WO2014054226A1 - 光束制御部材、発光装置および照明装置 - Google Patents

光束制御部材、発光装置および照明装置 Download PDF

Info

Publication number
WO2014054226A1
WO2014054226A1 PCT/JP2013/005361 JP2013005361W WO2014054226A1 WO 2014054226 A1 WO2014054226 A1 WO 2014054226A1 JP 2013005361 W JP2013005361 W JP 2013005361W WO 2014054226 A1 WO2014054226 A1 WO 2014054226A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light flux
controlling member
flux controlling
light emitting
Prior art date
Application number
PCT/JP2013/005361
Other languages
English (en)
French (fr)
Inventor
中村 真人
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201380051887.0A priority Critical patent/CN104718409B/zh
Priority to US14/433,390 priority patent/US9568168B2/en
Priority to EP13844039.1A priority patent/EP2905529A4/en
Publication of WO2014054226A1 publication Critical patent/WO2014054226A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/043Refractors for light sources of lens shape the lens having cylindrical faces, e.g. rod lenses, toric lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • F21V7/0016Reflectors for light sources providing for indirect lighting on lighting devices that also provide for direct lighting, e.g. by means of independent light sources, by splitting of the light beam, by switching between both lighting modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light flux controlling member that controls light distribution of light emitted from a light emitting element, and a light emitting device and an illuminating device having the light flux controlling member.
  • LEDs light emitting diodes
  • a conventional lighting device using an LED as a light source emits light only in the front direction and cannot emit light in a wide range like incandescent bulbs. For this reason, the conventional illuminating device cannot illuminate the room widely using the reflected light from a ceiling or a wall surface like an incandescent bulb.
  • FIG. 1 is a cross-sectional view of a main part showing the configuration of the illumination device described in Patent Document 1.
  • the lighting device 10 includes a plurality of LEDs 12 arranged on a substrate, and a cylindrical case 14 made of a light transmissive material arranged around the LEDs 12.
  • the upper surface of the case 14 is formed in an inverted truncated cone shape.
  • the aluminum plate 16 that reflects light is attached to the slope of the truncated cone and functions as a reflecting surface.
  • the plane of the truncated cone functions as a transmission window 18 that transmits light.
  • part of the light emitted from the LED 12 passes through the transmission window 18 and becomes outgoing light forward (upward). Further, a part of the light emitted from the LED 12 is reflected by the aluminum plate 16 and becomes emitted light to the side (horizontal direction) and rearward (downward direction).
  • the lighting device described in Patent Document 1 has a problem that the balance of light distribution characteristics is poor.
  • the illumination device 10 described in Patent Document 1 only the emitted light from the LED 12 reaches the space A in front of the upper end of the case 14 as shown in FIG.
  • the reflected light from the aluminum plate 16 reaches the space B behind the upper end of the case 14. Therefore, the brightness differs between the space A and the space B. Therefore, when the cover 20 is put on the lighting device 10 described in Patent Document 1, for example, the amount of light reaching the A portion in the cover 20 shown in FIG. 2 is larger than the amount of light reaching the B portion. Can be very different. For this reason, a light / dark boundary line may be formed on the cover 20.
  • An object of the present invention is to provide a light flux controlling member used in a lighting device having a light emitting element, and capable of distributing light in a balanced manner in at least two directions of front, side, and rear. .
  • Another object of the present invention is to provide a light emitting device and an illumination device having the light flux controlling member.
  • a light flux controlling member is a light flux controlling member for controlling the light distribution of light emitted from a light emitting element, the first light flux controlling member disposed facing the light emitting element, and the first A second light flux controlling member disposed opposite to the one light flux controlling member,
  • the first light flux controlling member has a plurality of annular projections having rotational symmetry in which an optical axis of the light emitting element is a rotational axis, a Fresnel lens portion facing the light emitting element, and the second light flux controlling member. And an exit surface that emits light controlled by the Fresnel lens portion toward the second light flux controlling member, and the annular protrusion is a part of the light emitted from the light emitting element.
  • the reflection surface is a rotationally symmetric surface having the optical axis as a rotation axis, and the generatrix of the rotationally symmetric surface is a concave curve with respect to the first light flux controlling member.
  • the outer peripheral portion of the reflecting surface is formed at a position away from the light emitting element in the direction of the optical axis as compared to the central portion of the reflecting surface,
  • the distance in the direction of the optical axis between the bottom of the valley formed between the adjacent annular protrusions and the mounting surface on which the light emitting element is mounted approaches the optical axis from the outside.
  • a tilted Fresnel lens portion that gradually increases as it is included.
  • the light-emitting device has at least one light-emitting element and a light flux controlling member according to the present invention.
  • the illuminating device of the present invention includes the light emitting device according to the present invention and a cover that allows the light emitted from the light emitting device to pass through while diffusing.
  • the light flux controlling member of the present invention can distribute light in a balanced manner in at least two directions of the front, the side, and the rear. Therefore, the light emitting device of the present invention emits light over a wide range, and the lighting device of the present invention can illuminate a room over a wide range like an incandescent bulb.
  • FIG. 3 is a diagram illustrating an arrangement of the light emitting elements in the illumination device according to Embodiment 1 when viewed in plan.
  • 2 is a cross-sectional view of a light flux controlling member according to Embodiment 1.
  • FIG. 6A is a plan view of the first light flux controlling member and holder of the light flux controlling member according to Embodiment 1
  • FIG. 6B is a BB line of the first light flux controlling member and holder shown in FIG.
  • FIG. 6A. 6C is a bottom view of the first light flux controlling member and the holder, and FIG. 6D is a side view of the first light flux controlling member and the holder.
  • FIG. 7A is a plan view of the second light flux controlling member of the light flux controlling member according to Embodiment 1, and FIG. 7B shows the second light flux controlling member taken along the line BB shown in FIG. 7A.
  • FIG. 7C is a cross-sectional view
  • FIG. 7C is a bottom view of the second light flux controlling member
  • FIG. 7D is a side view of the second light flux controlling member.
  • FIG. 8A is a diagram showing an optical path of emitted light from the light emitting element arranged on the outermost side when a light flux controlling member having a substantially flat plate-shaped first light flux controlling member is used.
  • FIG. It is a figure which expands and shows the part enclosed by the circle
  • FIG. 9A is a partial cross-sectional view of a light emitting device having a substantially flat light flux controlling member
  • FIG. 9B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 9A in terms of relative intensity.
  • FIG. 9A is a diagram showing an optical path of emitted light from the light emitting element arranged on the outermost side when a light flux controlling member having a substantially flat plate-shaped first light flux controlling member is used.
  • FIG. It is a figure which expands and shows the part enclosed by the circle
  • FIG. 10A is a diagram illustrating an optical path of emitted light from the light emitting element disposed on the outermost side when the light flux controlling member according to Embodiment 1 is used
  • FIG. 10B is a diagram of the light flux controlling member. It is a figure which expands and shows the part enclosed by the circle B in 10A.
  • FIG. 11A is a partial cross-sectional view of the light-emitting device according to Embodiment 1
  • FIG. 11B is a graph showing the luminous intensity in all directions of the light-emitting device shown in FIG. 11A in terms of relative intensity.
  • 12A is a partial cross-sectional view of the light-emitting device according to Embodiment 2, and FIG.
  • FIG. 12B is a graph showing the luminosity in all directions of the light-emitting device shown in FIG. 12A in terms of relative intensity.
  • 13A is a partial cross-sectional view of the light-emitting device according to Embodiment 3
  • FIG. 13B is a graph showing the luminosity in all directions of the light-emitting device shown in FIG. 13A in terms of relative intensity.
  • 14A is an enlarged view of a portion of the light emitting device surrounded by a circle A in FIG. 13A
  • FIG. 14B is a view showing a modification of the portion shown in FIG. 14A.
  • FIG. 15A is a partial cross-sectional view of a light emitting device having a substantially flat light flux controlling member and one light emitting element, and FIG.
  • FIG. 15B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 15A in relative intensity.
  • 16A is a partial cross-sectional view of a light-emitting device having a light flux controlling member and one light-emitting element according to Embodiment 1
  • FIG. 16B shows the luminosity in all directions of the light-emitting device shown in FIG. 16A in terms of relative intensity. It is a graph.
  • FIG. 17A is a partial cross-sectional view of a light-emitting device having a light flux controlling member and one light-emitting element according to Embodiment 3
  • FIG. 17B shows the luminous intensity in all directions of the light-emitting device shown in FIG. 17A in relative intensity.
  • FIG. 18A is a graph showing the illuminance in all directions of the illuminating device equipped with the second light flux controlling member having a transmittance of 21% as a relative intensity
  • FIG. 18B is equipped with the second light flux controlling member having the transmittance of 13%. It is a graph which shows the illumination intensity of all the directions of an illuminating device by relative intensity.
  • FIG. 3 is a partial cross-sectional view of the illumination device 100 according to Embodiment 1 of the present invention.
  • the lighting device 100 includes a housing 110, a substrate 120, a light emitting element 130, a light flux control member 140, and a cover 160.
  • a housing 110 As illustrated in FIG. 3, the lighting device 100 includes a housing 110, a substrate 120, a light emitting element 130, a light flux control member 140, and a cover 160.
  • the case 110 includes an inclined surface 110a that is inclined from the edge of the stepped portion outside the one end surface of the case 110 toward the other end side of the case 110, and the other end of the case 110. And a base 110b disposed on the surface. Further, the housing 110 also serves as a heat sink for releasing heat from the light emitting element 130. A power supply circuit (not shown) that electrically connects the base 110 b and the light emitting element 130 is disposed inside the base 110 b and the heat sink.
  • the inclined surface 110a is formed so as not to block light emitted backward from the cover 160.
  • the substrate 120 is disposed on one end surface of the housing 110.
  • the shape of the substrate 120 is not particularly limited as long as the light emitting element 130 can be mounted, and may not be a plate shape.
  • the light emitting element 130 is a light source of the lighting device 100 and is mounted on the surface of the substrate 120 fixed on the housing 110.
  • the surface of the substrate 120 corresponds to the mounting surface of the light emitting element 130.
  • the light emitting element 130 is disposed on the substrate 120 such that the optical axis LA of the light emitting element 130 is along the normal line of the substrate 120.
  • the light emitting element 130 is a light emitting diode (LED) such as a white light emitting diode.
  • the optical axis of the light emitting element refers to the traveling direction of light at the center of the three-dimensional light flux from the light emitting element. When there are a plurality of light emitting elements, it refers to the traveling direction of light at the center of a three-dimensional light beam from the plurality of light emitting elements.
  • FIG. 4 is a diagram showing the arrangement of the light emitting elements 130 when viewed from above. For example, as shown in FIG. 4, the plurality of light emitting elements 130 are arranged at positions symmetrical with respect to the optical axis LA when viewed in plan.
  • FIG. 5 is a cross-sectional view of the light beam control member 140.
  • the light flux controlling member 140 controls the light distribution of the light emitted from the light emitting element 130.
  • the light flux controlling member 140 includes a first light flux controlling member 141 disposed facing the light emitting element 130 and a second light flux controlling member 142 disposed facing the first light flux controlling member 141. And a holder 150.
  • FIGS. 6A to 6D are diagrams showing configurations of the first light beam control member 141 and the holder 150.
  • FIG. 6A is a plan view of the first light flux controlling member 141 and the holder 150
  • FIG. 6B is a cross-sectional view of the first light flux controlling member 141 and the holder 150 along the line BB shown in FIG. 6A
  • FIG. 6C is a bottom view of the first light flux controlling member 141 and the holder 150
  • FIG. 6D is a side view of the first light flux controlling member 141 and the holder 150.
  • the first light flux controlling member 141 controls the traveling direction of a part of the light emitted from the light emitting element 130.
  • the first light flux control member 141 functions so that the light distribution of the emitted light from the first light flux control member 141 is narrower than the light distribution of the emitted light from the light emitting element 130.
  • the first light flux controlling member 141 is formed in a substantially circular shape in plan view.
  • the first light flux controlling member 141 is formed integrally with the holder 150, and is disposed with respect to the light emitting element 130 via an air layer so that the center axis CA1 thereof coincides with the optical axis LA of the light emitting element 130. (See FIG. 5).
  • the first light flux controlling member 141 has a refracting portion 161, a Fresnel lens portion 162, and an exit surface 163. Assuming that the exit surface 163 side is the front side of the first light flux controlling member 141, the refracting portion 161 is formed at the center of the back side surface of the first light flux controlling member 141.
  • the shape of the refracting portion 161 is rotationally symmetric (circular) with the central axis CA1 as the central axis.
  • the refracting part can be constituted by, for example, a flat surface, a spherical surface, an aspherical surface, a refractive Fresnel lens, or a combination thereof.
  • the refracting portion 161 includes a circular portion located in the center on the back side surface of the first light flux controlling member 141 and several small annular protrusions 162a surrounding the periphery. The center of the annular protrusion 162a coincides with the central axis CA1.
  • the Fresnel lens portion 162 is formed in an annular shape surrounding the refracting portion 161 when viewed in plan.
  • the Fresnel lens portion 162 has a plurality of annular protrusions 162a whose centers are located on the optical axis LA.
  • the annular protrusion 162 a is larger than the annular protrusion 162 a included in the refracting portion 161.
  • the annular protrusion 162a has an inner first inclined surface 162b and an outer second inclined surface 162c.
  • a flange portion 148 may be formed between the outer edge of the outermost second inclined surface 162c and the outer edge of the emission surface 163.
  • the first inclined surface 162b is a surface that extends from the top edge of the annular protrusion 162a to the bottom edge (valley bottom) inside the annular protrusion 162a, and rotates about the central axis CA1 of the first light flux controlling member 141. It is a plane of symmetry. That is, the first inclined surface 162b is formed in an annular shape having the central axis CA1 as the central axis.
  • the inclination angle of the first inclined surface 162b may be different from each other, and may include the case of being parallel to the optical axis LA (inclination angle 90 °).
  • the bus line of the first inclined surface 162b may be a straight line or a curved line.
  • bus line generally means a straight line describing a ruled surface, but in the present invention, it is used as a word including a curve for drawing the first inclined surface 162b which is a rotationally symmetric surface.
  • the inclination angle of the first inclined surface 162b is an angle of the tangent line of the first inclined surface 162b with respect to the central axis CA1.
  • the second inclined surface 162c is a surface extending from the top edge of the annular protrusion 162a to the bottom edge (valley bottom) outside the annular protrusion 162a.
  • the second inclined surface 162c is a rotationally symmetric surface formed so as to surround the central axis CA1 of the first light flux controlling member 141.
  • the radius of the second inclined surface 162c (distance from the second inclined surface 162c to the central axis CA1) gradually increases from the top edge to the bottom edge of the annular protrusion 162a.
  • the generatrix that constitutes the second inclined surface 162c is an arcuate curve that is convex outward (side away from the central axis CA1).
  • the bus forming the second inclined surface 162c may be a straight line according to the light distribution characteristic required for the lighting device 100. That is, the second inclined surface 162c may be tapered.
  • bus line generally means a straight line that draws a ruled surface, but in the present invention, it is used as a word including a curve for drawing the second inclined surface 162c that is a rotationally symmetric surface.
  • the inclination angle of the second inclined surface 162c may be different for each second inclined surface 162c.
  • the inclination angle of the second inclined surface 162c when the second inclined surface 162c is a curved surface is an angle of the tangent line of the second inclined surface 162c with respect to the central axis CA1.
  • the Fresnel lens part 162 includes an inclined Fresnel lens part 162d.
  • the inclined Fresnel lens portion 162d is formed by a plurality of annular protrusions 162a.
  • the distance between the bottom of the valley formed between the adjacent annular protrusions 162a and the light emitting element 130 in the direction of the central axis CA1 is the smallest in the outermost valley, and on the central axis CA1. It is formed so as to gradually increase as it approaches.
  • the distance V1 from the outermost valley to the lower step portion 151 formed at the lower end edge of the holder 150 is the smallest in the direction of the central axis CA1, and the valley closest to the central axis CA1.
  • To the lower step 151 is the largest (see FIG. 5).
  • An annular projection 162a may be further formed outside the inclined Fresnel lens portion 162d.
  • the distance from the bottom of the valley formed by the further annular protrusion 162a to the lower step portion 151 is not particularly limited.
  • the lower step 151 is a step formed by cutting out the inner edge of the lower end surface of the holder 150.
  • the lower step portion 151 contacts the edge of one end surface of the housing 110 to which the substrate 120 is fixed, and the surface (mounting surface) of the substrate 120. (See FIG. 3).
  • the lower step portion 151 Since the lower step portion 151 has such a positional relationship with respect to the mounting surface, it functions as a positioning portion between the mounting surface and the first light flux controlling member 141, from the bottom of the valley in the direction of the central axis CA1 to the mounting surface. When comparing these distances, the position of the lower step portion 151 can be employed instead of the position of the mounting surface.
  • the emission surface 163 is formed on the surface side of the first light flux controlling member 141. That is, the emission surface 163 is formed to face the second light flux controlling member 142.
  • the exit surface 163 includes a circular exit surface 163a formed on the front side of the refracting portion 161, an inclined exit surface 163b formed on the front side of the inclined Fresnel lens portion 162d, and an annular exit surface formed outside the inclined exit surface 163b. 163c.
  • the circular emission surface 163a has a circular shape in plan view, and is formed on a surface having a constant distance to the lower step portion 151 in the direction of the central axis CA1.
  • the inclined emission surface 163b is an annular surface having a plan view shape surrounding the circular emission surface 163a, and the distance to the lower stepped portion 151 in the direction of the central axis CA1 gradually decreases as the distance from the central axis CA1 increases.
  • the annular emission surface 163c has an annular shape in plan view surrounding the inclined emission surface 163b, and is formed in a surface having a constant distance to the lower step portion 151 in the direction of the central axis CA1.
  • the first light flux controlling member 141 is formed by, for example, injection molding.
  • the material of the first light flux controlling member 141 is not particularly limited as long as it has a high transmittance that allows light having a desired wavelength to pass therethrough.
  • the material of the first light flux controlling member 141 is a light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), or glass.
  • the refracting portion 161 and the first inclined surface 162 b cause a part of the light emitted from the light emitting element 130 to enter the first light flux controlling member 141.
  • the refracting unit 161 allows a part of the light emitted from the light emitting element 130 to be incident and refracted toward the emission surface 163.
  • the refracting portion 161 functions as an incident surface for light incident on the first light flux controlling member 141.
  • the first inclined surface 162b is incident on the light emitted from the light emitting element 130.
  • the first inclined surface 162b functions as an incident surface for light incident on the first light flux controlling member 141.
  • the second inclined surface 162 c totally reflects a part of the light incident on the first inclined surface 162 b toward the second light flux controlling member 142.
  • the second inclined surface 162c functions as a total reflection surface that totally reflects a part of the light incident from the first inclined surface 162b. That is, the Fresnel lens unit 162 functions as a reflection type Fresnel lens.
  • the emission surface 163 emits a part of the light incident from the refraction part 161 and the first inclined surface 162b and the light totally reflected by the second inclined surface 162c toward the second light flux controlling member 142.
  • FIGS. 7A to 7D are diagrams showing the configuration of the second light beam control member 142.
  • 7A is a plan view of the second light flux controlling member 142
  • FIG. 7B is a cross-sectional view of the second light flux controlling member 142 along the line BB shown in FIG. 7A
  • FIG. 7D is a bottom view of the second light flux controlling member 142
  • FIG. 7D is a side view of the second light flux controlling member 142.
  • the second light flux controlling member 142 is a member having a substantially circular shape in plan view.
  • the second light flux controlling member 142 is supported by the holder 150, and is disposed via the air layer with respect to the first light flux controlling member 141 so that the central axis CA2 thereof coincides with the optical axis LA of the light emitting element 130. (See FIG. 5).
  • the second light flux controlling member 142 has a reflecting surface 145 that faces the first light flux controlling member 141 and reflects part of the light emitted from the first light flux controlling member 141.
  • the reflection surface 145 is a rotationally symmetric (circularly symmetric) surface around the central axis CA2 of the second light flux controlling member 142.
  • the rotation axis of the reflecting surface 145 coincides with the central axis CA2.
  • the bus line from the center of the rotationally symmetric surface to the outer peripheral portion is a concave curve with respect to the light emitting element 130 and the first light flux controlling member 141, and the reflection surface 145 has the bus line. It is a curved surface in a state where is rotated 360 °. That is, the reflecting surface 145 has an aspherical curved surface whose height from the light emitting element 130 increases from the center toward the outer peripheral portion.
  • the outer peripheral portion of the reflecting surface 145 is formed at a position where the distance (height) from the light emitting element 130 in the direction of the optical axis LA of the light emitting element 130 is larger than the center of the reflecting surface 145.
  • the reflecting surface 145 is an aspherical curved surface whose height from the light emitting element 130 increases from the center toward the outer periphery, or from the center to the outer periphery from the center to a predetermined point. As the height increases from the light emitting element 130 (substrate 120), the height from the light emitting element 130 decreases from the center to the outer peripheral portion from the predetermined point to the outer peripheral portion. .
  • the inclination angle of the reflecting surface 145 with respect to the surface direction of the substrate 120 decreases from the center toward the outer peripheral portion.
  • the reflection surface 145 has a zero inclination angle (parallel to the substrate 120) with respect to the surface direction of the substrate 120 at a position between the center and the outer periphery and close to the outer periphery.
  • bus line generally means a straight line that draws a ruled surface, but in the present invention, it is used as a term including a curve for drawing the reflecting surface 145 that is a rotationally symmetric surface.
  • the second light flux control member 142 controls the direction of travel of some of the light emitted from the first light flux control member 141 and reaches the second light flux control member 142 to reflect it, and transmits the remaining part.
  • the reflecting surface 145 reflects part of the emitted light from the first light flux controlling member 141 toward the holder 150. The reflected light passes through the holder 150 and reaches the middle part (side part) and the lower part of the cover 160.
  • Means for imparting the above-described partial reflection and partial transmission functions to the second light flux controlling member 142 is not particularly limited.
  • a transmission / reflection film may be formed on the surface of the second light flux controlling member 142 made of a light transmissive material (the surface facing the light emitting element 130 and the first light flux controlling member 141).
  • the light transmissive material include transparent resin materials such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), and glass.
  • the transmission / reflection film include a multilayer film of TiO 2 and SiO 2, a multilayer film of ZnO 2 and SiO 2, a multilayer film of Ta 2 O 5 and SiO 2 , and aluminum (Al). A metal thin film or the like.
  • light scatterers such as beads may be dispersed inside the second light flux controlling member 142 made of a light transmissive material. That is, the second light flux controlling member 142 may be formed of a material that reflects part of light and transmits part of light.
  • a light transmission part may be formed in the second light flux controlling member 142 made of a light reflective material.
  • the light reflective material include white resin and metal.
  • the light transmitting part include a through hole and a recessed part with a bottom. In the latter case, the light emitted from the light emitting element 130 and the first light flux controlling member 141 is transmitted through the bottom of the concave portion (the portion where the thickness is reduced).
  • the second light flux controlling member 142 having both light reflectivity and light transmissivity is made of white polymethyl methacrylate having a visible light transmittance of about 20% and a reflectance of about 78%. Can be formed.
  • the surface (reflection surface 145) of the second light flux control member 142 facing the first light flux control member 141 is formed such that the reflection intensity in the regular reflection direction of incident light is higher than the reflection intensity in other directions. It is preferable. Therefore, the surface of the second light flux controlling member 142 facing the first light flux controlling member 141 is formed to be a glossy surface.
  • the holder 150 is positioned on the substrate 120 and positions the first light flux control member 141 and the second light flux control member 142 with respect to the light emitting element 130.
  • the holder 150 is a light-transmitting member formed in a substantially cylindrical shape.
  • the “substantially cylindrical shape” includes a cylindrical shape having a polygonal cross section that provides light distribution characteristics equivalent to the cylindrical shape.
  • the second light flux controlling member 142 is fixed to one end of the holder 150.
  • the other end of the holder 150 is fixed to the substrate 120.
  • the end to which the second light flux controlling member 142 is fixed is referred to as an “upper end”, and the end that is fixed to the substrate 120 is referred to as a “lower end”. .
  • the holder 150 is formed by integral molding together with the first light flux controlling member 141.
  • the material of the holder 150 is not particularly limited as long as it can pass light of a desired wavelength.
  • the material of the holder 150 is a light transmissive resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP), or glass.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • EP epoxy resin
  • glass glass.
  • these light transmitting materials may contain scatterers, or the surface of the holder 150 may be subjected to a light diffusing treatment.
  • the lower end portion of the holder 150 is in contact with the peripheral edge portion of one end surface of the housing 110 when the light flux controlling member 140 is mounted, and the holder 150 is positioned relative to the substrate 120.
  • a side step portion 151 is formed.
  • the means for positioning the holder 150 with respect to the substrate 120 is not limited to the lower stepped portion 151.
  • a boss (protrusion) and a locking claw for positioning the holder 150 on the substrate 120, the housing 110, etc. may be provided at the lower end of the holder 150 in place of the lower stepped portion 151. Good.
  • the boss contacts the substrate 120 and adjusts the height of the second light flux controlling member 142.
  • the locking claw locks into a locking hole formed on one end surface of the housing 110 or the substrate 120 to prevent the holder 150 from coming off and rotating.
  • the holder 150 may further include means for positioning the second light flux controlling member 142 with respect to the holder 150.
  • positioning means is not particularly limited.
  • the upper end portion of the holder 150 is provided with an upper step portion formed by cutting out the inner edge of the upper end surface of the holder 150, or a guide protrusion and a claw portion for fixing the second light flux controlling member 142. It may be.
  • the guide protrusion is formed on a part of the outer peripheral portion of the end surface of the upper end portion, and prevents the second light flux controlling member 142 from moving in the radial direction of the holder 150.
  • the claw portion is formed on the end surface of the upper end portion, and is fitted into a recess formed in the outer peripheral portion of the second light flux controlling member 142 to prevent the second light flux controlling member 142 from coming off and rotating. .
  • the manufacturing method of the light flux controlling member 140 is not particularly limited.
  • the light flux control member 140 can be manufactured by assembling the second light flux control member 142 to an integrally molded product of the first light flux control member 141 and the holder 150.
  • an adhesive or the like may be used.
  • the integral molded product of the first light flux controlling member 141 and the holder 150 can be manufactured by injection molding using, for example, a colorless and transparent resin material.
  • the second light flux controlling member 142 is formed by, for example, performing injection molding using a colorless and transparent resin material, and then depositing a transmission / reflection film on the surface to be the reflective surface 145, or the second light flux controlling member 142 is white It can be produced by injection molding using the resin material.
  • the light flux controlling member 140 can be manufactured by assembling the first light flux controlling member 141 to the holder 150 and the second light flux controlling member 142 to the holder 150.
  • the degree of freedom in selecting materials for forming the holder 150 and the first light flux controlling member 141 is improved. For example, it becomes easy to form the holder 150 with a light transmissive material including a scatterer and to form the first light flux controlling member 141 with a light transmissive material not including a scatterer.
  • the cover 160 allows the outgoing light from the light emitting device (the outgoing light from the light flux controlling member 140) to pass through while diffusing.
  • the cover 160 is a member in which a hollow region having an opening is formed.
  • the substrate 120, the light emitting element 130, and the light flux controlling member 140 are disposed in the hollow region of the cover 160.
  • the means for imparting light diffusing power to the cover 160 is not particularly limited.
  • the inner surface or the outer surface of the cover 160 may be subjected to light diffusion treatment (for example, roughening treatment), or a light diffusing material (for example, a light transmissive material including scatterers such as beads) is used.
  • the cover 160 may be manufactured.
  • the front or back surface of the cover 160 may be smooth or a roughened surface. By roughening the front surface or the back surface of the cover 160, the illuminance unevenness of the lighting device 100 can be reduced.
  • the shape of the cover 160 may be, for example, a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a plane), but is not particularly limited.
  • the light that reaches the refraction part 161 is incident on the first light flux control member 141 from the refraction part 161, is emitted from the emission surface 163, and reaches the second light flux control member 142.
  • the light reaching the Fresnel lens portion 162 is incident on the first light flux controlling member 141 from the first inclined surface 162b, and is directed toward the second light flux controlling member 142 by the second inclined surface 162c. Reflect. Then, the light exits from the exit surface 163 and reaches the second light flux controlling member 142.
  • a part of the light reaching the second light flux controlling member 142 passes through the second light flux controlling member 142 and reaches the upper part of the cover 160. Further, the remaining part of the light reaching the second light flux controlling member 142 is reflected by the reflecting surface 145 of the second light flux controlling member 142 and reaches the middle part (side part) and the lower part of the cover 160 via the holder 150. At this time, the light reflected at the center of the second light flux controlling member 142 is directed toward the center of the cover 160. On the other hand, the light reflected at the outer periphery of the second light flux controlling member 142 travels to the lower part of the cover 160.
  • the light emitted from the light emitting device 130 and reaching the holder 150 is transmitted through the holder 150 and emitted from the outer peripheral surface of the holder 150, and reaches the middle part of the cover 160.
  • the emitted light from the light emitting element 130 is distributed forward, laterally and backward by the light flux controlling member 140.
  • the light of the light emitting element 130 arranged on the outermost side among these light emitting elements 130 is compared with the light emitted from the other light emitting elements 130. , It is difficult to enter the first light flux controlling member. Therefore, the optical path of the emitted light from the light emitting element 130 arranged on the outermost side will be described.
  • FIG. 8A is a diagram showing an optical path of emitted light from the light emitting element 130 arranged on the outermost side when a light flux controlling member 640 having a substantially flat plate-shaped first light flux controlling member is used. It is a figure which expands and shows the part enclosed by the circle
  • FIG. 9A is a partial cross-sectional view of a light emitting device having a light flux controlling member 640
  • FIG. 9B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 9A in terms of relative intensity.
  • the omnidirectional luminous intensity of the light emitting device is obtained by simulation. “Luminance” is approximately equal to the illuminance at a distance of 1000 mm from the heating element 130.
  • the light beam control member 640 has the same configuration as the light beam control member 140 except that it has a substantially flat plate-shaped first light beam control member 641.
  • Dc of the light flux control member 640 is the same as Dc of the light flux control member 140 (FIGS. 8A and 10A).
  • the bottom of the valley in the first light flux controlling member 641 is substantially located on one plane, and the emission surface 663 is formed in a plane. Therefore, the distance between the bottom of the valley and the exit surface 663 in the optical axis LA direction is substantially constant.
  • the luminous flux control member 640 out of the light emitted from the light emitting element 130 has 0 to ⁇ 0 with respect to the optical axis LA ′.
  • Light having an angle of ° is directly incident on the first light flux controlling member 641 from the first inclined surface 162b.
  • Light having an angle larger than ⁇ 0 ° with respect to the optical axis LA ′ of the light emitting element 130 passes through the holder 150 and is emitted to the outside of the light flux controlling member 140.
  • the light flux controlling member 640 causes the light emitted from the light emitting element 130 to be obliquely forward ( ⁇ 60 °) and obliquely rearward ( ⁇ 120 to ⁇ 150 °) by the light flux controlling member 640.
  • Light distribution However, the proportion of light distributed laterally ( ⁇ 90 °) is small.
  • FIG. 10A is a diagram showing an optical path of emitted light from the light emitting element 130 arranged on the outermost side when the light flux controlling member 140 is used
  • FIG. 10B is a portion surrounded by a circle B in FIG. 10A. It is a figure which expands and shows.
  • FIG. 11A is a partial cross-sectional view of the light emitting device having the light flux controlling member 140
  • FIG. 11B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG.
  • the first light flux controlling member 141 includes the inclined Fresnel lens portion 162d, as shown in FIG. 10A, the distance from the apex of the outermost annular projection 162 to the substrate 120 is as shown in FIGS. 8A and 8B. And smaller than that of the light emitting device shown in FIG. 9A. Therefore, ⁇ 1 is larger than that of the ⁇ 0. That is, in the light emitting device shown in FIGS.
  • the light distribution at an angle of 0 to ⁇ 1 °, which is substantially larger than the angle of 0 to ⁇ 0 ° with respect to the optical axis LA ′.
  • Light is controlled by both the first light flux control member 141 and the second light flux control member 142.
  • the light flux controlling member 140 distributes the light emitted from the light emitting element 130 mainly obliquely forward ( ⁇ 15 ° and ⁇ 60 °) and obliquely backward ( ⁇ 120 to ⁇ 150 °). To do. Further, as compared with the light flux controlling member 640, the ratio of light distributed forward (0 °) and side ( ⁇ 90 °) is large. Thus, the light flux controlling member 140 distributes the emitted light from the light emitting element 130 in a well-balanced manner in the front, side, and rear.
  • the first light flux controlling member 141 is formed in a shape that is inclined toward the light emitting element 130 side (downward) from the refracting portion 161 formed in the central portion toward the peripheral portion of the Fresnel lens portion 162. For this reason, it is possible to reduce the amount of light that does not enter the first light flux controlling member 141 and leaks from the light flux controlling member 140. Therefore, the light flux controlling member 140 can distribute the emitted light from the light emitting element 130 in a well-balanced manner in the forward, lateral, and backward directions. Therefore, the light emitting device configured by the light emitting element 130 and the light flux controlling member 140 can achieve a well-balanced light distribution characteristic.
  • the illuminating device 100 can implement
  • the lighting device 100 can be used for indoor lighting or the like instead of an incandescent lamp.
  • the lighting device 100 can consume less power than an incandescent bulb and can be used for a longer period than an incandescent bulb.
  • the first light flux controlling member 141 has a Fresnel lens structure, the thickness of the first light flux controlling member 141 is reduced. Therefore, the light flux controlling member 140 can be made smaller.
  • the emission surface 163 has an inclined emission surface 163b corresponding to the inclined Fresnel lens portion 162d.
  • the emission surface may be a flat surface.
  • FIG. 12A is a partial cross-sectional view of a light emitting device having a light flux controlling member 240
  • FIG. 12B is a graph showing the luminous intensity in all directions of the light emitting device in terms of relative intensity.
  • the light flux controlling member 240 has the same configuration as the light flux controlling member 140 except that the emission surface 263 is formed flat.
  • the light flux controlling member 240 distributes light emitted from the light emitting element 130 mainly obliquely forward ( ⁇ 15 to ⁇ 30 °) and obliquely rearward ( ⁇ 120 to ⁇ 150 °). . Further, compared to the light flux controlling member 640, the ratio of light distributed obliquely forward ( ⁇ 60 °) is small, and the ratio of light distributed forward (0 °) is large. In this way, the light flux controlling member 240 distributes the emitted light from the light emitting element 130 in a balanced manner forward and backward.
  • the surface of the holder 150 is smooth.
  • the surface of the holder 150 may have irregularities that control the light distribution of the light transmitted through the holder 150.
  • FIG. 13A is a partial cross-sectional view of a light emitting device having a light flux controlling member 340
  • FIG. 13B is a graph showing the luminous intensity in all directions of the light emitting device in terms of relative intensity.
  • 14A is an enlarged view of a portion of the unevenness of the holder 150 surrounded by a circle A in FIG. 13A
  • FIG. 14B is an uneven shape of the holder 150 surrounded by a circle A in FIG. FIG.
  • the light flux control member 340 has the same configuration as the light flux control member 140 except that a plurality of recesses 351 are formed in a portion between the first light flux control member 141 and the second light flux control member 142 on the outer peripheral surface of the holder 150.
  • the plurality of recesses 351 have the same shape and are arranged at regular intervals.
  • the shape of the recess 351 is rotationally symmetric with the central axis of the holder 150 (for example, the central axis CA1 or CA2) as the rotation axis.
  • the cross-sectional shape of the recess 351 in a cross section passing through the central axis of the holder 150 is a right triangle.
  • the concave portion 351 has an inclined surface 351a in which the outer diameter of the holder 150 gradually decreases toward the bottom, and extends outward from the end of the inclined surface 351a on the first light flux controlling member 141 side.
  • an annular flat surface 351b orthogonal to the central axis.
  • the inclined surface 351a reflects the traveling direction of light that is reflected by the second light flux control member 142 and reaches the holder 150 from the second light flux control member 142 side (upper side) in a direction (side) orthogonal to the optical axis LA of the light emitting element 130. Change to get closer.
  • light flux controlling member 340 emits light emitted from light emitting element 130 obliquely forward ( ⁇ 15 °), laterally ( ⁇ 90 °), and obliquely rearward ( ⁇ 120 to ⁇ 150 °). Light distribution. Further, the ratio of light distributed obliquely forward ( ⁇ 60 °) is smaller than that of the light flux controlling member 640, and forward (0 °), diagonally forward ( ⁇ 15 °), lateral ( ⁇ 90 °), and diagonally. A large proportion of light is distributed backward ( ⁇ 120 to ⁇ 150 °). In this way, the light flux controlling member 340 distributes the emitted light from the light emitting element 130 in a well-balanced manner in the front, side, and rear.
  • the recess may be the recess 352 shown in FIG. 14B.
  • the concave portion 352 is orthogonal to the central axis of the holder 150 that extends outward from the inclined surface 351c in which the outer diameter of the second light flux controlling member 142 gradually decreases toward the top, and the end of the inclined surface 351c on the first light flux controlling member 141 side.
  • the recess 352 changes the traveling direction of the light reaching the holder 150 from the first light flux controlling member 141 side (lower side) so as to approach the direction (side) orthogonal to the optical axis LA of the light emitting element 130. .
  • the shape of the concave portion is not particularly limited as long as it has a surface such as the inclined surfaces 351a and 351c that changes the traveling direction of light from above or below so as to approach the side.
  • a surface includes a surface having a curved generating line.
  • FIG. 15A is a partial cross-sectional view of a light emitting device having a light flux controlling member 640 and one light emitting element 130
  • FIG. 15B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 15A in relative intensity.
  • FIG. 16A is a partial cross-sectional view of a light emitting device having a light flux controlling member 140 and one light emitting element 130
  • FIG. 16B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 16A in relative intensity.
  • FIG. 16A is a partial cross-sectional view of a light emitting device having a light flux controlling member 140 and one light emitting element 130
  • FIG. 16B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 16A in relative intensity.
  • FIG. 16A is a partial cross-sectional view of a light emitting device having a light flux controlling member 140 and one light emitting element 130
  • FIG. 17A is a partial cross-sectional view of a light emitting device having a light flux controlling member 340 and one light emitting element 130
  • FIG. 17B is a graph showing the luminous intensity in all directions of the light emitting device shown in FIG. 17A in terms of relative intensity. .
  • the light flux controlling member 640 transmits the emitted light from the light emitting element 130 obliquely forward ( ⁇ 60 °) and obliquely backward ( ⁇ 120 to ⁇ 150) even when there is only one light emitting element 130. Light distribution.
  • the light flux controlling member 140 transmits light emitted from the light emitting element 130 obliquely forward ( ⁇ 60 °) and obliquely rearward ( ⁇ 120 to ⁇ 150), even when the number of the light emitting elements 130 is one. Light distribution. Further, as compared with the light flux controlling member 640, the ratio of light distributed to the front (0 °), the side ( ⁇ 90 °) and the oblique rear ( ⁇ 120 to ⁇ 150 °) is large. Thus, the light flux controlling member 140 distributes the emitted light from the light emitting element 130 in a well-balanced manner in the front, side, and rear.
  • the light flux controlling member 340 transmits the light emitted from the light emitting element 130 obliquely forward ( ⁇ 30 ° and ⁇ 60 °), laterally, even when the number of the light emitting elements 130 is one. ( ⁇ 90 °) and obliquely rearward ( ⁇ 120 to ⁇ 150 °). Further, compared to the light flux controlling member 640, the proportion of light distributed obliquely forward ( ⁇ 60 °) is small, and forward (0 °), diagonally forward (0 to ⁇ 30 °), side ( ⁇ 90 °). In addition, the ratio of light distributed obliquely backward ( ⁇ 120 to ⁇ 150 °) is large. In this way, the light flux controlling member 340 distributes the emitted light from the light emitting element 130 in a well-balanced manner in the front, side, and rear.
  • the tip of the outermost annular protrusion 162a of the inclined Fresnel lens portion 162d may be closer to the substrate 120.
  • the tip can be brought close to the substrate 120 until ⁇ 1 in FIG. 10B reaches 90 °.
  • the illuminance of the light emitting device according to the present invention was measured. With the intersection of the optical axis LA and the surface of the substrate 120 as the emission center, the illuminance at a distance of 1000 mm from the emission center was measured.
  • the light flux controlling members 140 and 340 are used as the light flux controlling members. As a reference example, the illuminance was measured in the same manner using a light emitting device having a light flux controlling member 640. The measurement results are shown in FIGS. 18A and 18B.
  • FIG. 18A is a graph showing the illuminance of all directions of the light emitting device equipped with the white second light flux controlling member 142 having a transmittance of 21% as a relative intensity.
  • FIG. 18B is a graph showing the relative illuminance in all directions of the light emitting device equipped with the white second light flux controlling member 142 having a transmittance of 13%.
  • “thick broken line” indicates the illuminance of the light emitting device equipped with the light flux controlling member 140
  • “thick solid line” indicates the illuminance of the light emitting device equipped with the light flux controlling member 340
  • “thin solid line” indicates the light flux control.
  • the illuminance of the light-emitting device equipped with the member 640 is shown.
  • the lighting device according to the present invention can be used in place of an incandescent light bulb, it can be widely applied to various lighting devices such as chandeliers and indirect lighting devices.

Abstract

 光束制御部材(140)は、第1光束制御部材(141)とそれに対向する第2光束制御部材(142)とを有する。第1光束制御部材(141)および第2光束制御部材(142)は、いずれも、発光素子の光軸(LA)合致する中心軸を有する。第1光束制御部材(141)の傾斜フレネルレンズ部(162)における、円環状の突起(162a)間の谷底と下側段部(151)との光軸(LA)方向における距離は、外側の谷では小さく、かつ光軸(LA)に近づくにつれて漸増する。本発明によれば、前方、側方および後方の少なくとも二方向にバランスよく配光することができる光束制御部材、発光装置および照明装置を提供することができる。

Description

光束制御部材、発光装置および照明装置
 本発明は、発光素子から出射された光の配光を制御する光束制御部材ならびに前記光束制御部材を有する発光装置および照明装置に関する。
 近年、省エネルギーや環境保全の観点から、発光ダイオード(以下「LED」ともいう)を光源とする照明装置(例えば、LED電球)が、白熱電球に代わるものとして使用されている。しかしながら、従来のLEDを光源とする照明装置は、前方のみに光を出射し、白熱電球のように幅広い方向に光を出射することができない。このため、従来の照明装置は、白熱電球のように天井や壁面からの反射光を利用して室内を広範囲に照らすことができない。
 従来のLEDを光源とする照明装置の配光特性を白熱電球の配光特性に近づけるため、LEDからの出射光の配光を光束制御部材で制御することが提案されている(例えば、特許文献1参照)。図1は、特許文献1に記載の照明装置の構成を示す要部断面図である。図1に示されるように、照明装置10は、基板上に配置された複数のLED12と、LED12の周囲に配置された光透過性材料からなる円筒形のケース14とを有する。ケース14の上面は、逆円錐台形状に形成されている。
 円錐台の斜面には、光を反射させるアルミ板16が貼り付けられており、反射面として機能する。一方、円錐台の平面は、光を透過させる透過窓18として機能する。図1において矢印で示されるように、LED12から出射された光の一部は、透過窓18を通過して前方(上方向)への出射光となる。また、LED12から出射された光の一部は、アルミ板16で反射して側方(水平方向)および後方(下方向)への出射光となる。
 このように光束制御部材を用いてLEDからの出射光の進行方向を制御することにより、前方だけでなく、側方および後方への出射光を得ることができる。したがって、特許文献1に記載の光束制御部材(反射面)を使用することで、照明装置(LED電球)の配光特性を白熱電球の配光特性にある程度近づけることができる。
特開2003-258319号公報
 しかしながら、特許文献1に記載の照明装置には、配光特性のバランスが悪いという問題がある。特許文献1に記載の照明装置10を使用した場合、図1に示されるように、ケース14の上端より前方の空間Aには、LED12からの出射光のみが届く。一方、ケース14の上端より後方の空間Bには、LED12からの出射光だけでなくアルミ板16からの反射光も届く。そのため、空間Aと空間Bとでは、明るさが異なってしまうことになる。したがって、特許文献1に記載の照明装置10にカバー20を被せた場合、例えば、図2に示される、カバー20におけるA部に到達する光の量が、B部に到達する光の量に対して大きく異なってしまうことがある。このため、カバー20に明暗の境界線ができることがある。
 本発明の目的は、発光素子を有する照明装置に用いられる光束制御部材であって、前方、側方および後方の少なくとも二方向にバランスよく配光することができる光束制御部材を提供することである。また、本発明の別の目的は、この光束制御部材を有する発光装置および照明装置を提供することである。
 本発明に係る光束制御部材は、発光素子から出射された光の配光を制御するための光束制御部材であって、前記発光素子に対向して配置される第1光束制御部材と、前記第1光束制御部材に対向して配置される第2光束制御部材と、を有し、
 前記第1光束制御部材は、前記発光素子の光軸が回転軸となる回転対称性を有する円環状の突起を複数有し、前記発光素子に対向するフレネルレンズ部と、前記第2光束制御部材に対向し、前記フレネルレンズ部で制御された光を前記第2光束制御部材に向けて出射する出射面と、を有し、前記円環状の突起は、前記発光素子から出射された光の一部を入射する内側の第1傾斜面と、前記第1傾斜面に入射した光の一部を前記第2光束制御部材に向けて反射する外側の第2傾斜面と、を有し、
 前記第2光束制御部材は、前記第1光束制御部材の出射面と対向し、前記第1光束制御部材から出射され前記第2光束制御部材に到達した光の一部を反射させ、残部を透過させる反射面を有し、前記反射面は、前記光軸を回転軸とする回転対称面であり、前記回転対称面の母線が前記第1光束制御部材に対して凹の曲線となるように形成され、
 前記反射面の外周部は、前記反射面の中心部と比較して、前記光軸の方向における前記発光素子からの距離が離れた位置に形成され、
 前記フレネルレンズ部は、隣り合う前記円環状の突起の間に形成される谷の底と前記発光素子が実装される実装面との前記光軸の方向における距離が、外側から前記光軸に近づくにつれて漸増する傾斜フレネルレンズ部を含む。
 本発明に係る発光装置は、少なくとも1つの発光素子と、本発明に係る光束制御部材と、を有する。
 本発明の照明装置は、本発明に係る発光装置と、前記発光装置からの出射光を拡散させつつ透過させるカバーと、を有する。
 本発明の光束制御部材は、前方、側方および後方の少なくとも二方向にバランスよく配光させることができる。したがって、本発明の発光装置は、広範囲に発光し、本発明の照明装置は、白熱電球のように室内を広範囲に照らすことができる。
特許文献1に記載の照明装置の構成を示す要部断面図である。 特許文献1に記載の照明装置にカバーを設けた場合の要部断面図である。 本発明の実施の形態1に係る照明装置の部分断面図である。 実施の形態1に係る照明装置における発光素子の平面視したときの配置を示す図である。 実施の形態1に係る光束制御部材の断面図である。 図6Aは、実施の形態1に係る光束制御部材の第1光束制御部材およびホルダーの平面図であり、図6Bは、上記第1光束制御部材およびホルダーの、図6Aに示されるB-B線に沿っての断面図であり、図6Cは、上記第1光束制御部材およびホルダーの底面図であり、図6Dは、上記第1光束制御部材およびホルダーの側面図である。 図7Aは、実施の形態1に係る光束制御部材の第2光束制御部材の平面図であり、図7Bは、上記第2光束制御部材の、図7Aに示されるB-B線に沿っての断面図であり、図7Cは、上記第2光束制御部材の底面図であり、図7Dは、上記第2光束制御部材の側面図である。 図8Aは、略平板状の第1光束制御部材を有する光束制御部材を用いたときの、最も外側に配置された発光素子からの出射光の光路を示す図であり、図8Bは、上記光束制御部材の、図8A中の円Bで囲まれた部分を拡大して示す図である。 図9Aは、略平板状の光束制御部材を有する発光装置の部分断面図であり、図9Bは、図9Aに示される発光装置の全方位の光度を相対強度で示すグラフである。 図10Aは、実施の形態1に係る光束制御部材を用いたときの、最も外側に配置された発光素子からの出射光の光路を示す図であり、図10Bは、上記光束制御部材の、図10A中の円Bで囲まれた部分を拡大して示す図である。 図11Aは、実施の形態1に係る発光装置の部分断面図であり、図11Bは、図11Aに示される発光装置の全方位の光度を相対強度で示すグラフである。 図12Aは、実施の形態2に係る発光装置の部分断面図であり、図12Bは、図12Aに示される発光装置の全方位の光度を相対強度で示すグラフである。 図13Aは、実施の形態3に係る発光装置の部分断面図であり、図13Bは、図13Aに示される発光装置の全方位の光度を相対強度で示すグラフである。 図14Aは、上記発光装置の、図13A中の円Aで囲まれた部分を拡大して示す図であり、図14Bは、図14Aに示される部分の変形例を示す図である。 図15Aは、略平板状の光束制御部材と1つの発光素子を有する発光装置の部分断面図であり、図15Bは、図15Aに示される発光装置の全方位の光度を相対強度で示すグラフである。 図16Aは、実施の形態1に係る光束制御部材と1つの発光素子を有する発光装置の部分断面図であり、図16Bは、図16Aで示される発光装置の全方位の光度を相対強度で示すグラフである。 図17Aは、実施の形態3に係る光束制御部材と1つの発光素子を有する発光装置の部分断面図であり、図17Bは、図17Aで示される発光装置の全方位の光度を相対強度で示すグラフである。 図18Aは、透過率21%の第2光束制御部材を装着した照明装置の全方位の照度を相対強度で示すグラフであり、図18Bは、透過率13%の第2光束制御部材を装着した照明装置の全方位の照度を相対強度で示すグラフである。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。以下の説明では、本発明に係る照明装置の代表例として、白熱電球に代えて使用されうる照明装置について説明する。
 [照明装置の構成]
 図3は、本発明の実施形態1に係る照明装置100の部分断面図である。図3に示されるように、照明装置100は、筐体110、基板120、発光素子130、光束制御部材140およびカバー160を有する。以下、各構成要素について説明する。
 (1)筐体および基板
 筐体110は、筐体110の一端面の外側にある段部の縁から筐体110の他端側に向けて傾斜する傾斜面110aと、筐体110の他端に配置される口金110bと、を有する。さらに筐体110は、発光素子130からの熱を放出するためのヒートシンクを兼ねている。口金110bおよびヒートシンク内部には、口金110bと発光素子130とを電気的に接続する不図示の電源回路が配設されている。
 傾斜面110aは、カバー160から後方へ出射された光を遮らないために形成されている。基板120は、筐体110の一端面上に配置されている。基板120の形状は、発光素子130を実装することができれば特に限定されず、板状でなくてもよい。
 (2)発光素子
 発光素子130は、照明装置100の光源であり、筐体110上に固定された基板120の表面に実装されている。基板120の表面は、発光素子130の実装面に相当する。発光素子130は、発光素子130の光軸LAが基板120の法線に沿うように、基板120上に配置される。たとえば、発光素子130は、白色発光ダイオードなどの発光ダイオード(LED)である。
 「発光素子の光軸」とは、発光素子からの立体的な光束の中心における光の進行方向を言う。発光素子が複数ある場合は、複数の発光素子からの立体的な光束の中心における光の進行方向を言う。図4は、平面視したときの発光素子130の配置を示す図である。たとえば、複数の発光素子130は、図4に示されるように、平面視したときに、光軸LAに対して互いに点対称の位置に配置される。
 (3)光束制御部材
 図5は、光束制御部材140の断面図である。光束制御部材140は、発光素子130から出射された光の配光を制御する。図5に示されるように、光束制御部材140は、発光素子130に対向して配置される第1光束制御部材141、第1光束制御部材141に対向して配置される第2光束制御部材142およびホルダー150を含む。
 (3-1)第1光束制御部材
 図6A~Dは、第1光束制御部材141およびホルダー150の構成を示す図である。図6Aは、第1光束制御部材141およびホルダー150の平面図であり、図6Bは、第1光束制御部材141およびホルダー150の、図6Aに示されるB-B線に沿っての断面図であり、図6Cは、第1光束制御部材141およびホルダー150の底面図であり、図6Dは、第1光束制御部材141およびホルダー150の側面図である。
 第1光束制御部材141は、発光素子130から出射された光の一部の進行方向を制御する。第1光束制御部材141は、第1光束制御部材141からの出射光の配光が発光素子130からの出射光の配光よりも狭まるように機能する。図6Aに示されるように、第1光束制御部材141は、平面視形状が略円形に形成されている。第1光束制御部材141は、ホルダー150と一体的に形成されており、その中心軸CA1が発光素子130の光軸LAと一致するように、発光素子130に対して空気層を介して配置される(図5参照)。
 図5に示されるように、第1光束制御部材141は、屈折部161と、フレネルレンズ部162と、出射面163とを有する。出射面163側を第1光束制御部材141の表側とすると、屈折部161は、第1光束制御部材141の裏側面における中心部に形成されている。
 屈折部161の形状は、中心軸CA1を中心軸とする回転対称(円形)である。屈折部は、例えば、平面、球面、非球面、屈折型のフレネルレンズまたはこれらの組み合わせによって構成されうる。屈折部161は、第1光束制御部材141の裏側面における中央に位置する円形部と、その周囲を囲む幾つかの小さな円環状の突起162aによって構成されている。円環状の突起162aの円心は、中心軸CA1に合致している。
 フレネルレンズ部162は、平面視したときに屈折部161を囲む環状に形成されている。フレネルレンズ部162は、光軸LA上に中心が位置する円環状の突起162aを複数有する。円環状の突起162aは、屈折部161に含まれる円環状の突起162aよりも大きい。円環状の突起162aは、内側の第1傾斜面162bと外側の第2傾斜面162cとを有する。図6Bに示されるように、最も外側の第2傾斜面162cの外縁と出射面163の外縁との間には、フランジ部148が形成されていてもよい。
 第1傾斜面162bは、円環状の突起162aの頂縁から円環状の突起162aの内側の底縁(谷底)に至る面であり、第1光束制御部材141の中心軸CA1を中心とする回転対称面である。すなわち、第1傾斜面162bは、中心軸CA1を中心軸とする円環形状に形成されている。第1傾斜面162bの傾斜角は、それぞれ異なっていてもよいし、光軸LAと平行(傾斜角90°)の場合を含みうる。第1傾斜面162bの母線は、直線であってもよいし、曲線であってもよい。
 なお、「母線」とは、一般的に線織面を描く直線を意味するが、本発明では回転対称面である第1傾斜面162bを描くための曲線を含む語として用いる。第1傾斜面162bが曲面である場合における第1傾斜面162bの傾斜角は、第1傾斜面162bの接線の、中心軸CA1に対する角度である。
 第2傾斜面162cは、円環状の突起162aの頂縁から円環状の突起162aの外側の底縁(谷底)に至る面である。第2傾斜面162cは、第1光束制御部材141の中心軸CA1を取り囲むように形成された回転対称面である。第2傾斜面162cの半径(第2傾斜面162cから中心軸CA1までの距離)は、円環状の突起162aの頂縁から底縁に向けて漸増している。第2傾斜面162cを構成する母線は、外側(中心軸CA1から離れる側)に凸の円弧状曲線である。また、照明装置100に求められる配光特性に応じて、第2傾斜面162cを構成する母線を直線としてもよい。すなわち、第2傾斜面162cは、テーパー形状であってもよい。
 なお、「母線」とは、一般的に線織面を描く直線を意味するが、本発明では回転対称面である第2傾斜面162cを描くための曲線を含む語として用いる。第2傾斜面162cの傾斜角は、個々の第2傾斜面162cで異なっていてもよい。第2傾斜面162cが曲面である場合における第2傾斜面162cの傾斜角は、第2傾斜面162cの接線の、中心軸CA1に対する角度である。
 フレネルレンズ部162は、傾斜フレネルレンズ部162dを含んでいる。傾斜フレネルレンズ部162dは、複数の円環状の突起162aによって形成されている。傾斜フレネルレンズ部162dは、隣り合う円環状の突起162aの間に形成される谷の底と発光素子130との中心軸CA1方向における距離が、最も外側の谷で最も小さく、かつ中心軸CA1に近づくにつれて漸増するように形成されている。たとえば、傾斜フルネルレンズ部162dでは、中心軸CA1方向において、最も外側の谷からホルダー150の下端縁に形成された下側段部151までの距離V1は最も小さく、最も中心軸CA1に近い谷から下側段部151までの距離V2は最も大きい(図5参照)。
 傾斜フレネルレンズ部162dの外側に円環状の突起162aがさらに形成されていてもよい。このさらなる円環状の突起162aによって形成される谷の底から下側段部151までの距離は特に限定されない。
 なお、下側段部151は、ホルダー150の下端面の内縁が切り欠かれて形成された段差である。たとえば下側段部151は、光束制御部材140が筐体110に装着されたときに、基板120が固定されている筐体110の一端面の縁に当接し、基板120の表面(実装面)と平行になる(図3参照)。
 下側段部151は、実装面に対してこのような位置関係にあるので実装面と第1光束制御部材141との位置決め部として機能し、中心軸CA1方向における上記谷の底から実装面までの距離を比較する場合に、実装面の位置の代わりに下側段部151の位置を採用することができる。
 出射面163は、第1光束制御部材141における表面側に形成される。すなわち、出射面163は、第2光束制御部材142と対向するように形成されている。出射面163は、屈折部161の表側に形成される円形出射面163aと、傾斜フレネルレンズ部162dの表側に形成される傾斜出射面163bと、傾斜出射面163bの外側に形成される環状出射面163cとを含む。
 円形出射面163aは、平面視形状が円形であり、中心軸CA1方向における下側段部151までの距離が一定な面に形成されている。傾斜出射面163bは、平面視形状が円形出射面163aを囲む環状であり、中心軸CA1方向における下側段部151までの距離が、中心軸CA1から離れるにつれて漸減する斜面に形成されている。環状出射面163cは、平面視形状が傾斜出射面163bを囲む環状であり、中心軸CA1方向における下側段部151までの距離が一定な面に形成されている。
 第1光束制御部材141は、例えば射出成形により形成される。第1光束制御部材141の材料は、所望の波長の光を通過させ得る透過性の高いものであれば特に限定されない。たとえば、第1光束制御部材141の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。
 屈折部161および第1傾斜面162bは、発光素子130から出射された光の一部を第1光束制御部材141の内部に入射させる。屈折部161は、発光素子130から出射された光の一部を入射して出射面163に向けて屈折させる。このように屈折部161は、第1光束制御部材141に入射する光の入射面として機能する。
 第1傾斜面162bは、発光素子130から出射された光を入射する。このように第1傾斜面162bは、第1光束制御部材141に入射する光の入射面として機能する。第2傾斜面162cは、第1傾斜面162bに入射した光の一部を第2光束制御部材142に向けて全反射する。このように第2傾斜面162cは、第1傾斜面162bから入射した光の一部を全反射する全反射面として機能する。すなわち、フレネルレンズ部162は反射型のフレネルレンズとして機能する。
 出射面163は、屈折部161および第1傾斜面162bから入射した光の一部および第2傾斜面162cで全反射された光を第2光束制御部材142に向けて出射する。
 (3-2)第2光束制御部材
 図7A~Dは、第2光束制御部材142の構成を示す図である。図7Aは、第2光束制御部材142の平面図であり、図7Bは、第2光束制御部材142の、図7Aに示されるB-B線に沿っての断面図であり、図7Cは、第2光束制御部材142の底面図であり、図7Dは、第2光束制御部材142の側面図である。
 図7Aに示されるように、第2光束制御部材142は、平面視形状が略円形に形成された部材である。第2光束制御部材142は、ホルダー150により支持されており、その中心軸CA2が発光素子130の光軸LAと一致するように、第1光束制御部材141に対して空気層を介して配置される(図5参照)。第2光束制御部材142は、第1光束制御部材141と対向し、かつ第1光束制御部材141から出射された光の一部を反射させる反射面145を有する。
 反射面145は、第2光束制御部材142の中心軸CA2を中心とする回転対称(円対称)面である。このように、反射面145の回転軸は、中心軸CA2と合致している。また、図5に示されるように、この回転対称面の中心から外周部にかけての母線は、発光素子130および第1光束制御部材141に対して凹の曲線であり、反射面145は、この母線を360°回転させた状態の曲面である。すなわち、反射面145は、中心から外周部に向かうにつれて発光素子130からの高さが高くなる非球面形状の曲面を有する。
 また、反射面145の外周部は、反射面145の中心と比較して、発光素子130の光軸LA方向における発光素子130からの距離(高さ)が離れた位置に形成されている。たとえば、反射面145は、中心から外周部に向かうにつれて発光素子130からの高さが高くなる非球面形状の曲面であるか、または、中心部から所定の地点までは中心部から外周部に向かうにつれて発光素子130(基板120)からの高さが高くなり、前記所定の地点から外周部までは中心部から外周部に向かうにつれて発光素子130からの高さが低くなる非球面形状の曲面である。
 前者の場合、基板120の面方向に対する反射面145の傾斜角度は、中心から外周部に向かうにつれて小さくなる。一方、後者の場合、反射面145には、中心と外周部との間であって、かつ外周部に近い位置に、基板120の面方向に対する傾斜角度が零(基板120と平行)となる点が存在する。
 なお、前述の通り、「母線」とは、一般的に線織面を描く直線を意味するが、本発明では回転対称面である反射面145を描くための曲線を含む語として用いる。
 第2光束制御部材142は、第1光束制御部材141から出射され第2光束制御部材142に到達した光のうち、一部の光の進行方向を制御して反射させ、残部を透過させる。反射面145は、第1光束制御部材141からの出射光の一部をホルダー150に向けて反射させる。反射した光は、ホルダー150を透過してカバー160の中部(側部)および下部に到達する。
 第2光束制御部材142に前述した部分反射、部分透過の機能を付与する手段は、特に限定されない。たとえば、光透過性の材料からなる第2光束制御部材142の表面(発光素子130および第1光束制御部材141に対向する面)に透過反射膜を形成すればよい。光透過性の材料の例には、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの透明樹脂材料や、ガラスなどが含まれる。透過反射膜の例には、TiOおよびSiOの多層膜、ZnOおよびSiOの多層膜、TaおよびSiOの多層膜などの誘電体多層膜や、アルミニウム(Al)などからなる金属薄膜などが含まれる。
 また、光透過性の材料からなる第2光束制御部材142の内部にビーズなどの光散乱子を分散させてもよい。すなわち、第2光束制御部材142は、一部の光を反射させ、一部の光を透過させる材料により形成されていてもよい。
 また、光反射性の材料からなる第2光束制御部材142に光透過部を形成してもよい。光反射性の材料の例には、白色樹脂や金属などが含まれる。光透過部の例には、貫通孔や有底の凹部などが含まれる。後者の場合、発光素子130および第1光束制御部材141からの出射光は、凹部の底部(厚みが薄くなっている部分)を透過する。たとえば、可視光の透過率が20%程度であり、反射率が78%程度である白色のポリメタクリル酸メチルを用いて、光反射性および光透過性の機能を併せ持つ第2光束制御部材142を形成することができる。
 第2光束制御部材142の第1光束制御部材141と対向する面(反射面145)は、入射光の正反射方向の反射強度が他の方向の反射強度よりも大きくなるように形成されていることが好ましい。したがって、第2光束制御部材142の第1光束制御部材141と対向する面は、光沢面となるように形成されている。
 (3-3)ホルダー
 ホルダー150は、基板120に位置決めされるとともに、発光素子130に対して第1光束制御部材141および第2光束制御部材142を位置決めする。
 ホルダー150は、略円筒形状に形成された光透過性を有する部材である。本明細書において「略円筒形状」には、円筒形状と同等の配光特性となるような断面多角形の筒形状も含まれる。ホルダー150の一方の端部には、第2光束制御部材142が固定される。ホルダー150の他方の端部は、基板120に固定される。以下の説明では、ホルダー150の2つの端部のうち、第2光束制御部材142が固定される端部を「上端部」と呼び、基板120に固定される端部を「下端部」と呼ぶ。
 ホルダー150は、第1光束制御部材141と共に一体成形により形成されている。ホルダー150の材料は、所望の波長の光を通過させ得るものであれば特に限定されない。たとえば、ホルダー150の材料は、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)などの光透過性樹脂、またはガラスである。ホルダー150に光拡散能を付与する場合には、これらの光透過性の材料に散乱子を含ませてもよいし、ホルダー150の表面に光拡散処理を施してもよい。
 図5および図6Bに示されるように、ホルダー150の下端部には、光束制御部材140の装着時に筐体110の一端面の周縁部に当接し、ホルダー150を基板120に対して位置決めする下側段部151が形成されている。
 なお、ホルダー150を基板120に対して位置決めする手段は、下側段部151に限定されない。たとえば、ホルダー150の下端部には、下側段部151の代わりに、ホルダー150を基板120や筐体110などに位置決めするための、ボス(凸部)および係止爪が設けられていてもよい。ボスは、基板120に当接して、第2光束制御部材142の高さを調整する。係止爪は、筐体110または基板120の一端面に形成された係止用の孔に係止して、ホルダー150が外れることおよび回転することを防止する。
 さらに、ホルダー150は、このほかにも、ホルダー150に対して第2光束制御部材142を位置決めする手段をさらに有していてもよい。このような位置決め手段は、特に限定されない。たとえば、ホルダー150の上端部には、ホルダー150の上端面の内縁が切り欠かれて形成された上側段部、または第2光束制御部材142を固定するためのガイド突起および爪部、が設けられていてもよい。
 ガイド突起は、上端部の端面の外周部の一部に形成されており、第2光束制御部材142がホルダー150の径方向に移動することを防止する。爪部は、上端部の端面に形成されており、第2光束制御部材142の外周部に形成された凹部に嵌合して、第2光束制御部材142が外れることおよび回転することを防止する。
 光束制御部材140の製造方法は、特に限定されない。たとえば、光束制御部材140は、第1光束制御部材141とホルダー150との一体成形物に第2光束制御部材142を組み付けることによって製造されうる。第2光束制御部材142を組み付ける際には、接着剤などを使用してもよい。
 第1光束制御部材141とホルダー150の一体成形物は、例えば無色透明の樹脂材料を用いて射出成形により作製されうる。第2光束制御部材142は、例えば、無色透明の樹脂材料を用いて射出成形した後に、反射面145となる面に透過反射膜を蒸着することによって、または、第2光束制御部材142は、白色の樹脂材料を用いて射出成形することによって、作製されうる。
 なお、第1光束制御部材141とホルダー150とを別々に成形してもよい。この場合は、第1光束制御部材141をホルダー150に組み付け、また第2光束制御部材142をホルダー150に組み付けることで、光束制御部材140を製造することができる。第1光束制御部材141とホルダー150とを別々に成形することにより、ホルダー150および第1光束制御部材141を形成する材料の選択の自由度が向上する。たとえば、散乱子を含む光透過性の材料でホルダー150を形成し、散乱子を含まない光透過性の材料で第1光束制御部材141を形成することが容易となる。
 (4)カバー
 カバー160は、発光装置からの出射光(光束制御部材140からの出射光)を拡散させつつ透過させる。カバー160は、開口部を有する中空領域が形成された部材である。基板120、発光素子130および光束制御部材140は、カバー160の中空領域内に配置される。カバー160に光拡散能を付与する手段は、特に限定されない。たとえば、カバー160の内面または外面に光拡散処理(例えば、粗面化処理)を行ってもよいし、光拡散性の材料(例えば、ビーズなどの散乱子を含む光透過性の材料)を用いてカバー160を作製してもよい。
 たとえば、カバー160の表面または裏面は、滑らかであってもよいし、粗面化された面であってもよい。カバー160の表面または裏面を粗面化することによって、照明装置100の照度ムラを小さくすることが可能となる。
 カバー160の形状は、例えば球冠形状(球面の一部を平面で切り取った形状)でありうるが、特に限定されない。
 [発光装置の配光特性]
 次に、光束制御部材140における、発光素子130から出射された光の光路について説明する。まず、当該光路の概略を説明する。
 発光素子130からの出射光のうち、屈折部161に到達する光は、屈折部161から第1光束制御部材141に入射し、出射面163から出射して第2光束制御部材142に到達する。
 発光装置130からの出射光のうち、フレネルレンズ部162に到達する光は、第1傾斜面162bから第1光束制御部材141に入射し、第2傾斜面162cで第2光束制御部材142に向けて反射する。そして、出射面163から出射して第2光束制御部材142に到達する。
 第2光束制御部材142に到達した光の一部は、第2光束制御部材142を透過してカバー160の上部に到達する。また、第2光束制御部材142に到達した光の残部は、第2光束制御部材142の反射面145で反射して、ホルダー150を介してカバー160の中部(側部)および下部に到達する。このとき、第2光束制御部材142の中心部において反射した光は、カバー160の中部に向かう。一方、第2光束制御部材142の外周部において反射した光は、カバー160の下部に向かう。
 一方、発光装置130から出射してホルダー150に到達した光は、ホルダー150を透過してホルダー150の外周面から出射し、カバー160の中部に到達する。こうして、発光素子130からの出射光は、光束制御部材140によって前方、側方および後方に配光される。
 基板120上に複数の発光素子130が配置されている場合では、これらの発光素子130のうちの最も外側に配置された発光素子130の光は、他の発光素子130からの出射光に比べて、第1光束制御部材に入射しにくい。そこで、最も外側に配置された発光素子130からの出射光の光路を説明する。
 まず、フレネルレンズ部の作用を説明するために、略平板状の第1光束制御部材を用いたときの光の光路を説明する。図8Aは、略平板状の第1光束制御部材を有する光束制御部材640を用いたときの、最も外側に配置された発光素子130からの出射光の光路を示す図であり、図8Bは、図8A中の円Bで囲まれた部分を拡大して示す図である。図9Aは、光束制御部材640を有する発光装置の部分断面図であり、図9Bは、図9Aに示される発光装置の全方位の光度を相対強度で示すグラフである。発光装置の全方位の光度は、シミュレーションによって求められている。「光度」は、発熱素子130から距離1000mmの照度にほぼ等しい。
 光束制御部材640は、略平板状の第1光束制御部材641を有する以外は、光束制御部材140と同じ構成を有する。第1光束制御部材と第2光束制御部材との光軸LAにおける距離をDcとすると、光束制御部材640のDcは光束制御部材140のDcと同じである(図8Aおよび図10A)。第1光束制御部材641において、第1光束制御部材641における谷の底は一平面上にほぼ位置しており、出射面663は平面に形成されている。よって、谷の底と出射面663との光軸LA方向における距離はほぼ一定である。
 図8Bに示されるように、最も外側の発光素子130の光軸を特にLA’とすると、発光素子130の出射光のうち、光束制御部材640では、光軸LA’に対して0~θ°の角度を有する光が、第1傾斜面162bから第1光束制御部材641に直接入射する。発光素子130の光軸LA’に対してθ°よりも大きな角度を有する光は、ホルダー150を透過して光束制御部材140の外部に出射する。
 光束制御部材640は、図9Bに示されるように、発光素子130からの出射光を、光束制御部材640によって、主に斜め前方(±60°)および斜め後方(±120~±150°)に配光する。しかしながら、側方(±90°)に配光する光の割合は少ない。
 次に、第1光束制御部材141を用いたときの光の光路を説明する。図10Aは、光束制御部材140を用いたときの、最も外側に配置された発光素子130からの出射光の光路を示す図であり、図10Bは、図10A中の円Bで囲まれた部分を拡大して示す図である。図11Aは、光束制御部材140を有する発光装置の部分断面図であり、図11Bは、図11Aに示される発光装置の全方位の光度を相対強度で示すグラフである。
 図10Bに示されるように、発光素子130の出射光のうち、光軸LA’に対して、0~θ°の角度を有する光が、第1傾斜面162bから第1光束制御部材141に直接入射する。第1光束制御部材141は傾斜フレネルレンズ部162dを含むことから、図10Aに示されるように、最も外側に位置する円環状の突起162の頂点から基板120までの距離は、図8A、図8Bおよび図9Aに示される発光装置のそれに比べて小さい。よって、θはθに比べて大きい。すなわち、図10A、図10Bおよび図11Aに示される発光装置では、実質的には、光軸LA’に対して0~θ°の角度よりも大きな0~θ°の角度の光の配光が、第1光束制御部材141および第2光束制御部材142の両方によって制御される。
 光束制御部材140は、図11Bに示されるように、発光素子130からの出射光を、主に斜め前方(±15°および±60°)および斜め後方(±120~±150°)に配光する。また、光束制御部材640に比べて、前方(0°)および側方(±90°)に配光する光の割合が多い。このように、光束制御部材140は、発光素子130からの出射光を、前方、側方および後方にバランスよく配光している。
 [効果]
 第1光束制御部材141は、中央部に形成されている屈折部161からフレネルレンズ部162の周縁部に向けて発光素子130側(下方)に傾斜する形状に形成されている。このため、第1光束制御部材141に入射せず、光束制御部材140から漏れる光の光量を低減することができる。よって、光束制御部材140は、発光素子130からの出射光を、前方、側方および後方の各方向へバランスよく配光させることができる。したがって、発光素子130と光束制御部材140とによって構成される発光装置は、バランスのよい配光特性を実現することができる。
 さらに、光束制御部材140からの出射光をカバー160に通すことによって、カバー160から前方、側方および後方の各方向への出射光の光量がより均等になる。このため、照明装置100は、白熱電球に近い配光特性を実現することができる。照明装置100は、白熱電球に代えて室内照明などに使用されうる。
 また、照明装置100は、白熱電球よりも消費電力を少なくすることができるとともに、白熱電球よりも長期間使用することができる。
 また、第1光束制御部材141はフレネルレンズ構造を有するので、第1光束制御部材141の厚みが小さくなる。よって、光束制御部材140をより小さくすることができる。
 [変形例]
 光束制御部材140では、出射面163は、傾斜フレネルレンズ部162dに対応して傾斜出射面163bを有している。本発明では、図12に示されるように、出射面は平面であってもよい。図12Aは、光束制御部材240を有する発光装置の部分断面図であり、図12Bは、上記発光装置の全方位の光度を相対強度で示すグラフである。光束制御部材240は、出射面263が平らに形成されている以外は、光束制御部材140と同じ構成を有する。
 光束制御部材240は、図12Bに示されるように、発光素子130からの出射光を、主に斜め前方(±15~±30°)および斜め後方(±120~±150°)に配光する。また、光束制御部材640に比べて、斜め前方(±60°)に配光する光の割合が少なく、前方(0°)に配光する光の割合が多い。このように、光束制御部材240は、発光素子130からの出射光を、前方および後方にバランスよく配光している。
 また、光束制御部材140では、ホルダー150の表面は滑らかである。本発明では、図13Aおよび図13Bに示されるように、ホルダー150の表面に、ホルダー150を透過する光の配光を制御する凹凸を有していてもよい。図13Aは、光束制御部材340を有する発光装置の部分断面図であり、図13Bは、上記発光装置の全方位の光度を相対強度で示すグラフである。図14Aは、ホルダー150の凹凸の図13A中の円Aで囲まれた部分を拡大して示す図であり、図14Bは、ホルダー150における他の形状の凹凸の図13A中の円Aで囲まれた部分を拡大して示す図である。光束制御部材340は、ホルダー150の外周面における第1光束制御部材141と第2光束制御部材142との間の部分に複数の凹部351が形成されている以外は、光束制御部材140と同じ構成を有する。
 複数の凹部351は、互いに同じ形状であり、かつ一定間隔で配置されている。凹部351の形状は、ホルダー150の中心軸(例えば中心軸CA1またはCA2)を回転軸とする回転対称である。ホルダー150の中心軸を通る断面における凹部351の断面形状は、直角三角形である。凹部351は、図14Aに示されるように、下に向かうにつれてホルダー150の外径が漸減する傾斜面351aと、傾斜面351aの第1光束制御部材141側の端から外側に広がる、ホルダー150の中心軸に直交する環状の平面351bとを有する。傾斜面351aは、第2光束制御部材142で反射して第2光束制御部材142側(上側)からホルダー150に到達した光の進行方向を、発光素子130の光軸LAに直交する方向(側方)に近づくように変える。
 光束制御部材340は、図13Bに示されるように、発光素子130からの出射光を、斜め前方(±15°)、側方(±90°)および斜め後方(±120~±150°)に配光する。また、光束制御部材640に比べて、斜め前方(±60°)に配光する光の割合が少なく、前方(0°)、斜め前方(±15°)、側方(±90°)および斜め後方(±120~±150°)に配光する光の割合が多い。このように、光束制御部材340は、発光素子130からの出射光を、前方、側方および後方にバランスよく配光している。
 なお、凹部は、図14Bに示される凹部352であってもよい。凹部352は、上に向かうにつれて第2光束制御部材142の外径が漸減する傾斜面351cと、傾斜面351cの第1光束制御部材141側の端から外側に広がる、ホルダー150の中心軸に直交する平面351dと、を有する。この場合、凹部352は、第1光束制御部材141側(下側)からホルダー150に到達した光の進行方向を、発光素子130の光軸LAに直交する方向(側方)に近づくように変える。
 さらに、凹部の形状は、傾斜面351aや351cなどの、上方または下方からの光の進行方向を側方に近づくように変える面を有すれば、特に限定されない。このような面には母線が曲線の面も含まれる。
 さらに、本発明では、発光素子130は1つであってもよい。図15Aは、光束制御部材640と1つの発光素子130とを有する発光装置の部分断面図であり、図15Bは、図15Aに示される発光装置の全方位の光度を相対強度で示すグラフである。図16Aは、光束制御部材140と1つの発光素子130とを有する発光装置の部分断面図であり、図16Bは、図16Aに示される発光装置の全方位の光度を相対強度で示すグラフである。図17Aは、光束制御部材340と1つの発光素子130とを有する発光装置の部分断面図であり、図17Bは、図17Aに示される発光装置の全方位の光度を相対強度で示すグラフである。
 図15Bに示されるように、光束制御部材640は、発光素子130が1つである場合でも、発光素子130からの出射光を、斜め前方(±60°)および斜め後方(±120~±150°)に配光する。
 光束制御部材140は、図16Bに示されるように、発光素子130が1つである場合でも、発光素子130からの出射光を、斜め前方(±60°)および斜め後方(±120~±150°)に配光する。また、光束制御部材640に比べて、前方(0°)、側方(±90°)および斜め後方(±120~±150°)に配光する光の割合が多い。このように、光束制御部材140は、発光素子130からの出射光を、前方、側方および後方にバランスよく配光している。
 また、光束制御部材340は、図17Bに示されるように、発光素子130が1つである場合でも、発光素子130からの出射光を、斜め前方(±30°および±60°)、側方(±90°)および斜め後方(±120~±150°)に配光する。また、光束制御部材640に比べて、斜め前方(±60°)に配光する光の割合が少なく、前方(0°)、斜め前方(0~±30°)、側方(±90°)および斜め後方(±120~±150°)に配光する光の割合が多い。このように、光束制御部材340は、発光素子130からの出射光を、前方、側方および後方にバランスよく配光している。
 なお、傾斜フレネルレンズ部162dの最も外側の円環状の突起162aの先端は、基板120により近づいていてもよい。たとえば当該先端は、図10Bにおけるθが90°になる位置まで、基板120に近づけることが可能である。この場合、第1光束制御部材141に入射する光の光量をより一層増やすことが可能であり、第1光束制御部材141および第2光束制御部材142による光の配光制御がより強まることが期待される。
 本発明に係る発光装置の照度を測定した。光軸LAと基板120の表面との交点を発光中心とし、この発光中心から1000mmの距離の照度を測定した。光束制御部材には、光束制御部材140および340を用いた。また、参考例として、光束制御部材640を有する発光装置を用いて、同様に照度を測定した。測定結果を図18Aおよび図18Bに示す。
 図18Aは、透過率が21%の白色の第2光束制御部材142を装着した発光装置の全方位の照度を相対強度で示すグラフである。図18Bは、透過率が13%の白色の第2光束制御部材142を装着した発光装置の全方位の照度を相対強度で示すグラフである。図18Aおよび図18B中、「太い破線」は光束制御部材140を装着した発光装置の照度を、「太い実線」は光束制御部材340を装着した発光装置の照度を、「細い実線」は光束制御部材640を装着した発光装置の照度を、それぞれ示す。
 図18Aおよび図18Bから明らかなように、発光装置の照度の配光特性を実測したところ、前述したシミュレーションによる光度と同じ傾向の配光特性を示す結果が得られた。また、第2光束制御部材の反射率が高い(透過率が低い)と、側方(±90°)および斜め後方(±120~±150°)の光の光量を増やすのに有効であることがわかる。
 2012年10月5日出願の特願2012-223224の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る照明装置は、白熱電球に代えて使用されうるため、シャンデリアや間接照明装置などの各種照明機器に幅広く適用されうる。
 10,100 照明装置
 12 LED
 14 ケース
 16 アルミ板
 18 透過窓
 20 カバー
 110 筐体
 110a 傾斜面
 110b 口金
 120 基板
 130 発光素子
 140,240,340,640 光束制御部材
 141,641 第1光束制御部材
 142 第2光束制御部材
 145 反射面
 148 フランジ部
 150 ホルダー
 151 下側段部
 160 カバー
 161 屈折部
 162 フレネルレンズ部
 162a 円環状の突起
 162b 第1傾斜面
 162c 第2傾斜面
 162d 傾斜フレネルレンズ部
 163,263,663 出射面
 163a 円形出射面
 163b 傾斜出射面
 163c 環状出射面
 351,352 凹部
 351a,351c 傾斜面
 351b,351d 平面
 CA1,CA2 中心軸
 LA 光軸
 

Claims (4)

  1.  発光素子から出射された光の配光を制御するための光束制御部材であって、
     前記光束制御部材は、前記発光素子に対向して配置される第1光束制御部材と、前記第1光束制御部材に対向して配置される第2光束制御部材と、を有し、
     前記第1光束制御部材は、前記発光素子の光軸が回転軸となる回転対称性を有する円環状の突起を複数有し、前記発光素子に対向するフレネルレンズ部と、前記第2光束制御部材に対向し、前記フレネルレンズ部で制御された光を前記第2光束制御部材に向けて出射する出射面と、を有し、
     前記円環状の突起は、前記発光素子から出射された光の一部を入射する内側の第1傾斜面と、前記第1傾斜面に入射した光の一部を前記第2光束制御部材に向けて反射する外側の第2傾斜面と、を有し、
     前記第2光束制御部材は、前記第1光束制御部材の出射面と対向し、前記第1光束制御部材から出射され前記第2光束制御部材に到達した光の一部を反射させ、残部を透過させる反射面を有し、
     前記反射面は、前記光軸を回転軸とする回転対称面であり、前記回転対称面の母線が前記第1光束制御部材に対して凹の曲線となるように形成され、
     前記反射面の外周部は、前記反射面の中心部と比較して、前記光軸の方向における前記発光素子からの距離が離れた位置に形成され、
     前記フレネルレンズ部は、隣り合う前記円環状の突起の間に形成される谷の底と前記発光素子が実装される実装面との前記光軸の方向における距離が、外側から前記光軸に近づくにつれて漸増する傾斜フレネルレンズ部を含む、
     光束制御部材。
  2.  前記出射面は、前記出射面と前記実装面との前記光軸の方向における距離が前記光軸に近づくにつれて漸増する傾斜出射面を含む、請求項1に記載の光束制御部材。
  3.  少なくとも1つの発光素子と、
     請求項1または2に記載の光束制御部材と、を有する、
     発光装置。
  4.  請求項3に記載の発光装置と、
     前記発光装置からの出射光を拡散させつつ透過させるカバーと、
     を有する、照明装置。
     
PCT/JP2013/005361 2012-10-05 2013-09-11 光束制御部材、発光装置および照明装置 WO2014054226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380051887.0A CN104718409B (zh) 2012-10-05 2013-09-11 发光装置和照明装置
US14/433,390 US9568168B2 (en) 2012-10-05 2013-09-11 Light flux controlling member, light emitting device and illumination apparatus
EP13844039.1A EP2905529A4 (en) 2012-10-05 2013-09-11 ELEMENT FOR LIGHT CURRENT CONTROL, LIGHT EMITTING DEVICE AND LIGHTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223224A JP5964714B2 (ja) 2012-10-05 2012-10-05 光束制御部材、発光装置および照明装置
JP2012-223224 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054226A1 true WO2014054226A1 (ja) 2014-04-10

Family

ID=50434572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005361 WO2014054226A1 (ja) 2012-10-05 2013-09-11 光束制御部材、発光装置および照明装置

Country Status (5)

Country Link
US (1) US9568168B2 (ja)
EP (1) EP2905529A4 (ja)
JP (1) JP5964714B2 (ja)
CN (1) CN104718409B (ja)
WO (1) WO2014054226A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090771A (zh) * 2014-05-20 2015-11-25 立达信绿色照明股份有限公司 大角度球泡灯
WO2016009798A1 (ja) * 2014-07-14 2016-01-21 株式会社エンプラス 光束制御部材、発光装置および照明装置
DE202014010058U1 (de) * 2014-12-19 2016-03-29 Bartenbach Holding Gmbh Leuchte und Leuchtmittel hierfür

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719662B1 (en) * 2014-10-08 2017-08-01 Universal Lighting Technologies, Inc. Thin-form lens for volume lighting applications
JP6551822B2 (ja) * 2014-11-10 2019-07-31 パナソニックIpマネジメント株式会社 照明器具
JP6618074B2 (ja) * 2015-10-13 2019-12-11 株式会社エンプラス 発光装置
WO2018065364A1 (en) * 2016-10-04 2018-04-12 Philips Lighting Holding B.V. Luminaire with spatially separated solid state lighting elements
US10443814B2 (en) * 2017-09-26 2019-10-15 Dialight Corporation Diffuser with uplight
IT201900005434A1 (it) 2019-04-09 2020-10-09 Artemide Spa Dispositivo di illuminazione

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258319A (ja) 2002-02-28 2003-09-12 Toyoda Gosei Co Ltd 発光ダイオード及び灯具
JP2011175978A (ja) * 2009-11-06 2011-09-08 Panasonic Corp スポット用光源
JP2012048950A (ja) * 2010-08-26 2012-03-08 Toshiba Lighting & Technology Corp 口金付ランプおよび照明器具
JP2012185949A (ja) * 2011-03-04 2012-09-27 Hitachi Appliances Inc レンズおよび照明装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652979A (en) * 1984-11-21 1987-03-24 Koito Seisakusho Co., Ltd. Lamp assembly for emitting a beam of light at an angle to its optical axis
GB2267332B (en) * 1992-05-28 1995-09-06 Glasdon Ltd A lamp lens
JP3833650B2 (ja) * 2003-12-04 2006-10-18 関東化学株式会社 低分子型有機el素子製造の真空蒸着工程において使用するマスクの洗浄液組成物および洗浄方法
JP4799341B2 (ja) 2005-10-14 2011-10-26 株式会社東芝 照明装置
US7588351B2 (en) * 2007-09-27 2009-09-15 Osram Sylvania Inc. LED lamp with heat sink optic
WO2011010535A1 (ja) * 2009-07-22 2011-01-27 帝人株式会社 Led照明具
CN102003654B (zh) * 2009-09-03 2012-05-23 海洋王照明科技股份有限公司 一种机场滑行道边线灯
WO2011080767A1 (en) 2009-12-28 2011-07-07 Ar-Ky S.R.L. "lighting device"
CN201739900U (zh) * 2010-03-18 2011-02-09 厦门市三安光电科技有限公司 一种led射灯
WO2012005008A1 (ja) * 2010-07-08 2012-01-12 株式会社エンプラス 光束制御部材および照明装置
US9188313B2 (en) 2010-07-08 2015-11-17 Enplas Corporation Luminous flux control member and illumination device
JP2012098691A (ja) * 2010-10-05 2012-05-24 Enplas Corp 光束制御部材およびこれを備えた光学装置
CN202469675U (zh) * 2012-07-03 2012-10-03 成都派斯光学有限公司 一种led灯具光学模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258319A (ja) 2002-02-28 2003-09-12 Toyoda Gosei Co Ltd 発光ダイオード及び灯具
JP2011175978A (ja) * 2009-11-06 2011-09-08 Panasonic Corp スポット用光源
JP2012048950A (ja) * 2010-08-26 2012-03-08 Toshiba Lighting & Technology Corp 口金付ランプおよび照明器具
JP2012185949A (ja) * 2011-03-04 2012-09-27 Hitachi Appliances Inc レンズおよび照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905529A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090771A (zh) * 2014-05-20 2015-11-25 立达信绿色照明股份有限公司 大角度球泡灯
WO2016009798A1 (ja) * 2014-07-14 2016-01-21 株式会社エンプラス 光束制御部材、発光装置および照明装置
US10125951B2 (en) 2014-07-14 2018-11-13 Enplas Corporation Light flux control member, light-emitting device and lighting device
DE202014010058U1 (de) * 2014-12-19 2016-03-29 Bartenbach Holding Gmbh Leuchte und Leuchtmittel hierfür

Also Published As

Publication number Publication date
CN104718409A (zh) 2015-06-17
JP2014075306A (ja) 2014-04-24
EP2905529A1 (en) 2015-08-12
US9568168B2 (en) 2017-02-14
US20150247621A1 (en) 2015-09-03
CN104718409B (zh) 2016-10-19
JP5964714B2 (ja) 2016-08-03
EP2905529A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5964714B2 (ja) 光束制御部材、発光装置および照明装置
JP5957340B2 (ja) 光束制御部材および照明装置
JP5335945B2 (ja) 光束制御部材および照明装置
EP2276076B1 (en) Light emitting unit with lens
US9360191B2 (en) Lighting device
JP5944801B2 (ja) 照明装置
JP5888999B2 (ja) 照明装置
JP5839674B2 (ja) 照明装置
JP5977636B2 (ja) 光束制御部材、発光装置および照明装置
JP5119379B2 (ja) 面照明光源装置及び面照明装置
WO2016009798A1 (ja) 光束制御部材、発光装置および照明装置
JP2017016776A (ja) 光束制御部材、発光装置および照明装置
JP7383465B2 (ja) 光束制御部材、発光装置、面光源装置および表示装置
JP5492637B2 (ja) 面発光装置
WO2013035324A1 (ja) 光束制御部材および照明装置
WO2018000990A1 (zh) 一种吸顶灯
WO2016181789A1 (ja) 光束制御部材、発光装置および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013844039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14433390

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE