WO2014006880A1 - Image display device, method for driving image display device and image display system - Google Patents

Image display device, method for driving image display device and image display system Download PDF

Info

Publication number
WO2014006880A1
WO2014006880A1 PCT/JP2013/004092 JP2013004092W WO2014006880A1 WO 2014006880 A1 WO2014006880 A1 WO 2014006880A1 JP 2013004092 W JP2013004092 W JP 2013004092W WO 2014006880 A1 WO2014006880 A1 WO 2014006880A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
image display
subfield
voltage
coordinate
Prior art date
Application number
PCT/JP2013/004092
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 折口
裕也 塩崎
一朗 坂田
秀彦 庄司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014006880A1 publication Critical patent/WO2014006880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03542Light pens for emitting or receiving light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • G06F3/0386Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry for light pen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery

Definitions

  • the present disclosure relates to an image display device capable of inputting characters and drawings using an electronic pen, a driving method of the image display device, and an image display system.
  • one pixel is composed of three sub-pixels of red, green, and blue, and an image is displayed in the image display area.
  • a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells as sub-pixels, and displays gradation in each discharge cell by combining binary control of light emission and non-light emission.
  • Each discharge cell is coated with a phosphor that emits light of any one of red, green, and blue, and a discharge gas is sealed therein.
  • Each discharge cell emits a phosphor by generating a discharge.
  • a subfield method in which one field is divided into a plurality of subfields and light emission / non-light emission of each subfield is controlled according to the gradation value to be displayed. Is used.
  • the initializing operation includes a forced initializing operation for forcibly generating an initializing discharge in a discharge cell and a selective initializing operation for generating an initializing discharge only in a discharge cell that has generated an address discharge in the immediately preceding subfield.
  • Patent Document 1 discloses a subfield method in which a forced initialization operation is performed once per field. In this method, the brightness of the discharge cells that display black can be lowered and the contrast of the display image can be improved.
  • Some of these image display apparatuses have a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen” or “light pen”. is there.
  • a technique for detecting the position of the electronic pen in the image display area is used.
  • the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
  • Patent Document 2 discloses a coordinate position detection apparatus and a coordinate position detection method for a plasma display panel that detect a coordinate position on the plasma display panel using an optical sensor.
  • the driving method of the image display device is a driving method of an image display device including a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes.
  • an image display subfield for displaying an image on the plasma display panel and a synchronization detection subfield for generating a discharge for calculating position coordinates are generated.
  • an address pulse is applied to the data electrode and a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and a sync detection pulse is applied alternately to the scan electrode and the sustain electrode.
  • a synchronization detection period for generating a synchronization detection discharge in the discharge cell.
  • an address pulse is applied only to the data electrodes of the discharge cells that emit a predetermined color, and an address discharge is generated only in the discharge cells that emit the predetermined color.
  • the y-coordinate detection period in which the y-coordinate detection voltage is applied to the data electrode and the y-coordinate detection pulse is sequentially applied to the scan electrode to generate the y-coordinate detection discharge in the discharge cell.
  • a y-coordinate detection subfield having In the y-coordinate detection period the y-coordinate detection voltage is applied only to the data electrodes of the discharge cells other than the discharge cells emitting a predetermined color, and the y-coordinate detection is performed only to the discharge cells other than the discharge cells emitting the predetermined color.
  • a discharge may be generated.
  • the x coordinate detection period in which the x coordinate detection voltage is applied to the scan electrode and the x coordinate detection pulse is sequentially applied to the data electrode to generate the x coordinate detection discharge in the discharge cell.
  • An x-coordinate detection subfield having Then, in the x-coordinate detection period, the x-coordinate detection pulse is sequentially applied only to the data electrodes of the discharge cells other than the discharge cells emitting a predetermined color, and the x-coordinate is applied only to the discharge cells other than the discharge cells emitting the predetermined color.
  • a detection discharge may be generated.
  • an address pulse may be applied to generate an address discharge only in a specific discharge cell that emits a predetermined color.
  • An image display apparatus drives a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes, and one field is composed of a plurality of subfields.
  • An image display device including a drive circuit.
  • the driving circuit generates an image display subfield for displaying an image on the plasma display panel and a synchronization detection subfield for generating a discharge for calculating the position coordinates, and a write pulse is applied to the data electrode in the synchronization detection subfield.
  • a detection period in which a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and a synchronization detection pulse is applied to the scan electrode and the sustain electrode alternately to generate a sync detection discharge in the discharge cell.
  • a detection period is applied only
  • An image display system includes: a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes; an image display device including a drive circuit that drives the plasma display panel; A pen and a drawing device are provided.
  • the driving circuit includes an image display subfield for displaying an image on the plasma display panel, a synchronization detection subfield for generating a discharge for calculating position coordinates in the discharge cell, and a y coordinate for generating a y coordinate detection discharge in the discharge cell.
  • a detection subfield and an x-coordinate detection subfield for generating an x-coordinate detection discharge in the discharge cell are generated.
  • the address pulse is applied to the data electrode and the scan pulse is applied to the scan electrode to generate the address discharge in the discharge cell, and the synchronization detection pulse is alternately applied to the scan electrode and the sustain electrode. And a synchronization detection period for generating a synchronization detection discharge in the discharge cell. Then, in the address period of the synchronization detection subfield, an address pulse is applied only to the data electrodes of the discharge cells that emit a predetermined color, and an address discharge is generated only in the discharge cells that emit the predetermined color.
  • the electronic pen includes a light receiving element that receives light emitted from the plasma display panel and outputs a light reception signal, a synchronization detection unit that generates a coordinate reference signal synchronized with the y coordinate detection subfield and the x coordinate detection subfield based on the light reception signal, and A coordinate calculation unit that calculates coordinates on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal, and a transmission unit that transmits the coordinates calculated by the coordinate calculation unit to the drawing apparatus.
  • the drawing apparatus includes a receiving unit that receives coordinates transmitted from the electronic pen, and a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
  • FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram schematically illustrating a configuration example of the image display system according to the first embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used in the image display system according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the image display system according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the image display system according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram schematically illustrating an example of an operation when performing handwritten input with the electronic pen in the image display system according to the first embodiment of the present disclosure.
  • FIG. 12 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection sub-field according to the second embodiment of the present disclosure.
  • FIG. 1 is an exploded perspective view illustrating an example of the structure of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
  • the front substrate 11 On the front substrate 11 made of glass, a plurality of display electrode pairs 14 composed of the scanning electrodes 12 and the sustain electrodes 13 are formed, and a dielectric layer 15 is formed so as to cover the display electrode pairs 14, and the dielectric layer 15 A protective layer 16 is formed thereon.
  • the front substrate 11 serves as an image display surface on which an image is displayed.
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • the phosphor layer 25R that emits red (R), the phosphor layer 25G that emits green (G), and the phosphor layer that emits blue (B) are formed on the side surfaces of the barrier ribs 24 and the surface of the dielectric layer 23. 25B is provided.
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 cross each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
  • the discharge space is divided into a plurality of sections by the barrier ribs 24, and discharge cells are formed in areas where the display electrode pairs 14 and the data electrodes 22 intersect.
  • one pixel is constituted by three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (hereinafter referred to as “red discharge cell”), and a phosphor cell 25G having a green (G).
  • red discharge cell a discharge cell having a phosphor layer 25R and emitting red
  • green discharge cell a phosphor cell 25G having a green (G).
  • a discharge cell that emits light hereinafter referred to as “green discharge cell”
  • a discharge cell that has the phosphor layer 25B and emits blue (B) hereinafter referred to as “blue discharge cell”. That is, in the panel 10, one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • the panel 10 is not limited to the structure described above, and may be provided with, for example, a stripe-shaped partition wall.
  • FIG. 2 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
  • n scan electrodes SC1 to SCn scan electrode 12 in FIG. 1
  • n sustain electrodes SU1 to SUn sustain electrode 13 in FIG. 1 extended in the first direction
  • the m data electrodes D1 to Dm data electrode 22 in FIG. 1 extended in the second direction intersecting the first direction are arranged.
  • the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
  • a set of red, green, and blue discharge cells adjacent to each other constitutes one pixel. Therefore, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m ⁇ n discharge cells are formed in the discharge space, and an area where m ⁇ n discharge cells are formed becomes an image display area of the panel 10.
  • Discharge cell The discharge cell having the data electrode Dp + 1 is coated with a phosphor layer 25G, and this discharge cell becomes a green discharge cell.
  • a phosphor layer 25B is applied to the discharge cell having the data electrode Dp + 2, and this discharge cell becomes a blue discharge cell.
  • one field includes a period during which an image is displayed on the image display unit and a period during which a coordinate detection pattern is displayed on the image display unit in order to detect “position coordinates” of the electronic pen.
  • the period during which an image is displayed on the image display unit is, for example, a plurality of image display subfields (shown in FIG. 3) for displaying an image on the panel 10.
  • the period during which the coordinate detection pattern is displayed on the image display unit is, for example, a plurality of coordinate detections in which the x coordinate detection pattern and the y coordinate detection pattern for detecting the “position coordinates” of the electronic pen are displayed on the panel 10. It is a subfield (shown in FIG. 4).
  • “Position coordinates” refers to the coordinates of the position indicated by the electronic pen in the image display area of the panel 10 (coordinates indicating the position of the electronic pen).
  • Each image display subfield has an initialization period, an address period, and a sustain period.
  • the image display subfield is also simply referred to as a subfield.
  • a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used.
  • a “selective initialization operation” that generates an initialization discharge.
  • the number of image display subfields in one field is eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2).
  • the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
  • FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
  • Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield).
  • each subfield after subfield SF3 generates a drive voltage waveform substantially similar to that of subfield SF2, except for the number of sustain pulses.
  • the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn.
  • an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage that gently falls from scan voltage SC1 to SCn to a negative voltage Vi4 that exceeds the discharge start voltage is applied to scan electrode SC1 to SCn.
  • the initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1.
  • the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
  • discharge cells to which the forced initializing waveform is applied in the forced initializing operation may be all the discharge cells in the image display area of the panel 10, but, for example, some discharges in the image display area It may be a cell. The same applies to all subfields that perform the forced initialization operation in the following description.
  • a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm.
  • a positive address pulse having a positive voltage Vd is applied to the electrode Dk.
  • the same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
  • the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn.
  • a discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
  • voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm, and applied to scan electrodes SC1 to SCn.
  • An upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage that falls from a voltage (for example, voltage 0 (V)) that is lower than the discharge start voltage to a negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2.
  • the wall voltage is adjusted to a suitable level.
  • An initializing discharge does not occur in a discharge cell in which no sustain discharge has occurred in the sustain period Ps1 of the immediately preceding subfield SF1.
  • the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
  • each subfield after subfield SF3 the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
  • FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure.
  • the coordinate detection subfield includes a synchronization detection subfield SFo, a y coordinate detection subfield SFy, and an x coordinate detection subfield SFx.
  • the position indicated by the electronic pen in the image display area (hereinafter also referred to as “position of the electronic pen”) is represented by an x coordinate and ay coordinate.
  • the coordinate in the row direction is the x coordinate
  • the coordinate in the column direction is the y coordinate.
  • the x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate.
  • the electronic pen is provided in the image display system according to the present embodiment, and is used by a user to input characters and drawings on the panel 10 by handwriting. Details of the electronic pen will be described later.
  • the position (positional coordinate) pointed to by the electronic pen is a light receiving element of the electronic pen, which will be described later, displayed in the light emission of the x coordinate detection pattern displayed in the x coordinate detection subfield SFx and in the y coordinate detection subfield SFy. It is a position in the image display surface that receives light emitted from the y coordinate detection pattern.
  • wireless communication is performed between the electronic pen and a drawing apparatus described later.
  • the electronic pen calculates the position coordinates of the electronic pen inside the electronic pen, and transmits data of the calculated position coordinates from the electronic pen to the drawing apparatus by wireless communication.
  • the synchronization detection subfield SFo is a subfield for the electronic pen to accurately grasp the timing at which the coordinate detection subfield is generated in the image display device.
  • the electronic pen receives light emitted in the synchronization detection subfield SFo to generate a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy by synchronizing with the image display device. It becomes possible.
  • each subfield is not limited to the order of this embodiment. Further, the coordinate detection subfield is not necessarily provided in each field.
  • the synchronization detection subfield SFo in FIG. 4 has an initialization period Pio, a writing period Pwo, and a synchronization detection period Po.
  • the same forced voltage operation as that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation.
  • data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or a voltage of 0 (V) as in initialization period Pi1. ) May be left applied.
  • sustain electrodes SU1 to SUn may be in a high impedance state after applying voltage Ve as shown in FIG. 4, or applied with voltage Ve. You can leave it.
  • the initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pwo.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn after the high impedance state
  • the scan electrodes SC1 to SCn Is applied with a voltage Vc.
  • an address pulse of voltage Vd is applied only to the data electrode 22 corresponding to the discharge cell that emits a predetermined color.
  • a voltage 0 (V) is applied to the other data electrodes 22 without applying an address pulse.
  • the predetermined color is blue
  • the address period Pwo only the data electrode 22 corresponding to the blue discharge cell (in this embodiment, data electrodes D3, D6, D9,..., Dm) is written.
  • a pulse voltage Vd is applied, and the voltage 0 (the data electrodes D1, D2, D4, D5,..., Dm-2, Dm-1) corresponding to the red and green discharge cells are set to the voltage 0 ( V) is applied.
  • voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained from time to0 to time To0. During this period, after the last address discharge has occurred in the discharge cells, a state in which no discharge occurs is maintained. Note that time to0 is the time when a scan pulse for generating the last address discharge in the address period Pwo is applied to the scan electrode 12 (for example, the scan electrode SCn in FIG. 4).
  • a plurality of times of light emission (light emission for synchronization detection) serving as a reference at the time of position coordinate calculation in the electronic pen are performed in a predetermined color (for example, blue) of the panel 10. It is generated in the discharge cell.
  • the discharge cells for example, blue discharge cells
  • the light emission for synchronization detection for example, blue light emission
  • synchronization detection is performed on discharge cells that emit light of a predetermined color (for example, blue) at predetermined time intervals (for example, time To1, time To2, and time To3).
  • Discharge is generated a plurality of times (for example, four times), and light emission for synchronization detection (for example, blue light emission) is generated a plurality of times (for example, four times).
  • the synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo.
  • the discharge cells that generate the synchronous detection discharge are discharge cells that emit a predetermined color, and are only 1/3 of the discharge cells (for example, blue discharge cells).
  • the synchronous detection discharge does not occur in the entire 2/3 discharge cells (for example, red and green discharge cells). For this reason, in the synchronization detection period Po in the present embodiment, the luminance of light emission caused by the synchronization detection discharge is reduced to about 1/3 compared to the conventional configuration in which the synchronization detection discharge is generated in all the discharge cells. can do.
  • the electronic pen emits light for synchronization detection (for example, blue light emission) a plurality of times (for example, four times) that occur at predetermined time intervals (for example, time To1, time To2, and time To3). Is received and a coordinate reference signal is created.
  • the coordinate reference signal is a signal that serves as a reference when calculating the position coordinate (x, y) of the electronic pen.
  • the entire surface of the image display surface of the panel 10 shines in a predetermined color (for example, blue) all at the same timing, so that the position coordinate of the electronic pen is at any position in the image display area of the panel 10. Even if it exists, the electronic pen can receive this light emission at the same timing.
  • a predetermined color for example, blue
  • the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is because the electronic pen emits light by the address discharge generated in the address period Pwo of the synchronization detection subfield SFo, by the y coordinate detection discharge of the y coordinate detection subfield SFy or the x coordinate detection discharge of the x coordinate detection subfield SFx. This is to prevent erroneous recognition of light emission.
  • the time To0 is about 50 ⁇ sec
  • the time To1 is about 40 ⁇ sec
  • the time To2 is about 20 ⁇ sec
  • the time To3 is about 30 ⁇ sec.
  • each of the times To0 to To3 is not limited to the numerical values described above, and each time may be set appropriately according to the specifications of the image display system 100 and the like.
  • a y-coordinate detection subfield SFy and an x-coordinate detection subfield SFx are generated.
  • discharge cell row an aggregate of discharge cells constituting one row
  • pixel row an aggregate of pixels constituting one row
  • the discharge cell row and the pixel row are substantially the same.
  • a group of discharge cells constituting one column is referred to as a “discharge cell column”
  • a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”.
  • the y-coordinate detection subfield SFy has an initialization period Piy, a y-coordinate detection period Py, and an erase period Pey.
  • a selective initialization operation is performed.
  • the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the voltage from the voltage 0 (V) to the negative voltage Vi4 is applied to the scan electrodes SC1 to SCn.
  • a downward ramp waveform voltage that gently falls is applied.
  • voltage Vs is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm and sustain electrodes SU1 to SUn.
  • the voltage 0 (V) applied to the data electrodes D1 to Dm the voltage 0 (V) is applied to the scan electrodes SC1 to SCn, and the voltage Vs is applied to the sustain electrodes SU1 to SUn.
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that gently falls from the voltage 0 (V) to the negative voltage Vi4 is applied to the scan electrodes SC1 to SCn.
  • a downward ramp waveform voltage When applying a downward ramp waveform voltage to scan electrodes SC1 to SCn, sustain electrodes SU1 to SUn may be in a high impedance state after application of voltage Ve as shown in FIG. May be.
  • the initialization period Piy a weak initialization discharge is generated in the discharge cells in which the synchronization detection discharge has occurred in the synchronization detection period Po, and the wall voltage of those discharge cells is initialized.
  • the initialization period Piy since the discharge cell that has generated the synchronous detection discharge does not generate the discharge in the subsequent y coordinate detection period Py, the initialization period Piy can be omitted.
  • the sustain electrodes SU1 to SUn are applied with the voltage Ve after being in a high impedance state, and the data electrodes D1 to Dm have a voltage of 0 (V). And voltage Vc is applied to scan electrodes SC1 to SCn.
  • a positive y-coordinate detection voltage Vdy is applied to the data electrode 22 corresponding to a discharge cell that emits a color other than a predetermined color, and the discharge cell emits a predetermined color.
  • the voltage 0 (V) is applied to the data electrode 22 to be applied without applying the y-coordinate detection voltage Vdy.
  • data electrodes 22 for example, data electrodes D1, D2, D4, D5,..., Dm ⁇ 2) corresponding to red and green discharge cells are used.
  • Dm ⁇ 1 is applied with the y-coordinate detection voltage Vdy
  • the voltage 0 is applied to the data electrode 22 (in this embodiment, the data electrodes D3, D6, D9,..., Dm) corresponding to the blue discharge cell. Apply (V).
  • This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
  • Discharge occurs in the discharge cell row (pixel row) at the intersection of the data electrode 22 to which the y-coordinate detection voltage Vdy is applied and the scan electrode SC1 to which the y-coordinate detection pulse of the voltage Vay is applied.
  • the first pixel row is discharged all at once except for discharge cells that emit light of a predetermined color, and the first pixel row emits light.
  • this discharge is also referred to as “y-coordinate detection discharge”.
  • Light emission by this y-coordinate detection discharge is light emission for y-coordinate detection when the electronic pen is used.
  • the same operation is sequentially performed in the order of the second pixel row, the third pixel row,..., And the last pixel row.
  • y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row to the lowermost pixel row of the panel 10 except for discharge cells emitting a predetermined color.
  • the color of light emitted by the y-coordinate detection discharge is a complementary color of a predetermined color. For example, if the predetermined color is blue, the color of light emitted by the y-coordinate detection discharge is yellow, which is a mixture of red and green.
  • each pixel row (discharge) from the first row to the nth row (for example, 1080th row) is excluded except for discharge cells that emit light of a predetermined color.
  • y-coordinate detection discharge is sequentially generated.
  • a light emission pattern is displayed on the panel 10 in which one horizontal line that emits light of a predetermined complementary color (for example, yellow) sequentially moves one pixel line at a time from the upper end to the lower end of the image display area of the panel 10.
  • this light emission pattern is referred to as a “y coordinate detection pattern”.
  • one light emission line extending in the x coordinate direction generated in the y coordinate detection period Py is also referred to as a “first light emission line”.
  • the timing at which the electronic pen receives light emitted from the first light emission line varies depending on where the position coordinate of the electronic pen is in the image display area of the panel 10.
  • the y coordinate of the position coordinate (x, y) of the electronic pen in the image display area can be detected by detecting the timing at which the light emission of the first light emission line is received by the electronic pen.
  • the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn is Ty1.
  • This Ty1 is, for example, about 1 ⁇ sec.
  • the subsequent x-coordinate detection subfield SFx has an initialization period Pix, an x-coordinate detection period Px, and an erasing period Pex.
  • the initialization period Pix of the x coordinate detection subfield SFx a forced initialization operation is performed.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the scan electrodes SC1 to SCn.
  • An upward ramp waveform voltage that gently rises from Vi1 to voltage Vi2 is applied.
  • data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or the voltage 0 (V) is kept applied. Also good.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • Scan electrodes SC1 to SCn are applied with a downward ramp waveform voltage that gradually decreases from voltage 0 (V) to negative voltage Va, and then increases gradually from voltage 0 (V) to voltage Vr.
  • a ramp waveform voltage is applied, and then a ramp waveform voltage that gently falls from the voltage 0 (V) to the x coordinate detection voltage Vax is applied.
  • initialization discharge occurs in all the discharge cells in the image display area of the panel 10, and the wall voltages of all the discharge cells are displayed in the x coordinate detection pattern display operation in the subsequent x coordinate detection period Px.
  • the wall voltage is adjusted to a suitable level.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a negative x-coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn.
  • a positive x-coordinate detection pulse of voltage Vdx is applied to 22 and a voltage 0 (V) is applied to the data electrode 22 corresponding to the discharge cell that emits a predetermined color without applying the voltage Vdx of the x-coordinate detection pulse.
  • the first pixel column is, for example, a pixel column arranged at the left end of the image display area.
  • the voltage Vdx of the x coordinate detection pulse is applied to the data electrodes D1 and D2 corresponding to the red and green discharge cells, and the voltage is applied to the data electrode D3 corresponding to the blue discharge cell. Apply 0 (V).
  • Discharge occurs in the discharge cell array at the intersection of the data electrode 22 to which the x-coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x-coordinate detection voltage Vax is applied.
  • the first pixel column is discharged all at once except for the discharge cell column that emits a predetermined color, and the first pixel column (in the above example, the first and second columns).
  • Discharge cell array emits light.
  • this discharge is also referred to as “x coordinate detection discharge”.
  • the light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used.
  • the same operation is sequentially performed in the order of the second pixel column, the third pixel column,..., And the last pixel column while applying the x-coordinate detection voltage Vax to the scan electrodes SC1 to SCn. .
  • x-coordinate detection discharge is sequentially generated in each pixel column from the leftmost pixel column to the rightmost pixel column of the panel 10 except for the discharge cell column emitting a predetermined color.
  • the color of light emitted by the x-coordinate detection discharge is a complementary color of a predetermined color. For example, if the predetermined color is blue, the color of light emitted by the x-coordinate detection discharge is yellow, which is a mixture of red and green.
  • the pixel columns from the first column to the last column are excluded except for the discharge cell columns that emit a predetermined color.
  • X coordinate detection discharges are sequentially generated.
  • a light emission pattern in which one vertical line that emits light of a predetermined complementary color (for example, yellow) sequentially moves pixel by pixel from the left end to the right end of the image display area of the panel 10 is displayed on the panel 10. Is done.
  • this light emission pattern is referred to as an “x coordinate detection pattern”.
  • one light emission line extending in the y coordinate direction generated in the x coordinate detection period Px is also referred to as a “second light emission line”.
  • the timing at which the electronic pen receives the light emitted from the second light emission line varies depending on where the position coordinate of the electronic pen is in the image display area of the panel 10.
  • the time for applying the voltage Vax of the x coordinate detection pulse to each of the data electrodes 22 is Tx1.
  • This Tx1 is about 1 ⁇ sec, for example.
  • the voltage 0 (V) to the positive voltage Vr is applied to the scan electrodes SC1 to SCn while the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn and the data electrodes D1 to Dm. Apply an upward ramp waveform voltage that rises slowly until
  • the data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or may be left with the voltage 0 (V) applied.
  • the discharge cells that emit light of a predetermined color for example, blue discharge cells
  • Discharge cells for example, red and green discharge cells
  • the light emission luminance of the “first light emission line” and the “second light emission line” can be reduced to about 2/3 as compared with the conventional configuration in which all the discharge cells of three colors emit light.
  • the emission colors of the “first emission line” and the “second emission line” are complementary colors of the emission color (for example, blue) generated during the synchronization detection period Po. Accordingly, the user observes light emission in which the complementary color (for example, yellow) is superimposed on the light emission (for example, blue) generated in the synchronization detection period Po, and the light emission color generated in the period of the coordinate detection subfield approaches an achromatic color. . As a result, it is possible to make it difficult for the user to perceive light emitted in the coordinate detection subfield.
  • voltage Vc ⁇ 50 (V)
  • voltage Vr 205 (V)
  • voltage Ve 155 (V )
  • the gradient of the rising ramp waveform voltage rising to the voltage Vi2 generated in the initialization periods Pi1, Pio, Pix and the erasing period Pex of the image display subfield or coordinate detection subfield is about 1.5 (V / ⁇ sec).
  • the slope of the downward ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy and Pix is about ⁇ 2.5 (V / ⁇ sec).
  • the gradient of the rising ramp waveform voltage that rises to the voltage Vr generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure periods Pey and Pex, and the initialization period Pix is about 10 (V / ⁇ sec).
  • each voltage value and the gradient described above is merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
  • FIG. 5 is a diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
  • the image display system 100 shown in the present embodiment includes an image display device 30, a drawing device 40, and a plurality of electronic pens 50a, 50b, 50c, and 50d as components, and drawing with the electronic pens 50a, 50b, 50c, and 50d.
  • Wireless communication is performed with the device 40.
  • the number of electronic pens 50 included in the image display system 100 is not limited to four, and may be five or more, three or less, or one.
  • the image display device 30 includes a display device that displays an image and a drive circuit that drives the display device.
  • a plasma display device having a panel 10 as a display device is used as the image display device 30 will be described.
  • the image display device 30 has a power supply for supplying necessary power to the image signal processing unit 31, the data electrode driving unit 32, the scan electrode driving unit 33, the sustain electrode driving unit 34, the control unit 35, and each circuit block as a driving circuit. Part (not shown). These drive circuits generate the drive voltage waveform described with reference to FIGS. 3 and 4 and apply it to the panel 10 to drive the panel 10.
  • the image signal processing unit 31 receives an image signal input from the outside, a drawing signal output from the drawing device 40, and a control signal supplied from the control unit 35.
  • the image signal processing unit 31 combines the image signal and the drawing signal, and based on the combined signal or one of the signals, each of the discharge cells has red, green, and blue gradation values (one field). (Gradation value expressed by), and each gradation value is image data indicating lighting / non-lighting for each subfield (data in which light emission / non-light emission corresponds to digital signals “1” and “0”) To output.
  • the image signal processing unit 31 separates the horizontal synchronization signal and the vertical synchronization signal from the signal transmitted as the image signal, and outputs the horizontal synchronization signal and the vertical synchronization signal to the control unit 35.
  • the control unit 35 generates various control signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal, and generates the generated control signal in each circuit block (data electrode drive unit 32, scan electrode drive unit). 33, sustain electrode drive unit 34, and image signal processing unit 31).
  • the data electrode drive unit 32 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the image data output from the image signal processing unit 31 and the control signal supplied from the control unit 35, and each data electrode D1 ⁇ Apply to Dm.
  • the sustain electrode driver 34 generates the drive voltage waveform shown in FIGS. 3 and 4 based on the control signal supplied from the controller 35 and applies it to the sustain electrodes SU1 to SUn.
  • the scan electrode drive unit 33 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the control signal supplied from the control unit 35 and applies the drive voltage waveforms to the scan electrodes SC1 to SCn.
  • the electronic pen 50 is formed in a rod shape, and the user directly touches the front end of the electronic pen 50 to the panel 10 and inputs characters, drawings, and the like in the image display area of the image display device 30 by handwriting. used.
  • the electronic pen 50 detects the position coordinates by receiving light emitted from the panel 10 by the coordinate detection subfield. As described above, as for the position coordinates, the electronic pen 50 receives the light emission of the y coordinate detection pattern displayed on the panel 10 to calculate the y coordinate, and receives the light emission of the x coordinate detection pattern displayed on the panel 10. Then, it is detected by calculating the x coordinate.
  • the electronic pen 50 includes a light receiving element 52, a contact switch 53, a synchronization detection unit 54, a coordinate calculation unit 56, and a transmission unit 58.
  • the electronic pen 50 also has a power switch, a pilot lamp, and the like.
  • the power switch is a switch for controlling the power on / off of the electronic pen 50.
  • the pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color.
  • the contact switch 53 is provided at the tip of the electronic pen 50 on the side where the light receiving element 52 is attached, and detects whether the tip of the electronic pen 50 is in contact with the image display surface of the panel 10.
  • the electronic pen 50 may be configured to include a manual switch (not shown) instead of the contact switch 53.
  • the user can input characters and drawings on the image display surface by handwriting by using the electronic pen 50 located away from the image display surface by operating the manual switch.
  • the electronic pen 50 may include both the contact switch 53 and the manual switch, and the single electronic pen 50 may be configured to be used in two ways of contact and non-contact. Or you may comprise so that a user can switch arbitrarily drawing modes (For example, the color of the line used for drawing, the thickness of a line, the kind of line, etc.) by operating a manual switch.
  • the light receiving element 52 receives light emitted from the image display surface of the panel 10 and converts it into an electric signal (light receiving signal). Then, the light reception signal is output to the synchronization detection unit 54 and the coordinate calculation unit 56.
  • the position coordinate (x, y) of the electronic pen 50 is a position where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
  • the synchronization detection unit 54 detects light emission for synchronization detection (light emission generated by the synchronization detection discharge) generated in the synchronization detection period Po of the synchronization detection subfield SFo based on the light reception signal output from the light receiving element 52. Specifically, the synchronization detection unit 54 measures a generation interval of a plurality of (for example, four times) emission using a timer (not shown) included in the synchronization detection unit 54. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
  • a predetermined time interval for example, time To1, time To2, time To3
  • the synchronization detection unit 54 compares the light reception signal with a preset light reception threshold value (not shown), calculates a differential value for the light reception signal equal to or higher than the light reception threshold value, and generates a local peak. The time that occurs is detected and each time is detected. Further, a time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance, and the time difference is measured at each time. You may use for correction of.
  • the synchronization detection unit 54 creates a coordinate reference signal based on one of the continuous multiple times (for example, four times) of light emission (for example, light emission generated at time to1).
  • the time to1 is the time when the first synchronization detection pulse V1 is applied to the scan electrodes SC1 to SCn in the synchronization detection period Po of the synchronization detection subfield SFo.
  • the coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
  • the coordinate calculation unit 56 Based on the coordinate reference signal and the light reception signal, the coordinate calculation unit 56 selectively extracts, from the light reception signal, a signal indicating the light emission of the y coordinate detection pattern and a signal indicating the light emission of the x coordinate detection pattern, and outputs the electrons in the image display area.
  • the position coordinates (x, y) of the pen 50 are calculated. Then, the calculated position coordinates (x, y) of the electronic pen 50 are output to the transmission unit 58.
  • the transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52.
  • the transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal. Then, a unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 56, the state S1 of the contact switch 53, etc. Is encoded and converted to a radio signal. This radio signal is a transmission signal.
  • the wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
  • the drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46.
  • the drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the electronic pen 50 and outputs the drawing signal to the image display device 30.
  • This drawing signal is a signal for displaying on the panel 10 an image handwritten by the user using the electronic pen 50, and is substantially the same as the image signal.
  • the receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is converted into an identification number (ID) of the electronic pen 50, a signal representing the position coordinates (x, y) of the electronic pen 50, and a signal S1 representing the state of the contact switch 53. And output to the drawing unit 46.
  • ID identification number
  • S1 representing the state of the contact switch 53.
  • the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other.
  • each circuit block operates based on a control signal supplied from the control unit 35, but details of the path of the control signal are omitted in each drawing.
  • FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
  • the sustain electrode driving unit 34 includes a sustain pulse generation circuit 80 and a constant voltage generation circuit 85.
  • Sustain pulse generation circuit 80 includes a power recovery circuit 81 and switching elements Q83 and Q84.
  • the power recovery circuit 81 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
  • the sustain pulse generation circuit 80 generates a sustain pulse of the voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to the sustain electrodes SU1 to SUn.
  • the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
  • the constant voltage generation circuit 85 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
  • FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
  • the data electrode driving unit 32 operates based on the image data and control signals supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
  • FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the first embodiment of the present disclosure.
  • the scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70.
  • the voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
  • Sustain pulse generation circuit 55 includes power recovery circuit 51 and switching elements Q55, Q56, and Q59.
  • the power recovery circuit 51 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12.
  • the switching element Q59 is a separation switch, and prevents reverse current flow.
  • sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 70.
  • the ramp waveform voltage generation circuit 60 includes Miller integration circuits 61, 62, and 63, generates the ramp waveform voltage shown in FIGS. 3 and 4, and applies it to the scan electrodes SC1 to SCn via the scan pulse generation circuit. .
  • each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
  • Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and backflow preventing diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
  • Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
  • Switching element Q69 is a separation switch and prevents reverse current flow.
  • the scan pulse generating circuit 70 includes switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates a negative voltage Va, and a power source E71 that generates a voltage Vp.
  • Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
  • the scan pulse generation circuit 70 generates a scan pulse at the timing shown in FIG. 3 and sequentially applies it to each of the scan electrodes SC1 to SCn in each address period of the image display subfield.
  • a plurality of pairs of switching elements QHi and switching elements QLi are integrated in one IC (scan driver IC).
  • FIG. 9 is a diagram schematically illustrating an example of the position coordinate detection operation when the electronic pen 50 is used in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 9 shows a coordinate reference signal det input to the coordinate calculation unit 56 and a light reception signal output from the light receiving element 52 in addition to the drive voltage waveform.
  • the drive voltage waveform shown in FIG. 9 is the same as the drive voltage waveform shown in FIG.
  • a period Toy from time to1 to time ty0 (time when the y coordinate detection period Py starts) and from time to1 to time tx0 (time when the x coordinate detection period Px starts).
  • the period Tox is predetermined. Therefore, the synchronization detection unit 54 detects the four consecutive light emission intervals of the light emission intervals of time To1, time To2, and time To3, specifies time to1, and sets time ty0 and time based on time to1.
  • a coordinate reference signal det having a rising edge at each of tx0 is generated and output to the subsequent coordinate calculation unit 56.
  • the coordinate reference signal det is not limited to the time to1, but may be generated based on any of the times to2, to3, and to4.
  • FIG. 10 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in the image display system 100 according to the first embodiment of the present disclosure.
  • FIG. 11 is a diagram schematically illustrating an example of an operation when performing handwritten input with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
  • the first light emission line Ly that sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area. Is displayed on the panel 10.
  • a second shift sequentially moves from the left end (first pixel column) to the right end (m / 3 pixel column) of the image display area.
  • the light emission line Lx is displayed on the panel 10.
  • the light receiving element 52 of the electronic pen 50 receives the light emission of “coordinate (x, y)” on the image display surface of the panel 10, the time tyy when the first light emission line Ly passes the coordinate (x, y). Then, at the time txx when the second light emitting line Lx passes the coordinates (x, y), the light receiving element 52 receives light emission.
  • the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly is received at the time tyy, and receives the light emission of the second light emission line Lx.
  • a light reception signal indicating this is output at time txx.
  • the drawing unit 46 draws a drawing pattern (for example, a pattern such as a white circle) having a color and a size corresponding to the drawing mode around the pixel corresponding to the position coordinate (x, y). Generate a drawing signal.
  • the panel 10 displays a graphic input by handwriting using the electronic pen 50.
  • the address pulse is applied only to the data electrode 22 of the discharge cell that emits a predetermined color (for example, blue) in the address period Pwo of the synchronization detection subfield SFo.
  • the address discharge is generated only in the discharge cells that emit light of a predetermined color (for example, blue).
  • the number of discharge cells in which the synchronous detection discharge is generated in the synchronous detection period Po is 1/3 of the total discharge cells, which is associated with the synchronous detection discharge as compared with the conventional technique in which the synchronous detection discharge is generated in all the discharge cells.
  • the luminance of emitted light can be reduced to about 1/3. Therefore, the luminance of black can be reduced and the contrast of the panel 10 can be improved.
  • the discharge cells for example, red and green discharge cells
  • the discharge cells excluding the discharge cells that have generated the synchronous detection discharge are caused to emit light.
  • the emission luminance of the “second emission line” and the “second emission line” can be reduced to about 2/3 as compared with the conventional configuration in which discharge cells of all three colors emit light.
  • the emission colors of the “first emission line” and the “second emission line” are complementary colors of the emission color (for example, blue) generated in the synchronization detection period Po, the emission generated during the coordinate detection subfield period. Can be made closer to an achromatic color to make it difficult for the user to perceive.
  • the y-coordinate detection discharge and the x-coordinate detection discharge are discharges similar to the address discharge and are weaker than the sustain discharge, and the light emission luminance is relatively low.
  • the synchronous detection discharge that emits light of a predetermined color is a relatively strong discharge similar to the sustain discharge, and the light emission luminance is also relatively high. Therefore, it is desirable that both the “first light emission line” and the “second light emission line” emit light with a complementary color of a predetermined color.
  • the present embodiment is not limited to this configuration. For example, only one of them may emit light with a complementary color of a predetermined color, and the other may emit a predetermined color or all three colors.
  • FIG. 12 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection sub-field according to the second embodiment of the present disclosure.
  • the synchronization detection subfield SFo2 has an initialization period Pio, a writing period Pwo2, and a synchronization detection period Po2.
  • the initialization period Pio shown in FIG. 12 has the same configuration and operation as the initialization period Pio of the synchronization detection subfield SFo shown in the first embodiment, description thereof is omitted.
  • the operation is substantially the same as the write period Pwo of the synchronization detection subfield SFo shown in the first embodiment.
  • the scan electrode 12 to which the scan pulse is applied is different from the address period Pwo shown in the first embodiment.
  • the data electrode 22 (for example, the data electrodes D3 and D6) corresponding to the discharge cells that emit a predetermined color (for example, blue) determined in advance. , D9,..., Dm), the voltage Vd address pulse is applied to the other data electrodes 22 (eg, data electrodes D1, D2, D4, D5,... Corresponding to the red and green discharge cells). , Dm-2, Dm-1), a voltage 0 (V) is applied without applying an address pulse.
  • the scan electrode 12 to which the scan pulse of the voltage Va is applied is a specific scan electrode 12 determined for each field, unlike the address period Pwo shown in the first embodiment.
  • a voltage Vc is applied to the other scan electrodes 12 without applying a scan pulse. That is, in the address period Pwo2, the address discharge is generated only in the discharge cells (hereinafter referred to as “specific discharge cells”) that emit light of a predetermined color and have specific scan electrodes 12 determined for each field.
  • the specific scanning electrode 12 is set based on the following rules.
  • N fields that are temporally continuous are defined as one field group, and N scanning electrodes 12 that are continuously disposed are defined as one scanning electrode group.
  • the scan electrodes 12 and the discharge cell rows are arranged in the order of the first row, the second row,... From the upper end of the image display area.
  • the horizontal direction represents the passage of time in field units
  • the vertical direction represents the scanning electrodes 12.
  • N 2 fields (for example, fields Fj and Fj + 1) arranged in time form one field group, and two scanning electrodes 12 (for example, adjacently arranged) , Scan electrodes SCi, SCi + 1) constitute one scan electrode group.
  • the scan electrode 12 to which the scan pulse voltage Va is applied in the address period Pwo2 is indicated by “ ⁇ ”, and the scan electrode 12 to which the scan pulse voltage Va is not applied is indicated by “x”.
  • fields Fj, Fj + 2, Fj + 4,... are odd-numbered fields, and fields Fj + 1, Fj + 3, Fj + 5,.
  • scan electrodes SC1, SC3,..., SCi ⁇ 1 are set as scan electrodes 12 in odd rows, and scan electrodes SC2, SC4,..., SCi + 1,.
  • the scanning electrode 12 is in the row.
  • the scan pulse voltage Va is applied to the odd-numbered scan electrodes 12 in the write period Pwo2 of the synchronization detection subfield SFo2, and the even-numbered scan electrodes 12 are applied to the even-numbered scan electrodes 12.
  • the voltage Vc is applied without applying the scan pulse voltage Va.
  • the voltage Vc is applied to the odd-numbered scan electrodes 12 without applying the scan pulse voltage Va, and the even-numbered scan electrodes 12 are applied.
  • the voltage Va of the scan pulse is applied to.
  • the number of discharge cells that generate an address discharge in one address period Pwo2 is half that of the discharge cells that emit a predetermined color. This is 1/6 of all the discharge cells, and half of the discharge cells in which the address discharge is generated in the address period Pwo shown in the first embodiment.
  • the luminance of light emission caused by the synchronous detection discharge can be further reduced as compared with the light emission generated in the synchronous detection subfield SFo shown in the first embodiment.
  • the scan pulse voltage Va is applied to the scan electrodes SC1, SC3, SC5,..., SCn ⁇ 1 in the odd rows, and the scan electrodes SC2, SC4, SC in the even rows.
  • SCn shows an example in which a voltage Vc is applied without applying a scanning pulse.
  • the voltage Va of the scan pulse may be simultaneously applied to the specific scan electrode 12 to generate address discharges simultaneously in specific discharge cells that emit a predetermined color.
  • the time required for the writing period Pwo2 can be shortened.
  • scanning pulses may be sequentially applied from the scanning electrodes 12 arranged at the upper end portion of the image display area (not shown).
  • the time to0 is the time when the voltage Va of the scan pulse for generating the last address discharge is applied to the scan electrode SCn-1 in the odd-numbered field, and the last address discharge is applied in the even-numbered field. This is the time when the voltage Va of the scan pulse to be generated is applied to the scan electrode SCn.
  • the synchronization detection period Po2 shown in FIG. 12 has the same configuration and operation as the synchronization detection period Po shown in the first embodiment, detailed description thereof is omitted.
  • the configuration in which the synchronous detection discharge is generated four times in the discharge cells emitting a predetermined color (for example, blue) in the synchronous detection period Po has been described.
  • the synchronous detection in FIG. As shown in the period Po2, the number of occurrences of the synchronous detection discharge may be set to two.
  • the time To0 is set to a time longer than the time To1, for example, the time To0 is set to about 50 ⁇ sec and the time To1 is set to about 40 ⁇ sec.
  • the number of occurrences of the synchronous detection discharge is not limited to the number described above, and is desirably set optimally according to the specifications of the image display system.
  • the number of occurrences of the synchronous detection discharge is reduced, the luminance of light emission generated during the synchronous detection period is lowered, so that the contrast of the panel 10 can be further improved.
  • the number of occurrences of the synchronous detection discharge is desirably set optimally in consideration of the detection accuracy of the position coordinates in the electronic pen 50 and the contrast of the panel 10.
  • the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx shown in FIG. 12 have the same configuration and operation as the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx shown in the first embodiment. Omitted.
  • the address pulse is applied only to the data electrode 22 of the discharge cell that emits a predetermined color (for example, blue) in the address period Pwo2 of the synchronization detection subfield SFo2, and each field A scan pulse is applied only to the specific scan electrode 12 defined in (1).
  • a predetermined color for example, blue
  • each field A scan pulse is applied only to the specific scan electrode 12 defined in (1).
  • the predetermined color may be red or green.
  • the time intervals when the synchronous detection discharge is generated a plurality of times at different times so that the first synchronous detection discharge can be easily specified.
  • each coordinate detection subfield may be generated at a rate of once in a plurality of fields, for example.
  • a plurality of pixel rows when displaying the y-coordinate detection pattern, a plurality of pixel rows may be caused to emit light simultaneously, or pixel rows that are not allowed to emit light may be provided.
  • a plurality of pixel columns when displaying an x-coordinate detection pattern, a plurality of pixel columns may emit light simultaneously, or pixel columns that do not emit light may be provided.
  • each coordinate detection subfield is not limited to the order of occurrence described above.
  • the x coordinate detection subfield may be generated first, and then the y coordinate detection subfield may be generated.
  • the configuration in which the drawing device is provided independently of the image display device is shown.
  • a function connected to the computer connected to the image display device is equivalent to the drawing device.
  • a drawing signal is generated using the computer.
  • the drawing device may be provided as a single device, or the drawing device may be provided in the image display device.
  • the signal switching unit may be provided in the image display device.
  • Each circuit block shown in the first and second embodiments may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment.
  • a microcomputer or a computer programmed to operate may be used.
  • This disclosure is useful as an image display device, an image display device driving method, and an image display system because light emission for coordinate detection can be generated while suppressing a decrease in contrast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

Provided is an image display device which includes a plasma display panel having a discharge cell formed at each intersection of a scanning electrode and a sustaining electrode with a data electrode and generates an image display subfield and a synchronization detection subfield which is used to generate an electric discharge to calculate position coordinates, said image display device being configured such that light generated by the synchronization detection discharge is emitted with minimized degradation in contrast. To achieve this, during a write period in a synchronization detection subfield, a write pulse is applied only to the data electrodes of discharge cells that emit a specific color which is determined in advance, causing a write discharge to be generated only at the discharge cells that emit that specific color.

Description

画像表示装置、画像表示装置の駆動方法および画像表示システムImage display device, image display device driving method, and image display system
 本開示は、電子ペンを用いて文字や図画を入力できる画像表示装置、画像表示装置の駆動方法および画像表示システムに関する。 The present disclosure relates to an image display device capable of inputting characters and drawings using an electronic pen, a driving method of the image display device, and an image display system.
 画像表示部に、例えばプラズマディスプレイパネルやELパネル、または液晶パネル等を用いた画像表示装置では、1画素を赤、緑、青の3つの副画素で構成して画像表示領域に画像を表示する。 In an image display device using, for example, a plasma display panel, an EL panel, or a liquid crystal panel in the image display unit, one pixel is composed of three sub-pixels of red, green, and blue, and an image is displayed in the image display area. .
 プラズマディスプレイパネル(以下、「パネル」と略記する)には副画素としての放電セルが多数形成され、発光と非発光の2値制御を組み合わせて各放電セルに階調を表示する。各放電セル内には、赤、緑、青のいずれかの色で発光する蛍光体が塗布され、放電ガスが封入されている。そして、各放電セルは、放電を発生することで蛍光体を発光する。 A plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells as sub-pixels, and displays gradation in each discharge cell by combining binary control of light emission and non-light emission. Each discharge cell is coated with a phosphor that emits light of any one of red, green, and blue, and a discharge gas is sealed therein. Each discharge cell emits a phosphor by generating a discharge.
 パネルの画像表示領域に画像を表示する方法としては、一般に、1フィールドを複数のサブフィールドに分割し、表示すべき階調値に応じて各サブフィールドの発光・非発光を制御するサブフィールド法が用いられている。 As a method for displaying an image in the image display area of the panel, generally, a subfield method in which one field is divided into a plurality of subfields and light emission / non-light emission of each subfield is controlled according to the gradation value to be displayed. Is used.
 また、各サブフィールドでは、一般に、初期化動作、書込み動作および維持動作を行う。初期化動作には、放電セルに強制的に初期化放電を発生させる強制初期化動作と、直前のサブフィールドで書込み放電を発生した放電セルだけに初期化放電を発生させる選択初期化動作がある。 Also, in each subfield, an initialization operation, a write operation, and a maintenance operation are generally performed. The initializing operation includes a forced initializing operation for forcibly generating an initializing discharge in a discharge cell and a selective initializing operation for generating an initializing discharge only in a discharge cell that has generated an address discharge in the immediately preceding subfield. .
 例えば、特許文献1には、強制初期化動作を1フィールドに1回行うサブフィールド法が開示されている。この方法では、黒を表示する放電セルの輝度を下げ、表示画像のコントラストを向上させることができる。 For example, Patent Document 1 discloses a subfield method in which a forced initialization operation is performed once per field. In this method, the brightness of the discharge cells that display black can be lowered and the contrast of the display image can be improved.
 このような画像表示装置には、「電子ペン」や「ライトペン」と呼ばれるペン型のポインティングデバイスを使用して、画像表示面に、文字や図画を手書き入力することができる機能を有するものがある。この機能には、画像表示領域内における電子ペンの位置を検出する技術が用いられる。以下、画像表示領域内における電子ペンの位置を表す座標を「位置座標」と記す。 Some of these image display apparatuses have a function of allowing handwriting input of characters and drawings on the image display surface using a pen-type pointing device called “electronic pen” or “light pen”. is there. For this function, a technique for detecting the position of the electronic pen in the image display area is used. Hereinafter, the coordinates representing the position of the electronic pen in the image display area are referred to as “position coordinates”.
 例えば、特許文献2には、プラズマディスプレイパネル上の座標位置を光センサを用いて検出するプラズマディスプレイパネルの座標位置検出装置および座標位置検出方法が開示されている。 For example, Patent Document 2 discloses a coordinate position detection apparatus and a coordinate position detection method for a plasma display panel that detect a coordinate position on the plasma display panel using an optical sensor.
特開2000-242224号公報JP 2000-242224 A 特開2001-318765号公報JP 2001-318765 A
 本開示における画像表示装置の駆動方法は、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルを備えた画像表示装置の駆動方法である。この駆動方法では、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、位置座標を算出するための放電を発生させる同期検出サブフィールドとを発生する。同期検出サブフィールドは、データ電極に書込みパルスを印加するとともに走査電極に走査パルスを印加して放電セルに書込み放電を発生させる書込み期間と、走査電極と維持電極とに交互に同期検出パルスを印加して放電セルに同期検出放電を発生させる同期検出期間とを有する。そして、同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに書込みパルスを印加し、所定の色を発光する放電セルだけに書込み放電を発生させる。 The driving method of the image display device according to the present disclosure is a driving method of an image display device including a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes. In this driving method, an image display subfield for displaying an image on the plasma display panel and a synchronization detection subfield for generating a discharge for calculating position coordinates are generated. In the sync detection subfield, an address pulse is applied to the data electrode and a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and a sync detection pulse is applied alternately to the scan electrode and the sustain electrode. And a synchronization detection period for generating a synchronization detection discharge in the discharge cell. Then, in the address period of the synchronization detection subfield, an address pulse is applied only to the data electrodes of the discharge cells that emit a predetermined color, and an address discharge is generated only in the discharge cells that emit the predetermined color.
 また、本開示における画像表示装置の駆動方法では、データ電極にy座標検出電圧を印加するとともに走査電極にy座標検出パルスを順次印加して放電セルにy座標検出放電を発生させるy座標検出期間を有するy座標検出サブフィールドを発生してもよい。そして、y座標検出期間において、所定の色を発光する放電セル以外の放電セルのデータ電極だけにy座標検出電圧を印加し、所定の色を発光する放電セル以外の放電セルだけにy座標検出放電を発生させてもよい。 In the driving method of the image display apparatus according to the present disclosure, the y-coordinate detection period in which the y-coordinate detection voltage is applied to the data electrode and the y-coordinate detection pulse is sequentially applied to the scan electrode to generate the y-coordinate detection discharge in the discharge cell. A y-coordinate detection subfield having In the y-coordinate detection period, the y-coordinate detection voltage is applied only to the data electrodes of the discharge cells other than the discharge cells emitting a predetermined color, and the y-coordinate detection is performed only to the discharge cells other than the discharge cells emitting the predetermined color. A discharge may be generated.
 また、本開示における画像表示装置の駆動方法では、走査電極にx座標検出電圧を印加するとともにデータ電極にx座標検出パルスを順次印加して放電セルにx座標検出放電を発生させるx座標検出期間を有するx座標検出サブフィールドを発生してもよい。そして、x座標検出期間において、所定の色を発光する放電セル以外の放電セルのデータ電極だけにx座標検出パルスを順次印加し、所定の色を発光する放電セル以外の放電セルだけにx座標検出放電を発生させてもよい。 Further, in the driving method of the image display device according to the present disclosure, the x coordinate detection period in which the x coordinate detection voltage is applied to the scan electrode and the x coordinate detection pulse is sequentially applied to the data electrode to generate the x coordinate detection discharge in the discharge cell. An x-coordinate detection subfield having Then, in the x-coordinate detection period, the x-coordinate detection pulse is sequentially applied only to the data electrodes of the discharge cells other than the discharge cells emitting a predetermined color, and the x-coordinate is applied only to the discharge cells other than the discharge cells emitting the predetermined color. A detection discharge may be generated.
 また、本開示における画像表示装置の駆動方法では、同期検出サブフィールドの書込み期間において、所定の色を発光する放電セルであって、かつフィールド毎に定められた特定の放電セルのデータ電極だけに書込みパルスを印加し、所定の色を発光する特定の放電セルだけに書込み放電を発生させてもよい。 Further, in the driving method of the image display apparatus according to the present disclosure, only the data electrode of a discharge cell that emits a predetermined color and that is determined for each field in the synchronization detection subfield address period. An address pulse may be applied to generate an address discharge only in a specific discharge cell that emits a predetermined color.
 本開示における画像表示装置は、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルと、1フィールドを複数のサブフィールドで構成してプラズマディスプレイパネルを駆動する駆動回路とを備えた画像表示装置である。駆動回路は、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、位置座標を算出するための放電を発生させる同期検出サブフィールドとを発生し、同期検出サブフィールドに、データ電極に書込みパルスを印加するとともに走査電極に走査パルスを印加して放電セルに書込み放電を発生させる書込み期間と、走査電極と維持電極とに交互に同期検出パルスを印加して放電セルに同期検出放電を発生させる同期検出期間とを設ける。そして、同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに書込みパルスを印加し、所定の色を発光する放電セルだけに書込み放電を発生させる。 An image display apparatus according to the present disclosure drives a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes, and one field is composed of a plurality of subfields. An image display device including a drive circuit. The driving circuit generates an image display subfield for displaying an image on the plasma display panel and a synchronization detection subfield for generating a discharge for calculating the position coordinates, and a write pulse is applied to the data electrode in the synchronization detection subfield. And an address period in which a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and a synchronization detection pulse is applied to the scan electrode and the sustain electrode alternately to generate a sync detection discharge in the discharge cell. And a detection period. Then, in the address period of the synchronization detection subfield, an address pulse is applied only to the data electrodes of the discharge cells that emit a predetermined color, and an address discharge is generated only in the discharge cells that emit the predetermined color.
 本開示における画像表示システムは、走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネル、およびプラズマディスプレイパネルを駆動する駆動回路を備えた画像表示装置と、電子ペンと、描画装置とを備える。駆動回路は、プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、放電セルに位置座標を算出するための放電を発生させる同期検出サブフィールドと、放電セルにy座標検出放電を発生させるy座標検出サブフィールドと、放電セルにx座標検出放電を発生させるx座標検出サブフィールドとを発生する。そして、同期検出サブフィールドに、データ電極に書込みパルスを印加するとともに走査電極に走査パルスを印加して放電セルに書込み放電を発生させる書込み期間と、走査電極と維持電極とに交互に同期検出パルスを印加して放電セルに同期検出放電を発生させる同期検出期間とを設ける。そして、同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに書込みパルスを印加し、所定の色を発光する放電セルだけに書込み放電を発生させる。電子ペンは、プラズマディスプレイパネルの発光を受光して受光信号を出力する受光素子と、y座標検出サブフィールドおよびx座標検出サブフィールドと同期した座標基準信号を受光信号にもとづき作成する同期検出部と、電子ペンが指すプラズマディスプレイパネル上の座標を座標基準信号と受光信号にもとづき算出する座標算出部と、座標算出部が算出した座標を描画装置に送信する送信部とを有する。描画装置は、電子ペンから送信された座標を受信する受信部と、受信部で受信した座標にもとづき描画信号を作成して画像表示装置に出力する描画部とを有する。 An image display system according to the present disclosure includes: a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes, and data electrodes; an image display device including a drive circuit that drives the plasma display panel; A pen and a drawing device are provided. The driving circuit includes an image display subfield for displaying an image on the plasma display panel, a synchronization detection subfield for generating a discharge for calculating position coordinates in the discharge cell, and a y coordinate for generating a y coordinate detection discharge in the discharge cell. A detection subfield and an x-coordinate detection subfield for generating an x-coordinate detection discharge in the discharge cell are generated. In the synchronization detection subfield, the address pulse is applied to the data electrode and the scan pulse is applied to the scan electrode to generate the address discharge in the discharge cell, and the synchronization detection pulse is alternately applied to the scan electrode and the sustain electrode. And a synchronization detection period for generating a synchronization detection discharge in the discharge cell. Then, in the address period of the synchronization detection subfield, an address pulse is applied only to the data electrodes of the discharge cells that emit a predetermined color, and an address discharge is generated only in the discharge cells that emit the predetermined color. The electronic pen includes a light receiving element that receives light emitted from the plasma display panel and outputs a light reception signal, a synchronization detection unit that generates a coordinate reference signal synchronized with the y coordinate detection subfield and the x coordinate detection subfield based on the light reception signal, and A coordinate calculation unit that calculates coordinates on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal, and a transmission unit that transmits the coordinates calculated by the coordinate calculation unit to the drawing apparatus. The drawing apparatus includes a receiving unit that receives coordinates transmitted from the electronic pen, and a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
図1は、本開示の実施の形態1における画像表示装置に用いるパネルの構造の一例を示す分解斜視図である。FIG. 1 is an exploded perspective view illustrating an example of a structure of a panel used in the image display device according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1における画像表示装置に用いるパネルの電極配列の一例を示す図である。FIG. 2 is a diagram illustrating an example of the electrode arrangement of the panel used in the image display device according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1における画像表示サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the image display subfield according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1における画像表示システムの一構成例を概略的に示す図である。FIG. 5 is a diagram schematically illustrating a configuration example of the image display system according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1における画像表示装置の維持電極駆動部の一構成例を概略的に示す回路図である。FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1における画像表示装置のデータ電極駆動部の一構成例を概略的に示す回路図である。FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit of the image display device according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1における画像表示装置の走査電極駆動部の一構成例を概略的に示す回路図である。FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit of the image display apparatus according to the first embodiment of the present disclosure. 図9は、本開示の実施の形態1における画像表示システムにおいて電子ペンを使用するときの位置座標検出動作の一例を概略的に示す図である。FIG. 9 is a diagram schematically illustrating an example of a position coordinate detection operation when the electronic pen is used in the image display system according to the first embodiment of the present disclosure. 図10は、本開示の実施の形態1における画像表示システムにおいて電子ペンを使用するときの動作の一例を概略的に示す図である。FIG. 10 is a diagram schematically illustrating an example of an operation when the electronic pen is used in the image display system according to the first embodiment of the present disclosure. 図11は、本開示の実施の形態1における画像表示システムにおいて電子ペンによる手書き入力を行うときの動作の一例を概略的に示す図である。FIG. 11 is a diagram schematically illustrating an example of an operation when performing handwritten input with the electronic pen in the image display system according to the first embodiment of the present disclosure. 図12は、本開示の実施の形態2における座標検出サブフィールにおいてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 12 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection sub-field according to the second embodiment of the present disclosure. 図13は、本開示の実施の形態2におけるN=2のときの特定の走査電極とフィールドとの関係を示す図である。FIG. 13 is a diagram illustrating a relationship between a specific scan electrode and a field when N = 2 in the second embodiment of the present disclosure.
 以下、本開示の実施の形態における画像表示システムについて、図面を用いて説明する。以下の実施の形態では、一例として、画像表示部にプラズマディスプレイパネルを用いた画像表示装置を有する画像表示システムを説明する。 Hereinafter, an image display system according to an embodiment of the present disclosure will be described with reference to the drawings. In the following embodiments, an image display system having an image display device using a plasma display panel as an image display unit will be described as an example.
 (実施の形態1)
 図1は、本開示の実施の形態1における画像表示装置に用いるパネル10の構造の一例を示す分解斜視図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view illustrating an example of the structure of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成され、表示電極対14を覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。前面基板11は画像が表示される画像表示面となる。 On the front substrate 11 made of glass, a plurality of display electrode pairs 14 composed of the scanning electrodes 12 and the sustain electrodes 13 are formed, and a dielectric layer 15 is formed so as to cover the display electrode pairs 14, and the dielectric layer 15 A protective layer 16 is formed thereon. The front substrate 11 serves as an image display surface on which an image is displayed.
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23の表面には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. The phosphor layer 25R that emits red (R), the phosphor layer 25G that emits green (G), and the phosphor layer that emits blue (B) are formed on the side surfaces of the barrier ribs 24 and the surface of the dielectric layer 23. 25B is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、放電空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、その放電空間に放電ガスを封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 cross each other with the discharge space interposed therebetween, and a discharge gas is sealed in the discharge space.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する領域に放電セルが形成される。 The discharge space is divided into a plurality of sections by the barrier ribs 24, and discharge cells are formed in areas where the display electrode pairs 14 and the data electrodes 22 intersect.
 パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)を発光する放電セル(以下、「赤の放電セル」と記す)と、蛍光体層25Gを有し緑色(G)を発光する放電セル(以下、「緑の放電セル」と記す)と、蛍光体層25Bを有し青色(B)を発光する放電セル(以下、「青の放電セル」と記す)である。すなわち、パネル10では、赤、緑、青の3色の放電セルで1つの画素が構成される。 In the panel 10, one pixel is constituted by three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (hereinafter referred to as “red discharge cell”), and a phosphor cell 25G having a green (G). A discharge cell that emits light (hereinafter referred to as “green discharge cell”) and a discharge cell that has the phosphor layer 25B and emits blue (B) (hereinafter referred to as “blue discharge cell”). That is, in the panel 10, one pixel is constituted by discharge cells of three colors of red, green, and blue.
 なお、パネル10は上述した構造に限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the panel 10 is not limited to the structure described above, and may be provided with, for example, a stripe-shaped partition wall.
 図2は、本開示の実施の形態1における画像表示装置に用いるパネル10の電極配列の一例を示す図である。 FIG. 2 is a diagram illustrating an example of an electrode arrangement of the panel 10 used in the image display device according to the first embodiment of the present disclosure.
 パネル10には、第1の方向に延長されたn本の走査電極SC1~SCn(図1の走査電極12)およびn本の維持電極SU1~SUn(図1の維持電極13)が配列され、第1の方向に交差する第2の方向に延長されたm本のデータ電極D1~Dm(図1のデータ電極22)が配列されている。 In the panel 10, n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 1) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 1) extended in the first direction are arranged. The m data electrodes D1 to Dm (data electrode 22 in FIG. 1) extended in the second direction intersecting the first direction are arranged.
 以下、第1の方向を行方向(または水平方向、またはライン方向、またはx座標方向)と呼称し、第2の方向を列方向(または垂直方向、またはy座標方向)と呼称する。 Hereinafter, the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
 1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に放電セルが1つ形成される。そして、互いに隣接する赤、緑、青の放電セルが一組となって1つの画素を構成する。したがって、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。 One discharge cell is formed in a region where one pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects one data electrode Dj (j = 1 to m). A set of red, green, and blue discharge cells adjacent to each other constitutes one pixel. Therefore, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10.
 パネル10では、例えば、データ電極Dp(p=3×q-2 : qはm/3以下の正の整数)を有する放電セルには蛍光体層25Rが塗布されており、この放電セルは赤の放電セルとなる。データ電極Dp+1を有する放電セルには蛍光体層25Gが塗布されており、この放電セルは緑の放電セルとなる。データ電極Dp+2を有する放電セルには蛍光体層25Bが塗布されており、この放電セルは青の放電セルとなる。 In the panel 10, for example, a phosphor layer 25R is applied to a discharge cell having a data electrode Dp (p = 3 × q−2: q is a positive integer of m / 3 or less). Discharge cell. The discharge cell having the data electrode Dp + 1 is coated with a phosphor layer 25G, and this discharge cell becomes a green discharge cell. A phosphor layer 25B is applied to the discharge cell having the data electrode Dp + 2, and this discharge cell becomes a blue discharge cell.
 次に、本実施の形態における画像表示装置において発生する駆動電圧波形について図3と図4を用いて説明する。 Next, driving voltage waveforms generated in the image display apparatus according to the present embodiment will be described with reference to FIGS.
 本実施の形態では、1フィールドに、画像表示部に画像を表示する期間と、電子ペンの「位置座標」を検出するために、画像表示部に座標検出用のパターンを表示する期間とを備える。画像表示部に画像を表示する期間は、例えば、パネル10に画像を表示する複数の画像表示サブフィールド(図3に示す)である。また、画像表示部に座標検出用のパターンを表示する期間は、例えば、電子ペンの「位置座標」を検出するためのx座標検出パターンおよびy座標検出パターンをパネル10に表示する複数の座標検出サブフィールド(図4に示す)である。なお、「位置座標」とは、パネル10の画像表示領域において電子ペンが指す位置の座標(電子ペンの位置を示す座標)のことである。 In this embodiment, one field includes a period during which an image is displayed on the image display unit and a period during which a coordinate detection pattern is displayed on the image display unit in order to detect “position coordinates” of the electronic pen. . The period during which an image is displayed on the image display unit is, for example, a plurality of image display subfields (shown in FIG. 3) for displaying an image on the panel 10. The period during which the coordinate detection pattern is displayed on the image display unit is, for example, a plurality of coordinate detections in which the x coordinate detection pattern and the y coordinate detection pattern for detecting the “position coordinates” of the electronic pen are displayed on the panel 10. It is a subfield (shown in FIG. 4). “Position coordinates” refers to the coordinates of the position indicated by the electronic pen in the image display area of the panel 10 (coordinates indicating the position of the electronic pen).
 各画像表示サブフィールドは、初期化期間、書込み期間および維持期間を有する。以下、画像表示サブフィールドを単にサブフィールドとも記す。 Each image display subfield has an initialization period, an address period, and a sustain period. Hereinafter, the image display subfield is also simply referred to as a subfield.
 初期化期間における初期化動作には、放電セルに強制的に初期化放電を発生する「強制初期化動作」と、直前のサブフィールドの書込み期間に書込み放電を発生した放電セルだけに選択的に初期化放電を発生する「選択初期化動作」がある。 For the initialization operation in the initialization period, a “forced initialization operation” that forcibly generates an initialization discharge in the discharge cells and a discharge cell that generates an address discharge in the address period of the immediately preceding subfield are selectively used. There is a “selective initialization operation” that generates an initialization discharge.
 本実施の形態では、1フィールドの画像表示サブフィールドの数は例えば8つ(サブフィールドSF1~SF8)であり、各サブフィールドの輝度重みは例えば(1、34、21、13、8、5、3、2)である。しかし、サブフィールド数、輝度重み等は、何ら上記の数値に限定されるものではない。 In the present embodiment, the number of image display subfields in one field is eight (subfields SF1 to SF8), and the luminance weight of each subfield is, for example, (1, 34, 21, 13, 8, 5, 3, 2). However, the number of subfields, the luminance weight, etc. are not limited to the above numerical values.
 図3は、本開示の実施の形態1における画像表示サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。 FIG. 3 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the image display subfield according to the first embodiment of the present disclosure.
 以下における走査電極SCi、維持電極SUi、データ電極Dkは、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield).
 なお、サブフィールドSF3以降の各サブフィールドは、維持パルスの発生数を除き、サブフィールドSF2とほぼ同様の駆動電圧波形を発生する。 It should be noted that each subfield after subfield SF3 generates a drive voltage waveform substantially similar to that of subfield SF2, except for the number of sustain pulses.
 強制初期化動作を行うサブフィールドSF1の初期化期間Pi1では、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加する。走査電極SC1~SCnには、電圧0(V)を印加した後に、放電開始電圧よりも低い電圧Vi1から放電開始電圧を超える電圧Vi2まで緩やかに上昇する上り傾斜波形電圧を印加する。次に、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに正の電圧Veを印加する。走査電極SC1~SCnには、放電開始電圧未満となる電圧0(V))から放電開始電圧を超える負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。 In the initializing period Pi1 of the subfield SF1 in which the forced initializing operation is performed, the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn. After applying voltage 0 (V) to scan electrodes SC1 to SCn, an upward ramp waveform voltage that gradually rises from voltage Vi1 lower than the discharge start voltage to voltage Vi2 exceeding the discharge start voltage is applied. Next, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage that gently falls from scan voltage SC1 to SCn to a negative voltage Vi4 that exceeds the discharge start voltage is applied to scan electrode SC1 to SCn.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続く書込み期間Pw1での書込み動作に適した電圧に調整される。以下、初期化期間Pi1に発生する上述の駆動電圧波形を強制初期化波形とする。 The initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1. Hereinafter, the driving voltage waveform generated in the initialization period Pi1 is referred to as a forced initialization waveform.
 なお、強制初期化動作において強制初期化波形を印加する放電セルは、パネル10の画像表示領域内にある全ての放電セルであってもよいが、例えば、画像表示領域内にある一部の放電セルであってもよい。これは、以下の説明における強制初期化動作を行う全てのサブフィールドについても同様である。 Note that the discharge cells to which the forced initializing waveform is applied in the forced initializing operation may be all the discharge cells in the image display area of the panel 10, but, for example, some discharges in the image display area It may be a cell. The same applies to all subfields that perform the forced initialization operation in the following description.
 サブフィールドSF1の書込み期間Pw1では、1行目の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加し、データ電極D1~Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する。 In the address period Pw1 of the subfield SF1, a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row, and data of discharge cells to be emitted in the first row of the data electrodes D1 to Dm. A positive address pulse having a positive voltage Vd is applied to the electrode Dk.
 同様の書込み動作を、走査電極SC2、SC3、SC4、・・・、SCnという順番で、n行目の放電セルに至るまで順次行う。 The same addressing operation is sequentially performed in the order of scan electrodes SC2, SC3, SC4,..., SCn up to the discharge cell in the nth row.
 サブフィールドSF1の維持期間Ps1では、走査電極SC1~SCnと維持電極SU1~SUnとに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。直前の書込み期間Pw1において書込み放電を発生した放電セルは、輝度重みに応じた回数の維持放電が発生し、輝度重みに応じた輝度で発光する。 In the sustain period Ps1 of the subfield SF1, the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to the scan electrodes SC1 to SCn and the sustain electrodes SU1 to SUn. A discharge cell that has generated an address discharge in the immediately preceding address period Pw1 generates a number of sustain discharges corresponding to the luminance weight, and emits light at a luminance corresponding to the luminance weight.
 そして、維持パルスの発生後(維持期間Ps1において維持動作が終了した後)には、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。 After the sustain pulse is generated (after the sustain operation is completed in sustain period Ps1), voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm, and applied to scan electrodes SC1 to SCn. An upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
 これにより、維持放電を発生した放電セルに微弱な放電(消去放電)が発生し、放電セル内の不要な壁電荷が消去される。 As a result, a weak discharge (erase discharge) is generated in the discharge cell that has generated the sustain discharge, and unnecessary wall charges in the discharge cell are erased.
 選択初期化動作を行うサブフィールドSF2の初期化期間Pi2では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには正の電圧Veを印加する。走査電極SC1~SCnには、放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 In the initialization period Pi2 of the subfield SF2 in which the selective initialization operation is performed, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn. A downward ramp waveform voltage that falls from a voltage (for example, voltage 0 (V)) that is lower than the discharge start voltage to a negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 この選択初期化動作により、直前のサブフィールドSF1の維持期間Ps1に維持放電を発生した放電セルでは微弱な初期化放電が発生し、各電極上の壁電圧は、続く書込み期間Pw2での書込み動作に適した壁電圧に調整される。直前のサブフィールドSF1の維持期間Ps1に維持放電を発生しなかった放電セルでは、初期化放電は発生しない。以下、初期化期間Pi2に発生する上述の駆動電圧波形を選択初期化波形とする。 By this selective initializing operation, a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1, and the wall voltage on each electrode is changed to the address operation in the subsequent address period Pw2. The wall voltage is adjusted to a suitable level. An initializing discharge does not occur in a discharge cell in which no sustain discharge has occurred in the sustain period Ps1 of the immediately preceding subfield SF1. Hereinafter, the drive voltage waveform generated in the initialization period Pi2 is referred to as a selective initialization waveform.
 続く書込み期間Pw2および維持期間Ps2は、維持パルスの発生数を除き、書込み期間Pw1および維持期間Ps1と同様の駆動電圧波形を各電極に印加する。 In the subsequent address period Pw2 and sustain period Ps2, drive voltage waveforms similar to those in the address period Pw1 and sustain period Ps1 are applied to each electrode, except for the number of sustain pulses.
 サブフィールドSF3以降の各サブフィールドでは、維持パルスの発生数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In each subfield after subfield SF3, the same drive voltage waveform as in subfield SF2 is applied to each electrode except for the number of sustain pulses.
 次に、座標検出サブフィールドで発生する駆動電圧波形を、図4を用いて説明する。 Next, the drive voltage waveform generated in the coordinate detection subfield will be described with reference to FIG.
 図4は、本開示の実施の形態1における座標検出サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。本実施の形態では、座標検出サブフィールドには、同期検出サブフィールドSFo、y座標検出サブフィールドSFy、およびx座標検出サブフィールドSFxが含まれている。 FIG. 4 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection subfield according to the first embodiment of the present disclosure. In the present embodiment, the coordinate detection subfield includes a synchronization detection subfield SFo, a y coordinate detection subfield SFy, and an x coordinate detection subfield SFx.
 画像表示領域内における電子ペンが指す位置(以下、「電子ペンの位置」とも記す)は、x座標とy座標で表される。本実施の形態では、行方向の座標をx座標とし、列方向の座標をy座標としている。x座標検出サブフィールドSFx、y座標検出サブフィールドSFyは、このx座標、y座標を検出するためのサブフィールドである。 The position indicated by the electronic pen in the image display area (hereinafter also referred to as “position of the electronic pen”) is represented by an x coordinate and ay coordinate. In this embodiment, the coordinate in the row direction is the x coordinate, and the coordinate in the column direction is the y coordinate. The x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate.
 なお、電子ペンは、本実施の形態の画像表示システムに備えられたものであり、使用者がパネル10上に文字や図画を手書き入力するために使用される。電子ペンの詳細は後述する。 The electronic pen is provided in the image display system according to the present embodiment, and is used by a user to input characters and drawings on the panel 10 by handwriting. Details of the electronic pen will be described later.
 なお、電子ペンが指す位置(位置座標)とは、後述する電子ペンの受光素子が、x座標検出サブフィールドSFxで表示されるx座標検出パターンの発光およびy座標検出サブフィールドSFyで表示されるy座標検出パターンの発光を受光する画像表示面内の位置のことである。 Note that the position (positional coordinate) pointed to by the electronic pen is a light receiving element of the electronic pen, which will be described later, displayed in the light emission of the x coordinate detection pattern displayed in the x coordinate detection subfield SFx and in the y coordinate detection subfield SFy. It is a position in the image display surface that receives light emitted from the y coordinate detection pattern.
 また、本実施の形態における画像表示システムでは、電子ペンと後述する描画装置との間で無線通信を行う。電子ペンは、電子ペンの内部で電子ペンの位置座標を算出し、算出した位置座標のデータを電子ペンから描画装置へ無線通信によって送信する。 Further, in the image display system in the present embodiment, wireless communication is performed between the electronic pen and a drawing apparatus described later. The electronic pen calculates the position coordinates of the electronic pen inside the electronic pen, and transmits data of the calculated position coordinates from the electronic pen to the drawing apparatus by wireless communication.
 同期検出サブフィールドSFoは、画像表示装置に座標検出サブフィールドが発生するタイミングを、電子ペンが正確に把握するためのサブフィールドである。電子ペンは、同期検出サブフィールドSFoで生じる発光を受光することで、画像表示装置と同期をとり、位置座標を算出するための基準となる信号(座標基準信号)を高い精度で発生することが可能になる。 The synchronization detection subfield SFo is a subfield for the electronic pen to accurately grasp the timing at which the coordinate detection subfield is generated in the image display device. The electronic pen receives light emitted in the synchronization detection subfield SFo to generate a signal (coordinate reference signal) serving as a reference for calculating position coordinates with high accuracy by synchronizing with the image display device. It becomes possible.
 なお、各サブフィールドの発生順序は何ら本実施の形態の順番に限定されるものではない。また、座標検出サブフィールドは、必ずしも毎フィールドに設けなくともよい。 Note that the generation order of each subfield is not limited to the order of this embodiment. Further, the coordinate detection subfield is not necessarily provided in each field.
 図4の同期検出サブフィールドSFoは、初期化期間Pio、書込み期間Pwo、および同期検出期間Poを有する。 The synchronization detection subfield SFo in FIG. 4 has an initialization period Pio, a writing period Pwo, and a synchronization detection period Po.
 初期化期間Pioでは、画像表示サブフィールドのサブフィールドSF1の初期化期間Pi1とほぼ同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pio, the same forced voltage operation as that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation.
 なお、走査電極SC1~SCnに上り傾斜波形電圧を印加するとき、データ電極D1~Dmは、図4に示すようにハイインピーダンス状態にしてもよく、あるいは初期化期間Pi1と同様に電圧0(V)を印加したままにしてもよい。 Note that when an upward ramp waveform voltage is applied to scan electrodes SC1 to SCn, data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or a voltage of 0 (V) as in initialization period Pi1. ) May be left applied.
 また、走査電極SC1~SCnに下り傾斜波形電圧を印加するとき、維持電極SU1~SUnは、図4に示すように電圧Veを印加した後にハイインピーダンス状態にしてもよく、あるいは電圧Veを印加したままにしてもよい。 Further, when applying a downward ramp waveform voltage to scan electrodes SC1 to SCn, sustain electrodes SU1 to SUn may be in a high impedance state after applying voltage Ve as shown in FIG. 4, or applied with voltage Ve. You can leave it.
 この強制初期化動作によって各放電セルに初期化放電が生じ、各電極上の壁電圧は、続く書込み期間Pwoでの書込み動作に適した電圧に調整される。 The initializing discharge is generated in each discharge cell by this forced initializing operation, and the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pwo.
 同期検出サブフィールドSFoの書込み期間Pwoでは、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnにはハイインピーダンス状態の後に電圧Veを印加し、走査電極SC1~SCnには電圧Vcを印加する。 In the address period Pwo of the synchronization detection subfield SFo, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn after the high impedance state, and the scan electrodes SC1 to SCn. Is applied with a voltage Vc.
 次に、あらかじめ定められた所定の色を発光する放電セルに対応するデータ電極22だけに電圧Vdの書込みパルスを印加する。他のデータ電極22には書込みパルスを印加せず電圧0(V)を印加する。 Next, an address pulse of voltage Vd is applied only to the data electrode 22 corresponding to the discharge cell that emits a predetermined color. A voltage 0 (V) is applied to the other data electrodes 22 without applying an address pulse.
 例えば、所定の色が青色であれば、書込み期間Pwoでは、青の放電セルに対応するデータ電極22(本実施の形態では、データ電極D3、D6、D9、・・・、Dm)だけに書込みパルスの電圧Vdを印加し、赤および緑の放電セルに対応するデータ電極22(例えば、データ電極D1、D2、D4、D5、・・・、Dm-2、Dm-1)には電圧0(V)を印加する。 For example, if the predetermined color is blue, in the address period Pwo, only the data electrode 22 corresponding to the blue discharge cell (in this embodiment, data electrodes D3, D6, D9,..., Dm) is written. A pulse voltage Vd is applied, and the voltage 0 (the data electrodes D1, D2, D4, D5,..., Dm-2, Dm-1) corresponding to the red and green discharge cells are set to the voltage 0 ( V) is applied.
 そして、その状態を維持したまま、電圧Vaの走査パルスを走査電極SC1から走査電極SCnまで順次印加する。これにより、書込み期間Pwoでは、所定の色を発光する放電セル(例えば、青の放電セル)だけに書込み放電が発生する。 Then, while maintaining this state, a scan pulse of voltage Va is sequentially applied from scan electrode SC1 to scan electrode SCn. As a result, in the address period Pwo, an address discharge is generated only in discharge cells that emit light of a predetermined color (for example, blue discharge cells).
 書込み動作を終了した後は、データ電極D1~Dmに電圧0(V)を印加する。また、走査電極SC1~SCnには電圧Vcを印加し、その後、電圧0(V)を印加する。本実施の形態では、時刻to0から時間To0の間、この状態を維持する。この期間は、放電セルに最後の書込み放電が発生した後、放電が発生しない状態が維持される。なお、時刻to0は、書込み期間Pwoにおける最後の書込み放電を発生させるための走査パルスを走査電極12(図4では、例えば走査電極SCn)に印加した時刻である。 After the write operation is completed, voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. In this embodiment, this state is maintained from time to0 to time To0. During this period, after the last address discharge has occurred in the discharge cells, a state in which no discharge occurs is maintained. Note that time to0 is the time when a scan pulse for generating the last address discharge in the address period Pwo is applied to the scan electrode 12 (for example, the scan electrode SCn in FIG. 4).
 次に、同期検出サブフィールドSFoの同期検出期間Poでは、電子ペンにおける位置座標算出時の基準となる複数回の発光(同期検出用の発光)をパネル10の所定の色(例えば、青)の放電セルに生じさせる。 Next, in the synchronization detection period Po of the synchronization detection subfield SFo, a plurality of times of light emission (light emission for synchronization detection) serving as a reference at the time of position coordinate calculation in the electronic pen are performed in a predetermined color (for example, blue) of the panel 10. It is generated in the discharge cell.
 図4に示す例では、時刻to0から時間To0が経過した後の時刻to1において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV1を印加する。次に、時刻to1から時間To1が経過した後の時刻to2において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV2を印加する。次に、時刻to2から時間To2が経過した後の時刻to3において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの同期検出パルスV3を印加する。次に、時刻to3から時間To3が経過した後の時刻to4において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの同期検出パルスV4を印加する。 In the example shown in FIG. 4, at time to1 after time To0 has elapsed from time to0, voltage 0 (V) is applied to sustain electrodes SU1 to SUn and synchronous detection pulse V1 of voltage Vso is applied to scan electrodes SC1 to SCn. Apply. Next, at time to2 after time To1 has elapsed from time to1, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V2 of voltage Vso is applied to sustain electrodes SU1 to SUn. Next, at time to3 after time To2 has elapsed from time to2, voltage 0 (V) is applied to sustain electrodes SU1 to SUn, and synchronous detection pulse V3 of voltage Vso is applied to scan electrodes SC1 to SCn. Next, at time to4 after time To3 has elapsed from time to3, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and synchronous detection pulse V4 of voltage Vso is applied to sustain electrodes SU1 to SUn.
 これにより、書込み期間Pwoに書込み放電を発生した放電セル(例えば、青の放電セル)に4回の同期検出放電が発生し、同期検出用の発光(例えば、青の発光)がパネル10に4回生じる。 As a result, four synchronization detection discharges are generated in the discharge cells (for example, blue discharge cells) that have generated the address discharge in the address period Pwo, and the light emission for synchronization detection (for example, blue light emission) is 4 in the panel 10. Arises times.
 このように、同期検出サブフィールドSFoでは、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で、所定の色(例えば、青)を発光する放電セルに、同期検出放電を複数回(例えば、4回)発生させ、同期検出用の発光(例えば、青色の発光)を複数回(例えば、4回)生じさせる。 As described above, in the synchronization detection subfield SFo, synchronization detection is performed on discharge cells that emit light of a predetermined color (for example, blue) at predetermined time intervals (for example, time To1, time To2, and time To3). Discharge is generated a plurality of times (for example, four times), and light emission for synchronization detection (for example, blue light emission) is generated a plurality of times (for example, four times).
 なお、この同期検出放電は、維持放電と同様の放電であって、書込み放電と比較して強い放電であり、書込み期間Pwoで発生する発光よりも輝度が高い。しかし、本実施の形態においては、同期検出放電を発生する放電セルは、所定の色を発光する放電セルであって、全体の1/3の放電セル(例えば、青の放電セル)に過ぎず、全体の2/3の放電セル(例えば、赤および緑の放電セル)には同期検出放電は発生しない。そのため、本実施の形態における同期検出期間Poでは、同期検出放電にともなって生じる発光の輝度を、全ての放電セルに同期検出放電が発生する従来の構成と比較して、約1/3に低減することができる。 The synchronous detection discharge is a discharge similar to the sustain discharge, and is a stronger discharge than the address discharge, and has higher luminance than the light emission generated in the address period Pwo. However, in the present embodiment, the discharge cells that generate the synchronous detection discharge are discharge cells that emit a predetermined color, and are only 1/3 of the discharge cells (for example, blue discharge cells). The synchronous detection discharge does not occur in the entire 2/3 discharge cells (for example, red and green discharge cells). For this reason, in the synchronization detection period Po in the present embodiment, the luminance of light emission caused by the synchronization detection discharge is reduced to about 1/3 compared to the conventional configuration in which the synchronization detection discharge is generated in all the discharge cells. can do.
 そして、電子ペンは、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で発生する複数回(例えば、4回)の同期検出用の発光(例えば、青色の発光)を受光して座標基準信号を作成する。座標基準信号とは、電子ペンの位置座標(x,y)を算出する際に基準となる信号である。 Then, the electronic pen emits light for synchronization detection (for example, blue light emission) a plurality of times (for example, four times) that occur at predetermined time intervals (for example, time To1, time To2, and time To3). Is received and a coordinate reference signal is created. The coordinate reference signal is a signal that serves as a reference when calculating the position coordinate (x, y) of the electronic pen.
 同期検出サブフィールドSFoでは、パネル10の画像表示面の全面が同じタイミングで一斉に所定の色(例えば、青)で光るので、電子ペンの位置座標がパネル10の画像表示領域内のどの位置にあっても、電子ペンはこの発光を同じタイミングで受光することができる。 In the synchronization detection subfield SFo, the entire surface of the image display surface of the panel 10 shines in a predetermined color (for example, blue) all at the same timing, so that the position coordinate of the electronic pen is at any position in the image display area of the panel 10. Even if it exists, the electronic pen can receive this light emission at the same timing.
 本実施の形態では、時間To0を、時間To1、時間To2、時間To3のいずれよりも長い時間に設定する。これは、電子ペンが、同期検出サブフィールドSFoの書込み期間Pwoに発生する書込み放電による発光を、y座標検出サブフィールドSFyのy座標検出放電、またはx座標検出サブフィールドSFxのx座標検出放電による発光と誤認識することを防止するためである。本実施の形態では、例えば、時間To0は約50μsecであり、時間To1は約40μsecであり、時間To2は約20μsecであり、時間To3は約30μsecである。しかし、時間To0~To3の各時間は、何ら上述した数値に限定されるものではなく、各時間は画像表示システム100の仕様等に応じて適切に設定すればよい。 In the present embodiment, the time To0 is set to a time longer than any of the time To1, the time To2, and the time To3. This is because the electronic pen emits light by the address discharge generated in the address period Pwo of the synchronization detection subfield SFo, by the y coordinate detection discharge of the y coordinate detection subfield SFy or the x coordinate detection discharge of the x coordinate detection subfield SFx. This is to prevent erroneous recognition of light emission. In the present embodiment, for example, the time To0 is about 50 μsec, the time To1 is about 40 μsec, the time To2 is about 20 μsec, and the time To3 is about 30 μsec. However, each of the times To0 to To3 is not limited to the numerical values described above, and each time may be set appropriately according to the specifications of the image display system 100 and the like.
 同期検出サブフィールドSFoの同期検出期間Poにおいて、同期検出パルスV4の発生後(同期検出期間Poの最後)には、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、直前に同期検出放電を発生した放電セルに微弱な消去放電が発生する。 In the synchronization detection period Po of the synchronization detection subfield SFo, after the generation of the synchronization detection pulse V4 (at the end of the synchronization detection period Po), an erase operation similar to the erase operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. . As a result, a weak erasing discharge is generated in the discharge cell that has generated the synchronous detection discharge immediately before.
 続いて、y座標検出サブフィールドSFyとx座標検出サブフィールドSFxを発生する。 Subsequently, a y-coordinate detection subfield SFy and an x-coordinate detection subfield SFx are generated.
 以下、1つの行を構成する放電セルの集合体を「放電セル行」と記し、1つの行を構成する画素の集合体を「画素行」と記す。本実施の形態では、放電セル行と画素行とは実質的に同じものである。また、1つの列を構成する放電セルの集合体を「放電セル列」と記し、互いに隣接する3列の放電セル列で構成される放電セルの集合体(画素の列)を「画素列」と記す。 Hereinafter, an aggregate of discharge cells constituting one row is referred to as “discharge cell row”, and an aggregate of pixels constituting one row is referred to as “pixel row”. In the present embodiment, the discharge cell row and the pixel row are substantially the same. A group of discharge cells constituting one column is referred to as a “discharge cell column”, and a group of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”. .
 y座標検出サブフィールドSFyは、初期化期間Piyとy座標検出期間Pyと消去期間Peyを有する。 The y-coordinate detection subfield SFy has an initialization period Piy, a y-coordinate detection period Py, and an erase period Pey.
 y座標検出サブフィールドSFyの初期化期間Piyでは選択初期化動作を行う。初期化期間Piyでは、まず、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加し、走査電極SC1~SCnには、電圧0(V)から負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。 In the initialization period Piy of the y coordinate detection subfield SFy, a selective initialization operation is performed. In the initialization period Piy, first, the voltage 0 (V) is applied to each of the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the voltage from the voltage 0 (V) to the negative voltage Vi4 is applied to the scan electrodes SC1 to SCn. A downward ramp waveform voltage that gently falls is applied.
 次に、データ電極D1~Dm、維持電極SU1~SUnに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧Vsを印加する。 Next, voltage Vs is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to data electrodes D1 to Dm and sustain electrodes SU1 to SUn.
 次に、データ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)を印加し、維持電極SU1~SUnには電圧Vsを印加する。 Next, with the voltage 0 (V) applied to the data electrodes D1 to Dm, the voltage 0 (V) is applied to the scan electrodes SC1 to SCn, and the voltage Vs is applied to the sustain electrodes SU1 to SUn.
 次に、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnには、電圧0(V)から負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。走査電極SC1~SCnに下り傾斜波形電圧を印加するとき、維持電極SU1~SUnは、図4に示すように電圧Veを印加した後にハイインピーダンス状態にしてもよく、あるいは電圧Veを印加したままにしてもよい。 Next, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and a downward ramp waveform voltage that gently falls from the voltage 0 (V) to the negative voltage Vi4 is applied to the scan electrodes SC1 to SCn. When applying a downward ramp waveform voltage to scan electrodes SC1 to SCn, sustain electrodes SU1 to SUn may be in a high impedance state after application of voltage Ve as shown in FIG. May be.
 初期化期間Piyでは、同期検出期間Poに同期検出放電が発生した放電セルに微弱な初期化放電が発生し、それらの放電セルの壁電圧が、初期化される。なお、本実施の形態では、同期検出放電を発生した放電セルは続くy座標検出期間Pyで放電を発生しないので、初期化期間Piyを省略することも可能である。 In the initialization period Piy, a weak initialization discharge is generated in the discharge cells in which the synchronization detection discharge has occurred in the synchronization detection period Po, and the wall voltage of those discharge cells is initialized. In the present embodiment, since the discharge cell that has generated the synchronous detection discharge does not generate the discharge in the subsequent y coordinate detection period Py, the initialization period Piy can be omitted.
 次に、時刻ty0に始まるy座標検出サブフィールドSFyのy座標検出期間Pyでは、維持電極SU1~SUnはハイインピーダンス状態の後に電圧Veを印加し、データ電極D1~Dmには電圧0(V)を印加し、走査電極SC1~SCnには電圧Vcを印加する。 Next, in the y-coordinate detection period Py of the y-coordinate detection subfield SFy starting at time ty0, the sustain electrodes SU1 to SUn are applied with the voltage Ve after being in a high impedance state, and the data electrodes D1 to Dm have a voltage of 0 (V). And voltage Vc is applied to scan electrodes SC1 to SCn.
 時刻ty0から期間Ty0が経過した後に、所定の色以外の色を発光する放電セルに対応するデータ電極22に正極性のy座標検出電圧Vdyを印加し、所定の色を発光する放電セルに対応するデータ電極22にはy座標検出電圧Vdyを印加せず電圧0(V)を印加する。 After a period Ty0 has elapsed from time ty0, a positive y-coordinate detection voltage Vdy is applied to the data electrode 22 corresponding to a discharge cell that emits a color other than a predetermined color, and the discharge cell emits a predetermined color. The voltage 0 (V) is applied to the data electrode 22 to be applied without applying the y-coordinate detection voltage Vdy.
 例えば、所定の色が青色であれば、y座標検出期間Pyでは、赤および緑の放電セルに対応するデータ電極22(例えば、データ電極D1、D2、D4、D5、・・・、Dm-2、Dm-1)にy座標検出電圧Vdyを印加し、青の放電セルに対応するデータ電極22(本実施の形態では、データ電極D3、D6、D9、・・・、Dm)には電圧0(V)を印加する。 For example, if the predetermined color is blue, in the y coordinate detection period Py, data electrodes 22 (for example, data electrodes D1, D2, D4, D5,..., Dm−2) corresponding to red and green discharge cells are used. , Dm−1) is applied with the y-coordinate detection voltage Vdy, and the voltage 0 is applied to the data electrode 22 (in this embodiment, the data electrodes D3, D6, D9,..., Dm) corresponding to the blue discharge cell. Apply (V).
 そして、その状態を維持したまま、電圧Vayの負極性のy座標検出パルスを1行目の画素行を構成する走査電極SC1に印加する。この1行目の画素行は、例えば画像表示領域の上端に配置された画素行である。 Then, while maintaining this state, a negative y-coordinate detection pulse of voltage Vay is applied to scan electrode SC1 constituting the first pixel row. This first pixel row is, for example, a pixel row arranged at the upper end of the image display area.
 y座標検出電圧Vdyを印加したデータ電極22と、電圧Vayのy座標検出パルスを印加した走査電極SC1との交差部にある放電セル行(画素行)では、放電が発生する。これにより、1行目の画素行に、所定の色を発光する放電セルを除いて一斉に放電が発生し、1行目の画素行が発光する。以下、この放電を「y座標検出放電」とも記す。このy座標検出放電による発光は、電子ペンを使用するときのy座標検出用の発光となる。 Discharge occurs in the discharge cell row (pixel row) at the intersection of the data electrode 22 to which the y-coordinate detection voltage Vdy is applied and the scan electrode SC1 to which the y-coordinate detection pulse of the voltage Vay is applied. As a result, the first pixel row is discharged all at once except for discharge cells that emit light of a predetermined color, and the first pixel row emits light. Hereinafter, this discharge is also referred to as “y-coordinate detection discharge”. Light emission by this y-coordinate detection discharge is light emission for y-coordinate detection when the electronic pen is used.
 同様の動作を、2行目の画素行、3行目の画素行、・・・、最終行目の画素行という順番で順次行う。 The same operation is sequentially performed in the order of the second pixel row, the third pixel row,..., And the last pixel row.
 これにより、パネル10の上端の画素行から下端の画素行までの各画素行に、所定の色を発光する放電セルを除き、y座標検出放電が順次発生する。なお、y座標検出放電によって生じる発光の色は、所定の色の補色となる。例えば、所定の色が青色であれば、y座標検出放電によって生じる発光の色は、赤と緑が混合した黄色となる。 Thereby, y coordinate detection discharge is sequentially generated in each pixel row from the uppermost pixel row to the lowermost pixel row of the panel 10 except for discharge cells emitting a predetermined color. Note that the color of light emitted by the y-coordinate detection discharge is a complementary color of a predetermined color. For example, if the predetermined color is blue, the color of light emitted by the y-coordinate detection discharge is yellow, which is a mixture of red and green.
 このように、y座標検出サブフィールドSFyのy座標検出期間Pyでは、所定の色を発光する放電セルを除き、1行目からn行目(例えば、1080行目)までの各画素行(放電セル行)に、y座標検出放電が順次発生する。これにより、所定の色の補色(例えば、黄色)で発光する1本の横線が、パネル10の画像表示領域の上端部から下端部まで1画素行ずつ順次移動する発光パターンがパネル10に表示される。以下、この発光パターンを「y座標検出パターン」と記す。また、y座標検出期間Pyに発生するx座標方向に延長した1本の発光線を「第1の発光線」とも記す。 In this way, in the y coordinate detection period Py of the y coordinate detection subfield SFy, each pixel row (discharge) from the first row to the nth row (for example, 1080th row) is excluded except for discharge cells that emit light of a predetermined color. In the cell row), y-coordinate detection discharge is sequentially generated. As a result, a light emission pattern is displayed on the panel 10 in which one horizontal line that emits light of a predetermined complementary color (for example, yellow) sequentially moves one pixel line at a time from the upper end to the lower end of the image display area of the panel 10. The Hereinafter, this light emission pattern is referred to as a “y coordinate detection pattern”. In addition, one light emission line extending in the x coordinate direction generated in the y coordinate detection period Py is also referred to as a “first light emission line”.
 y座標検出期間Pyでは、所定の色の補色で発光する第1の発光線が、y座標方向に順次移動するy座標検出パターンがパネル10に表示される。したがって、電子ペンの位置座標がパネル10の画像表示領域内のどこにあるかによって、電子ペンが第1の発光線の発光を受光するタイミングは変化する。電子ペンで第1の発光線の発光を受光するタイミングを検出することで、画像表示領域における電子ペンの位置座標(x,y)のy座標を検出することができる。 In the y-coordinate detection period Py, a y-coordinate detection pattern in which the first light-emitting lines that emit light with a predetermined complementary color sequentially move in the y-coordinate direction is displayed on the panel 10. Therefore, the timing at which the electronic pen receives light emitted from the first light emission line varies depending on where the position coordinate of the electronic pen is in the image display area of the panel 10. The y coordinate of the position coordinate (x, y) of the electronic pen in the image display area can be detected by detecting the timing at which the light emission of the first light emission line is received by the electronic pen.
 なお、本実施の形態では、図4に示すように、走査電極SC1~SCnのそれぞれにy座標検出パルスの電圧Vayを印加する時間をTy1とする。このTy1は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time during which the voltage Vay of the y coordinate detection pulse is applied to each of the scan electrodes SC1 to SCn is Ty1. This Ty1 is, for example, about 1 μsec.
 y座標検出サブフィールドSFyの消去期間Peyでは、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、y座標検出放電を発生した放電セルに微弱な消去放電が発生する。 In the erase period Pey of the y-coordinate detection subfield SFy, an erase operation similar to the erase operation performed at the end of the sustain period Ps1 of the subfield SF1 is performed. As a result, a weak erase discharge is generated in the discharge cell that has generated the y-coordinate detection discharge.
 続くx座標検出サブフィールドSFxは、初期化期間Pixとx座標検出期間Pxと消去期間Pexを有する。 The subsequent x-coordinate detection subfield SFx has an initialization period Pix, an x-coordinate detection period Px, and an erasing period Pex.
 x座標検出サブフィールドSFxの初期化期間Pixでは強制初期化動作を行う。初期化期間Pixでは、まず、データ電極D1~Dm、維持電極SU1~SUnのそれぞれに電圧0(V)を印加し、走査電極SC1~SCnには、電圧0(V)を印加した後、電圧Vi1から電圧Vi2まで緩やかに上昇する上り傾斜波形電圧を印加する。 In the initialization period Pix of the x coordinate detection subfield SFx, a forced initialization operation is performed. In the initialization period Pix, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, and the voltage 0 (V) is applied to the scan electrodes SC1 to SCn. An upward ramp waveform voltage that gently rises from Vi1 to voltage Vi2 is applied.
 なお、走査電極SC1~SCnに上り傾斜波形電圧を印加するとき、データ電極D1~Dmは、図4に示すようにハイインピーダンス状態にしてもよく、あるいは電圧0(V)を印加したままにしてもよい。 It should be noted that when an upward ramp waveform voltage is applied to scan electrodes SC1 to SCn, data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or the voltage 0 (V) is kept applied. Also good.
 次に、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加する。そして、走査電極SC1~SCnには、電圧0(V)から負の電圧Vaまで緩やかに下降する下り傾斜波形電圧を印加し、次に、電圧0(V)から電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加し、次に、電圧0(V)からx座標検出電圧Vaxまで緩やかに下降する下り傾斜波形電圧を印加する。 Next, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage Ve is applied to the sustain electrodes SU1 to SUn. Scan electrodes SC1 to SCn are applied with a downward ramp waveform voltage that gradually decreases from voltage 0 (V) to negative voltage Va, and then increases gradually from voltage 0 (V) to voltage Vr. A ramp waveform voltage is applied, and then a ramp waveform voltage that gently falls from the voltage 0 (V) to the x coordinate detection voltage Vax is applied.
 初期化期間Pixでは、パネル10の画像表示領域内にある全ての放電セルに初期化放電が発生し、それら全ての放電セルの壁電圧が、続くx座標検出期間Pxにおけるx座標検出パターン表示動作に適した壁電圧に調整される。 In the initialization period Pix, initialization discharge occurs in all the discharge cells in the image display area of the panel 10, and the wall voltages of all the discharge cells are displayed in the x coordinate detection pattern display operation in the subsequent x coordinate detection period Px. The wall voltage is adjusted to a suitable level.
 次に、時刻tx0に始まるx座標検出サブフィールドSFxのx座標検出期間Pxでは、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに負極性のx座標検出電圧Vaxを印加する。 Next, in the x-coordinate detection period Px of the x-coordinate detection subfield SFx starting at time tx0, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage Ve is applied to the sustain electrodes SU1 to SUn. A negative x-coordinate detection voltage Vax is applied to scan electrodes SC1 to SCn.
 時刻tx0から期間Tx0が経過した後に、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、1列目の画素列において、所定の色以外の色を発光する放電セルに対応するデータ電極22に電圧Vdxの正極性のx座標検出パルスを印加し、所定の色を発光する放電セルに対応するデータ電極22にはx座標検出パルスの電圧Vdxを印加せず電圧0(V)を印加する。この1列目の画素列は、例えば画像表示領域の左端に配置された画素列である。 After the period Tx0 has elapsed from time tx0, the data electrode corresponding to the discharge cell that emits a color other than a predetermined color in the first pixel column while applying the x-coordinate detection voltage Vax to the scan electrodes SC1 to SCn. A positive x-coordinate detection pulse of voltage Vdx is applied to 22 and a voltage 0 (V) is applied to the data electrode 22 corresponding to the discharge cell that emits a predetermined color without applying the voltage Vdx of the x-coordinate detection pulse. To do. The first pixel column is, for example, a pixel column arranged at the left end of the image display area.
 例えば、所定の色が青色であれば、赤および緑の放電セルに対応するデータ電極D1、D2にx座標検出パルスの電圧Vdxを印加し、青の放電セルに対応するデータ電極D3には電圧0(V)を印加する。 For example, if the predetermined color is blue, the voltage Vdx of the x coordinate detection pulse is applied to the data electrodes D1 and D2 corresponding to the red and green discharge cells, and the voltage is applied to the data electrode D3 corresponding to the blue discharge cell. Apply 0 (V).
 電圧Vdxのx座標検出パルスを印加したデータ電極22と、x座標検出電圧Vaxを印加した走査電極SC1~SCnとの交差部にある放電セル列では、放電が発生する。これにより、1列目の画素列に、所定の色を発光する放電セル列を除いて一斉に放電が発生し、1列目の画素列(上述の例では、1列目と2列目の放電セル列)が発光する。以下、この放電を「x座標検出放電」とも記す。このx座標検出放電による発光は、電子ペンを使用するときのx座標検出用の発光となる。 Discharge occurs in the discharge cell array at the intersection of the data electrode 22 to which the x-coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x-coordinate detection voltage Vax is applied. As a result, the first pixel column is discharged all at once except for the discharge cell column that emits a predetermined color, and the first pixel column (in the above example, the first and second columns). Discharge cell array) emits light. Hereinafter, this discharge is also referred to as “x coordinate detection discharge”. The light emission by the x coordinate detection discharge is light emission for x coordinate detection when the electronic pen is used.
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、2列目の画素列、3列目の画素列、・・・、最終列目の画素列という順番で順次行う。 The same operation is sequentially performed in the order of the second pixel column, the third pixel column,..., And the last pixel column while applying the x-coordinate detection voltage Vax to the scan electrodes SC1 to SCn. .
 これにより、パネル10の左端の画素列から右端の画素列までの各画素列に、所定の色を発光する放電セル列を除き、x座標検出放電が順次発生する。なお、x座標検出放電によって生じる発光の色は、所定の色の補色となる。例えば、所定の色が青色であれば、x座標検出放電によって生じる発光の色は、赤と緑が混合した黄色となる。 Thereby, x-coordinate detection discharge is sequentially generated in each pixel column from the leftmost pixel column to the rightmost pixel column of the panel 10 except for the discharge cell column emitting a predetermined color. Note that the color of light emitted by the x-coordinate detection discharge is a complementary color of a predetermined color. For example, if the predetermined color is blue, the color of light emitted by the x-coordinate detection discharge is yellow, which is a mixture of red and green.
 このように、x座標検出サブフィールドSFxのx座標検出期間Pxでは、所定の色を発光する放電セル列を除き、1列目から最終列目(例えば、1920列目)までの各画素列に、x座標検出放電が順次発生する。これにより、所定の色の補色(例えば、黄色)で発光する1本の縦線が、パネル10の画像表示領域の左端部から右端部まで1画素列ずつ順次移動する発光パターンがパネル10に表示される。以下、この発光パターンを「x座標検出パターン」と記す。また、x座標検出期間Pxに発生するy座標方向に延長した1本の発光線を「第2の発光線」とも記す。 Thus, in the x-coordinate detection period Px of the x-coordinate detection subfield SFx, the pixel columns from the first column to the last column (for example, the 1920th column) are excluded except for the discharge cell columns that emit a predetermined color. , X coordinate detection discharges are sequentially generated. As a result, a light emission pattern in which one vertical line that emits light of a predetermined complementary color (for example, yellow) sequentially moves pixel by pixel from the left end to the right end of the image display area of the panel 10 is displayed on the panel 10. Is done. Hereinafter, this light emission pattern is referred to as an “x coordinate detection pattern”. In addition, one light emission line extending in the y coordinate direction generated in the x coordinate detection period Px is also referred to as a “second light emission line”.
 x座標検出期間Pxでは、所定の色の補色で発光する第2の発光線が、x座標方向に順次移動するx座標検出パターンがパネル10に表示される。したがって、電子ペンの位置座標がパネル10の画像表示領域内のどこにあるかによって、電子ペンが第2の発光線の発光を受光するタイミングは変化する。電子ペンで第2の発光線の発光を受光するタイミングを検出することで、画像表示領域における電子ペンの位置座標(x,y)のx座標を検出することができる。 In the x-coordinate detection period Px, an x-coordinate detection pattern is displayed on the panel 10 in which the second light emission lines that emit light of a predetermined complementary color sequentially move in the x-coordinate direction. Therefore, the timing at which the electronic pen receives the light emitted from the second light emission line varies depending on where the position coordinate of the electronic pen is in the image display area of the panel 10. By detecting the timing of receiving light emitted from the second light emitting line by the electronic pen, the x coordinate of the position coordinate (x, y) of the electronic pen in the image display area can be detected.
 なお、本実施の形態では、図4に示すように、データ電極22のそれぞれにx座標検出パルスの電圧Vaxを印加する時間をTx1とする。このTx1は、例えば、約1μsecである。 In the present embodiment, as shown in FIG. 4, the time for applying the voltage Vax of the x coordinate detection pulse to each of the data electrodes 22 is Tx1. This Tx1 is about 1 μsec, for example.
 x座標検出サブフィールドSFxの消去期間Pexでは、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。 In the erase period Pex of the x-coordinate detection subfield SFx, the voltage 0 (V) to the positive voltage Vr is applied to the scan electrodes SC1 to SCn while the voltage 0 (V) is applied to the sustain electrodes SU1 to SUn and the data electrodes D1 to Dm. Apply an upward ramp waveform voltage that rises slowly until
 次に、維持電極SU1~SUnに電圧0(V)を印加したまま、走査電極SC1~SCnには、電圧0(V)を印加した後、電圧Vi1から電圧Vi2まで緩やかに上昇する上り傾斜波形電圧を印加する。 Next, an upward ramp waveform gradually rising from voltage Vi1 to voltage Vi2 after voltage 0 (V) is applied to scan electrodes SC1 to SCn while voltage 0 (V) is applied to sustain electrodes SU1 to SUn. Apply voltage.
 なお、このとき、データ電極D1~Dmは、図4に示すようにハイインピーダンス状態にしてもよく、あるいは電圧0(V)を印加したままにしてもよい。 At this time, the data electrodes D1 to Dm may be in a high impedance state as shown in FIG. 4, or may be left with the voltage 0 (V) applied.
 次に、データ電極D1~Dmおよび維持電極SU1~SUnに電圧0(V)を印加したまま、走査電極SC1~SCnに、電圧0(V)から負の電圧Vi4まで緩やかに下降する下り傾斜波形電圧を印加する。 Next, while the voltage 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn, the downward slope waveform that gradually falls from the voltage 0 (V) to the negative voltage Vi4 is applied to the scan electrodes SC1 to SCn. Apply voltage.
 こうして、x座標検出放電を発生した放電セルに微弱な消去放電を発生する。 Thus, a weak erasing discharge is generated in the discharge cell that has generated the x-coordinate detection discharge.
 このように、本実施の形態では、y座標検出パターンおよびx座標検出パターンをパネル10に表示するときに、所定の色を発光する放電セル(例えば、青の放電セル)は発光させず、所定の色以外の放電セル(例えば、赤および緑の放電セル)を発光させる。したがって、「第1の発光線」および「第2の発光線」の発光輝度を、3色全ての放電セルが発光する従来構成と比較して、約2/3に低減することができる。 As described above, in the present embodiment, when the y-coordinate detection pattern and the x-coordinate detection pattern are displayed on the panel 10, the discharge cells that emit light of a predetermined color (for example, blue discharge cells) do not emit light. Discharge cells (for example, red and green discharge cells) having a color other than the above are emitted. Accordingly, the light emission luminance of the “first light emission line” and the “second light emission line” can be reduced to about 2/3 as compared with the conventional configuration in which all the discharge cells of three colors emit light.
 さらに、「第1の発光線」および「第2の発光線」の発光色は同期検出期間Poに生じる発光色(例えば、青)の補色となる。したがって、使用者には、同期検出期間Poに生じる発光(例えば、青)に補色(例えば、黄)が重畳した発光が観測され、座標検出サブフィールドの期間に発生する発光色は無彩色に近づく。これにより、座標検出サブフィールドで生じる発光を使用者に知覚されにくくすることができる。 Furthermore, the emission colors of the “first emission line” and the “second emission line” are complementary colors of the emission color (for example, blue) generated during the synchronization detection period Po. Accordingly, the user observes light emission in which the complementary color (for example, yellow) is superimposed on the light emission (for example, blue) generated in the synchronization detection period Po, and the light emission color generated in the period of the coordinate detection subfield approaches an achromatic color. . As a result, it is possible to make it difficult for the user to perceive light emitted in the coordinate detection subfield.
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=200(V)、電圧Vi4=-175(V)、電圧Va=電圧Vay=電圧Vax=-200(V)、電圧Vc=-50(V)、電圧Vs=電圧Vso=205(V)、電圧Vr=205(V)、電圧Ve=155(V)、電圧Vd=電圧Vdy=電圧Vdx=55(V)である。 Note that the voltage values applied to the electrodes in this embodiment are, for example, the voltage Vi1 = 150 (V), the voltage Vi2 = 350 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −175 (V). , Voltage Va = voltage Vay = voltage Vax = −200 (V), voltage Vc = −50 (V), voltage Vs = voltage Vso = 205 (V), voltage Vr = 205 (V), voltage Ve = 155 (V ), Voltage Vd = voltage Vdy = voltage Vdx = 55 (V).
 また、画像表示サブフィールドまたは座標検出サブフィールドの初期化期間Pi1、Pio、Pix、消去期間Pexに発生する電圧Vi2まで上昇する上り傾斜波形電圧の勾配は約1.5(V/μsec)であり、初期化期間Pi1~Pi8、Pio、Piy、Pixに発生する下り傾斜波形電圧の勾配は約-2.5(V/μsec)である。また、維持期間Ps1~Ps8、同期検出期間Po、消去期間Pey、Pex、初期化期間Pixに発生する電圧Vrまで上昇する上り傾斜波形電圧の勾配は約10(V/μsec)である。 The gradient of the rising ramp waveform voltage rising to the voltage Vi2 generated in the initialization periods Pi1, Pio, Pix and the erasing period Pex of the image display subfield or coordinate detection subfield is about 1.5 (V / μsec). The slope of the downward ramp waveform voltage generated in the initialization periods Pi1 to Pi8, Pio, Piy and Pix is about −2.5 (V / μsec). The gradient of the rising ramp waveform voltage that rises to the voltage Vr generated in the sustain periods Ps1 to Ps8, the synchronization detection period Po, the erasure periods Pey and Pex, and the initialization period Pix is about 10 (V / μsec).
 しかし、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、各電圧値や勾配等は、パネル10の放電特性や画像表示装置の仕様等にもとづき最適に設定することが望ましい。 However, the specific numerical values such as the voltage value and the gradient described above are merely examples, and it is desirable that each voltage value and the gradient is optimally set based on the discharge characteristics of the panel 10 and the specifications of the image display device. .
 次に、本実施の形態における画像表示システム100について説明する。 Next, the image display system 100 in the present embodiment will be described.
 図5は、本開示の実施の形態1における画像表示システム100の一構成例を概略的に示す図である。 FIG. 5 is a diagram schematically illustrating a configuration example of the image display system 100 according to the first embodiment of the present disclosure.
 本実施の形態に示す画像表示システム100は、画像表示装置30、描画装置40、および複数の電子ペン50a、50b、50c、50dを構成要素に含み、電子ペン50a、50b、50c、50dと描画装置40との間で無線通信を行う。 The image display system 100 shown in the present embodiment includes an image display device 30, a drawing device 40, and a plurality of electronic pens 50a, 50b, 50c, and 50d as components, and drawing with the electronic pens 50a, 50b, 50c, and 50d. Wireless communication is performed with the device 40.
 なお、電子ペン50a、50b、50c、50dは互いに同じ構成であるため、以下の説明ではそれらをまとめて電子ペン50とも記す。また、画像表示システム100が有する電子ペン50は何ら4本に限定されるものではなく、5本以上または3本以下であってもよく、あるいは1本であってもよい。 Since the electronic pens 50a, 50b, 50c, and 50d have the same configuration, they are collectively referred to as the electronic pen 50 in the following description. The number of electronic pens 50 included in the image display system 100 is not limited to four, and may be five or more, three or less, or one.
 画像表示装置30は、画像を表示するディスプレイデバイス、およびそのディスプレイデバイスを駆動する駆動回路を備えている。本実施の形態では、ディスプレイデバイスとしてパネル10を有するプラズマディスプレイ装置を画像表示装置30として用いる例を説明する。 The image display device 30 includes a display device that displays an image and a drive circuit that drives the display device. In the present embodiment, an example in which a plasma display device having a panel 10 as a display device is used as the image display device 30 will be described.
 画像表示装置30は、駆動回路として、画像信号処理部31、データ電極駆動部32、走査電極駆動部33、維持電極駆動部34、制御部35、および各回路ブロックに必要な電源を供給する電源部(図示せず)を備えている。そして、これらの駆動回路が、図3、図4を用いて説明した駆動電圧波形を発生してパネル10に印加し、パネル10を駆動する。 The image display device 30 has a power supply for supplying necessary power to the image signal processing unit 31, the data electrode driving unit 32, the scan electrode driving unit 33, the sustain electrode driving unit 34, the control unit 35, and each circuit block as a driving circuit. Part (not shown). These drive circuits generate the drive voltage waveform described with reference to FIGS. 3 and 4 and apply it to the panel 10 to drive the panel 10.
 画像信号処理部31には、外部から入力される画像信号、描画装置40から出力される描画信号、および制御部35から供給される制御信号が入力される。画像信号処理部31は、画像信号と描画信号とを合成してその合成後の信号にもとづき、またはいずれか一方の信号にもとづき、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定し、各階調値を、サブフィールド毎の点灯・非点灯を示す画像データ(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換して出力する。 The image signal processing unit 31 receives an image signal input from the outside, a drawing signal output from the drawing device 40, and a control signal supplied from the control unit 35. The image signal processing unit 31 combines the image signal and the drawing signal, and based on the combined signal or one of the signals, each of the discharge cells has red, green, and blue gradation values (one field). (Gradation value expressed by), and each gradation value is image data indicating lighting / non-lighting for each subfield (data in which light emission / non-light emission corresponds to digital signals “1” and “0”) To output.
 また、画像信号処理部31は、画像信号として送信されて来る信号から水平同期信号および垂直同期信号を分離し、その水平同期信号および垂直同期信号を制御部35に出力する。 In addition, the image signal processing unit 31 separates the horizontal synchronization signal and the vertical synchronization signal from the signal transmitted as the image signal, and outputs the horizontal synchronization signal and the vertical synchronization signal to the control unit 35.
 制御部35は、水平同期信号および垂直同期信号にもとづき各回路ブロックの動作を制御する各種の制御信号を発生し、発生した制御信号をそれぞれの回路ブロック(データ電極駆動部32、走査電極駆動部33、維持電極駆動部34、および画像信号処理部31等)へ供給する。 The control unit 35 generates various control signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal, and generates the generated control signal in each circuit block (data electrode drive unit 32, scan electrode drive unit). 33, sustain electrode drive unit 34, and image signal processing unit 31).
 データ電極駆動部32は、画像信号処理部31から出力される画像データと制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各データ電極D1~Dmに印加する。 The data electrode drive unit 32 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the image data output from the image signal processing unit 31 and the control signal supplied from the control unit 35, and each data electrode D1˜ Apply to Dm.
 維持電極駆動部34は、制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各維持電極SU1~SUnに印加する。 The sustain electrode driver 34 generates the drive voltage waveform shown in FIGS. 3 and 4 based on the control signal supplied from the controller 35 and applies it to the sustain electrodes SU1 to SUn.
 走査電極駆動部33は、制御部35から供給される制御信号にもとづき図3、図4に示した駆動電圧波形を発生し、各走査電極SC1~SCnに印加する。 The scan electrode drive unit 33 generates the drive voltage waveforms shown in FIGS. 3 and 4 based on the control signal supplied from the control unit 35 and applies the drive voltage waveforms to the scan electrodes SC1 to SCn.
 電子ペン50は、棒状に形成されており、使用者が、電子ペン50の先端部をパネル10に直接接触させて、画像表示装置30の画像表示領域に文字や図画等を手書き入力することに使用される。電子ペン50は、座標検出サブフィールドによってパネル10に生じる発光を受光することで位置座標を検出する。位置座標は、上述したように、電子ペン50が、パネル10に表示されるy座標検出パターンの発光を受光してy座標を算出し、パネル10に表示されるx座標検出パターンの発光を受光してx座標を算出することによって検出される。 The electronic pen 50 is formed in a rod shape, and the user directly touches the front end of the electronic pen 50 to the panel 10 and inputs characters, drawings, and the like in the image display area of the image display device 30 by handwriting. used. The electronic pen 50 detects the position coordinates by receiving light emitted from the panel 10 by the coordinate detection subfield. As described above, as for the position coordinates, the electronic pen 50 receives the light emission of the y coordinate detection pattern displayed on the panel 10 to calculate the y coordinate, and receives the light emission of the x coordinate detection pattern displayed on the panel 10. Then, it is detected by calculating the x coordinate.
 電子ペン50は、受光素子52、接触スイッチ53、同期検出部54、座標算出部56、および送信部58を備えている。 The electronic pen 50 includes a light receiving element 52, a contact switch 53, a synchronization detection unit 54, a coordinate calculation unit 56, and a transmission unit 58.
 なお、図5には示していないが、電子ペン50は、電源スイッチ、パイロットランプ等も有する。電源スイッチは、電子ペン50の電源オン・オフを制御するためのスイッチである。パイロットランプは、複数の発光色を切替えて発光することが可能な発光素子(例えば、LED等)で構成され、電子ペン50の動作状態を発光・非発光または発光色を切替えて表示する。 Although not shown in FIG. 5, the electronic pen 50 also has a power switch, a pilot lamp, and the like. The power switch is a switch for controlling the power on / off of the electronic pen 50. The pilot lamp is composed of a light emitting element (for example, LED) that can emit light by switching a plurality of light emission colors, and displays the operation state of the electronic pen 50 by switching light emission / non-light emission or light emission color.
 接触スイッチ53は、電子ペン50の受光素子52が取付けられた側の先端部に設けられ、電子ペン50の先端部がパネル10の画像表示面に接触したかどうかを検知する。接触スイッチ53は、電子ペン50の先端部がパネル10に接触していればオンになってS1=「1」を出力し、接触していなければオフになってS1=「0」を出力する。 The contact switch 53 is provided at the tip of the electronic pen 50 on the side where the light receiving element 52 is attached, and detects whether the tip of the electronic pen 50 is in contact with the image display surface of the panel 10. The contact switch 53 is turned on to output S1 = "1" if the tip of the electronic pen 50 is in contact with the panel 10, and is turned off to output S1 = "0" if not in contact. .
 なお、電子ペン50を、接触スイッチ53に代えて手動スイッチ(図示せず)を備えた構成としてもよい。その場合、使用者は、手動スイッチを操作にすることで、画像表示面から離れた位置にある電子ペン50を用いて画像表示面に文字や図画を手書き入力することができる。また、接触スイッチ53と手動スイッチの双方を電子ペン50が有し、一本の電子ペン50を接触・非接触の2通りで使用できるように構成してもよい。あるいは、使用者が、手動スイッチを操作することで描画モード(例えば描画に用いる線の色、線の太さ、線の種類、等)を任意に切り替えることができるように構成してもよい。 The electronic pen 50 may be configured to include a manual switch (not shown) instead of the contact switch 53. In this case, the user can input characters and drawings on the image display surface by handwriting by using the electronic pen 50 located away from the image display surface by operating the manual switch. Further, the electronic pen 50 may include both the contact switch 53 and the manual switch, and the single electronic pen 50 may be configured to be used in two ways of contact and non-contact. Or you may comprise so that a user can switch arbitrarily drawing modes (For example, the color of the line used for drawing, the thickness of a line, the kind of line, etc.) by operating a manual switch.
 受光素子52は、パネル10の画像表示面に生じる発光を受光して電気信号(受光信号)に変換する。そして、その受光信号を、同期検出部54および座標算出部56に出力する。なお、本実施の形態において、電子ペン50の位置座標(x、y)とは、受光素子52がパネル10の画像表示面に生じる発光を受光する位置のことである。 The light receiving element 52 receives light emitted from the image display surface of the panel 10 and converts it into an electric signal (light receiving signal). Then, the light reception signal is output to the synchronization detection unit 54 and the coordinate calculation unit 56. In the present embodiment, the position coordinate (x, y) of the electronic pen 50 is a position where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
 同期検出部54は、受光素子52から出力される受光信号にもとづき、同期検出サブフィールドSFoの同期検出期間Poに発生する同期検出用の発光(同期検出放電によって生じる発光)を検出する。具体的には、同期検出部54は、同期検出部54が有するタイマー(図示せず)を用いて、複数(例えば、4回)の発光の発生間隔を計測する。そして、その発生間隔があらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)に合致するかどうかを、同期検出部54に設定された複数のしきい値(例えば、時間To1、時間To2、時間To3に相当するしきい値)と計測された時間間隔とを比較することで判定する。 The synchronization detection unit 54 detects light emission for synchronization detection (light emission generated by the synchronization detection discharge) generated in the synchronization detection period Po of the synchronization detection subfield SFo based on the light reception signal output from the light receiving element 52. Specifically, the synchronization detection unit 54 measures a generation interval of a plurality of (for example, four times) emission using a timer (not shown) included in the synchronization detection unit 54. Then, whether or not the occurrence interval matches a predetermined time interval (for example, time To1, time To2, time To3) is determined based on a plurality of threshold values (for example, time This is determined by comparing the measured time intervals with threshold values corresponding to To1, time To2, and time To3.
 なお、同期検出部54では、受光信号をあらかじめ設定された受光しきい値と比較し(図示せず)、受光しきい値以上の受光信号に関して微分値を算出する等して局所的なピークが発生する時刻を検出し、各時刻を検出する。また、放電を発生するための電圧を放電セルに印加する時刻と、実際に放電が発生して発光のピークが電子ペン50で検出される時刻との時間差をあらかじめ測定し、その時間差を各時刻の補正に用いてもよい。 The synchronization detection unit 54 compares the light reception signal with a preset light reception threshold value (not shown), calculates a differential value for the light reception signal equal to or higher than the light reception threshold value, and generates a local peak. The time that occurs is detected and each time is detected. Further, a time difference between the time when the voltage for generating the discharge is applied to the discharge cell and the time when the discharge actually occurs and the peak of light emission is detected by the electronic pen 50 is measured in advance, and the time difference is measured at each time. You may use for correction of.
 同期検出部54は、その連続する複数回(例えば、4回)の発光のうちの1つ(例えば、時刻to1に発生した発光)を基準にして座標基準信号を作成する。時刻to1は、同期検出サブフィールドSFoの同期検出期間Poにおいて走査電極SC1~SCnに1回目の同期検出パルスV1を印加する時刻である。 The synchronization detection unit 54 creates a coordinate reference signal based on one of the continuous multiple times (for example, four times) of light emission (for example, light emission generated at time to1). The time to1 is the time when the first synchronization detection pulse V1 is applied to the scan electrodes SC1 to SCn in the synchronization detection period Po of the synchronization detection subfield SFo.
 座標算出部56は、時間の長さを計測するカウンタと、カウンタの出力に演算を施す演算回路とを備える(図示せず)。 The coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown).
 そして、座標算出部56は、座標基準信号および受光信号にもとづき、y座標検出パターンの発光を示す信号およびx座標検出パターンの発光を示す信号を受光信号から選択的に取り出し、画像表示領域における電子ペン50の位置座標(x、y)を算出する。そして、算出した電子ペン50の位置座標(x,y)を送信部58に出力する。 Based on the coordinate reference signal and the light reception signal, the coordinate calculation unit 56 selectively extracts, from the light reception signal, a signal indicating the light emission of the y coordinate detection pattern and a signal indicating the light emission of the x coordinate detection pattern, and outputs the electrons in the image display area. The position coordinates (x, y) of the pen 50 are calculated. Then, the calculated position coordinates (x, y) of the electronic pen 50 are output to the transmission unit 58.
 なお、同期検出部54、座標算出部56の動作の詳細は後述する。 Details of operations of the synchronization detection unit 54 and the coordinate calculation unit 56 will be described later.
 送信部58は、受光素子52から出力される受光信号にもとづく送信信号を出力する。送信部58は、電気信号をエンコードし、エンコード後の信号を例えば赤外線等の無線信号に変換して発信する発信回路を有する(図示せず)。そして、各電子ペン50に個別に付与されている固有の識別番号(ID)、座標算出部56が算出した電子ペン50の位置座標(x、y)を表す信号、接触スイッチ53の状態S1等をエンコードした後に無線信号に変換する。この無線信号が送信信号である。そして、この無線信号を描画装置40の受信部42に無線送信する。 The transmission unit 58 outputs a transmission signal based on the light reception signal output from the light receiving element 52. The transmission unit 58 includes a transmission circuit (not shown) that encodes an electrical signal, converts the encoded signal into a wireless signal such as infrared rays, and transmits the signal. Then, a unique identification number (ID) assigned to each electronic pen 50, a signal indicating the position coordinates (x, y) of the electronic pen 50 calculated by the coordinate calculation unit 56, the state S1 of the contact switch 53, etc. Is encoded and converted to a radio signal. This radio signal is a transmission signal. The wireless signal is wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
 描画装置40は、受信部42と描画部46を備えている。描画装置40は、電子ペン50の座標算出部56が算出した位置座標(x,y)にもとづく描画信号を作成し、画像表示装置30に出力する。この描画信号は、使用者が電子ペン50を用いて手書き入力した画像をパネル10に表示するための信号であり、画像信号と実質的に同じものである。 The drawing apparatus 40 includes a receiving unit 42 and a drawing unit 46. The drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the electronic pen 50 and outputs the drawing signal to the image display device 30. This drawing signal is a signal for displaying on the panel 10 an image handwritten by the user using the electronic pen 50, and is substantially the same as the image signal.
 受信部42は、電子ペン50の送信部58から無線送信される無線信号を受信し、その受信信号をデコードして電気信号に変換する変換回路を有する(図示せず)。そして、送信部58から無線送信される無線信号を、電子ペン50の識別番号(ID)、電子ペン50の位置座標(x、y)を表す信号、接触スイッチ53の状態を表す信号S1に変換して描画部46に出力する。電子ペン50が複数のときは、各電子ペン50から送信されてくる各信号をそれぞれ受信してデコードする。 The receiving unit 42 has a conversion circuit (not shown) that receives a radio signal wirelessly transmitted from the transmission unit 58 of the electronic pen 50, decodes the received signal, and converts it into an electrical signal. Then, the wireless signal wirelessly transmitted from the transmitter 58 is converted into an identification number (ID) of the electronic pen 50, a signal representing the position coordinates (x, y) of the electronic pen 50, and a signal S1 representing the state of the contact switch 53. And output to the drawing unit 46. When there are a plurality of electronic pens 50, each signal transmitted from each electronic pen 50 is received and decoded.
 描画部46は、画像メモリ47を備える。そして、状態S1=1(接触スイッチ53がオンの状態)のときに、受信部42から出力される位置座標(x,y)にもとづいて描画信号を作成し、画像メモリ47に蓄積する。したがって、画像メモリ47には、状態S1=1のときの位置座標(x,y)の変化の軌跡(使用者が電子ペン50を用いて手書き入力した図画)を示す描画信号が蓄積される。そして、描画部46は、画像メモリ47に蓄積された描画信号を読み出して画像表示装置30に出力する。 The drawing unit 46 includes an image memory 47. Then, when the state S1 = 1 (the contact switch 53 is on), a drawing signal is created based on the position coordinates (x, y) output from the receiving unit 42 and stored in the image memory 47. Therefore, the image memory 47 accumulates a drawing signal indicating a locus of change in the position coordinates (x, y) when the state S1 = 1 (a graphic handwritten by the user using the electronic pen 50). The drawing unit 46 reads out the drawing signal stored in the image memory 47 and outputs the drawing signal to the image display device 30.
 画像表示システム100で使用されている電子ペン50の数が複数であれば、描画部46は、各電子ペン50の軌跡が互いに混同しないように位置座標(x,y)を互いに区別して描画信号を作成する。 If there are a plurality of electronic pens 50 used in the image display system 100, the drawing unit 46 distinguishes the position coordinates (x, y) from each other so that the traces of the electronic pens 50 are not confused with each other. Create
 次に、画像表示装置30の維持電極駆動部34、データ電極駆動部32、走査電極駆動部33について図6、図7、図8を用いて説明する。なお、各回路ブロックは、制御部35から供給される制御信号にもとづき動作するが、各図面では、制御信号の経路の詳細は省略する。 Next, the sustain electrode drive unit 34, the data electrode drive unit 32, and the scan electrode drive unit 33 of the image display device 30 will be described with reference to FIGS. Each circuit block operates based on a control signal supplied from the control unit 35, but details of the path of the control signal are omitted in each drawing.
 図6は、本開示の実施の形態1における画像表示装置30の維持電極駆動部34の一構成例を概略的に示す回路図である。 FIG. 6 is a circuit diagram schematically illustrating a configuration example of the sustain electrode driving unit 34 of the image display device 30 according to the first embodiment of the present disclosure.
 維持電極駆動部34は、維持パルス発生回路80と一定電圧発生回路85を備えている。維持パルス発生回路80は、電力回収回路81と、スイッチング素子Q83、Q84を有する。電力回収回路81は、電力回収用のコンデンサC20、スイッチング素子Q21、Q22、逆流防止用のダイオードDi21、Di22、共振用のインダクタL21、L22を有する。 The sustain electrode driving unit 34 includes a sustain pulse generation circuit 80 and a constant voltage generation circuit 85. Sustain pulse generation circuit 80 includes a power recovery circuit 81 and switching elements Q83 and Q84. The power recovery circuit 81 includes a power recovery capacitor C20, switching elements Q21 and Q22, backflow prevention diodes Di21 and Di22, and resonance inductors L21 and L22.
 そして、維持パルス発生回路80は、図3、図4に示したタイミングで電圧Vsの維持パルスを発生し、維持電極SU1~SUnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV2、V4を維持電極SU1~SUnに印加する。 The sustain pulse generation circuit 80 generates a sustain pulse of the voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to the sustain electrodes SU1 to SUn. In the synchronization detection period Po of the synchronization detection subfield SFo, the synchronization detection pulses V2 and V4 are applied to the sustain electrodes SU1 to SUn.
 一定電圧発生回路85は、スイッチング素子Q86、Q87を有し、図3、図4に示したタイミングで維持電極SU1~SUnに電圧Veを印加する。 The constant voltage generation circuit 85 has switching elements Q86 and Q87, and applies the voltage Ve to the sustain electrodes SU1 to SUn at the timings shown in FIGS.
 図7は、本開示の実施の形態1における画像表示装置30のデータ電極駆動部32の一構成例を概略的に示す回路図である。 FIG. 7 is a circuit diagram schematically illustrating a configuration example of the data electrode driving unit 32 of the image display device 30 according to the first embodiment of the present disclosure.
 データ電極駆動部32は、画像信号処理部31から供給される画像データおよび制御信号にもとづき動作するが、図7では、それらの信号の経路の詳細は省略する。 The data electrode driving unit 32 operates based on the image data and control signals supplied from the image signal processing unit 31, but details of the paths of these signals are omitted in FIG.
 データ電極駆動部32は、スイッチング素子Q91H1~Q91Hm、Q91L1~Q91Lmを有する。そして、データ電極駆動部32は、図3、図4に示したタイミングで、各書込み期間では電圧Vdの書込みパルスを、y座標検出期間Pyではy座標検出電圧Vdy(=電圧Vd)を、x座標検出期間Pxでは電圧Vdx(=電圧Vd)のx座標検出パルスを、各データ電極D1~Dmに印加する。 The data electrode driver 32 includes switching elements Q91H1 to Q91Hm and Q91L1 to Q91Lm. Then, the data electrode driving unit 32 outputs the write pulse of the voltage Vd in each write period, the y-coordinate detection voltage Vdy (= voltage Vd) in the y-coordinate detection period Py, and the timing shown in FIGS. In the coordinate detection period Px, an x-coordinate detection pulse of voltage Vdx (= voltage Vd) is applied to each data electrode D1 to Dm.
 図8は、本開示の実施の形態1における画像表示装置30の走査電極駆動部33の一構成例を概略的に示す回路図である。 FIG. 8 is a circuit diagram schematically illustrating a configuration example of the scan electrode driving unit 33 of the image display device 30 according to the first embodiment of the present disclosure.
 走査電極駆動部33は、維持パルス発生回路55と、傾斜波形電圧発生回路60と、走査パルス発生回路70とを備えている。以下、走査パルス発生回路70に入力される電圧を「基準電位A」と記す。 The scan electrode driving unit 33 includes a sustain pulse generation circuit 55, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70. Hereinafter, the voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
 維持パルス発生回路55は、電力回収回路51と、スイッチング素子Q55、Q56、Q59を有する。電力回収回路51は、電力回収用のコンデンサC10、スイッチング素子Q11、Q12、逆流防止用のダイオードDi11、Di12、共振用のインダクタL11、L12を有する。スイッチング素子Q59は分離スイッチであり、電流の逆流を防止する。 Sustain pulse generation circuit 55 includes power recovery circuit 51 and switching elements Q55, Q56, and Q59. The power recovery circuit 51 includes a power recovery capacitor C10, switching elements Q11 and Q12, backflow prevention diodes Di11 and Di12, and resonance inductors L11 and L12. The switching element Q59 is a separation switch, and prevents reverse current flow.
 そして、維持パルス発生回路55は、図3、図4に示したタイミングで電圧Vsの維持パルスを発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。また、同期検出サブフィールドSFoの同期検出期間Poでは同期検出パルスV1、V3を発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。 Then, sustain pulse generating circuit 55 generates a sustain pulse of voltage Vs at the timing shown in FIGS. 3 and 4 and applies it to scan electrodes SC1 to SCn via scan pulse generating circuit. Further, in the synchronization detection period Po of the synchronization detection subfield SFo, synchronization detection pulses V1 and V3 are generated and applied to the scan electrodes SC1 to SCn via the scan pulse generation circuit 70.
 傾斜波形電圧発生回路60は、ミラー積分回路61、62、63を備え、図3、図4に示した傾斜波形電圧を発生し、走査パルス発生回路70を介して走査電極SC1~SCnに印加する。 The ramp waveform voltage generation circuit 60 includes Miller integration circuits 61, 62, and 63, generates the ramp waveform voltage shown in FIGS. 3 and 4, and applies it to the scan electrodes SC1 to SCn via the scan pulse generation circuit. .
 ミラー積分回路61は、トランジスタQ61とコンデンサC61と抵抗R61とを有し、電圧Vt(=電圧Vi2)に向かって緩やかに上昇する上り傾斜波形電圧を発生する。あるいは、電圧Vtに電圧Vpを重畳した電圧が電圧Vi2に等しくなるように各電圧を設定してもよい。 Miller integrating circuit 61 includes transistor Q61, capacitor C61, and resistor R61, and generates an upward ramp waveform voltage that gradually rises toward voltage Vt (= voltage Vi2). Alternatively, each voltage may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
 ミラー積分回路62は、トランジスタQ62とコンデンサC62と抵抗R62と逆流防止用のダイオードDi62とを有し、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧を発生する。 Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and backflow preventing diode Di62, and generates an upward ramp waveform voltage that gradually rises toward voltage Vr.
 ミラー積分回路63は、トランジスタQ63とコンデンサC63と抵抗R63とを有し、電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧を発生する。 Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63, and generates a downward ramp waveform voltage that gradually falls toward voltage Vi4.
 スイッチング素子Q69は分離スイッチであり、電流の逆流を防止する。 Switching element Q69 is a separation switch and prevents reverse current flow.
 走査パルス発生回路70は、スイッチング素子QH1~QHn、QL1~QLn、Q72、負の電圧Vaを発生する電源、電圧Vpを発生する電源E71を有する。スイッチング素子QHiとスイッチング素子QLi(i=1~n)の接続点は走査電極駆動部33の出力端子であり、走査電極SCiに接続されている。 The scan pulse generating circuit 70 includes switching elements QH1 to QHn, QL1 to QLn, Q72, a power source that generates a negative voltage Va, and a power source E71 that generates a voltage Vp. A connection point between the switching element QHi and the switching element QLi (i = 1 to n) is an output terminal of the scan electrode driver 33 and is connected to the scan electrode SCi.
 スイッチング素子Q72は、基準電位Aを負の電圧Va(=電圧Vay=電圧Vax)にクランプする。スイッチング素子QL1~QLnは、基準電位Aを走査電極SC1~SCnに印加し、スイッチング素子QH1~QHnは、基準電位Aに電圧Vpを重畳した電圧を走査電極SC1~SCnに印加する。 Switching element Q72 clamps reference potential A to negative voltage Va (= voltage Vay = voltage Vax). Switching elements QL1 to QLn apply reference potential A to scan electrodes SC1 to SCn, and switching elements QH1 to QHn apply a voltage obtained by superimposing reference voltage A on voltage Vp to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路70は、基準電位Aを電圧Vaにクランプするとともに基準電位Aに電圧Vpを重畳して電圧Vc(Vc=Va+Vp)を発生し、電圧Vaと電圧Vcとを切り換えながら走査パルスを発生して走査電極SC1~SCnに印加する。 Then, the scan pulse generation circuit 70 clamps the reference potential A to the voltage Va and superimposes the voltage Vp on the reference potential A to generate the voltage Vc (Vc = Va + Vp), and scans while switching between the voltage Va and the voltage Vc. A pulse is generated and applied to scan electrodes SC1 to SCn.
 そして、走査パルス発生回路70は、画像表示サブフィールドの各書込み期間では、図3に示したタイミングで走査パルスを発生し、走査電極SC1~SCnのそれぞれに順次印加する。 The scan pulse generation circuit 70 generates a scan pulse at the timing shown in FIG. 3 and sequentially applies it to each of the scan electrodes SC1 to SCn in each address period of the image display subfield.
 また、走査パルス発生回路70は、図4に示したように、y座標検出期間Pyでは電圧Vay(=電圧Va)のy座標検出パルスを発生し、x座標検出期間Pxではx座標検出電圧Vax(=電圧Va)を発生して、走査電極SC1~SCnに印加する。 Further, as shown in FIG. 4, the scan pulse generation circuit 70 generates a y-coordinate detection pulse of voltage Vay (= voltage Va) in the y-coordinate detection period Py, and the x-coordinate detection voltage Vax in the x-coordinate detection period Px. (= Voltage Va) is generated and applied to scan electrodes SC1 to SCn.
 スイッチング素子QHiとスイッチング素子QLiのペアは、複数個(図8に示す例では60ペア)が1つのIC(走査ドライバIC)に集積化されている。 A plurality of pairs of switching elements QHi and switching elements QLi (60 pairs in the example shown in FIG. 8) are integrated in one IC (scan driver IC).
 次に、同期検出部54、座標算出部56の動作を図9を交えて説明する。 Next, operations of the synchronization detection unit 54 and the coordinate calculation unit 56 will be described with reference to FIG.
 図9は、本開示の実施の形態1における画像表示システム100において電子ペン50を使用するときの位置座標検出動作の一例を概略的に示す図である。 FIG. 9 is a diagram schematically illustrating an example of the position coordinate detection operation when the electronic pen 50 is used in the image display system 100 according to the first embodiment of the present disclosure.
 図9には、駆動電圧波形に加え、座標算出部56に入力される座標基準信号det、および受光素子52から出力される受光信号を示す。図9に示す駆動電圧波形は、図4に示した駆動電圧波形と同じものである。 FIG. 9 shows a coordinate reference signal det input to the coordinate calculation unit 56 and a light reception signal output from the light receiving element 52 in addition to the drive voltage waveform. The drive voltage waveform shown in FIG. 9 is the same as the drive voltage waveform shown in FIG.
 本実施の形態における画像表示装置30では、時刻to1から時刻ty0(y座標検出期間Pyが開始する時刻)までの期間Toyと、時刻to1から時刻tx0(x座標検出期間Pxが開始する時刻)までの期間Toxは、あらかじめ定められている。したがって、同期検出部54は、発光の間隔が順に、時間To1、時間To2、時間To3となる連続する4回の発光を検出して時刻to1を特定し、時刻to1を基準にして時刻ty0と時刻tx0とのそれぞれに立上りエッジがある座標基準信号detを発生し、後段の座標算出部56に出力する。 In the image display device 30 in the present embodiment, a period Toy from time to1 to time ty0 (time when the y coordinate detection period Py starts) and from time to1 to time tx0 (time when the x coordinate detection period Px starts). The period Tox is predetermined. Therefore, the synchronization detection unit 54 detects the four consecutive light emission intervals of the light emission intervals of time To1, time To2, and time To3, specifies time to1, and sets time ty0 and time based on time to1. A coordinate reference signal det having a rising edge at each of tx0 is generated and output to the subsequent coordinate calculation unit 56.
 なお、座標基準信号detは、時刻to1に限らず時刻to2、to3、to4のいずれかを基準にして発生してもよい。 Note that the coordinate reference signal det is not limited to the time to1, but may be generated based on any of the times to2, to3, and to4.
 座標算出部56は、座標基準信号detにもとづき、時刻ty0から、時刻ty0以降に最初に受光素子52で発光が受光される時刻tyyまでの期間Tyyを内部に備えたカウンタで測定する。そして、内部に備えた演算回路において期間Tyyから期間Ty0を減算し、その減算結果をTy1(y座標検出パルスのパルス幅)で除算する。すなわち、y座標=(Tyy-Ty0)/Ty1となる。座標算出部56は、こうして画像表示領域における電子ペン50の位置のy座標を算出する。 Based on the coordinate reference signal det, the coordinate calculation unit 56 measures a period Tyy from time ty0 to time tyy from which light is first received by the light receiving element 52 after time ty0. Then, in the arithmetic circuit provided inside, the period Ty0 is subtracted from the period Tyy, and the subtraction result is divided by Ty1 (pulse width of the y coordinate detection pulse). That is, y coordinate = (Tyy−Ty0) / Ty1. The coordinate calculation unit 56 thus calculates the y coordinate of the position of the electronic pen 50 in the image display area.
 次に、座標算出部56は、座標基準信号detにもとづき、時刻tx0から、時刻tx0以降に最初に受光素子52で発光が受光される時刻txxまでの期間Txxを内部に備えたカウンタで測定する。そして、内部に備えた演算回路において期間Txxから期間Tx0を減算し、その減算結果をTx1(x座標検出パルスのパルス幅)で除算する。すなわち、x座標=(Txx-Tx0)/Tx1となる。座標算出部56は、こうして画像表示領域における電子ペン50の位置のx座標を算出する。 Next, the coordinate calculation unit 56 measures, based on the coordinate reference signal det, a time period Txx from time tx0 to time txx when light is first received by the light receiving element 52 after time tx0. . Then, the period Tx0 is subtracted from the period Txx in an internal arithmetic circuit, and the subtraction result is divided by Tx1 (pulse width of the x coordinate detection pulse). That is, x coordinate = (Txx−Tx0) / Tx1. The coordinate calculation unit 56 thus calculates the x coordinate of the position of the electronic pen 50 in the image display area.
 次に、本実施の形態における画像表示システム100の動作について説明する。 Next, the operation of the image display system 100 in the present embodiment will be described.
 図10は、本開示の実施の形態1における画像表示システム100において電子ペン50を使用するときの動作の一例を概略的に示す図である。 FIG. 10 is a diagram schematically illustrating an example of an operation when the electronic pen 50 is used in the image display system 100 according to the first embodiment of the present disclosure.
 図11は、本開示の実施の形態1における画像表示システム100において電子ペン50による手書き入力を行うときの動作の一例を概略的に示す図である。 FIG. 11 is a diagram schematically illustrating an example of an operation when performing handwritten input with the electronic pen 50 in the image display system 100 according to the first embodiment of the present disclosure.
 図10に示すように、y座標検出サブフィールドSFyのy座標検出期間Pyでは、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第1の発光線Lyがパネル10に表示される。また、x座標検出サブフィールドSFxのx座標検出期間Pxでは、画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次移動する第2の発光線Lxがパネル10に表示される。 As shown in FIG. 10, in the y-coordinate detection period Py of the y-coordinate detection subfield SFy, the first light emission line Ly that sequentially moves from the upper end (first row) to the lower end (n-th row) of the image display area. Is displayed on the panel 10. Further, in the x-coordinate detection period Px of the x-coordinate detection subfield SFx, a second shift sequentially moves from the left end (first pixel column) to the right end (m / 3 pixel column) of the image display area. The light emission line Lx is displayed on the panel 10.
 したがって、電子ペン50の受光素子52がパネル10の画像表示面の「座標(x,y)」の発光を受光すれば、第1の発光線Lyが座標(x,y)を通過する時刻tyyと、第2の発光線Lxが座標(x,y)を通過する時刻txxにおいて、受光素子52は発光を受光する。 Therefore, when the light receiving element 52 of the electronic pen 50 receives the light emission of “coordinate (x, y)” on the image display surface of the panel 10, the time tyy when the first light emission line Ly passes the coordinate (x, y). Then, at the time txx when the second light emitting line Lx passes the coordinates (x, y), the light receiving element 52 receives light emission.
 これにより、受光素子52は、図9に示したように、第1の発光線Lyの発光を受光したことを示す受光信号を時刻tyyにおいて出力し、第2の発光線Lxの発光を受光したことを示す受光信号を時刻txxにおいて出力する。 Thereby, as shown in FIG. 9, the light receiving element 52 outputs a light reception signal indicating that the light emission of the first light emission line Ly is received at the time tyy, and receives the light emission of the second light emission line Lx. A light reception signal indicating this is output at time txx.
 描画部46は、図11に示すように、位置座標(x,y)に対応する画素を中心に、描画モードに応じた色および大きさの描画パターン(例えば、白色の丸等のパターン)の描画信号を発生する。この描画信号は、状態S1=1(接触スイッチ53がオンの状態)の期間、描画部46の画像メモリ47に蓄積される。そして、画像表示装置30は、描画部46の画像メモリ47に蓄積された描画信号にもとづく画像をパネル10に表示する。 As shown in FIG. 11, the drawing unit 46 draws a drawing pattern (for example, a pattern such as a white circle) having a color and a size corresponding to the drawing mode around the pixel corresponding to the position coordinate (x, y). Generate a drawing signal. This drawing signal is accumulated in the image memory 47 of the drawing unit 46 during the period of the state S1 = 1 (the contact switch 53 is on). Then, the image display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 46 on the panel 10.
 したがって、例えば図11に示すように、使用者が電子ペン50をパネル10の画像表示面に接触させたまま移動させると、その移動の軌跡を示す図柄がパネル10に表示される。こうして、パネル10には、電子ペン50を用いて手書き入力された図画が表示される。 Therefore, for example, as shown in FIG. 11, when the user moves the electronic pen 50 while being in contact with the image display surface of the panel 10, a symbol indicating the movement locus is displayed on the panel 10. Thus, the panel 10 displays a graphic input by handwriting using the electronic pen 50.
 以上のように、本実施の形態では、同期検出サブフィールドSFoの書込み期間Pwoにおいて、あらかじめ定められた所定の色(例えば、青)を発光する放電セルのデータ電極22だけに書込みパルスを印加し、所定の色(例えば、青)を発光する放電セルだけに書込み放電を発生させる。これにより、同期検出期間Poに同期検出放電が発生する放電セルの数は全放電セルの1/3となり、全放電セルに同期検出放電が発生する従来技術と比較して、同期検出放電にともなって生じる発光の輝度を約1/3に低減することができる。したがって、黒の輝度を低減し、パネル10のコントラストを向上することができる。 As described above, in the present embodiment, the address pulse is applied only to the data electrode 22 of the discharge cell that emits a predetermined color (for example, blue) in the address period Pwo of the synchronization detection subfield SFo. The address discharge is generated only in the discharge cells that emit light of a predetermined color (for example, blue). As a result, the number of discharge cells in which the synchronous detection discharge is generated in the synchronous detection period Po is 1/3 of the total discharge cells, which is associated with the synchronous detection discharge as compared with the conventional technique in which the synchronous detection discharge is generated in all the discharge cells. The luminance of emitted light can be reduced to about 1/3. Therefore, the luminance of black can be reduced and the contrast of the panel 10 can be improved.
 また、y座標検出パターンおよびx座標検出パターンをパネル10に表示するときに、同期検出放電を発生した放電セルを除く放電セル(例えば、赤および緑の放電セル)を発光させるので、「第1の発光線」および「第2の発光線」の発光輝度を、3色全ての放電セルが発光する従来構成と比較して、約2/3に低減することができる。さらに、「第1の発光線」および「第2の発光線」の発光色は同期検出期間Poに生じる発光色(例えば、青)の補色となるので、座標検出サブフィールドの期間に発生する発光を無彩色に近づけて、使用者に知覚されにくくすることができる。 Further, when displaying the y-coordinate detection pattern and the x-coordinate detection pattern on the panel 10, the discharge cells (for example, red and green discharge cells) excluding the discharge cells that have generated the synchronous detection discharge are caused to emit light. The emission luminance of the “second emission line” and the “second emission line” can be reduced to about 2/3 as compared with the conventional configuration in which discharge cells of all three colors emit light. Further, since the emission colors of the “first emission line” and the “second emission line” are complementary colors of the emission color (for example, blue) generated in the synchronization detection period Po, the emission generated during the coordinate detection subfield period. Can be made closer to an achromatic color to make it difficult for the user to perceive.
 なお、y座標検出放電およびx座標検出放電は、書込み放電と同様の放電であり維持放電と比較して弱い放電であり発光輝度も相対的に低い。一方、所定の色を発光する同期検出放電は、維持放電と同様の比較的強い放電であり、発光輝度も相対的に高い。したがって、「第1の発光線」および「第2の発光線」は、ともに所定の色の補色で発光させることが望ましい。しかし、本実施の形態は、何らこの構成に限定されるものではない。例えば、いずれか一方だけを所定の色の補色で発光させ、他方は、所定の色、または3色全て、を発光させる構成としてもよい。 Note that the y-coordinate detection discharge and the x-coordinate detection discharge are discharges similar to the address discharge and are weaker than the sustain discharge, and the light emission luminance is relatively low. On the other hand, the synchronous detection discharge that emits light of a predetermined color is a relatively strong discharge similar to the sustain discharge, and the light emission luminance is also relatively high. Therefore, it is desirable that both the “first light emission line” and the “second light emission line” emit light with a complementary color of a predetermined color. However, the present embodiment is not limited to this configuration. For example, only one of them may emit light with a complementary color of a predetermined color, and the other may emit a predetermined color or all three colors.
 (実施の形態2)
 実施の形態2では、同期検出期間に同期検出放電が発生する放電セルの数を、実施の形態1よりもさらに低減する例を説明する。
(Embodiment 2)
In the second embodiment, an example will be described in which the number of discharge cells in which synchronous detection discharge is generated in the synchronous detection period is further reduced as compared with the first embodiment.
 図12は、本開示の実施の形態2における座標検出サブフィールにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。 FIG. 12 is a diagram schematically illustrating an example of a drive voltage waveform applied to each electrode of the panel 10 in the coordinate detection sub-field according to the second embodiment of the present disclosure.
 同期検出サブフィールドSFo2は、初期化期間Pio、書込み期間Pwo2、および同期検出期間Po2を有する。 The synchronization detection subfield SFo2 has an initialization period Pio, a writing period Pwo2, and a synchronization detection period Po2.
 図12に示す初期化期間Pioは、実施の形態1に示した同期検出サブフィールドSFoの初期化期間Pioと同様の構成、動作であるので説明を省略する。 Since the initialization period Pio shown in FIG. 12 has the same configuration and operation as the initialization period Pio of the synchronization detection subfield SFo shown in the first embodiment, description thereof is omitted.
 図12に示す書込み期間Pwo2では、実施の形態1に示した同期検出サブフィールドSFoの書込み期間Pwoとほぼ同様の動作をする。ただし、走査パルスを印加する走査電極12が実施の形態1に示した書込み期間Pwoとは異なる。 In the write period Pwo2 shown in FIG. 12, the operation is substantially the same as the write period Pwo of the synchronization detection subfield SFo shown in the first embodiment. However, the scan electrode 12 to which the scan pulse is applied is different from the address period Pwo shown in the first embodiment.
 書込み期間Pwo2では、実施の形態1に示した書込み期間Pwoと同様に、あらかじめ定められた所定の色(例えば、青)を発光する放電セルに対応するデータ電極22(例えば、データ電極D3、D6、D9、・・・、Dm)だけに電圧Vdの書込みパルスを印加し、他のデータ電極22(例えば、赤および緑の放電セルに対応するデータ電極D1、D2、D4、D5、・・・、Dm-2、Dm-1)には書込みパルスを印加せず電圧0(V)を印加する。 In the address period Pwo2, similarly to the address period Pwo shown in the first embodiment, the data electrode 22 (for example, the data electrodes D3 and D6) corresponding to the discharge cells that emit a predetermined color (for example, blue) determined in advance. , D9,..., Dm), the voltage Vd address pulse is applied to the other data electrodes 22 (eg, data electrodes D1, D2, D4, D5,... Corresponding to the red and green discharge cells). , Dm-2, Dm-1), a voltage 0 (V) is applied without applying an address pulse.
 ただし、書込み期間Pwo2では、電圧Vaの走査パルスを印加する走査電極12は、実施の形態1に示した書込み期間Pwoとは異なり、フィールド毎に定められた特定の走査電極12とする。他の走査電極12には走査パルスを印加せず電圧Vcを印加する。すなわち、書込み期間Pwo2では、所定の色を発光し、かつフィールド毎に定められた特定の走査電極12を有する放電セル(以下、「特定の放電セル」と記す)だけに書込み放電を発生させる。 However, in the address period Pwo2, the scan electrode 12 to which the scan pulse of the voltage Va is applied is a specific scan electrode 12 determined for each field, unlike the address period Pwo shown in the first embodiment. A voltage Vc is applied to the other scan electrodes 12 without applying a scan pulse. That is, in the address period Pwo2, the address discharge is generated only in the discharge cells (hereinafter referred to as “specific discharge cells”) that emit light of a predetermined color and have specific scan electrodes 12 determined for each field.
 特定の走査電極12は、以下の規則にもとづき設定される。なお、以下では、時間的に連続するNフィールド(Nは自然数)を1つのフィールド群とし、連続して配置されたN本の走査電極12を1つの走査電極群とする。また、パネル10では、画像表示領域の上端部から順に1行目、2行目、・・・、というように走査電極12および放電セル行(画素行)が配列されているものとする。 The specific scanning electrode 12 is set based on the following rules. In the following description, N fields that are temporally continuous (N is a natural number) are defined as one field group, and N scanning electrodes 12 that are continuously disposed are defined as one scanning electrode group. In the panel 10, it is assumed that the scan electrodes 12 and the discharge cell rows (pixel rows) are arranged in the order of the first row, the second row,... From the upper end of the image display area.
 (規則1)1つのフィールドにおいて、書込み期間Pwo2に走査パルスを印加する特定の走査電極12の数は、各走査電極群でそれぞれ1つである。 (Rule 1) In one field, the number of specific scan electrodes 12 to which the scan pulse is applied in the address period Pwo2 is one in each scan electrode group.
 (規則2)1つの走査電極12に対して書込み期間Pwo2に走査パルスを印加するフィールドは、各フィールド群でそれぞれ1つである。 (Rule 2) One field is applied to each scan group in which a scan pulse is applied to one scan electrode 12 in the address period Pwo2.
 この規則の一例を、図面を用いて説明する。 An example of this rule will be described with reference to the drawings.
 図13は、本開示の実施の形態2におけるN=2のときの特定の走査電極12とフィールドとの関係を示す図である。図13において、横方向はフィールド単位での時間の経過を表しており、縦方向は走査電極12を表している。 FIG. 13 is a diagram illustrating a relationship between a specific scan electrode 12 and a field when N = 2 in the second embodiment of the present disclosure. In FIG. 13, the horizontal direction represents the passage of time in field units, and the vertical direction represents the scanning electrodes 12.
 図13に示す例では、N=2なので、時間的に並んだ2つのフィールド(例えば、フィールドFj、Fj+1)が1つのフィールド群を構成し、隣接して配置された2つの走査電極12(例えば、走査電極SCi、SCi+1)が1つの走査電極群を構成する。 In the example shown in FIG. 13, since N = 2, two fields (for example, fields Fj and Fj + 1) arranged in time form one field group, and two scanning electrodes 12 (for example, adjacently arranged) , Scan electrodes SCi, SCi + 1) constitute one scan electrode group.
 また、図13では、書込み期間Pwo2に走査パルスの電圧Vaを印加する走査電極12を「○」で示し、走査パルスの電圧Vaを印加しない走査電極12を「×」で示している。 In FIG. 13, the scan electrode 12 to which the scan pulse voltage Va is applied in the address period Pwo2 is indicated by “◯”, and the scan electrode 12 to which the scan pulse voltage Va is not applied is indicated by “x”.
 以下、フィールドFj、Fj+2、Fj+4、・・・、を奇数番目のフィールドとし、フィールドFj+1、Fj+3、Fj+5、・・・、を偶数番目のフィールドとする。また、走査電極SC1、SC3、・・・、SCi、・・・、SCn-1を奇数行目の走査電極12とし、走査電極SC2、SC4、・・・、SCi+1、・・・、SCnを偶数行目の走査電極12とする。 Hereinafter, fields Fj, Fj + 2, Fj + 4,... Are odd-numbered fields, and fields Fj + 1, Fj + 3, Fj + 5,. Further, scan electrodes SC1, SC3,..., SCi−1 are set as scan electrodes 12 in odd rows, and scan electrodes SC2, SC4,..., SCi + 1,. The scanning electrode 12 is in the row.
 図13に示す例では、奇数番目のフィールドでは、同期検出サブフィールドSFo2の書込み期間Pwo2において、奇数行目の走査電極12に走査パルスの電圧Vaを印加し、偶数行目の走査電極12には走査パルスの電圧Vaを印加せずに電圧Vcを印加する。続く偶数番目のフィールドでは、同期検出サブフィールドSFo2の書込み期間Pwo2において、奇数行目の走査電極12には走査パルスの電圧Vaを印加せずに電圧Vcを印加し、偶数行目の走査電極12に走査パルスの電圧Vaを印加する。 In the example shown in FIG. 13, in the odd-numbered field, the scan pulse voltage Va is applied to the odd-numbered scan electrodes 12 in the write period Pwo2 of the synchronization detection subfield SFo2, and the even-numbered scan electrodes 12 are applied to the even-numbered scan electrodes 12. The voltage Vc is applied without applying the scan pulse voltage Va. In the subsequent even field, in the write period Pwo2 of the synchronization detection subfield SFo2, the voltage Vc is applied to the odd-numbered scan electrodes 12 without applying the scan pulse voltage Va, and the even-numbered scan electrodes 12 are applied. The voltage Va of the scan pulse is applied to.
 これにより、図12、図13に示す例では、1つの書込み期間Pwo2に書込み放電を発生する放電セルの数は、所定の色を発光する放電セルの半分となる。これは、全ての放電セルの1/6であり、実施の形態1に示した書込み期間Pwoに書込み放電が発生する放電セルの半分である。 Thus, in the example shown in FIGS. 12 and 13, the number of discharge cells that generate an address discharge in one address period Pwo2 is half that of the discharge cells that emit a predetermined color. This is 1/6 of all the discharge cells, and half of the discharge cells in which the address discharge is generated in the address period Pwo shown in the first embodiment.
 このように、本実施の形態では、同期検出放電にともなって生じる発光の輝度を、実施の形態1に示した同期検出サブフィールドSFoで生じる発光よりも、さらに低下させることができる。 As described above, in the present embodiment, the luminance of light emission caused by the synchronous detection discharge can be further reduced as compared with the light emission generated in the synchronous detection subfield SFo shown in the first embodiment.
 なお、図12の書込み期間Pwo2には、奇数行目の走査電極SC1、SC3、SC5、・・・、SCn-1に走査パルスの電圧Vaを印加し、偶数行目の走査電極SC2、SC4、・・・、SCnには走査パルスを印加せず電圧Vcを印加する例を示す。 In the address period Pwo2 in FIG. 12, the scan pulse voltage Va is applied to the scan electrodes SC1, SC3, SC5,..., SCn−1 in the odd rows, and the scan electrodes SC2, SC4, SC in the even rows. ..., SCn shows an example in which a voltage Vc is applied without applying a scanning pulse.
 このとき、例えば図12に示すように、特定の走査電極12に同時に走査パルスの電圧Vaを印加し、所定の色を発光する特定の放電セルに一斉に書込み放電を発生させてもよい。この場合、書込み期間Pwo2に要する時間を短縮することができる。あるいは、実施の形態1の書込み期間Pwoに示したように、画像表示領域の上端部に配置された走査電極12から順に走査パルスを印加してもよい(図示せず)。その場合、時刻to0は、奇数番目のフィールドでは、最後の書込み放電を発生させるための走査パルスの電圧Vaを走査電極SCn-1に印加した時刻となり、偶数番目のフィールドでは、最後の書込み放電を発生させるための走査パルスの電圧Vaを走査電極SCnに印加した時刻となる。 At this time, as shown in FIG. 12, for example, the voltage Va of the scan pulse may be simultaneously applied to the specific scan electrode 12 to generate address discharges simultaneously in specific discharge cells that emit a predetermined color. In this case, the time required for the writing period Pwo2 can be shortened. Alternatively, as shown in the writing period Pwo of the first embodiment, scanning pulses may be sequentially applied from the scanning electrodes 12 arranged at the upper end portion of the image display area (not shown). In that case, the time to0 is the time when the voltage Va of the scan pulse for generating the last address discharge is applied to the scan electrode SCn-1 in the odd-numbered field, and the last address discharge is applied in the even-numbered field. This is the time when the voltage Va of the scan pulse to be generated is applied to the scan electrode SCn.
 図12に示す同期検出期間Po2は、実施の形態1に示した同期検出期間Poと同様の構成、動作であるので詳細な説明は省略する。 Since the synchronization detection period Po2 shown in FIG. 12 has the same configuration and operation as the synchronization detection period Po shown in the first embodiment, detailed description thereof is omitted.
 なお、実施の形態1では、同期検出期間Poに、所定の色(例えば、青)を発光する放電セルに4回の同期検出放電を発生させる構成を説明したが、例えば、図12の同期検出期間Po2に示すように、同期検出放電の発生回数を2回にしてもよい。この場合も、時間To0は、時間To1も長い時間に設定し、例えば、時間To0を約50μsecとし、時間To1を約40μsecとする。 In the first embodiment, the configuration in which the synchronous detection discharge is generated four times in the discharge cells emitting a predetermined color (for example, blue) in the synchronous detection period Po has been described. For example, the synchronous detection in FIG. As shown in the period Po2, the number of occurrences of the synchronous detection discharge may be set to two. Also in this case, the time To0 is set to a time longer than the time To1, for example, the time To0 is set to about 50 μsec and the time To1 is set to about 40 μsec.
 なお、同期検出放電の発生回数は何ら上述した回数に限定されるものではなく、画像表示システムの仕様等に応じて最適に設定することが望ましい。 It should be noted that the number of occurrences of the synchronous detection discharge is not limited to the number described above, and is desirably set optimally according to the specifications of the image display system.
 なお、図12に一例を示したように、同期検出放電の発生回数を少なくすれば、同期検出期間に生じる発光の輝度が下がるので、パネル10のコントラストをより向上することができる。同期検出放電の発生回数は、電子ペン50における位置座標の検出精度やパネル10のコントラスト等を考慮して、最適に設定することが望ましい。 Note that, as shown in an example in FIG. 12, if the number of occurrences of the synchronous detection discharge is reduced, the luminance of light emission generated during the synchronous detection period is lowered, so that the contrast of the panel 10 can be further improved. The number of occurrences of the synchronous detection discharge is desirably set optimally in consideration of the detection accuracy of the position coordinates in the electronic pen 50 and the contrast of the panel 10.
 図12に示すy座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxは、実施の形態1に示したy座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxと同様の構成、動作であるので説明を省略する。 The y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx shown in FIG. 12 have the same configuration and operation as the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx shown in the first embodiment. Omitted.
 以上のように、本実施の形態では、同期検出サブフィールドSFo2の書込み期間Pwo2において、所定の色(例えば、青)を発光する放電セルのデータ電極22だけに書込みパルスを印加し、かつフィールド毎に定められた特定の走査電極12だけに走査パルスを印加する。これにより、同期検出放電にともなって生じる発光の輝度をさらに低減することができる。 As described above, in the present embodiment, the address pulse is applied only to the data electrode 22 of the discharge cell that emits a predetermined color (for example, blue) in the address period Pwo2 of the synchronization detection subfield SFo2, and each field A scan pulse is applied only to the specific scan electrode 12 defined in (1). Thereby, the brightness | luminance of the light emission which arises with synchronous detection discharge can further be reduced.
 なお、実施の形態1、2では、所定の色を青色とする例を説明したが、所定の色は、赤、あるいは緑であってもよい。 In the first and second embodiments, the example in which the predetermined color is blue has been described, but the predetermined color may be red or green.
 なお、実施の形態1、2において、同期検出放電を複数回発生させるときの時間間隔は、最初の同期検出放電を容易に特定できるようにするために、互いに異なる時間に設定することが望ましい。 In the first and second embodiments, it is desirable to set the time intervals when the synchronous detection discharge is generated a plurality of times at different times so that the first synchronous detection discharge can be easily specified.
 なお、実施の形態1、2において、各座標検出サブフィールドは、例えば、複数フィールドに1回の割合で発生する構成であってもよい。 In the first and second embodiments, each coordinate detection subfield may be generated at a rate of once in a plurality of fields, for example.
 なお、実施の形態1、2において、y座標検出パターンを表示する際は、複数の画素行を同時に発光させてもよく、あるいは発光させない画素行を設けてもよい。同様に、x座標検出パターンを表示する際は、複数の画素列を同時に発光させてもよく、あるいは発光させない画素列を設けてもよい。 In the first and second embodiments, when displaying the y-coordinate detection pattern, a plurality of pixel rows may be caused to emit light simultaneously, or pixel rows that are not allowed to emit light may be provided. Similarly, when displaying an x-coordinate detection pattern, a plurality of pixel columns may emit light simultaneously, or pixel columns that do not emit light may be provided.
 なお、実施の形態1、2において、各座標検出サブフィールドの発生順は、何ら上述した発生順に限定されない。例えば、先にx座標検出用サブフィールドを発生し、次にy座標検出用サブフィールドを発生してもよい。 In Embodiments 1 and 2, the order of occurrence of each coordinate detection subfield is not limited to the order of occurrence described above. For example, the x coordinate detection subfield may be generated first, and then the y coordinate detection subfield may be generated.
 なお、実施の形態1、2では、描画装置を画像表示装置と独立に備えた構成を示したが、この構成の一例としては、例えば、画像表示装置に接続したコンピュータに描画装置に相当する機能を持たせ、そのコンピュータを用いて描画信号を作成する構成等がある。しかし、例えば、描画装置を単独の機器として設けてもよく、あるいは描画装置を画像表示装置に備える構成であってもよい。あるいは、信号切換部を画像表示装置に備える構成としてもよい。 In the first and second embodiments, the configuration in which the drawing device is provided independently of the image display device is shown. As an example of this configuration, for example, a function connected to the computer connected to the image display device is equivalent to the drawing device. And a drawing signal is generated using the computer. However, for example, the drawing device may be provided as a single device, or the drawing device may be provided in the image display device. Alternatively, the signal switching unit may be provided in the image display device.
 なお、実施の形態1、2に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、実施の形態に示した各動作と実質的に同じ動作をするようにプログラミングされたマイクロコンピュータやコンピュータ等を用いて構成されてもよい。 Each circuit block shown in the first and second embodiments may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment. A microcomputer or a computer programmed to operate may be used.
 なお、実施の形態1、2に示した具体的な数値は、単に実施の形態における一例を示したものに過ぎず、本発明はこれらの数値に何ら限定されるものではない。各数値は画像表示システムの仕様等にあわせて最適な値に設定することが望ましい。 It should be noted that the specific numerical values shown in the first and second embodiments are merely examples of the embodiment, and the present invention is not limited to these numerical values. It is desirable to set each numerical value to an optimal value according to the specifications of the image display system.
 本開示は、座標検出のための発光を、コントラストの低下を抑制しつつ発生させることができるので、画像表示装置、画像表示装置の駆動方法、および画像表示システムとして有用である。 This disclosure is useful as an image display device, an image display device driving method, and an image display system because light emission for coordinate detection can be generated while suppressing a decrease in contrast.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  画像表示装置
 31  画像信号処理部
 32  データ電極駆動部
 33  走査電極駆動部
 34  維持電極駆動部
 35  制御部
 40  描画装置
 42  受信部
 46  描画部
 47  画像メモリ
 50,50a,50b,50c,50d  電子ペン
 51,81  電力回収回路
 52  受光素子
 53  接触スイッチ
 54  同期検出部
 55,80  維持パルス発生回路
 56  座標算出部
 58  送信部
 60  傾斜波形電圧発生回路
 61,62,63  ミラー積分回路
 70  走査パルス発生回路
 85  一定電圧発生回路
 100  画像表示システム
 Ly  第1の発光線
 Lx  第2の発光線
 Di11,Di12,Di21,Di22,Di62  ダイオード
 L11,L12,L21,L22  インダクタ
 Q11,Q12,Q21,Q22,Q55,Q56,Q59,Q69,Q72,Q83,Q84,Q86,Q87,QH1~QHn,QL1~QLn,Q91H1~Q91Hm,Q91L1~Q91Lm  スイッチング素子
 C10,C20,C61,C62,C63  コンデンサ
 R61,R62,R63  抵抗
 Q61,Q62,Q63  トランジスタ
 IN61,IN62,IN63  入力端子
 E71  電源
 SFx  x座標検出サブフィールド
 SFy  y座標検出サブフィールド
 SFo,SFo2  同期検出サブフィールド
 SF1~SF8  画像表示サブフィールド
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15,23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Image display device 31 Image signal processing Unit 32 Data electrode drive unit 33 Scan electrode drive unit 34 Sustain electrode drive unit 35 Control unit 40 Drawing device 42 Reception unit 46 Drawing unit 47 Image memory 50, 50a, 50b, 50c, 50d Electronic pen 51, 81 Power recovery circuit 52 Light reception Element 53 Contact switch 54 Synchronization detector 55, 80 Sustain pulse generator 56 Coordinate calculator 58 Transmitter 60 Ramp waveform voltage generator 61, 62, 63 Miller integrator 70 Scan pulse generator 85 Constant voltage generator 100 Image display system Ly first light emission Lx Second light emitting line Di11, Di12, Di21, Di22, Di62 Diodes L11, L12, L21, L22 Inductors Q11, Q12, Q21, Q22, Q55, Q56, Q59, Q69, Q72, Q83, Q84, Q86, Q87, QH1 to QHn, QL1 to QLn, Q91H1 to Q91Hm, Q91L1 to Q91Lm Switching element C10, C20, C61, C62, C63 Capacitor R61, R62, R63 Resistor Q61, Q62, Q63 Transistors IN61, IN62, IN63 Input terminal E71 Power supply SFx x Coordinate detection subfield SFy y Coordinate detection subfield SFo, SFo2 Synchronization detection subfield SF1 to SF8 Image display subfield

Claims (6)

  1. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルを備えた画像表示装置の駆動方法であって、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、位置座標を算出するための放電を発生させる同期検出サブフィールドとを発生し、
    前記同期検出サブフィールドは、前記データ電極に書込みパルスを印加するとともに前記走査電極に走査パルスを印加して前記放電セルに書込み放電を発生させる書込み期間と、前記走査電極と前記維持電極とに交互に同期検出パルスを印加して前記放電セルに同期検出放電を発生させる同期検出期間とを有し、
    前記同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに前記書込みパルスを印加し、前記所定の色を発光する放電セルだけに前記書込み放電を発生させる
    ことを特徴とする画像表示装置の駆動方法。
    A driving method of an image display device including a plasma display panel in which discharge cells are formed at each of intersections of scan electrodes, sustain electrodes, and data electrodes,
    An image display subfield for displaying an image on the plasma display panel, and a synchronization detection subfield for generating a discharge for calculating position coordinates,
    The synchronization detection subfield includes an address period in which an address pulse is applied to the data electrode and a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and the scan electrode and the sustain electrode alternately A synchronization detection period for applying a synchronization detection pulse to generate a synchronization detection discharge in the discharge cell,
    In the address period of the synchronization detection subfield, the address pulse is applied only to the data electrode of the discharge cell that emits a predetermined color, and the address discharge is generated only to the discharge cell that emits the predetermined color. A method for driving an image display device, comprising:
  2. 前記データ電極にy座標検出電圧を印加するとともに前記走査電極にy座標検出パルスを順次印加して前記放電セルにy座標検出放電を発生させるy座標検出期間を有するy座標検出サブフィールドを発生し、
    前記y座標検出期間において、
    前記所定の色を発光する放電セル以外の放電セルのデータ電極だけに前記y座標検出電圧を印加し、前記所定の色を発光する放電セル以外の放電セルだけに前記y座標検出放電を発生させる
    ことを特徴とする請求項1に記載の画像表示装置の駆動方法。
    A y-coordinate detection subfield having a y-coordinate detection period for generating a y-coordinate detection discharge in the discharge cell by sequentially applying a y-coordinate detection voltage to the data electrode and sequentially applying a y-coordinate detection pulse to the scan electrode is generated. ,
    In the y coordinate detection period,
    The y-coordinate detection voltage is applied only to the data electrodes of the discharge cells other than the discharge cells that emit the predetermined color, and the y-coordinate detection discharge is generated only in the discharge cells other than the discharge cells that emit the predetermined color. The method for driving an image display device according to claim 1.
  3. 前記走査電極にx座標検出電圧を印加するとともに前記データ電極にx座標検出パルスを順次印加して前記放電セルにx座標検出放電を発生させるx座標検出期間を有するx座標検出サブフィールドを発生し、
    前記x座標検出期間において、
    前記所定の色を発光する放電セル以外の放電セルのデータ電極だけに前記x座標検出パルスを順次印加し、前記所定の色を発光する放電セル以外の放電セルだけに前記x座標検出放電を発生させる
    ことを特徴とする請求項1に記載の画像表示装置の駆動方法。
    An x-coordinate detection voltage is applied to the scan electrode and an x-coordinate detection pulse is sequentially applied to the data electrode to generate an x-coordinate detection subfield having an x-coordinate detection period for generating an x-coordinate detection discharge in the discharge cell. ,
    In the x-coordinate detection period,
    The x-coordinate detection pulse is sequentially applied only to the data electrodes of the discharge cells other than the discharge cells emitting the predetermined color, and the x-coordinate detection discharge is generated only for the discharge cells other than the discharge cells emitting the predetermined color. The method for driving an image display device according to claim 1, wherein:
  4. 前記同期検出サブフィールドの書込み期間において、前記所定の色を発光する放電セルであって、かつフィールド毎に定められた特定の放電セルのデータ電極だけに前記書込みパルスを印加し、前記所定の色を発光する前記特定の放電セルだけに前記書込み放電を発生させる
    ことを特徴とする請求項1に記載の画像表示装置の駆動方法。
    In the address period of the synchronization detection subfield, the address pulse is applied only to the data electrode of a discharge cell that emits the predetermined color and is determined for each field, and the predetermined color is applied. The method of driving an image display device according to claim 1, wherein the address discharge is generated only in the specific discharge cells that emit light.
  5. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネルと、
    1フィールドを複数のサブフィールドで構成して前記プラズマディスプレイパネルを駆動する駆動回路とを備えた画像表示装置であって、
    前記駆動回路は、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、位置座標を算出するための放電を発生させる同期検出サブフィールドとを発生し、
    前記同期検出サブフィールドに、前記データ電極に書込みパルスを印加するとともに前記走査電極に走査パルスを印加して前記放電セルに書込み放電を発生させる書込み期間と、前記走査電極と前記維持電極とに交互に同期検出パルスを印加して前記放電セルに同期検出放電を発生させる同期検出期間とを設け、
    前記同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに前記書込みパルスを印加し、前記所定の色を発光する放電セルだけに前記書込み放電を発生させる
    ことを特徴とする画像表示装置。
    A plasma display panel in which a discharge cell is formed at each of the intersection of the scan electrode and the sustain electrode and the data electrode;
    An image display device comprising: a drive circuit configured to drive one of a plurality of subfields and drive the plasma display panel;
    The drive circuit is
    An image display subfield for displaying an image on the plasma display panel, and a synchronization detection subfield for generating a discharge for calculating position coordinates,
    In the synchronization detection subfield, an address period in which an address pulse is applied to the data electrode and a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and the scan electrode and the sustain electrode alternately A synchronization detection period for applying a synchronization detection pulse to generate a synchronization detection discharge in the discharge cell,
    In the address period of the synchronization detection subfield, the address pulse is applied only to the data electrode of the discharge cell that emits a predetermined color, and the address discharge is generated only to the discharge cell that emits the predetermined color. An image display device characterized in that
  6. 走査電極および維持電極とデータ電極との交差部のそれぞれに放電セルを形成したプラズマディスプレイパネル、および前記プラズマディスプレイパネルを駆動する駆動回路を備えた画像表示装置と、
    電子ペンと、描画装置とを備えた画像表示システムであって、
    前記駆動回路は、
    前記プラズマディスプレイパネルに画像を表示する画像表示サブフィールドと、前記放電セルに位置座標を算出するための放電を発生させる同期検出サブフィールドと、前記放電セルにy座標検出放電を発生させるy座標検出サブフィールドと、前記放電セルにx座標検出放電を発生させるx座標検出サブフィールドとを発生し、
    前記同期検出サブフィールドに、前記データ電極に書込みパルスを印加するとともに前記走査電極に走査パルスを印加して前記放電セルに書込み放電を発生させる書込み期間と、前記走査電極と前記維持電極とに交互に同期検出パルスを印加して前記放電セルに同期検出放電を発生させる同期検出期間とを設け、
    前記同期検出サブフィールドの書込み期間において、あらかじめ定められた所定の色を発光する放電セルのデータ電極だけに前記書込みパルスを印加し、前記所定の色を発光する放電セルだけに前記書込み放電を発生させ、
    前記電子ペンは、
    前記プラズマディスプレイパネルの発光を受光して受光信号を出力する受光素子と、
    前記y座標検出サブフィールドおよび前記x座標検出サブフィールドと同期した座標基準信号を前記受光信号にもとづき作成する同期検出部と、
    前記電子ペンが指す前記プラズマディスプレイパネル上の座標を前記座標基準信号と前記受光信号にもとづき算出する座標算出部と、
    前記座標算出部が算出した座標を前記描画装置に送信する送信部とを有し、
    前記描画装置は、
    前記電子ペンから送信された座標を受信する受信部と、
    前記受信部で受信した座標にもとづき描画信号を作成して前記画像表示装置に出力する描画部とを有する
    ことを特徴とする画像表示システム。
    A plasma display panel in which a discharge cell is formed at each of the intersections of the scan electrode, the sustain electrode and the data electrode, and an image display device including a drive circuit for driving the plasma display panel;
    An image display system including an electronic pen and a drawing device,
    The drive circuit is
    An image display subfield for displaying an image on the plasma display panel, a synchronous detection subfield for generating a discharge for calculating position coordinates in the discharge cell, and a y coordinate detection for generating a y coordinate detection discharge in the discharge cell Generating a subfield and an x-coordinate detection subfield for generating an x-coordinate detection discharge in the discharge cell;
    In the synchronization detection subfield, an address period in which an address pulse is applied to the data electrode and a scan pulse is applied to the scan electrode to generate an address discharge in the discharge cell, and the scan electrode and the sustain electrode alternately A synchronization detection period for applying a synchronization detection pulse to generate a synchronization detection discharge in the discharge cell,
    In the address period of the synchronization detection subfield, the address pulse is applied only to the data electrode of the discharge cell that emits a predetermined color, and the address discharge is generated only to the discharge cell that emits the predetermined color. Let
    The electronic pen is
    A light receiving element that receives light emitted from the plasma display panel and outputs a light reception signal;
    A synchronization detection unit that generates a coordinate reference signal synchronized with the y coordinate detection subfield and the x coordinate detection subfield based on the received light signal;
    A coordinate calculation unit for calculating coordinates on the plasma display panel pointed to by the electronic pen based on the coordinate reference signal and the light reception signal;
    A transmission unit that transmits the coordinates calculated by the coordinate calculation unit to the drawing device;
    The drawing device includes:
    A receiving unit for receiving coordinates transmitted from the electronic pen;
    An image display system comprising: a drawing unit that generates a drawing signal based on the coordinates received by the receiving unit and outputs the drawing signal to the image display device.
PCT/JP2013/004092 2012-07-03 2013-07-02 Image display device, method for driving image display device and image display system WO2014006880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012149069A JP2015165252A (en) 2012-07-03 2012-07-03 Image display device drive method, image display device, and image display system
JP2012-149069 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014006880A1 true WO2014006880A1 (en) 2014-01-09

Family

ID=49881653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004092 WO2014006880A1 (en) 2012-07-03 2013-07-02 Image display device, method for driving image display device and image display system

Country Status (2)

Country Link
JP (1) JP2015165252A (en)
WO (1) WO2014006880A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115057A (en) * 1994-10-14 1996-05-07 Pioneer Electron Corp Plane display device driving method
JP2006267526A (en) * 2005-03-24 2006-10-05 Pioneer Electronic Corp Driving method of plasma display panel
WO2013084375A1 (en) * 2011-12-07 2013-06-13 パナソニック株式会社 Image-display-device drive method, image display device, and image display system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115057A (en) * 1994-10-14 1996-05-07 Pioneer Electron Corp Plane display device driving method
JP2006267526A (en) * 2005-03-24 2006-10-05 Pioneer Electronic Corp Driving method of plasma display panel
WO2013084375A1 (en) * 2011-12-07 2013-06-13 パナソニック株式会社 Image-display-device drive method, image display device, and image display system

Also Published As

Publication number Publication date
JP2015165252A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
WO2013168327A1 (en) Multi-screen display device, multi-screen display device drive method, and multi-screen display system
JP5321763B1 (en) Image display device driving method, image display device, and image display system
JP5252139B1 (en) Image display device driving method, image display device, and image display system
WO2013187021A1 (en) Image display device, drive method for image display device, and image display system
JP5288077B1 (en) Image display device driving method, image display device, and image display system
WO2014006880A1 (en) Image display device, method for driving image display device and image display system
WO2013183264A1 (en) Image display device, image display device drive method, and image display system
JP5288078B1 (en) Image display device driving method, image display device, and image display system
WO2014045520A1 (en) Image display device, image display device driving method and image display system
JP2014203425A (en) Image display system having electronic pen
JP5252140B1 (en) Image display device driving method, image display device, and image display system
WO2013088691A1 (en) Drive method for image display device, image display device, light pen, and image display system
WO2013140713A1 (en) Image display device drive method, image display device, and image display system
JP2014203061A (en) Image display device, drive method of image display device and image display system
WO2013161144A1 (en) Image display system, image display system drive method, and light pen
WO2013121705A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
WO2013121704A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
WO2013125199A1 (en) Image display system
JP2013239001A (en) Light pen, drawing device, and image display system
JP2015155931A (en) Driving method of image display device, image display device, and image display system
JP2015155930A (en) Driving method of image display device, image display device, and image display system
JP2014010198A (en) Driving method of image display device, image display device, and image display system
WO2014054268A1 (en) Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system
JP2014235475A (en) Electronic pen, attachment for electronic pen, and image display system having electronic pen
JP2015132861A (en) Drawing device and image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP