WO2014045520A1 - Image display device, image display device driving method and image display system - Google Patents

Image display device, image display device driving method and image display system Download PDF

Info

Publication number
WO2014045520A1
WO2014045520A1 PCT/JP2013/005010 JP2013005010W WO2014045520A1 WO 2014045520 A1 WO2014045520 A1 WO 2014045520A1 JP 2013005010 W JP2013005010 W JP 2013005010W WO 2014045520 A1 WO2014045520 A1 WO 2014045520A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate detection
voltage
subfield
image display
coordinate
Prior art date
Application number
PCT/JP2013/005010
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 折口
裕也 塩崎
一朗 坂田
秀彦 庄司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014045520A1 publication Critical patent/WO2014045520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0386Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery

Definitions

  • the present disclosure relates to an image display device that can input characters and drawings on an image display surface using an electronic pen, a driving method of the image display device, and an image display system.
  • position coordinates There is an image display device that has a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen”.
  • electronic pen a technique for detecting the position of the electronic pen in the image display region is used.
  • position coordinates the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
  • a position coordinate detection period is provided in one field, and light emission generated in a plasma display panel (hereinafter referred to as “panel”) in the position coordinate detection period is detected by an optical sensor built in the electronic pen.
  • panel a plasma display panel
  • an electronic pen is used in contact with or close to the image display surface in order to detect light emission generated on the image display surface with an optical sensor.
  • the driving method of the image display device is a driving method of an image display device including a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes.
  • an image display subfield for displaying an image on the plasma display panel and an operation of simultaneously applying a y-coordinate detection pulse to the first number of scanning electrodes while applying a y-coordinate detection voltage to the data electrodes are sequentially performed.
  • An x coordinate detection subfield for proximity that sequentially applies an x coordinate detection pulse to the third number of data electrodes while applying an x coordinate detection voltage to the scan electrodes, and an x coordinate detection voltage to the scan electrodes.
  • a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying an x-coordinate detection pulse to the fourth number of data electrodes while being applied is generated. Then, the second number is set to a numerical value larger than the first number, and the fourth number is set to a numerical value larger than the third number.
  • An image display apparatus drives a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes, and one field is composed of a plurality of subfields. And a drive circuit.
  • the drive circuit simultaneously applies an y-coordinate detection pulse to the first number of scan electrodes while applying the y-coordinate detection voltage to the data display electrode and the data display subfield for displaying an image on the plasma display panel.
  • Proximity y-coordinate detection subfield for sequentially applying the application, and remote y for sequentially applying the y-coordinate detection pulse to the second number of scanning electrodes while applying the y-coordinate detection voltage to the data electrodes
  • An image display system includes: a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes; an image display device including a drive circuit that drives the plasma display panel; A pen and a drawing device are provided.
  • the drive circuit sequentially performs an operation of applying a y-coordinate detection pulse to the first number of scanning electrodes simultaneously while applying a y-coordinate detection voltage to the data electrode and an image display subfield for displaying an image on the plasma display panel.
  • a proximity y-coordinate detection subfield a remote y-coordinate detection subfield that sequentially applies an y-coordinate detection pulse to the second number of scan electrodes while applying a y-coordinate detection voltage to the data electrodes
  • Proximity x-coordinate detection subfield for sequentially applying an x-coordinate detection pulse to the third number of data electrodes while applying the x-coordinate detection voltage to the scan electrodes, and applying the x-coordinate detection voltage to the scan electrodes
  • generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying an x-coordinate detection pulse to the fourth number of data electrodes, and setting the second number to And sets the number greater than the number of 1 to set the fourth number of the number greater than the third number.
  • the electronic pen receives a light emitted from the plasma display panel and outputs a light reception signal, a proximity y coordinate detection subfield, a proximity x coordinate detection subfield, a remote y coordinate detection subfield, and a remote x coordinate
  • a synchronization detection unit that generates a coordinate reference signal synchronized with the detection subfield based on the light reception signal, a coordinate calculation unit that calculates a coordinate on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal, and a coordinate calculation unit
  • a transmitter that transmits the calculated coordinates to the drawing apparatus.
  • the drawing apparatus includes a receiving unit that receives coordinates transmitted from the electronic pen, and a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
  • FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram schematically illustrating a configuration example of the image display system according to the first embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram schematically illustrating an example of the position coordinate detection operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram schematically illustrating an example of an operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure.
  • FIG. 13 is a diagram schematically illustrating an example of an operation when performing handwriting input with the electronic pen in the image display system according to the first embodiment of the present disclosure.
  • FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection sub-field according to the second embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view illustrating an example of the structure of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustain electrode 13 are formed on a glass front substrate 11, a dielectric layer 15 is formed thereon, and a protective layer 16 is further formed thereon.
  • the front substrate 11 serves as an image display surface on which an image is displayed.
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed thereon, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are also referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
  • FIG. 2 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
  • n scan electrodes SC1 to SCn scan electrode 12 in FIG. 1
  • n sustain electrodes SU1 to SUn sustain electrode 13 in FIG. 1 extended in the first direction
  • the m data electrodes D1 to Dm data electrode 22 in FIG. 1 extended in the second direction intersecting the first direction are arranged.
  • the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
  • a set of three discharge cells emitting red, green, and blue colors adjacent to each other constitutes one pixel. Accordingly, m discharge cells (m / 3 pixels) are formed on one pair of display electrodes 14, and n discharge cells are formed on one data electrode 22.
  • An area where m ⁇ n discharge cells are formed becomes an image display area of the panel 10.
  • a plurality of image display subfields (shown in FIG. 3) for displaying an image on the image display unit and a plurality of coordinate detections for detecting “position coordinates” of the electronic pen in one field.
  • Subfield (shown in FIG. 4).
  • FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
  • Each image display subfield has an initialization period, an address period, and a sustain period.
  • the image display subfield is also simply referred to as a subfield.
  • a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used.
  • a “selective initialization operation” that generates an initialization discharge.
  • a forced initialization operation is performed in subfield SF1 and a selective initialization operation is performed in subfields SF2 to SF8 is shown.
  • the number of image display subfields in one field is, for example, eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2). is there.
  • the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
  • the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn.
  • an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied.
  • positive voltage Ve is applied to sustain electrodes SU1 to SUn, and gradually decreases from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4, which exceeds the discharge start voltage, for scan electrodes SC1 to SCn. Apply a falling ramp waveform voltage.
  • the initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1.
  • the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
  • discharge cells to which the forced initializing waveform is applied in the initializing period in which the forced initializing operation is performed may be all the discharge cells in the image display area of the panel 10, but for example, in the image display area Some discharge cells may be used. The same applies to all initialization periods in which the forced initialization operation in the following description is performed.
  • a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm.
  • An address operation is performed in which a positive address pulse with a positive voltage Vd is applied to the electrode Dk.
  • the same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
  • the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
  • a discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage falling from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2.
  • the wall voltage is adjusted to a suitable level.
  • the initialization discharge does not occur.
  • the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
  • each subfield after subfield SF3 the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • the coordinate detection subfield includes a synchronization detection subfield SFo, a proximity y coordinate detection subfield SFy1, a proximity x coordinate detection subfield SFx1, a remote y coordinate detection subfield SFy2, and a remote x.
  • a coordinate detection subfield SFx2 is included.
  • the proximity y coordinate detection subfield SFy1 and the remote y coordinate detection subfield SFy2 are collectively referred to as “y coordinate detection subfield SFy”, and the proximity x coordinate detection subfield SFx1 and the remote x coordinate detection are performed.
  • the subfield SFx2 is collectively referred to as “x coordinate detection subfield SFx”.
  • the position pointed to by the electronic pen in the image display area (hereinafter also referred to as “position of the electronic pen”) is represented by an x coordinate and ay coordinate.
  • the coordinate in the row direction is the x coordinate
  • the coordinate in the column direction is the y coordinate.
  • the x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate, and display the x coordinate detection pattern and the y coordinate detection pattern on the panel 10.
  • the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1 are used when the user directly contacts the front end of the electronic pen with the panel 10 (or at a position relatively close to the panel 10). This is a sub-field used for detecting the position coordinates of the electronic pen at the time of “use near”.
  • the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 are sub-fields used for detecting the position coordinates of the electronic pen when the user uses the electronic pen at a position away from the panel 10 during "remote use”. It is a field.
  • the electronic pen is provided in the image display system of the present embodiment, and is used when a user inputs characters and drawings on the panel 10 by handwriting. Details of the electronic pen will be described later. Further, the position (positional coordinate) pointed to by the electronic pen is a light receiving element of the electronic pen described later displayed by light emission of the x-coordinate detection pattern displayed in the x-coordinate detection subfield SFx and the y-coordinate detection subfield SFy. It is a position in the image display surface that receives light emitted from the y coordinate detection pattern.
  • wireless communication is performed between the electronic pen and a drawing apparatus described later.
  • the electronic pen calculates the position coordinates of the electronic pen inside the electronic pen, and transmits data of the calculated position coordinates from the electronic pen to the drawing apparatus by wireless communication.
  • the synchronization detection subfield SFo is a subfield for the electronic pen to accurately grasp the timing at which the coordinate detection subfield is generated in the image display device.
  • the electronic pen receives light emitted in the synchronization detection subfield SFo to generate a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy by synchronizing with the image display device. It becomes possible.
  • each subfield is not limited to the order shown in the present embodiment. Further, the coordinate detection subfield is not necessarily provided in each field.
  • the synchronization detection subfield SFo in FIG. 4 has an initialization period Pio, a writing period Pwo, and a synchronization detection period Po.
  • the selection initialization operation similar to the initialization period Pi2 of the subfield SF2 of the image display subfield is performed, and thus the description thereof is omitted.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • an address pulse of voltage Vd is applied to data electrodes D1 to Dm, and a scan pulse of voltage Va is applied to scan electrodes SC1 to SCn at time to0 to generate an address discharge in each discharge cell.
  • a scan pulse is applied simultaneously to all the scan electrodes SC1 to SCn to generate address discharges in all the discharge cells at the same time.
  • the data electrodes D1 to Dm Alternatively, the address pulse may be applied to each electrode from scan electrode SC1 to scan electrode SCn, and the address discharge may be sequentially generated in each discharge cell.
  • voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained until time to1. During this period, after the address discharge is generated in the discharge cell, the state in which no discharge is generated is maintained.
  • the panel 10 is caused to emit a plurality of times of light emission (light emission for synchronization detection) as a reference when calculating the position coordinates in the electronic pen.
  • the synchronization detection discharge is applied to all the discharge cells in the image display area of the panel 10 at predetermined time intervals (for example, time To1, time To2, and time To3). Is generated a plurality of times (for example, four times), and light emission for synchronization detection is generated a plurality of times (for example, four times).
  • the synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo.
  • the electronic pen receives a plurality of times (for example, four times) of light emission for synchronization detection generated at predetermined time intervals (for example, time To1, time To2, and time To3) and receives the coordinate reference signal.
  • Create The coordinate reference signal is a signal that serves as a reference when calculating the position coordinate (x, y) of the electronic pen.
  • the entire surface of the image display surface of the panel 10 shines simultaneously at the same timing, so the electronic pen emits this light regardless of the position of the position of the electronic pen in the image display area of the panel 10. Can be received at the same timing.
  • the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is to prevent the electronic pen from erroneously recognizing the light emission due to the address discharge generated in the address period Pwo of the synchronization detection subfield SFo as the light emission due to another discharge.
  • the time To0 is about 50 ⁇ sec
  • the time To1 is about 40 ⁇ sec
  • the time To2 is about 20 ⁇ sec
  • the time To3 is about 30 ⁇ sec.
  • each time is not limited to these numerical values, and may be set appropriately according to the specifications of the image display system.
  • the proximity y-coordinate detection subfield SFy1 is generated.
  • discharge cell row an aggregate of discharge cells constituting one row
  • pixel row an aggregate of pixels constituting one row
  • the discharge cell row and the pixel row are substantially the same.
  • a group of discharge cells constituting one column is referred to as a “discharge cell column”
  • a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”.
  • the proximity y-coordinate detection subfield SFy1 has an initialization period Piy, a y-coordinate detection period Py1, and an erasing period Pey.
  • the same selective initialization operation as in the initialization period Pi2 of the subfield SF2 of the image display subfield is performed to generate an initialization discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity y coordinate detection pattern display operation in the subsequent y coordinate detection period Py1.
  • the “first number” is “1” is shown, but the “first number” may be two or more.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
  • discharges are generated all at once. In this way, discharge occurs in the first pixel row, and the first pixel row emits light.
  • this discharge is also referred to as “y-coordinate detection discharge”.
  • the light emission by this y-coordinate detection discharge becomes light emission for y-coordinate detection when the electronic pen is used in proximity.
  • the same operation is performed until the nth discharge cell row is reached in the order of scan electrode SC2, scan electrode SC3,..., Scan electrode SCn with the y coordinate detection voltage Vdy applied to data electrodes D1 to Dm. Do it sequentially.
  • the y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 one pixel row at a time. .
  • one horizontal line that emits light with a width corresponding to the “first number” is the image display area of the panel 10.
  • a light emission pattern that sequentially moves (for example, one pixel row at a time) from the upper end portion (first pixel row) to the lower end portion (nth pixel row) is displayed on the panel 10.
  • this light emission pattern is referred to as “proximity y coordinate detection pattern”.
  • first light emitting line one light emitting line having a width corresponding to the “first number”
  • first light emitting line one light emitting line having a width corresponding to the “first number”.
  • first light emitting line one light emitting line having a width corresponding to the “first number”.
  • first light emitting line one light emitting line having a width corresponding to the “first number”
  • the “proximity y coordinate detection pattern” is a light emission pattern in which the “first light emission line” having a width of two pixel rows sequentially moves in the y coordinate direction by two pixel rows. It becomes.
  • the timing at which the electronic pen receives light emitted from the first light emission line changes according to the position coordinates of the electronic pen. Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen is used in proximity can be detected by detecting the timing at which the light emission of the first light emission line is received by the electronic pen.
  • the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y coordinate detection period Py1 (or the pulse width of the y coordinate detection pulse). ) Is Ty11.
  • This Ty11 is, for example, about 1 ⁇ sec.
  • the subsequent proximity x-coordinate detection subfield SFx1 has an initialization period Pix, an x-coordinate detection period Px1, and an erasing period Pex.
  • the selective initialization operation similar to the initialization period Piy of the proximity y coordinate detection subfield SFy1 is performed, and each discharge cell is initialized. Generates a discharge.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px1.
  • the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the preset “third number” of data electrodes 22.
  • the operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm.
  • the “third number” is “3” is shown, but the “third number” may be a number other than three.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the negative x coordinate is applied to the scan electrodes SC1 to SCn.
  • a detection voltage Vax is applied.
  • the first pixel column is, for example, a pixel column arranged at the left end of the image display area.
  • discharge is generated all at once.
  • discharge occurs in the first pixel column, and the first pixel column emits light.
  • this discharge is also referred to as “x coordinate detection discharge”.
  • the light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used in proximity.
  • Similar operations are performed adjacent to each other in the order of data electrodes D4 to D6, data electrodes D7 to D9,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn.
  • the three data electrodes 22 are sequentially performed until reaching the m-th discharge cell column.
  • the x coordinate detection discharge is sequentially performed on each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column (m / 3 pixel column) of the panel 10 one pixel column at a time.
  • one vertical line that emits light with a width corresponding to the “third number” (for example, one pixel column) is displayed on the panel 10.
  • a light emission pattern that sequentially moves (for example, one pixel column at a time) from the left end portion (first pixel column) of the region to the right end portion (m / 3 pixel column) is displayed on the panel 10.
  • this light emission pattern is referred to as “proximity x coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “third number” is referred to as a “second light emitting line”.
  • the “proximity x coordinate detection pattern” is a light emission pattern in which the “second light emission line” having a width of two pixel columns sequentially moves in the x coordinate direction by two pixel columns. It becomes.
  • the timing at which the electronic pen receives light emitted from the second light emission line changes according to the position coordinates of the electronic pen. Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen is used in proximity can be detected by detecting the timing at which the electronic pen receives the light emitted from the second light emitting line.
  • This Tx11 is, for example, about 1 ⁇ sec.
  • the remote y-coordinate detection subfield SFy2 is generated.
  • the remote y-coordinate detection subfield SFy2 has an initialization period Piy, a y-coordinate detection period Py2, and an erasing period Pey.
  • the selective initializing operation similar to the initializing period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initializing discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to the wall voltage suitable for the remote y coordinate detection pattern display operation in the subsequent y coordinate detection period Py2.
  • the y-coordinate detection voltage Vdy is applied to the data electrodes D1 to Dm, and y is simultaneously applied to the preset “second number” of scan electrodes 12.
  • the operation of applying the coordinate detection pulse is sequentially performed on scan electrodes SC1 to SCn.
  • the “second number” is a numerical value larger than the “first number” used in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1, and in the present embodiment, the “second number” is “ Although an example of “8” is shown, the “second number” may be a number other than 8.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • discharge is generated all at once. In this way, discharge is generated simultaneously in the 1st to 8th pixel rows, and 8 pixel rows in the 1st to 8th rows emit light all at once.
  • this discharge is also referred to as “y-coordinate detection discharge”.
  • the light emission by this y-coordinate detection discharge is light emission for y-coordinate detection when the electronic pen is used remotely.
  • Similar operations are performed adjacent to each other in the order of scan electrodes SC9 to SC16, scan electrodes SC17 to SC24,..., Scan electrodes SCn-7 to SCn with the y coordinate detection voltage Vdy applied to the data electrodes D1 to Dm.
  • the steps are sequentially performed until the nth discharge cell row is reached.
  • the y coordinate detection discharge is sequentially generated in each of the pixel rows from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 by 8 pixel rows. .
  • one horizontal line that emits light with a width corresponding to the “second number” is the image display area of the panel 10.
  • a light emission pattern that sequentially moves (for example, every 8 pixel rows) from the upper end portion (first pixel row) to the lower end portion (nth pixel row) is displayed on the panel 10.
  • this light emission pattern is referred to as a “remote y coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “second number” is referred to as a “third light emitting line”.
  • the “remote y coordinate detection pattern” is a light emission pattern in which the “third light emission line” having a width of 16 pixel rows sequentially moves in the y coordinate direction by 16 pixel rows. It becomes.
  • the third light emitting line is a light emitting line having a wider width and a larger light emission amount than the first light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen can receive the light emitted from the third light emitting line is larger than the distance that the light emitted from the first light emitting line can be received.
  • the timing at which the electronic pen receives the light emitted from the third light emission line changes according to the position coordinates of the electronic pen. Therefore, the y coordinate of the position coordinate (x, y) when the electronic pen is used remotely can be detected by detecting the timing at which the electronic pen emits the light emitted from the third light emitting line.
  • This Ty12 is, for example, about 1 ⁇ sec.
  • the subsequent remote x-coordinate detection subfield SFx2 has an initialization period Pix, an x-coordinate detection period Px2, and an erasing period Pex.
  • the initialization period Pix a selective initialization operation similar to that in the initialization period Pix of the proximity x coordinate detection subfield SFx1 is performed to generate an initialization discharge in each discharge cell.
  • the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px2.
  • the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the “fourth” data electrode 22 set in advance.
  • the operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm.
  • the “fourth number” is a numerical value larger than the “third number” used in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1, and in the present embodiment, the “fourth number” is “ Although an example of “24” is shown, the “fourth number” may be a number other than 24.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the negative x coordinate is applied to the scan electrodes SC1 to SCn.
  • a detection voltage Vax is applied.
  • the positive polarity of the voltage Vdx is applied to the data electrodes D1 to D24 constituting the first to eighth pixel columns while the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn.
  • X-coordinate detection pulses are simultaneously applied.
  • discharge is generated all at once. In this way, discharge is generated simultaneously in the first to eighth pixel columns, and the first to eighth pixel columns emit light all at once.
  • this discharge is also referred to as “x coordinate detection discharge”.
  • the light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used remotely.
  • Similar operations are performed adjacent to each other in the order of data electrodes D25 to D48, data electrodes D49 to D72,..., Data electrodes Dm-23 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn.
  • the process is sequentially performed until the mth discharge cell row is reached.
  • the x coordinate detection discharge is sequentially applied to each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column (m / 3 pixel column) of the panel 10 by eight pixel columns. appear.
  • one vertical line that emits light with a width corresponding to the “fourth number” (for example, 8 pixel columns) is displayed on the panel 10.
  • a light emission pattern that sequentially moves (for example, by 8 pixel columns) from the left end portion (first pixel row) to the right end portion (m / 3 pixel row) of the region is displayed on the panel 10.
  • this light emission pattern is referred to as “remote x coordinate detection pattern”.
  • one light emitting line having a width corresponding to the “fourth number” generated in the y coordinate direction and generated in the x coordinate detection period Px2 is referred to as a “fourth light emitting line”.
  • the “remote x coordinate detection pattern” is a light emission pattern in which the “fourth light emission line” having a width of 16 pixel columns sequentially moves in the x coordinate direction by 16 pixel columns. It becomes.
  • the fourth light emitting line is a light emitting line having a wider width and a larger amount of light emission than the second light emitting line for proximity described above. Accordingly, the distance to the panel 10 where the electronic pen can receive the light emitted from the fourth light emitting line is larger than the distance that the light emitted from the second light emitting line can be received.
  • the timing at which the electronic pen receives the light emitted from the fourth light emission line changes according to the position coordinates of the electronic pen. Therefore, the x coordinate of the position coordinates (x, y) when the electronic pen is used remotely can be detected by detecting the timing at which the light emission of the fourth light emitting line is received by the electronic pen.
  • the time for applying the voltage Vdx of the x-coordinate detection pulse to each of the data electrodes D1 to Dm in the x-coordinate detection period Px2 (or the pulse width of the x-coordinate detection pulse) ) Is Tx12.
  • This Tx12 is, for example, about 1 ⁇ sec.
  • the above is the outline of the drive voltage waveforms of the synchronization detection subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
  • the light emission luminance is relatively low, but the position coordinate calculation accuracy is relatively high.
  • the coordinate detection pattern and the x coordinate detection pattern are displayed on the panel 10.
  • the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 the y-coordinate detection pattern and the x-coordinate detection pattern with relatively low emission coordinates and relatively high emission luminance are displayed. 10 is displayed.
  • the electronic pen when the electronic pen is used in contact with or in proximity to the panel 10, the light emission generated in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1 is set as a detection target, which is relatively high.
  • the position coordinates can be calculated with accuracy.
  • the electronic pen when the electronic pen is used remotely, the light emission generated in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 having a relatively high emission luminance is detected, and the electronic pen is separated from the panel 10. It is possible to calculate position coordinates even with an electronic pen located at a position (for example, about several meters).
  • voltage Vc ⁇ 50 (V)
  • voltage Vr 205 (V)
  • voltage Ve 155 (V )
  • the gradient of the rising ramp waveform voltage generated in the initialization period Pi1 is about 1.5 (V / ⁇ sec), and the gradient of the descending ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy, Pix is It is about ⁇ 2.5 (V / ⁇ sec). Further, the gradient of the rising ramp waveform voltage generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure period Pey, and Pex is about 10 (V / ⁇ sec).
  • each voltage value and the gradient described above is merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
  • FIG. 5 is a diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
  • the image display system 100 shown in the present embodiment includes an image display device 30, a drawing device 40, and a plurality of electronic pens 50a, 50b, 50c, and 50d as components, and drawing with the electronic pens 50a, 50b, 50c, and 50d.
  • Wireless communication is performed with the device 40.
  • the number of electronic pens 50 included in the image display system 100 is not limited to four, and may be five or more, three or less, or one.
  • the image display device 30 includes an image display unit that displays an image and a drive circuit that drives the image display unit.
  • an example in which a plasma display device having a panel 10 as an image display unit is used as the image display device 30 will be described.
  • the image display device 30 has a power supply for supplying necessary power to the image signal processing unit 31, the data electrode driving unit 32, the scan electrode driving unit 33, the sustain electrode driving unit 34, the control unit 35, and each circuit block as a driving circuit. Part (not shown). These drive circuits generate the drive voltage waveform described with reference to FIGS. 3 and 4 and apply it to the panel 10 to drive the panel 10.
  • the image signal processing unit 31 receives an image signal input from the outside, a drawing signal output from the drawing device 40, and a control signal supplied from the control unit 35.
  • the image signal processing unit 31 combines the image signal and the drawing signal, and based on the combined signal or one of the signals, each of the discharge cells has red, green, and blue gradation values (one field). (Gradation value expressed by), and each gradation value is image data indicating lighting / non-lighting for each subfield (data in which light emission / non-light emission corresponds to digital signals “1” and “0”) To output.
  • the image signal processing unit 31 separates the horizontal synchronization signal and the vertical synchronization signal from the signal transmitted as the image signal, and outputs the horizontal synchronization signal and the vertical synchronization signal to the control unit 35.
  • the control unit 35 generates various control signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal, and generates the generated control signal in each circuit block (data electrode drive unit 32, scan electrode drive unit). 33, sustain electrode drive unit 34, and image signal processing unit 31).
  • the data electrode drive unit 32 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the image data output from the image signal processing unit 31 and the control signal supplied from the control unit 35, and each data electrode D1 ⁇ Apply to Dm.
  • the sustain electrode driver 34 generates the drive voltage waveform shown in FIGS. 3 and 4 based on the control signal supplied from the controller 35 and applies it to the sustain electrodes SU1 to SUn.
  • the scan electrode drive unit 33 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the control signal supplied from the control unit 35 and applies the drive voltage waveforms to the scan electrodes SC1 to SCn.
  • the electronic pen 50 is placed in the image display area of the image display device 30 when the user directly contacts or approaches the electronic pen 50 to the panel 10 (proximity use) or away from the panel 10 (remote use). Used when inputting characters and drawings.
  • the electronic pen 50 detects the position coordinates by receiving light emitted from the panel 10 in the coordinate detection subfield. As described above, the position coordinates are detected by the electronic pen 50 receiving light emitted from the y coordinate detection pattern and the x coordinate detection pattern displayed on the panel 10 and calculating the y coordinate and the x coordinate.
  • the electronic pen 50 includes a light receiving element 52, a contact switch 53, a synchronization detection unit 54, a coordinate calculation unit 56, and a transmission unit 58.
  • the electronic pen 50 has a power switch, a pilot lamp, a manual switch, and the like.
  • the power switch is a switch for controlling the power on / off of the electronic pen 50.
  • the pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color.
  • the contact switch 53 is provided at the tip of the electronic pen 50 on the side where the light receiving element 52 is attached, and detects whether the tip of the electronic pen 50 is in contact with the image display surface of the panel 10.
  • the user can switch S1 by operating a manual switch (not shown) instead of the contact switch 53, and can input characters and drawings on the image display surface when the electronic pen 50 is used remotely.
  • the electronic pen 50 is configured so that the user can arbitrarily switch the drawing mode (for example, the color of the line used for drawing, the thickness of the line, the type of line, etc.) by operating the manual switch. May be.
  • the light receiving element 52 receives light emitted on the image display surface of the panel 10 and converts it into an electrical signal (light reception signal), and outputs the light reception signal to the synchronization detection unit 54 and the coordinate calculation unit 56.
  • the position coordinate (x, y) of the electronic pen 50 is a position where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
  • the electronic pen 50 may be configured to include a condensing lens for condensing the light emitted on the image display surface of the panel 10 onto the light receiving element 52.
  • the synchronization detection unit 54 detects light emission for synchronization detection (light emission generated by the synchronization detection discharge) generated in the synchronization detection period Po of the synchronization detection subfield SFo based on the light reception signal output from the light receiving element 52. Specifically, the synchronization detection unit 54 measures a generation interval of a plurality of (for example, four times) emission using a timer (not shown) included in the synchronization detection unit 54. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
  • a predetermined time interval for example, time To1, time To2, time To3
  • the synchronization detection unit 54 compares a light reception threshold value th and a light reception signal set in advance (not shown), and calculates a differential value for a light reception signal equal to or greater than the light reception threshold value th.
  • the time that occurs is detected and each time is detected.
  • the time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance. You may use for correction of.
  • the light reception threshold th may be set to the lowest level of the light reception signal that allows the light receiving element 52 to stably detect light emission, for example.
  • the synchronization detection unit 54 creates a coordinate reference signal based on one of the continuous multiple times (for example, four times) of light emission (for example, light emission generated at time to1).
  • the time to1 is the time when the first synchronization detection pulse V1 is applied to the scan electrodes SC1 to SCn in the synchronization detection period Po of the synchronization detection subfield SFo.
  • the coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
  • the coordinate calculation unit 56 selectively extracts a signal based on the light emission of the y coordinate detection pattern and a signal based on the light emission of the x coordinate detection pattern from the light reception signal based on the coordinate reference signal and the light reception signal, and outputs an electron in the image display area.
  • the position coordinates (x, y) of the pen 50 are calculated, and the calculated position coordinates are output to the transmission unit 58.
  • the transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52.
  • the transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal.
  • a unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 56, a contact switch 53 (or a manual switch) ) Is encoded and then converted to a radio signal.
  • This radio signal is a transmission signal.
  • the wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
  • the drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46.
  • the drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the electronic pen 50 and outputs the drawing signal to the image display device 30.
  • This drawing signal is a signal for displaying on the panel 10 characters, drawings and the like handwritten by the user using the electronic pen 50, and is substantially the same as the image signal.
  • the receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is used to indicate the identification number (ID) of the electronic pen 50, the signal indicating the position coordinates (x, y) of the electronic pen 50, and the state of the contact switch 53 (or manual switch). It converts into the signal S1 etc. which represent, and outputs it to the drawing part 46.
  • ID identification number
  • x, y the position coordinates
  • the contact switch 53 or manual switch
  • the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other.
  • each circuit block operates based on a control signal supplied from the control unit 35, but details of the path of the control signal are omitted in each drawing.
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
  • the sustain electrode driving unit 34 includes a sustain pulse generation circuit 80 and a constant voltage generation circuit 85.
  • Sustain pulse generation circuit 80 includes a power recovery circuit 81 and switching elements Q83 and Q84.
  • the power recovery circuit 81 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
  • the sustain pulse generation circuit 80 generates a sustain pulse of the voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to the sustain electrodes SU1 to SUn.
  • the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
  • the constant voltage generation circuit 85 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
  • the data electrode driving unit 32 operates based on the image data and control signals supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the first embodiment of the present disclosure.
  • the scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70.
  • the voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
  • Sustain pulse generation circuit 55 includes power recovery circuit 51 and switching elements Q55, Q56, and Q59.
  • the power recovery circuit 51 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12.
  • the switching element Q59 is a separation switch, and prevents reverse current flow.
  • sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 70.
  • the ramp waveform voltage generation circuit 60 includes Miller integration circuits 61, 62, and 63, generates the ramp waveform voltage shown in FIGS. 3 and 4, and applies it to the scan electrodes SC1 to SCn via the scan pulse generation circuit. .
  • each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
  • Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and backflow preventing diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
  • Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
  • Switching element Q69 is a separation switch and prevents reverse current flow.
  • the scan pulse generating circuit 70 includes switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates a negative voltage Va, and a power source E71 that generates a voltage Vp.
  • Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
  • the scan pulse generation circuit 70 generates a scan pulse at the timing shown in FIG. 3 and sequentially applies it to each of the scan electrodes SC1 to SCn in each address period of the image display subfield.
  • a plurality of pairs of switching elements QHi and switching elements QLi are integrated in one IC (scan driver IC).
  • FIG. 9 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
  • FIGS. 9 and 10 show the coordinate reference signal det input to the coordinate calculation unit 56 and the light reception signal output from the light receiving element 52 in addition to the drive voltage waveform.
  • the drive voltage waveforms shown in FIGS. 9 and 10 are the same as the drive voltage waveforms shown in FIG.
  • the time Toy1 (FIG. 9) from the time to1 to the time ty01 (the time when the proximity y coordinate detection period Py1 starts), and the time tx01 (the proximity x coordinate detection period).
  • Time Tox1 (FIG. 9) from time to Px1 (time starting Px1)
  • Time Toy2 (FIG. 10) from time to1 to time ty02 (time starting remote y-coordinate detection period Py2)
  • Time to1 to time tx02 (remote)
  • Each of the times Tox2 (FIG. 10) up to is determined in advance.
  • the synchronization detecting unit 54 detects the four consecutive light emission intervals of the light emission intervals of time To1, time To2, and time To3, specifies time to1, and uses time to1 as a reference to time ty01 and time A coordinate reference signal det having rising edges at each of tx01, time ty02, and time tx02 is generated and output to the subsequent coordinate calculation unit 56.
  • the synchronization detection unit 54 detects the time at which a local peak occurs with respect to a light reception signal equal to or greater than the light reception threshold th, and detects each time and each time.
  • the coordinate reference signal det is generated based on the time to1 in this embodiment, but may be generated based on any one of the times to2, to3, and to4 without being limited to the time to1.
  • the coordinate calculation unit 56 calculates position coordinates based on the light emission of the proximity y coordinate detection subfield SFy1 and the proximity x coordinate detection subfield SFx1, as shown in FIG. Do.
  • the coordinate calculation unit 56 calculates the position coordinates (x, y) of the electronic pen 50 used in proximity.
  • the coordinate calculation unit 56 calculates position coordinates based on the light emission of the remote y coordinate detection subfield SFy2 and the remote x coordinate detection subfield SFx2, as shown in FIG. Do.
  • the coordinate calculation unit 56 calculates the position coordinates (x, y) of the electronic pen 50 used remotely.
  • FIG. 11 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
  • the first light emission that sequentially moves from the upper end (first row) to the lower end (n row) of the image display area.
  • the line Ly1 is displayed on the panel 10.
  • the image display area sequentially moves from the left end portion (first pixel column) to the right end portion (m / 3 pixel row).
  • Two emission lines Lx1 are displayed on the panel 10.
  • the light receiving element 52 of the electronic pen 50 used in the proximity receives light emission of “coordinate (x, y)” on the image display surface of the panel 10, the first light emitting line Ly 1 changes the coordinate (x, y).
  • the light receiving element 52 receives light emission at the passing time tyy1 and the time txx1 when the second light emitting line Lx1 passes the coordinates (x, y).
  • the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly1 is received at time tyy1, and receives the light emission of the second light emission line Lx1.
  • a light reception signal indicating this is output at time txx1.
  • the third light emission that sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area.
  • the line Ly2 is displayed on the panel 10.
  • the image display area sequentially moves from the left end (first pixel column) to the right end (m / 3 column).
  • Four emission lines Lx2 are displayed on the panel 10.
  • the third light emitting line Ly 2 changes the coordinate (x, y).
  • the light receiving element 52 receives light emission at the passing time tyy2 and at the time txx2 when the fourth light emitting line Lx2 passes the coordinates (x, y).
  • the light receiving element 52 outputs a light reception signal indicating that the light emission of the third light emission line Ly2 is received at time tyy2, and receives the light emission of the fourth light emission line Lx2.
  • a light reception signal indicating this is output at time txx2.
  • switching between proximity use and remote use in the electronic pen 50 may be performed by, for example, providing a switch for switching in the electronic pen 50 and turning on / off the switch.
  • the electronic pen 50 may be configured to be switched by attaching a condensing lens.
  • the y coordinate is calculated based on the light reception signal by the first light emission line Ly1, and the light reception signal by the first light emission line Ly1 is received. If it is less than the threshold value th, the coordinate calculation unit 56 may be configured to calculate the y-coordinate based on the light reception signal from the third light-emitting line Ly2.
  • the coordinate calculation unit 56 may be configured to calculate the x-coordinate based on the light reception signal from the fourth light emission line Lx2.
  • FIG. 13 is a diagram schematically illustrating an example of an operation when performing handwriting input with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 13 shows an example when the electronic pen 50 is used in proximity.
  • the drawing unit 46 draws a drawing pattern (for example, a pattern such as a white circle) having a color and a size corresponding to the drawing mode around the pixel corresponding to the position coordinate (x, y). Generate a drawing signal.
  • the panel 10 displays a graphic input by handwriting using the electronic pen 50.
  • the proximity y-coordinate detection subfield SFy1 that displays the first light-emitting line Ly1 that emits light with a width corresponding to the “first number” on the panel 10.
  • the second light emitting line Lx1 that emits light with a width corresponding to the “third number”
  • the “second number” is larger than the “first number”.
  • a remote x-coordinate detection subfield SFx2 for displaying on the panel 10 the fourth light-emitting line Lx2 that emits light with a width is generated.
  • the electronic pen 50 can be used remotely.
  • FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the second embodiment of the present disclosure.
  • the configuration and operation of the image display system in the second embodiment are the same as those in the first embodiment, and the types and number of subfields included in one field are the same as those in the first embodiment.
  • the drive voltage waveform generated in each subfield is the same as that in the first embodiment except for the initialization period, but the drive voltage waveform generated in the initialization period is different from that in the first embodiment in the second embodiment.
  • a forced initialization operation is performed.
  • the voltage Vd is applied to the data electrodes D1 to Dm, and the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn.
  • an upward ramp waveform voltage rising from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied.
  • a voltage 0 (V) is applied to the data electrodes D1 to Dm, and a positive voltage Ve1 lower than the voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • the initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pwo.
  • the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the scan electrodes SC1 to SCn. Is applied with a downward ramp waveform voltage that drops from the voltage 0 (V) to the negative voltage Vi4. Next, voltage Vs is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm and sustain electrodes SU1 to SUn.
  • voltage 0 (V) is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm, and voltage Vs is applied to sustain electrodes SU1 to SUn.
  • voltage Ve1 is applied to sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • a forced initialization operation is performed.
  • the voltage Vd is applied to the data electrodes D1 to Dm
  • the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn.
  • an upward ramp waveform voltage rising from voltage Vi1 to voltage Vi2 is applied.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve1 is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Va is applied to scan electrodes SC1 to SCn, and then an upward ramp waveform voltage that rises from voltage 0 (V) to positive voltage Vr. Apply.
  • voltage Ve is applied to sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that drops from voltage 0 (V) to negative x coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn.
  • This initializing operation causes an initializing discharge in each discharge cell, and the wall voltage on each electrode is adjusted to a wall voltage suitable for the proximity x coordinate detection pattern display operation in the subsequent x coordinate detection period Px1.
  • a drive voltage waveform similar to that in the initialization period Pio of the synchronization detection subfield SFo shown in FIG. 14 is generated and applied to each electrode.
  • This forced initializing operation causes an initializing discharge in each discharge cell, and the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote y-coordinate detection pattern display operation in the subsequent y-coordinate detection period Py2.
  • the erase operation similar to that in the first embodiment may be performed, but the erase operation illustrated in FIG. 14 may be performed. That is, an upward ramp waveform voltage rising from voltage 0 (V) to positive voltage Vr is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm. . Next, the voltage Vd is applied to the data electrodes D1 to Dm while the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the scan electrodes SC1 to SCn. An upward ramp waveform voltage rising from the voltage Vi1 to the voltage Vi2 is applied.
  • the initialization operation as described above may be performed in each initialization period of the coordinate detection subfield.
  • the time intervals when the synchronous detection discharge is generated a plurality of times at different times so that the first synchronous detection discharge can be easily specified.
  • each coordinate detection subfield may be generated at a rate of once in a plurality of fields, for example.
  • a pixel row that does not emit light when displaying the y-coordinate detection pattern, a pixel row that does not emit light may be provided. Similarly, when displaying the x-coordinate detection pattern, a pixel column that does not emit light may be provided.
  • each coordinate detection subfield is not limited to the order of occurrence described above.
  • the x coordinate detection subfield may be generated first, and then the y coordinate detection subfield may be generated.
  • the electronic pen when the electronic pen calculates the position coordinates based on the light emission generated in the proximity x coordinate detection subfield SFx1 and the proximity y coordinate detection subfield SFy1, it is referred to as “proximity use”.
  • the case where the position coordinates are calculated based on the light emission generated in the x-coordinate detection subfield SFx2 and the remote y-coordinate detection subfield SFy2 is referred to as “remote use”.
  • the configuration in which the drawing device is provided independently of the image display device is shown.
  • a function connected to the computer connected to the image display device is equivalent to the drawing device.
  • a drawing signal is generated using the computer.
  • the drawing device may be provided as a single device, or the drawing device may be provided in the image display device.
  • Each circuit block shown in the first and second embodiments may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment.
  • a microcomputer or a computer programmed to operate may be used.
  • the present disclosure is useful as an image display device, an image display device driving method, and an image display system because the position coordinates can be calculated even with an electronic pen located at a position away from the panel.

Abstract

The purpose of the present invention is to enable calculation of position coordinates even with an electronic pen that is at a distance from a plasma display panel. In order to do so, the following are generated: a proximate-use y-coordinate detection subfield that sequentially performs an operation for simultaneously applying y-coordinate detection pulses to a first number of scanning electrodes; a remote-use y-coordinate detection subfield that sequentially performs an operation for simultaneously applying y-coordinate detection pulses to a second number of scanning electrodes; a proximate-use x-coordinate detection subfield that sequentially performs an operation for simultaneously applying x-coordinate detection pulses to a third number of data electrodes; and a remote-use x-coordinate detection subfield that sequentially performs an operation for simultaneously applying x-coordinate detection pulses to a fourth number of data electrodes. Further, the second number of scanning electrodes is made to have a numerical value greater than that of the first, and the fourth number of data electrodes is made to have a numerical value greater than that of the third.

Description

画像表示装置、画像表示装置の駆動方法および画像表示システムImage display device, image display device driving method, and image display system
 本開示は、電子ペンを用いて画像表示面に文字や図画を入力できる画像表示装置、画像表示装置の駆動方法および画像表示システムに関する。 The present disclosure relates to an image display device that can input characters and drawings on an image display surface using an electronic pen, a driving method of the image display device, and an image display system.
 「電子ペン」と呼ばれるペン型のポインティングデバイスを使用して、画像表示面に文字や図画を手書き入力することができる機能を有する画像表示装置がある。このような画像表示装置では、画像表示領域における電子ペンの位置を検出する技術が用いられる。以下、画像表示領域内における電子ペンの位置を表す座標を「位置座標」と記す。 There is an image display device that has a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen”. In such an image display device, a technique for detecting the position of the electronic pen in the image display region is used. Hereinafter, the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
 例えば、特許文献1には、1フィールドに位置座標検出期間を設け、位置座標検出期間にプラズマディスプレイパネル(以下、「パネル」と記す)に生じる発光を電子ペンに内蔵された光センサで検出することで、電子ペンの座標位置を検出する装置および方法が開示されている。 For example, in Patent Document 1, a position coordinate detection period is provided in one field, and light emission generated in a plasma display panel (hereinafter referred to as “panel”) in the position coordinate detection period is detected by an optical sensor built in the electronic pen. Thus, an apparatus and a method for detecting the coordinate position of an electronic pen are disclosed.
 この技術を使用した画像表示装置では、画像表示面に生じる発光を光センサで検出するために、電子ペンを画像表示面に接触または近接させて使用する。 In an image display device using this technology, an electronic pen is used in contact with or close to the image display surface in order to detect light emission generated on the image display surface with an optical sensor.
特開2001-318765号公報JP 2001-318765 A
 本開示における画像表示装置の駆動方法は、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルを備えた画像表示装置の駆動方法である。この駆動方法では、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、データ電極にy座標検出電圧を印加したまま、第1の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、データ電極にy座標検出電圧を印加したまま、第2の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第3の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第4の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドと、を発生する。そして、第2の数を第1の数よりも大きい数値に設定し、第4の数を第3の数よりも大きい数値に設定する。 The driving method of the image display device according to the present disclosure is a driving method of an image display device including a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes. In this driving method, an image display subfield for displaying an image on the plasma display panel and an operation of simultaneously applying a y-coordinate detection pulse to the first number of scanning electrodes while applying a y-coordinate detection voltage to the data electrodes are sequentially performed. A proximity y-coordinate detection subfield to be performed, and a remote y-coordinate detection subfield to sequentially apply the y-coordinate detection pulse to the second number of scan electrodes while applying the y-coordinate detection voltage to the data electrode. An x coordinate detection subfield for proximity that sequentially applies an x coordinate detection pulse to the third number of data electrodes while applying an x coordinate detection voltage to the scan electrodes, and an x coordinate detection voltage to the scan electrodes. A remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying an x-coordinate detection pulse to the fourth number of data electrodes while being applied is generated. Then, the second number is set to a numerical value larger than the first number, and the fourth number is set to a numerical value larger than the third number.
 本開示における画像表示装置は、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルと、1フィールドを複数のサブフィールドで構成してプラズマディスプレイパネルを駆動する駆動回路とを備える。この画像表示装置において、駆動回路は、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、データ電極にy座標検出電圧を印加したまま、第1の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、データ電極にy座標検出電圧を印加したまま、第2の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第3の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第4の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドとを発生する。そして、第2の数を第1の数よりも大きい数値に設定し、第4の数を第3の数よりも大きい数値に設定する。 An image display apparatus according to the present disclosure drives a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes, and one field is composed of a plurality of subfields. And a drive circuit. In this image display device, the drive circuit simultaneously applies an y-coordinate detection pulse to the first number of scan electrodes while applying the y-coordinate detection voltage to the data display electrode and the data display subfield for displaying an image on the plasma display panel. Proximity y-coordinate detection subfield for sequentially applying the application, and remote y for sequentially applying the y-coordinate detection pulse to the second number of scanning electrodes while applying the y-coordinate detection voltage to the data electrodes The coordinate detection subfield, the proximity x coordinate detection subfield that sequentially applies the x coordinate detection pulse to the third number of data electrodes while the x coordinate detection voltage is applied to the scan electrodes, and the scan electrode A remote x-coordinate detection sub-field that sequentially applies an x-coordinate detection pulse to the fourth number of data electrodes while applying the x-coordinate detection voltage. To generate and soil. Then, the second number is set to a numerical value larger than the first number, and the fourth number is set to a numerical value larger than the third number.
 本開示における画像表示システムは、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネル、およびプラズマディスプレイパネルを駆動する駆動回路を備えた画像表示装置と、電子ペンと、描画装置とを備える。駆動回路は、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、データ電極にy座標検出電圧を印加したまま、第1の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、データ電極にy座標検出電圧を印加したまま、第2の数の走査電極に同時にy座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第3の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、走査電極にx座標検出電圧を印加したまま、第4の数のデータ電極に同時にx座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドとを発生し、第2の数を第1の数よりも大きい数値に設定するとともに第4の数を第3の数よりも大きい数値に設定する。電子ペンは、プラズマディスプレイパネルの発光を受光して受光信号を出力する受光素子と、近接用y座標検出サブフィールド、近接用x座標検出サブフィールド、遠隔用y座標検出サブフィールドおよび遠隔用x座標検出サブフィールドと同期した座標基準信号を受光信号にもとづき作成する同期検出部と、電子ペンが指すプラズマディスプレイパネル上の座標を座標基準信号と受光信号にもとづき算出する座標算出部と、座標算出部が算出した座標を描画装置に送信する送信部とを有する。描画装置は、電子ペンから送信された座標を受信する受信部と、受信部で受信した座標にもとづき描画信号を作成して画像表示装置に出力する描画部とを有する。 An image display system according to the present disclosure includes: a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes; an image display device including a drive circuit that drives the plasma display panel; A pen and a drawing device are provided. The drive circuit sequentially performs an operation of applying a y-coordinate detection pulse to the first number of scanning electrodes simultaneously while applying a y-coordinate detection voltage to the data electrode and an image display subfield for displaying an image on the plasma display panel. A proximity y-coordinate detection subfield, a remote y-coordinate detection subfield that sequentially applies an y-coordinate detection pulse to the second number of scan electrodes while applying a y-coordinate detection voltage to the data electrodes, Proximity x-coordinate detection subfield for sequentially applying an x-coordinate detection pulse to the third number of data electrodes while applying the x-coordinate detection voltage to the scan electrodes, and applying the x-coordinate detection voltage to the scan electrodes And generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying an x-coordinate detection pulse to the fourth number of data electrodes, and setting the second number to And sets the number greater than the number of 1 to set the fourth number of the number greater than the third number. The electronic pen receives a light emitted from the plasma display panel and outputs a light reception signal, a proximity y coordinate detection subfield, a proximity x coordinate detection subfield, a remote y coordinate detection subfield, and a remote x coordinate A synchronization detection unit that generates a coordinate reference signal synchronized with the detection subfield based on the light reception signal, a coordinate calculation unit that calculates a coordinate on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal, and a coordinate calculation unit And a transmitter that transmits the calculated coordinates to the drawing apparatus. The drawing apparatus includes a receiving unit that receives coordinates transmitted from the electronic pen, and a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
図1は、本開示の実施の形態1における画像表示装置に用いるパネルの構造の一例を示す分解斜視図である。FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1における画像表示装置に用いるパネルの電極配列の一例を示す図である。FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1における画像表示サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1における画像表示システムの一構成例を概略的に示す図である。FIG. 5 is a diagram schematically illustrating a configuration example of the image display system according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1における画像表示装置の維持電極駆動部の一構成例を概略的に示す回路図である。FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1における画像表示装置のデータ電極駆動部の一構成例を概略的に示す回路図である。FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1における画像表示装置の走査電極駆動部の一構成例を概略的に示す回路図である。FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure. 図9は、本開示の実施の形態1における画像表示システムにおいて電子ペンを近接使用するときの位置座標検出動作の一例を概略的に示す図である。FIG. 9 is a diagram schematically illustrating an example of the position coordinate detection operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure. 図10は、本開示の実施の形態1における画像表示システムにおいて電子ペンを遠隔使用するときの位置座標検出動作の一例を概略的に示す図である。FIG. 10 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure. 図11は、本開示の実施の形態1における画像表示システムにおいて電子ペンを近接使用するときの動作の一例を概略的に示す図である。FIG. 11 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the proximity in the image display system according to the first embodiment of the present disclosure. 図12は、本開示の実施の形態1における画像表示システムにおいて電子ペンを遠隔使用するときの動作の一例を概略的に示す図である。FIG. 12 is a diagram schematically illustrating an example of an operation when the electronic pen is used remotely in the image display system according to the first embodiment of the present disclosure. 図13は、本開示の実施の形態1における画像表示システムにおいて電子ペンによる手書き入力を行うときの動作の一例を概略的に示す図である。FIG. 13 is a diagram schematically illustrating an example of an operation when performing handwriting input with the electronic pen in the image display system according to the first embodiment of the present disclosure. 図14は、本開示の実施の形態2における座標検出サブフィールにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection sub-field according to the second embodiment of the present disclosure.
 以下、本開示の実施の形態における画像表示システムについて、図面を用いて説明する。以下の実施の形態では、一例として、画像表示部にプラズマディスプレイパネルを用いた画像表示装置を有する画像表示システムを説明する。 Hereinafter, an image display system according to an embodiment of the present disclosure will be described with reference to the drawings. In the following embodiments, an image display system having an image display device using a plasma display panel as an image display unit will be described as an example.
 (実施の形態1)
 図1は、本開示の実施の形態1における画像表示装置に用いるパネル10の構造の一例を示す分解斜視図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view illustrating an example of the structure of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
 ガラス製の前面基板11には、走査電極12と維持電極13からなる表示電極対14が複数形成され、その上に誘電体層15が形成され、さらにその上に保護層16が形成されている。前面基板11は画像が表示される画像表示面となる。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustain electrode 13 are formed on a glass front substrate 11, a dielectric layer 15 is formed thereon, and a protective layer 16 is further formed thereon. . The front substrate 11 serves as an image display surface on which an image is displayed.
 背面基板21にはデータ電極22が複数形成され、その上に誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。隔壁24の側面および誘電体層23の表面には、赤色(R)を発光する蛍光体層25R、緑色(G)を発光する蛍光体層25G、および青色(B)を発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、および蛍光体層25Bを蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed thereon, and a grid-like partition wall 24 is further formed thereon. On the side surface of the partition wall 24 and the surface of the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are also referred to as a phosphor layer 25.
 そして、前面基板11と背面基板21を、放電空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、その放電空間に放電ガスを封入する。 Then, the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
 図2は、本開示の実施の形態1における画像表示装置に用いるパネル10の電極配列の一例を示す図である。 FIG. 2 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
 パネル10には、第1の方向に延長されたn本の走査電極SC1~SCn(図1の走査電極12)およびn本の維持電極SU1~SUn(図1の維持電極13)が配列され、第1の方向に交差する第2の方向に延長されたm本のデータ電極D1~Dm(図1のデータ電極22)が配列されている。 In the panel 10, n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 1) extended in the first direction are arranged. The m data electrodes D1 to Dm (data electrode 22 in FIG. 1) extended in the second direction intersecting the first direction are arranged.
 以下、第1の方向を行方向(または水平方向、またはライン方向、またはx座標方向)と呼称し、第2の方向を列方向(または垂直方向、またはy座標方向)と呼称する。 Hereinafter, the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
 パネル10では、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に1つの放電セルが形成される。そして、互いに隣接する赤、緑、青の各色を発光する3つの放電セルが一組になって1つの画素が構成される。したがって、1対の表示電極対14上にはm個の放電セル(m/3個の画素)が形成され、1本のデータ電極22上にはn個の放電セルが形成される。そして、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。 In panel 10, one discharge cell is formed in a region where one pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). A set of three discharge cells emitting red, green, and blue colors adjacent to each other constitutes one pixel. Accordingly, m discharge cells (m / 3 pixels) are formed on one pair of display electrodes 14, and n discharge cells are formed on one data electrode 22. An area where m × n discharge cells are formed becomes an image display area of the panel 10.
 次に、本実施の形態における画像表示装置において発生する駆動電圧波形について、図3と図4を用いて説明する。 Next, driving voltage waveforms generated in the image display apparatus according to the present embodiment will be described with reference to FIGS.
 本実施の形態では、1フィールドに、画像表示部に画像を表示するための複数の画像表示サブフィールド(図3に示す)と、電子ペンの「位置座標」を検出するための複数の座標検出サブフィールド(図4に示す)とを備える。 In the present embodiment, a plurality of image display subfields (shown in FIG. 3) for displaying an image on the image display unit and a plurality of coordinate detections for detecting “position coordinates” of the electronic pen in one field. Subfield (shown in FIG. 4).
 図3は、本開示の実施の形態1における画像表示サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。 FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
 各画像表示サブフィールドは、初期化期間、書込み期間および維持期間を有する。以下、画像表示サブフィールドを単にサブフィールドとも記す。 Each image display subfield has an initialization period, an address period, and a sustain period. Hereinafter, the image display subfield is also simply referred to as a subfield.
 初期化期間における初期化動作には、放電セルに強制的に初期化放電を発生する「強制初期化動作」と、直前のサブフィールドの書込み期間に書込み放電を発生した放電セルだけに選択的に初期化放電を発生する「選択初期化動作」がある。本実施の形態では、サブフィールドSF1では強制初期化動作を行い、サブフィールドSF2~SF8では選択初期化動作を行う例を示す。 For the initialization operation in the initialization period, a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used. There is a “selective initialization operation” that generates an initialization discharge. In the present embodiment, an example in which a forced initialization operation is performed in subfield SF1 and a selective initialization operation is performed in subfields SF2 to SF8 is shown.
 1フィールド内の画像表示サブフィールドの数は例えば8つ(サブフィールドSF1~SF8)であり、各サブフィールドの輝度重みは例えば(1、34、21、13、8、5、3、2)である。しかし、サブフィールド数、輝度重み等は、何ら上記の数値に限定されるものではない。 The number of image display subfields in one field is, for example, eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2). is there. However, the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
 強制初期化動作を行うサブフィールドSF1の初期化期間Pi1では、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加する。走査電極SC1~SCnには、電圧0(V)を印加した後に、放電開始電圧よりも低い電圧Vi1から放電開始電圧を超える電圧Vi2まで緩やかに上昇する上り傾斜波形電圧を印加する。次に、維持電極SU1~SUnに正の電圧Veを印加し、走査電極SC1~SCnには放電開始電圧未満となる電圧0(V)から放電開始電圧を超える負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。 In the initializing period Pi1 of the subfield SF1 in which the forced initializing operation is performed, the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn. After applying voltage 0 (V) to scan electrodes SC1 to SCn, an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied. Next, positive voltage Ve is applied to sustain electrodes SU1 to SUn, and gradually decreases from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4, which exceeds the discharge start voltage, for scan electrodes SC1 to SCn. Apply a falling ramp waveform voltage.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続く書込み期間Pw1での書込み動作に適した電圧に調整される。以下、初期化期間Pi1に発生する上述の駆動電圧波形を強制初期化波形とする。 The initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1. Hereinafter, the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
 なお、強制初期化動作を行う初期化期間において強制初期化波形を印加する放電セルは、パネル10の画像表示領域内にある全ての放電セルであってもよいが、例えば、画像表示領域内にある一部の放電セルであってもよい。これは、以下の説明における強制初期化動作を行う全ての初期化期間についても同様である。 Note that the discharge cells to which the forced initializing waveform is applied in the initializing period in which the forced initializing operation is performed may be all the discharge cells in the image display area of the panel 10, but for example, in the image display area Some discharge cells may be used. The same applies to all initialization periods in which the forced initialization operation in the following description is performed.
 サブフィールドSF1の書込み期間Pw1では、1行目の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加し、データ電極D1~Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する書込み動作を行う。 In the address period Pw1 of the subfield SF1, a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm. An address operation is performed in which a positive address pulse with a positive voltage Vd is applied to the electrode Dk.
 同様の書込み動作を、走査電極SC2、SC3、SC4、・・・、SCnという順番で、n行目の放電セルに至るまで順次行う。 The same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
 サブフィールドSF1の維持期間Ps1では、走査電極SC1~SCnと維持電極SU1~SUnとに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。直前の書込み期間Pw1において書込み放電を発生した放電セルは、輝度重みに応じた回数の維持放電が発生し、輝度重みに応じた輝度で発光する。 In the sustain period Ps1 of the subfield SF1, the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn. A discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
 維持パルスの発生後(維持期間Ps1において維持動作が終了した後)には、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する消去動作を行う。 After the sustain pulse is generated (after the sustain operation is completed in sustain period Ps1), voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm while voltage 0 is applied to scan electrodes SC1 to SCn. An erasing operation is performed in which an upward ramp waveform voltage that gradually rises from (V) to the positive voltage Vr is applied.
 これにより、維持放電を発生した放電セルに微弱な放電(消去放電)が発生し、放電セル内の不要な壁電荷が消去される。 As a result, a weak discharge (erase discharge) is generated in the discharge cell that has generated the sustain discharge, and unnecessary wall charges in the discharge cell are erased.
 選択初期化動作を行うサブフィールドSF2の初期化期間Pi2では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには正の電圧Veを印加する。走査電極SC1~SCnには、放電開始電圧未満となる電圧0(V)から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 In the initialization period Pi2 of the subfield SF2 in which the selective initialization operation is performed, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage falling from voltage 0 (V), which is less than the discharge start voltage, to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 この選択初期化動作により、直前のサブフィールドSF1の維持期間Ps1に維持放電を発生した放電セルでは微弱な初期化放電が発生し、各電極上の壁電圧は、続く書込み期間Pw2での書込み動作に適した壁電圧に調整される。維持期間Ps1に維持放電を発生しなかった放電セルでは、初期化放電は発生しない。以下、初期化期間Pi2に発生する上述の駆動電圧波形を選択初期化波形とする。 By this selective initializing operation, a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2. The wall voltage is adjusted to a suitable level. In the discharge cells that did not generate the sustain discharge in the sustain period Ps1, the initialization discharge does not occur. Hereinafter, the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
 続く書込み期間Pw2および維持期間Ps2は、維持パルスの発生数を除き、書込み期間Pw1および維持期間Ps1と同様の駆動電圧波形を各電極に印加する。 In the subsequent address period Pw2 and sustain period Ps2, drive voltage waveforms similar to those in the address period Pw1 and sustain period Ps1 are applied to each electrode, except for the number of sustain pulses.
 サブフィールドSF3以降の各サブフィールドでは、維持パルスの発生数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In each subfield after subfield SF3, the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
 次に、座標検出サブフィールドで発生する駆動電圧波形を、図4を用いて説明する。 Next, the drive voltage waveform generated in the coordinate detection subfield will be described with reference to FIG.
 図4は、本開示の実施の形態1における座標検出サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。本実施の形態では、座標検出サブフィールドには、同期検出サブフィールドSFo、近接用y座標検出サブフィールドSFy1、近接用x座標検出サブフィールドSFx1、遠隔用y座標検出サブフィールドSFy2、および遠隔用x座標検出サブフィールドSFx2が含まれている。 FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure. In the present embodiment, the coordinate detection subfield includes a synchronization detection subfield SFo, a proximity y coordinate detection subfield SFy1, a proximity x coordinate detection subfield SFx1, a remote y coordinate detection subfield SFy2, and a remote x. A coordinate detection subfield SFx2 is included.
 なお、以下、近接用y座標検出サブフィールドSFy1と遠隔用y座標検出サブフィールドSFy2とを合わせて「y座標検出サブフィールドSFy」と称し、近接用x座標検出サブフィールドSFx1と遠隔用x座標検出サブフィールドSFx2とを合わせて「x座標検出サブフィールドSFx」と称す。 Hereinafter, the proximity y coordinate detection subfield SFy1 and the remote y coordinate detection subfield SFy2 are collectively referred to as “y coordinate detection subfield SFy”, and the proximity x coordinate detection subfield SFx1 and the remote x coordinate detection are performed. The subfield SFx2 is collectively referred to as “x coordinate detection subfield SFx”.
 画像表示領域内において電子ペンが指す位置(以下、「電子ペンの位置」とも記す)は、x座標とy座標で表される。本実施の形態では、行方向の座標をx座標とし、列方向の座標をy座標としている。x座標検出サブフィールドSFx、y座標検出サブフィールドSFyは、このx座標、y座標を検出するためのサブフィールドであり、x座標検出パターン、y座標検出パターンをパネル10に表示する。 The position pointed to by the electronic pen in the image display area (hereinafter also referred to as “position of the electronic pen”) is represented by an x coordinate and ay coordinate. In this embodiment, the coordinate in the row direction is the x coordinate, and the coordinate in the column direction is the y coordinate. The x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate, and display the x coordinate detection pattern and the y coordinate detection pattern on the panel 10.
 なお、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1は、使用者が電子ペンの先端部をパネル10に直接接触させて(またはパネル10に比較的近い位置で)使用する「近接使用」時に、電子ペンの位置座標の検出に用いるサブフィールドである。遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2は、使用者が電子ペンをパネル10から離れた位置で使用する「遠隔使用」時に、電子ペンの位置座標の検出に用いるサブフィールドである。 The proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1 are used when the user directly contacts the front end of the electronic pen with the panel 10 (or at a position relatively close to the panel 10). This is a sub-field used for detecting the position coordinates of the electronic pen at the time of “use near”. The remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 are sub-fields used for detecting the position coordinates of the electronic pen when the user uses the electronic pen at a position away from the panel 10 during "remote use". It is a field.
 なお、電子ペンは、本実施の形態の画像表示システムに備えられたものであり、使用者がパネル10上に文字や図画を手書き入力するときに使用される。電子ペンの詳細は後述する。また、電子ペンが指す位置(位置座標)とは、後述する電子ペンの受光素子が、x座標検出サブフィールドSFxで表示されるx座標検出パターンの発光およびy座標検出サブフィールドSFyで表示されるy座標検出パターンの発光を受光する画像表示面内の位置のことである。 The electronic pen is provided in the image display system of the present embodiment, and is used when a user inputs characters and drawings on the panel 10 by handwriting. Details of the electronic pen will be described later. Further, the position (positional coordinate) pointed to by the electronic pen is a light receiving element of the electronic pen described later displayed by light emission of the x-coordinate detection pattern displayed in the x-coordinate detection subfield SFx and the y-coordinate detection subfield SFy. It is a position in the image display surface that receives light emitted from the y coordinate detection pattern.
 また、本実施の形態における画像表示システムでは、電子ペンと後述する描画装置との間で無線通信を行う。電子ペンは、電子ペンの内部で電子ペンの位置座標を算出し、算出した位置座標のデータを電子ペンから描画装置へ無線通信によって送信する。 Further, in the image display system in the present embodiment, wireless communication is performed between the electronic pen and a drawing apparatus described later. The electronic pen calculates the position coordinates of the electronic pen inside the electronic pen, and transmits data of the calculated position coordinates from the electronic pen to the drawing apparatus by wireless communication.
 同期検出サブフィールドSFoは、画像表示装置に座標検出サブフィールドが発生するタイミングを、電子ペンが正確に把握するためのサブフィールドである。電子ペンは、同期検出サブフィールドSFoで生じる発光を受光することで、画像表示装置と同期をとり、位置座標を算出するための基準となる信号(座標基準信号)を高い精度で発生することが可能になる。 The synchronization detection subfield SFo is a subfield for the electronic pen to accurately grasp the timing at which the coordinate detection subfield is generated in the image display device. The electronic pen receives light emitted in the synchronization detection subfield SFo to generate a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy by synchronizing with the image display device. It becomes possible.
 なお、各サブフィールドの発生順序は何ら本実施の形態に示す順番に限定されるものではない。また、座標検出サブフィールドは、必ずしも毎フィールドに設けなくともよい。 Note that the generation order of each subfield is not limited to the order shown in the present embodiment. Further, the coordinate detection subfield is not necessarily provided in each field.
 図4の同期検出サブフィールドSFoは、初期化期間Pio、書込み期間Pwo、および同期検出期間Poを有する。 The synchronization detection subfield SFo in FIG. 4 has an initialization period Pio, a writing period Pwo, and a synchronization detection period Po.
 初期化期間Pioでは、画像表示サブフィールドのサブフィールドSF2の初期化期間Pi2と同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Pio, the selection initialization operation similar to the initialization period Pi2 of the subfield SF2 of the image display subfield is performed, and thus the description thereof is omitted.
 同期検出サブフィールドSFoの書込み期間Pwoでは、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには電圧Veを印加し、走査電極SC1~SCnには電圧Vcを印加する。 In the address period Pwo of the synchronization detection subfield SFo, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. Apply.
 次に、データ電極D1~Dmに電圧Vdの書込みパルスを印加するとともに、時刻to0に電圧Vaの走査パルスを走査電極SC1~SCnに印加し、各放電セルに書込み放電を発生させる。 Next, an address pulse of voltage Vd is applied to data electrodes D1 to Dm, and a scan pulse of voltage Va is applied to scan electrodes SC1 to SCn at time to0 to generate an address discharge in each discharge cell.
 なお、図4に示す書込み期間Pwoでは、全ての走査電極SC1~SCnに一斉に走査パルスを印加して全ての放電セルに一斉に書込み放電を発生させているが、例えば、データ電極D1~Dmに書込みパルスを印加したまま、走査電極SC1から走査電極SCnまでの各電極に順次走査パルスを印加して、各放電セルに順次書込み放電を発生させてもよい。 In the address period Pwo shown in FIG. 4, a scan pulse is applied simultaneously to all the scan electrodes SC1 to SCn to generate address discharges in all the discharge cells at the same time. For example, the data electrodes D1 to Dm Alternatively, the address pulse may be applied to each electrode from scan electrode SC1 to scan electrode SCn, and the address discharge may be sequentially generated in each discharge cell.
 書込み動作を終了した後は、データ電極D1~Dmに電圧0(V)を印加する。また、走査電極SC1~SCnには電圧Vcを印加し、その後、電圧0(V)を印加する。本実施の形態では、時刻to1までの間、この状態を維持する。この期間は、放電セルに書込み放電が発生した後、放電が発生しない状態が維持される。 After the write operation is completed, voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained until time to1. During this period, after the address discharge is generated in the discharge cell, the state in which no discharge is generated is maintained.
 次に、同期検出サブフィールドSFoの同期検出期間Poでは、電子ペンにおける位置座標算出時の基準となる複数回の発光(同期検出用の発光)をパネル10に生じさせる。 Next, in the synchronization detection period Po of the synchronization detection subfield SFo, the panel 10 is caused to emit a plurality of times of light emission (light emission for synchronization detection) as a reference when calculating the position coordinates in the electronic pen.
 図4に示す例では、時刻to0から時間To0が経過した後の時刻to1において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV1を印加する。次に、時刻to1から時間To1が経過した後の時刻to2において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV2を印加する。次に、時刻to2から時間To2が経過した後の時刻to3において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV3を印加する。次に、時刻to3から時間To3が経過した後の時刻to4において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV4を印加する。 In the example shown in FIG. 4, at time to1 after time To0 has elapsed from time to0, voltage 0 (V) is applied to sustain electrodes SU1 to SUn and synchronous detection pulse V1 of voltage Vso is applied to scan electrodes SC1 to SCn. Apply. Next, at time to2 after time To1 has elapsed from time to1, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V2 of voltage Vso is applied to sustain electrodes SU1 to SUn. Next, at time to3 after time To2 has elapsed from time to2, voltage 0 (V) is applied to sustain electrodes SU1 to SUn, and synchronous detection pulse V3 of voltage Vso is applied to scan electrodes SC1 to SCn. Next, at time to4 after time To3 has elapsed from time to3, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V4 of voltage Vso is applied to sustain electrodes SU1 to SUn.
 これにより、パネル10の画像表示領域内にある全ての放電セルに4回の同期検出放電が発生し、同期検出用の発光がパネル10に4回生じる。 As a result, four synchronous detection discharges are generated in all the discharge cells in the image display area of the panel 10, and light emission for synchronous detection is generated four times in the panel 10.
 このように、同期検出サブフィールドSFoでは、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で、パネル10の画像表示領域内の全ての放電セルに、同期検出放電を複数回(例えば、4回)発生させ、同期検出用の発光を複数回(例えば、4回)生じさせる。 As described above, in the synchronization detection subfield SFo, the synchronization detection discharge is applied to all the discharge cells in the image display area of the panel 10 at predetermined time intervals (for example, time To1, time To2, and time To3). Is generated a plurality of times (for example, four times), and light emission for synchronization detection is generated a plurality of times (for example, four times).
 なお、この同期検出放電は、維持放電と同様の放電であって、書込み放電と比較して強い放電であり、書込み期間Pwoで発生する発光よりも輝度が高い。 The synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo.
 そして、電子ペンは、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で発生する複数回(例えば、4回)の同期検出用の発光を受光して座標基準信号を作成する。座標基準信号とは、電子ペンの位置座標(x,y)を算出する際に基準となる信号である。 Then, the electronic pen receives a plurality of times (for example, four times) of light emission for synchronization detection generated at predetermined time intervals (for example, time To1, time To2, and time To3) and receives the coordinate reference signal. Create The coordinate reference signal is a signal that serves as a reference when calculating the position coordinate (x, y) of the electronic pen.
 同期検出サブフィールドSFoでは、パネル10の画像表示面の全面が同じタイミングで一斉に光るので、電子ペンの位置座標がパネル10の画像表示領域内のどの位置にあっても、電子ペンはこの発光を同じタイミングで受光することができる。 In the synchronization detection subfield SFo, the entire surface of the image display surface of the panel 10 shines simultaneously at the same timing, so the electronic pen emits this light regardless of the position of the position of the electronic pen in the image display area of the panel 10. Can be received at the same timing.
 本実施の形態では、時間To0を、時間To1、時間To2、時間To3のいずれよりも長い時間に設定する。これは、電子ペンが、同期検出サブフィールドSFoの書込み期間Pwoに発生する書込み放電による発光を他の放電による発光と誤認識することを防止するためである。本実施の形態では、例えば、時間To0は約50μsecであり、時間To1は約40μsecであり、時間To2は約20μsecであり、時間To3は約30μsecである。しかし、各時間は何らこれらの数値に限定されるものではなく、画像表示システムの仕様等に応じて適切に設定すればよい。 In the present embodiment, the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is to prevent the electronic pen from erroneously recognizing the light emission due to the address discharge generated in the address period Pwo of the synchronization detection subfield SFo as the light emission due to another discharge. In the present embodiment, for example, the time To0 is about 50 μsec, the time To1 is about 40 μsec, the time To2 is about 20 μsec, and the time To3 is about 30 μsec. However, each time is not limited to these numerical values, and may be set appropriately according to the specifications of the image display system.
 同期検出サブフィールドSFoの同期検出期間Poにおいて、同期検出パルスV4の発生後(同期検出期間Poの最後)には、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、直前に同期検出放電を発生した放電セルに微弱な消去放電が発生する。 In the synchronization detection period Po of the synchronization detection subfield SFo, after the generation of the synchronization detection pulse V4 (at the end of the synchronization detection period Po), an erase operation similar to the erase operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. . As a result, a weak erasing discharge is generated in the discharge cell that has generated the synchronous detection discharge immediately before.
 続いて、近接用y座標検出サブフィールドSFy1を発生する。 Subsequently, the proximity y-coordinate detection subfield SFy1 is generated.
 以下、1つの行を構成する放電セルの集合体を「放電セル行」と記し、1つの行を構成する画素の集合体を「画素行」と記す。本実施の形態では、放電セル行と画素行とは実質的に同じものである。また、1つの列を構成する放電セルの集合体を「放電セル列」と記し、互いに隣接する3列の放電セル列で構成される放電セルの集合体(画素の列)を「画素列」と記す。 Hereinafter, an aggregate of discharge cells constituting one row is referred to as “discharge cell row”, and an aggregate of pixels constituting one row is referred to as “pixel row”. In the present embodiment, the discharge cell row and the pixel row are substantially the same. A group of discharge cells constituting one column is referred to as a “discharge cell column”, and a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”. .
 近接用y座標検出サブフィールドSFy1は、初期化期間Piyとy座標検出期間Py1と消去期間Peyとを有する。 The proximity y-coordinate detection subfield SFy1 has an initialization period Piy, a y-coordinate detection period Py1, and an erasing period Pey.
 初期化期間Piyでは、画像表示サブフィールドのサブフィールドSF2の初期化期間Pi2と同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くy座標検出期間Py1における近接用y座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Piy, the same selective initialization operation as in the initialization period Pi2 of the subfield SF2 of the image display subfield is performed to generate an initialization discharge in each discharge cell. Thus, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity y coordinate detection pattern display operation in the subsequent y coordinate detection period Py1.
 続くy座標検出期間Py1では、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、あらかじめ設定された「第1の数」の走査電極12に同時にy座標検出パルスを印加する動作を、走査電極SC1~SCnに対して順次行う。本実施の形態では「第1の数」を「1」とする例を示すが、「第1の数」は2以上であってもよい。 In the subsequent y-coordinate detection period Py1, the operation of simultaneously applying the y-coordinate detection pulse to the “first number” scanning electrodes 12 while applying the y-coordinate detection voltage Vdy to the data electrodes D1 to Dm, This is sequentially performed on scan electrodes SC1 to SCn. In this embodiment, an example in which the “first number” is “1” is shown, but the “first number” may be two or more.
 時刻ty01に始まるy座標検出期間Py1では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the y coordinate detection period Py1 starting at time ty01, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. To do.
 時刻ty01から時間Ty01が経過した後に、データ電極D1~Dmに正のy座標検出電圧Vdyを印加し、1行目の画素行を構成する走査電極SC1に電圧Vayの負極性のy座標検出パルスを印加する。この1行目の画素行は、例えば画像表示領域の上端に配置された画素行である。 After time Ty01 has elapsed from time ty01, positive y-coordinate detection voltage Vdy is applied to data electrodes D1 to Dm, and negative y-coordinate detection pulse of voltage Vay is applied to scan electrode SC1 constituting the first pixel row. Apply. This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
 y座標検出電圧Vdyを印加したデータ電極D1~Dmと、電圧Vayのy座標検出パルスを印加した走査電極SC1との交差部にある放電セルでは、一斉に放電が発生する。こうして1行目の画素行に放電が発生し、1行目の画素行が発光する。以下、この放電を「y座標検出放電」とも記す。このy座標検出放電による発光は、電子ペンを近接使用するときのy座標検出用の発光となる。 In the discharge cell at the intersection of the data electrodes D1 to Dm to which the y-coordinate detection voltage Vdy is applied and the scan electrode SC1 to which the y-coordinate detection pulse of the voltage Vay is applied, discharges are generated all at once. In this way, discharge occurs in the first pixel row, and the first pixel row emits light. Hereinafter, this discharge is also referred to as “y-coordinate detection discharge”. The light emission by this y-coordinate detection discharge becomes light emission for y-coordinate detection when the electronic pen is used in proximity.
 同様の動作を、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、走査電極SC2、走査電極SC3、・・・、走査電極SCnという順番で、n行目の放電セル行に至るまで順次行う。これにより、パネル10の上端の画素行(1行目の画素行)から下端の画素行(n行目の画素行)までの各画素行に、y座標検出放電が1画素行ずつ順次発生する。 The same operation is performed until the nth discharge cell row is reached in the order of scan electrode SC2, scan electrode SC3,..., Scan electrode SCn with the y coordinate detection voltage Vdy applied to data electrodes D1 to Dm. Do it sequentially. As a result, the y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 one pixel row at a time. .
 こうして、近接用y座標検出サブフィールドSFy1のy座標検出期間Py1では、「第1の数」に応じた幅(例えば、1画素行)で発光する1本の横線が、パネル10の画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで順次(例えば、1画素行ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the y-coordinate detection period Py1 of the proximity y-coordinate detection subfield SFy1, one horizontal line that emits light with a width corresponding to the “first number” (for example, one pixel row) is the image display area of the panel 10. A light emission pattern that sequentially moves (for example, one pixel row at a time) from the upper end portion (first pixel row) to the lower end portion (nth pixel row) is displayed on the panel 10.
 以下、この発光パターンを、「近接用y座標検出パターン」と記す。また、「第1の数」に応じた幅の1本の発光線を、「第1の発光線」と記す。例えば「第1の数」が2であれば、「近接用y座標検出パターン」は、2画素行の幅の「第1の発光線」が2画素行ずつy座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “proximity y coordinate detection pattern”. Further, one light emitting line having a width corresponding to the “first number” is referred to as “first light emitting line”. For example, if the “first number” is 2, the “proximity y coordinate detection pattern” is a light emission pattern in which the “first light emission line” having a width of two pixel rows sequentially moves in the y coordinate direction by two pixel rows. It becomes.
 y座標検出期間Py1では、近接用y座標検出パターンをパネル10に表示することで、電子ペンが第1の発光線の発光を受光するタイミングは、電子ペンの位置座標に応じて変化する。したがって、電子ペンで第1の発光線の発光を受光するタイミングを検出することで、電子ペンを近接使用するときの位置座標(x,y)のy座標を検出することができる。 In the y-coordinate detection period Py1, by displaying the proximity y-coordinate detection pattern on the panel 10, the timing at which the electronic pen receives light emitted from the first light emission line changes according to the position coordinates of the electronic pen. Therefore, the y coordinate of the position coordinates (x, y) when the electronic pen is used in proximity can be detected by detecting the timing at which the light emission of the first light emission line is received by the electronic pen.
 なお、本実施の形態では、図4に示すように、y座標検出期間Py1に走査電極SC1~SCnのそれぞれにy座標検出パルスの電圧Vayを印加する時間(または、y座標検出パルスのパルス幅)をTy11とする。このTy11は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y coordinate detection period Py1 (or the pulse width of the y coordinate detection pulse). ) Is Ty11. This Ty11 is, for example, about 1 μsec.
 近接用y座標検出サブフィールドSFy1の消去期間Peyでは、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、y座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erasing period Pey of the proximity y coordinate detection subfield SFy1, an erasing operation similar to the erasing operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the y-coordinate detection discharge.
 続く近接用x座標検出サブフィールドSFx1は、初期化期間Pixとx座標検出期間Px1と消去期間Pexを有する。 The subsequent proximity x-coordinate detection subfield SFx1 has an initialization period Pix, an x-coordinate detection period Px1, and an erasing period Pex.
 初期化期間Pixでは、維持電極SU1~SUnに電圧0(V)を印加したまま、近接用y座標検出サブフィールドSFy1の初期化期間Piyと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くx座標検出期間Px1における近接用x座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix, while the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn, the selective initialization operation similar to the initialization period Piy of the proximity y coordinate detection subfield SFy1 is performed, and each discharge cell is initialized. Generates a discharge. As a result, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px1.
 続く近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、あらかじめ設定された「第3の数」のデータ電極22に同時にx座標検出パルスを印加する動作を、データ電極D1~Dmに対して順次行う。本実施の形態では「第3の数」を「3」とする例を示すが、「第3の数」は3以外の数であってもよい。 In the subsequent x-coordinate detection period Px1 of the proximity x-coordinate detection subfield SFx1, the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the preset “third number” of data electrodes 22. The operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm. In the present embodiment, an example in which the “third number” is “3” is shown, but the “third number” may be a number other than three.
 時刻tx01に始まるx座標検出期間Px1では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加する。 In the x coordinate detection period Px1 starting at time tx01, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the negative x coordinate is applied to the scan electrodes SC1 to SCn. A detection voltage Vax is applied.
 時刻tx01から時間Tx01が経過した後に、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加したまま、1列目の画素列を構成するデータ電極D1~D3に電圧Vdxの正極性のx座標検出パルスを同時に印加する。この1列目の画素列は、例えば画像表示領域の左端に配置された画素列である。 After time Tx01 has elapsed from time tx01, positive x of voltage Vdx is applied to data electrodes D1 to D3 constituting the first pixel column while negative x coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn. Coordinate detection pulses are applied simultaneously. The first pixel column is, for example, a pixel column arranged at the left end of the image display area.
 電圧Vdxのx座標検出パルスを印加したデータ電極D1~D3と、x座標検出電圧Vaxを印加した走査電極SC1~SCnとの交差部にある放電セルでは、一斉に放電が発生する。こうして1列目の画素列に放電が発生し、1列目の画素列が発光する。以下、この放電を「x座標検出放電」とも記す。このx座標検出放電による発光は、電子ペンを近接使用するときのx座標検出用の発光となる。 In the discharge cells at the intersections of the data electrodes D1 to D3 to which the x-coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x-coordinate detection voltage Vax is applied, discharge is generated all at once. Thus, discharge occurs in the first pixel column, and the first pixel column emits light. Hereinafter, this discharge is also referred to as “x coordinate detection discharge”. The light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used in proximity.
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、データ電極D4~D6、データ電極D7~D9、・・・、データ電極Dm-2~Dmという順番で、互いに隣接する3本のデータ電極22毎に、m列目の放電セル列に至るまで順次行う。これにより、パネル10の左端の画素列(1列目の画素列)から右端の画素列(m/3列目の画素列)までの各画素列に、x座標検出放電が1画素列ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of data electrodes D4 to D6, data electrodes D7 to D9,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn. The three data electrodes 22 are sequentially performed until reaching the m-th discharge cell column. Thereby, the x coordinate detection discharge is sequentially performed on each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column (m / 3 pixel column) of the panel 10 one pixel column at a time. appear.
 こうして、近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、「第3の数」に応じた幅(例えば、1画素列)で発光する1本の縦線が、パネル10の画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次(例えば、1画素列ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the x-coordinate detection period Px1 of the proximity x-coordinate detection subfield SFx1, one vertical line that emits light with a width corresponding to the “third number” (for example, one pixel column) is displayed on the panel 10. A light emission pattern that sequentially moves (for example, one pixel column at a time) from the left end portion (first pixel column) of the region to the right end portion (m / 3 pixel column) is displayed on the panel 10.
 以下、この発光パターンを、「近接用x座標検出パターン」と記す。また、「第3の数」に応じた幅の1本の発光線を、「第2の発光線」と記す。例えば「第3の数」が6であれば、「近接用x座標検出パターン」は、2画素列の幅の「第2の発光線」が2画素列ずつx座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “proximity x coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “third number” is referred to as a “second light emitting line”. For example, if the “third number” is 6, the “proximity x coordinate detection pattern” is a light emission pattern in which the “second light emission line” having a width of two pixel columns sequentially moves in the x coordinate direction by two pixel columns. It becomes.
 x座標検出期間Px1では、近接用x座標検出パターンをパネル10に表示することで、電子ペンが第2の発光線の発光を受光するタイミングは、電子ペンの位置座標に応じて変化する。したがって、電子ペンで第2の発光線の発光を受光するタイミングを検出することで、電子ペンを近接使用するときの位置座標(x,y)のx座標を検出することができる。 In the x-coordinate detection period Px1, by displaying the proximity x-coordinate detection pattern on the panel 10, the timing at which the electronic pen receives light emitted from the second light emission line changes according to the position coordinates of the electronic pen. Therefore, the x coordinate of the position coordinate (x, y) when the electronic pen is used in proximity can be detected by detecting the timing at which the electronic pen receives the light emitted from the second light emitting line.
 なお、本実施の形態では、図4に示すように、x座標検出期間Px1にデータ電極D1~Dmのそれぞれにx座標検出パルスの電圧Vdxを印加する時間(または、x座標検出パルスのパルス幅)をTx11とする。このTx11は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time (or the pulse width of the x coordinate detection pulse) during which the voltage Vdx of the x coordinate detection pulse is applied to each of the data electrodes D1 to Dm in the x coordinate detection period Px1. ) Is Tx11. This Tx11 is, for example, about 1 μsec.
 近接用x座標検出サブフィールドSFx1の消去期間Pexでは、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、x座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erasing period Pex of the proximity x-coordinate detection subfield SFx1, an erasing operation similar to the erasing operation performed at the end of the sustaining period Ps1 of the subfield SF1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the x-coordinate detection discharge.
 続いて、遠隔用y座標検出サブフィールドSFy2を発生する。 Subsequently, the remote y-coordinate detection subfield SFy2 is generated.
 遠隔用y座標検出サブフィールドSFy2は、初期化期間Piyとy座標検出期間Py2と消去期間Peyとを有する。 The remote y-coordinate detection subfield SFy2 has an initialization period Piy, a y-coordinate detection period Py2, and an erasing period Pey.
 初期化期間Piyでは、近接用y座標検出サブフィールドSFy1の初期化期間Piyと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くy座標検出期間Py2における遠隔用y座標検出パターン表示動作に適した壁電圧に調整される。 In the initializing period Piy, the selective initializing operation similar to the initializing period Piy of the proximity y coordinate detection subfield SFy1 is performed to generate an initializing discharge in each discharge cell. Thereby, the wall voltage of each discharge cell is adjusted to the wall voltage suitable for the remote y coordinate detection pattern display operation in the subsequent y coordinate detection period Py2.
 続く遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、あらかじめ設定された「第2の数」の走査電極12に同時にy座標検出パルスを印加する動作を、走査電極SC1~SCnに対して順次行う。「第2の数」は近接用y座標検出サブフィールドSFy1のy座標検出期間Py1で用いた「第1の数」よりも大きい数値であり、本実施の形態では「第2の数」を「8」とする例を示すが、「第2の数」は8以外の数であってもよい。 In the subsequent y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, the y-coordinate detection voltage Vdy is applied to the data electrodes D1 to Dm, and y is simultaneously applied to the preset “second number” of scan electrodes 12. The operation of applying the coordinate detection pulse is sequentially performed on scan electrodes SC1 to SCn. The “second number” is a numerical value larger than the “first number” used in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1, and in the present embodiment, the “second number” is “ Although an example of “8” is shown, the “second number” may be a number other than 8.
 時刻ty02に始まるy座標検出期間Py2では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the y coordinate detection period Py2 starting at time ty02, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. To do.
 時刻ty02から時間Ty02が経過した後に、データ電極D1~Dmに正のy座標検出電圧Vdyを印加し、1~8行目の画素行を構成する走査電極SC1~SC8に電圧Vayの負極性のy座標検出パルスを同時に印加する。 After time Ty02 has elapsed from time ty02, positive y-coordinate detection voltage Vdy is applied to data electrodes D1 to Dm, and negative voltage Vay is applied to scan electrodes SC1 to SC8 constituting the first to eighth pixel rows. A y-coordinate detection pulse is applied simultaneously.
 y座標検出電圧Vdyを印加したデータ電極D1~Dmと、電圧Vayのy座標検出パルスを印加した走査電極SC1~SC8との交差部にある放電セルでは、一斉に放電が発生する。こうして1~8行目の画素行に一斉に放電が発生し、1~8行目の8本の画素行が一斉に発光する。以下、この放電も「y座標検出放電」と記す。このy座標検出放電による発光は、電子ペンを遠隔使用するときのy座標検出用の発光となる。 In the discharge cells at the intersections of the data electrodes D1 to Dm to which the y-coordinate detection voltage Vdy is applied and the scan electrodes SC1 to SC8 to which the y-coordinate detection pulse of the voltage Vay is applied, discharge is generated all at once. In this way, discharge is generated simultaneously in the 1st to 8th pixel rows, and 8 pixel rows in the 1st to 8th rows emit light all at once. Hereinafter, this discharge is also referred to as “y-coordinate detection discharge”. The light emission by this y-coordinate detection discharge is light emission for y-coordinate detection when the electronic pen is used remotely.
 同様の動作を、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、走査電極SC9~SC16、走査電極SC17~SC24、・・・、走査電極SCn-7~SCnという順番で、互いに隣接する8本の走査電極12毎に、n行目の放電セル行に至るまで順次行う。これにより、パネル10の上端の画素行(1行目の画素行)から下端の画素行(n行目の画素行)までの各画素行に、y座標検出放電が8画素行ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of scan electrodes SC9 to SC16, scan electrodes SC17 to SC24,..., Scan electrodes SCn-7 to SCn with the y coordinate detection voltage Vdy applied to the data electrodes D1 to Dm. For every eight scanning electrodes 12 to be performed, the steps are sequentially performed until the nth discharge cell row is reached. As a result, the y coordinate detection discharge is sequentially generated in each of the pixel rows from the uppermost pixel row (first pixel row) to the lowermost pixel row (nth pixel row) of the panel 10 by 8 pixel rows. .
 こうして、遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、「第2の数」に応じた幅(例えば、8画素行)で発光する1本の横線が、パネル10の画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで順次(例えば、8画素行ずつ)移動する発光パターンがパネル10に表示される。 Thus, in the y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, one horizontal line that emits light with a width corresponding to the “second number” (for example, 8 pixel rows) is the image display area of the panel 10. A light emission pattern that sequentially moves (for example, every 8 pixel rows) from the upper end portion (first pixel row) to the lower end portion (nth pixel row) is displayed on the panel 10.
 以下、この発光パターンを、「遠隔用y座標検出パターン」と記す。また、「第2の数」に応じた幅の1本の発光線を、「第3の発光線」と記す。例えば「第2の数」が16であれば、「遠隔用y座標検出パターン」は、16画素行の幅の「第3の発光線」が16画素行ずつy座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as a “remote y coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “second number” is referred to as a “third light emitting line”. For example, if the “second number” is 16, the “remote y coordinate detection pattern” is a light emission pattern in which the “third light emission line” having a width of 16 pixel rows sequentially moves in the y coordinate direction by 16 pixel rows. It becomes.
 第3の発光線は、上述した近接用の第1の発光線よりも幅が広く発光量が多い発光線である。したがって、電子ペンが第3の発光線の発光を受光できるパネル10までの距離は、第1の発光線の発光を受光できる距離よりも大きい。 The third light emitting line is a light emitting line having a wider width and a larger light emission amount than the first light emitting line for proximity described above. Therefore, the distance to the panel 10 where the electronic pen can receive the light emitted from the third light emitting line is larger than the distance that the light emitted from the first light emitting line can be received.
 y座標検出期間Py2では、遠隔用y座標検出パターンをパネル10に表示することで、電子ペンが第3の発光線の発光を受光するタイミングは、電子ペンの位置座標に応じて変化する。したがって、電子ペンで第3の発光線の発光を受光するタイミングを検出することで、電子ペンを遠隔使用するときの位置座標(x,y)のy座標を検出することができる。 In the y coordinate detection period Py2, by displaying the remote y coordinate detection pattern on the panel 10, the timing at which the electronic pen receives the light emitted from the third light emission line changes according to the position coordinates of the electronic pen. Therefore, the y coordinate of the position coordinate (x, y) when the electronic pen is used remotely can be detected by detecting the timing at which the electronic pen emits the light emitted from the third light emitting line.
 なお、本実施の形態では、図4に示すように、y座標検出期間Py2に走査電極SC1~SCnのそれぞれにy座標検出パルスの電圧Vayを印加する時間(または、y座標検出パルスのパルス幅)をTy12とする。このTy12は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time (or the pulse width of the y coordinate detection pulse) during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn in the y coordinate detection period Py2. ) Is Ty12. This Ty12 is, for example, about 1 μsec.
 遠隔用y座標検出サブフィールドSFy2の消去期間Peyでは、近接用y座標検出サブフィールドSFy1の消去期間Peyで行う消去動作と同様の消去動作を行う。これにより、y座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erase period Pey of the remote y coordinate detection subfield SFy2, the same erase operation as the erase operation performed in the erase period Pey of the proximity y coordinate detection subfield SFy1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the y-coordinate detection discharge.
 続く遠隔用x座標検出サブフィールドSFx2は、初期化期間Pixとx座標検出期間Px2と消去期間Pexを有する。 The subsequent remote x-coordinate detection subfield SFx2 has an initialization period Pix, an x-coordinate detection period Px2, and an erasing period Pex.
 初期化期間Pixでは、近接用x座標検出サブフィールドSFx1の初期化期間Pixと同様の選択初期化動作を行い、各放電セルに初期化放電を発生させる。これにより、各放電セルの壁電圧は、続くx座標検出期間Px2における遠隔用x座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix, a selective initialization operation similar to that in the initialization period Pix of the proximity x coordinate detection subfield SFx1 is performed to generate an initialization discharge in each discharge cell. Thereby, the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px2.
 続く遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、あらかじめ設定された「第4の数」のデータ電極22に同時にx座標検出パルスを印加する動作を、データ電極D1~Dmに対して順次行う。「第4の数」は近接用x座標検出サブフィールドSFx1のx座標検出期間Px1で用いた「第3の数」よりも大きい数値であり、本実施の形態では「第4の数」を「24」とする例を示すが、「第4の数」は24以外の数であってもよい。 In the subsequent x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, the x-coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and x is simultaneously applied to the “fourth” data electrode 22 set in advance. The operation of applying the coordinate detection pulse is sequentially performed on the data electrodes D1 to Dm. The “fourth number” is a numerical value larger than the “third number” used in the x coordinate detection period Px1 of the proximity x coordinate detection subfield SFx1, and in the present embodiment, the “fourth number” is “ Although an example of “24” is shown, the “fourth number” may be a number other than 24.
 時刻tx02に始まるx座標検出期間Px2では、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加する。 In the x coordinate detection period Px2 starting at time tx02, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the negative x coordinate is applied to the scan electrodes SC1 to SCn. A detection voltage Vax is applied.
 時刻tx02から時間Tx02が経過した後に、走査電極SC1~SCnに負のx座標検出電圧Vaxを印加したまま、1~8列目の画素列を構成するデータ電極D1~D24に電圧Vdxの正極性のx座標検出パルスを同時に印加する。 After the time Tx02 has elapsed from time tx02, the positive polarity of the voltage Vdx is applied to the data electrodes D1 to D24 constituting the first to eighth pixel columns while the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn. X-coordinate detection pulses are simultaneously applied.
 電圧Vdxのx座標検出パルスを印加したデータ電極D1~D24と、x座標検出電圧Vaxを印加した走査電極SC1~SCnとの交差部にある放電セルでは、一斉に放電が発生する。こうして1~8列目の画素列に一斉に放電が発生し、1~8列目の画素列が一斉に発光する。以下、この放電も「x座標検出放電」と記す。このx座標検出放電による発光は、電子ペンを遠隔使用するときのx座標検出用の発光となる。 In the discharge cells at the intersections of the data electrodes D1 to D24 to which the x-coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x-coordinate detection voltage Vax is applied, discharge is generated all at once. In this way, discharge is generated simultaneously in the first to eighth pixel columns, and the first to eighth pixel columns emit light all at once. Hereinafter, this discharge is also referred to as “x coordinate detection discharge”. The light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used remotely.
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、データ電極D25~D48、データ電極D49~D72、・・・、データ電極Dm-23~Dmという順番で、互いに隣接する24本のデータ電極22毎に、m列目の放電セル列に至るまで順次行う。これにより、パネル10の左端の画素列(1列目の画素列)から右端の画素列(m/3列目の画素列)までの各画素列に、x座標検出放電が8画素列ずつ順次発生する。 Similar operations are performed adjacent to each other in the order of data electrodes D25 to D48, data electrodes D49 to D72,..., Data electrodes Dm-23 to Dm, with the x coordinate detection voltage Vax applied to scan electrodes SC1 to SCn. For every 24 data electrodes 22, the process is sequentially performed until the mth discharge cell row is reached. As a result, the x coordinate detection discharge is sequentially applied to each pixel column from the leftmost pixel column (first pixel column) to the rightmost pixel column (m / 3 pixel column) of the panel 10 by eight pixel columns. appear.
 こうして、遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、「第4の数」に応じた幅(例えば、8画素列)で発光する1本の縦線が、パネル10の画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次(例えば、8画素列ずつ)移動する発光パターンがパネル10に表示される。 In this way, in the x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, one vertical line that emits light with a width corresponding to the “fourth number” (for example, 8 pixel columns) is displayed on the panel 10. A light emission pattern that sequentially moves (for example, by 8 pixel columns) from the left end portion (first pixel row) to the right end portion (m / 3 pixel row) of the region is displayed on the panel 10.
 以下、この発光パターンを、「遠隔用x座標検出パターン」と記す。また、x座標検出期間Px2で発生するy座標方向に延長した「第4の数」に応じた幅の1本の発光線を、「第4の発光線」と記す。例えば「第4の数」が48であれば、「遠隔用x座標検出パターン」は、16画素列の幅の「第4の発光線」が16画素列ずつx座標方向に順次移動する発光パターンとなる。 Hereinafter, this light emission pattern is referred to as “remote x coordinate detection pattern”. In addition, one light emitting line having a width corresponding to the “fourth number” generated in the y coordinate direction and generated in the x coordinate detection period Px2 is referred to as a “fourth light emitting line”. For example, if the “fourth number” is 48, the “remote x coordinate detection pattern” is a light emission pattern in which the “fourth light emission line” having a width of 16 pixel columns sequentially moves in the x coordinate direction by 16 pixel columns. It becomes.
 第4の発光線は、上述した近接用の第2の発光線よりも幅が広く発光量が多い発光線である。したがって、電子ペンが第4の発光線の発光を受光できるパネル10までの距離は、第2の発光線の発光を受光できる距離よりも大きい。 The fourth light emitting line is a light emitting line having a wider width and a larger amount of light emission than the second light emitting line for proximity described above. Accordingly, the distance to the panel 10 where the electronic pen can receive the light emitted from the fourth light emitting line is larger than the distance that the light emitted from the second light emitting line can be received.
 x座標検出期間Px2では、遠隔用x座標検出パターンをパネル10に表示することで、電子ペンが第4の発光線の発光を受光するタイミングは、電子ペンの位置座標に応じて変化する。したがって、電子ペンで第4の発光線の発光を受光するタイミングを検出することで、電子ペンを遠隔使用するときの位置座標(x,y)のx座標を検出することができる。 In the x-coordinate detection period Px2, by displaying the remote x-coordinate detection pattern on the panel 10, the timing at which the electronic pen receives the light emitted from the fourth light emission line changes according to the position coordinates of the electronic pen. Therefore, the x coordinate of the position coordinates (x, y) when the electronic pen is used remotely can be detected by detecting the timing at which the light emission of the fourth light emitting line is received by the electronic pen.
 なお、本実施の形態では、図4に示すように、x座標検出期間Px2にデータ電極D1~Dmのそれぞれにx座標検出パルスの電圧Vdxを印加する時間(または、x座標検出パルスのパルス幅)をTx12とする。このTx12は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time for applying the voltage Vdx of the x-coordinate detection pulse to each of the data electrodes D1 to Dm in the x-coordinate detection period Px2 (or the pulse width of the x-coordinate detection pulse) ) Is Tx12. This Tx12 is, for example, about 1 μsec.
 遠隔用x座標検出サブフィールドSFx2の消去期間Pexでは、近接用x座標検出サブフィールドSFx1の消去期間Pexで行う消去動作と同様の消去動作を行う。これにより、x座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erase period Pex of the remote x-coordinate detection subfield SFx2, an erase operation similar to the erase operation performed in the erase period Pex of the proximity x-coordinate detection subfield SFx1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the x-coordinate detection discharge.
 以上が、同期検出サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxの駆動電圧波形の概要である。 The above is the outline of the drive voltage waveforms of the synchronization detection subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
 以上のように、本実施の形態においては、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1では、発光輝度は相対的に低いが位置座標の算出精度は相対的に高いy座標検出パターンおよびx座標検出パターンをパネル10に表示する。一方、遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2では、位置座標の算出精度は相対的に低いが発光輝度は相対的に高いy座標検出パターンおよびx座標検出パターンをパネル10に表示する。 As described above, in this embodiment, in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1, the light emission luminance is relatively low, but the position coordinate calculation accuracy is relatively high. The coordinate detection pattern and the x coordinate detection pattern are displayed on the panel 10. On the other hand, in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2, the y-coordinate detection pattern and the x-coordinate detection pattern with relatively low emission coordinates and relatively high emission luminance are displayed. 10 is displayed.
 したがって、電子ペンをパネル10に接触または近接させて使用する近接使用時には、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1で生じる発光を検出対象とすることによって相対的に高い精度で位置座標を算出することができる。また、電子ペンを遠隔使用するときには、発光輝度が相対的に高い遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2で生じる発光を検出対象とすることによって、パネル10から離れた位置(例えば、数m程度)にある電子ペンにおいても位置座標を算出することが可能になる。 Therefore, when the electronic pen is used in contact with or in proximity to the panel 10, the light emission generated in the proximity y-coordinate detection subfield SFy1 and the proximity x-coordinate detection subfield SFx1 is set as a detection target, which is relatively high. The position coordinates can be calculated with accuracy. Further, when the electronic pen is used remotely, the light emission generated in the remote y-coordinate detection subfield SFy2 and the remote x-coordinate detection subfield SFx2 having a relatively high emission luminance is detected, and the electronic pen is separated from the panel 10. It is possible to calculate position coordinates even with an electronic pen located at a position (for example, about several meters).
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=200(V)、電圧Vi4=-175(V)、電圧Va=電圧Vay=電圧Vax=-200(V)、電圧Vc=-50(V)、電圧Vs=電圧Vso=205(V)、電圧Vr=205(V)、電圧Ve=155(V)、電圧Vd=電圧Vdy=電圧Vdx=55(V)である。 Note that the voltage values applied to the electrodes in this embodiment are, for example, the voltage Vi1 = 150 (V), the voltage Vi2 = 350 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −175 (V). , Voltage Va = voltage Vay = voltage Vax = −200 (V), voltage Vc = −50 (V), voltage Vs = voltage Vso = 205 (V), voltage Vr = 205 (V), voltage Ve = 155 (V ), Voltage Vd = voltage Vdy = voltage Vdx = 55 (V).
 また、初期化期間Pi1に発生する上り傾斜波形電圧の勾配は約1.5(V/μsec)であり、初期化期間Pi1~Pi8、Pio、Piy、Pixに発生する下り傾斜波形電圧の勾配は約-2.5(V/μsec)である。また、維持期間Ps1~Ps8、同期検出期間Po、消去期間Pey、Pexに発生する上り傾斜波形電圧の勾配は約10(V/μsec)である。 The gradient of the rising ramp waveform voltage generated in the initialization period Pi1 is about 1.5 (V / μsec), and the gradient of the descending ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy, Pix is It is about −2.5 (V / μsec). Further, the gradient of the rising ramp waveform voltage generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure period Pey, and Pex is about 10 (V / μsec).
 しかし、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、各電圧値や勾配等は、パネル10の放電特性や画像表示装置の仕様等にもとづき最適に設定することが望ましい。 However, the specific numerical values such as the voltage value and the gradient described above are merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
 次に、本実施の形態における画像表示システム100について説明する。 Next, the image display system 100 in the present embodiment will be described.
 図5は、本開示の実施の形態1における画像表示システム100の一構成例を概略的に示す図である。 FIG. 5 is a diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
 本実施の形態に示す画像表示システム100は、画像表示装置30、描画装置40、および複数の電子ペン50a、50b、50c、50dを構成要素に含み、電子ペン50a、50b、50c、50dと描画装置40との間で無線通信を行う。 The image display system 100 shown in the present embodiment includes an image display device 30, a drawing device 40, and a plurality of electronic pens 50a, 50b, 50c, and 50d as components, and drawing with the electronic pens 50a, 50b, 50c, and 50d. Wireless communication is performed with the device 40.
 なお、電子ペン50a、50b、50c、50dは互いに同じ構成であるため、以下の説明ではそれらをまとめて電子ペン50とも記す。また、画像表示システム100が有する電子ペン50は何ら4本に限定されるものではなく、5本以上または3本以下であってもよく、あるいは1本であってもよい。 Since the electronic pens 50a, 50b, 50c, and 50d have the same configuration, they are collectively referred to as the electronic pen 50 in the following description. The number of electronic pens 50 included in the image display system 100 is not limited to four, and may be five or more, three or less, or one.
 画像表示装置30は、画像を表示する画像表示部、および画像表示部を駆動する駆動回路を備えている。本実施の形態では、画像表示部としてパネル10を有するプラズマディスプレイ装置を画像表示装置30として用いる例を説明する。 The image display device 30 includes an image display unit that displays an image and a drive circuit that drives the image display unit. In the present embodiment, an example in which a plasma display device having a panel 10 as an image display unit is used as the image display device 30 will be described.
 画像表示装置30は、駆動回路として、画像信号処理部31、データ電極駆動部32、走査電極駆動部33、維持電極駆動部34、制御部35、および各回路ブロックに必要な電源を供給する電源部(図示せず)を備えている。そして、これらの駆動回路が、図3、図4を用いて説明した駆動電圧波形を発生してパネル10に印加し、パネル10を駆動する。 The image display device 30 has a power supply for supplying necessary power to the image signal processing unit 31, the data electrode driving unit 32, the scan electrode driving unit 33, the sustain electrode driving unit 34, the control unit 35, and each circuit block as a driving circuit. Part (not shown). These drive circuits generate the drive voltage waveform described with reference to FIGS. 3 and 4 and apply it to the panel 10 to drive the panel 10.
 画像信号処理部31には、外部から入力される画像信号、描画装置40から出力される描画信号、および制御部35から供給される制御信号が入力される。画像信号処理部31は、画像信号と描画信号とを合成してその合成後の信号にもとづき、またはいずれか一方の信号にもとづき、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定し、各階調値を、サブフィールド毎の点灯・非点灯を示す画像データ(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換して出力する。 The image signal processing unit 31 receives an image signal input from the outside, a drawing signal output from the drawing device 40, and a control signal supplied from the control unit 35. The image signal processing unit 31 combines the image signal and the drawing signal, and based on the combined signal or one of the signals, each of the discharge cells has red, green, and blue gradation values (one field). (Gradation value expressed by), and each gradation value is image data indicating lighting / non-lighting for each subfield (data in which light emission / non-light emission corresponds to digital signals “1” and “0”) To output.
 また、画像信号処理部31は、画像信号として送信されて来る信号から水平同期信号および垂直同期信号を分離し、その水平同期信号および垂直同期信号を制御部35に出力する。 In addition, the image signal processing unit 31 separates the horizontal synchronization signal and the vertical synchronization signal from the signal transmitted as the image signal, and outputs the horizontal synchronization signal and the vertical synchronization signal to the control unit 35.
 制御部35は、水平同期信号および垂直同期信号にもとづき各回路ブロックの動作を制御する各種の制御信号を発生し、発生した制御信号をそれぞれの回路ブロック(データ電極駆動部32、走査電極駆動部33、維持電極駆動部34、および画像信号処理部31等)へ供給する。 The control unit 35 generates various control signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal, and generates the generated control signal in each circuit block (data electrode drive unit 32, scan electrode drive unit). 33, sustain electrode drive unit 34, and image signal processing unit 31).
 データ電極駆動部32は、画像信号処理部31から出力される画像データと制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各データ電極D1~Dmに印加する。 The data electrode drive unit 32 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the image data output from the image signal processing unit 31 and the control signal supplied from the control unit 35, and each data electrode D1˜ Apply to Dm.
 維持電極駆動部34は、制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各維持電極SU1~SUnに印加する。 The sustain electrode driver 34 generates the drive voltage waveform shown in FIGS. 3 and 4 based on the control signal supplied from the controller 35 and applies it to the sustain electrodes SU1 to SUn.
 走査電極駆動部33は、制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各走査電極SC1~SCnに印加する。 The scan electrode drive unit 33 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the control signal supplied from the control unit 35 and applies the drive voltage waveforms to the scan electrodes SC1 to SCn.
 電子ペン50は、使用者が、電子ペン50をパネル10に直接接触または近接させて(近接使用)、または、パネル10から離れた位置から(遠隔使用)、画像表示装置30の画像表示領域に文字や図画等を入力するときに使用される。 The electronic pen 50 is placed in the image display area of the image display device 30 when the user directly contacts or approaches the electronic pen 50 to the panel 10 (proximity use) or away from the panel 10 (remote use). Used when inputting characters and drawings.
 電子ペン50は、座標検出サブフィールドにおいてパネル10に生じる発光を受光することで位置座標を検出する。位置座標は、上述したように、電子ペン50が、パネル10に表示されるy座標検出パターンおよびx座標検出パターンの発光を受光してy座標およびx座標を算出することによって検出される。 The electronic pen 50 detects the position coordinates by receiving light emitted from the panel 10 in the coordinate detection subfield. As described above, the position coordinates are detected by the electronic pen 50 receiving light emitted from the y coordinate detection pattern and the x coordinate detection pattern displayed on the panel 10 and calculating the y coordinate and the x coordinate.
 電子ペン50は、受光素子52、接触スイッチ53、同期検出部54、座標算出部56、および送信部58を備えている。 The electronic pen 50 includes a light receiving element 52, a contact switch 53, a synchronization detection unit 54, a coordinate calculation unit 56, and a transmission unit 58.
 また、図5には示していないが、電子ペン50は、電源スイッチ、パイロットランプ、手動スイッチ等も有する。電源スイッチは、電子ペン50の電源オン・オフを制御するためのスイッチである。パイロットランプは、複数の発光色を切替えて発光することが可能な発光素子(例えば、LED等)で構成され、電子ペン50の動作状態を発光・非発光または発光色を切替えて表示する。 Although not shown in FIG. 5, the electronic pen 50 has a power switch, a pilot lamp, a manual switch, and the like. The power switch is a switch for controlling the power on / off of the electronic pen 50. The pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color.
 接触スイッチ53は、電子ペン50の受光素子52が取付けられた側の先端部に設けられ、電子ペン50の先端部がパネル10の画像表示面に接触したかどうかを検知する。接触スイッチ53は、電子ペン50の先端部がパネル10に接触していればオンになってS1=「1」を出力し、接触していなければオフになってS1=「0」を出力する。 The contact switch 53 is provided at the tip of the electronic pen 50 on the side where the light receiving element 52 is attached, and detects whether the tip of the electronic pen 50 is in contact with the image display surface of the panel 10. The contact switch 53 is turned on to output S1 = "1" if the tip of the electronic pen 50 is in contact with the panel 10, and is turned off to output S1 = "0" if not in contact. .
 なお、使用者は、接触スイッチ53に代えて手動スイッチ(図示せず)を操作することでS1を切換え、電子ペン50を遠隔使用するときに画像表示面に文字や図画を入力することができる。また、使用者が手動スイッチを操作することで、描画モード(例えば描画に用いる線の色、線の太さ、線の種類、等)を任意に切り替えることができるように電子ペン50を構成してもよい。 The user can switch S1 by operating a manual switch (not shown) instead of the contact switch 53, and can input characters and drawings on the image display surface when the electronic pen 50 is used remotely. . Further, the electronic pen 50 is configured so that the user can arbitrarily switch the drawing mode (for example, the color of the line used for drawing, the thickness of the line, the type of line, etc.) by operating the manual switch. May be.
 受光素子52は、パネル10の画像表示面に生じる発光を受光して電気信号(受光信号)に変換し、その受光信号を、同期検出部54および座標算出部56に出力する。なお、本実施の形態において、電子ペン50の位置座標(x、y)とは、受光素子52がパネル10の画像表示面に生じる発光を受光する位置のことである。 The light receiving element 52 receives light emitted on the image display surface of the panel 10 and converts it into an electrical signal (light reception signal), and outputs the light reception signal to the synchronization detection unit 54 and the coordinate calculation unit 56. In the present embodiment, the position coordinate (x, y) of the electronic pen 50 is a position where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
 なお、電子ペン50は、パネル10の画像表示面に生じる発光を受光素子52に集光するための集光レンズを備えた構成であってもよい。 The electronic pen 50 may be configured to include a condensing lens for condensing the light emitted on the image display surface of the panel 10 onto the light receiving element 52.
 同期検出部54は、受光素子52から出力される受光信号にもとづき、同期検出サブフィールドSFoの同期検出期間Poに発生する同期検出用の発光(同期検出放電によって生じる発光)を検出する。具体的には、同期検出部54は、同期検出部54が有するタイマー(図示せず)を用いて、複数(例えば、4回)の発光の発生間隔を計測する。そして、その発生間隔があらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)に合致するかどうかを、同期検出部54に設定された複数のしきい値(例えば、時間To1、時間To2、時間To3に相当するしきい値)と計測された時間間隔とを比較することで判定する。 The synchronization detection unit 54 detects light emission for synchronization detection (light emission generated by the synchronization detection discharge) generated in the synchronization detection period Po of the synchronization detection subfield SFo based on the light reception signal output from the light receiving element 52. Specifically, the synchronization detection unit 54 measures a generation interval of a plurality of (for example, four times) emission using a timer (not shown) included in the synchronization detection unit 54. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
 同期検出部54では、あらかじめ設定された受光しきい値thと受光信号を比較し(図示せず)、受光しきい値th以上の受光信号に関して微分値を算出する等して局所的なピークが発生する時刻を検出し、各時刻を検出する。なお、放電を発生するための電圧を放電セルに印加する時刻と、実際に放電が発生して発光のピークが電子ペン50で検出される時刻との時間差をあらかじめ測定し、その時間差を各時刻の補正に用いてもよい。また、受光しきい値thは、例えば、受光素子52が安定して発光を検出できる受光信号の最低レベルに設定してもよい。 The synchronization detection unit 54 compares a light reception threshold value th and a light reception signal set in advance (not shown), and calculates a differential value for a light reception signal equal to or greater than the light reception threshold value th. The time that occurs is detected and each time is detected. The time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance. You may use for correction of. The light reception threshold th may be set to the lowest level of the light reception signal that allows the light receiving element 52 to stably detect light emission, for example.
 同期検出部54は、その連続する複数回(例えば、4回)の発光のうちの1つ(例えば、時刻to1に発生した発光)を基準にして座標基準信号を作成する。時刻to1は、同期検出サブフィールドSFoの同期検出期間Poにおいて走査電極SC1~SCnに1回目の同期検出パルスV1を印加する時刻である。 The synchronization detection unit 54 creates a coordinate reference signal based on one of the continuous multiple times (for example, four times) of light emission (for example, light emission generated at time to1). The time to1 is the time when the first synchronization detection pulse V1 is applied to the scan electrodes SC1 to SCn in the synchronization detection period Po of the synchronization detection subfield SFo.
 座標算出部56は、時間の長さを計測するカウンタと、カウンタの出力に演算を施す演算回路とを備える(図示せず)。 The coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
 そして、座標算出部56は、座標基準信号および受光信号にもとづき、y座標検出パターンの発光にもとづく信号およびx座標検出パターンの発光にもとづく信号を受光信号から選択的に取り出して画像表示領域における電子ペン50の位置座標(x、y)を算出し、算出した位置座標を送信部58に出力する。 Then, the coordinate calculation unit 56 selectively extracts a signal based on the light emission of the y coordinate detection pattern and a signal based on the light emission of the x coordinate detection pattern from the light reception signal based on the coordinate reference signal and the light reception signal, and outputs an electron in the image display area. The position coordinates (x, y) of the pen 50 are calculated, and the calculated position coordinates are output to the transmission unit 58.
 なお、同期検出部54、座標算出部56の動作の詳細は後述する。 Details of operations of the synchronization detection unit 54 and the coordinate calculation unit 56 will be described later.
 送信部58は、受光素子52から出力される受光信号にもとづく送信信号を出力する。送信部58は、電気信号をエンコードし、エンコード後の信号を例えば赤外線等の無線信号に変換して発信する発信回路を有する(図示せず)。そして、各電子ペン50に個別に付与されている固有の識別番号(ID)、座標算出部56が算出した電子ペン50の位置座標(x、y)を表す信号、接触スイッチ53(または手動スイッチ)の状態S1等をエンコードした後に無線信号に変換する。この無線信号が送信信号である。そして、この無線信号を描画装置40の受信部42に無線送信する。 The transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52. The transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal. A unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 56, a contact switch 53 (or a manual switch) ) Is encoded and then converted to a radio signal. This radio signal is a transmission signal. The wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
 描画装置40は、受信部42と描画部46を備えている。描画装置40は、電子ペン50の座標算出部56が算出した位置座標(x,y)にもとづく描画信号を作成し、画像表示装置30に出力する。この描画信号は、使用者が電子ペン50を用いて手書き入力した文字や図画等をパネル10に表示するための信号であり、画像信号と実質的に同じものである。 The drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46. The drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the electronic pen 50 and outputs the drawing signal to the image display device 30. This drawing signal is a signal for displaying on the panel 10 characters, drawings and the like handwritten by the user using the electronic pen 50, and is substantially the same as the image signal.
 受信部42は、電子ペン50の送信部58から無線送信される無線信号を受信し、その受信信号をデコードして電気信号に変換する変換回路を有する(図示せず)。そして、送信部58から無線送信される無線信号を、電子ペン50の識別番号(ID)、電子ペン50の位置座標(x、y)を表す信号、接触スイッチ53(または手動スイッチ)の状態を表す信号S1等に変換して描画部46に出力する。電子ペン50が複数のときは、各電子ペン50から送信されてくる各信号をそれぞれ受信してデコードする。 The receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is used to indicate the identification number (ID) of the electronic pen 50, the signal indicating the position coordinates (x, y) of the electronic pen 50, and the state of the contact switch 53 (or manual switch). It converts into the signal S1 etc. which represent, and outputs it to the drawing part 46. FIG. When there are a plurality of electronic pens 50, each signal transmitted from each electronic pen 50 is received and decoded.
 描画部46は、画像メモリ47を備える。そして、状態S1=1(接触スイッチ53または手動スイッチがオンの状態)のときに、受信部42から出力される位置座標(x,y)にもとづいて描画信号を作成し、画像メモリ47に蓄積する。したがって、画像メモリ47には、状態S1=1のときの位置座標(x,y)の変化の軌跡(使用者が電子ペン50を用いて入力した図画)を示す描画信号が蓄積される。そして、描画部46は、画像メモリ47に蓄積された描画信号を読み出して画像表示装置30に出力する。 The drawing unit 46 includes an image memory 47. Then, when the state S1 = 1 (the contact switch 53 or the manual switch is on), a drawing signal is created based on the position coordinates (x, y) output from the receiving unit 42 and stored in the image memory 47. To do. Therefore, the image memory 47 stores a drawing signal indicating a locus of change in the position coordinates (x, y) when the state S1 = 1 (a graphic input by the user using the electronic pen 50). The drawing unit 46 reads out the drawing signal stored in the image memory 47 and outputs the drawing signal to the image display device 30.
 画像表示システム100で使用されている電子ペン50の数が複数であれば、描画部46は、各電子ペン50の軌跡が互いに混同しないように位置座標(x,y)を互いに区別して描画信号を作成する。 If there are a plurality of electronic pens 50 used in the image display system 100, the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other. Create
 次に、画像表示装置30の維持電極駆動部34、データ電極駆動部32、走査電極駆動部33について図6、図7、図8を用いて説明する。なお、各回路ブロックは、制御部35から供給される制御信号にもとづき動作するが、各図面では、制御信号の経路の詳細は省略する。 Next, the sustain electrode drive unit 34, the data electrode drive unit 32, and the scan electrode drive unit 33 of the image display device 30 will be described with reference to FIGS. Each circuit block operates based on a control signal supplied from the control unit 35, but details of the path of the control signal are omitted in each drawing.
 図6は、本開示の実施の形態1における画像表示装置30の維持電極駆動部34の一構成例を概略的に示す回路図である。 FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
 維持電極駆動部34は、維持パルス発生回路80と一定電圧発生回路85を備えている。維持パルス発生回路80は、電力回収回路81と、スイッチング素子Q83、Q84を有する。電力回収回路81は、電力回収用のコンデンサC20、スイッチング素子Q21、Q22、逆流防止用のダイオードDi21、Di22、共振用のインダクタL21、L22を有する。 The sustain electrode driving unit 34 includes a sustain pulse generation circuit 80 and a constant voltage generation circuit 85. Sustain pulse generation circuit 80 includes a power recovery circuit 81 and switching elements Q83 and Q84. The power recovery circuit 81 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
 そして、維持パルス発生回路80は、図3、図4に示したタイミングで電圧Vsの維持パルスを発生し、維持電極SU1~SUnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV2、V4を維持電極SU1~SUnに印加する。 The sustain pulse generation circuit 80 generates a sustain pulse of the voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to the sustain electrodes SU1 to SUn. In the synchronization detection period Po of the synchronization detection subfield SFo, the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
 一定電圧発生回路85は、スイッチング素子Q86、Q87を有し、図3、図4に示したタイミングで維持電極SU1~SUnに電圧Veを印加する。 The constant voltage generation circuit 85 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
 図7は、本開示の実施の形態1における画像表示装置30のデータ電極駆動部32の一構成例を概略的に示す回路図である。 FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
 データ電極駆動部32は、画像信号処理部31から供給される画像データおよび制御信号にもとづき動作するが、図7では、それらの信号の経路の詳細は省略する。 The data electrode driving unit 32 operates based on the image data and control signals supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
 データ電極駆動部32は、スイッチング素子Q91H1~Q91Hm、Q91L1~Q91Lmを有する。そして、データ電極駆動部32は、図3、図4に示したタイミングで、各書込み期間では電圧Vdの書込みパルスを、y座標検出期間Pyではy座標検出電圧Vdy(=電圧Vd)を、x座標検出期間Pxでは電圧Vdx(=電圧Vd)のx座標検出パルスを、各データ電極D1~Dmに印加する。 The data electrode driver 32 includes switching elements Q91H1 to Q91Hm and Q91L1 to Q91Lm. Then, the data electrode driving unit 32 outputs the write pulse of the voltage Vd in each write period, the y-coordinate detection voltage Vdy (= voltage Vd) in the y-coordinate detection period Py, and the timing shown in FIGS. In the coordinate detection period Px, an x-coordinate detection pulse of voltage Vdx (= voltage Vd) is applied to each data electrode D1 to Dm.
 図8は、本開示の実施の形態1における画像表示装置30の走査電極駆動部33の一構成例を概略的に示す回路図である。 FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the first embodiment of the present disclosure.
 走査電極駆動部33は、維持パルス発生回路55と、傾斜波形電圧発生回路60と、走査パルス発生回路70とを備えている。以下、走査パルス発生回路70に入力される電圧を「基準電位A」と記す。 The scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70. Hereinafter, the voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
 維持パルス発生回路55は、電力回収回路51と、スイッチング素子Q55、Q56、Q59を有する。電力回収回路51は、電力回収用のコンデンサC10、スイッチング素子Q11、Q12、逆流防止用のダイオードDi11、Di12、共振用のインダクタL11、L12を有する。スイッチング素子Q59は分離スイッチであり、電流の逆流を防止する。 Sustain pulse generation circuit 55 includes power recovery circuit 51 and switching elements Q55, Q56, and Q59. The power recovery circuit 51 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12. The switching element Q59 is a separation switch, and prevents reverse current flow.
 そして、維持パルス発生回路55は、図3、図4に示したタイミングで電圧Vsの維持パルスを発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV1、V3を発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。 Then, sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 70.
 傾斜波形電圧発生回路60は、ミラー積分回路61、62、63を備え、図3、図4に示した傾斜波形電圧を発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。 The ramp waveform voltage generation circuit 60 includes Miller integration circuits 61, 62, and 63, generates the ramp waveform voltage shown in FIGS. 3 and 4, and applies it to the scan electrodes SC1 to SCn via the scan pulse generation circuit. .
 ミラー積分回路61は、トランジスタQ61とコンデンサC61と抵抗R61とを有し、電圧Vt(=電圧Vi2)に向かって緩やかに上昇する上り傾斜波形電圧を発生する。あるいは、電圧Vtに電圧Vpを重畳した電圧が電圧Vi2に等しくなるように各電圧を設定してもよい。 Miller integrating circuit 61 includes transistor Q61, capacitor C61, and resistor R61, and generates an upward ramp waveform voltage that gradually rises toward voltage Vt (= voltage Vi2). Alternatively, each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
 ミラー積分回路62は、トランジスタQ62とコンデンサC62と抵抗R62と逆流防止用のダイオードDi62とを有し、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧を発生する。 Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and backflow preventing diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
 ミラー積分回路63は、トランジスタQ63とコンデンサC63と抵抗R63とを有し、電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧を発生する。 Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
 スイッチング素子Q69は分離スイッチであり、電流の逆流を防止する。 Switching element Q69 is a separation switch and prevents reverse current flow.
 走査パルス発生回路70は、スイッチング素子QH1~QHn、QL1~QLn、Q72、負の電圧Vaを発生する電源、電圧Vpを発生する電源E71を有する。スイッチング素子QHiとスイッチング素子QLi(i=1~n)の接続点は走査電極駆動部33の出力端子であり、走査電極SCiに接続されている。 The scan pulse generating circuit 70 includes switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates a negative voltage Va, and a power source E71 that generates a voltage Vp. A connection point between the switching element QHi and the switching element QLi (i = 1 to n) is an output terminal of the scan electrode driver 33 and is connected to the scan electrode SCi.
 スイッチング素子Q72は、基準電位Aを負の電圧Va(=電圧Vay=電圧Vax)にクランプする。スイッチング素子QL1~QLnは、基準電位Aを走査電極SC1~SCnに印加し、スイッチング素子QH1~QHnは、基準電位Aに電圧Vpを重畳した電圧を走査電極SC1~SCnに印加する。 Switching element Q72 clamps reference potential A to negative voltage Va (= voltage Vay = voltage Vax). Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路70は、基準電位Aを電圧Vaにクランプするとともに基準電位Aに電圧Vpを重畳して電圧Vc(Vc=Va+Vp)を発生し、電圧Vaと電圧Vcとを切り換えながら走査パルスを発生して走査電極SC1~SCnに印加する。 Then, the scan pulse generation circuit 70 clamps the reference potential A to the voltage Va and superimposes the voltage Vp on the reference potential A to generate the voltage Vc (Vc = Va + Vp), and scans while switching between the voltage Va and the voltage Vc. A pulse is generated and applied to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路70は、画像表示サブフィールドの各書込み期間では、図3に示したタイミングで走査パルスを発生し、走査電極SC1~SCnのそれぞれに順次印加する。 The scan pulse generation circuit 70 generates a scan pulse at the timing shown in FIG. 3 and sequentially applies it to each of the scan electrodes SC1 to SCn in each address period of the image display subfield.
 また、走査パルス発生回路70は、図4に示したように、y座標検出期間Pyでは電圧Vay(=電圧Va)のy座標検出パルスを発生し、x座標検出期間Pxではx座標検出電圧Vax(=電圧Va)を発生して、走査電極SC1~SCnに印加する。 Further, as shown in FIG. 4, the scan pulse generation circuit 70 generates a y-coordinate detection pulse of voltage Vay (= voltage Va) in the y-coordinate detection period Py, and the x-coordinate detection voltage Vax in the x-coordinate detection period Px. (= Voltage Va) is generated and applied to scan electrodes SC1 to SCn.
 スイッチング素子QHiとスイッチング素子QLiのペアは、複数個(図8に示す例では60ペア)が1つのIC(走査ドライバIC)に集積化されている。 A plurality of pairs of switching elements QHi and switching elements QLi (60 pairs in the example shown in FIG. 8) are integrated in one IC (scan driver IC).
 次に、図5に示した電子ペン50の同期検出部54、座標算出部56の動作を図9、図10を用いて説明する。 Next, operations of the synchronization detection unit 54 and the coordinate calculation unit 56 of the electronic pen 50 shown in FIG. 5 will be described with reference to FIGS.
 図9は、本開示の実施の形態1における画像表示システム100において電子ペン50を近接使用するときの位置座標検出動作の一例を概略的に示す図である。 FIG. 9 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
 図10は、本開示の実施の形態1における画像表示システム100において電子ペン50を遠隔使用するときの位置座標検出動作の一例を概略的に示す図である。 FIG. 10 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
 図9、図10には、駆動電圧波形に加え、座標算出部56に入力される座標基準信号det、および受光素子52から出力される受光信号を示す。なお、図9、図10に示す駆動電圧波形は、図4に示した駆動電圧波形と同じものである。 9 and 10 show the coordinate reference signal det input to the coordinate calculation unit 56 and the light reception signal output from the light receiving element 52 in addition to the drive voltage waveform. The drive voltage waveforms shown in FIGS. 9 and 10 are the same as the drive voltage waveforms shown in FIG.
 本実施の形態における画像表示装置30では、時刻to1から時刻ty01(近接用y座標検出期間Py1が開始する時刻)までの時間Toy1(図9)、時刻to1から時刻tx01(近接用x座標検出期間Px1が開始する時刻)までの時間Tox1(図9)、時刻to1から時刻ty02(遠隔用y座標検出期間Py2が開始する時刻)までの時間Toy2(図10)、および時刻to1から時刻tx02(遠隔用x座標検出期間Px2が開始する時刻)までの時間Tox2(図10)のそれぞれは、あらかじめ定められている。 In the image display device 30 according to the present embodiment, the time Toy1 (FIG. 9) from the time to1 to the time ty01 (the time when the proximity y coordinate detection period Py1 starts), and the time tx01 (the proximity x coordinate detection period). Time Tox1 (FIG. 9) from time to Px1 (time starting Px1), Time Toy2 (FIG. 10) from time to1 to time ty02 (time starting remote y-coordinate detection period Py2), and Time to1 to time tx02 (remote) Each of the times Tox2 (FIG. 10) up to (the time when the x coordinate detection period Px2 starts) is determined in advance.
 したがって、同期検出部54は、発光の間隔が順に、時間To1、時間To2、時間To3となる連続する4回の発光を検出して時刻to1を特定し、時刻to1を基準にして時刻ty01、時刻tx01、時刻ty02および時刻tx02のそれぞれに立上りエッジがある座標基準信号detを発生して後段の座標算出部56に出力する。 Therefore, the synchronization detecting unit 54 detects the four consecutive light emission intervals of the light emission intervals of time To1, time To2, and time To3, specifies time to1, and uses time to1 as a reference to time ty01 and time A coordinate reference signal det having rising edges at each of tx01, time ty02, and time tx02 is generated and output to the subsequent coordinate calculation unit 56.
 なお、同期検出部54は、上述したように、受光しきい値th以上の受光信号に関して局所的なピークが発生する時刻を検出し、各時刻や各時間を検出する。 Note that, as described above, the synchronization detection unit 54 detects the time at which a local peak occurs with respect to a light reception signal equal to or greater than the light reception threshold th, and detects each time and each time.
 なお、座標基準信号detは、本実施の形態では時刻to1を基準にして発生したが、時刻to1に限らず時刻to2、to3、to4のいずれかを基準にして発生してもよい。 Note that the coordinate reference signal det is generated based on the time to1 in this embodiment, but may be generated based on any one of the times to2, to3, and to4 without being limited to the time to1.
 座標算出部56は、電子ペン50が近接使用されるときは、図9に示すように、近接用y座標検出サブフィールドSFy1および近接用x座標検出サブフィールドSFx1の発光にもとづき位置座標の算出を行う。 When the electronic pen 50 is used in proximity, the coordinate calculation unit 56 calculates position coordinates based on the light emission of the proximity y coordinate detection subfield SFy1 and the proximity x coordinate detection subfield SFx1, as shown in FIG. Do.
 具体的には、座標算出部56は、座標基準信号detにもとづき、時刻ty01から、時刻ty01以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻tyy1までの時間Tyy1を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Tyy1から時間Ty01を減算し、その減算結果をTy11(y座標検出パルスのパルス幅)で除算する。そして、その除算結果に第1の数を乗算する。すなわち、
y座標=第1の数×((Tyy1-Ty01)/Ty11)となる。
Specifically, based on the coordinate reference signal det, the coordinate calculation unit 56 first determines a time Tyy1 from time ty01 to time ty1 when the light receiving element 52 first receives light emission equal to or greater than the light reception threshold th after time ty01. Is measured with a counter provided inside. Then, an internal arithmetic circuit subtracts the time Ty01 from the time Tyy1 and divides the subtraction result by Ty11 (pulse width of the y coordinate detection pulse). Then, the division result is multiplied by the first number. That is,
y coordinate = first number × ((Tyy1−Ty01) / Ty11).
 次に、座標算出部56は、座標基準信号detにもとづき、時刻tx01から、時刻tx01以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻txx1までの時間Txx1を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Txx1から時間Tx01を減算し、その減算結果をTx11(x座標検出パルスのパルス幅)で除算する。そして、その除算結果に(第3の数/3)を乗算する。すなわち、
x座標=(第3の数/3)×((Txx1-Tx01)/Tx11)となる。なお、この「3」は1画素を構成する放電セルの数である。
Next, based on the coordinate reference signal det, the coordinate calculation unit 56 internally stores a time Txx1 from time tx01 to time txx1 when the light receiving element 52 first receives light emission equal to or greater than the light receiving threshold th after time tx01. Measure with the counter provided. Then, an internal arithmetic circuit subtracts the time Tx01 from the time Txx1, and divides the subtraction result by Tx11 (pulse width of the x coordinate detection pulse). Then, the division result is multiplied by (third number / 3). That is,
x coordinate = (third number / 3) × ((Txx1−Tx01) / Tx11). Note that “3” is the number of discharge cells constituting one pixel.
 このようにして座標算出部56は近接使用される電子ペン50の位置座標(x、y)を算出する。 In this way, the coordinate calculation unit 56 calculates the position coordinates (x, y) of the electronic pen 50 used in proximity.
 座標算出部56は、電子ペン50が遠隔使用されるときは、図10に示すように、遠隔用y座標検出サブフィールドSFy2および遠隔用x座標検出サブフィールドSFx2の発光にもとづき位置座標の算出を行う。 When the electronic pen 50 is used remotely, the coordinate calculation unit 56 calculates position coordinates based on the light emission of the remote y coordinate detection subfield SFy2 and the remote x coordinate detection subfield SFx2, as shown in FIG. Do.
 具体的には、座標算出部56は、座標基準信号detにもとづき、時刻ty02から、時刻ty02以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻tyy2までの時間Tyy2を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Tyy2から時間Ty02を減算し、その減算結果をTy12(y座標検出パルスのパルス幅)で除算する。そして、その除算結果に第2の数を乗算する。すなわち、
y座標=第2の数×((Tyy2-Ty02)/Ty12)となる。
Specifically, the coordinate calculation unit 56, based on the coordinate reference signal det, time Tyy2 from time ty02 to time tyy2 from when light reception element 52 first receives light emission equal to or greater than light reception threshold th after time ty02. Is measured with a counter provided inside. Then, an internal arithmetic circuit subtracts the time Ty02 from the time Tyy2, and divides the subtraction result by Ty12 (pulse width of the y coordinate detection pulse). Then, the division result is multiplied by the second number. That is,
y coordinate = second number × ((Tyy2−Ty02) / Ty12).
 次に、座標算出部56は、座標基準信号detにもとづき、時刻tx02から、時刻tx02以降に最初に受光素子52で受光しきい値th以上の発光が受光される時刻txx2までの時間Txx2を内部に備えたカウンタで測定する。そして、内部に備えた演算回路で、時間Txx2から時間Tx02を減算し、その減算結果をTx12(x座標検出パルスのパルス幅)で除算する。そして、その除算結果に(第4の数/3)を乗算する。すなわち、
x座標=(第4の数/3)×((Txx2-Tx02)/Tx12)となる。なお、この「3」は1画素を構成する放電セルの数である。
Next, based on the coordinate reference signal det, the coordinate calculation unit 56 internally stores a time Txx2 from time tx02 to time txx2 at which the light receiving element 52 first receives light emission equal to or greater than the light receiving threshold th after time tx02. Measure with the counter provided. Then, an internal arithmetic circuit subtracts the time Txx02 from the time Txx2, and divides the subtraction result by Tx12 (pulse width of the x coordinate detection pulse). Then, the division result is multiplied by (fourth number / 3). That is,
x coordinate = (fourth number / 3) × ((Txx2−Tx02) / Tx12). Note that “3” is the number of discharge cells constituting one pixel.
 このようにして座標算出部56は遠隔使用される電子ペン50の位置座標(x、y)を算出する。 In this way, the coordinate calculation unit 56 calculates the position coordinates (x, y) of the electronic pen 50 used remotely.
 次に、本実施の形態における画像表示システム100の動作について説明する。 Next, the operation of the image display system 100 in the present embodiment will be described.
 図11は、本開示の実施の形態1における画像表示システム100において電子ペン50を近接使用するときの動作の一例を概略的に示す図である。 FIG. 11 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in proximity in the image display system 100 according to the first embodiment of the present disclosure.
 図12は、本開示の実施の形態1における画像表示システム100において電子ペン50を遠隔使用するときの動作の一例を概略的に示す図である。 FIG. 12 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is remotely used in the image display system 100 according to the first embodiment of the present disclosure.
 図11に示すように、近接用y座標検出サブフィールドSFy1のy座標検出期間Py1では、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第1の発光線Ly1がパネル10に表示される。また、近接用x座標検出サブフィールドSFx1のx座標検出期間Px1では、画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次移動する第2の発光線Lx1がパネル10に表示される。 As shown in FIG. 11, in the y coordinate detection period Py1 of the proximity y coordinate detection subfield SFy1, the first light emission that sequentially moves from the upper end (first row) to the lower end (n row) of the image display area. The line Ly1 is displayed on the panel 10. Further, in the x-coordinate detection period Px1 of the proximity x-coordinate detection subfield SFx1, the image display area sequentially moves from the left end portion (first pixel column) to the right end portion (m / 3 pixel row). Two emission lines Lx1 are displayed on the panel 10.
 したがって、近接使用される電子ペン50の受光素子52がパネル10の画像表示面の「座標(x,y)」の発光を受光すれば、第1の発光線Ly1が座標(x,y)を通過する時刻tyy1と、第2の発光線Lx1が座標(x,y)を通過する時刻txx1において、受光素子52は発光を受光する。 Therefore, if the light receiving element 52 of the electronic pen 50 used in the proximity receives light emission of “coordinate (x, y)” on the image display surface of the panel 10, the first light emitting line Ly 1 changes the coordinate (x, y). The light receiving element 52 receives light emission at the passing time tyy1 and the time txx1 when the second light emitting line Lx1 passes the coordinates (x, y).
 これにより、受光素子52は、図9に示したように、第1の発光線Ly1の発光を受光したことを示す受光信号を時刻tyy1において出力し、第2の発光線Lx1の発光を受光したことを示す受光信号を時刻txx1において出力する。 Accordingly, as shown in FIG. 9, the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly1 is received at time tyy1, and receives the light emission of the second light emission line Lx1. A light reception signal indicating this is output at time txx1.
 図12に示すように、遠隔用y座標検出サブフィールドSFy2のy座標検出期間Py2では、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第3の発光線Ly2がパネル10に表示される。また、遠隔用x座標検出サブフィールドSFx2のx座標検出期間Px2では、画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次移動する第4の発光線Lx2がパネル10に表示される。 As shown in FIG. 12, in the y-coordinate detection period Py2 of the remote y-coordinate detection subfield SFy2, the third light emission that sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area. The line Ly2 is displayed on the panel 10. Further, in the x-coordinate detection period Px2 of the remote x-coordinate detection subfield SFx2, the image display area sequentially moves from the left end (first pixel column) to the right end (m / 3 column). Four emission lines Lx2 are displayed on the panel 10.
 したがって、遠隔使用される電子ペン50の受光素子52がパネル10の画像表示面の「座標(x,y)」の発光を受光すれば、第3の発光線Ly2が座標(x,y)を通過する時刻tyy2と、第4の発光線Lx2が座標(x,y)を通過する時刻txx2において、受光素子52は発光を受光する。 Therefore, if the light receiving element 52 of the electronic pen 50 used remotely receives light of “coordinate (x, y)” on the image display surface of the panel 10, the third light emitting line Ly 2 changes the coordinate (x, y). The light receiving element 52 receives light emission at the passing time tyy2 and at the time txx2 when the fourth light emitting line Lx2 passes the coordinates (x, y).
 これにより、受光素子52は、図10に示したように、第3の発光線Ly2の発光を受光したことを示す受光信号を時刻tyy2において出力し、第4の発光線Lx2の発光を受光したことを示す受光信号を時刻txx2において出力する。 Accordingly, as shown in FIG. 10, the light receiving element 52 outputs a light reception signal indicating that the light emission of the third light emission line Ly2 is received at time tyy2, and receives the light emission of the fourth light emission line Lx2. A light reception signal indicating this is output at time txx2.
 なお、電子ペン50における近接使用と遠隔使用の切換えは、例えば、電子ペン50に切換え用のスイッチを設け、そのスイッチのオン/オフにより行うように構成してもよい。あるいは、電子ペン50に集光レンズを装着することでそのスイッチの切換えが行われるように構成してもよい。あるいは、第1の発光線Ly1による受光信号が受光しきい値th以上であれば第1の発光線Ly1による受光信号にもとづきy座標を算出し、第1の発光線Ly1による受光信号が受光しきい値th未満であれば第3の発光線Ly2による受光信号にもとづきy座標を算出するように座標算出部56を構成してもよい。同様に、第2の発光線Lx1による受光信号が受光しきい値th以上であれば第2の発光線Lx1による受光信号にもとづきx座標を算出し、第2の発光線Lx1による受光信号が受光しきい値th未満であれば第4の発光線Lx2による受光信号にもとづきx座標を算出するように座標算出部56を構成してもよい。 Note that switching between proximity use and remote use in the electronic pen 50 may be performed by, for example, providing a switch for switching in the electronic pen 50 and turning on / off the switch. Alternatively, the electronic pen 50 may be configured to be switched by attaching a condensing lens. Alternatively, if the light reception signal by the first light emission line Ly1 is equal to or greater than the light reception threshold th, the y coordinate is calculated based on the light reception signal by the first light emission line Ly1, and the light reception signal by the first light emission line Ly1 is received. If it is less than the threshold value th, the coordinate calculation unit 56 may be configured to calculate the y-coordinate based on the light reception signal from the third light-emitting line Ly2. Similarly, if the light reception signal by the second light emission line Lx1 is equal to or greater than the light reception threshold th, the x coordinate is calculated based on the light reception signal by the second light emission line Lx1, and the light reception signal by the second light emission line Lx1 is received. If it is less than the threshold th, the coordinate calculation unit 56 may be configured to calculate the x-coordinate based on the light reception signal from the fourth light emission line Lx2.
 図13は、本開示の実施の形態1における画像表示システム100において電子ペン50による手書き入力を行うときの動作の一例を概略的に示す図である。 FIG. 13 is a diagram schematically illustrating an example of an operation when performing handwriting input with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
 図13には電子ペン50を近接使用するときの例を示す。 FIG. 13 shows an example when the electronic pen 50 is used in proximity.
 描画部46は、図13に示すように、位置座標(x,y)に対応する画素を中心に、描画モードに応じた色および大きさの描画パターン(例えば、白色の丸等のパターン)の描画信号を発生する。この描画信号は、状態S1=1(接触スイッチ53または手動スイッチがオンの状態)の期間、描画部46の画像メモリ47に蓄積される。そして、画像表示装置30は、描画部46の画像メモリ47に蓄積された描画信号にもとづく画像をパネル10に表示する。 As shown in FIG. 13, the drawing unit 46 draws a drawing pattern (for example, a pattern such as a white circle) having a color and a size corresponding to the drawing mode around the pixel corresponding to the position coordinate (x, y). Generate a drawing signal. This drawing signal is accumulated in the image memory 47 of the drawing unit 46 during the period of the state S1 = 1 (the contact switch 53 or the manual switch is on). Then, the image display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 46 on the panel 10.
 したがって、例えば図13に示すように、使用者が電子ペン50の位置座標を移動させると、その移動の軌跡を示す図柄がパネル10に表示される。こうして、パネル10には、電子ペン50を用いて手書き入力された図画が表示される。 Therefore, for example, as shown in FIG. 13, when the user moves the position coordinates of the electronic pen 50, a symbol indicating the locus of the movement is displayed on the panel 10. Thus, the panel 10 displays a graphic input by handwriting using the electronic pen 50.
 以上のように、本実施の形態に示す画像表示装置30では、「第1の数」に応じた幅で発光する第1の発光線Ly1をパネル10に表示する近接用y座標検出サブフィールドSFy1と、「第3の数」に応じた幅で発光する第2の発光線Lx1をパネル10に表示する近接用x座標検出サブフィールドSFx1に加え、「第1の数」よりも大きい「第2の数」に応じた幅で発光する第3の発光線Ly2をパネル10に表示する遠隔用y座標検出サブフィールドSFy2と、「第3の数」よりも大きい「第4の数」に応じた幅で発光する第4の発光線Lx2をパネル10に表示する遠隔用x座標検出サブフィールドSFx2を発生する。 As described above, in the image display device 30 according to the present embodiment, the proximity y-coordinate detection subfield SFy1 that displays the first light-emitting line Ly1 that emits light with a width corresponding to the “first number” on the panel 10. In addition to the proximity x-coordinate detection subfield SFx1 for displaying on the panel 10 the second light emitting line Lx1 that emits light with a width corresponding to the “third number”, the “second number” is larger than the “first number”. The remote y-coordinate detection subfield SFy2 for displaying on the panel 10 the third light-emitting line Ly2 that emits light with a width corresponding to the “number”, and the “fourth number” larger than the “third number” A remote x-coordinate detection subfield SFx2 for displaying on the panel 10 the fourth light-emitting line Lx2 that emits light with a width is generated.
 これにより、パネル10から離れた位置にあり第1の発光線Ly1および第2の発光線Lx1による発光を位置座標算出に十分な強度で受光できない電子ペン50においても、第3の発光線Ly2および第4の発光線Lx2による発光を受光して位置座標を算出することが可能になるので、電子ペン50を遠隔使用することが可能になる。 As a result, even in the electronic pen 50 that is located away from the panel 10 and cannot receive light emitted from the first light-emitting line Ly1 and the second light-emitting line Lx1 with sufficient intensity for calculating the position coordinates, the third light-emitting line Ly2 and Since the position coordinates can be calculated by receiving the light emitted from the fourth light emitting line Lx2, the electronic pen 50 can be used remotely.
 (実施の形態2)
 図14は、本開示の実施の形態2における座標検出サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。
(Embodiment 2)
FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the second embodiment of the present disclosure.
 実施の形態2における画像表示システムの構成および動作は実施の形態1と同様であり、1フィールドに含まれるサブフィールドの種類および数も実施の形態1と同様である。各サブフィールドで発生する駆動電圧波形も、初期化期間を除き、実施の形態1と同様であるが、実施の形態2では初期化期間に発生する駆動電圧波形が実施の形態1とは異なる。以下、実施の形態1と異なる点を説明する。 The configuration and operation of the image display system in the second embodiment are the same as those in the first embodiment, and the types and number of subfields included in one field are the same as those in the first embodiment. The drive voltage waveform generated in each subfield is the same as that in the first embodiment except for the initialization period, but the drive voltage waveform generated in the initialization period is different from that in the first embodiment in the second embodiment. Hereinafter, differences from the first embodiment will be described.
 実施の形態2における同期検出サブフィールドSFoの初期化期間Pioでは、強制初期化動作を行う。この初期化期間Pioでは、データ電極D1~Dmに電圧Vdを印加し、維持電極SU1~SUnに電圧0(V)を印加する。走査電極SC1~SCnには、電圧0(V)を印加した後に、放電開始電圧よりも低い電圧Vi1から放電開始電圧を超える電圧Vi2まで上昇する上り傾斜波形電圧を印加する。次に、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veよりも低い正の電圧Ve1を印加する。走査電極SC1~SCnには、電圧0(V)から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 In the initialization period Pio of the synchronization detection subfield SFo in the second embodiment, a forced initialization operation is performed. In the initialization period Pio, the voltage Vd is applied to the data electrodes D1 to Dm, and the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. After applying voltage 0 (V) to scan electrodes SC1 to SCn, an upward ramp waveform voltage rising from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied. Next, a voltage 0 (V) is applied to the data electrodes D1 to Dm, and a positive voltage Ve1 lower than the voltage Ve is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続く書込み期間Pwoでの書込み動作に適した電圧に調整される。 The initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pwo.
 実施の形態2における近接用y座標検出サブフィールドSFy1の初期化期間Piyでは、まず、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加し、走査電極SC1~SCnには、電圧0(V)から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。次に、データ電極D1~Dm、維持電極SU1~SUnに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧Vsを印加する。次に、データ電極D1~Dmに電圧0(V)を印加したまま走査電極SC1~SCnに電圧0(V)を印加し、維持電極SU1~SUnには電圧Vsを印加する。次に、維持電極SU1~SUnに電圧Ve1を印加し、走査電極SC1~SCnには、電圧0(V)から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 In the initialization period Piy of the proximity y coordinate detection subfield SFy1 in the second embodiment, first, the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the scan electrodes SC1 to SCn. Is applied with a downward ramp waveform voltage that drops from the voltage 0 (V) to the negative voltage Vi4. Next, voltage Vs is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm and sustain electrodes SU1 to SUn. Next, voltage 0 (V) is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm, and voltage Vs is applied to sustain electrodes SU1 to SUn. Next, voltage Ve1 is applied to sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 これにより、各放電セルに初期化放電が発生し、各放電セルの壁電圧は、続くy座標検出期間Py1における近接用y座標検出パターン表示動作に適した壁電圧に調整される。 Thereby, an initializing discharge is generated in each discharge cell, and the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the proximity y coordinate detection pattern display operation in the subsequent y coordinate detection period Py1.
 実施の形態2における近接用x座標検出サブフィールドSFx1の初期化期間Pixでは、強制初期化動作を行う。この初期化期間Pixでは、まず、データ電極D1~Dmに電圧Vdを印加し、維持電極SU1~SUnに電圧0(V)を印加する。走査電極SC1~SCnには、電圧0(V)を印加した後、電圧Vi1から電圧Vi2まで上昇する上り傾斜波形電圧を印加する。次に、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Ve1を印加する。走査電極SC1~SCnには、電圧0(V)から負の電圧Vaまで下降する下り傾斜波形電圧を印加し、次に、電圧0(V)から正の電圧Vrまで上昇する上り傾斜波形電圧を印加する。次に、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧0(V)から負のx座標検出電圧Vaxまで下降する下り傾斜波形電圧を印加する。 In the initialization period Pix of the proximity x-coordinate detection subfield SFx1 in the second embodiment, a forced initialization operation is performed. In the initialization period Pix, first, the voltage Vd is applied to the data electrodes D1 to Dm, and the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn. After applying voltage 0 (V) to scan electrodes SC1 to SCn, an upward ramp waveform voltage rising from voltage Vi1 to voltage Vi2 is applied. Next, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage Ve1 is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage that drops from voltage 0 (V) to negative voltage Va is applied to scan electrodes SC1 to SCn, and then an upward ramp waveform voltage that rises from voltage 0 (V) to positive voltage Vr. Apply. Next, voltage Ve is applied to sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that drops from voltage 0 (V) to negative x coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続くx座標検出期間Px1における近接用x座標検出パターン表示動作に適した壁電圧に調整される。 This initializing operation causes an initializing discharge in each discharge cell, and the wall voltage on each electrode is adjusted to a wall voltage suitable for the proximity x coordinate detection pattern display operation in the subsequent x coordinate detection period Px1.
 実施の形態2における遠隔用y座標検出サブフィールドSFy2の初期化期間Piyでは、図14に示す同期検出サブフィールドSFoの初期化期間Pioと同様の駆動電圧波形を発生して各電極に印加する。この強制初期化動作によって各放電セルに初期化放電が生じ、各放電セルの壁電圧は、続くy座標検出期間Py2における遠隔用y座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Py of the remote y-coordinate detection subfield SFy2 in the second embodiment, a drive voltage waveform similar to that in the initialization period Pio of the synchronization detection subfield SFo shown in FIG. 14 is generated and applied to each electrode. This forced initializing operation causes an initializing discharge in each discharge cell, and the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote y-coordinate detection pattern display operation in the subsequent y-coordinate detection period Py2.
 実施の形態2における遠隔用x座標検出サブフィールドSFx2の初期化期間Pixでは、図14に示す近接用x座標検出サブフィールドSFx1の初期化期間Pixと同様の駆動電圧波形を発生して各電極に印加する。この強制初期化動作によって各放電セルに初期化放電が生じ、各放電セルの壁電圧は、続くx座標検出期間Px2における遠隔用x座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix of the remote x-coordinate detection subfield SFx2 in the second embodiment, a drive voltage waveform similar to that in the initialization period Pix of the proximity x-coordinate detection subfield SFx1 shown in FIG. Apply. This forced initializing operation causes an initializing discharge in each discharge cell, and the wall voltage of each discharge cell is adjusted to a wall voltage suitable for the remote x-coordinate detection pattern display operation in the subsequent x-coordinate detection period Px2.
 なお、実施の形態2における遠隔用x座標検出サブフィールドSFx2の消去期間Pexでは、実施の形態1と同様の消去動作を行ってもよいが、図14に示す消去動作を行ってもよい。すなわち、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで上昇する上り傾斜波形電圧を印加する。次に、維持電極SU1~SUnに電圧0(V)を印加したまま、データ電極D1~Dmには電圧Vdを印加し、走査電極SC1~SCnには、電圧0(V)を印加した後、電圧Vi1から電圧Vi2まで上昇する上り傾斜波形電圧を印加する。 In the erase period Pex of the remote x-coordinate detection subfield SFx2 in the second embodiment, the erase operation similar to that in the first embodiment may be performed, but the erase operation illustrated in FIG. 14 may be performed. That is, an upward ramp waveform voltage rising from voltage 0 (V) to positive voltage Vr is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm. . Next, the voltage Vd is applied to the data electrodes D1 to Dm while the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the scan electrodes SC1 to SCn. An upward ramp waveform voltage rising from the voltage Vi1 to the voltage Vi2 is applied.
 これにより、x座標検出放電を発生した放電セルに微弱な消去放電を発生する。 This causes a weak erasure discharge in the discharge cell that has generated the x-coordinate detection discharge.
 本実施の形態では、座標検出サブフィールドの各初期化期間において、以上のような初期化動作を行ってもよい。 In this embodiment, the initialization operation as described above may be performed in each initialization period of the coordinate detection subfield.
 なお、実施の形態1、2において、同期検出放電を複数回発生させるときの時間間隔は、最初の同期検出放電を容易に特定できるようにするために、互いに異なる時間に設定することが望ましい。 In the first and second embodiments, it is desirable to set the time intervals when the synchronous detection discharge is generated a plurality of times at different times so that the first synchronous detection discharge can be easily specified.
 なお、実施の形態1、2において、各座標検出サブフィールドは、例えば、複数フィールドに1回の割合で発生する構成であってもよい。 In the first and second embodiments, each coordinate detection subfield may be generated at a rate of once in a plurality of fields, for example.
 なお、実施の形態1、2において、y座標検出パターンを表示する際は、発光させない画素行を設けてもよい。同様に、x座標検出パターンを表示する際は、発光させない画素列を設けてもよい。 In the first and second embodiments, when displaying the y-coordinate detection pattern, a pixel row that does not emit light may be provided. Similarly, when displaying the x-coordinate detection pattern, a pixel column that does not emit light may be provided.
 なお、実施の形態1、2において、各座標検出サブフィールドの発生順は、何ら上述した発生順に限定されない。例えば、先にx座標検出用サブフィールドを発生し、次にy座標検出用サブフィールドを発生してもよい。 In Embodiments 1 and 2, the order of occurrence of each coordinate detection subfield is not limited to the order of occurrence described above. For example, the x coordinate detection subfield may be generated first, and then the y coordinate detection subfield may be generated.
 なお、実施の形態1、2においては、電子ペンが近接用x座標検出サブフィールドSFx1および近接用y座標検出サブフィールドSFy1で生じる発光にもとづき位置座標を算出するときを「近接使用」とし、遠隔用x座標検出サブフィールドSFx2および遠隔用y座標検出サブフィールドSFy2で生じる発光にもとづき位置座標を算出するときを「遠隔使用」とする。 In the first and second embodiments, when the electronic pen calculates the position coordinates based on the light emission generated in the proximity x coordinate detection subfield SFx1 and the proximity y coordinate detection subfield SFy1, it is referred to as “proximity use”. The case where the position coordinates are calculated based on the light emission generated in the x-coordinate detection subfield SFx2 and the remote y-coordinate detection subfield SFy2 is referred to as “remote use”.
 なお、実施の形態1、2では、描画装置を画像表示装置と独立に備えた構成を示したが、この構成の一例としては、例えば、画像表示装置に接続したコンピュータに描画装置に相当する機能を持たせ、そのコンピュータを用いて描画信号を作成する構成等がある。しかし、例えば、描画装置を単独の機器として設けてもよく、あるいは描画装置を画像表示装置に備える構成であってもよい。 In the first and second embodiments, the configuration in which the drawing device is provided independently of the image display device is shown. As an example of this configuration, for example, a function connected to the computer connected to the image display device is equivalent to the drawing device. And a drawing signal is generated using the computer. However, for example, the drawing device may be provided as a single device, or the drawing device may be provided in the image display device.
 なお、実施の形態1、2に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、実施の形態に示した各動作と実質的に同じ動作をするようにプログラミングされたマイクロコンピュータやコンピュータ等を用いて構成されてもよい。 Each circuit block shown in the first and second embodiments may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment. A microcomputer or a computer programmed to operate may be used.
 なお、実施の形態1、2に示した具体的な数値は、単に実施の形態における一例を示したものに過ぎず、本発明はこれらの数値に何ら限定されるものではない。各数値は画像表示システムの仕様等にあわせて最適な値に設定することが望ましい。 It should be noted that the specific numerical values shown in the first and second embodiments are merely examples of the embodiment, and the present invention is not limited to these numerical values. It is desirable to set each numerical value to an optimal value according to the specifications of the image display system.
 本開示は、パネルから離れた位置にある電子ペンにおいても位置座標を算出することが可能になるので、画像表示装置、画像表示装置の駆動方法、および画像表示システムとして有用である。 The present disclosure is useful as an image display device, an image display device driving method, and an image display system because the position coordinates can be calculated even with an electronic pen located at a position away from the panel.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  画像表示装置
 31  画像信号処理部
 32  データ電極駆動部
 33  走査電極駆動部
 34  維持電極駆動部
 35  制御部
 40  描画装置
 42  受信部
 46  描画部
 47  画像メモリ
 50,50a,50b,50c,50d  電子ペン
 51,81  電力回収回路
 52  受光素子
 53  接触スイッチ
 54  同期検出部
 55,80  維持パルス発生回路
 56  座標算出部
 58  送信部
 60  傾斜波形電圧発生回路
 61,62,63  ミラー積分回路
 70  走査パルス発生回路
 85  一定電圧発生回路
 100  画像表示システム
 Ly1  第1の発光線
 Lx1  第2の発光線
 Ly2  第3の発光線
 Lx2  第4の発光線
 Di11,Di12,Di21,Di22,Di62  ダイオード
 L11,L12,L21,L22  インダクタ
 Q11,Q12,Q21,Q22,Q55,Q56,Q59,Q69,Q72,Q83,Q84,Q86,Q87,QH1~QHn,QL1~QLn,Q91H1~Q91Hm,Q91L1~Q91Lm  スイッチング素子
 C10,C20,C61,C62,C63  コンデンサ
 R61,R62,R63  抵抗
 Q61,Q62,Q63  トランジスタ
 IN61,IN62,IN63  入力端子
 E71  電源
 SFy1  近接用y座標検出サブフィールド
 SFx1  近接用x座標検出サブフィールド
 SFy2  遠隔用y座標検出サブフィールド
 SFx2  遠隔用x座標検出サブフィールド
 SFo  同期検出サブフィールド
 SF1~SF8  画像表示サブフィールド
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15,23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Image display device 31 Image signal processing Unit 32 Data electrode drive unit 33 Scan electrode drive unit 34 Sustain electrode drive unit 35 Control unit 40 Drawing device 42 Reception unit 46 Drawing unit 47 Image memory 50, 50a, 50b, 50c, 50d Electronic pen 51, 81 Power recovery circuit 52 Light reception Element 53 Contact switch 54 Synchronization detector 55, 80 Sustain pulse generator 56 Coordinate calculator 58 Transmitter 60 Ramp waveform voltage generator 61, 62, 63 Miller integrator 70 Scan pulse generator 85 Constant voltage generator 100 Image display system Ly1 first departure Line Lx1 Second light emission line Ly2 Third light emission line Lx2 Fourth light emission line Di11, Di12, Di21, Di22, Di62 Diodes L11, L12, L21, L22 Inductors Q11, Q12, Q21, Q22, Q55, Q56, Q59 Q69, Q72, Q83, Q84, Q86, Q87, QH1 to QHn, QL1 to QLn, Q91H1 to Q91Hm, Q91L1 to Q91Lm Switching elements C10, C20, C61, C62, C63 capacitors R61, R62, R63 resistors Q61, Q62, Q63 Transistor IN61, IN62, IN63 Input terminal E71 Power supply SFy1 Proximity y coordinate detection subfield SFx1 Proximity x coordinate detection subfield SFy2 Remote y coordinate detection subfield SFx2 Remote x Coordinate detection subfield SFo Sync detection subfield SF1 to SF8 Image display subfield

Claims (5)

  1. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルを備えた画像表示装置の駆動方法であって、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、
    前記データ電極にy座標検出電圧を印加したまま、第1の数の前記走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、
    前記データ電極に前記y座標検出電圧を印加したまま、第2の数の前記走査電極に同時に前記y座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、
    前記走査電極にx座標検出電圧を印加したまま、第3の数の前記データ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、
    前記走査電極に前記x座標検出電圧を印加したまま、第4の数の前記データ電極に同時に前記x座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドと、を発生し、
    前記第2の数を前記第1の数よりも大きい数値に設定し、
    前記第4の数を前記第3の数よりも大きい数値に設定する
    ことを特徴とする画像表示装置の駆動方法。
    A driving method of an image display device including a plasma display panel in which discharge cells are formed at each of intersections of scan electrodes, sustain electrodes, and data electrodes,
    An image display subfield for displaying an image on the plasma display panel;
    A proximity y-coordinate detection subfield for sequentially performing an operation of simultaneously applying a y-coordinate detection pulse to the first number of the scan electrodes while applying a y-coordinate detection voltage to the data electrodes;
    A remote y-coordinate detection subfield for sequentially performing an operation of simultaneously applying the y-coordinate detection pulses to the second number of the scan electrodes while applying the y-coordinate detection voltage to the data electrodes;
    A proximity x-coordinate detection subfield for sequentially performing an operation of simultaneously applying x-coordinate detection pulses to the third number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying the x-coordinate detection pulses to the fourth number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Setting the second number to a value greater than the first number;
    The method for driving an image display device, wherein the fourth number is set to a value larger than the third number.
  2. 前記第1の数を1とし、前記第3の数を1とする
    ことを特徴とする請求項1に記載の画像表示装置の駆動方法。
    The method for driving an image display device according to claim 1, wherein the first number is 1 and the third number is 1.
  3. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルと、
    1フィールドを複数のサブフィールドで構成して前記プラズマディスプレイパネルを駆動する駆動回路とを備えた画像表示装置であって、
    前記駆動回路は、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、
    前記データ電極にy座標検出電圧を印加したまま、第1の数の前記走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、
    前記データ電極に前記y座標検出電圧を印加したまま、第2の数の前記走査電極に同時に前記y座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、
    前記走査電極にx座標検出電圧を印加したまま、第3の数の前記データ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、
    前記走査電極に前記x座標検出電圧を印加したまま、第4の数の前記データ電極に同時に前記x座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドと、を発生し、
    前記第2の数を前記第1の数よりも大きい数値に設定し、
    前記第4の数を前記第3の数よりも大きい数値に設定する
    ことを特徴とする画像表示装置。
    A plasma display panel in which a discharge cell is formed at each of the intersection of the scan electrode and the sustain electrode and the data electrode;
    An image display device comprising: a drive circuit configured to drive one of a plurality of subfields and drive the plasma display panel;
    The drive circuit is
    An image display subfield for displaying an image on the plasma display panel;
    A proximity y-coordinate detection subfield for sequentially performing an operation of simultaneously applying a y-coordinate detection pulse to the first number of the scan electrodes while applying a y-coordinate detection voltage to the data electrodes;
    A remote y-coordinate detection subfield for sequentially performing an operation of simultaneously applying the y-coordinate detection pulses to the second number of the scan electrodes while applying the y-coordinate detection voltage to the data electrodes;
    A proximity x-coordinate detection subfield for sequentially performing an operation of simultaneously applying x-coordinate detection pulses to the third number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying the x-coordinate detection pulses to the fourth number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Setting the second number to a value greater than the first number;
    The image display device characterized in that the fourth number is set to a larger numerical value than the third number.
  4. 前記駆動回路は、
    前記第1の数を1に設定し、前記第3の数を1に設定する
    ことを特徴とする請求項3に記載の画像表示装置。
    The drive circuit is
    The image display apparatus according to claim 3, wherein the first number is set to 1 and the third number is set to 1. 5.
  5. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネル、および前記プラズマディスプレイパネルを駆動する駆動回路を備えた画像表示装置と、
    電子ペンと、描画装置とを備えた画像表示システムであって、
    前記駆動回路は、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、
    前記データ電極にy座標検出電圧を印加したまま、第1の数の前記走査電極に同時にy座標検出パルスを印加する動作を順次行う近接用y座標検出サブフィールドと、
    前記データ電極に前記y座標検出電圧を印加したまま、第2の数の前記走査電極に同時に前記y座標検出パルスを印加する動作を順次行う遠隔用y座標検出サブフィールドと、
    前記走査電極にx座標検出電圧を印加したまま、第3の数の前記データ電極に同時にx座標検出パルスを印加する動作を順次行う近接用x座標検出サブフィールドと、
    前記走査電極に前記x座標検出電圧を印加したまま、第4の数の前記データ電極に同時に前記x座標検出パルスを印加する動作を順次行う遠隔用x座標検出サブフィールドと、を発生し、
    前記第2の数を前記第1の数よりも大きい数値に設定するとともに前記第4の数を前記第3の数よりも大きい数値に設定し、
    前記電子ペンは、
    前記プラズマディスプレイパネルの発光を受光して受光信号を出力する受光素子と、
    前記近接用y座標検出サブフィールド、前記近接用x座標検出サブフィールド、前記遠隔用y座標検出サブフィールドおよび前記遠隔用x座標検出サブフィールドと同期した座標基準信号を前記受光信号にもとづき作成する同期検出部と、
    前記電子ペンが指す前記プラズマディスプレイパネル上の座標を前記座標基準信号と前記受光信号にもとづき算出する座標算出部と、
    前記座標算出部が算出した座標を前記描画装置に送信する送信部とを有し、
    前記描画装置は、
    前記電子ペンから送信された座標を受信する受信部と、
    前記受信部で受信した座標にもとづき描画信号を作成して前記画像表示装置に出力する描画部とを有する
    ことを特徴とする画像表示システム。
    A plasma display panel in which a discharge cell is formed at each of the intersections of the scan electrode, the sustain electrode and the data electrode, and an image display device including a drive circuit for driving the plasma display panel;
    An image display system including an electronic pen and a drawing device,
    The drive circuit is
    An image display subfield for displaying an image on the plasma display panel;
    A proximity y-coordinate detection subfield for sequentially performing an operation of simultaneously applying a y-coordinate detection pulse to the first number of the scan electrodes while applying a y-coordinate detection voltage to the data electrodes;
    A remote y-coordinate detection subfield for sequentially performing an operation of simultaneously applying the y-coordinate detection pulses to the second number of the scan electrodes while applying the y-coordinate detection voltage to the data electrodes;
    A proximity x-coordinate detection subfield for sequentially performing an operation of simultaneously applying x-coordinate detection pulses to the third number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Generating a remote x-coordinate detection subfield for sequentially performing an operation of simultaneously applying the x-coordinate detection pulses to the fourth number of the data electrodes while applying the x-coordinate detection voltage to the scan electrodes;
    Setting the second number to a number greater than the first number and the fourth number to a number greater than the third number;
    The electronic pen is
    A light receiving element that receives light emitted from the plasma display panel and outputs a light reception signal;
    Synchronizing to generate a coordinate reference signal synchronized with the proximity y coordinate detection subfield, the proximity x coordinate detection subfield, the remote y coordinate detection subfield, and the remote x coordinate detection subfield based on the received light signal. A detection unit;
    A coordinate calculation unit for calculating coordinates on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal;
    A transmission unit that transmits the coordinates calculated by the coordinate calculation unit to the drawing device;
    The drawing device includes:
    A receiving unit for receiving coordinates transmitted from the electronic pen;
    An image display system comprising: a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
PCT/JP2013/005010 2012-09-18 2013-08-26 Image display device, image display device driving method and image display system WO2014045520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012204065A JP2015222278A (en) 2012-09-18 2012-09-18 Method for driving image display device, image display device, and image display system
JP2012-204065 2012-09-18

Publications (1)

Publication Number Publication Date
WO2014045520A1 true WO2014045520A1 (en) 2014-03-27

Family

ID=50340862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005010 WO2014045520A1 (en) 2012-09-18 2013-08-26 Image display device, image display device driving method and image display system

Country Status (2)

Country Link
JP (1) JP2015222278A (en)
WO (1) WO2014045520A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115057A (en) * 1994-10-14 1996-05-07 Pioneer Electron Corp Plane display device driving method
JP2001318765A (en) * 2000-05-10 2001-11-16 Nec Corp Coordinate position detector and coordinate position detection method for plasma display panel
JP2006267526A (en) * 2005-03-24 2006-10-05 Pioneer Electronic Corp Driving method of plasma display panel
WO2013084375A1 (en) * 2011-12-07 2013-06-13 パナソニック株式会社 Image-display-device drive method, image display device, and image display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115057A (en) * 1994-10-14 1996-05-07 Pioneer Electron Corp Plane display device driving method
JP2001318765A (en) * 2000-05-10 2001-11-16 Nec Corp Coordinate position detector and coordinate position detection method for plasma display panel
JP2006267526A (en) * 2005-03-24 2006-10-05 Pioneer Electronic Corp Driving method of plasma display panel
WO2013084375A1 (en) * 2011-12-07 2013-06-13 パナソニック株式会社 Image-display-device drive method, image display device, and image display system

Also Published As

Publication number Publication date
JP2015222278A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2013168327A1 (en) Multi-screen display device, multi-screen display device drive method, and multi-screen display system
JP5321763B1 (en) Image display device driving method, image display device, and image display system
US20100315378A1 (en) Plasma display and driving method thereof
JP5252139B1 (en) Image display device driving method, image display device, and image display system
WO2013187021A1 (en) Image display device, drive method for image display device, and image display system
JP5288077B1 (en) Image display device driving method, image display device, and image display system
WO2014045520A1 (en) Image display device, image display device driving method and image display system
JP2014203425A (en) Image display system having electronic pen
WO2014006880A1 (en) Image display device, method for driving image display device and image display system
WO2013183264A1 (en) Image display device, image display device drive method, and image display system
JP5288078B1 (en) Image display device driving method, image display device, and image display system
WO2013161144A1 (en) Image display system, image display system drive method, and light pen
JP5252140B1 (en) Image display device driving method, image display device, and image display system
WO2013140713A1 (en) Image display device drive method, image display device, and image display system
WO2013088691A1 (en) Drive method for image display device, image display device, light pen, and image display system
JP2014203061A (en) Image display device, drive method of image display device and image display system
WO2014054268A1 (en) Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system
WO2013125199A1 (en) Image display system
JP2014235475A (en) Electronic pen, attachment for electronic pen, and image display system having electronic pen
WO2013121705A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
JP2014203426A (en) Electronic pen and image display system including the electronic pen
WO2013121704A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
JP2013239001A (en) Light pen, drawing device, and image display system
JP2015132861A (en) Drawing device and image display system
JP2015132860A (en) Light pen and image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP