be “2” or more.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
  • this discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to Dm and the scan electrode SC1. In this way, discharge occurs in the first pixel row, and the first pixel row emits light.
  • this discharge is also referred to as “y-coordinate detection discharge”.
  • the light emission by this y coordinate detection discharge becomes light emission for y coordinate detection when the electronic pen 50 is used in proximity.
  • the same operation is performed until the nth discharge cell row is reached in the order of scan electrode SC2, scan electrode SC3,..., Scan electrode SCn with the y coordinate detection voltage Vdy applied to data electrodes D1 to Dm. Do it sequentially.
  • the y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 one pixel row at a time. .
  • Light emission lines sequentially move in the y-axis direction (for example, one pixel row at a time) from the upper end (first pixel row) to the lower end (nth pixel row) of the image display area of the panel 10. A light emission pattern is displayed on the panel 10.
  • this light emission pattern is referred to as “proximity y coordinate detection pattern”.
  • first light emitting line one light emitting line having a width corresponding to the “first number” is referred to as “first light emitting line”. For example, if the “first number” is “2”, the “first emission line” having a width of two pixel rows sequentially moves in the y coordinate direction by two pixel rows. It becomes a light emission pattern.
  • the timing at which the electronic pen 50 receives the light emitted from the first light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen 50 is used in proximity can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the first light emitting line.
  • the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y coordinate detection period Py1 (that is, the pulse width of the y coordinate detection pulse) ) Is Ty11.
  • This Ty11 is, for example, about 1 ⁇ sec.
  • the subsequent proximity x-coordinate detection subfield SFx1 has an initialization period Pix, an x-coordinate detection period Px1, and an erasing period Pex.
  • the initialization period Pix a selective initialization operation similar to that in the initialization period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initialization discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px1.
  • the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the preset “third number” of data electrodes 22.
  • the operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm. In this embodiment, an example in which “third number” is “3” is shown, but “third number” may be a number other than “3”.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the negative x coordinate is applied to the scan electrodes SC1 to SCn.
  • a detection voltage Vax is applied.
  • the first pixel column is, for example, a pixel column arranged at the left end of the image display area.
  • discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to D3 and the scan electrodes SC1 to SCn.
  • discharge occurs in the first pixel column, and the first pixel column emits light.
  • this discharge is also referred to as “x coordinate detection discharge”.
  • the light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen 50 is used in proximity.
  • Similar operations are performed adjacent to each other in the order of data electrodes D4 to D6, data electrodes D7 to D9,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn.
  • the three data electrodes 22 are sequentially performed until reaching the m-th discharge cell column.
  • an x coordinate detection discharge is applied to each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column ((m / 3) th pixel column) of the panel 10. It occurs sequentially.
  • the x-axis direction for example, one pixel column
  • the moving light emission pattern is displayed on the panel 10.
  • this light emission pattern is referred to as “proximity x coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “third number” is referred to as a “second light emitting line”. For example, if the “third number” is “6”, the “second emission line” having a width of two pixel columns sequentially moves in the x coordinate direction by two pixel columns in the “proximity x coordinate detection pattern”. It becomes a light emission pattern.
  • the timing at which the electronic pen 50 receives the light emitted from the second light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen 50 is used in proximity can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the second light emitting line.
  • the time during which the voltage Vdx of the x-coordinate detection pulse is applied to each of the data electrodes D1 to Dm in the x-coordinate detection period Px1 (that is, the pulse width of the x-coordinate detection pulse) ) Is Tx11.
  • This Tx11 is, for example, about 1 ⁇ sec.
  • the remote y-coordinate detection subfield SFy2 is generated.
  • the remote y-coordinate detection subfield SFy2 has an initialization period Piy, a y-coordinate detection period Py2, and an erasing period Pey.
  • the selective initializing operation similar to the initializing period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initializing discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to the wall voltage suitable for the remote y coordinate detection pattern display operation in the subsequent y coordinate detection period Py2.
  • the y-coordinate detection voltage Vdy is applied to the data electrodes D1 to Dm, and y is simultaneously applied to the preset “second number” of scan electrodes 12.
  • the operation of applying the coordinate detection pulse is sequentially performed on scan electrodes SC1 to SCn.
  • the “second number” is a numerical value larger than the “first number” used in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1. In the present embodiment, an example in which the “second number” is “8” is shown, but the “second number” may be a number other than “8”.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • this discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to Dm and the scan electrodes SC1 to SC8. In this way, discharge is generated simultaneously in the 1st to 8th pixel rows, and 8 pixel rows in the 1st to 8th rows emit light all at once.
  • this discharge is also referred to as “y-coordinate detection discharge”.
  • the light emission by this y coordinate detection discharge is light emission for y coordinate detection when the electronic pen 50 is used remotely.
  • Similar operations are performed adjacent to each other in the order of scan electrodes SC9 to SC16, scan electrodes SC17 to SC24,..., Scan electrodes SCn-7 to SCn with the y coordinate detection voltage Vdy applied to the data electrodes D1 to Dm.
  • the steps are sequentially performed until the nth discharge cell row is reached.
  • the y coordinate detection discharge is sequentially generated in each of the pixel rows from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 by 8 pixel rows. .
  • Emission lines sequentially move in the y-axis direction (for example, every 8 pixel rows) from the upper end (first pixel row) to the lower end (nth pixel row) of the image display area of the panel 10. A light emission pattern is displayed on the panel 10.
  • this light emission pattern is referred to as a “remote y coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “second number” is referred to as a “third light emitting line”.
  • the “remote y-coordinate detection pattern” is such that the “third emission line” having a width of 16 pixel rows sequentially moves in the y-coordinate direction by 16 pixel rows. It becomes a light emission pattern.
  • the third light emitting line is a light emitting line having a wider width and a larger light emission amount than the first light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen 50 can receive the light emitted from the third light emitting line is larger than the distance that the light emitted from the first light emitting line can be received.
  • the timing at which the electronic pen 50 receives the light emitted from the third light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen 50 is used remotely can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the third light emitting line.
  • the time during which the voltage Vay of the y-coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y-coordinate detection period Py2 (that is, the pulse width of the y-coordinate detection pulse) ) Is Ty12.
  • This Ty12 is, for example, about 1 ⁇ sec.
  • the subsequent remote x-coordinate detection subfield SFx2 has an initialization period Pix, an x-coordinate detection period Px2, and an erasing period Pex.
  • the initialization period Pix a selective initialization operation similar to that in the initialization period Pix of the proximity x coordinate detection subfield SFx1 is performed to generate an initialization discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px2.
  • the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the “fourth” data electrode 22 set in advance.
  • the operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm.
  • the “fourth number” is a numerical value larger than the “third number” used in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1. In this embodiment, an example in which the “fourth number” is “24” is shown, but the “fourth number” may be a number other than “24”.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the negative x coordinate is applied to the scan electrodes SC1 to SCn.
  • a detection voltage Vax is applied.
  • the positive polarity of the voltage Vdx is applied to the data electrodes D1 to D24 constituting the first to eighth pixel columns while the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn.
  • X-coordinate detection pulses are simultaneously applied.
  • discharges are generated simultaneously in the discharge cells at the intersections of the data electrodes D1 to D24 and the scan electrodes SC1 to SCn.
  • discharge is generated simultaneously in the first to eighth pixel columns, and the first to eighth pixel columns emit light all at once.
  • this discharge is also referred to as “x coordinate detection discharge”.
  • the light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen 50 is used remotely.
  • Similar operations are performed adjacent to each other in the order of data electrodes D25 to D48, data electrodes D49 to D72,..., Data electrodes Dm-23 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn.
  • the process is sequentially performed until the mth discharge cell row is reached.
  • 8 pixel columns of x coordinate detection discharge are generated in each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column ((m / 3) th pixel column) of the panel 10. It occurs sequentially.
  • one line extending in the y-axis direction (column direction) that emits light with a width corresponding to the “fourth number” (for example, 8 pixel columns) Emission lines sequentially from the left end (first pixel column) to the right end ((m / 3) pixel column) of the image display area of the panel 10 in the x-axis direction (for example, eight pixel columns).
  • the moving light emission pattern is displayed on the panel 10.
  • this light emission pattern is referred to as “remote x coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “fourth number” generated in the y coordinate direction and generated in the x coordinate detection period Px2 is referred to as a “fourth light emitting line”.
  • the “fourth number” is “48”
  • the “remote x-coordinate detection pattern” sequentially moves the “fourth light emission line” having a width of 16 pixel columns in the x-coordinate direction by 16 pixel columns. It becomes a light emission pattern.
  • the fourth light emitting line is a light emitting line having a wider width and a larger amount of light emission than the second light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen 50 can receive the light emitted from the fourth light emitting line is larger than the distance that the light emitted from the second light emitting line can be received.
  • the remote x-coordinate detection pattern is displayed on the panel 10, so that the timing at which the electronic pen 50 receives the light emitted from the fourth light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen 50 is used remotely can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the fourth light emitting line.
  • the time during which the voltage Vdx of the x-coordinate detection pulse is applied to each of the data electrodes D1 to Dm in the x-coordinate detection period Px2 (that is, the pulse width of the x-coordinate detection pulse) ) Is Tx12.
  • This Tx12 is, for example, about 1 ⁇ sec.
  • the light emission luminance is relatively low, but the position coordinate calculation accuracy is relatively high.
  • the coordinate detection pattern and the x coordinate detection pattern are displayed on the panel 10.
  • the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 the y-coordinate detection pattern and the x-coordinate detection pattern with relatively low emission coordinates and relatively high emission luminance are displayed. 10 is displayed.
  • the position coordinates can be calculated with relatively high accuracy.
  • the electronic pen 50 is used remotely, the light emitted from the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 having a relatively high light emission luminance is detected, thereby separating from the panel 10. Even in the electronic pen 50 located at a different position (for example, about several meters), the position coordinates can be calculated.
  • voltage Vc ⁇ 50 (V)
  • voltage Vr 205 (V)
  • voltage Ve 155 (V )
  • the gradient of the rising ramp waveform voltage generated in the initialization period Pi1 is about 1.5 (V / ⁇ sec), and the gradient of the descending ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy, Pix is It is about ⁇ 2.5 (V / ⁇ sec). Further, the gradient of the rising ramp waveform voltage generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure period Pey, and Pex is about 10 (V / ⁇ sec).
  • each voltage value and the gradient described above is merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
  • Each circuit block operates based on a control signal supplied from a control unit (not shown), but details of the path of the control signal are omitted in each drawing.
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
  • Sustain electrode drive unit 34 includes sustain pulse generation circuit 280 and constant voltage generation circuit 285.
  • Sustain pulse generation circuit 280 includes a power recovery circuit 281 and switching elements Q83 and Q84.
  • the power recovery circuit 281 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
  • Sustain pulse generation circuit 280 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 4 and 5 and applies it to sustain electrodes SU1 to SUn.
  • the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
  • the constant voltage generation circuit 285 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
  • the data electrode driving unit 32 operates based on the control signal and the image data supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the eleventh embodiment of the present disclosure.
  • the scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 160, and a scan pulse generation circuit 170.
  • the voltage input to the scan pulse generation circuit 170 is referred to as “reference potential A”.
  • Sustain pulse generation circuit 55 has power recovery circuit 151 and switching elements Q55, Q56, and Q59.
  • the power recovery circuit 151 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12.
  • the switching element Q59 is a separation switch, and prevents reverse current flow.
  • sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 4 and 5 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit 170. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 170.
  • the ramp waveform voltage generation circuit 160 includes Miller integration circuits 161, 162, and 163, generates the ramp waveform voltages shown in FIGS. 4 and 5, and applies them to the scan electrodes SC1 to SCn via the scan pulse generation circuit 170. .
  • each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
  • Miller integrating circuit 162 includes transistor Q62, capacitor C62, resistor R62, and backflow prevention diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
  • Miller integrating circuit 163 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
  • Switching element Q69 is a separation switch and prevents reverse current flow.
  • Scan pulse generation circuit 170 has switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates negative voltage Va, and a power source E71 that generates voltage Vp.
  • Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
  • the scan pulse generation circuit 170 generates a scan pulse at the timing shown in FIG. 4 and sequentially applies it to each of the scan electrodes SC1 to SCn in each writing period of the image display subfield.
  • a plurality of pairs of switching elements QHi and switching elements QLi are integrated in one IC (scan driver IC).
  • the electronic pen 50 shown in the present embodiment is “proximity use” in which the pen tip portion of the electronic pen 50 is used in contact with (or in proximity to) the panel 10 without attaching the attachment 80 to the electronic pen 50.
  • the electronic pen 50 can be used in two ways of use: “remote use” in which the attachment 80 is attached to the electronic pen 50 and the electronic pen 50 is used at a position away from the panel 10.
  • the electronic pen 50 includes a contact switch 51, a light receiving element 52, a synchronization detection unit 56, a coordinate calculation unit 57, and a transmission unit 58.
  • the light receiving element 52 is provided at the end of the electronic pen 50, receives incident light, converts it into an electrical signal (light reception signal), and outputs it to the synchronization detection unit 56 and the coordinate calculation unit 57.
  • the contact switch 51 detects whether or not the pen tip provided at the tip of the electronic pen 50 is in contact with the image display surface of the panel 10, and is turned on if the pen tip is in contact with the panel 10, for example. “1” is output, and if it is not touched, it is turned off and, for example, “0” is output.
  • the synchronization detection unit 56 detects a plurality of light emissions generated at predetermined intervals from the received light signal, creates a coordinate reference signal, and outputs the coordinate reference signal to the coordinate calculation unit 57. Specifically, the synchronization detection unit 56 uses a timer (not shown) included in the synchronization detection unit 56 to measure the occurrence intervals of a plurality of (for example, four times) light emission. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
  • a predetermined time interval for example, time To1, time To2, time To3
  • the synchronization detection unit 56 compares the light reception threshold value th with a light reception signal set in advance (not shown), and calculates a differential value for the light reception signal equal to or greater than the light reception threshold value th.
  • produces is detected, and each time and each time are detected.
  • the time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance. You may use for correction of.
  • the light reception threshold th may be set to the lowest level of the light reception signal that allows the light receiving element 52 to stably detect light emission, for example.
  • the synchronization detection unit 56 generates a coordinate reference signal based on one of the continuous light emission (for example, four times) (for example, light emission generated at time to1).
  • the coordinate reference signal is a signal generated in synchronization with the coordinate detection subfield, and is a signal used as a reference when detecting position coordinates.
  • the coordinate calculation unit 57 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
  • the coordinate calculation unit 57 selectively extracts a signal based on the light emission of the y coordinate detection pattern and a light emission based on the light emission of the x coordinate detection pattern from the light reception signal based on the coordinate reference signal and the light reception signal, and outputs an electron in the image display area.
  • the position coordinates (x, y) of the pen 50 are calculated, and the calculated position coordinates are output to the transmission unit 58.
  • the transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52 to the outside of the electronic pen 50.
  • the transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal. Then, a unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 57, the contact switch 51 (and each switch) ) And the like, the various signals necessary for generating the drawing signal are encoded in the drawing apparatus 40 and then converted into a radio signal. This radio signal is a transmission signal.
  • the wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
  • the electronic pen 50 also has a power switch, a pilot lamp, a manually operated switch, and the like.
  • the power switch is a switch for controlling the power on / off of the electronic pen 50.
  • the pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color.
  • the user can input characters and drawings on the image display surface when the electronic pen 50 is used remotely by operating a manual operation switch instead of the contact switch 51.
  • the electronic pen 50 can be switched so that the user can arbitrarily switch the drawing mode (for example, the color of the line used for drawing, the thickness of the line, the type of the line, etc.) by operating the manual operation switch. It may be configured.
  • the electronic pen 50 is switched between proximity use and remote use as follows. First, if the contact switch 51 is off when the electronic pen 50 is turned on, the electronic pen 50 is configured to be in a proximity use state. If the contact switch 51 is on when the electronic pen 50 is turned on, the electronic pen 50 is configured to be in a remote use state. . Then, by attaching the attachment 80 to the electronic pen 50, the attachment 80 is configured so that the contact switch 51 is maintained in the ON state. Thereby, if the power supply of the electronic pen 50 is turned on without mounting
  • the electronic pen 50 is provided with a switch for switching between proximity use and remote use, and the attachment 80 is attached to the electronic pen 50 so that the attachment 80 is attached to the electronic pen 50.
  • the electronic pen 50 may be configured to press this switch. Or you may comprise so that a user may operate manually the switch which switches proximity use and remote use.
  • a signal indicating whether the electronic pen 50 is in a proximity use or a remote use may be wirelessly transmitted from the transmission unit 58 to the drawing apparatus 40.
  • the drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46 as shown in FIG.
  • the drawing device 40 creates a drawing signal based on the position coordinates (x, y) transmitted from the electronic pen 50 and outputs the drawing signal to the image display device 30.
  • the receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is used to indicate the identification number (ID) of the electronic pen 50, the signal indicating the position coordinates (x, y) of the electronic pen 50, and the state of the contact switch 51 (and each switch) It converts into the signal etc. which represent, and outputs it to the drawing part 46.
  • ID identification number
  • x, y the signal indicating the position coordinates (x, y) of the electronic pen 50
  • the state of the contact switch 51 and each switch
  • the drawing unit 46 includes an image memory 47.
  • a drawing signal is created based on the position coordinates (x, y) output from the receiving unit 42 and stored in the image memory 47. Therefore, the image memory 47 shows a locus of changes in the position coordinates (x, y) when the contact switch 51 (or a manual operation switch) is on (a graphic input by the user using the electronic pen 50). Drawing signals are accumulated. Further, when the contact switch 51 (or a manual operation switch) is off, the drawing unit 46 creates a drawing signal for displaying a cursor at the position coordinates (x, y) and stores it in the image memory. The drawing unit 46 reads out the drawing signal stored in the image memory 47 and outputs the drawing signal to the image display device 30.
  • the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other.
  • FIG. 9 is a three-view diagram illustrating an appearance of the electronic pen 50 according to the first embodiment of the present disclosure.
  • FIG. 9 shows a plan view, a front view, and a side view of the electronic pen 50.
  • the casing that forms the external appearance of the electronic pen 50 includes a main body case 60, a pen tip portion 70, and a pen tip cap 64. Inside the housing of the electronic pen 50, there are a plurality of circuit boards (not shown) on which the light receiving element 52, the contact switch 51, and their peripheral circuits are mounted, and a battery (not shown) for supplying power to them. Built in.
  • the main body case 60 includes a side case 60a and a side case 60b.
  • a power switch 68a, a pilot lamp 69, a manually operated switch 68c, and the like are provided between the side case 60a and the side case 60b.
  • a manually operated switch 68b is provided.
  • the side cases 60a and 60b have a battery cover 60c that is opened and closed when the battery is replaced.
  • the pen tip portion 70 is attached to the tip end portion of the main body case 60 by a pen tip cap 64 and is slidable in the direction of being pushed into the main body case 60.
  • a groove 67 for removably fixing the attachment 80 is provided around the nib cap 64.
  • FIG. 10 is a two-sided view and a cross-sectional view showing the shape of the periphery of the distal end portion of the main body case 60 of the electronic pen 50 in the first embodiment of the present disclosure.
  • FIG. 10 shows a plan view, a side view, and a plan sectional view of the periphery of the front end portion of the main body case 60.
  • a through hole 61 for projecting the light receiving element 52 and a part of the circuit board on which the light receiving element 52 is mounted (not shown in FIG. 10) from the main body case 60 is provided at the front end portion of the main body case 60.
  • Notches 63 a and 63 b for positioning the pen tip portion 70 are provided around the through hole 61.
  • a screw 62 for attaching a pen tip cap 64 is provided around the tip of the main body case 60.
  • FIG. 11 is a two-view diagram and a cross-sectional view illustrating the shape of the nib cap 64 of the electronic pen 50 according to the first embodiment of the present disclosure.
  • FIG. 11 shows a plan view, a side view, and a plan sectional view of the pen tip cap 64.
  • a penetrating hole 65 for penetrating the pen tip portion 70 is provided at the tip of the pen tip cap 64.
  • a screw 66 formed so as to be fitted to a screw 62 provided in the main body case 60 is provided inside the nib cap 64.
  • a groove 67 formed so as to be fitted to a flange provided on the attachment 80 is provided around the nib cap 64.
  • the pen tip cap 64 is detachably attached to the distal end portion of the main body case 60 with the pen tip portion 70 penetrating through the through hole 65 and protruding and held in the distal end direction.
  • the pen tip portion 70 is slidably fixed to the distal end portion of the main body case 60 by a pen tip cap 64.
  • the nib portion 70 can be replaced relatively easily by removing the nib cap 64 from the main body case 60.
  • FIG. 12 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip portion 70 of the electronic pen 50 according to the first embodiment of the present disclosure.
  • FIG. 12 shows a plan view, a side view, and a plan sectional view of the pen tip portion 70.
  • the pen point portion 70 has a relatively soft and moderate rigidity so as not to damage the surface of the panel 10 when contacting the panel 10 and to smoothly move the surface of the panel 10 while reducing the contact sound. It is made of a material such as polyacetal. This material may be polyamide, fluorine resin, or the like.
  • the pen tip portion 70 has a cavity 72 in which the light receiving element 52 can be accommodated.
  • a light capturing port 71 for capturing light received by the light receiving element 52 is provided at the tip of the pen tip portion 70.
  • the light intake port 71 is a through hole in the present embodiment, but is not limited to the through hole, and may be formed in a window shape with a material that transmits light, for example.
  • the pen tip portion 70 is provided with a positioning pin 73a for mounting the pen tip portion 70 on the tip of the main body case 60 and a switch pressing pin 73b for pressing the contact switch 51.
  • the positioning pin 73a penetrates the notch 63b, and the switch pressing pin 73b is shaped to penetrate the notch 63a.
  • the pen tip portion 70 is mounted on the distal end portion of the main body case 60 with the light receiving element 52 housed in the cavity 72.
  • FIG. 13 is an exploded view around the tip of the electronic pen 50 according to the first embodiment of the present disclosure.
  • the circuit board 78 on which the light receiving element 52 is mounted is arranged such that a part of the light receiving element 52 and the circuit board 78 protrudes from the through hole 61 provided in the front end portion of the main body case 60 in the front end direction. Arranged and fixed.
  • a contact switch 51 is mounted in the vicinity of the light receiving element 52 on the circuit board 78 (not shown).
  • a spring 75 and a buffer material 76 are provided between the pen tip portion 70 and the main body case 60.
  • the cushioning material 76 prevents the generation of contact sound caused by direct contact between the pen tip portion 70 and the tip portion of the main body case 60.
  • the pen tip portion 70 attached to the tip end portion of the main body case 60 by the pen tip cap 64 protrudes from the through hole 65 of the pen tip cap 64 in the tip direction, and further protrudes from the through hole 65 by the elasticity of the spring 75. It is pressed. Thereby, the pen point part 70 can slide in the direction pushed into the main body case 60. In a state where the pen tip portion 70 is not pushed into the main body case 60, the contact switch 51 is “off”.
  • the tip of the switch pressing pin 73b of the pen tip portion 70 comes into contact.
  • the contact switch 51 is turned on.
  • the contact switch 51 is turned off.
  • FIG. 14 is a two-view diagram and a cross-sectional view illustrating the shape of the attachment 80 according to the first embodiment of the present disclosure.
  • FIG. 14 shows a plan view, a side view, and a plan sectional view of the attachment 80.
  • the attachment 80 is attached to the electronic pen 50 so that the electronic pen 50 can be used at a position away from the panel 10.
  • the attachment 80 includes a body portion 81, a condensing lens 82, and a condensing lens fixing device 83.
  • the attachment 80 has a body portion 81 having a cylindrical shape as a casing. It is desirable that the inside of the body portion 81 has a structure that prevents reflection of light, for example, by applying a black paint.
  • One end of the body part 81 is formed in a shape that can be fixed with the condenser lens 82 sandwiched between it and the condenser lens fixture 83. Then, the condenser lens 82 is disposed at one end of the body part 81, and the condenser lens fixing device 83 is attached to the body part 81 with the condenser lens 82 interposed therebetween, so that the condenser lens 82 is attached to the body part 81. Fixed and attached. With this structure, in the attachment 80, the condenser lens 82 can be easily removed or replaced by removing the condenser lens fixing device 83. Note that the body part 81 may be formed so that the condenser lens 82 is directly fixed to one end of the body part 81 without using the condenser lens fixture 83.
  • An opening 89 for detachably mounting the electronic pen 50 is formed at the other end of the body 81 (the end facing the condenser lens 82).
  • the size of the electronic pen 50 is set to a size that does not cause a gap for unnecessary light to leak when the tip portion (pen tip cap 64) of the electronic pen 50 is inserted.
  • a flange 84 that fits into the groove 67 formed in the nib cap 64 is provided inside the body 81 that corresponds to the opening 89.
  • the condensing lens 82 has a function of condensing light incident on the body 81 from one end of the body 81 (that is, the end facing the opening 89), and the attachment 80 is an electron. When attached to the pen 50, the light emitted on the image display surface of the panel 10 is condensed on the light receiving element 52.
  • the attachment 80 is attached to the electronic pen 50 by inserting the tip end (pen tip cap 64) of the electronic pen 50 into the opening 89 of the body 81 and fitting the flange 84 with the groove 67 of the electronic pen 50. Removably fixed to the tip.
  • a pen tip cover 85 that pushes the pen tip portion 70 toward the main body case 60 when the attachment 80 is attached to the electronic pen 50 is provided inside the body portion 81. With the pen tip cover 85, the contact switch 51 is turned on while the attachment 80 is attached to the electronic pen 50.
  • the pen tip cover 85 is provided with a hole 86 that is centered on the optical axis of the condenser lens 82 and is set to an appropriate size for the light received by the light receiving element 52 to pass therethrough.
  • the pen tip cover 85 may be formed of a material that transmits light.
  • the length of the body 81 and the installation of the condenser lens 82 are set so that the light receiving element 52 is positioned at the focal length on the optical axis of the condenser lens 82.
  • the arrangement position and size of each component such as the position and the focal length of the condenser lens 82 are set. Therefore, when the attachment 80 is attached to the electronic pen 50 and the optical axis of the condensing lens 82 is directed to the panel 10, light emitted on the image display surface of the panel 10 is emitted from one end of the body 81 to the inside of the body 81. Is collected by the condenser lens 82, passes through the hole 86, and is received by the light receiving element 52. As described above, since the light energy incident on the light receiving element 52 is increased by the condenser lens 82, even in the electronic pen 50 located away from the panel 10, the light receiving element 52 receives light emitted on the image display surface. Is possible.
  • FIG. 15 is a perspective view showing an appearance of the electronic pen 50 with the attachment 80 according to the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view illustrating the structure of the distal end portion of the electronic pen 50 to which the attachment 80 according to the first embodiment of the present disclosure is attached.
  • components other circuit boards, batteries, etc.
  • FIG. 16 components (other circuit boards, batteries, etc.) other than the circuit board 78 are omitted.
  • the nib cover 85 is provided inside the attachment 80, the nib part 70 pressed in the direction protruding from the nib cap 64 by the force of the spring 75 is the main body by the nib cover 85. It is pushed into the case 60 side. As a result, the tip of the switch pressing pin 73b of the pen tip 70 presses the contact switch 51, and the contact switch 51 is turned on.
  • the light receiving element 52 When the attachment 80 is attached to the electronic pen 50, the light receiving element 52 is positioned at the focal length position on the optical axis of the condenser lens 82 as described above. Therefore, by directing the optical axis of the condensing lens 82 toward the panel 10, the light emitted from the panel 10 incident on the attachment 80 is collected by the condensing lens 82, and the holes 86 of the pen tip cover 85 and the pen tip portion 70. The light is received by the light receiving element 52 through the light intake port 71.
  • the attachment 80 is attached to the electronic pen 50, the attachment 80 is directed to the panel 10, and the electronic pen 50 is operated by manually switching on / off of the switch 68b, for example. Characters and drawings can be input to the panel 10 even from a position away from the panel 10.
  • FIG. 17 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 18 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
  • FIGS. 17 and 18 show the coordinate reference signal det input to the coordinate calculation unit 57 and the light reception signal output from the light receiving element 52 in addition to the drive voltage waveform.
  • the drive voltage waveforms shown in FIGS. 17 and 18 are the same as the drive voltage waveforms shown in FIG.
  • the time Toy1 (FIG. 17) from the time to1 to the time ty01 (the time when the proximity y coordinate detection period Py1 starts), and the time tx01 (the proximity x coordinate detection period).
  • Each of the times Tox2 (FIG. 18) up to (the time when the x coordinate detection period Px2 starts) is determined in advance.
  • the synchronization detection unit 56 detects the four consecutive light emission intervals in which the light emission intervals are the time To1, the time To2, and the time To3, and specifies the time to1, so that the time ty01 is based on the time to1.
  • the coordinate reference signal det having rising edges at time tx01, time ty02, and time tx02 can be generated and output to the subsequent coordinate calculation unit 57.
  • the coordinate reference signal det is generated based on the time to1 in the present embodiment, but may be generated based on any one of the times to2, to3, and to4 without being limited to the time to1.
  • the coordinate calculation unit 57 calculates the position coordinates (x, y) of the electronic pen 50 used in proximity.
  • the coordinate calculation unit 57 when the electronic pen 50 is used remotely first receives light emission of the light receiving threshold th or more from the light receiving element 52 from time ty02 onward after time ty02.
  • the time Tyy2 until the time tyy2 is measured with a counter provided inside.
  • the coordinate calculation unit 57 calculates the position coordinates (x, y) of the electronic pen 50 used remotely.
  • FIG. 19 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 20 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
  • the first light emission that sequentially moves from the upper end portion (first row) to the lower end portion (n-th row) of the image display area.
  • the line Ly1 is displayed on the panel 10.
  • the image display area sequentially moves from the left end (first pixel column) to the right end ((m / 3) pixel column).
  • the second light emitting line Lx1 to be displayed is displayed on the panel 10.
  • the coordinates (x, y) of the image display surface pointed to by the nearby electronic pen 50 are received at time tyy1 when the first light emission line Ly1 passes and time txx1 when the second light emission line Lx1 passes.
  • the element 52 receives the emitted light.
  • the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly1 is received at the time tyy1, and receives the light emission of the second light emission line Lx1.
  • a light reception signal indicating this is output at time txx1.
  • the third light emission sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area.
  • the line Ly2 is displayed on the panel 10.
  • the image display area sequentially moves from the left end (first pixel column) to the right end ((m / 3) pixel column).
  • the fourth light emitting line Lx2 to be displayed is displayed on the panel 10.
  • the coordinates (x, y) of the image display surface pointed to by the remote-use electronic pen 50 are received at time tyy2 when the third light-emitting line Ly2 passes and time txx2 when the fourth light-emitting line Lx2 passes.
  • the element 52 receives light emission.
  • the light receiving element 52 outputs a light reception signal indicating that the light emission of the third light emission line Ly2 is received at time tyy2, and receives the light emission of the fourth light emission line Lx2.
  • a light reception signal indicating this is output at time txx2.
  • FIG. 21 is a diagram schematically illustrating an example of an operation when inputting with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 21 shows an example when the electronic pen 50 is used in proximity, but the operation when using the electronic pen 50 remotely is performed by attaching the attachment 80 to the electronic pen 50 and replacing the contact switch 51 with the drawing pen. Since this switch is the same as the proximity use except that the switch (for example, the switch 68b) is manually operated, the description with reference to the drawings is omitted.
  • the drawing unit 46 outputs a drawing signal of a pattern (for example, a white circle or a dot) having a color and a size according to the drawing mode, centering on a pixel corresponding to the position coordinate (x, y). appear.
  • This drawing signal is stored in the image memory 47 of the drawing unit 46 while the contact switch 51 (for example, a manual operation switch 68b when used remotely) is on. Then, the image display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 46 on the panel 10.
  • the attachment 80 including the condenser lens 82 can be detachably attached to the electronic pen 50.
  • the light emitted by the x-coordinate detection pattern and the y-coordinate detection pattern displayed on the panel 10 is condensed by the condenser lens 82 and received by the light receiving element 52. It becomes possible. Therefore, even if the electronic pen 50 can only be used in close proximity to input the drawing or characters by bringing the pen tip portion 70 into contact with the image display surface of the panel 10, the attachment pen 80 can be attached to the position away from the panel 10. Remote use to input drawings and characters is possible.
  • the proximity y-coordinate detection subfield SFy1 for displaying the first light emission line Ly1 that emits light with a width corresponding to the “first number” on the panel 10, and the “third number”.
  • the second light emitting line Lx1 that emits light with a width according to the width
  • the width according to the “second number” larger than the “first number”
  • the remote y-coordinate detection subfield SFy2 for displaying the third light emission line Ly2 to be emitted on the panel 10, and the fourth light emission for emitting light with a width corresponding to the “fourth number” larger than the “third number”.
  • a remote x coordinate detection subfield SFx2 for displaying the line Lx2 on the panel 10 is generated.
  • the electronic pen 50 in the proximity use state without attaching the attachment 80 the light emitted from the first light emitting line Ly1 and the second light emitting line Lx1 is received and the position coordinates are calculated.
  • the electronic pen 50 attached with the attachment 80 and in a remote use state receives light emitted from the third light-emitting line Ly2 and the fourth light-emitting line Lx2, and calculates position coordinates. Accordingly, the electronic pen 50 in the proximity use state can detect position coordinates with relatively high accuracy, and the electronic pen 50 in the remote use state detects position coordinates at a position further away from the panel 10. It becomes possible to do.
  • the present invention is not limited to this configuration. It is not something.
  • a flange may be provided around the nib cap 64, and a groove fitted to the flange may be provided inside the attachment 80.
  • the electronic pen 50 that is used in proximity without attaching an attachment receives the light emission for coordinate detection generated in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1, and attaches the attachment.
  • the electronic pen 50 that is mounted remotely and used remotely has been described with respect to the configuration for receiving the light for coordinate detection generated in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2. It is not limited to.
  • the image display device 30 generates one y-coordinate detection subfield SFy and one x-coordinate detection subfield SFx, and the electronic pen 50 has coordinates generated in those subfields for both the proximity use and the remote use. It is good also as a structure which receives light emission for a detection.
  • the coordinate calculation unit 57 calculates the y coordinate based on the first light emitting line Ly1 and calculates the y coordinate based on the light received signal based on the third light emitting line Ly2 if the light receiving signal based on the first light emitting line Ly1 is less than the light receiving threshold th. It may be configured.
  • the x coordinate is calculated based on the light reception signal by the second light emission line Lx1, and the light reception signal by the second light emission line Lx1 is received.
  • the coordinate calculation unit 57 may be configured to calculate the x-coordinate based on the light reception signal from the fourth light-emitting line Lx2 if it is less than the threshold th.
  • a cursor When the electronic pen 50 is used remotely, for example, when a manually operated switch (for example, the switch 68b) is turned off, a cursor may be displayed on the image display surface. Thereby, the cursor can be displayed on the image display surface without using the laser beam used in the laser pointer. Further, when the electronic pen 50 is used in proximity, a drawing or cursor display may be performed using a manually operated switch instead of the contact switch 51.
  • a manually operated switch for example, the switch 68b
  • a screw similar to the screw 66 provided on the inner side of the pen tip cap 64 is provided on the inner side of the attachment. Otherwise, the configuration and operation are the same as those of the first embodiment.
  • main configurations different from the first embodiment will be described. The same parts as those shown in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
  • FIG. 22 is a plan view, a side view, and a plan sectional view showing the shape of the attachment 180 in the second embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view illustrating the structure of the distal end portion of the electronic pen 50 to which the attachment 180 according to the second embodiment of the present disclosure is attached.
  • components other than the circuit board 78 are omitted.
  • the attachment 180 includes a body portion 181, a condensing lens 82, and a condensing lens fixing device 83.
  • the attachment 180 has a cylindrical body portion 181 as a casing.
  • One end portion of the trunk portion 181 can be fixed with the condenser lens 82 sandwiched between the condenser lens fixture 83 and the trunk portion 81 shown in the first embodiment.
  • the body 181 may be formed so that the condenser lens 82 is directly fixed to one end of the body 181 without using the condenser lens fixing device 83.
  • An opening 189 for attaching to the electronic pen 50 is formed at the other end of the body 181 (the end facing the condenser lens 82), and the inside of the body 181 corresponding to the opening 189 is formed.
  • the tip of the electronic pen 50 (the tip of the main body case 60) from which the pen tip cap 64 has been removed is inserted into the opening 189 of the body 181, and the screw 62 and the screw 184 are connected.
  • the attachment 180 is screwed to the distal end portion of the main body case 60 so as to be fitted. By doing so, the attachment 180 is detachably fixed to the tip of the electronic pen 50.
  • a pen tip cover 185 is provided inside the body portion 181 to gradually push the pen tip portion 70 toward the main body case 60 as the attachment 180 is gradually tightened to attach the attachment 180 to the electronic pen 50. With the pen tip cover 185, the contact switch 51 is turned on while the attachment 180 is attached to the electronic pen 50.
  • the pen tip cover 185 is provided with a hole 186 centered on the optical axis of the condenser lens 82 and set to an appropriate size for the light received by the light receiving element 52 to pass through.
  • the length of the body portion 181 and the condensing lens 82 are set so that the light receiving element 52 is positioned at the focal length on the optical axis of the condensing lens 82.
  • the arrangement position and size of each component, such as the installation position and the focal length of the condenser lens 82, are set. Therefore, when the attachment 180 is directly attached to the tip of the electronic pen 50 (tip of the main body case 60) from which the pen tip cap 64 has been removed and the optical axis of the condenser lens 82 is directed to the panel 10, the image of the panel 10 is displayed. As shown in FIG. 23, the light emitted on the display surface enters from one end of the body portion 181, is condensed by the condenser lens 82, passes through the hole 186, and is received by the light receiving element 52.
  • the attachment 180 having the above-described structure can be detachably attached to the electronic pen 50 and can be used remotely, similarly to the attachment 80 shown in the first embodiment.
  • the condensing lens is attached to one end portion of the body portion.
  • this “end portion” does not strictly mean the end portion of the body portion, but merely the end portion. It just represents the neighborhood.
  • the present invention does not limit the position of the condensing lens to the end of the body part, but arbitrarily sets it within a range in which the intended effect of the present disclosure, that is, the effect of condensing light on the light receiving element can be obtained. be able to. If this effect can be obtained, for example, a condensing lens may be arranged near the center of the body part.
  • a light shielding portion for preventing the incidence of unnecessary light may be provided between the condensing lens 82 and the light receiving element 52 inside the attachment.
  • the drawing device 40 and the electronic pen 50 may be electrically connected by an electric cable or the like, and a signal may be transmitted and received between the electronic pen and the drawing device via the electric cable.
  • the present disclosure makes it possible to use an electronic pen that is used in contact with the image display surface of the image display device at a position away from the image display surface. Therefore, the electronic pen attachment, the electronic pen system, and the electronic pen It is useful as an image display system provided with the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

An objective of the present invention is to allow using, at a location removed from an image display screen of an image display device, an electronic pen which is used in contact with the image display screen. To this end, an electronic pen attachment (80) is detachably mounted upon an electronic pen having a photoreceptor element. The electronic pen attachment comprises: a body part (81) whereupon an aperture part (89) is formed for mounting detachably upon the electronic pen; and a light gathering lens (82) which is attached to the body part. Light which enters from an end part on the side opposite the aperture into the body part traverses the light gathering lens, and the light is gathered in the photoreceptor element of the electronic pen which is mounted upon the aperture part.

Description

電子ペン用アタッチメント、電子ペンシステム、および電子ペンシステムを備えた画像表示システムAttachment for electronic pen, electronic pen system, and image display system provided with electronic pen system
 本開示は、画像表示装置に文字や図画を入力する電子ペンに装着する電子ペン用アタッチメント、電子ペンシステム、および電子ペンシステムを備えた画像表示システムに関する。 The present disclosure relates to an attachment for an electronic pen attached to an electronic pen for inputting characters and drawings to an image display device, an electronic pen system, and an image display system including the electronic pen system.
 「電子ペン」と呼ばれるペン型のポインティングデバイスを使用して、画像表示面に文字や図画を手書き入力することができる機能を有する画像表示装置がある。このような画像表示装置では、画像表示領域における電子ペンの位置を検出する技術が用いられる。以下、画像表示領域内における電子ペンの位置を表す座標を「位置座標」と記す。 There is an image display device that has a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen”. In such an image display device, a technique for detecting the position of the electronic pen in the image display region is used. Hereinafter, the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
 例えば、特許文献1には、1フィールドに位置座標検出期間を設け、位置座標検出期間にプラズマディスプレイパネル(以下、「パネル」と記す)に生じる発光を電子ペンに内蔵された光センサで検出することで、電子ペンの座標位置を検出する画像表示装置が開示されている。 For example, in Patent Document 1, a position coordinate detection period is provided in one field, and light emission generated in a plasma display panel (hereinafter referred to as “panel”) in the position coordinate detection period is detected by an optical sensor built in the electronic pen. Thus, an image display device that detects the coordinate position of an electronic pen is disclosed.
 この技術を使用した画像表示装置では、画像表示面に生じる発光を光センサで検出するために、電子ペンを画像表示面に接触させて使用する。 In an image display device using this technology, an electronic pen is used in contact with the image display surface in order to detect light emitted on the image display surface with an optical sensor.
 特許文献2には、電子ペンを使用するときに画像表示面に押し当てられるペン先部と、ペン先部と画像表示面との接触状態を検出する接触状態検出部を備えた電子ペンが開示されている。 Patent Document 2 discloses an electronic pen including a pen tip portion that is pressed against an image display surface when the electronic pen is used, and a contact state detection unit that detects a contact state between the pen tip portion and the image display surface. Has been.
 また、特許文献3には、対象物から離れた位置から対象物にレーザー光を照射することで対象物上の一点を指すレーザーポインタが開示されている。 Further, Patent Document 3 discloses a laser pointer that points to a point on the object by irradiating the object with laser light from a position away from the object.
特開2001-318765号公報JP 2001-318765 A 特開2011-145763号公報JP 2011-145663 A 特開平2-5018号公報Japanese Patent Laid-Open No. 2-5018
 本開示における電子ペン用アタッチメントは、受光素子を有する電子ペンに着脱可能に装着するものである。電子ペン用アタッチメントは、電子ペンに着脱可能に装着するための開口部が形成された胴体部と、胴体部に取り付けられた集光レンズとを備える。そして、開口部に対向する側の端部から胴体部内に入射する光が、集光レンズを通り、開口部に装着された電子ペンの受光素子に集光する。 The attachment for an electronic pen in the present disclosure is detachably attached to an electronic pen having a light receiving element. The attachment for an electronic pen includes a trunk portion in which an opening for detachably attaching to the electronic pen is formed, and a condenser lens attached to the trunk portion. And the light which injects in a trunk | drum from the edge part on the side facing an opening part passes through a condensing lens, and is condensed on the light receiving element of the electronic pen with which the opening part was mounted | worn.
 本開示における電子ペンシステムは、光を受光して受光信号を出力する受光素子を有する電子ペンと、電子ペン用アタッチメントとを備える。胴体部内に入射する光は、集光レンズを通って、開口部に装着された電子ペンの受光素子に集光する。受光素子は、集光レンズによって集光された光を受光する。 The electronic pen system according to the present disclosure includes an electronic pen having a light receiving element that receives light and outputs a light reception signal, and an attachment for the electronic pen. The light incident on the body part passes through the condenser lens and is condensed on the light receiving element of the electronic pen attached to the opening. The light receiving element receives the light collected by the condenser lens.
 本開示における画像表示システムは、電子ペンと、画像表示装置と、電子ペン用アタッチメントとを備える。画像表示装置は、画像表示面における電子ペンの位置座標を検出するための発光を発生する座標検出サブフィールドを含む複数のサブフィールドを発生する。電子ペン用アタッチメントは、電子ペンに装着され、画像表示装置が発する光は、集光レンズを通って、電子ペンの受光素子に集光する。そして、画像表示システムは、座標検出サブフィールドの発光にもとづき画像表示面における電子ペンの位置座標を算出し、算出した位置座標にもとづき描画を行う。 The image display system according to the present disclosure includes an electronic pen, an image display device, and an electronic pen attachment. The image display device generates a plurality of subfields including a coordinate detection subfield that emits light for detecting the position coordinates of the electronic pen on the image display surface. The attachment for the electronic pen is attached to the electronic pen, and the light emitted from the image display device is condensed on the light receiving element of the electronic pen through the condenser lens. Then, the image display system calculates the position coordinates of the electronic pen on the image display surface based on the light emission of the coordinate detection subfield, and performs drawing based on the calculated position coordinates.
図1は、本開示の実施の形態1における画像表示システムの一構成例を概略的に示す回路ブロック図である。FIG. 1 is a circuit block diagram schematically illustrating a configuration example of an image display system according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1における画像表示システムに用いるパネルの構造の一例を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating an example of the structure of the panel used in the image display system according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1における画像表示装置に用いるパネルの電極配列の一例を示す図である。FIG. 3 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1における画像表示サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 5 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1における画像表示装置の維持電極駆動部の一構成例を概略的に示す回路図である。FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1における画像表示装置のデータ電極駆動部の一構成例を概略的に示す回路図である。FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1における画像表示装置の走査電極駆動部の一構成例を概略的に示す回路図である。FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure. 図9は、本開示の実施の形態1における電子ペンの外観を示す三面図である。FIG. 9 is a three-view diagram illustrating an appearance of the electronic pen according to the first embodiment of the present disclosure. 図10は、本開示の実施の形態1における電子ペンの本体ケースの先端部周辺の形状を示す二面図および断面図である。FIG. 10 is a two-view diagram and a cross-sectional view illustrating the shape of the periphery of the tip of the main body case of the electronic pen according to the first embodiment of the present disclosure. 図11は、本開示の実施の形態1における電子ペンのペン先キャップの形状を示す二面図および断面図である。FIG. 11 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip cap of the electronic pen according to the first embodiment of the present disclosure. 図12は、本開示の実施の形態1における電子ペンのペン先部の形状を示す二面図および断面図である。FIG. 12 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip portion of the electronic pen according to the first embodiment of the present disclosure. 図13は、本開示の実施の形態1における電子ペンの先端部周辺の分解図である。FIG. 13 is an exploded view around the tip of the electronic pen according to the first embodiment of the present disclosure. 図14は、本開示の実施の形態1における電子ペン用アタッチメントの形状を示す二面図および断面図である。FIG. 14 is a two-view diagram and a cross-sectional view illustrating the shape of the attachment for the electronic pen according to the first embodiment of the present disclosure. 図15は、本開示の実施の形態1における電子ペン用アタッチメントを装着した電子ペンの外観を示す斜視図である。FIG. 15 is a perspective view illustrating an appearance of an electronic pen equipped with the electronic pen attachment according to the first embodiment of the present disclosure. 図16は、本開示の実施の形態1における電子ペン用アタッチメントを装着した電子ペンの先端部の構造を示す断面図である。FIG. 16 is a cross-sectional view illustrating the structure of the tip portion of the electronic pen equipped with the electronic pen attachment according to the first embodiment of the present disclosure. 図17は、本開示の実施の形態1における画像表示システムにおいて電子ペンを近接使用するときの位置座標検出動作の一例を概略的に示す図である。FIG. 17 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure. 図18は、本開示の実施の形態1における画像表示システムにおいて電子ペンを遠隔使用するときの位置座標検出動作の一例を概略的に示す図である。FIG. 18 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure. 図19は、本開示の実施の形態1における画像表示システムにおいて電子ペンを近接使用するときの動作の一例を概略的に示す図である。FIG. 19 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure. 図20は、本開示の実施の形態1における画像表示システムにおいて電子ペンを遠隔使用するときの動作の一例を概略的に示す図である。FIG. 20 is a diagram schematically illustrating an example of an operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure. 図21は、本開示の実施の形態1における画像表示システムにおいて電子ペンによる入力を行うときの動作の一例を概略的に示す図である。FIG. 21 is a diagram schematically illustrating an example of an operation when an input with the electronic pen is performed in the image display system according to the first embodiment of the present disclosure. 図22は、本開示の実施の形態2における電子ペン用アタッチメントの形状を示す平面図、側面図、および平面断面図である。FIG. 22 is a plan view, a side view, and a plan sectional view showing the shape of the electronic pen attachment according to the second embodiment of the present disclosure. 図23は、本開示の実施の形態2における電子ペン用アタッチメントを装着した電子ペンの先端部の構造を示す断面図である。FIG. 23 is a cross-sectional view showing the structure of the tip of the electronic pen equipped with the electronic pen attachment in the second embodiment of the present disclosure.
 以下、本発明の実施の形態における電子ペン用アタッチメントおよび電子ペンについて、図面を用いて説明する。なお、以下の実施の形態では、本発明の実施の形態における電子ペンシステムを、画像表示部にプラズマディスプレイパネルを用いた画像表示システムに用いる例を説明する。 Hereinafter, an attachment for an electronic pen and an electronic pen according to an embodiment of the present invention will be described with reference to the drawings. In the following embodiment, an example will be described in which the electronic pen system in the embodiment of the present invention is used in an image display system using a plasma display panel as an image display unit.
 (実施の形態1)
 図1は、本開示の実施の形態1における画像表示システム100の一構成例を概略的に示す回路ブロック図である。
(Embodiment 1)
FIG. 1 is a circuit block diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
 画像表示システム100は、画像表示装置30、描画装置40、電子ペン50、および電子ペン用アタッチメント80を有する。以下、電子ペン用アタッチメント80を単に「アタッチメント80」と記す。電子ペン50は、複数であってもよい。 The image display system 100 includes an image display device 30, a drawing device 40, an electronic pen 50, and an electronic pen attachment 80. Hereinafter, the electronic pen attachment 80 is simply referred to as “attachment 80”. There may be a plurality of electronic pens 50.
 描画装置40は、受信部42と描画部46を備えている。電子ペン50は、接触スイッチ51、受光素子52、同期検出部56、座標算出部57、および送信部58を備えている。アタッチメント80は、集光レンズ82を備え、電子ペン50に着脱可能に装着される。 The drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46. The electronic pen 50 includes a contact switch 51, a light receiving element 52, a synchronization detection unit 56, a coordinate calculation unit 57, and a transmission unit 58. The attachment 80 includes a condenser lens 82 and is detachably attached to the electronic pen 50.
 電子ペン50は、使用者が画像表示装置30の画像表示領域に文字や図画等を入力するときに使用される。アタッチメント80は、電子ペン50に装着することで、電子ペン50をパネル10から離れた位置で使用することを可能にするものである。描画装置40、電子ペン50およびアタッチメント80の詳細は後述する。なお、本実施の形態では、電子ペン50とアタッチメント80の組合せを「電子ペンシステム」とする。 The electronic pen 50 is used when the user inputs characters, drawings, and the like in the image display area of the image display device 30. The attachment 80 is attached to the electronic pen 50 so that the electronic pen 50 can be used at a position away from the panel 10. Details of the drawing device 40, the electronic pen 50, and the attachment 80 will be described later. In the present embodiment, the combination of the electronic pen 50 and the attachment 80 is referred to as an “electronic pen system”.
 画像表示装置30は、画像を表示するディスプレイデバイスと、それを駆動する駆動回路とを有する。以下、ディスプレイデバイスとしてプラズマディスプレイパネル(以下、「パネル」と略記する)10を用いた画像表示装置30を例に説明するが、ディスプレイデバイスは液晶や有機EL等であってもよい。 The image display device 30 includes a display device that displays an image and a drive circuit that drives the display device. Hereinafter, an image display apparatus 30 using a plasma display panel (hereinafter abbreviated as “panel”) 10 as a display device will be described as an example, but the display device may be a liquid crystal, an organic EL, or the like.
 画像表示装置30は、駆動回路として、画像信号処理部31、データ電極駆動部32、走査電極駆動部33、維持電極駆動部34、各回路ブロックの動作を制御する制御部(図示せず)、および各回路ブロックに必要な電源を供給する電源部(図示せず)を備えている。 The image display device 30 includes, as drive circuits, an image signal processing unit 31, a data electrode drive unit 32, a scan electrode drive unit 33, a sustain electrode drive unit 34, a control unit (not shown) that controls the operation of each circuit block, And a power supply unit (not shown) for supplying necessary power to each circuit block.
 画像信号処理部31は、外部から入力される画像信号と描画装置40から出力される描画信号とを合成した信号、またはいずれか一方の信号を画像データに変換し、データ電極駆動部32に出力する。画像データとは、各放電セルにおけるサブフィールド毎の発光・非発光を示すデータのことである。データ電極駆動部32はデータ電極22に印加する駆動電圧波形を発生し、走査電極駆動部33は走査電極12に印加する駆動電圧波形を発生し、維持電極駆動部34は維持電極13に印加する駆動電圧波形を発生する。 The image signal processing unit 31 converts a signal obtained by synthesizing an image signal input from the outside and a drawing signal output from the drawing device 40, or one of the signals into image data, and outputs the image data to the data electrode driving unit 32. To do. The image data is data indicating light emission / non-light emission for each subfield in each discharge cell. The data electrode driver 32 generates a drive voltage waveform applied to the data electrode 22, the scan electrode driver 33 generates a drive voltage waveform applied to the scan electrode 12, and the sustain electrode driver 34 applies to the sustain electrode 13. Generate a drive voltage waveform.
 図2は、本開示の実施の形態1における画像表示システム100に用いるパネル10の構造の一例を示す分解斜視図である。 FIG. 2 is an exploded perspective view showing an example of the structure of the panel 10 used in the image display system 100 according to the first embodiment of the present disclosure.
 ガラス製の前面基板11には、走査電極12と維持電極13からなる表示電極対14が複数形成され、その上に誘電体層15が形成され、さらにその上に保護層16が形成されている。前面基板11は画像が表示される画像表示面となる。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustain electrode 13 are formed on a glass front substrate 11, a dielectric layer 15 is formed thereon, and a protective layer 16 is further formed thereon. . The front substrate 11 serves as an image display surface on which an image is displayed.
 背面基板21にはデータ電極22が複数形成され、その上に誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。隔壁24の側面および誘電体層23の表面には、赤色(R)を発光する蛍光体層25R、緑色(G)を発光する蛍光体層25G、および青色(B)を発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、および蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed thereon, and a grid-like partition wall 24 is further formed thereon. On the side surface of the partition wall 24 and the surface of the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 そして、前面基板11と背面基板21を、放電空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、その放電空間に放電ガスを封入する。 Then, the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
 図3は、本開示の実施の形態1における画像表示装置に用いるパネル10の電極配列の一例を示す図である。 FIG. 3 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
 パネル10には、第1の方向に延長されたn本の走査電極SC1~SCn(図2の走査電極12)およびn本の維持電極SU1~SUn(図2の維持電極13)が配列され、第1の方向に交差する第2の方向に延長されたm本のデータ電極D1~Dm(図2のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 2) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 2) extending in the first direction. M data electrodes D1 to Dm (data electrodes 22 in FIG. 2) extending in a second direction intersecting the first direction are arranged.
 以下、第1の方向を行方向(または水平方向、またはライン方向、またはx座標方向)と呼称し、第2の方向を列方向(または垂直方向、またはy座標方向)と呼称する。 Hereinafter, the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
 パネル10では、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に1つの放電セルが形成される。そして、互いに隣接する赤、緑、青の各色を発光する3つの放電セルが一組になって1つの画素が構成される。したがって、1対の表示電極対14上にはm個の放電セル((m/3)個の画素)が形成され、1本のデータ電極22上にはn個の放電セルが形成される。そして、(m×n)個の放電セルが形成された領域がパネル10の画像表示領域となる。 In panel 10, one discharge cell is formed in a region where one pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). A set of three discharge cells emitting red, green, and blue colors adjacent to each other constitutes one pixel. Accordingly, m discharge cells ((m / 3) pixels) are formed on one pair of display electrodes 14, and n discharge cells are formed on one data electrode 22. An area where (m × n) discharge cells are formed becomes an image display area of the panel 10.
 図4は、本開示の実施の形態1における画像表示サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。 FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
 本実施の形態では、1フィールドに、パネル10に画像を表示するための複数の画像表示サブフィールド(図4に示す)と、電子ペン50の「位置座標」を検出するための発光をパネル10に生じる複数の座標検出サブフィールド(図5に示す)を有する。「位置座標」とは、パネル10の画像表示領域において電子ペン50が指す位置の座標(電子ペン50の位置を示す座標)のことである。 In the present embodiment, panel 10 emits light for detecting a plurality of image display subfields (shown in FIG. 4) for displaying an image on panel 10 and “positional coordinates” of electronic pen 50 in one field. Has a plurality of coordinate detection subfields (shown in FIG. 5). “Position coordinates” are the coordinates of the position indicated by the electronic pen 50 in the image display area of the panel 10 (coordinates indicating the position of the electronic pen 50).
 画像表示サブフィールドにおける駆動電圧波形は従来の駆動電圧波形と同様であり、複数の画像表示サブフィールドは、それぞれがあらかじめ定められた輝度重みを持ち、各画像表示サブフィールドの発光・非発光を放電セル毎に制御することによりパネル10に画像を表示する。各画像表示サブフィールドは、初期化期間、書込み期間および維持期間を有する。以下、画像表示サブフィールドを単にサブフィールドとも記す。 The drive voltage waveform in the image display subfield is the same as the conventional drive voltage waveform, and each of the plurality of image display subfields has a predetermined luminance weight, and discharges light emission / non-light emission of each image display subfield. An image is displayed on the panel 10 by controlling each cell. Each image display subfield has an initialization period, an address period, and a sustain period. Hereinafter, the image display subfield is also simply referred to as a subfield.
 初期化期間における初期化動作には、放電セルに強制的に初期化放電を発生する「強制初期化動作」と、直前のサブフィールドの書込み期間に書込み放電を発生した放電セルだけに選択的に初期化放電を発生する「選択初期化動作」がある。本実施の形態では、サブフィールドSF1では強制初期化動作を行い、サブフィールドSF2~SF8では選択初期化動作を行う例を示す。 For the initialization operation in the initialization period, a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used. There is a “selective initialization operation” that generates an initialization discharge. In the present embodiment, an example in which a forced initialization operation is performed in subfield SF1 and a selective initialization operation is performed in subfields SF2 to SF8 is shown.
 1フィールド内の画像表示サブフィールドの数は例えば8つ(サブフィールドSF1~SF8)であり、各サブフィールドの輝度重みは例えば(1、34、21、13、8、5、3、2)である。しかし、サブフィールド数、輝度重み等は、何ら上記の数値に限定されるものではない。 The number of image display subfields in one field is, for example, eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2). is there. However, the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
 強制初期化動作を行うサブフィールドSF1の初期化期間Pi1では、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加する。走査電極SC1~SCnには、電圧0(V)を印加した後に、放電開始電圧よりも低い電圧Vi1から放電開始電圧を超える電圧Vi2まで緩やかに上昇する上り傾斜波形電圧を印加する。次に、維持電極SU1~SUnに正の電圧Veを印加し、走査電極SC1~SCnには放電開始電圧未満となる電圧0(V)から放電開始電圧を超える負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。 In the initializing period Pi1 of the subfield SF1 in which the forced initializing operation is performed, the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn. After applying voltage 0 (V) to scan electrodes SC1 to SCn, an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied. Next, positive voltage Ve is applied to sustain electrodes SU1 to SUn, and gradually decreases from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4, which exceeds the discharge start voltage, for scan electrodes SC1 to SCn. Apply a falling ramp waveform voltage.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続く書込み期間Pw1での書込み動作に適した電圧に調整される。以下、初期化期間Pi1に発生する上述の駆動電圧波形を強制初期化波形とする。 The initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1. Hereinafter, the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
 サブフィールドSF1の書込み期間Pw1では、1行目の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加し、データ電極D1~Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する書込み動作を行う。 In the address period Pw1 of the subfield SF1, a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm. An address operation is performed in which a positive address pulse with a positive voltage Vd is applied to the electrode Dk.
 同様の書込み動作を、走査電極SC2、SC3、SC4、・・・、SCnという順番で、n行目の放電セルに至るまで順次行う。 The same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
 サブフィールドSF1の維持期間Ps1では、走査電極SC1~SCnと維持電極SU1~SUnとに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。直前の書込み期間Pw1において書込み放電を発生した放電セルは、輝度重みに応じた回数の維持放電が発生し、輝度重みに応じた輝度で発光する。 In the sustain period Ps1 of the subfield SF1, the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn. A discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
 維持パルスの発生後(維持期間Ps1において維持動作が終了した後)または書込み動作後には、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する消去動作を行う。 After generation of sustain pulse (after sustain operation is completed in sustain period Ps1) or after address operation, scan electrodes SC1 to SCn are applied with voltage 0 (V) applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm. An erasing operation is performed in which an upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
 これにより、維持放電を発生した放電セルに微弱な放電(消去放電)が発生し、放電セル内の不要な壁電荷が消去される。 As a result, a weak discharge (erase discharge) is generated in the discharge cell that has generated the sustain discharge, and unnecessary wall charges in the discharge cell are erased.
 選択初期化動作を行うサブフィールドSF2の初期化期間Pi2では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには正の電圧Veを印加する。走査電極SC1~SCnには、放電開始電圧未満となる電圧0(V)から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 In the initialization period Pi2 of the subfield SF2 in which the selective initialization operation is performed, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage falling from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 この選択初期化動作により、直前のサブフィールドSF1の維持期間Ps1に維持放電を発生した放電セルでは微弱な初期化放電が発生し、各電極上の壁電圧は、続く書込み期間Pw2での書込み動作に適した壁電圧に調整される。維持期間Ps1に維持放電を発生しなかった放電セルでは、初期化放電は発生しない。以下、初期化期間Pi2に発生する上述の駆動電圧波形を選択初期化波形とする。 By this selective initializing operation, a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2. The wall voltage is adjusted to a suitable level. In the discharge cells that did not generate the sustain discharge in the sustain period Ps1, the initialization discharge does not occur. Hereinafter, the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
 続く書込み期間Pw2および維持期間Ps2は、維持パルスの発生数を除き、書込み期間Pw1および維持期間Ps1と同様の駆動電圧波形を各電極に印加する。 In the subsequent address period Pw2 and sustain period Ps2, drive voltage waveforms similar to those in the address period Pw1 and sustain period Ps1 are applied to each electrode, except for the number of sustain pulses.
 サブフィールドSF3以降の各サブフィールドでは、維持パルスの発生数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In each subfield after subfield SF3, the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
 図5は、本開示の実施の形態1における座標検出サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。本実施の形態では、座標検出サブフィールドに、同期検出サブフィールドSFo、近接用y座標検出サブフィールドSFy1、近接用x座標検出サブフィールドSFx1、遠隔用y座標検出サブフィールドSFy2、および遠隔用x座標検出サブフィールドSFx2が含まれる。 FIG. 5 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure. In the present embodiment, the coordinate detection subfield includes synchronization detection subfield SFo, proximity y coordinate detection subfield SFy1, proximity x coordinate detection subfield SFx1, remote y coordinate detection subfield SFy2, and remote x coordinate. A detection subfield SFx2 is included.
 なお、以下、近接用y座標検出サブフィールドSFy1と遠隔用y座標検出サブフィールドSFy2とを合わせて「y座標検出サブフィールドSFy」と称し、近接用x座標検出サブフィールドSFx1と遠隔用x座標検出サブフィールドSFx2とを合わせて「x座標検出サブフィールドSFx」と称す。 Hereinafter, the proximity y coordinate detection subfield SFy1 and the remote y coordinate detection subfield SFy2 are collectively referred to as “y coordinate detection subfield SFy”, and the proximity x coordinate detection subfield SFx1 and the remote x coordinate detection are performed. The subfield SFx2 is collectively referred to as “x coordinate detection subfield SFx”.
 画像表示領域内において電子ペン50が指す位置(以下、「電子ペン50の位置」とも記す)は、x座標とy座標で表される。本実施の形態では、行方向の座標をx座標とし、列方向の座標をy座標としている。x座標検出サブフィールドSFx、y座標検出サブフィールドSFyは、このx座標、y座標を検出するための発光を発生するサブフィールドであり、x座標検出パターン、y座標検出パターンをパネル10に表示する。 The position indicated by the electronic pen 50 in the image display area (hereinafter also referred to as “position of the electronic pen 50”) is represented by an x coordinate and ay coordinate. In this embodiment, the coordinate in the row direction is the x coordinate, and the coordinate in the column direction is the y coordinate. The x-coordinate detection subfield SFx and the y-coordinate detection subfield SFy are subfields that emit light for detecting the x-coordinate and y-coordinate, and display the x-coordinate detection pattern and the y-coordinate detection pattern on the panel 10. .
 なお、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1は、使用者が電子ペン50のペン先部をパネル10に直接接触させて(またはパネル10に比較的近い位置で)使用する「近接使用」時に、電子ペン50の位置座標の検出に用いるサブフィールドである。遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2は、使用者が電子ペン50をパネル10から離れた位置で使用する「遠隔使用」時に、電子ペン50の位置座標の検出に用いるサブフィールドである。 In the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1, the user directly contacts the pen tip of the electronic pen 50 with the panel 10 (or at a position relatively close to the panel 10). This is a subfield used for detecting the position coordinates of the electronic pen 50 during “proximity use”. The remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 are used to detect the position coordinate of the electronic pen 50 when the user uses the electronic pen 50 at a position away from the panel 10. Subfield to use.
 また、画像表示システム100では、電子ペン50と描画装置40との間で無線通信を行う。電子ペン50は、電子ペン50の内部で電子ペン50の位置座標を算出し、算出した位置座標のデータを電子ペン50から描画装置40へ無線通信によって送信する。 Further, in the image display system 100, wireless communication is performed between the electronic pen 50 and the drawing device 40. The electronic pen 50 calculates the position coordinates of the electronic pen 50 inside the electronic pen 50 and transmits data of the calculated position coordinates from the electronic pen 50 to the drawing device 40 by wireless communication.
 電子ペン50は、同期検出サブフィールドSFoで生じる発光を受光することで、画像表示装置30と同期をとり、位置座標を算出するための基準となる信号(座標基準信号)を高い精度で発生することが可能になる。 The electronic pen 50 receives the light emitted in the synchronization detection subfield SFo, thereby synchronizing with the image display device 30 and generating a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy. It becomes possible.
 図5に示すように、同期検出サブフィールドSFoは、初期化期間Pio、書込み期間Pwo、および同期検出期間Poを有する。 As shown in FIG. 5, the synchronization detection subfield SFo has an initialization period Pio, an address period Pwo, and a synchronization detection period Po.
 初期化期間Pioでは、画像表示サブフィールドのサブフィールドSF2の初期化期間Pi2と同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Pio, the selection initialization operation similar to the initialization period Pi2 of the subfield SF2 of the image display subfield is performed, and thus the description thereof is omitted.
 同期検出サブフィールドSFoの書込み期間Pwoでは、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには電圧Veを印加し、走査電極SC1~SCnには電圧Vcを印加する。 In the address period Pwo of the synchronization detection subfield SFo, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. Apply.
 次に、データ電極D1~Dmに電圧Vdの書込みパルスを印加するとともに、時刻to0に電圧Vaの走査パルスを走査電極SC1~SCnに印加し、各放電セルに書込み放電を発生させる。 Next, an address pulse of voltage Vd is applied to data electrodes D1 to Dm, and a scan pulse of voltage Va is applied to scan electrodes SC1 to SCn at time to0 to generate an address discharge in each discharge cell.
 なお、図5に示す書込み期間Pwoでは、全ての走査電極SC1~SCnに一斉に走査パルスを印加して全ての放電セルに一斉に書込み放電を発生させているが、例えば、データ電極D1~Dmに書込みパルスを印加したまま、走査電極SC1から走査電極SCnまでの各電極に順次走査パルスを印加して、各放電セルに順次書込み放電を発生させてもよい。その場合の時刻to0は、書込み期間Pwoにおける最後の書込み放電を発生させるための走査パルスを走査電極12(例えば、走査電極SCn)に印加する時刻とする。 In the address period Pwo shown in FIG. 5, a scan pulse is applied simultaneously to all the scan electrodes SC1 to SCn to generate address discharges in all the discharge cells at the same time. For example, the data electrodes D1 to Dm Alternatively, the address pulse may be applied to each electrode from scan electrode SC1 to scan electrode SCn, and the address discharge may be sequentially generated in each discharge cell. In this case, the time to0 is a time at which a scan pulse for generating the last address discharge in the address period Pwo is applied to the scan electrode 12 (for example, the scan electrode SCn).
 書込み動作を終了した後は、データ電極D1~Dmに電圧0(V)を印加する。また、走査電極SC1~SCnには電圧Vcを印加し、その後、電圧0(V)を印加する。本実施の形態では、時刻to1までの間、この状態を維持する。この期間は、放電セルに書込み放電が発生した後、放電が発生しない状態が維持される。 After the write operation is completed, voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained until time to1. During this period, after the address discharge is generated in the discharge cell, the state in which no discharge is generated is maintained.
 次に、同期検出サブフィールドSFoの同期検出期間Poでは、電子ペン50における位置座標算出時の基準となる複数回の発光(同期検出用の発光)をパネル10に生じさせる。 Next, in the synchronization detection period Po of the synchronization detection subfield SFo, the panel 10 is caused to emit light (synchronization detection light emission) a plurality of times as a reference when calculating the position coordinates in the electronic pen 50.
 図5に示す例では、時刻to0から時間To0が経過した後の時刻to1において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV1を印加する。次に、時刻to1から時間To1が経過した後の時刻to2において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV2を印加する。次に、時刻to2から時間To2が経過した後の時刻to3において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV3を印加する。次に、時刻to3から時間To3が経過した後の時刻to4において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV4を印加する。 In the example shown in FIG. 5, at time to1 after time To0 has elapsed from time to0, voltage 0 (V) is applied to sustain electrodes SU1 to SUn, and synchronous detection pulse V1 of voltage Vso is applied to scan electrodes SC1 to SCn. Apply. Next, at time to2 after time To1 has elapsed from time to1, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V2 of voltage Vso is applied to sustain electrodes SU1 to SUn. Next, at time to3 after time To2 has elapsed from time to2, voltage 0 (V) is applied to sustain electrodes SU1 to SUn, and synchronous detection pulse V3 of voltage Vso is applied to scan electrodes SC1 to SCn. Next, at time to4 after time To3 has elapsed from time to3, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V4 of voltage Vso is applied to sustain electrodes SU1 to SUn.
 このようにして、同期検出サブフィールドSFoでは、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で、パネル10の画像表示領域内の全ての放電セルに複数回(例えば、4回)の同期検出放電を発生させ、同期検出用の発光をパネル10に複数回(例えば、4回)生じさせる。 In this way, in the synchronization detection subfield SFo, a plurality of times (all times in all image cells in the image display area of the panel 10) at predetermined time intervals (for example, time To1, time To2, time To3) ( For example, four times of synchronization detection discharge is generated, and light emission for synchronization detection is generated in the panel 10 a plurality of times (for example, four times).
 なお、この同期検出放電は、維持放電と同様の放電であって、書込み放電と比較して強い放電であり、書込み期間Pwoで発生する発光よりも輝度が高い。 The synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo.
 そして、電子ペン50は、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で発生する複数回(例えば、4回)の同期検出用の発光を検出することで、座標基準信号を作成する。座標基準信号は、電子ペンの位置座標(x,y)を算出する際に基準となる信号である。 The electronic pen 50 detects a plurality of times (for example, four times) of light emission for synchronization detection that occurs at a predetermined time interval (for example, the time To1, the time To2, and the time To3). Create a coordinate reference signal. The coordinate reference signal is a signal that serves as a reference when calculating the position coordinates (x, y) of the electronic pen.
 同期検出サブフィールドSFoでは、パネル10の画像表示面の全面が同じタイミングで一斉に光るので、電子ペン50の位置座標がパネル10の画像表示領域内のどの位置にあっても、電子ペン50はこの発光を同じタイミングで受光することができる。 In the synchronization detection subfield SFo, the entire surface of the image display surface of the panel 10 illuminates all at the same timing, so the electronic pen 50 can be used regardless of the position coordinates of the electronic pen 50 in the image display area of the panel 10. This light emission can be received at the same timing.
 本実施の形態では、時間To0を、時間To1、時間To2、時間To3のいずれよりも長い時間に設定する。これは、電子ペン50が、同期検出サブフィールドSFoの書込み期間Pwoに発生する書込み放電による発光を他の放電による発光と誤認識することを防止するためである。本実施の形態では、例えば、時間To0は約50μsecであり、時間To1は約40μsecであり、時間To2は約20μsecであり、時間To3は約30μsecである。しかし、各時間は何らこれらの数値に限定されるものではなく、画像表示システムの仕様等に応じて適切に設定すればよい。 In the present embodiment, the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is to prevent the electronic pen 50 from erroneously recognizing light emission due to the address discharge that occurs in the address period Pwo of the synchronization detection subfield SFo as light emission due to another discharge. In the present embodiment, for example, the time To0 is about 50 μsec, the time To1 is about 40 μsec, the time To2 is about 20 μsec, and the time To3 is about 30 μsec. However, each time is not limited to these numerical values, and may be set appropriately according to the specifications of the image display system.
 同期検出サブフィールドSFoの同期検出期間Poにおいて、同期検出パルスV4の発生後(同期検出期間Poの最後)には、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、直前に同期検出放電を発生した放電セルに微弱な消去放電が発生する。 In the synchronization detection period Po of the synchronization detection subfield SFo, after the generation of the synchronization detection pulse V4 (at the end of the synchronization detection period Po), an erase operation similar to the erase operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. . As a result, a weak erasing discharge is generated in the discharge cell that has generated the synchronous detection discharge immediately before.
 続いて、近接用y座標検出サブフィールドSFy1を発生する。 Subsequently, the proximity y-coordinate detection subfield SFy1 is generated.
 以下、1つの行を構成する放電セルの集合体を「放電セル行」と記し、1つの行を構成する画素の集合体を「画素行」と記す。本実施の形態では、放電セル行と画素行とは実質的に同じものである。また、1つの列を構成する放電セルの集合体を「放電セル列」と記し、互いに隣接する3列の放電セル列で構成される放電セルの集合体(画素の列)を「画素列」と記す。 Hereinafter, an aggregate of discharge cells constituting one row is referred to as “discharge cell row”, and an aggregate of pixels constituting one row is referred to as “pixel row”. In the present embodiment, the discharge cell row and the pixel row are substantially the same. A group of discharge cells constituting one column is referred to as a “discharge cell column”, and a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”. .
 近接用y座標検出サブフィールドSFy1は、初期化期間Piyとy座標検出期間Py1と消去期間Peyとを有する。 The proximity y-coordinate detection subfield SFy1 has an initialization period Piy, a y-coordinate detection period Py1, and an erasing period Pey.
 初期化期間Piyでは、画像表示サブフィールドのサブフィールドSF2の初期化期間Pi2と同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くy座標検出期間Py1における近接用y座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Piy, the same selective initialization operation as in the initialization period Pi2 of the subfield SF2 of the image display subfield is performed to generate an initialization discharge in each discharge cell. Thus, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity y coordinate detection pattern display operation in the subsequent y coordinate detection period Py1.
 続くy座標検出期間Py1では、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、あらかじめ設定された「第1の数」の走査電極12に同時にy座標検出パルスを印加する動作を、走査電極SC1~SCnに対して順次行う。本実施の形態では「第1の数」を「1」とする例を示すが、「第1の数」は「2」以上であってもよい。 In the subsequent y-coordinate detection period Py1, the operation of simultaneously applying the y-coordinate detection pulse to the “first number” scanning electrodes 12 while applying the y-coordinate detection voltage Vdy to the data electrodes D1 to Dm, This is sequentially performed on scan electrodes SC1 to SCn. In the present embodiment, an example in which the “first number” is “1” is shown, but the “first number” may be “2” or more.
 時刻ty01に始まるy座標検出期間Py1では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the y coordinate detection period Py1 starting at time ty01, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. To do.
 時刻ty01から時間Ty01が経過した後に、データ電極D1~Dmに正のy座標検出電圧Vdyを印加し、1行目の画素行を構成する走査電極SC1に電圧Vayの負極性のy座標検出パルスを印加する。この1行目の画素行は、例えば画像表示領域の上端に配置された画素行である。 After time Ty01 has elapsed from time ty01, positive y-coordinate detection voltage Vdy is applied to data electrodes D1 to Dm, and negative y-coordinate detection pulse of voltage Vay is applied to scan electrode SC1 constituting the first pixel row. Apply. This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
 これにより、データ電極D1~Dmと走査電極SC1との交差部にある放電セルでは、一斉に放電が発生する。こうして1行目の画素行に放電が発生し、1行目の画素行が発光する。以下、この放電を「y座標検出放電」とも記す。このy座標検出放電による発光は、電子ペン50を近接使用するときのy座標検出用の発光となる。 As a result, discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to Dm and the scan electrode SC1. In this way, discharge occurs in the first pixel row, and the first pixel row emits light. Hereinafter, this discharge is also referred to as “y-coordinate detection discharge”. The light emission by this y coordinate detection discharge becomes light emission for y coordinate detection when the electronic pen 50 is used in proximity.
 同様の動作を、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、走査電極SC2、走査電極SC3、・・・、走査電極SCnという順番で、n行目の放電セル行に至るまで順次行う。これにより、パネル10の上端の画素行(1行目の画素行)から下端の画素行(n行目の画素行)までの各画素行に、y座標検出放電が1画素行ずつ順次発生する。 The same operation is performed until the nth discharge cell row is reached in the order of scan electrode SC2, scan electrode SC3,..., Scan electrode SCn with the y coordinate detection voltage Vdy applied to data electrodes D1 to Dm. Do it sequentially. As a result, the y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 one pixel row at a time. .
 こうして、近接用y座標検出サブフィールドSFy1のy座標検出期間Py1では、「第1の数」に応じた幅(例えば、1画素行)で発光するx軸方向(行方向)に延長した1本の発光線が、パネル10の画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで、y軸方向に順次(例えば、1画素行ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1, one line extending in the x-axis direction (row direction) that emits light with a width corresponding to the “first number” (for example, one pixel row). Light emission lines sequentially move in the y-axis direction (for example, one pixel row at a time) from the upper end (first pixel row) to the lower end (nth pixel row) of the image display area of the panel 10. A light emission pattern is displayed on the panel 10.
 以下、この発光パターンを、「近接用y座標検出パターン」と記す。また、「第1の数」に応じた幅の1本の発光線を、「第1の発光線」と記す。例えば「第1の数」が「2」であれば、「近接用y座標検出パターン」は、2画素行の幅の「第1の発光線」が2画素行ずつy座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “proximity y coordinate detection pattern”. Further, one light emitting line having a width corresponding to the “first number” is referred to as “first light emitting line”. For example, if the “first number” is “2”, the “first emission line” having a width of two pixel rows sequentially moves in the y coordinate direction by two pixel rows. It becomes a light emission pattern.
 y座標検出期間Py1では、近接用y座標検出パターンをパネル10に表示することで、電子ペン50が第1の発光線の発光を受光するタイミングは、電子ペン50の位置座標に応じて変化する。したがって、電子ペン50で第1の発光線の発光を受光するタイミングを検出することで、電子ペン50を近接使用するときの位置座標(x,y)のy座標を検出することができる。 In the y coordinate detection period Py1, by displaying the proximity y coordinate detection pattern on the panel 10, the timing at which the electronic pen 50 receives the light emitted from the first light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen 50 is used in proximity can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the first light emitting line.
 なお、本実施の形態では、図5に示すように、y座標検出期間Py1に走査電極SC1~SCnのそれぞれにy座標検出パルスの電圧Vayを印加する時間(すなわち、y座標検出パルスのパルス幅)をTy11とする。このTy11は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 5, the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y coordinate detection period Py1 (that is, the pulse width of the y coordinate detection pulse) ) Is Ty11. This Ty11 is, for example, about 1 μsec.
 近接用y座標検出サブフィールドSFy1の消去期間Peyでは、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、y座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erasing period Pey of the proximity y coordinate detection subfield SFy1, an erasing operation similar to the erasing operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the y-coordinate detection discharge.
 続く近接用x座標検出サブフィールドSFx1は、初期化期間Pixとx座標検出期間Px1と消去期間Pexを有する。 The subsequent proximity x-coordinate detection subfield SFx1 has an initialization period Pix, an x-coordinate detection period Px1, and an erasing period Pex.
 初期化期間Pixでは、近接用y座標検出サブフィールドSFy1の初期化期間Piyと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くx座標検出期間Px1における近接用x座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix, a selective initialization operation similar to that in the initialization period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initialization discharge in each discharge cell. As a result, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px1.
 続く近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、あらかじめ設定された「第3の数」のデータ電極22に同時にx座標検出パルスを印加する動作を、データ電極D1~Dmに対して順次行う。本実施の形態では「第3の数」を「3」とする例を示すが、「第3の数」は「3」以外の数であってもよい。 In the subsequent x-coordinate detection period Px1 of the proximity x-coordinate detection subfield SFx1, the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the preset “third number” of data electrodes 22. The operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm. In this embodiment, an example in which “third number” is “3” is shown, but “third number” may be a number other than “3”.
 時刻tx01に始まるx座標検出期間Px1では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加する。 In the x coordinate detection period Px1 starting at time tx01, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the negative x coordinate is applied to the scan electrodes SC1 to SCn. A detection voltage Vax is applied.
 時刻tx01から時間Tx01が経過した後に、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加したまま、1列目の画素列を構成するデータ電極D1~D3に電圧Vdxの正極性のx座標検出パルスを同時に印加する。この1列目の画素列は、例えば画像表示領域の左端に配置された画素列である。 After time Tx01 has elapsed from time tx01, positive x of voltage Vdx is applied to data electrodes D1 to D3 constituting the first pixel column while negative x coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn. Coordinate detection pulses are applied simultaneously. The first pixel column is, for example, a pixel column arranged at the left end of the image display area.
 これにより、データ電極D1~D3と走査電極SC1~SCnとの交差部にある放電セルでは、一斉に放電が発生する。こうして1列目の画素列に放電が発生し、1列目の画素列が発光する。以下、この放電を「x座標検出放電」とも記す。このx座標検出放電による発光は、電子ペン50を近接使用するときのx座標検出用の発光となる。 As a result, discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to D3 and the scan electrodes SC1 to SCn. Thus, discharge occurs in the first pixel column, and the first pixel column emits light. Hereinafter, this discharge is also referred to as “x coordinate detection discharge”. The light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen 50 is used in proximity.
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、データ電極D4~D6、データ電極D7~D9、・・・、データ電極Dm-2~Dmという順番で、互いに隣接する3本のデータ電極22毎に、m列目の放電セル列に至るまで順次行う。これにより、パネル10の左端の画素列(1列目の画素列)から右端の画素列((m/3)列目の画素列)までの各画素列に、x座標検出放電が1画素列ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of data electrodes D4 to D6, data electrodes D7 to D9,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn. The three data electrodes 22 are sequentially performed until reaching the m-th discharge cell column. As a result, an x coordinate detection discharge is applied to each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column ((m / 3) th pixel column) of the panel 10. It occurs sequentially.
 こうして、近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、「第3の数」に応じた幅(例えば、1画素列)で発光するy軸方向(列方向)に延長した1本の発光線が、パネル10の画像表示領域の左端部(1列目の画素列)から右端部((m/3)列目の画素列)まで、x軸方向に順次(例えば、1画素列ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1, one line extending in the y-axis direction (column direction) that emits light with a width corresponding to the “third number” (for example, one pixel column). Are sequentially emitted in the x-axis direction (for example, one pixel column) from the left end (first pixel column) to the right end ((m / 3) pixel column) of the image display area of the panel 10. The moving light emission pattern is displayed on the panel 10.
 以下、この発光パターンを、「近接用x座標検出パターン」と記す。また、「第3の数」に応じた幅の1本の発光線を、「第2の発光線」と記す。例えば「第3の数」が「6」であれば、「近接用x座標検出パターン」は、2画素列の幅の「第2の発光線」が2画素列ずつx座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “proximity x coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “third number” is referred to as a “second light emitting line”. For example, if the “third number” is “6”, the “second emission line” having a width of two pixel columns sequentially moves in the x coordinate direction by two pixel columns in the “proximity x coordinate detection pattern”. It becomes a light emission pattern.
 x座標検出期間Px1では、近接用x座標検出パターンをパネル10に表示することで、電子ペン50が第2の発光線の発光を受光するタイミングは、電子ペン50の位置座標に応じて変化する。したがって、電子ペン50で第2の発光線の発光を受光するタイミングを検出することで、電子ペン50を近接使用するときの位置座標(x,y)のx座標を検出することができる。 In the x-coordinate detection period Px1, by displaying the proximity x-coordinate detection pattern on the panel 10, the timing at which the electronic pen 50 receives the light emitted from the second light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen 50 is used in proximity can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the second light emitting line.
 なお、本実施の形態では、図5に示すように、x座標検出期間Px1にデータ電極D1~Dmのそれぞれにx座標検出パルスの電圧Vdxを印加する時間(すなわち、x座標検出パルスのパルス幅)をTx11とする。このTx11は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 5, the time during which the voltage Vdx of the x-coordinate detection pulse is applied to each of the data electrodes D1 to Dm in the x-coordinate detection period Px1 (that is, the pulse width of the x-coordinate detection pulse) ) Is Tx11. This Tx11 is, for example, about 1 μsec.
 近接用x座標検出サブフィールドSFx1の消去期間Pexでは、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、x座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erasing period Pex of the proximity x-coordinate detection subfield SFx1, an erasing operation similar to the erasing operation performed at the end of the sustaining period Ps1 of the subfield SF1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the x-coordinate detection discharge.
 続いて、遠隔用y座標検出サブフィールドSFy2を発生する。 Subsequently, the remote y-coordinate detection subfield SFy2 is generated.
 遠隔用y座標検出サブフィールドSFy2は、初期化期間Piyとy座標検出期間Py2と消去期間Peyとを有する。 The remote y-coordinate detection subfield SFy2 has an initialization period Piy, a y-coordinate detection period Py2, and an erasing period Pey.
 初期化期間Piyでは、近接用y座標検出サブフィールドSFy1の初期化期間Piyと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くy座標検出期間Py2における遠隔用y座標検出パターン表示動作に適した壁電圧に調整される。 In the initializing period Piy, the selective initializing operation similar to the initializing period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initializing discharge in each discharge cell. Thereby, the wall voltage of each discharge cell is adjusted to the wall voltage suitable for the remote y coordinate detection pattern display operation in the subsequent y coordinate detection period Py2.
 続く遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、あらかじめ設定された「第2の数」の走査電極12に同時にy座標検出パルスを印加する動作を、走査電極SC1~SCnに対して順次行う。「第2の数」は近接用y座標検出サブフィールドSFy1のy座標検出期間Py1で用いた「第1の数」よりも大きい数値である。本実施の形態では「第2の数」を「8」とする例を示すが、「第2の数」は「8」以外の数であってもよい。 In the subsequent y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, the y-coordinate detection voltage Vdy is applied to the data electrodes D1 to Dm, and y is simultaneously applied to the preset “second number” of scan electrodes 12. The operation of applying the coordinate detection pulse is sequentially performed on scan electrodes SC1 to SCn. The “second number” is a numerical value larger than the “first number” used in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1. In the present embodiment, an example in which the “second number” is “8” is shown, but the “second number” may be a number other than “8”.
 時刻ty02に始まるy座標検出期間Py2では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the y coordinate detection period Py2 starting at time ty02, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. To do.
 時刻ty02から時間Ty02が経過した後に、データ電極D1~Dmに正のy座標検出電圧Vdyを印加し、1~8行目の画素行を構成する走査電極SC1~SC8に電圧Vayの負極性のy座標検出パルスを同時に印加する。 After time Ty02 has elapsed from time ty02, positive y-coordinate detection voltage Vdy is applied to data electrodes D1 to Dm, and negative voltage Vay is applied to scan electrodes SC1 to SC8 constituting the first to eighth pixel rows. A y-coordinate detection pulse is applied simultaneously.
 これにより、データ電極D1~Dmと走査電極SC1~SC8との交差部にある放電セルでは、一斉に放電が発生する。こうして1~8行目の画素行に一斉に放電が発生し、1~8行目の8本の画素行が一斉に発光する。以下、この放電も「y座標検出放電」と記す。このy座標検出放電による発光は、電子ペン50を遠隔使用するときのy座標検出用の発光となる。 As a result, discharge occurs simultaneously in the discharge cells at the intersections of the data electrodes D1 to Dm and the scan electrodes SC1 to SC8. In this way, discharge is generated simultaneously in the 1st to 8th pixel rows, and 8 pixel rows in the 1st to 8th rows emit light all at once. Hereinafter, this discharge is also referred to as “y-coordinate detection discharge”. The light emission by this y coordinate detection discharge is light emission for y coordinate detection when the electronic pen 50 is used remotely.
 同様の動作を、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、走査電極SC9~SC16、走査電極SC17~SC24、・・・、走査電極SCn-7~SCnという順番で、互いに隣接する8本の走査電極12毎に、n行目の放電セル行に至るまで順次行う。これにより、パネル10の上端の画素行(1行目の画素行)から下端の画素行(n行目の画素行)までの各画素行に、y座標検出放電が8画素行ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of scan electrodes SC9 to SC16, scan electrodes SC17 to SC24,..., Scan electrodes SCn-7 to SCn with the y coordinate detection voltage Vdy applied to the data electrodes D1 to Dm. For every eight scanning electrodes 12 to be performed, the steps are sequentially performed until the nth discharge cell row is reached. As a result, the y coordinate detection discharge is sequentially generated in each of the pixel rows from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 by 8 pixel rows. .
 こうして、遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、「第2の数」に応じた幅(例えば、8画素行)で発光するx軸方向(行方向)に延長した1本の発光線が、パネル10の画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで、y軸方向に順次(例えば、8画素行ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, one line extending in the x-axis direction (row direction) that emits light with a width (for example, 8 pixel rows) according to the “second number”. Emission lines sequentially move in the y-axis direction (for example, every 8 pixel rows) from the upper end (first pixel row) to the lower end (nth pixel row) of the image display area of the panel 10. A light emission pattern is displayed on the panel 10.
 以下、この発光パターンを、「遠隔用y座標検出パターン」と記す。また、「第2の数」に応じた幅の1本の発光線を、「第3の発光線」と記す。例えば「第2の数」が「16」であれば、「遠隔用y座標検出パターン」は、16画素行の幅の「第3の発光線」が16画素行ずつy座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as a “remote y coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “second number” is referred to as a “third light emitting line”. For example, if the “second number” is “16”, the “remote y-coordinate detection pattern” is such that the “third emission line” having a width of 16 pixel rows sequentially moves in the y-coordinate direction by 16 pixel rows. It becomes a light emission pattern.
 第3の発光線は、上述した近接用の第1の発光線よりも幅が広く発光量が多い発光線である。したがって、電子ペン50が第3の発光線の発光を受光できるパネル10までの距離は、第1の発光線の発光を受光できる距離よりも大きい。 The third light emitting line is a light emitting line having a wider width and a larger light emission amount than the first light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen 50 can receive the light emitted from the third light emitting line is larger than the distance that the light emitted from the first light emitting line can be received.
 y座標検出期間Py2では、遠隔用y座標検出パターンをパネル10に表示することで、電子ペン50が第3の発光線の発光を受光するタイミングは、電子ペン50の位置座標に応じて変化する。したがって、電子ペン50で第3の発光線の発光を受光するタイミングを検出することで、電子ペン50を遠隔使用するときの位置座標(x,y)のy座標を検出することができる。 In the y-coordinate detection period Py2, by displaying the remote y-coordinate detection pattern on the panel 10, the timing at which the electronic pen 50 receives the light emitted from the third light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen 50 is used remotely can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the third light emitting line.
 なお、本実施の形態では、図5に示すように、y座標検出期間Py2に走査電極SC1~SCnのそれぞれにy座標検出パルスの電圧Vayを印加する時間(すなわち、y座標検出パルスのパルス幅)をTy12とする。このTy12は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 5, the time during which the voltage Vay of the y-coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y-coordinate detection period Py2 (that is, the pulse width of the y-coordinate detection pulse) ) Is Ty12. This Ty12 is, for example, about 1 μsec.
 遠隔用y座標検出サブフィールドSFy2の消去期間Peyでは、近接用y座標検出サブフィールドSFy1の消去期間Peyで行う消去動作と同様の消去動作を行う。これにより、y座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erase period Pey of the remote y coordinate detection subfield SFy2, the same erase operation as the erase operation performed in the erase period Pey of the proximity y coordinate detection subfield SFy1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the y-coordinate detection discharge.
 続く遠隔用x座標検出サブフィールドSFx2は、初期化期間Pixとx座標検出期間Px2と消去期間Pexを有する。 The subsequent remote x-coordinate detection subfield SFx2 has an initialization period Pix, an x-coordinate detection period Px2, and an erasing period Pex.
 初期化期間Pixでは、近接用x座標検出サブフィールドSFx1の初期化期間Pixと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くx座標検出期間Px2における遠隔用x座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix, a selective initialization operation similar to that in the initialization period Pix of the proximity x coordinate detection subfield SFx1 is performed to generate an initialization discharge in each discharge cell. Thereby, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px2.
 続く遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、あらかじめ設定された「第4の数」のデータ電極22に同時にx座標検出パルスを印加する動作を、データ電極D1~Dmに対して順次行う。「第4の数」は近接用x座標検出サブフィールドSFx1のx座標検出期間Px1で用いた「第3の数」よりも大きい数値である。本実施の形態では「第4の数」を「24」とする例を示すが、「第4の数」は「24」以外の数であってもよい。 In the subsequent x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the “fourth” data electrode 22 set in advance. The operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm. The “fourth number” is a numerical value larger than the “third number” used in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1. In this embodiment, an example in which the “fourth number” is “24” is shown, but the “fourth number” may be a number other than “24”.
 時刻tx02に始まるx座標検出期間Px2では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加する。 In the x coordinate detection period Px2 starting at time tx02, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the negative x coordinate is applied to the scan electrodes SC1 to SCn. A detection voltage Vax is applied.
 時刻tx02から時間Tx02が経過した後に、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加したまま、1~8列目の画素列を構成するデータ電極D1~D24に電圧Vdxの正極性のx座標検出パルスを同時に印加する。 After the time Tx02 has elapsed from time tx02, the positive polarity of the voltage Vdx is applied to the data electrodes D1 to D24 constituting the first to eighth pixel columns while the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn. X-coordinate detection pulses are simultaneously applied.
 これにより、データ電極D1~D24と走査電極SC1~SCnとの交差部にある放電セルでは、一斉に放電が発生する。こうして1~8列目の画素列に一斉に放電が発生し、1~8列目の画素列が一斉に発光する。以下、この放電も「x座標検出放電」と記す。このx座標検出放電による発光は、電子ペン50を遠隔使用するときのx座標検出用の発光となる。 Thereby, discharges are generated simultaneously in the discharge cells at the intersections of the data electrodes D1 to D24 and the scan electrodes SC1 to SCn. In this way, discharge is generated simultaneously in the first to eighth pixel columns, and the first to eighth pixel columns emit light all at once. Hereinafter, this discharge is also referred to as “x coordinate detection discharge”. The light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen 50 is used remotely.
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、データ電極D25~D48、データ電極D49~D72、・・・、データ電極Dm-23~Dmという順番で、互いに隣接する24本のデータ電極22毎に、m列目の放電セル列に至るまで順次行う。これにより、パネル10の左端の画素列(1列目の画素列)から右端の画素列((m/3)列目の画素列)までの各画素列に、x座標検出放電が8画素列ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of data electrodes D25 to D48, data electrodes D49 to D72,..., Data electrodes Dm-23 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn. For every 24 data electrodes 22, the process is sequentially performed until the mth discharge cell row is reached. As a result, 8 pixel columns of x coordinate detection discharge are generated in each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column ((m / 3) th pixel column) of the panel 10. It occurs sequentially.
 こうして、遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、「第4の数」に応じた幅(例えば、8画素列)で発光するy軸方向(列方向)に延長した1本の発光線が、パネル10の画像表示領域の左端部(1列目の画素列)から右端部((m/3)列目の画素列)まで、x軸方向に順次(例えば、8画素列ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, one line extending in the y-axis direction (column direction) that emits light with a width corresponding to the “fourth number” (for example, 8 pixel columns) Emission lines sequentially from the left end (first pixel column) to the right end ((m / 3) pixel column) of the image display area of the panel 10 in the x-axis direction (for example, eight pixel columns). The moving light emission pattern is displayed on the panel 10.
 以下、この発光パターンを、「遠隔用x座標検出パターン」と記す。また、x座標検出期間Px2で発生するy座標方向に延長した「第4の数」に応じた幅の1本の発光線を、「第4の発光線」と記す。例えば「第4の数」が「48」であれば、「遠隔用x座標検出パターン」は、16画素列の幅の「第4の発光線」が16画素列ずつx座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “remote x coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “fourth number” generated in the y coordinate direction and generated in the x coordinate detection period Px2 is referred to as a “fourth light emitting line”. For example, if the “fourth number” is “48”, the “remote x-coordinate detection pattern” sequentially moves the “fourth light emission line” having a width of 16 pixel columns in the x-coordinate direction by 16 pixel columns. It becomes a light emission pattern.
 第4の発光線は、上述した近接用の第2の発光線よりも幅が広く発光量が多い発光線である。したがって、電子ペン50が第4の発光線の発光を受光できるパネル10までの距離は、第2の発光線の発光を受光できる距離よりも大きい。 The fourth light emitting line is a light emitting line having a wider width and a larger amount of light emission than the second light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen 50 can receive the light emitted from the fourth light emitting line is larger than the distance that the light emitted from the second light emitting line can be received.
 x座標検出期間Px2では、遠隔用x座標検出パターンをパネル10に表示することで、電子ペン50が第4の発光線の発光を受光するタイミングは、電子ペン50の位置座標に応じて変化する。したがって、電子ペン50で第4の発光線の発光を受光するタイミングを検出することで、電子ペン50を遠隔使用するときの位置座標(x,y)のx座標を検出することができる。 In the x-coordinate detection period Px2, the remote x-coordinate detection pattern is displayed on the panel 10, so that the timing at which the electronic pen 50 receives the light emitted from the fourth light emission line changes according to the position coordinates of the electronic pen 50. . Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen 50 is used remotely can be detected by detecting the timing at which the electronic pen 50 receives the light emitted from the fourth light emitting line.
 なお、本実施の形態では、図5に示すように、x座標検出期間Px2にデータ電極D1~Dmのそれぞれにx座標検出パルスの電圧Vdxを印加する時間(すなわち、x座標検出パルスのパルス幅)をTx12とする。このTx12は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 5, the time during which the voltage Vdx of the x-coordinate detection pulse is applied to each of the data electrodes D1 to Dm in the x-coordinate detection period Px2 (that is, the pulse width of the x-coordinate detection pulse) ) Is Tx12. This Tx12 is, for example, about 1 μsec.
 遠隔用x座標検出サブフィールドSFx2の消去期間Pexでは、近接用x座標検出サブフィールドSFx1の消去期間Pexで行う消去動作と同様の消去動作を行う。これにより、x座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erase period Pex of the remote x-coordinate detection subfield SFx2, an erase operation similar to the erase operation performed in the erase period Pex of the proximity x-coordinate detection subfield SFx1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the x-coordinate detection discharge.
 以上のように、本実施の形態においては、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1では、発光輝度は相対的に低いが位置座標の算出精度は相対的に高いy座標検出パターンおよびx座標検出パターンをパネル10に表示する。一方、遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2では、位置座標の算出精度は相対的に低いが発光輝度は相対的に高いy座標検出パターンおよびx座標検出パターンをパネル10に表示する。 As described above, in this embodiment, in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1, the light emission luminance is relatively low, but the position coordinate calculation accuracy is relatively high. The coordinate detection pattern and the x coordinate detection pattern are displayed on the panel 10. On the other hand, in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2, the y-coordinate detection pattern and the x-coordinate detection pattern with relatively low emission coordinates and relatively high emission luminance are displayed. 10 is displayed.
 したがって、電子ペン50のペン先部をパネル10に接触または近接させて使用する近接使用時には、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1で生じる発光を検出対象とすることによって相対的に高い精度で位置座標を算出することができる。また、電子ペン50を遠隔使用するときには、発光輝度が相対的に高い遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2で生じる発光を検出対象とすることによって、パネル10から離れた位置(例えば、数m程度)にある電子ペン50においても位置座標を算出することが可能になる。 Therefore, when using the pen tip portion of the electronic pen 50 in contact with or in proximity to the panel 10, light emission generated in the proximity y coordinate detection subfield SFy1 and the proximity x coordinate detection subfield SFx1 is to be detected. Thus, the position coordinates can be calculated with relatively high accuracy. Further, when the electronic pen 50 is used remotely, the light emitted from the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 having a relatively high light emission luminance is detected, thereby separating from the panel 10. Even in the electronic pen 50 located at a different position (for example, about several meters), the position coordinates can be calculated.
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=200(V)、電圧Vi4=-175(V)、電圧Va=電圧Vay=電圧Vax=-200(V)、電圧Vc=-50(V)、電圧Vs=電圧Vso=205(V)、電圧Vr=205(V)、電圧Ve=155(V)、電圧Vd=電圧Vdy=電圧Vdx=55(V)である。 Note that the voltage values applied to the electrodes in this embodiment are, for example, the voltage Vi1 = 150 (V), the voltage Vi2 = 350 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −175 (V). , Voltage Va = voltage Vay = voltage Vax = −200 (V), voltage Vc = −50 (V), voltage Vs = voltage Vso = 205 (V), voltage Vr = 205 (V), voltage Ve = 155 (V ), Voltage Vd = voltage Vdy = voltage Vdx = 55 (V).
 また、初期化期間Pi1に発生する上り傾斜波形電圧の勾配は約1.5(V/μsec)であり、初期化期間Pi1~Pi8、Pio、Piy、Pixに発生する下り傾斜波形電圧の勾配は約-2.5(V/μsec)である。また、維持期間Ps1~Ps8、同期検出期間Po、消去期間Pey、Pexに発生する上り傾斜波形電圧の勾配は約10(V/μsec)である。 The gradient of the rising ramp waveform voltage generated in the initialization period Pi1 is about 1.5 (V / μsec), and the gradient of the descending ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy, Pix is It is about −2.5 (V / μsec). Further, the gradient of the rising ramp waveform voltage generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure period Pey, and Pex is about 10 (V / μsec).
 しかし、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、各電圧値や勾配等は、パネル10の放電特性や画像表示装置の仕様等にもとづき最適に設定することが望ましい。 However, the specific numerical values such as the voltage value and the gradient described above are merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
 次に、画像表示装置30の維持電極駆動部34、データ電極駆動部32、走査電極駆動部33について図6、図7、図8を用いて説明する。なお、各回路ブロックは、制御部(図示せず)から供給される制御信号にもとづき動作するが、各図面では、制御信号の経路の詳細は省略する。 Next, the sustain electrode drive unit 34, the data electrode drive unit 32, and the scan electrode drive unit 33 of the image display device 30 will be described with reference to FIGS. Each circuit block operates based on a control signal supplied from a control unit (not shown), but details of the path of the control signal are omitted in each drawing.
 図6は、本開示の実施の形態1における画像表示装置30の維持電極駆動部34の一構成例を概略的に示す回路図である。 FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
 維持電極駆動部34は、維持パルス発生回路280と一定電圧発生回路285を備えている。維持パルス発生回路280は、電力回収回路281と、スイッチング素子Q83、Q84を有する。電力回収回路281は、電力回収用のコンデンサC20、スイッチング素子Q21、Q22、逆流防止用のダイオードDi21、Di22、共振用のインダクタL21、L22を有する。 Sustain electrode drive unit 34 includes sustain pulse generation circuit 280 and constant voltage generation circuit 285. Sustain pulse generation circuit 280 includes a power recovery circuit 281 and switching elements Q83 and Q84. The power recovery circuit 281 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
 そして、維持パルス発生回路280は、図4、図5に示したタイミングで電圧Vsの維持パルスを発生し、維持電極SU1~SUnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV2、V4を維持電極SU1~SUnに印加する。 Sustain pulse generation circuit 280 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 4 and 5 and applies it to sustain electrodes SU1 to SUn. In the synchronization detection period Po of the synchronization detection subfield SFo, the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
 一定電圧発生回路285は、スイッチング素子Q86、Q87を有し、図4、図5に示したタイミングで維持電極SU1~SUnに電圧Veを印加する。 The constant voltage generation circuit 285 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
 図7は、本開示の実施の形態1における画像表示装置30のデータ電極駆動部32の一構成例を概略的に示す回路図である。 FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
 データ電極駆動部32は、制御信号および画像信号処理部31から供給される画像データにもとづき動作するが、図7では、それらの信号の経路の詳細は省略する。 The data electrode driving unit 32 operates based on the control signal and the image data supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
 データ電極駆動部32は、スイッチング素子Q91H1~Q91Hm、Q91L1~Q91Lmを有する。そして、データ電極駆動部32は、図4、図5に示したタイミングで、各書込み期間では電圧Vdの書込みパルスを、y座標検出期間Pyではy座標検出電圧Vdy(=電圧Vd)を、x座標検出期間Pxでは電圧Vdx(=電圧Vd)のx座標検出パルスを、各データ電極D1~Dmに印加する。 The data electrode driver 32 includes switching elements Q91H1 to Q91Hm and Q91L1 to Q91Lm. Then, the data electrode driving unit 32 outputs the write pulse of the voltage Vd in each write period, the y coordinate detection voltage Vdy (= voltage Vd) in the y coordinate detection period Py, and the timing shown in FIGS. In the coordinate detection period Px, an x-coordinate detection pulse of voltage Vdx (= voltage Vd) is applied to each data electrode D1 to Dm.
 図8は、本開示の実施の形態11における画像表示装置30の走査電極駆動部33の一構成例を概略的に示す回路図である。 FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the eleventh embodiment of the present disclosure.
 走査電極駆動部33は、維持パルス発生回路55と、傾斜波形電圧発生回路160と、走査パルス発生回路170とを備えている。以下、走査パルス発生回路170に入力される電圧を「基準電位A」と記す。 The scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 160, and a scan pulse generation circuit 170. Hereinafter, the voltage input to the scan pulse generation circuit 170 is referred to as “reference potential A”.
 維持パルス発生回路55は、電力回収回路151と、スイッチング素子Q55、Q56、Q59を有する。電力回収回路151は、電力回収用のコンデンサC10、スイッチング素子Q11、Q12、逆流防止用のダイオードDi11、Di12、共振用のインダクタL11、L12を有する。スイッチング素子Q59は分離スイッチであり、電流の逆流を防止する。 Sustain pulse generation circuit 55 has power recovery circuit 151 and switching elements Q55, Q56, and Q59. The power recovery circuit 151 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12. The switching element Q59 is a separation switch, and prevents reverse current flow.
 そして、維持パルス発生回路55は、図4、図5に示したタイミングで電圧Vsの維持パルスを発生し、走査パルス発生回路170を介して走査電極SC1~SCnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV1、V3を発生し、走査パルス発生回路170を介して走査電極SC1~SCnに印加する。 Then, sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 4 and 5 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit 170. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 170.
 傾斜波形電圧発生回路160は、ミラー積分回路161、162、163を備え、図4、図5に示した傾斜波形電圧を発生し、走査パルス発生回路170を介して走査電極SC1~SCnに印加する。 The ramp waveform voltage generation circuit 160 includes Miller integration circuits 161, 162, and 163, generates the ramp waveform voltages shown in FIGS. 4 and 5, and applies them to the scan electrodes SC1 to SCn via the scan pulse generation circuit 170. .
 ミラー積分回路161は、トランジスタQ61とコンデンサC61と抵抗R61とを有し、電圧Vt(=電圧Vi2)に向かって緩やかに上昇する上り傾斜波形電圧を発生する。あるいは、電圧Vtに電圧Vpを重畳した電圧が電圧Vi2に等しくなるように各電圧を設定してもよい。 Miller integrating circuit 161 includes transistor Q61, capacitor C61, and resistor R61, and generates an upward ramp waveform voltage that gradually rises toward voltage Vt (= voltage Vi2). Alternatively, each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
 ミラー積分回路162は、トランジスタQ62とコンデンサC62と抵抗R62と逆流防止用のダイオードDi62とを有し、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧を発生する。 Miller integrating circuit 162 includes transistor Q62, capacitor C62, resistor R62, and backflow prevention diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
 ミラー積分回路163は、トランジスタQ63とコンデンサC63と抵抗R63とを有し、電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧を発生する。 Miller integrating circuit 163 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
 スイッチング素子Q69は分離スイッチであり、電流の逆流を防止する。 Switching element Q69 is a separation switch and prevents reverse current flow.
 走査パルス発生回路170は、スイッチング素子QH1~QHn、QL1~QLn、Q72、負の電圧Vaを発生する電源、電圧Vpを発生する電源E71を有する。スイッチング素子QHiとスイッチング素子QLi(i=1~n)の接続点は走査電極駆動部33の出力端子であり、走査電極SCiに接続されている。 Scan pulse generation circuit 170 has switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates negative voltage Va, and a power source E71 that generates voltage Vp. A connection point between the switching element QHi and the switching element QLi (i = 1 to n) is an output terminal of the scan electrode driver 33 and is connected to the scan electrode SCi.
 スイッチング素子Q72は、基準電位Aを負の電圧Va(=電圧Vay=電圧Vax)にクランプする。スイッチング素子QL1~QLnは、基準電位Aを走査電極SC1~SCnに印加し、スイッチング素子QH1~QHnは、基準電位Aに電圧Vpを重畳した電圧を走査電極SC1~SCnに印加する。 Switching element Q72 clamps reference potential A to negative voltage Va (= voltage Vay = voltage Vax). Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路170は、基準電位Aを電圧Vaにクランプするとともに基準電位Aに電圧Vpを重畳して電圧Vc(Vc=Va+Vp)を発生し、電圧Vaと電圧Vcとを切換えながら走査パルスを発生して走査電極SC1~SCnに印加する。 The scanning pulse generation circuit 170 clamps the reference potential A to the voltage Va and superimposes the voltage Vp on the reference potential A to generate a voltage Vc (Vc = Va + Vp), and scans while switching between the voltage Va and the voltage Vc. A pulse is generated and applied to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路170は、画像表示サブフィールドの各書込み期間では、図4に示したタイミングで走査パルスを発生し、走査電極SC1~SCnのそれぞれに順次印加する。 The scan pulse generation circuit 170 generates a scan pulse at the timing shown in FIG. 4 and sequentially applies it to each of the scan electrodes SC1 to SCn in each writing period of the image display subfield.
 また、走査パルス発生回路170は、図5に示したように、y座標検出期間Pyでは電圧Vay(=電圧Va)のy座標検出パルスを発生し、x座標検出期間Pxではx座標検出電圧Vax(=電圧Va)を発生して、走査電極SC1~SCnに印加する。 Further, as shown in FIG. 5, the scan pulse generation circuit 170 generates a y-coordinate detection pulse of voltage Vay (= voltage Va) in the y-coordinate detection period Py, and the x-coordinate detection voltage Vax in the x-coordinate detection period Px. (= Voltage Va) is generated and applied to scan electrodes SC1 to SCn.
 スイッチング素子QHiとスイッチング素子QLiのペアは、複数個(図8に示す例では60ペア)が1つのIC(走査ドライバIC)に集積化されている。 A plurality of pairs of switching elements QHi and switching elements QLi (60 pairs in the example shown in FIG. 8) are integrated in one IC (scan driver IC).
 次に、電子ペン50とアタッチメント80について、まずは図1を用いて説明する。 Next, the electronic pen 50 and the attachment 80 will be described with reference to FIG.
 本実施の形態に示す電子ペン50は、電子ペン50にアタッチメント80を装着せずに電子ペン50のペン先部をパネル10に接触させて(または近接させた状態で)使用する「近接使用」と、電子ペン50にアタッチメント80を装着して電子ペン50をパネル10から離れた位置で使用する「遠隔使用」の2通りの使用方法で使用することが可能である。 The electronic pen 50 shown in the present embodiment is “proximity use” in which the pen tip portion of the electronic pen 50 is used in contact with (or in proximity to) the panel 10 without attaching the attachment 80 to the electronic pen 50. In addition, the electronic pen 50 can be used in two ways of use: “remote use” in which the attachment 80 is attached to the electronic pen 50 and the electronic pen 50 is used at a position away from the panel 10.
 電子ペン50は、接触スイッチ51、受光素子52、同期検出部56、座標算出部57、および送信部58を備えている。 The electronic pen 50 includes a contact switch 51, a light receiving element 52, a synchronization detection unit 56, a coordinate calculation unit 57, and a transmission unit 58.
 受光素子52は、電子ペン50の端部に設けられ、入射する光を受光して電気信号(受光信号)に変換し、そして同期検出部56および座標算出部57に出力する。 The light receiving element 52 is provided at the end of the electronic pen 50, receives incident light, converts it into an electrical signal (light reception signal), and outputs it to the synchronization detection unit 56 and the coordinate calculation unit 57.
 接触スイッチ51は、電子ペン50の先端部に設けたペン先部がパネル10の画像表示面に接触したかどうかを検知し、ペン先部がパネル10に接触していればオンになって例えば「1」を出力し、接触していなければオフになって例えば「0」を出力する。 The contact switch 51 detects whether or not the pen tip provided at the tip of the electronic pen 50 is in contact with the image display surface of the panel 10, and is turned on if the pen tip is in contact with the panel 10, for example. “1” is output, and if it is not touched, it is turned off and, for example, “0” is output.
 同期検出部56は、受光信号の中から、あらかじめ定められた間隔で発生する複数回の発光を検出して座標基準信号を作成し、座標算出部57に出力する。具体的には、同期検出部56は、同期検出部56が有するタイマー(図示せず)を用いて、複数(例えば、4回)の発光の発生間隔を計測する。そして、その発生間隔があらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)に合致するかどうかを、同期検出部56に設定された複数のしきい値(例えば、時間To1、時間To2、時間To3に相当するしきい値)と計測された時間間隔とを比較することで判定する。 The synchronization detection unit 56 detects a plurality of light emissions generated at predetermined intervals from the received light signal, creates a coordinate reference signal, and outputs the coordinate reference signal to the coordinate calculation unit 57. Specifically, the synchronization detection unit 56 uses a timer (not shown) included in the synchronization detection unit 56 to measure the occurrence intervals of a plurality of (for example, four times) light emission. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
 同期検出部56では、あらかじめ設定された受光しきい値thと受光信号を比較し(図示せず)、受光しきい値th以上の受光信号に関して微分値を算出する等して局所的なピークが発生する時刻を検出し、各時刻や各時間を検出する。なお、放電を発生するための電圧を放電セルに印加する時刻と、実際に放電が発生して発光のピークが電子ペン50で検出される時刻との時間差をあらかじめ測定し、その時間差を各時刻の補正に用いてもよい。また、受光しきい値thは、例えば、受光素子52が安定して発光を検出できる受光信号の最低レベルに設定してもよい。 The synchronization detection unit 56 compares the light reception threshold value th with a light reception signal set in advance (not shown), and calculates a differential value for the light reception signal equal to or greater than the light reception threshold value th. The time which generate | occur | produces is detected, and each time and each time are detected. The time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance. You may use for correction of. The light reception threshold th may be set to the lowest level of the light reception signal that allows the light receiving element 52 to stably detect light emission, for example.
 そして同期検出部56は、その連続する複数回(例えば、4回)の発光のうちの1つ(例えば、時刻to1に発生した発光)を基準にして座標基準信号を作成する。座標基準信号とは、座標検出サブフィールドに同期して発生する信号であり、位置座標を検出する際に基準として用いる信号である。 Then, the synchronization detection unit 56 generates a coordinate reference signal based on one of the continuous light emission (for example, four times) (for example, light emission generated at time to1). The coordinate reference signal is a signal generated in synchronization with the coordinate detection subfield, and is a signal used as a reference when detecting position coordinates.
 座標算出部57は、時間の長さを計測するカウンタと、カウンタの出力に演算を施す演算回路とを備える(図示せず)。 The coordinate calculation unit 57 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
 そして、座標算出部57は、座標基準信号および受光信号にもとづき、y座標検出パターンの発光にもとづく信号およびx座標検出パターンの発光にもとづく信号を受光信号から選択的に取り出して画像表示領域における電子ペン50の位置座標(x、y)を算出し、算出した位置座標を送信部58に出力する。 The coordinate calculation unit 57 selectively extracts a signal based on the light emission of the y coordinate detection pattern and a light emission based on the light emission of the x coordinate detection pattern from the light reception signal based on the coordinate reference signal and the light reception signal, and outputs an electron in the image display area. The position coordinates (x, y) of the pen 50 are calculated, and the calculated position coordinates are output to the transmission unit 58.
 なお、同期検出部56、座標算出部57の動作の詳細は後述する。 Details of operations of the synchronization detection unit 56 and the coordinate calculation unit 57 will be described later.
 送信部58は、受光素子52から出力される受光信号にもとづく送信信号を電子ペン50の外部に出力する。送信部58は、電気信号をエンコードし、エンコード後の信号を例えば赤外線等の無線信号に変換して発信する発信回路を有する(図示せず)。そして、各電子ペン50に個別に付与されている固有の識別番号(ID)、座標算出部57が算出した電子ペン50の位置座標(x、y)を表す信号、接触スイッチ51(および各スイッチ)の状態等、描画装置40において描画信号の発生に必要な各種の信号をエンコードした後に無線信号に変換する。この無線信号が送信信号である。そして、この無線信号を描画装置40の受信部42に無線送信する。 The transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52 to the outside of the electronic pen 50. The transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal. Then, a unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 57, the contact switch 51 (and each switch) ) And the like, the various signals necessary for generating the drawing signal are encoded in the drawing apparatus 40 and then converted into a radio signal. This radio signal is a transmission signal. The wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
 なお、図1には示していないが、電子ペン50は、電源スイッチ、パイロットランプ、手動操作のスイッチ等も有する。電源スイッチは、電子ペン50の電源オン・オフを制御するためのスイッチである。パイロットランプは、複数の発光色を切替えて発光することが可能な発光素子(例えば、LED等)で構成され、電子ペン50の動作状態を発光・非発光または発光色を切替えて表示する。また、使用者は、接触スイッチ51に代えて手動操作のスイッチを操作することで、電子ペン50を遠隔使用するときに画像表示面に文字や図画を入力することができる。なお、使用者が手動操作のスイッチを操作することで、描画モード(例えば描画に用いる線の色、線の太さ、線の種類、等)を任意に切替えることができるように電子ペン50を構成してもよい。 Although not shown in FIG. 1, the electronic pen 50 also has a power switch, a pilot lamp, a manually operated switch, and the like. The power switch is a switch for controlling the power on / off of the electronic pen 50. The pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color. Further, the user can input characters and drawings on the image display surface when the electronic pen 50 is used remotely by operating a manual operation switch instead of the contact switch 51. The electronic pen 50 can be switched so that the user can arbitrarily switch the drawing mode (for example, the color of the line used for drawing, the thickness of the line, the type of the line, etc.) by operating the manual operation switch. It may be configured.
 なお、本実施の形態では、電子ペン50の近接使用と遠隔使用の切換えを、次のようにして行うものとする。まず、電子ペン50の電源オン時に接触スイッチ51がオフであれば近接使用状態となり、電子ペン50の電源オン時に接触スイッチ51がオンであれば遠隔使用状態となるように電子ペン50を構成する。そして、アタッチメント80を電子ペン50に装着することで、接触スイッチ51がオン状態を維持するようにアタッチメント80を構成する。これにより、アタッチメント80を装着せずに電子ペン50の電源をオンにすれば、電子ペン50は自動的に近接使用状態となる。また、アタッチメント80を装着した状態で電子ペン50の電源をオンにすれば、電子ペン50は自動的に遠隔使用状態となる。 In the present embodiment, the electronic pen 50 is switched between proximity use and remote use as follows. First, if the contact switch 51 is off when the electronic pen 50 is turned on, the electronic pen 50 is configured to be in a proximity use state. If the contact switch 51 is on when the electronic pen 50 is turned on, the electronic pen 50 is configured to be in a remote use state. . Then, by attaching the attachment 80 to the electronic pen 50, the attachment 80 is configured so that the contact switch 51 is maintained in the ON state. Thereby, if the power supply of the electronic pen 50 is turned on without mounting | wearing with the attachment 80, the electronic pen 50 will be in a proximity | contact use state automatically. Further, when the electronic pen 50 is turned on with the attachment 80 attached, the electronic pen 50 automatically enters the remote use state.
 なお、本実施の形態は何らこの構成に限定されるものではなく、例えば、近接使用と遠隔使用とを切換えるスイッチを電子ペン50に設け、アタッチメント80を電子ペン50に装着することでアタッチメント80がこのスイッチを押下するように電子ペン50を構成してもよい。あるいは、近接使用と遠隔使用とを切換えるスイッチを使用者が手動操作するように構成してもよい。また、電子ペン50が近接使用と遠隔使用のいずれの状態にあるのかを示す信号を、送信部58から描画装置40に無線送信するように構成してもよい。 The present embodiment is not limited to this configuration. For example, the electronic pen 50 is provided with a switch for switching between proximity use and remote use, and the attachment 80 is attached to the electronic pen 50 so that the attachment 80 is attached to the electronic pen 50. The electronic pen 50 may be configured to press this switch. Or you may comprise so that a user may operate manually the switch which switches proximity use and remote use. In addition, a signal indicating whether the electronic pen 50 is in a proximity use or a remote use may be wirelessly transmitted from the transmission unit 58 to the drawing apparatus 40.
 次に、描画装置40について説明する。 Next, the drawing device 40 will be described.
 描画装置40は、図1に示したように、受信部42と描画部46を備えている。描画装置40は、電子ペン50から送信されてくる位置座標(x,y)にもとづく描画信号を作成し、画像表示装置30に出力する。 The drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46 as shown in FIG. The drawing device 40 creates a drawing signal based on the position coordinates (x, y) transmitted from the electronic pen 50 and outputs the drawing signal to the image display device 30.
 受信部42は、電子ペン50の送信部58から無線送信される無線信号を受信し、その受信信号をデコードして電気信号に変換する変換回路を有する(図示せず)。そして、送信部58から無線送信される無線信号を、電子ペン50の識別番号(ID)、電子ペン50の位置座標(x、y)を表す信号、接触スイッチ51(および各スイッチ)の状態を表す信号等に変換して描画部46に出力する。電子ペン50が複数のときは、各電子ペン50から送信されてくる各信号をそれぞれ受信してデコードする。 The receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is used to indicate the identification number (ID) of the electronic pen 50, the signal indicating the position coordinates (x, y) of the electronic pen 50, and the state of the contact switch 51 (and each switch) It converts into the signal etc. which represent, and outputs it to the drawing part 46. FIG. When there are a plurality of electronic pens 50, each signal transmitted from each electronic pen 50 is received and decoded.
 描画部46は、画像メモリ47を備える。そして、接触スイッチ51(または手動操作のスイッチ)がオンのときには、受信部42から出力される位置座標(x,y)にもとづいて描画信号を作成し、画像メモリ47に蓄積する。したがって、画像メモリ47には、接触スイッチ51(または手動操作のスイッチ)がオンのときの位置座標(x,y)の変化の軌跡(使用者が電子ペン50を用いて入力した図画)を示す描画信号が蓄積される。また、描画部46は、接触スイッチ51(または手動操作のスイッチ)がオフのときは、位置座標(x,y)にカーソルを表示するための描画信号を作成して画像メモリに蓄積する。そして、描画部46は、画像メモリ47に蓄積された描画信号を読み出して画像表示装置30に出力する。 The drawing unit 46 includes an image memory 47. When the contact switch 51 (or a manually operated switch) is on, a drawing signal is created based on the position coordinates (x, y) output from the receiving unit 42 and stored in the image memory 47. Therefore, the image memory 47 shows a locus of changes in the position coordinates (x, y) when the contact switch 51 (or a manual operation switch) is on (a graphic input by the user using the electronic pen 50). Drawing signals are accumulated. Further, when the contact switch 51 (or a manual operation switch) is off, the drawing unit 46 creates a drawing signal for displaying a cursor at the position coordinates (x, y) and stores it in the image memory. The drawing unit 46 reads out the drawing signal stored in the image memory 47 and outputs the drawing signal to the image display device 30.
 画像表示システム100で使用されている電子ペン50の数が複数であれば、描画部46は、各電子ペン50の軌跡が互いに混同しないように位置座標(x,y)を互いに区別して描画信号を作成する。 If there are a plurality of electronic pens 50 used in the image display system 100, the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other. Create
 次に、本実施の形態における電子ペン50の構造について説明する。 Next, the structure of the electronic pen 50 in the present embodiment will be described.
 図9は、本開示の実施の形態1における電子ペン50の外観を示す三面図である。図9には、電子ペン50の平面図、正面図、側面図を示す。 FIG. 9 is a three-view diagram illustrating an appearance of the electronic pen 50 according to the first embodiment of the present disclosure. FIG. 9 shows a plan view, a front view, and a side view of the electronic pen 50.
 電子ペン50の外観を形成する筐体は、本体ケース60、ペン先部70、およびペン先キャップ64を有する。電子ペン50の筐体内部には、受光素子52、接触スイッチ51、およびそれらの周辺回路を実装した複数の回路基板(図示せず)と、それらに電力を供給する電池(図示せず)が内蔵されている。 The casing that forms the external appearance of the electronic pen 50 includes a main body case 60, a pen tip portion 70, and a pen tip cap 64. Inside the housing of the electronic pen 50, there are a plurality of circuit boards (not shown) on which the light receiving element 52, the contact switch 51, and their peripheral circuits are mounted, and a battery (not shown) for supplying power to them. Built in.
 本体ケース60は、側面ケース60aと側面ケース60bとで構成される。そして、電子ペン50の上面には、側面ケース60aと側面ケース60bとの間に、電源スイッチ68a、パイロットランプ69、手動操作のスイッチ68c等が設けられ、さらに電子ペン50の先端部付近には手動操作のスイッチ68bが設けられている。また、側面ケース60a、60bは、電池の交換時に開閉される電池カバー60cを有する。 The main body case 60 includes a side case 60a and a side case 60b. On the upper surface of the electronic pen 50, a power switch 68a, a pilot lamp 69, a manually operated switch 68c, and the like are provided between the side case 60a and the side case 60b. A manually operated switch 68b is provided. Further, the side cases 60a and 60b have a battery cover 60c that is opened and closed when the battery is replaced.
 ペン先部70はペン先キャップ64によって本体ケース60の先端部に取り付けられており、本体ケース60に押し込む方向に摺動可能である。また、ペン先キャップ64の周囲には、アタッチメント80を着脱可能に固定するための溝67が設けられている。 The pen tip portion 70 is attached to the tip end portion of the main body case 60 by a pen tip cap 64 and is slidable in the direction of being pushed into the main body case 60. A groove 67 for removably fixing the attachment 80 is provided around the nib cap 64.
 図10は、本開示の実施の形態1における電子ペン50の本体ケース60の先端部周辺の形状を示す二面図および断面図である。図10には、本体ケース60の先端部周辺の平面図、側面図、平面断面図を示す。 FIG. 10 is a two-sided view and a cross-sectional view showing the shape of the periphery of the distal end portion of the main body case 60 of the electronic pen 50 in the first embodiment of the present disclosure. FIG. 10 shows a plan view, a side view, and a plan sectional view of the periphery of the front end portion of the main body case 60.
 本体ケース60の先端部には、受光素子52および受光素子52を実装した回路基板の一部(図10には示さず)を本体ケース60から突出させるための貫通孔61が設けられている。貫通孔61の周囲には、ペン先部70の位置決めのための切欠き部63a、63bが設けられている。本体ケース60の先端部の周囲には、ペン先キャップ64を取り付けるためのネジ62が設けられている。 A through hole 61 for projecting the light receiving element 52 and a part of the circuit board on which the light receiving element 52 is mounted (not shown in FIG. 10) from the main body case 60 is provided at the front end portion of the main body case 60. Notches 63 a and 63 b for positioning the pen tip portion 70 are provided around the through hole 61. A screw 62 for attaching a pen tip cap 64 is provided around the tip of the main body case 60.
 図11は、本開示の実施の形態1における電子ペン50のペン先キャップ64の形状を示す二面図および断面図である。図11には、ペン先キャップ64の平面図、側面図、平面断面図を示す。 FIG. 11 is a two-view diagram and a cross-sectional view illustrating the shape of the nib cap 64 of the electronic pen 50 according to the first embodiment of the present disclosure. FIG. 11 shows a plan view, a side view, and a plan sectional view of the pen tip cap 64.
 ペン先キャップ64の先端部分には、ペン先部70を貫通させるための貫通孔65が設けられている。ペン先キャップ64の内側には、本体ケース60に設けられたネジ62と嵌合するように形成されたネジ66が設けられている。また、ペン先キャップ64の周囲には、アタッチメント80に設けられたフランジと嵌合するように形成された溝67が設けられている。 A penetrating hole 65 for penetrating the pen tip portion 70 is provided at the tip of the pen tip cap 64. Inside the nib cap 64, a screw 66 formed so as to be fitted to a screw 62 provided in the main body case 60 is provided. In addition, a groove 67 formed so as to be fitted to a flange provided on the attachment 80 is provided around the nib cap 64.
 ペン先キャップ64は、ペン先部70を貫通孔65に貫通させ、先端方向に突出させて保持した状態で本体ケース60の先端部に着脱可能に取り付けられる。ペン先部70は、ペン先キャップ64によって、本体ケース60の先端部に摺動可能に固定される。ペン先部70は、ペン先キャップ64を本体ケース60から取り外すことで、比較的容易に交換することができる。 The pen tip cap 64 is detachably attached to the distal end portion of the main body case 60 with the pen tip portion 70 penetrating through the through hole 65 and protruding and held in the distal end direction. The pen tip portion 70 is slidably fixed to the distal end portion of the main body case 60 by a pen tip cap 64. The nib portion 70 can be replaced relatively easily by removing the nib cap 64 from the main body case 60.
 図12は、本開示の実施の形態1における電子ペン50のペン先部70の形状を示す二面図および断面図である。図12には、ペン先部70の平面図、側面図、平面断面図を示す。 FIG. 12 is a two-view diagram and a cross-sectional view illustrating the shape of the pen tip portion 70 of the electronic pen 50 according to the first embodiment of the present disclosure. FIG. 12 shows a plan view, a side view, and a plan sectional view of the pen tip portion 70.
 ペン先部70は、パネル10との接触時にパネル10の表面を傷つけないように、また、パネル10の表面を、接触音を低減して滑らかに動くように、比較的軟らかく適度な剛性を有する素材、例えばポリアセタールで形成されている。なお、この素材はポリアミドやフッ素樹脂等であってもよい。 The pen point portion 70 has a relatively soft and moderate rigidity so as not to damage the surface of the panel 10 when contacting the panel 10 and to smoothly move the surface of the panel 10 while reducing the contact sound. It is made of a material such as polyacetal. This material may be polyamide, fluorine resin, or the like.
 ペン先部70は、受光素子52を収納できる空洞72が内部に形成されている。ペン先部70の先端部には、受光素子52が受光する光を取り込むための光取り込み口71が設けられている。光取り込み口71は、本実施の形態においては貫通孔であるが、何ら貫通孔に限定されるものではなく、例えば光を透過する素材で窓状に形成されていてもよい。 The pen tip portion 70 has a cavity 72 in which the light receiving element 52 can be accommodated. A light capturing port 71 for capturing light received by the light receiving element 52 is provided at the tip of the pen tip portion 70. The light intake port 71 is a through hole in the present embodiment, but is not limited to the through hole, and may be formed in a window shape with a material that transmits light, for example.
 また、ペン先部70には、ペン先部70を本体ケース60の先端部に装着するための位置決めピン73a、および接触スイッチ51を押下するためのスイッチ押下ピン73bが設けられている。位置決めピン73aは切欠き部63bを貫通し、スイッチ押下ピン73bは切欠き部63aを貫通する形状に形成されている。 Also, the pen tip portion 70 is provided with a positioning pin 73a for mounting the pen tip portion 70 on the tip of the main body case 60 and a switch pressing pin 73b for pressing the contact switch 51. The positioning pin 73a penetrates the notch 63b, and the switch pressing pin 73b is shaped to penetrate the notch 63a.
 そして、ペン先部70は、空洞72内に受光素子52を収納して、本体ケース60の先端部に装着されている。 The pen tip portion 70 is mounted on the distal end portion of the main body case 60 with the light receiving element 52 housed in the cavity 72.
 図13は、本開示の実施の形態1における電子ペン50の先端部周辺の分解図である。 FIG. 13 is an exploded view around the tip of the electronic pen 50 according to the first embodiment of the present disclosure.
 本体ケース60の内部には、受光素子52を実装した回路基板78が、受光素子52および回路基板78の一部が本体ケース60の先端部に設けられた貫通孔61から先端方向に突出するように配置され固定されている。また、回路基板78の受光素子52付近には、接触スイッチ51が実装されている(図示せず)。 Inside the main body case 60, the circuit board 78 on which the light receiving element 52 is mounted is arranged such that a part of the light receiving element 52 and the circuit board 78 protrudes from the through hole 61 provided in the front end portion of the main body case 60 in the front end direction. Arranged and fixed. A contact switch 51 is mounted in the vicinity of the light receiving element 52 on the circuit board 78 (not shown).
 ペン先部70と本体ケース60との間には、バネ75および緩衝材76が備えられている。緩衝材76は、ペン先部70と本体ケース60の先端部分とが直接接触して生じる接触音の発生を防止する。 A spring 75 and a buffer material 76 are provided between the pen tip portion 70 and the main body case 60. The cushioning material 76 prevents the generation of contact sound caused by direct contact between the pen tip portion 70 and the tip portion of the main body case 60.
 ペン先キャップ64により本体ケース60の先端部に取り付けられたペン先部70は、ペン先キャップ64の貫通孔65から先端方向に突出し、さらに、バネ75の弾性によって貫通孔65から突出する方向に押圧されている。これにより、ペン先部70は、本体ケース60に押し込む方向に摺動可能である。ペン先部70が本体ケース60に押し込まれていない状態では、接触スイッチ51は「オフ」である。 The pen tip portion 70 attached to the tip end portion of the main body case 60 by the pen tip cap 64 protrudes from the through hole 65 of the pen tip cap 64 in the tip direction, and further protrudes from the through hole 65 by the elasticity of the spring 75. It is pressed. Thereby, the pen point part 70 can slide in the direction pushed into the main body case 60. In a state where the pen tip portion 70 is not pushed into the main body case 60, the contact switch 51 is “off”.
 電子ペン50では、ペン先部70がパネル10の画像表示面に押し当てられ、ペン先部70が本体ケース60の内部方向に押し込まれると、ペン先部70のスイッチ押下ピン73bの先端が接触スイッチ51を押下し、接触スイッチ51は「オン」になる。ペン先部70が画像表示面から離れ、バネ75の弾性によってペン先部70が元の位置に戻ると、接触スイッチ51は「オフ」になる。 In the electronic pen 50, when the pen tip portion 70 is pressed against the image display surface of the panel 10 and the pen tip portion 70 is pushed inward of the main body case 60, the tip of the switch pressing pin 73b of the pen tip portion 70 comes into contact. When the switch 51 is pressed, the contact switch 51 is turned on. When the pen tip portion 70 moves away from the image display surface and the pen tip portion 70 returns to the original position due to the elasticity of the spring 75, the contact switch 51 is turned off.
 図14は、本開示の実施の形態1におけるアタッチメント80の形状を示す二面図および断面図である。図14には、アタッチメント80の平面図、側面図、平面断面図を示す。アタッチメント80は、電子ペン50に装着することで、電子ペン50をパネル10から離れた位置で使用することを可能にするものである。 FIG. 14 is a two-view diagram and a cross-sectional view illustrating the shape of the attachment 80 according to the first embodiment of the present disclosure. FIG. 14 shows a plan view, a side view, and a plan sectional view of the attachment 80. The attachment 80 is attached to the electronic pen 50 so that the electronic pen 50 can be used at a position away from the panel 10.
 アタッチメント80は、胴体部81、集光レンズ82、および集光レンズ固定器83を有する。アタッチメント80は、筒形の形状をした胴体部81を筐体とする。胴体部81の内側は、例えば黒色の塗料を塗布する等して、光の反射を防ぐ構造であることが望ましい。 The attachment 80 includes a body portion 81, a condensing lens 82, and a condensing lens fixing device 83. The attachment 80 has a body portion 81 having a cylindrical shape as a casing. It is desirable that the inside of the body portion 81 has a structure that prevents reflection of light, for example, by applying a black paint.
 胴体部81の一方の端部は、集光レンズ固定器83との間に集光レンズ82を挟んで固定することができる形状に形成されている。そして、胴体部81の一方の端部に集光レンズ82を配置し、集光レンズ82を挟んで集光レンズ固定器83を胴体部81に取り付けることで、集光レンズ82は胴体部81に固定して取り付けられる。この構造により、アタッチメント80では、集光レンズ固定器83を取り外すことで集光レンズ82の取り外しや交換を容易に行うことができる。なお、集光レンズ固定器83を用いずに、胴体部81の一方の端部に集光レンズ82を直接固定するように胴体部81を形成してもよい。 One end of the body part 81 is formed in a shape that can be fixed with the condenser lens 82 sandwiched between it and the condenser lens fixture 83. Then, the condenser lens 82 is disposed at one end of the body part 81, and the condenser lens fixing device 83 is attached to the body part 81 with the condenser lens 82 interposed therebetween, so that the condenser lens 82 is attached to the body part 81. Fixed and attached. With this structure, in the attachment 80, the condenser lens 82 can be easily removed or replaced by removing the condenser lens fixing device 83. Note that the body part 81 may be formed so that the condenser lens 82 is directly fixed to one end of the body part 81 without using the condenser lens fixture 83.
 胴体部81の他方の端部(集光レンズ82に対向する側の端部)には、電子ペン50に着脱可能に装着するための開口部89が形成されており、開口部89の口径は、電子ペン50の先端部(ペン先キャップ64)を挿入したときに不必要な光が漏れ込む隙間が生じない大きさに設定されている。開口部89にあたる胴体部81の内側には、ペン先キャップ64に形成された溝67と嵌合するフランジ84が設けられている。 An opening 89 for detachably mounting the electronic pen 50 is formed at the other end of the body 81 (the end facing the condenser lens 82). The size of the electronic pen 50 is set to a size that does not cause a gap for unnecessary light to leak when the tip portion (pen tip cap 64) of the electronic pen 50 is inserted. A flange 84 that fits into the groove 67 formed in the nib cap 64 is provided inside the body 81 that corresponds to the opening 89.
 集光レンズ82は、胴体部81の一方の端部(すなわち、開口部89に対向する側の端部)から胴体部81内に入射する光を集光する機能を有し、アタッチメント80が電子ペン50に装着されたときに、パネル10の画像表示面に生じる発光を受光素子52に集光する。 The condensing lens 82 has a function of condensing light incident on the body 81 from one end of the body 81 (that is, the end facing the opening 89), and the attachment 80 is an electron. When attached to the pen 50, the light emitted on the image display surface of the panel 10 is condensed on the light receiving element 52.
 そして、胴体部81の開口部89に電子ペン50の先端部(ペン先キャップ64)を挿入し、フランジ84と電子ペン50の溝67とを嵌合させることで、アタッチメント80は電子ペン50の先端部に着脱可能に固定される。 The attachment 80 is attached to the electronic pen 50 by inserting the tip end (pen tip cap 64) of the electronic pen 50 into the opening 89 of the body 81 and fitting the flange 84 with the groove 67 of the electronic pen 50. Removably fixed to the tip.
 なお、胴体部81の内側には、アタッチメント80を電子ペン50に装着したときに、ペン先部70を本体ケース60側に押し込むペン先カバー85が設けられている。このペン先カバー85によって、接触スイッチ51は、アタッチメント80が電子ペン50に装着されている期間、オン状態となる。 A pen tip cover 85 that pushes the pen tip portion 70 toward the main body case 60 when the attachment 80 is attached to the electronic pen 50 is provided inside the body portion 81. With the pen tip cover 85, the contact switch 51 is turned on while the attachment 80 is attached to the electronic pen 50.
 ペン先カバー85には、集光レンズ82の光軸を中心点とし、受光素子52で受光する光が通過するのに適切な大きさに設定された孔86が設けてある。なお、孔86に代えて、光を透過する素材でペン先カバー85を形成してもよい。 The pen tip cover 85 is provided with a hole 86 that is centered on the optical axis of the condenser lens 82 and is set to an appropriate size for the light received by the light receiving element 52 to pass therethrough. Instead of the hole 86, the pen tip cover 85 may be formed of a material that transmits light.
 アタッチメント80は、電子ペン50に装着されたときに、集光レンズ82の光軸上の焦点距離の位置に受光素子52が位置するように、胴体部81の長さ、集光レンズ82の設置位置、および集光レンズ82の焦点距離等、各部品の配置位置および大きさが設定されている。したがって、アタッチメント80を電子ペン50に装着し、集光レンズ82の光軸をパネル10に向けると、パネル10の画像表示面に生じる発光は、胴体部81の一方の端部から胴体部81内に入射し、集光レンズ82により集光され、孔86を通過して受光素子52で受光される。このように、受光素子52に入射する光エネルギーは集光レンズ82によって増加するので、パネル10から離れた位置にある電子ペン50においても、画像表示面に生じる発光を受光素子52で受光することが可能になる。 When the attachment 80 is attached to the electronic pen 50, the length of the body 81 and the installation of the condenser lens 82 are set so that the light receiving element 52 is positioned at the focal length on the optical axis of the condenser lens 82. The arrangement position and size of each component such as the position and the focal length of the condenser lens 82 are set. Therefore, when the attachment 80 is attached to the electronic pen 50 and the optical axis of the condensing lens 82 is directed to the panel 10, light emitted on the image display surface of the panel 10 is emitted from one end of the body 81 to the inside of the body 81. Is collected by the condenser lens 82, passes through the hole 86, and is received by the light receiving element 52. As described above, since the light energy incident on the light receiving element 52 is increased by the condenser lens 82, even in the electronic pen 50 located away from the panel 10, the light receiving element 52 receives light emitted on the image display surface. Is possible.
 図15は、本開示の実施の形態1におけるアタッチメント80を装着した電子ペン50の外観を示す斜視図である。 FIG. 15 is a perspective view showing an appearance of the electronic pen 50 with the attachment 80 according to the first embodiment of the present disclosure.
 図16は、本開示の実施の形態1におけるアタッチメント80を装着した電子ペン50の先端部の構造を示す断面図である。なお、図16では、回路基板78以外の部品(他の回路基板や電池等)は省略する。 FIG. 16 is a cross-sectional view illustrating the structure of the distal end portion of the electronic pen 50 to which the attachment 80 according to the first embodiment of the present disclosure is attached. In FIG. 16, components (other circuit boards, batteries, etc.) other than the circuit board 78 are omitted.
 上述したように、アタッチメント80の内側にペン先カバー85を設けているので、バネ75の力によってペン先キャップ64から突出する方向に押圧されているペン先部70は、ペン先カバー85によって本体ケース60側に押し込まれる。これにより、ペン先部70のスイッチ押下ピン73bの先端が接触スイッチ51を押下し、接触スイッチ51は「オン」になる。 As described above, since the nib cover 85 is provided inside the attachment 80, the nib part 70 pressed in the direction protruding from the nib cap 64 by the force of the spring 75 is the main body by the nib cover 85. It is pushed into the case 60 side. As a result, the tip of the switch pressing pin 73b of the pen tip 70 presses the contact switch 51, and the contact switch 51 is turned on.
 また、アタッチメント80を電子ペン50に装着すると、上述したように、集光レンズ82の光軸上の焦点距離の位置に受光素子52が位置する。したがって、集光レンズ82の光軸をパネル10に向けることで、アタッチメント80に入射するパネル10の発光は、集光レンズ82で集光され、ペン先カバー85の孔86およびペン先部70の光取り込み口71を通過して受光素子52で受光される。 When the attachment 80 is attached to the electronic pen 50, the light receiving element 52 is positioned at the focal length position on the optical axis of the condenser lens 82 as described above. Therefore, by directing the optical axis of the condensing lens 82 toward the panel 10, the light emitted from the panel 10 incident on the attachment 80 is collected by the condensing lens 82, and the holes 86 of the pen tip cover 85 and the pen tip portion 70. The light is received by the light receiving element 52 through the light intake port 71.
 このように、本実施の形態では、アタッチメント80を電子ペン50に装着し、アタッチメント80をパネル10に向け、例えばスイッチ68bのオン・オフを手動で切換えながら電子ペン50を操作することで、パネル10から離れた位置からでもパネル10に文字や図画を入力することができる。 Thus, in the present embodiment, the attachment 80 is attached to the electronic pen 50, the attachment 80 is directed to the panel 10, and the electronic pen 50 is operated by manually switching on / off of the switch 68b, for example. Characters and drawings can be input to the panel 10 even from a position away from the panel 10.
 次に、図1に示した電子ペン50の同期検出部56、座標算出部57の動作を図17、図18を用いて説明する。 Next, operations of the synchronization detection unit 56 and the coordinate calculation unit 57 of the electronic pen 50 shown in FIG. 1 will be described with reference to FIGS.
 図17は、本開示の実施の形態1における画像表示システム100において電子ペン50を近接使用するときの位置座標検出動作の一例を概略的に示す図である。 FIG. 17 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
 図18は、本開示の実施の形態1における画像表示システム100において電子ペン50を遠隔使用するときの位置座標検出動作の一例を概略的に示す図である。 FIG. 18 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
 図17、図18には、駆動電圧波形に加え、座標算出部57に入力される座標基準信号det、および受光素子52から出力される受光信号を示す。なお、図17、図18に示す駆動電圧波形は、図5に示した駆動電圧波形と同じものである。 17 and 18 show the coordinate reference signal det input to the coordinate calculation unit 57 and the light reception signal output from the light receiving element 52 in addition to the drive voltage waveform. The drive voltage waveforms shown in FIGS. 17 and 18 are the same as the drive voltage waveforms shown in FIG.
 本実施の形態における画像表示装置30では、時刻to1から時刻ty01(近接用y座標検出期間Py1が開始する時刻)までの時間Toy1(図17)、時刻to1から時刻tx01(近接用x座標検出期間Px1が開始する時刻)までの時間Tox1(図17)、時刻to1から時刻ty02(遠隔用y座標検出期間Py2が開始する時刻)までの時間Toy2(図18)、および時刻to1から時刻tx02(遠隔用x座標検出期間Px2が開始する時刻)までの時間Tox2(図18)のそれぞれは、あらかじめ定められている。 In the image display device 30 according to the present embodiment, the time Toy1 (FIG. 17) from the time to1 to the time ty01 (the time when the proximity y coordinate detection period Py1 starts), and the time tx01 (the proximity x coordinate detection period). Time Tox1 (FIG. 17) until time Px1), Time To1 from time to1 to time ty02 (time when remote y coordinate detection period Py2 starts) (FIG. 18), and Time to1 to time tx02 (remote) Each of the times Tox2 (FIG. 18) up to (the time when the x coordinate detection period Px2 starts) is determined in advance.
 したがって、同期検出部56は、発光の間隔が順に、時間To1、時間To2、時間To3となる連続する4回の発光を検出して時刻to1を特定することで、時刻to1を基準にして時刻ty01、時刻tx01、時刻ty02および時刻tx02のそれぞれに立上りエッジがある座標基準信号detを発生して後段の座標算出部57に出力することができる。 Accordingly, the synchronization detection unit 56 detects the four consecutive light emission intervals in which the light emission intervals are the time To1, the time To2, and the time To3, and specifies the time to1, so that the time ty01 is based on the time to1. The coordinate reference signal det having rising edges at time tx01, time ty02, and time tx02 can be generated and output to the subsequent coordinate calculation unit 57.
 なお、座標基準信号detは、本実施の形態では時刻to1を基準にして発生するが、時刻to1に限らず時刻to2、to3、to4のいずれかを基準にして発生してもよい。 Note that the coordinate reference signal det is generated based on the time to1 in the present embodiment, but may be generated based on any one of the times to2, to3, and to4 without being limited to the time to1.
 電子ペン50を近接使用するときの座標算出部57は、座標基準信号detにもとづき、時刻ty01から、時刻ty01以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻tyy1までの時間Tyy1を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Tyy1から時間Ty01を減算し、その減算結果をTy11(y座標検出パルスのパルス幅)で除算する。そして、その除算結果に第1の数を乗算する。すなわち、
y座標=第1の数×((Tyy1-Ty01)/Ty11) となる。
Based on the coordinate reference signal det, the coordinate calculation unit 57 when using the electronic pen 50 in proximity uses the light receiving element 52 to receive light of the light receiving threshold th or more first from time ty01 after time ty01. Until the time Tyy1 is measured with a counter provided inside. Then, an internal arithmetic circuit subtracts the time Ty01 from the time Tyy1 and divides the subtraction result by Ty11 (pulse width of the y coordinate detection pulse). Then, the division result is multiplied by the first number. That is,
y coordinate = first number × ((Tyy1−Ty01) / Ty11)
 また、座標算出部57は、座標基準信号detにもとづき、時刻tx01から、時刻tx01以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻txx1までの時間Txx1を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Txx1から時間Tx01を減算し、その減算結果をTx11(x座標検出パルスのパルス幅)で除算する。そして、その除算結果に(第3の数/3)を乗算する。すなわち、
x座標=(第3の数/3)×((Txx1-Tx01)/Tx11) となる。なお、この「3」は1画素を構成する放電セルの数である。
In addition, the coordinate calculation unit 57 internally includes a time Txx1 from time tx01 to time txx1 from the time tx01 to the time txx1 when the light receiving element 52 first receives light emission equal to or greater than the light receiving threshold th. Measure with the provided counter. Then, an internal arithmetic circuit subtracts the time Tx01 from the time Txx1, and divides the subtraction result by Tx11 (pulse width of the x coordinate detection pulse). Then, the division result is multiplied by (third number / 3). That is,
x coordinate = (third number / 3) × ((Txx1-Tx01) / Tx11) Note that “3” is the number of discharge cells constituting one pixel.
 このようにして座標算出部57は近接使用される電子ペン50の位置座標(x、y)を算出する。 In this way, the coordinate calculation unit 57 calculates the position coordinates (x, y) of the electronic pen 50 used in proximity.
 次に、電子ペン50を遠隔使用するときの座標算出部57は、座標基準信号detにもとづき、時刻ty02から、時刻ty02以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻tyy2までの時間Tyy2を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Tyy2から時間Ty02を減算し、その減算結果をTy12(y座標検出パルスのパルス幅)で除算する。そして、その除算結果に第2の数を乗算する。すなわち、
y座標=第2の数×((Tyy2-Ty02)/Ty12) となる。
Next, based on the coordinate reference signal det, the coordinate calculation unit 57 when the electronic pen 50 is used remotely first receives light emission of the light receiving threshold th or more from the light receiving element 52 from time ty02 onward after time ty02. The time Tyy2 until the time tyy2 is measured with a counter provided inside. Then, an internal arithmetic circuit subtracts the time Ty02 from the time Tyy2, and divides the subtraction result by Ty12 (pulse width of the y coordinate detection pulse). Then, the division result is multiplied by the second number. That is,
y coordinate = second number × ((Tyy2−Ty02) / Ty12)
 また、座標算出部57は、座標基準信号detにもとづき、時刻tx02から、時刻tx02以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻txx2までの時間Txx2を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Txx2から時間Tx02を減算し、その減算結果をTx12(x座標検出パルスのパルス幅)で除算する。そして、その除算結果に(第4の数/3)を乗算する。すなわち、
x座標=(第4の数/3)×((Txx2-Tx02)/Tx12) となる。なお、この「3」は1画素を構成する放電セルの数である。
In addition, the coordinate calculation unit 57 internally includes a time Txx2 from time tx02 to time txx2 from the time tx02 to the time txx2 at which light emission equal to or greater than the light reception threshold th is first received after time tx02. Measure with the provided counter. Then, an internal arithmetic circuit subtracts the time Txx02 from the time Txx2, and divides the subtraction result by Tx12 (pulse width of the x coordinate detection pulse). Then, the division result is multiplied by (fourth number / 3). That is,
x coordinate = (fourth number / 3) × ((Txx2−Tx02) / Tx12) Note that “3” is the number of discharge cells constituting one pixel.
 このようにして座標算出部57は遠隔使用される電子ペン50の位置座標(x、y)を算出する。 In this way, the coordinate calculation unit 57 calculates the position coordinates (x, y) of the electronic pen 50 used remotely.
 次に、本実施の形態における画像表示システム100の動作について説明する。 Next, the operation of the image display system 100 in the present embodiment will be described.
 図19は、本開示の実施の形態1における画像表示システム100において電子ペン50を近接使用するときの動作の一例を概略的に示す図である。 FIG. 19 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
 図20は、本開示の実施の形態1における画像表示システム100において電子ペン50を遠隔使用するときの動作の一例を概略的に示す図である。 FIG. 20 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
 図19に示すように、近接用y座標検出サブフィールドSFy1のy座標検出期間Py1では、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第1の発光線Ly1がパネル10に表示される。また、近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、画像表示領域の左端部(1列目の画素列)から右端部((m/3)列目の画素列)まで順次移動する第2の発光線Lx1がパネル10に表示される。 As shown in FIG. 19, in the y-coordinate detection period Py1 of the proximity y-coordinate detection subfield SFy1, the first light emission that sequentially moves from the upper end portion (first row) to the lower end portion (n-th row) of the image display area. The line Ly1 is displayed on the panel 10. Further, in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1, the image display area sequentially moves from the left end (first pixel column) to the right end ((m / 3) pixel column). The second light emitting line Lx1 to be displayed is displayed on the panel 10.
 したがって、近接使用される電子ペン50が指す画像表示面の座標(x、y)を、第1の発光線Ly1が通過する時刻tyy1と、第2の発光線Lx1が通過する時刻txx1において、受光素子52はそれらの発光を受光する。 Accordingly, the coordinates (x, y) of the image display surface pointed to by the nearby electronic pen 50 are received at time tyy1 when the first light emission line Ly1 passes and time txx1 when the second light emission line Lx1 passes. The element 52 receives the emitted light.
 これにより、受光素子52は、図17に示したように、第1の発光線Ly1の発光を受光したことを示す受光信号を時刻tyy1において出力し、第2の発光線Lx1の発光を受光したことを示す受光信号を時刻txx1において出力する。 Thereby, as shown in FIG. 17, the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly1 is received at the time tyy1, and receives the light emission of the second light emission line Lx1. A light reception signal indicating this is output at time txx1.
 図20に示すように、遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第3の発光線Ly2がパネル10に表示される。また、遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、画像表示領域の左端部(1列目の画素列)から右端部((m/3)列目の画素列)まで順次移動する第4の発光線Lx2がパネル10に表示される。 As shown in FIG. 20, in the y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, the third light emission sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area. The line Ly2 is displayed on the panel 10. In the x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, the image display area sequentially moves from the left end (first pixel column) to the right end ((m / 3) pixel column). The fourth light emitting line Lx2 to be displayed is displayed on the panel 10.
 したがって、遠隔使用される電子ペン50が指す画像表示面の座標(x、y)を、第3の発光線Ly2が通過する時刻tyy2と、第4の発光線Lx2が通過する時刻txx2において、受光素子52は発光を受光する。 Therefore, the coordinates (x, y) of the image display surface pointed to by the remote-use electronic pen 50 are received at time tyy2 when the third light-emitting line Ly2 passes and time txx2 when the fourth light-emitting line Lx2 passes. The element 52 receives light emission.
 これにより、受光素子52は、図18に示したように、第3の発光線Ly2の発光を受光したことを示す受光信号を時刻tyy2において出力し、第4の発光線Lx2の発光を受光したことを示す受光信号を時刻txx2において出力する。 Thereby, as shown in FIG. 18, the light receiving element 52 outputs a light reception signal indicating that the light emission of the third light emission line Ly2 is received at time tyy2, and receives the light emission of the fourth light emission line Lx2. A light reception signal indicating this is output at time txx2.
 図21は、本開示の実施の形態1における画像表示システム100において電子ペン50による入力を行うときの動作の一例を概略的に示す図である。 FIG. 21 is a diagram schematically illustrating an example of an operation when inputting with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
 なお、図21には電子ペン50を近接使用するときの例を示すが、電子ペン50を遠隔使用するときの動作は、電子ペン50にアタッチメント80を装着し、接触スイッチ51に代えて描画用のスイッチ(例えば、スイッチ68b)を手動操作する以外は近接使用と同様であるので、図面を用いての説明を省略する。 FIG. 21 shows an example when the electronic pen 50 is used in proximity, but the operation when using the electronic pen 50 remotely is performed by attaching the attachment 80 to the electronic pen 50 and replacing the contact switch 51 with the drawing pen. Since this switch is the same as the proximity use except that the switch (for example, the switch 68b) is manually operated, the description with reference to the drawings is omitted.
 描画部46は、図21に示すように、位置座標(x,y)に対応する画素を中心に、描画モードに応じた色および大きさのパターン(例えば、白丸やドット等)の描画信号を発生する。この描画信号は、接触スイッチ51(遠隔使用時は、例えば手動操作のスイッチ68b)がオンの期間、描画部46の画像メモリ47に蓄積される。そして、画像表示装置30は、描画部46の画像メモリ47に蓄積された描画信号にもとづく画像をパネル10に表示する。 As shown in FIG. 21, the drawing unit 46 outputs a drawing signal of a pattern (for example, a white circle or a dot) having a color and a size according to the drawing mode, centering on a pixel corresponding to the position coordinate (x, y). appear. This drawing signal is stored in the image memory 47 of the drawing unit 46 while the contact switch 51 (for example, a manual operation switch 68b when used remotely) is on. Then, the image display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 46 on the panel 10.
 したがって、例えば図21に示すように、電子ペン50のペン先部70がパネル10の画像表示面に接触したまま移動すると(遠隔使用時は、例えば手動操作のスイッチ68bをオンにしたまま電子ペン50の位置座標を移動させると)、その移動の軌跡を示す図柄がパネル10に表示される。こうして、パネル10には、電子ペン50を用いて手書き入力された図画が表示される。 Therefore, for example, as shown in FIG. 21, when the pen tip portion 70 of the electronic pen 50 moves while being in contact with the image display surface of the panel 10 (for remote use, for example, the electronic pen 50 is turned on while the manual operation switch 68b is kept on). When the position coordinates of 50 are moved), a symbol indicating the locus of the movement is displayed on the panel 10. Thus, the panel 10 displays a graphic input by handwriting using the electronic pen 50.
 以上示したように、本実施の形態においては、電子ペン50に、集光レンズ82を備えたアタッチメント80を着脱可能に装着することができる。これにより、パネル10から離れた位置にある電子ペン50においても、パネル10に表示されるx座標検出パターンおよびy座標検出パターンによる発光を集光レンズ82で集光して受光素子52で受光することが可能になる。したがって、ペン先部70をパネル10の画像表示面に接触させて図画や文字の入力を行う近接使用しかできない電子ペン50であっても、アタッチメント80を装着することで、パネル10から離れた位置から図画や文字の入力を行う遠隔使用が可能となる。 As described above, in the present embodiment, the attachment 80 including the condenser lens 82 can be detachably attached to the electronic pen 50. As a result, even in the electronic pen 50 located away from the panel 10, the light emitted by the x-coordinate detection pattern and the y-coordinate detection pattern displayed on the panel 10 is condensed by the condenser lens 82 and received by the light receiving element 52. It becomes possible. Therefore, even if the electronic pen 50 can only be used in close proximity to input the drawing or characters by bringing the pen tip portion 70 into contact with the image display surface of the panel 10, the attachment pen 80 can be attached to the position away from the panel 10. Remote use to input drawings and characters is possible.
 また、画像表示装置30においては、「第1の数」に応じた幅で発光する第1の発光線Ly1をパネル10に表示する近接用y座標検出サブフィールドSFy1と、「第3の数」に応じた幅で発光する第2の発光線Lx1をパネル10に表示する近接用x座標検出サブフィールドSFx1に加え、「第1の数」よりも大きい「第2の数」に応じた幅で発光する第3の発光線Ly2をパネル10に表示する遠隔用y座標検出サブフィールドSFy2と、「第3の数」よりも大きい「第4の数」に応じた幅で発光する第4の発光線Lx2をパネル10に表示する遠隔用x座標検出サブフィールドSFx2を発生する。 In the image display device 30, the proximity y-coordinate detection subfield SFy1 for displaying the first light emission line Ly1 that emits light with a width corresponding to the “first number” on the panel 10, and the “third number”. In addition to the proximity x-coordinate detection subfield SFx1 for displaying on the panel 10 the second light emitting line Lx1 that emits light with a width according to the width, the width according to the “second number” larger than the “first number” The remote y-coordinate detection subfield SFy2 for displaying the third light emission line Ly2 to be emitted on the panel 10, and the fourth light emission for emitting light with a width corresponding to the “fourth number” larger than the “third number”. A remote x coordinate detection subfield SFx2 for displaying the line Lx2 on the panel 10 is generated.
 そして、アタッチメント80を装着せず近接使用状態にある電子ペン50では、第1の発光線Ly1と第2の発光線Lx1による発光を受光して位置座標を算出する。アタッチメント80を装着し遠隔使用状態にある電子ペン50では、第3の発光線Ly2と第4の発光線Lx2による発光を受光して位置座標を算出する。これにより、近接使用状態にある電子ペン50では、相対的に精度の高い位置座標を検出することができ、遠隔使用状態にある電子ペン50では、パネル10からより離れた位置で位置座標を検出することが可能になる。 Then, in the electronic pen 50 in the proximity use state without attaching the attachment 80, the light emitted from the first light emitting line Ly1 and the second light emitting line Lx1 is received and the position coordinates are calculated. The electronic pen 50 attached with the attachment 80 and in a remote use state receives light emitted from the third light-emitting line Ly2 and the fourth light-emitting line Lx2, and calculates position coordinates. Accordingly, the electronic pen 50 in the proximity use state can detect position coordinates with relatively high accuracy, and the electronic pen 50 in the remote use state detects position coordinates at a position further away from the panel 10. It becomes possible to do.
 なお、本実施の形態では、ペン先キャップ64の周囲に溝67を設けるとともにアタッチメント80の内側に溝67に嵌合するフランジ84を設ける例を説明したが、本発明は何らこの構成に限定されるものではない。例えば、ペン先キャップ64の周囲にフランジを設け、このフランジに嵌合する溝をアタッチメント80の内側に設けてもよい。あるいはペン先キャップ64の周囲とアタッチメント80の内側のそれぞれに互いに嵌合するネジを設けてもよい。 In the present embodiment, an example in which the groove 67 is provided around the nib cap 64 and the flange 84 that fits into the groove 67 is provided inside the attachment 80 has been described. However, the present invention is not limited to this configuration. It is not something. For example, a flange may be provided around the nib cap 64, and a groove fitted to the flange may be provided inside the attachment 80. Or you may provide the screw | thread which mutually fits in each of the circumference | surroundings of the nib cap 64, and the inside of the attachment 80. FIG.
 なお、本実施の形態では、アタッチメントを装着せず近接使用する電子ペン50は、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1で生じる座標検出用の発光を受光し、アタッチメントを装着し遠隔使用する電子ペン50は、遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2で生じる座標検出用の発光を受光する構成を説明したが、本発明は何らこの構成に限定されるものではない。例えば、画像表示装置30は1つのy座標検出サブフィールドSFyと1つのx座標検出サブフィールドSFxを発生し、電子ペン50は、近接使用と遠隔使用のどちらにおいても、それらのサブフィールドで生じる座標検出用の発光を受光する構成としてもよい。 In the present embodiment, the electronic pen 50 that is used in proximity without attaching an attachment receives the light emission for coordinate detection generated in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1, and attaches the attachment. The electronic pen 50 that is mounted remotely and used remotely has been described with respect to the configuration for receiving the light for coordinate detection generated in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2. It is not limited to. For example, the image display device 30 generates one y-coordinate detection subfield SFy and one x-coordinate detection subfield SFx, and the electronic pen 50 has coordinates generated in those subfields for both the proximity use and the remote use. It is good also as a structure which receives light emission for a detection.
 なお、電子ペン50における近接使用と遠隔使用の切換えをスイッチによって行う代わりに、例えば、第1の発光線Ly1による受光信号が受光しきい値th以上であれば第1の発光線Ly1による受光信号にもとづきy座標を算出し、第1の発光線Ly1による受光信号が受光しきい値th未満であれば第3の発光線Ly2による受光信号にもとづきy座標を算出するように座標算出部57を構成してもよい。同様に、第2の発光線Lx1による受光信号が受光しきい値th以上であれば第2の発光線Lx1による受光信号にもとづきx座標を算出し、第2の発光線Lx1による受光信号が受光しきい値th未満であれば第4の発光線Lx2による受光信号にもとづきx座標を算出するように座標算出部57を構成してもよい。 Instead of switching between the proximity use and the remote use in the electronic pen 50, for example, if the light reception signal by the first light emission line Ly1 is equal to or greater than the light reception threshold th, the light reception signal by the first light emission line Ly1. The coordinate calculation unit 57 calculates the y coordinate based on the first light emitting line Ly1 and calculates the y coordinate based on the light received signal based on the third light emitting line Ly2 if the light receiving signal based on the first light emitting line Ly1 is less than the light receiving threshold th. It may be configured. Similarly, if the light reception signal by the second light emission line Lx1 is equal to or greater than the light reception threshold th, the x coordinate is calculated based on the light reception signal by the second light emission line Lx1, and the light reception signal by the second light emission line Lx1 is received. The coordinate calculation unit 57 may be configured to calculate the x-coordinate based on the light reception signal from the fourth light-emitting line Lx2 if it is less than the threshold th.
 なお、電子ペン50を遠隔使用するときに、例えば、手動操作のスイッチ(例えば、スイッチ68b)をオフにしたときには画像表示面にカーソルを表示するように構成してもよい。これにより、レーザーポインタで使用されるようなレーザー光を用いずに、画像表示面にカーソルを表示することができる。また、電子ペン50を近接使用するときに、接触スイッチ51に代えて手動操作のスイッチを用いて描画やカーソル表示を行うように構成してもよい。 When the electronic pen 50 is used remotely, for example, when a manually operated switch (for example, the switch 68b) is turned off, a cursor may be displayed on the image display surface. Thereby, the cursor can be displayed on the image display surface without using the laser beam used in the laser pointer. Further, when the electronic pen 50 is used in proximity, a drawing or cursor display may be performed using a manually operated switch instead of the contact switch 51.
 (実施の形態2)
 本実施の形態では、電子ペン50を遠隔使用する際に、本体ケース60からペン先キャップ64を取り外し、ペン先キャップ64に代えてアタッチメントを本体ケース60の先端に直接取り付ける構成の一例について説明する。
(Embodiment 2)
In the present embodiment, an example of a configuration in which when the electronic pen 50 is used remotely, the pen tip cap 64 is removed from the main body case 60 and the attachment is directly attached to the tip of the main body case 60 instead of the pen tip cap 64 will be described. .
 なお、本実施の形態においては、ペン先キャップ64の内側に設けたネジ66と同様のネジをアタッチメントの内側に設けるが、それ以外は実施の形態1と同様の構成および動作である。以下、実施の形態1と異なる主な構成について説明する。また、実施の形態1に示した部品と同じものには実施の形態1と同じ符号を付与して説明を省略する。 In the present embodiment, a screw similar to the screw 66 provided on the inner side of the pen tip cap 64 is provided on the inner side of the attachment. Otherwise, the configuration and operation are the same as those of the first embodiment. Hereinafter, main configurations different from the first embodiment will be described. The same parts as those shown in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and description thereof is omitted.
 図22は、本開示の実施の形態2におけるアタッチメント180の形状を示す平面図、側面図、および平面断面図である。 FIG. 22 is a plan view, a side view, and a plan sectional view showing the shape of the attachment 180 in the second embodiment of the present disclosure.
 図23は、本開示の実施の形態2におけるアタッチメント180を装着した電子ペン50の先端部の構造を示す断面図である。なお、図23では、回路基板78以外の部品(他の回路基板や電池等)は省略する。 FIG. 23 is a cross-sectional view illustrating the structure of the distal end portion of the electronic pen 50 to which the attachment 180 according to the second embodiment of the present disclosure is attached. In FIG. 23, components other than the circuit board 78 (other circuit boards, batteries, etc.) are omitted.
 図22に示すように、アタッチメント180は、胴体部181、集光レンズ82、および集光レンズ固定器83を有する。アタッチメント180は、筒形の形状をした胴体部181を筐体とする。胴体部181の内側は、実施の形態1と同様に、例えば黒色の塗料を塗布する等して光の反射を防ぐ構造であることが望ましい。 As shown in FIG. 22, the attachment 180 includes a body portion 181, a condensing lens 82, and a condensing lens fixing device 83. The attachment 180 has a cylindrical body portion 181 as a casing. As in the first embodiment, it is desirable that the inside of the body portion 181 has a structure that prevents reflection of light, for example, by applying a black paint.
 胴体部181の一方の端部は、実施の形態1に示した胴体部81と同様に、集光レンズ固定器83との間に集光レンズ82を挟んで固定することができる。なお、集光レンズ固定器83を用いずに、胴体部181の一方の端部に集光レンズ82を直接固定するように胴体部181を形成してもよい。 One end portion of the trunk portion 181 can be fixed with the condenser lens 82 sandwiched between the condenser lens fixture 83 and the trunk portion 81 shown in the first embodiment. Note that the body 181 may be formed so that the condenser lens 82 is directly fixed to one end of the body 181 without using the condenser lens fixing device 83.
 胴体部181の他方の端部(集光レンズ82に対向する側の端部)には、電子ペン50に装着するための開口部189が形成されており、開口部189にあたる胴体部181の内側には、本体ケース60の先端部の周囲に設けられたネジ62に嵌合するネジ184が設けられている。 An opening 189 for attaching to the electronic pen 50 is formed at the other end of the body 181 (the end facing the condenser lens 82), and the inside of the body 181 corresponding to the opening 189 is formed. Are provided with screws 184 that fit into screws 62 provided around the front end of the main body case 60.
 そして、図23に示すように、胴体部181の開口部189に、ペン先キャップ64を取り外した電子ペン50の先端部(本体ケース60の先端部)を挿入し、ネジ62とネジ184とが嵌合するように、アタッチメント180を本体ケース60の先端部にネジ締めする。こうすることで、アタッチメント180は電子ペン50の先端部に着脱可能に固定される。 Then, as shown in FIG. 23, the tip of the electronic pen 50 (the tip of the main body case 60) from which the pen tip cap 64 has been removed is inserted into the opening 189 of the body 181, and the screw 62 and the screw 184 are connected. The attachment 180 is screwed to the distal end portion of the main body case 60 so as to be fitted. By doing so, the attachment 180 is detachably fixed to the tip of the electronic pen 50.
 胴体部181の内側には、アタッチメント180を電子ペン50に装着するために徐々にネジ締めするにつれて、ペン先部70を本体ケース60側に徐々に押し込むペン先カバー185が設けられている。このペン先カバー185によって、接触スイッチ51は、アタッチメント180が電子ペン50に装着されている期間、オン状態となる。 A pen tip cover 185 is provided inside the body portion 181 to gradually push the pen tip portion 70 toward the main body case 60 as the attachment 180 is gradually tightened to attach the attachment 180 to the electronic pen 50. With the pen tip cover 185, the contact switch 51 is turned on while the attachment 180 is attached to the electronic pen 50.
 ペン先カバー185には、集光レンズ82の光軸を中心点とし、受光素子52で受光する光が通過するのに適切な大きさに設定された孔186が設けてある。 The pen tip cover 185 is provided with a hole 186 centered on the optical axis of the condenser lens 82 and set to an appropriate size for the light received by the light receiving element 52 to pass through.
 そして、アタッチメント180は、電子ペン50に装着されたときに、集光レンズ82の光軸上の焦点距離の位置に受光素子52が位置するように、胴体部181の長さ、集光レンズ82の設置位置、および集光レンズ82の焦点距離等、各部品の配置位置および大きさが設定されている。したがって、アタッチメント180を、ペン先キャップ64を取り外した電子ペン50の先端部(本体ケース60の先端部)に直接装着し、集光レンズ82の光軸をパネル10に向けると、パネル10の画像表示面に生じる発光は、図23に示すように、胴体部181の一方の端部から入射し、集光レンズ82により集光され、孔186を通過して受光素子52で受光される。 When the attachment 180 is attached to the electronic pen 50, the length of the body portion 181 and the condensing lens 82 are set so that the light receiving element 52 is positioned at the focal length on the optical axis of the condensing lens 82. The arrangement position and size of each component, such as the installation position and the focal length of the condenser lens 82, are set. Therefore, when the attachment 180 is directly attached to the tip of the electronic pen 50 (tip of the main body case 60) from which the pen tip cap 64 has been removed and the optical axis of the condenser lens 82 is directed to the panel 10, the image of the panel 10 is displayed. As shown in FIG. 23, the light emitted on the display surface enters from one end of the body portion 181, is condensed by the condenser lens 82, passes through the hole 186, and is received by the light receiving element 52.
 以上のような構造を有するアタッチメント180であっても、実施の形態1に示したアタッチメント80と同様に、電子ペン50に着脱可能に装着し、電子ペン50を遠隔使用することが可能となる。 Even the attachment 180 having the above-described structure can be detachably attached to the electronic pen 50 and can be used remotely, similarly to the attachment 80 shown in the first embodiment.
 なお、実施の形態1、2では胴体部の一方の端部に集光レンズを取り付ける例を説明したが、この「端部」は厳密に胴体部の端を意味するものではなく、単に端部付近を表しているに過ぎない。また、本発明は集光レンズの配置位置を胴体部の端部に限定するものではなく、本開示の目的とする効果、すなわち受光素子に集光するという効果を得られる範囲で任意に設定することができる。この効果が得られるのであれば、例えば集光レンズを胴体部の中央付近に配置してもよい。 In the first and second embodiments, the example in which the condensing lens is attached to one end portion of the body portion has been described. However, this “end portion” does not strictly mean the end portion of the body portion, but merely the end portion. It just represents the neighborhood. Further, the present invention does not limit the position of the condensing lens to the end of the body part, but arbitrarily sets it within a range in which the intended effect of the present disclosure, that is, the effect of condensing light on the light receiving element can be obtained. be able to. If this effect can be obtained, for example, a condensing lens may be arranged near the center of the body part.
 なお、実施の形態1、2においては、アタッチメント内部の集光レンズ82と受光素子52との間に、不要な光の入射を防ぐための遮光部を設けてもよい。これにより、受光素子52で受光する光の範囲が制限されるので、電子ペン50を遠隔使用するときの位置座標の検出精度を高めることが可能になる。 In the first and second embodiments, a light shielding portion for preventing the incidence of unnecessary light may be provided between the condensing lens 82 and the light receiving element 52 inside the attachment. Thereby, since the range of light received by the light receiving element 52 is limited, it is possible to improve the accuracy of detecting position coordinates when the electronic pen 50 is used remotely.
 なお、実施の形態1、2では、描画装置40と電子ペン50との間で無線通信を行う例を説明したが、本発明は何らこの構成に限定されない。例えば、描画装置と電子ペンとの間を電気ケーブル等によって電気的に接続し、その電気ケーブルを介して電子ペンと描画装置との間で信号の送受信を行う構成であってもよい。 In the first and second embodiments, the example in which wireless communication is performed between the drawing device 40 and the electronic pen 50 has been described. However, the present invention is not limited to this configuration. For example, the drawing device and the electronic pen may be electrically connected by an electric cable or the like, and a signal may be transmitted and received between the electronic pen and the drawing device via the electric cable.
 なお、実施の形態1、2に示した具体的な各数値は、単に一例を示したものに過ぎず、本発明はこれらの数値に何ら限定されるものではない。各数値は画像表示システムや電子ペンの仕様等に合わせて最適な値に設定することが望ましい。 The specific numerical values shown in the first and second embodiments are merely examples, and the present invention is not limited to these numerical values. It is desirable to set each numerical value to an optimum value according to the specifications of the image display system and the electronic pen.
 本開示は、画像表示装置の画像表示面に接触させて使用する電子ペンを、画像表示面から離れた位置で使用することが可能になるので、電子ペン用アタッチメント、電子ペンシステム、および電子ペンシステムを備えた画像表示システムとして有用である。 The present disclosure makes it possible to use an electronic pen that is used in contact with the image display surface of the image display device at a position away from the image display surface. Therefore, the electronic pen attachment, the electronic pen system, and the electronic pen It is useful as an image display system provided with the system.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  画像表示装置
 31  画像信号処理部
 32  データ電極駆動部
 33  走査電極駆動部
 34  維持電極駆動部
 40  描画装置
 42  受信部
 46  描画部
 47  画像メモリ
 50  電子ペン
 51  接触スイッチ
 52  受光素子
 55,280  維持パルス発生回路
 56  同期検出部
 57  座標算出部
 58  送信部
 60  本体ケース
 60a,60b  側面ケース
 60c  電池カバー
 61,65  貫通孔
 62,66,184  ネジ
 63a,63b  切欠き部
 64  ペン先キャップ
 67  溝
 68a  電源スイッチ
 68b,68c  スイッチ
 71  光取り込み口
 69  パイロットランプ
 70  ペン先部
 72  空洞
 73a  位置決めピン
 73b  スイッチ押下ピン
 75  バネ
 76  緩衝材
 78  回路基板
 80,180  アタッチメント
 81,181  胴体部
 82  集光レンズ
 83  集光レンズ固定器
 84  フランジ
 85,185  ペン先カバー
 86,186  孔
 89,189  開口部
 100  画像表示システム
 151,281  電力回収回路
 160  傾斜波形電圧発生回路
 161,162,163  ミラー積分回路
 170  走査パルス発生回路
 285  一定電圧発生回路
 Ly1  第1の発光線
 Lx1  第2の発光線
 Ly2  第3の発光線
 Lx2  第4の発光線
 Di11,Di12,Di21,Di22,Di62  ダイオード
 L11,L12,L21,L22  インダクタ
 Q11,Q12,Q21,Q22,Q55,Q56,Q59,Q69,Q72,Q83,Q84,Q86,Q87,QH1~QHn,QL1~QLn,Q91H1~Q91Hm,Q91L1~Q91Lm  スイッチング素子
 C10,C20,C61,C62,C63  コンデンサ
 R61,R62,R63  抵抗
 Q61,Q62,Q63  トランジスタ
 E71  電源
 SFy1  近接用y座標検出サブフィールド
 SFx1  近接用x座標検出サブフィールド
 SFy2  遠隔用y座標検出サブフィールド
 SFx2  遠隔用x座標検出サブフィールド
 SFo  同期検出サブフィールド
 SF1~SF8  画像表示サブフィールド
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15,23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Image display device 31 Image signal processing Unit 32 Data electrode drive unit 33 Scan electrode drive unit 34 Sustain electrode drive unit 40 Drawing device 42 Reception unit 46 Drawing unit 47 Image memory 50 Electronic pen 51 Contact switch 52 Light receiving element 55, 280 Sustain pulse generation circuit 56 Synchronization detection unit 57 Coordinates Calculation unit 58 Transmission unit 60 Main body case 60a, 60b Side case 60c Battery cover 61, 65 Through hole 62, 66, 184 Screw 63a, 63b Notch portion 64 Nib cap 67 Groove 68a Power switch 68b, 68c Switch 71 Light removal Mouth 69 Pilot lamp 70 Nib portion 72 Cavity 73a Positioning pin 73b Switch pressing pin 75 Spring 76 Buffer material 78 Circuit board 80,180 Attachment 81,181 Body portion 82 Condensing lens 83 Condensing lens fixture 84 Flange 85,185 Pen tip cover 86,186 hole 89,189 opening 100 image display system 151,281 power recovery circuit 160 ramp waveform voltage generation circuit 161,162,163 Miller integration circuit 170 scanning pulse generation circuit 285 constant voltage generation circuit Ly1 first Light emitting line Lx1 Second light emitting line Ly2 Third light emitting line Lx2 Fourth light emitting line Di11, Di12, Di21, Di22, Di62 Diodes L11, L12, L21, L22 Inductors Q11, Q12, Q21 Q22, Q55, Q56, Q59, Q69, Q72, Q83, Q84, Q86, Q87, QH1 to QHn, QL1 to QLn, Q91H1 to Q91Hm, Q91L1 to Q91Lm Switching elements C10, C20, C61, C62, C63 Capacitors R61, R62 , R63 Resistance Q61, Q62, Q63 Transistor E71 Power supply SFy1 Proximity y-coordinate detection subfield SFx1 Proximity x-coordinate detection subfield SFy2 Remote y-coordinate detection subfield SFx2 Remote x-coordinate detection subfield SFo Sync detection subfield SF1 to SF8 Image display subfield

Claims (9)

  1. 開口部が一端に形成された胴体部と、
    前記胴体部の他端に取り付けられた集光レンズとを備え、
    前記集光レンズを通って入射する光が前記胴体部内に集光する
    ことを特徴とする電子ペン用アタッチメント。
    A body part having an opening formed at one end;
    A condenser lens attached to the other end of the body part;
    An attachment for an electronic pen, wherein light incident through the condenser lens is condensed in the body portion.
  2. 受光素子を有する電子ペンに着脱可能に装着する電子ペン用アタッチメントであって、
    前記電子ペンに着脱可能に装着するための開口部が形成された胴体部と、
    前記胴体部に取り付けられた集光レンズとを備え、
    前記開口部に対向する側の端部から前記胴体部内に入射する光が、前記集光レンズを通り、前記開口部に装着された前記電子ペンの前記受光素子に集光する
    ことを特徴とする電子ペン用アタッチメント。
    An electronic pen attachment that is detachably attached to an electronic pen having a light receiving element,
    A body part formed with an opening for detachably attaching to the electronic pen;
    A condenser lens attached to the body part;
    Light incident on the body portion from the end facing the opening passes through the condenser lens and is condensed on the light receiving element of the electronic pen attached to the opening. Attachment for electronic pens.
  3. 前記電子ペンの前記受光素子が、前記集光レンズの光軸上の焦点距離の位置に配置されるように前記胴体部の長さおよび前記集光レンズの配置位置が設定された
    ことを特徴とする請求項2に記載の電子ペン用アタッチメント。
    The length of the body portion and the arrangement position of the condenser lens are set so that the light receiving element of the electronic pen is arranged at a focal length position on the optical axis of the condenser lens. The electronic pen attachment according to claim 2.
  4. 摺動可能なペン先部を前記電子ペン内部に押し込むためのペン先カバーを前記胴体部の内側に有する
    ことを特徴とする請求項2に記載の電子ペン用アタッチメント。
    The electronic pen attachment according to claim 2, further comprising a pen tip cover for pushing a slidable pen tip portion into the electronic pen inside the body portion.
  5. 光を受光して受光信号を出力する受光素子を有する電子ペンと、
    開口部が一端に形成された胴体部および前記胴体部の他端に取り付けられた集光レンズを有する電子ペン用アタッチメントと、
    を備え、
    前記開口部に装着された前記電子ペンの前記受光素子が、前記集光レンズの光軸上の焦点距離の位置に配置され、前記集光レンズを通って前記胴体部内に入射する光は前記受光素子に集光する
    ことを特徴とする電子ペンシステム。
    An electronic pen having a light receiving element that receives light and outputs a light reception signal;
    An electronic pen attachment having a body part with an opening formed at one end and a condensing lens attached to the other end of the body part,
    With
    The light receiving element of the electronic pen attached to the opening is disposed at a focal length position on the optical axis of the condenser lens, and light incident on the body through the condenser lens is received by the light receiving element. An electronic pen system characterized by focusing light onto an element.
  6. 前記電子ペンは、本体ケースと、前記本体ケースに押し込む方向に摺動可能なペン先部と、前記ペン先部が押し込まれたことを検知するスイッチとを備え、
    前記電子ペン用アタッチメントは、前記ペン先部を押し込むためのペン先カバーを前記胴体部の内側に有する
    ことを特徴とする請求項5に記載の電子ペンシステム。
    The electronic pen includes a main body case, a pen tip portion slidable in a direction to be pushed into the main body case, and a switch for detecting that the pen tip portion is pushed in,
    The electronic pen system according to claim 5, wherein the electronic pen attachment has a pen tip cover for pushing the pen tip portion inside the body portion.
  7. 前記電子ペンは、前記受光素子から出力される前記受光信号にもとづき位置座標を算出する座標算出部と、前記座標算出部が算出した位置座標を外部に送信する送信部とを有する
    ことを特徴とする請求項5に記載の電子ペンシステム。
    The electronic pen includes: a coordinate calculation unit that calculates position coordinates based on the light reception signal output from the light receiving element; and a transmission unit that transmits the position coordinates calculated by the coordinate calculation unit to the outside. The electronic pen system according to claim 5.
  8. 光を受光して受光信号を出力する受光素子を有する電子ペンと、
    画像表示面における前記電子ペンの位置座標を検出するための発光を発生する座標検出サブフィールドを含む複数のサブフィールドを発生する画像表示装置と、
    前記電子ペンに着脱可能に装着するための開口部が形成された胴体部および前記胴体部に取り付けられた集光レンズを有し、前記開口部に装着された前記電子ペンの前記受光素子が、前記集光レンズの光軸上の焦点距離の位置に配置されるように前記胴体部の長さおよび前記集光レンズの配置位置が設定され、前記開口部に対向する側の端部から前記胴体部内に入射する光が、前記集光レンズを通って、前記開口部に装着された前記電子ペンの前記受光素子に集光する電子ペン用アタッチメントと、を備え、
    前記座標検出サブフィールドの発光にもとづき前記画像表示面における前記電子ペンの位置座標を算出し、算出した前記位置座標にもとづき描画を行う
    画像表示システム。
    An electronic pen having a light receiving element that receives light and outputs a light reception signal;
    An image display device for generating a plurality of subfields including a coordinate detection subfield for generating light emission for detecting the position coordinates of the electronic pen on the image display surface;
    The light receiving element of the electronic pen attached to the opening has a body part in which an opening part is detachably attached to the electronic pen and a condenser lens attached to the body part. The length of the trunk portion and the arrangement position of the condenser lens are set so as to be arranged at a focal length position on the optical axis of the condenser lens, and the trunk from the end facing the opening portion. An electronic pen attachment for condensing light incident on the part through the condenser lens and condensing on the light receiving element of the electronic pen attached to the opening;
    An image display system that calculates a position coordinate of the electronic pen on the image display surface based on light emission of the coordinate detection subfield and performs drawing based on the calculated position coordinate.
  9. 前記画像表示装置は、画像表示部に複数の走査電極およびデータ電極を有し、
    前記画像表示部に画像を表示する画像表示サブフィールドと、
    前記データ電極にy座標検出電圧を印加したまま、第1の数の前記走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、
    前記データ電極に前記y座標検出電圧を印加したまま、第2の数の前記走査電極に同時に前記y座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、
    前記走査電極にx座標検出電圧を印加したまま、第3の数の前記データ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、
    前記走査電極に前記x座標検出電圧を印加したまま、第4の数の前記データ電極に同時に前記x座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドと、を発生し、
    前記第2の数を前記第1の数よりも大きい数値に設定し、
    前記第4の数を前記第3の数よりも大きい数値に設定し、
    前記電子ペンに前記電子ペン用アタッチメントが装着されていないときは、
    前記近接用y座標検出サブフィールドおよび前記近接用x座標検出サブフィールドの発光にもとづき前記電子ペンの位置座標が算出され、
    前記電子ペンに前記電子ペン用アタッチメントが装着されているときは、
    前記遠隔用y座標検出サブフィールドおよび前記遠隔用x座標検出サブフィールドの発光にもとづき前記電子ペンの位置座標が算出される
    ことを特徴とする請求項8に記載の画像表示システム。
    The image display device includes a plurality of scanning electrodes and data electrodes in an image display unit,
    An image display subfield for displaying an image on the image display unit;
    A proximity y-coordinate detection subfield for sequentially performing an operation of simultaneously applying a y-coordinate detection pulse to the first number of the scan electrodes while applying a y-coordinate detection voltage to the data electrodes;
    A remote y-coordinate detection subfield for sequentially performing an operation of simultaneously applying the y-coordinate detection pulses to the second number of the scan electrodes while applying the y-coordinate detection voltage to the data electrodes;
    A proximity x-coordinate detection subfield for sequentially performing an operation of simultaneously applying x-coordinate detection pulses to the third number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying the x-coordinate detection pulses to the fourth number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Setting the second number to a value greater than the first number;
    Setting the fourth number to a value greater than the third number;
    When the electronic pen attachment is not attached to the electronic pen,
    Position coordinates of the electronic pen are calculated based on light emission of the proximity y coordinate detection subfield and the proximity x coordinate detection subfield,
    When the electronic pen attachment is attached to the electronic pen,
    9. The image display system according to claim 8, wherein the position coordinates of the electronic pen are calculated based on light emission of the remote y-coordinate detection subfield and the remote x-coordinate detection subfield.
PCT/JP2013/005832 2012-10-02 2013-10-01 Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system WO2014054268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012220020A JP2015232739A (en) 2012-10-02 2012-10-02 Attachment for electronic pen and image display system
JP2012-220020 2012-10-02

Publications (1)

Publication Number Publication Date
WO2014054268A1 true WO2014054268A1 (en) 2014-04-10

Family

ID=50434612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005832 WO2014054268A1 (en) 2012-10-02 2013-10-01 Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system

Country Status (2)

Country Link
JP (1) JP2015232739A (en)
WO (1) WO2014054268A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308879A (en) * 1992-08-19 1994-11-04 Fujitsu Ltd Optical pointing system
JP2001148025A (en) * 1999-09-07 2001-05-29 Nikon Gijutsu Kobo:Kk Device and method for detecting position, and device and method for detecting plane posture
JP2009009343A (en) * 2007-06-27 2009-01-15 Fuji Xerox Co Ltd Electronic writing tool, cap, computer system
JP2009178935A (en) * 2008-01-30 2009-08-13 Fuji Xerox Co Ltd Electronic writing implement and cap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308879A (en) * 1992-08-19 1994-11-04 Fujitsu Ltd Optical pointing system
JP2001148025A (en) * 1999-09-07 2001-05-29 Nikon Gijutsu Kobo:Kk Device and method for detecting position, and device and method for detecting plane posture
JP2009009343A (en) * 2007-06-27 2009-01-15 Fuji Xerox Co Ltd Electronic writing tool, cap, computer system
JP2009178935A (en) * 2008-01-30 2009-08-13 Fuji Xerox Co Ltd Electronic writing implement and cap

Also Published As

Publication number Publication date
JP2015232739A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2013168327A1 (en) Multi-screen display device, multi-screen display device drive method, and multi-screen display system
CN102541364B (en) Optical touch input device and driving method thereof
JP5321763B1 (en) Image display device driving method, image display device, and image display system
WO2007119523A1 (en) Method and device for displaying information code
JPWO2007111329A1 (en) Information code reader and method
JP5252139B1 (en) Image display device driving method, image display device, and image display system
WO2013187021A1 (en) Image display device, drive method for image display device, and image display system
JP4565519B2 (en) Information code reading apparatus and method, and information code display reading system
JP5288077B1 (en) Image display device driving method, image display device, and image display system
WO2014054268A1 (en) Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system
JP2014203425A (en) Image display system having electronic pen
WO2014045520A1 (en) Image display device, image display device driving method and image display system
JP2014235475A (en) Electronic pen, attachment for electronic pen, and image display system having electronic pen
JP2014203061A (en) Image display device, drive method of image display device and image display system
JP2014203426A (en) Electronic pen and image display system including the electronic pen
WO2014006880A1 (en) Image display device, method for driving image display device and image display system
WO2013183264A1 (en) Image display device, image display device drive method, and image display system
JP5288078B1 (en) Image display device driving method, image display device, and image display system
WO2013088691A1 (en) Drive method for image display device, image display device, light pen, and image display system
WO2013140713A1 (en) Image display device drive method, image display device, and image display system
WO2014045529A1 (en) Electronic pen, and image display system provided with electronic pen
WO2013161144A1 (en) Image display system, image display system drive method, and light pen
WO2013125199A1 (en) Image display system
JP2014203143A (en) Electronic pen, electronic pen charger and electronic pen charging system
JP5252140B1 (en) Image display device driving method, image display device, and image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP