WO2014054064A1 - 内燃機関の排気加熱装置および排気加熱方法 - Google Patents

内燃機関の排気加熱装置および排気加熱方法 Download PDF

Info

Publication number
WO2014054064A1
WO2014054064A1 PCT/JP2012/006272 JP2012006272W WO2014054064A1 WO 2014054064 A1 WO2014054064 A1 WO 2014054064A1 JP 2012006272 W JP2012006272 W JP 2012006272W WO 2014054064 A1 WO2014054064 A1 WO 2014054064A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
exhaust
fuel
amount
addition
Prior art date
Application number
PCT/JP2012/006272
Other languages
English (en)
French (fr)
Inventor
健一 辻本
彰紀 森島
義貴 沼田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2012/006272 priority Critical patent/WO2014054064A1/ja
Publication of WO2014054064A1 publication Critical patent/WO2014054064A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/38Arrangements for igniting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust heating apparatus for heating exhaust discharged from an internal combustion engine that is arranged upstream of an exhaust passage from a catalyst purification apparatus.
  • a compression ignition type internal combustion engine has the advantage of being able to reduce the amount of CO 2 emission compared with a spark ignition type internal combustion engine, but on the other hand, NO X and particulate matter (hereinafter referred to as PM). Because they are contained in the exhaust, they need to be purified. For this reason, an exhaust emission control device incorporated in a spark ignition type internal combustion engine includes a diesel oxidation catalytic converter (hereinafter referred to as DOC) and a diesel particulate filter (hereinafter referred to as DPF). Selective catalytic reduction (hereinafter referred to as SCR) catalytic converter.
  • DOC diesel oxidation catalytic converter
  • DPF diesel particulate filter
  • SCR Selective catalytic reduction
  • NSR NO X storage reduction
  • Patent Document 1 discloses a compression ignition type internal combustion engine including a DOC on the upstream side of the SCR catalytic converter and a catalyst with a heater (hereinafter referred to as EHC) disposed on the upstream end face of the DOC. .
  • EHC a heater with a heater
  • the temperature of EHC is controlled based on the operating state of the engine body, more specifically, the fuel injection amount and the engine speed, and the ratio of NO to NO 2 in the exhaust is 1: 1.
  • the DOC floor temperature is adjusted so that thereby, when NO X purification is performed by the SCR catalytic converter, a chemical reaction most suitable for NO X purification called a fast SCR reaction, that is, 2NH 3 + NO + NO 2 ⁇ 2N 2 + 3H 2 O (1) Is promoted, and NO X in the exhaust gas can be purified.
  • the DOC floor temperature is less than 250 ° C.
  • NO in the exhaust flowing into the DOC is not oxidized at all in the DOC, and NO 2 is reduced by the HC component contained in the exhaust, and passes through the DOC.
  • the ratio of NO 2 to NO contained in the exhaust gas becomes extremely small. That is, unless holding the bed temperature of the DOC to a suitable temperature range, it becomes difficult to maintain the NO X purification rate of the SCR catalytic converter which is disposed on the downstream side satisfactorily.
  • the amount of NO X in the exhaust gas greatly varies depending on the operating state of the internal combustion engine, it is predicted that it is considerably difficult to generate a stable amount of NO 2 in the DOC.
  • CO and HC contained in the exhaust can be stably oxidized and decomposed if the bed temperature of the DOC is 200 ° C. or higher, but the higher the DOC bed temperature, for example, 400 ° C. If it is above, it becomes possible to promote a more stable oxidative decomposition reaction.
  • An object of the present invention is to provide an exhaust heating apparatus and an exhaust heating method capable of stably generating NO 2 without being greatly affected by the operating state of an internal combustion engine even with a small capacity DOC. There is.
  • a first aspect of the present invention is a fuel addition for adding fuel to the exhaust passage between an internal combustion engine and an exhaust purification device having at least two types of exhaust purification elements arranged in series along the exhaust passage.
  • An exhaust heating device comprising: a valve; and an ignition means for igniting fuel added to the exhaust passage, wherein the exhaust purification element disposed upstream of the exhaust passage is a DOC.
  • the control means intermittently raises the temperature of the upstream end of the DOC to a temperature equal to or higher than the first temperature, and the temperature of the downstream end of the DOC is higher than the first temperature.
  • at least one of the addition amount and the addition timing of the fuel from the fuel addition valve is controlled so as to be maintained at a second temperature lower than the first temperature or higher than the second temperature. is there.
  • the operation of the fuel addition valve and the ignition means is controlled, the temperature at the upstream end of the DOC is intermittently raised to the first temperature or higher, and the temperature at the downstream end of the DOC is made higher than the first temperature. And a temperature higher than the second temperature lower than the first temperature. This provides the DOC with a temperature distribution suitable for promoting the desired chemical reaction.
  • control means maintains the temperature at the downstream end of the DOC between a second temperature and a third temperature that is lower than the first temperature and higher than the second temperature.
  • at least one of the addition amount and the addition timing of the fuel from the fuel addition valve may be controlled.
  • the first temperature is a temperature at which the rate of reaction in which NO 2 contained in the exhaust gas is thermally decomposed and reduced to NO is equal to or higher than the rate of the reverse reaction, for example, around 400 ° C. It is preferable.
  • the second temperature is the amount of NO 2 contained in the exhaust gas that is reduced to NO by the HC contained in the exhaust gas, which is generated when the NO contained in the exhaust gas is oxidized by the oxidation catalytic converter. It is preferable that the upper limit temperature be greater than the amount of 2 , for example, around 240 ° C.
  • the third temperature may be a temperature at which the amount of NO 2 contained in the exhaust gas is the largest, for example, around 300 ° C.
  • the exhaust purification element located downstream of the DOC can include at least one of a DPF and an SCR catalytic converter or an NSR catalytic converter.
  • Means for obtaining the amount of NO X discharged from the internal combustion engine is further provided, and the control means controls at least one of the amount of fuel added from the fuel addition valve and the addition timing according to the amount of NO X thus obtained. It may be. In this case, the control means controls at least one of the addition amount and the addition timing of the fuel from the fuel addition valve so that the air-fuel ratio becomes a smaller value as the amount of NO X discharged from the internal combustion engine increases. Is effective.
  • control means also controls at least one of the fuel addition amount and the addition timing so that the air-fuel ratio falls within the range of 15 to 35.
  • fuel is added to an exhaust passage between an internal combustion engine and an exhaust purification device having at least two types of exhaust purification elements arranged in series along the exhaust passage to ignite it.
  • the step of controlling the temperature of the exhaust includes intermittently raising the temperature of the upstream end of the DOC to a first temperature or higher, and the temperature of the downstream end of the DOC from the first temperature. Adjusting at least one of the length and timing of increasing the temperature of the upstream end of the DOC so that the temperature is maintained at a second temperature lower than the first temperature. It is characterized by this.
  • the temperature of the upstream end portion of the DOC intermittently rises above the first temperature, and the temperature of the downstream end portion of the DOC is lower than the first temperature and lower than the first temperature. 2 or higher.
  • a temperature distribution suitable for promoting the desired chemical reaction is given to the upstream end and the downstream end of the DOC.
  • the step of controlling the temperature of the exhaust includes the step of controlling the temperature at the downstream end of the DOC to be a second temperature, a third temperature lower than the first temperature, and higher than the second temperature. It is effective to further include a step of controlling at least one of the addition amount and the addition timing of the fuel to the exhaust passage so as to be maintained during this period.
  • the first temperature is a temperature at which the rate of reaction in which NO 2 contained in the exhaust gas is thermally decomposed and reduced to NO is equal to or higher than the rate of the reverse reaction, for example, 400 ° C. It is preferable to be before and after.
  • the second temperature is the amount of NO 2 contained in the exhaust gas that is reduced to NO by the HC contained in the exhaust gas, which is generated when the NO contained in the exhaust gas is oxidized by the oxidation catalytic converter. It is preferable that the upper limit temperature be greater than the amount of 2 , for example, around 240 ° C. Further, the third temperature may be a temperature at which the amount of NO 2 contained in the exhaust gas is the largest, for example, around 300 ° C.
  • the exhaust purification element located downstream of the DOC can include at least one of a DPF and an SCR catalytic converter or an NSR catalytic converter.
  • the method further includes the step of determining the amount of NO X discharged from the internal combustion engine, and the step of controlling the temperature of the exhaust includes the amount of fuel added to the exhaust passage and the timing of addition according to the determined amount of NO X It may further include a step of controlling at least one.
  • the step of controlling at least one of the addition amount and the addition timing of the fuel added to the exhaust passage is performed so that the air-fuel ratio becomes a smaller value as the amount of NO X discharged from the internal combustion engine increases. It is preferable to control at least one of the addition amount and the addition timing of the fuel added to the passage.
  • the step of controlling the temperature of the exhaust can include a step of controlling at least one of the addition amount and the addition timing of the fuel so that the air-fuel ratio falls within the range of 15 to 35.
  • the upstream end of the DOC is intermittently rapidly heated to promote the desired first chemical reaction at the upstream end, and the temperature of the downstream end is set to the desired second chemistry. It can be maintained at a temperature that promotes the reaction.
  • the second chemical reaction can be more reliably promoted.
  • the first temperature is set to a temperature at which the rate of reaction in which NO 2 contained in the exhaust is thermally decomposed and reduced to NO is the same as or higher than the rate of the reverse reaction
  • the NO X component contained in the exhaust gas at the upstream end can be substantially made only NO.
  • HC and CO contained in the exhaust can be reliably oxidized and rendered harmless.
  • the amount of NO 2 contained in the exhaust gas that is reduced to NO by the HC contained in the exhaust gas is larger than the amount of NO 2 generated by oxidizing the NO contained in the exhaust gas in the oxidation catalytic converter.
  • the second temperature is set as the upper limit temperature, the proportion of NO 2 in the NO X component contained in the exhaust gas at the downstream end of the DOC can be increased.
  • the third temperature is set to a temperature at which the amount of NO 2 contained in the exhaust gas is maximized, NO 2 can be reliably included in the exhaust gas that has passed through the DOC.
  • the exhaust purification element located downstream of the DOC includes at least one of a DPF and an SCR catalytic converter or an NSR catalytic converter, PM regeneration processing and NO X purification can be performed more efficiently.
  • the desired chemical reaction can be surely promoted by DOC.
  • FIG. 1 is a conceptual diagram of an embodiment in which the present invention is incorporated into a compression addition type internal combustion engine.
  • FIG. 2 is a control block of a main part in the embodiment shown in FIG.
  • FIG. 3 is a graph schematically showing temperature changes in the upstream, midstream, and downstream portions of the DOC.
  • FIG. 4A is a flowchart showing an operation procedure of the exhaust gas heating device in the present embodiment, and is connected to FIG. 4B.
  • FIG. 4B is a flowchart showing an operation procedure of the exhaust gas heating device in the present embodiment, and is connected to FIG. 4A.
  • FIG. 5 is a flowchart showing the details of the fuel addition subroutine in the flowchart shown in FIG. 4A.
  • FIG. 1 The main part of the engine system in the present embodiment is schematically shown in FIG. 1, and the control block of the main part is schematically shown in FIG.
  • a general exhaust turbo supercharger, an EGR device, and the like are omitted as auxiliary equipment of the engine 10. It should be noted that some of the various sensors required for smooth operation of the engine 10 are omitted for convenience.
  • the engine 10 in this embodiment is a compression ignition type multi-cylinder internal combustion engine that spontaneously ignites by directly injecting light oil as fuel into the combustion chamber 10a in a compressed state from the fuel injection valve 11.
  • a single cylinder internal combustion engine may be used due to the characteristics of the present invention.
  • the cylinder head 12 formed with the intake port 12a and the exhaust port 12b facing the combustion chamber 10a has a valve operating mechanism (not shown) including an intake valve 13a for opening and closing the intake port 12a and an exhaust valve 13b for opening and closing the exhaust port 12b. It has been incorporated.
  • the previous fuel injection valve 11 facing the center of the upper end of the combustion chamber 10a is also assembled to the cylinder head 12 so as to be sandwiched between the intake valve 13a and the exhaust valve 13b.
  • the amount and injection timing of fuel supplied to the combustion chamber 10a from the fuel injection valve 11, the ECU (E ngine C ontrol U nit ) 15 based on operating conditions of the vehicle including the depression amount of the accelerator pedal 14 by the driver Be controlled.
  • the amount of depression of the accelerator pedal 14 is detected by the accelerator opening sensor 16, and the detection information is output to the ECU 15.
  • the ECU 15 is a well-known one-chip microprocessor, and includes a CPU, ROM, RAM, nonvolatile memory, an input / output interface and the like interconnected by a data bus (not shown).
  • the ECU 15 in the present embodiment includes an operation state determination unit 15a that determines the operation state of the vehicle, a fuel injection setting unit 15b, a fuel injection valve, and the like based on information from the accelerator opening sensor 16 and various sensors described later. And a drive unit 15c.
  • the fuel injection setting unit 15b sets the fuel injection amount and the injection timing from the fuel injection valve 11 based on the determination result in the operation state determination unit 15a.
  • the fuel injection valve drive unit 15c controls the operation of the fuel injection valve 11 so that the amount of fuel set by the fuel injection setting unit 15b is injected from the fuel injection valve 11 at the set time.
  • the previous ECU 15 further includes a throttle opening setting unit 15d and an actuator driving unit 15e.
  • the throttle opening setting unit 15d sets the opening of the throttle valve 20 based on the determination result of the previous operation state determination unit 15a in addition to the depression amount of the accelerator pedal 14.
  • the actuator driving unit 15e controls the operation of the throttle actuator 19 so that the throttle valve 20 has the opening set by the throttle opening setting unit 15d.
  • the throttle opening degree setting section 15d is flowing in the exhaust passage 23a Control is also performed to increase the opening of the throttle valve 20 so that the flow rate of the exhaust gas increases.
  • a crank angle sensor 26 that detects the rotational phase of the crankshaft 25c to which the piston 25a is coupled via the connecting rod 25b, that is, the crank angle, and outputs it to the ECU 15 is attached to the cylinder block 25 in which the piston 25a reciprocates. It has been. Based on the information from the crank angle sensor 26, the driving state determination unit 15a of the ECU 15 grasps the traveling speed of the vehicle in addition to the rotational phase of the crankshaft 25c and the engine rotational speed in real time.
  • the exhaust pipe 23 connected to the cylinder head 12 so as to communicate with the exhaust port 12b defines an exhaust passage 23a together with the exhaust port 12b.
  • a NO X sensor 27 that detects the amount of NO X contained in the exhaust from the engine 10 and outputs this to the ECU 15 is attached to the upstream end of the exhaust pipe 23.
  • An exhaust purification device 24 for detoxifying is attached.
  • Exhaust purification apparatus 24 of this embodiment includes a DOC24a, a DPF (D iesel P articulate F ilter ) 24b, and an NSR (N O X S torage- R eduction) catalytic converter 24c, which are along the exhaust passage 23a Are arranged in series. Only one of the DPF 24b and the NSR catalytic converter 24c may be incorporated as an exhaust purification element other than the DOC 24a. It is also possible to use instead of the NSR catalyst converter 24c SCR (S elective C atalytic R eduction) catalytic converter. In this case, it is necessary to incorporate a mechanism for adding urea water in the middle of the exhaust pipe 23 located between the DOC 24a and the DPF 24b.
  • SCR S elective C atalytic R eduction
  • the DOC 24a is mainly used to oxidize, that is, burn, HC and CO contained in the exhaust.
  • the DOC 24a also has a function of increasing the proportion of NO 2 in the NO X component contained in the exhaust.
  • the DOC 24a incorporates a catalyst inlet side temperature sensor 28 and a catalyst outlet side temperature sensor 29 for detecting the bed temperatures T I and T O at the upstream end and the downstream end and outputting them to the ECU 15, respectively. .
  • the exhaust heating device 22 is arranged for adjustment as described above.
  • the exhaust heating device 22 in the present embodiment includes a fuel addition valve 22a and a glow plug 22b as a part of ignition means in the present invention.
  • a collision plate as disclosed in JP 2011-252438 A is arranged. May be.
  • the fuel addition valve 22a has the same basic configuration as that of the normal fuel injection valve 11, and supplies an arbitrary amount of fuel to the exhaust passage 23a at an arbitrary time interval by controlling the energization time. Can be done.
  • the amount of fuel per one time from the fuel adding valve 22a is supplied to the exhaust passage 23a is in the operating state of the vehicle including the amount and bed temperature information DOC24a of NO X contained in the exhaust from the intake air amount and the engine 10 Based on this, it is set by the fuel addition setting unit 15f of the ECU 15.
  • Information on the intake air amount is acquired from the output of the air flow meter 21, and the bed temperature information of the DOC 24 a is acquired from the outputs of the temperature sensors 28 and 29.
  • the amount of NO X contained in the exhaust from the engine 10 is acquired from the output of the NO X sensor 27 disposed in the middle of the exhaust pipe 23 located between the exhaust port 12 b and the exhaust heating device 22.
  • the fuel addition setting unit 15f includes a target catalyst heating temperature (hereinafter referred to as a target heating temperature) and a current catalyst temperature T I detected by the two temperature sensors 28 and 29, based on the difference between T O, and calculates the amount of fuel to be added to the exhaust passage 23a.
  • the target heating temperature is a first temperature T H (about 400 ° C.) at which the rate of reaction in which NO 2 contained in the exhaust is thermally decomposed and reduced to NO is equal to or greater than the rate of the opposite reaction. ), For example, 450 ° C. Then, based on the information about the intake air amount from the air flow meter 21, the fuel injection period from the fuel addition valve 22a is set so that this fuel has a predetermined air-fuel ratio set in advance.
  • the target air-fuel ratio is made smaller than 15, it becomes impossible to oxidize all the HC contained in the exhaust gas, and the rate at which NO 2 is reduced to NO increases. If the air-fuel ratio exceeds 35, it becomes difficult to raise the bed temperature T I at the upstream end of the DOC 24a to the target heating temperature, and the bed temperatures T I , T at the upstream end and the downstream end of the DOC 24a are difficult. A desired temperature difference cannot be given to O. For this reason, the target air-fuel ratio is set to fall within the range of 15 to 35, but the initial target air-fuel ratio is set to around 20. In this case, the drive cycle of the fuel addition valve 22a is set shorter so that the larger the amount of NO X detected by the NO X sensor 27, the smaller the target air-fuel ratio. If the correction cannot be made, the amount of fuel added is increased.
  • the repeated process of adding fuel of the set amount in the exhaust passage 23a intermittently as the bed temperature T O of the downstream end portion of DOC24a is lies in a predetermined range, for example, every about 60 seconds.
  • a predetermined time change of the bed temperature T O of the downstream end appears in DOC24a detects the bed temperature T O of the downstream end of the after, for example, about several tens of seconds, based on this bed temperature T O is the timing of the next fuel addition start is adjusted.
  • the bed temperature T O at the downstream end 40 seconds after the start of fuel addition exceeds the third temperature T M , for example, 300 ° C., at which the amount of NO 2 contained in the exhaust gas is greatest. If, until the bed temperature T O of the downstream end portion is reduced to 300 ° C. or less, the addition of fuel is not performed. Then, when the bed temperature T O of the downstream end portion became 300 ° C. or less, based on the information about the operating state of the engine 10 at this time, the drive cycle of the added amount and the fuel addition valve 22a of the fuel by the above-described procedure Is newly set and the addition of the next fuel is started. If the range of the bed temperature T O of the downstream end portion, for example, 250 ⁇ 300 ° C. for 40 seconds after start of the addition of fuel, on the basis of the information about the operating state of the engine 10 at this time, the amount of fuel and fuel additive The drive cycle of the valve 22a is reset and the addition of the next fuel is started.
  • the third temperature T M for example, 300
  • FIG. 3 schematically shows an example of a temperature change between the upstream end portion, the downstream end portion, and the intermediate portion of the DOC 24a according to the present embodiment.
  • the solid line represents the temperature change at the upstream end
  • the broken line represents the temperature change at the downstream end
  • the alternate long and short dash line schematically represents the temperature change at the intermediate portion.
  • the target heating temperature is a first temperature T H at which the rate of reaction in which NO 2 contained in the exhaust is thermally decomposed and reduced to NO is equal to or higher than the rate of the reverse reaction. Generally, it is set higher than, for example, about 450 ° C.
  • the fuel addition valve drive unit 15g of the ECU 15 controls the drive period and the drive cycle of the fuel addition valve 22a so that the amount of fuel set by the fuel addition setting unit 15f becomes a predetermined air-fuel ratio. In this case, the operation of the fuel addition valve 22a is performed until the fuel addition amount integrated from the start of fuel addition reaches the fuel addition amount set by the fuel addition setting unit 15f.
  • the glow plug 22b for igniting the fuel added from the fuel addition valve 22a to the exhaust passage 23a is connected to a vehicle power supply (not shown) via a glow plug drive unit 15h of the ECU 15 as an on / off switch. Accordingly, switching between energization and non-energization for the glow plug 22b is controlled by the glow plug drive unit 15h.
  • the exhaust heat treatment described above is performed in an operation state in which the fuel added to the exhaust passage 23a can be continuously ignited and burned (hereinafter referred to as an operation state in which fuel can be added). Is executed.
  • the operating state in which the fuel can be added corresponds to an operating state in which the flow velocity of the exhaust gas flowing through the exhaust passage 23a is relatively low, such as the idling operation of the engine 10 or the low rotation / low load operation.
  • the intake air supplied from the intake passage 17a into the combustion chamber 10a forms a mixture with the fuel injected from the fuel injection valve 11 into the combustion chamber 10a. Then, the piston 25a spontaneously ignites and burns in the vicinity of the compression top dead center of the piston 25a, and the exhaust generated thereby is exhausted from the exhaust pipe 23 into the atmosphere through the exhaust purification device 24. Further, when the engine 10 is in an operating state in which fuel can be added, the exhaust heating device 22 is operated, and heat energy is intermittently given to the DOC 24a through the exhaust so that the bed temperature of the DOC 24a has a desired temperature distribution. Control.
  • the driving state determination unit 15a of the ECU 15 determines whether the exhaust heating device 22 can be operated based on the above-described driving state of the vehicle.
  • Catalyst downstream temperature T O at first step S11 is equal to or second temperature T L above.
  • a first reaction in which NO 2 contained in the exhaust is reduced to NO by HC contained in the exhaust, and a second reaction in which NO contained in the exhaust is oxidized in the DOC 24a to generate NO 2 is performed.
  • the second temperature TL is an upper limit temperature at which the amount of NO 2 that is reduced by the first reaction described above is greater than the amount of NO 2 that is generated by the second reaction described above.
  • the catalyst downstream temperature T O is determined to be the second temperature T L above, the catalyst downstream temperature T O is now proceeds to step S12, and the most amount of NO 2 contained in the exhaust become such judges third to or lower than the temperature T M of.
  • the catalyst downstream temperature T O is the third is the temperature T M following, that is, when it is determined that the catalyst downstream temperature T O is in the preferred temperature range, the processing proceeds to step S13.
  • the steps in this S13 the catalyst upstream temperature T I is equal to or is higher than the first temperature T H.
  • This first temperature TH is the lowest temperature at which the rate of reaction in which NO 2 contained in the exhaust is thermally decomposed and reduced to NO is equal to or higher than the rate of the reverse reaction. Generally, it is around 400 ° C.
  • the catalyst upstream temperature T I is higher than the first temperature T H, i.e. when it is determined that there is a possibility that the catalyst upstream portion in the desired temperature range, the process proceeds to step S14.
  • the steps in this S14, the catalyst upstream temperature T I determines whether lower or not than the catalyst melting critical temperature T E.
  • the catalyst upstream temperature T I is lower than the catalyst melting critical temperature T E, that is, when it is determined that the catalyst upstream temperature T I is in the desired region, it returns to step S11.
  • NO 2 contained in the exhaust gas that has passed through the DPF 24b can be efficiently converted to nitrate (NO 3 ⁇ ), and the NO X adsorption efficiency can be increased.
  • NO 2 contained in the exhaust gas that has passed through the DPF 24b can promote the NO reduction reaction in the SCR catalytic converter.
  • the catalyst upstream temperature T I at step S14 is the catalyst melting critical temperature T E above, that is, when the DOC24a determines that there is a risk of damage, the process proceeds to step S15. Then, it is determined whether or not a first flag, which will be described later, indicating that fuel is being added from the fuel addition valve 22a is set. If it is determined that the first flag is set, that is, fuel is being added to the exhaust passage 23a, the process proceeds to step S16 and fuel addition control is stopped. More specifically, the addition of fuel from the fuel addition valve 22a is immediately stopped and the energization of the glow plug 22b is turned off.
  • steps S211 to S213 shown in FIG. 5 described later are executed.
  • step S17 the fuel injection control from the fuel injection valve 11 is also stopped.
  • the catalyst upstream temperature T I is lowered to a temperature lower than the catalyst melting risk temperature T E to prevent the DOC 24a from being melted, and the process returns to the step S11 again. If it is determined in step S15 that the first flag is not set, that is, fuel is not being added, the process proceeds to step S17 and the fuel injection control from the fuel injection valve 11 is stopped. Then, the process returns to step S11 again.
  • the catalyst upstream temperature T I in the previous S13 in step is lower than the first temperature T H, that is, if raising the catalyst upstream temperature T I is determined to be preferable, first proceeds to S18 in step It is determined whether or not 1 flag is set. If it is determined that the first flag is set, that is, the fuel is being added, the drive cycle of the fuel addition valve 22a is shortened so that the process proceeds to step S19 and the target air-fuel ratio becomes small. Then, the temperature of the exhaust gas flowing into the DOC 24a is increased. After such raised the catalyst upstream temperature T I in, it returns to step S11. On the other hand, if it is determined in step S18 that the exhaust gas is not being heated by adding fuel, the process proceeds to step S20 to execute a fuel addition subroutine.
  • step S203 it is determined whether or not the engine 10 is in an operation state in which fuel can be added. If it is determined that the engine 10 is in an operation state in which fuel can be added, that is, fuel can be added to the exhaust passage 23a and ignited to heat the exhaust, the process proceeds to step S204. To do. The glow plug 22b is energized, and at the same time, the timer starts counting up in step S205.
  • step S206 it is determined whether or not the count value C n of the timer is equal to or greater than a preset value C S. Initially the count value C n of the timer is less than C S, it returns to S205 step, repeating these processes until the count value C n of the timer is equal to or greater than C S. If it is determined in step S206 that the timer count value C n is equal to or greater than C S , that is, if the glow plug 22b is heated and the fuel can be ignited, the process proceeds to step S207. And it is determined whether the 2nd flag which shows that fuel addition is completed is set.
  • step S208 Since the second flag is not set at first, the process proceeds to step S208, and it is determined whether or not the first flag indicating that fuel is being added is set. At first, since the first flag is not set, the process proceeds to step S209, the addition of fuel is started under the conditions set in step S202, the first flag is set, and the process proceeds to step S210. Determine whether the addition is complete. Since the fuel addition has not been completed at first, the process returns to step S205 and the above-described processing is repeated. In this case, since the first flag has already been set, the process proceeds from step S208 to step S210. It becomes.
  • step S210 determines whether or not the count value C n of the timer is the value C W or more set in advance indicates that the time has elapsed that is suitable for again performing the fuel addition. Since the timer count value C n is initially less than C W , the process returns to step S205 and the above-described processing is repeated. However, since the second flag has already been set, the process proceeds from step S207 to step S212. It will be.
  • step S212 when it is determined in step S212 that the count value C n of the timer is equal to or greater than CW , that is, it is possible to proceed to the next fuel addition process, the process proceeds to step S213. Then, after resetting the second flag and resetting the count value of the timer to 0, the process returns to the main routine shown in FIG. 4A, and the steps after S11 are executed.
  • step S12 determines whether the catalyst downstream temperature T O is higher than the third temperature T M , that is, it is desirable to lower the catalyst downstream temperature T O .
  • the process proceeds to step S21 and the first step. Determine whether the flag is set.
  • the process proceeds to step S22 and the amount of fuel added is reduced to reduce the temperature of the exhaust gas flowing into the DOC 24a. Reduce.
  • step S21 determines whether the first flag is set.
  • the opening degree of the throttle valve 20 is increased by a predetermined amount via the throttle actuator 19, and the exhaust temperature is lowered as the intake air amount increases.
  • the catalyst downstream temperature T O is such that cooling below the third temperature T M, returns to step S11.
  • step S11 If it is determined in step S11 that the catalyst downstream temperature T O is lower than the second TL , that is, it is necessary to raise the catalyst downstream temperature T O , the process proceeds to step S24 and the first step. Determine whether the flag is set. If it is determined that the first flag is set, that is, fuel is being added, the process proceeds to step S25 to shorten the drive cycle of the fuel addition valve 22a to reduce the air-fuel ratio, and the DOC 24a. Increase the temperature of the exhaust flowing into the. After such raised the catalyst downstream temperature T O, the run ahead in S13 and subsequent steps. If it is determined in step S24 that the first flag is not set, that is, fuel is not being added, the process proceeds to step S20. In the operation state in which fuel can be added, fuel is added to the exhaust passage 23a and ignited and combusted to increase the temperature of the DOC 24a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 エンジン(10)と排気通路(23a)に沿って直列に配される上流側のDOC(24a)およびこれと異なる下流側の排気浄化エレメント(24b,24c)を有する排気浄化装置(24)との間の排気通路に燃料を添加するための燃料添加弁(22a)と、排気通路に添加された燃料を着火させるためのグロープラグ(22b)とを具えた本発明による排気加熱装置(22)は、DOCの上流端部および下流端部の温度をそれぞれ求める手段(25,26)と、これにより求められた温度に基づいて燃料添加弁および着火手段の作動を制御するECU(15)とをさらに具え、ECUは、DOCの上流端部の温度を第1の温度(T)以上に間欠的に上昇させると共にDOCの下流端部の温度が第1の温度よりも低く、かつこの第1の温度よりも低い第2の温度(T)以上に維持されるように、燃料の添加量および添加時期の少なくとも一方を制御する。

Description

内燃機関の排気加熱装置および排気加熱方法
 本発明は、触媒浄化装置よりも排気通路の上流側に配されて内燃機関から排出される排気を加熱するための排気加熱装置に関する。
 圧縮点火方式の内燃機関は、火花点火方式の内燃機関よりもCOの排出量を少なくすることができるという利点がある反面、NOや粒子状物質(以下、これをPMと記述する)を排気中に含むため、これらを浄化する必要がある。このため、火花点火方式の内燃機関に組み込まれる排気浄化装置は、ディーゼル用酸化触媒コンバーター(以下、これをDOCと記述する)と、ディーゼル用パティキュレートフィルター(以下、これをDPFと記述する)と、選択触媒還元(以下、これをSCRと記述する)触媒コンバーターとを一般に含む。なお、SCR触媒コンバーターの代わりにNO吸蔵還元(以下、これをNSRと記述する)触媒コンバーターを採用したものも知られている。このような排気浄化装置においては、DOCにて排気中のCOやHCを酸化燃焼させてCOとHOとに変換し、次いでDPFにて捕捉されたPMを酸化燃焼させ、最後にSCR触媒コンバーターにて排気中に含まれるNOを窒素ガスに還元する。
 特許文献1は、SCR触媒コンバーターの上流側にDOCと、このDOCの上流側端面に配設されたヒーター付き触媒(以下、EHCと記述する)とを具えた圧縮点火方式の内燃機関を開示する。この特許文献1においては、エンジン本体の運転状態、より具体的には燃料噴射量およびエンジン回転数に基づいてEHCの温度を制御し、排気中に占めるNOとNOとの比が1:1になるようにDOCの床温を調整している。これにより、SCR触媒コンバーターにてNO浄化を行う際にfast SCR反応と呼ばれるNO浄化に最も適した化学反応、つまり
  2NH+NO+NO→2N+3HO ・・・(1)
が促進され、排気中のNOを浄化することができる。
特開2010-265862号公報
 前述の(1)式から明らかなように、SCR触媒コンバーターに流入する排気中に占めるNOとNOとの比が同じ場合、NOをすべて窒素ガスに還元することが可能となる。DOCの床温が適当な温度域(例えば250~400℃)にある場合、DOCを通った排気中のNOとNOとの比率がほぼ同じになることが知られている。しかしながら、DOCの床温が400℃を超えると、排気中に含まれるNOがNOに還元されてしまい、DOCを通った排気中に含まれるNOに対してNOの割合が少なくなってしまう。また、DOCの床温が250℃未満の場合、DOCに流入する排気中のNOがDOCにて全く酸化されず、しかも排気に含まれるHC成分によってNOが還元されてしまい、DOCを通過した排気中に含まれるNOに対するNOの割合が極端に少なくなってしまう。つまり、DOCの床温を適当な温度域に保持しない限り、その下流側に配されるSCR触媒コンバーターでのNO浄化率を良好に維持することが困難となる。しかも、内燃機関の運転状態によって排気中に占めるNOの量が大きく変動するため、DOCにて安定した量のNOを生成させることは相当な困難が予測される。
 なお、排気中に含まれるCOやHCは、DOCの床温が200℃以上であれば、これらを安定して酸化分解させることが可能であるが、DOCの床温が高いほど、例えば400℃以上であれば、より安定した酸化分解反応を促進させることが可能となる。
 一方、DPFにおいては、ここに流入する排気にNOが含まれている場合、排気の温度が比較的低温であっても、DPFに捕捉されたPMをCOとHOとに酸化分解させることが可能となる。従って、DOCを通過した排気にNOが含まれていることがより望まれる。同様に、NSR触媒コンバーターにおいてはNOを吸蔵するため、NOの硝酸塩(NO -)化をより効率良く行う必要があり、このような観点からNOよりもNOをNSR触媒コンバーターに流入させることが強く望まれる。
 このように、圧縮点火方式の内燃機関においては、排気にNOを含ませることによって、DPFでのPM酸化およびSCR触媒コンバーターにおけるNO還元反応やNSR触媒コンバーターにおけるNO吸蔵反応を促進させることができる。しかしながら、DOCでのNOの生成能は、排気に含まれる成分やDOCの床温などによって大きく左右され、上述したように床温が高過ぎても低過ぎてもNOを生成させることができない。さらに、圧縮点火方式の内燃機関では火花点火方式の内燃機関よりも排気温が相対的に低くなる傾向にあるため、DOCをNOの生成に適した床温にするには、NOの物性上の特性と相俟ってDOCに流入する排気を適切に加熱する必要がある。この場合、乗用自動車などの比較的小排気量の内燃機関においては、組み込まれるDOCが小容量であるが故にその反応効率が悪く、DOCにてNOを効率よく生成させるためには、大容量のDOCを使用しなければならなかった。
発明の目的
 本発明の目的は、小容量のDOCであっても内燃機関の運転状態に大きく影響されることなくNOを安定して生成させることができるようにした排気加熱装置および排気加熱方法を提供することにある。
 本発明の第1の形態は、内燃機関と排気通路に沿って直列に配される少なくとも2種類の排気浄化エレメントを有する排気浄化装置との間の前記排気通路に燃料を添加するための燃料添加弁と、前記排気通路に添加された燃料を着火させるための着火手段とを具え、前記排気通路の上流側に配される前記排気浄化エレメントがDOCである排気加熱装置であって、前記DOCの上流端部の温度を求める手段と、前記DOCの下流端部の温度を求める手段と、これら温度を求める手段によって求められた温度に基づいて前記燃料添加弁および前記着火手段の作動を制御する制御手段とをさらに具え、この制御手段は、前記DOCの上流端部の温度を第1の温度以上に間欠的に上昇させると共に前記DOCの下流端部の温度が前記第1の温度よりも低く、かつこの第1の温度よりも低い第2の温度以上に維持されるように、前記燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することを特徴とするものである。
 本発明においては、燃料添加弁および着火手段の作動を制御し、DOCの上流端部の温度を第1の温度以上に間欠的に上昇させ、DOCの下流端部の温度を第1の温度よりも低く、かつこの第1の温度よりも低い第2の温度以上に維持する。これにより、それぞれ所望の化学反応を促進させるのに適した温度分布がDOCに与えられる。
 本発明による排気加熱装置において、制御手段は、DOCの下流端部の温度が第2の温度と前記第1の温度よりも低くかつ第2の温度よりも高い第3の温度との間に維持されるように、燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御するものであってよい。
 第1の温度は排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような温度、例えば400℃前後であることが好ましい。また、第2の温度は、排気に含まれるNOが排気に含まれるHCによりNOに還元されてしまう量が、排気に含まれるNOが前記酸化触媒コンバーターにて酸化されることにより生成するNOの量よりも多くなる上限温度、例えば240℃前後であることが好ましい。さらに、第3の温度は排気に含まれるNOの量が最も多くなるような温度、例えば300℃前後であってよい。この場合、DOCよりも下流側に位置する排気浄化エレメントがDPFおよびSCR触媒コンバーターまたはNSR触媒コンバーターの少なくとも1つを含むことができる。
 内燃機関から排出されるNOの量を求める手段をさらに具え、制御手段は、これにより求められたNOの量に応じて燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御するものであってよい。この場合、内燃機関から排出されるNOの量が多いほど空燃比がより小さな値となるように、制御手段は、燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することが有効である。
 制御手段はまた、空燃比が15から35までの範囲に収まるように、燃料の添加量および添加時期の少なくとも一方を制御することが好ましい。
 本発明の第2の形態は、内燃機関と排気通路に沿って直列に配される少なくとも2種類の排気浄化エレメントを有する排気浄化装置との間の排気通路に燃料を添加してこれを着火させ、加熱した排気を前記排気浄化装置に導く排気加熱方法であって、前記排気通路の上流側に配される前記排気浄化エレメントがDOCであり、このDOCの上流端部の温度を求めるステップと、前記DOCの下流端部の温度を求めるステップと、求められた前記DOCの上流端部および下流端部の温度に基づいて前記排気浄化装置に導かれる排気の温度を制御するステップとを具え、前記排気の温度を制御するステップは、前記DOCの上流端部の温度を第1の温度以上に間欠的に上昇させるステップと、前記DOCの下流端部の温度が前記第1の温度よりも低く、かつこの第1の温度よりも低い第2の温度以上に維持されるように、前記DOCの上流端部の温度を上昇させる時間の長さおよび時期の少なくとも一方を調整するステップとを含むことを特徴とするものである。
 本発明においても、DOCの上流端部の温度が第1の温度以上に間欠的に上昇し、DOCの下流端部の温度が第1の温度よりも低く、かつ第1の温度よりも低い第2の温度以上に維持される。結果として、それぞれ所望の化学反応を促進させるのに適した温度分布がDOCの上流端部と下流端部とに与えられる。
 本発明による排気加熱方法において、排気の温度を制御するステップは、DOCの下流端部の温度が第2の温度と第1の温度よりも低くかつ第2の温度よりも高い第3の温度との間に維持されるように、排気通路への燃料の添加量および添加時期の少なくとも一方を制御するステップをさらに含むことが有効である。この場合、第1の温度は排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような温度、例えば400℃前後であることが好ましい。また、第2の温度は、排気に含まれるNOが排気に含まれるHCによりNOに還元されてしまう量が、排気に含まれるNOが前記酸化触媒コンバーターにて酸化されることにより生成するNOの量よりも多くなる上限温度、例えば240℃前後であることが好ましい。さらに、第3の温度は排気に含まれるNOの量が最も多くなるような温度、例えば300℃前後であってよい。この場合、DOCよりも下流側に位置する排気浄化エレメントがDPFおよびSCR触媒コンバーターまたはNSR触媒コンバーターの少なくとも1つを含むことができる。
 内燃機関から排出されるNOの量を求めるステップをさらに具え、排気の温度を制御するステップは、求められたNOの量に応じて排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御するステップをさらに含むものであってよい。この場合、排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御するステップは、内燃機関から排出されるNOの量が多いほど空燃比がより小さな値となるように、排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御することが好ましい。
 排気の温度を制御するステップは、空燃比が15から35までの範囲に収まるように、燃料の添加量および添加時期の少なくとも一方を制御するステップを含むことができる。
 本発明によると、DOCの上流端部を間欠的に急速加熱することにより、この上流端部にて所望の第1の化学反応を促進させ、さらに下流端部の温度を所望の第2の化学反応が促進される温度に維持することができる。
 DOCの下流端部の温度を第2の温度と第3の温度との間に維持した場合、第2の化学反応をより確実に促進させることができる。
 第1の温度を排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような温度に設定した場合、DOCの上流端部において排気に含まれるNO成分を実質的にNOのみにすることができる。しかも、排気に含まれるHCおよびCOを確実に酸化させて無害化させることができる。また、排気に含まれるNOが排気に含まれるHCによりNOに還元されてしまう量が、排気に含まれるNOが前記酸化触媒コンバーターにて酸化されることにより生成するNOの量よりも多くなる上限温度に第2の温度を設定した場合、DOCの下流端部において排気に含まれるNO成分のうち、NOの割合を増大させることができる。さらに、第3の温度を排気に含まれるNOの量が最も多くなるような温度に設定した場合、DOCを通過した排気にNOを確実に含ませることができる。特に、DOCよりも下流側に位置する排気浄化エレメントがDPFおよびSCR触媒コンバーターまたはNSR触媒コンバーターの少なくとも1つを含む場合、PM再生処理およびNOの浄化をより効率よく行うことができる。
 内燃機関から排出されるNOの量に応じて燃料の添加量および添加時期の少なくとも一方を制御する場合、DOCに流入するNO成分を好ましい状態へと化学反応させることができる。特に、NOの量が多いほど空燃比がより小さな値となるように、燃料の添加量および添加時期の少なくとも一方を制御する場合、DOCに流入するNO成分をその上流端部にてすべてNOに還元させることができる。結果として、DOCの下流端部にて生成するNOの量をより正確に調整することが可能となる。
 空燃比が15から35までの範囲に収まるように燃料の添加量および添加時期の少なくとも一方を制御することにより、DOCにて所望の化学反応を確実に促進させることができる。
図1は、本発明を圧縮添加方式の内燃機関に組み込んだ一実施形態の概念図である。 図2は、図1に示した実施形態における主要部の制御ブロックである。 図3は、DOCの上流部および中流部および下流部の温度変化を模式的に表すグラフである。 図4Aは、本実施形態における排気加熱装置の作動手順を表すフローチャートであり、図4Bにつながっている。 図4Bは、本実施形態における排気加熱装置の作動手順を表すフローチャートであり、図4Aにつながっている。 図5は、図4Aに示したフローチャートにおける燃料添加のサブルーチンの詳細を表すフローチャートである。
 本発明による内燃機関の排気浄化装置を圧縮点火方式の多気筒内燃機関が搭載された車両に応用した一実施形態について、図1~図5を参照しながら詳細に説明する。しかしながら、本発明はこのような実施形態のみに限らず、要求される特性に応じてその構成を自由に変更することが可能である。
 本実施形態におけるエンジンシステムの主要部を模式的に図1に示し、その主要部の制御ブロックを概略的に図2に示す。なお、図1にはエンジン10の吸排気のための動弁機構や消音器の他に、このエンジン10の補機として一般的な排気ターボ式過給機やEGR装置なども省略されている。また、エンジン10の円滑な運転のために必要とされる各種センサー類もその一部が便宜的に省略されていることに注意されたい。
 本実施形態におけるエンジン10は、燃料である軽油を燃料噴射弁11から圧縮状態にある燃焼室10a内に直接噴射することにより、自然着火させる圧縮点火式の多気筒内燃機関である。しかしながら、本発明の特性上、単気筒の内燃機関であってもかまわない。
 燃焼室10aにそれぞれ臨む吸気ポート12aおよび排気ポート12bが形成されたシリンダーヘッド12には、吸気ポート12aを開閉する吸気弁13aおよび排気ポート12bを開閉する排気弁13bを含む図示しない動弁機構が組み込まれている。燃焼室10aの上端中央に臨む先の燃料噴射弁11もまた、これら吸気弁13aおよび排気弁13bに挟まれるようにシリンダーヘッド12に組み付けられている。燃料噴射弁11から燃焼室10a内に供給される燃料の量および噴射時期は、運転者によるアクセルペダル14の踏み込み量を含む車両の運転状態に基づいてECU(Engine Control Unit)15により制御される。アクセルペダル14の踏み込み量は、アクセル開度センサー16により検出され、その検出情報がECU15に出力される。
 ECU15は、周知のワンチップマイクロプロセッサーであり、図示しないデータバスにより相互接続されたCPU,ROM,RAM,不揮発性メモリーおよび入出力インターフェースなどを含む。本実施形態におけるECU15は、このアクセル開度センサー16や後述する各種センサー類などからの情報に基づき、車両の運転状態を判定する運転状態判定部15aと、燃料噴射設定部15bと、燃料噴射弁駆動部15cとを有する。燃料噴射設定部15bは、運転状態判定部15aでの判定結果に基づいて燃料噴射弁11からの燃料の噴射量や噴射時期を設定する。燃料噴射弁駆動部15cは、燃料噴射設定部15bにて設定された量の燃料が設定された時期に燃料噴射弁11から噴射されるように、燃料噴射弁11の作動を制御する。
 吸気ポート12aに連通するようにシリンダーヘッド12に連結されて吸気ポート12aと共に吸気通路17aを画成する吸気管17の途中には、スロットルアクチュエーター19を介して吸気通路17aの開度を調整するためのスロットル弁20が組み込まれている。また、スロットル弁20よりも上流側の吸気管17には、吸気通路17aを流れる吸気の流量を検出してこれをECU15に出力するエアーフローメーター21が取り付けられている。なお、このエアーフローメーター21に代えて同じ構成の排気流量センサーを後述する排気加熱装置22とシリンダーヘッド12の排気ポート12bとの間に位置する排気管23の部分に取り付けるようにしてもよい。
 先のECU15は、スロットル開度設定部15dと、アクチュエーター駆動部15eとをさらに有する。スロットル開度設定部15dは、アクセルペダル14の踏み込み量に加え、先の運転状態判定部15aでの判定結果に基づいてスロットル弁20の開度を設定する。アクチュエーター駆動部15eは、スロットル弁20がスロットル開度設定部15dにて設定された開度となるように、スロットルアクチュエーター19の作動を制御する。なお、後述する排気浄化装置24の一部を構成するDOC(Diesel Oxidation Catalyst)24aの床温を直ちに低下させる必要が生じた場合、スロットル開度設定部15dは、排気通路23aを流れる排気の流量が増えるように、スロットル弁20の開度を増大させる制御も行う。
 ピストン25aが往復動するシリンダーブロック25には、連接棒25bを介してピストン25aが連結されるクランク軸25cの回転位相、つまりクランク角を検出してこれをECU15に出力するクランク角センサー26が取り付けられている。ECU15の運転状態判定部15aは、このクランク角センサー26からの情報に基づき、クランク軸25cの回転位相やエンジン回転速度の他に車両の走行速度などを実時間で把握する。
 排気ポート12bに連通するようにシリンダーヘッド12に連結される排気管23は、排気ポート12bと共に排気通路23aを画成する。排気管23の上流端部には、エンジン10からの排気に含まれるNOの量を検出してこれをECU15に出力するNOセンサー27が取り付けられている。このNOセンサー27と、排気管23の下流端側に取り付けられた図示しない消音器との間の排気管23の途中には、燃焼室10a内での混合気の燃焼により生成する有害物質を無害化するための排気浄化装置24が取り付けられている。本実施形態における排気浄化装置24は、DOC24aと、DPF(Diesel Particulate Filter)24bと、NSR(NOX Storage-Reduction)触媒コンバーター24cとを含み、これらは排気通路23aに沿って直列に配されている。なお、DPF24bおよびNSR触媒コンバーター24cの何れか一方のみをDOC24a以外の排気浄化エレメントとして組み込むようにしてもよい。また、NSR触媒コンバーター24cに代えてSCR(Selective Catalytic Reduction)触媒コンバーターを用いることも可能である。この場合、DOC24aとDPF24bとの間に位置する排気管23の途中に尿素水を添加するための機構を組み込む必要がある。
 DOC24aは、主として排気に含まれるHCやCOを酸化、つまり燃焼させるためのものであるが、本発明においては排気に含まれるNO成分に占めるNOの割合を増大させる機能を併せ持つ。このDOC24aには、その上流端部および下流端部の床温T,Tをそれぞれ検出してこれをECU15に出力する触媒入側温度センサー28および触媒出側温度センサー29が組み込まれている。
 排気浄化装置24よりも上流側の排気管23の途中には、加熱ガスを生成してこれを下流側に配された排気浄化装置24のDOC24aに供給し、その床温が所望の分布となるように調整するための排気加熱装置22が配されている。本実施形態における排気加熱装置22は、燃料添加弁22aと、本発明における着火手段の一部としてのグロープラグ22bとを具えている。この他、燃料添加弁22aから供給される燃料を受けてその霧化およびグロープラグ22b側への飛散を促進させるため、特開2011-252438号公報に開示されたような衝突板などを配してもよい。
 燃料添加弁22aは、基本的な構成が通常の燃料噴射弁11と同じものであり、通電時間を制御することによって、任意の量の燃料を任意の時間間隔で排気通路23aにパルス状に供給することができるようになっている。
 燃料添加弁22aから排気通路23aに供給される1回あたりの燃料の量は、吸入空気量およびエンジン10からの排気に含まれるNOの量ならびにDOC24aの床温情報を含む車両の運転状態に基づき、ECU15の燃料添加設定部15fにより設定される。吸入空気量に関する情報はエアーフローメーター21の出力から取得され、DOC24aの床温情報は温度センサー28,29の出力から取得される。また、エンジン10からの排気に含まれるNOの量は、排気ポート12bと排気加熱装置22との間に位置する排気管23の途中に配されたNOセンサー27の出力から取得される。より具体的には、燃料添加設定部15fは、目標とすべき触媒加熱温度(以下、目標加熱温度と呼称する)と、2つの温度センサー28,29によって検出される現在の触媒温度T,Tとの差に基づき、排気通路23aに添加すべき燃料量を算出する。目標加熱温度は、排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなる第1の温度T(400℃前後)よりも高い値、例えば450℃に設定される。そして、エアーフローメーター21からの吸入空気量に関する情報に基づき、この燃料があらかじめ設定した所定の空燃比となるように燃料添加弁22aからの燃料の噴射周期を設定する。
 この場合、目標空燃比を15よりも小さくすると、排気に含まれるHCをすべて酸化させることができなくなる上、NOがNOに還元されてしまう割合が増大する。また、空燃比が35を超えると、DOC24aの上流端部の床温Tを目標加熱温度まで昇温させることが困難となり、しかもDOC24aの上流端部および下流端部の床温T,Tに所望の温度差を与えることができなくなる。このため、目標空燃比は、15から35の範囲に収まるように設定されるが、最初の目標空燃比は20前後に設定される。この場合、NOセンサー27によって検出されるNOの量が多いほど目標空燃比がより小さな値となるように、燃料添加弁22aの駆動周期が短く設定されるが、この駆動周期の変更で補正し切れない場合には、燃料の添加量を増大させるようにしている。
 このようにして設定された量の燃料を排気通路23aに添加する処理をDOC24aの下流端部の床温Tが所定範囲に収まるように間欠的、例えば60秒程度毎に繰り返す。しかしながら、DOC24aの下流端部の床温Tによっては、この添加時期が早まったり、遅くなったりすることに注意されたい。本実施形態では、燃料の添加開始から、これによってDOC24aの下流端部の床温Tの変化が現われる所定時間、例えば数十秒程度経過後の下流端部の床温Tを検出し、この床温Tに基づいて次の燃料添加開始の時期が調整される。より具体的には、燃料の添加開始から40秒経過後の下流端部の床温Tが排気に含まれるNOの量が最も多くなる第3の温度T、例えば300℃を超えていた場合、下流端部の床温Tが300℃以下に低下するまで、燃料の添加は行われない。そして、下流端部の床温Tが300℃以下になった時点で、この時のエンジン10の運転状態に関する情報に基づき、上述した手順により燃料の添加量と燃料添加弁22aの駆動周期とを新たに設定し直して次の燃料の添加を開始する。燃料の添加開始から40秒経過後の下流端部の床温Tが例えば250~300℃の範囲にある場合、この時のエンジン10の運転状態に関する情報に基づき、燃料の添加量と燃料添加弁22aの駆動周期とを設定し直して次の燃料の添加を開始する。
 本実施形態によるDOC24aの上流端部と下流端部とその中間部分との温度変化の一例を模式的に図3に示す。実線が上流端部の温度変化を表し、破線が下流端部の温度変化を表し、一点鎖線がその中間部分の温度変化をそれぞれ模式的に表している。
 なお、目標加熱温度は、排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような第1の温度Tよりも一般的に高く設定され、例えば450℃前後に設定される。
 ECU15の燃料添加弁駆動部15gは、燃料添加設定部15fにて設定された量の燃料が所定の空燃比となるように、燃料添加弁22aの駆動期間と駆動周期とを制御する。この場合、燃料添加弁22aの作動は、燃料添加を開始してから積算される燃料添加量が燃料添加設定部15fにて設定された燃料添加量に達するまで行われる。
 燃料添加弁22aから排気通路23aに添加された燃料を着火させるためのグロープラグ22bは、車載の図示しない電源にオン/オフスイッチとしてのECU15のグロープラグ駆動部15hを介して接続している。従って、グロープラグ22bに対する通電および非通電の切り替えは、このグロープラグ駆動部15hによって制御される。
 本実施形態においては、排気通路23aに添加した燃料が継続的に着火燃焼することができるような運転状態の場合(以下、これを燃料添加可能な運転状態と記述する)に上述した排気加熱処理が実行される。この燃料添加可能な運転状態は、エンジン10のアイドル運転や低回転低負荷運転などの排気通路23aを流れる排気の流速が比較的低速の場合の運転状態が該当する。
 吸気通路17aから燃焼室10a内に供給される吸気は、燃料噴射弁11から燃焼室10a内に噴射される燃料と混合気を形成する。そして、ピストン25aの圧縮上死点近傍にて自然着火して燃焼し、これによって生成する排気が排気浄化装置24を通って排気管23から大気中に排出される。また、エンジン10が燃料添加可能な運転状態の場合には、排気加熱装置22が作動し、排気を通して熱エネルギーがDOC24aに間欠的に与えられ、DOC24aの床温を所望の温度分布となるように制御する。ECU15の運転状態判定部15aは、上述した車両の運転状態に基づき、排気加熱装置22の作動の可否を判定する。
 このような本実施形態における排気加熱装置22の作動手順について図4Aおよび図4Bを参照しながら説明する。まずS11のステップにて触媒下流温度Tが第2の温度T以上であるか否かを判定する。DOC24aの下流端部では、排気に含まれるNOが排気に含まれるHCによりNOに還元される第1の反応と、排気に含まれるNOがDOC24aにて酸化されてNOを生成する第2の反応とが同時に起こっている。第2の温度Tは、上述した第1の反応によって減少するNOの量が上述した第2の反応により生成するNOの量よりも多くなるような上限温度である。ここで、触媒下流温度Tが第2の温度T以上であると判断した場合、S12のステップに移行して今度は触媒下流温度Tが、排気に含まれるNOの量が最も多くなるような第3の温度T以下であるか否かを判定する。ここで、触媒下流温度Tが第3の温度T以下である、すなわち触媒下流温度Tが好ましい温度範囲にあると判断した場合には、S13のステップに移行する。このS13のステップでは、触媒上流温度Tが第1の温度Tよりも高いか否かを判定する。この第1の温度Tは、排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような最低温度であり、一般的には400℃前後である。ここで、触媒上流温度Tが第1の温度Tよりも高い、すなわち触媒上流部が望ましい温度領域にある可能性があると判断した場合には、S14のステップに移行する。このS14のステップでは、触媒上流温度Tが触媒溶損危険温度Tよりも低いか否かを判定する。ここで、触媒上流温度Tが触媒溶損危険温度Tよりも低い、すなわち触媒上流温度Tが望ましい領域にあると判断した場合には、再びS11のステップに戻る。
 このように、触媒上流温度Tおよび触媒下流温度Tが共に好ましい温度領域にある場合、DOC24aに流入する排気に含まれるHCやCOはCOおよびHOに酸化分解される。これに対し、NOはDOC24aの上流端部にてすべてNOに還元されるものの、その下流端部にてNOがNOに還元され、排気中に占めるNOとNOとの割合がほぼ同じ状態となってDOC24aから排出される。このため、DOC24aの下流側に配されたDPF24bにてPMの酸化反応をDOC24aからのNOによって促進させることができる。同様に、NSR触媒コンバーター24cにおいてはDPF24bを通過した排気に含まれるNOは効率よく硝酸塩(NO -)化し、NOの吸着効率を高めることができる。NSR触媒コンバーター24cの代わりにSCR触媒コンバーターを配した場合であっても、DPF24bを通過した排気に含まれるNOがSCR触媒コンバーターでのNOの還元反応を促進させることが可能となる。
 一方、S14のステップにて触媒上流温度Tが触媒溶損危険温度T以上である、すなわちDOC24aが損傷を受ける危険性があると判断した場合には、S15のステップに移行する。そして、燃料添加弁22aから燃料の添加中であることを示す後述の第1フラグがセットされているか否かを判定する。ここで、第1フラグがセットされている、すなわち排気通路23aに燃料を添加中であると判断した場合には、S16のステップに移行して燃料の添加制御を停止する。より具体的には、燃料添加弁22aからの燃料の添加を直ちに停止すると共にグロープラグ22bに対する通電を切るが、ここでは後述する図5に示すS211~S213のステップが実行されることになる。さらにS17のステップに移行して燃料噴射弁11からの燃料の噴射制御も停止する。これにより、触媒上流温度Tを触媒溶損危険温度Tよりも低い温度にまで下げ、DOC24aの溶損を未然に防止し、再びS11のステップに戻る。また、S15のステップにて第1フラグがセットされていない、すなわち燃料の添加中ではないと判断した場合には、S17のステップに移行して燃料噴射弁11からの燃料の噴射制御を停止した後、再びS11のステップに戻る。
 先のS13のステップにて触媒上流温度Tが第1の温度Tよりも低い、すなわち触媒上流温度Tを上昇させることが好ましいと判断した場合には、S18のステップに移行して第1フラグがセットされているか否かを判定する。ここで、第1フラグがセットされている、すなわち燃料添加中であると判断した場合には、S19のステップに移行して目標空燃比が小さくなるように、燃料添加弁22aの駆動周期を短くし、DOC24aに流入する排気の温度を上昇させる。このようにして触媒上流温度Tを昇温させた後、再びS11のステップに戻る。また、S18のステップにて燃料の添加による排気加熱中ではないと判断した場合には、S20のステップに移行して燃料添加のサブルーチンを行う。
 このサブルーチンの詳細を図5に示す。すなわち、S201のステップにてエンジン10の運転状態に関する情報を取得し、S202のステップにて燃料添加量および燃料添加弁22aの駆動周期を設定する。次に、S203のステップにてエンジン10が燃料添加可能な運転状態にあるか否かを判定する。ここで、エンジン10が燃料添加可能な運転状態にある、すなわち排気通路23aに燃料を添加してこれを着火させ、排気の加熱を行うことができると判断した場合には、S204のステップに移行する。そして、グロープラグ22bに通電を行い、同時にS205のステップにてタイマーのカウントアップを開始する。そして、S206のステップにてタイマーのカウント値Cが予め設定した値C以上であるか否かを判定する。最初はタイマーのカウント値CはC未満であるので、S205のステップに戻り、タイマーのカウント値CがC以上になるまでこれらの処理を繰り返す。S206のステップにてタイマーのカウント値CがC以上である、すなわちグロープラグ22bが昇温して燃料の着火が可能であると判断した場合には、S207のステップに移行する。そして、燃料添加が完了していることを示す第2フラグがセットされているか否かを判定する。最初は第2フラグがセットされていないので、S208のステップに移行し、今度は燃料添加中であることを示す第1フラグがセットされているか否かを判定する。最初は第1フラグがセットされていないので、S209のステップに移行し、S202にて設定された条件にて燃料の添加を開始すると共に第1フラグをセットし、S210のステップに移行して燃料添加が完了したか否かを判定する。最初は燃料添加がまだ完了していないので、S205のステップに戻って上述した処理を繰り返すが、この場合には第1フラグがセット済みであるので、S208のステップからS210のステップに移行することとなる。
 このようにして、S210のステップにて燃料添加が完了したと判断した場合には、S211のステップに移行してグロープラグ22bへの通電を止め、第1フラグをリセットすると共に第2フラグをセットした後、S212のステップに移行する。S212のステップではタイマーのカウント値Cが再び燃料添加を行うのに適した時間が経過したことを示す予め設定した値C以上であるか否かを判定する。最初はタイマーのカウント値CはC未満であるので、S205のステップに戻って上述した処理を繰り返すが、第2フラグがすでにセット済みであるので、S207のステップからS212のステップに移行することとなる。
 このようにして、S212のステップにてタイマーのカウント値CがC以上である、すなわち次の燃料添加処理に移行することができると判断した場合には、S213のステップに移行する。そして、第2フラグをリセットすると共にタイマーのカウント値を0にリセットした後、図4Aに示したメインのルーチンに戻り、S11以降のステップを実行する。
 一方、S12のステップにて触媒下流温度Tが第3の温度Tよりも高い、すなわち触媒下流温度Tを下げることが望ましいと判断した場合には、S21のステップに移行して第1フラグがセットされているか否かを判定する。ここで、第1フラグがセットされている、つまり燃料添加中であると判断した場合には、S22のステップに移行して燃料の添加量を減量することにより、DOC24aに流入する排気の温度を低下させる。このようにして触媒下流温度Tが第3の温度T以下に降温するようにした後、再びS11のステップに戻る。また、S21のステップにて第1フラグがセットされていない、すなわち燃料添加中ではないと判断した場合には、S23のステップに移行する。そして、スロットルアクチュエーター19を介してスロットル弁20の開度を所定量だけ増大させ、吸入空気量の増大に伴う排気温の低下を図る。このようにして触媒下流温度Tが第3の温度T以下に降温するようにし、再びS11のステップに戻る。
 つまり、DOC24aの下流端部の床温Tが第3の温度Tよりも高い場合、燃料添加量を減量したり吸入空気量を増量したりしてDOC24aの下流端部の床温Tが上昇し過ぎるのを抑制する。これにより、DOC24aの下流端部をNOの生成効率の高い状態に維持することができる。
 前記S11のステップにて触媒下流温度Tが第2のTよりも低い、すなわち触媒下流温度Tを昇温させる必要があると判断した場合には、S24のステップに移行して第1フラグがセットされているか否かを判定する。ここで、第1フラグがセットされている、すなわち燃料添加中であると判断した場合には、S25のステップに移行して燃料添加弁22aの駆動周期を短縮して空燃比を小さくし、DOC24aに流入する排気の温度を上昇させる。このようにして触媒下流温度Tを昇温させた後、先のS13以降のステップを実行する。また、S24のステップにて第1フラグがセットされていない、すなわち燃料添加中ではないと判断した場合には、先のS20のステップに移行する。そして、燃料添加可能な運転状態の場合、排気通路23aに燃料を添加してこれを着火燃焼させ、DOC24aの昇温を図る。
 なお、本発明はその請求の範囲に記載された事項のみから解釈されるべきものであり、上述した実施形態においても、本発明の概念に包含されるあらゆる変更や修正が記載した事項以外に可能である。つまり、上述した実施形態におけるすべての事項は、本発明を限定するためのものではなく、本発明とは直接的に関係のないあらゆる構成を含め、その用途や目的などに応じて任意に変更し得るものである。
 10 エンジン
 15 ECU
 15a 運転状態判定部
 15f 燃料添加設定部
 15g 燃料添加弁駆動部
 15h グロープラグ駆動部
 22 排気加熱装置
 22a 燃料添加弁
 22b グロープラグ
 23a 排気通路
 24 排気浄化装置
 24a DOC
 24b DPF
 24c NO吸蔵触媒コンバーター
 27 NOセンサー
 28 触媒入側温度センサー
 29 触媒出側温度センサー
 T DOCの上流端部の床温
 T DOCの下流端部の床温
 T 第1の温度
 T 第2の温度
 T 第3の温度

Claims (14)

  1.  内燃機関と排気通路に沿って直列に配される少なくとも2種類の排気浄化エレメントを有する排気浄化装置との間の前記排気通路に燃料を添加するための燃料添加弁と、
     前記排気通路に添加された燃料を着火させるための着火手段と
     を具え、前記排気通路の上流側に配される前記排気浄化エレメントが酸化触媒コンバーターである排気加熱装置であって、
     前記酸化触媒コンバーターの上流端部の温度を求める手段と、
     前記酸化触媒コンバーターの下流端部の温度を求める手段と、
     これら温度を求める手段によって求められた温度に基づいて前記燃料添加弁および前記着火手段の作動を制御する制御手段と
     をさらに具え、前記制御手段は、前記酸化触媒コンバーターの上流端部の温度を第1の温度以上に間欠的に上昇させると共に前記酸化触媒コンバーターの下流端部の温度が前記第1の温度よりも低く、かつこの第1の温度よりも低い第2の温度以上に維持されるように、前記燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする排気加熱装置。
  2.  前記制御手段は、前記酸化触媒コンバーターの下流端部の温度が前記第2の温度と前記第1の温度よりも低くかつ前記第2の温度よりも高い第3の温度との間に維持されるように、前記燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする請求項1に記載の排気加熱装置。
  3.  前記第1の温度は排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような温度であり、前記第2の温度は排気に含まれるNOが排気に含まれるHCによりNOに還元されてしまう量が、排気に含まれるNOが前記酸化触媒コンバーターにて酸化されることにより生成するNOの量よりも多くなる上限温度であり、前記第3の温度は排気に含まれるNOの量が最も多くなるような温度であることを特徴とする請求項2に記載の排気加熱装置。
  4.  前記酸化触媒コンバーターよりも下流側に位置する前記排気浄化エレメントがディーゼル用パティキュレートフィルターおよび選択還元触媒コンバーターまたはNO吸蔵還元触媒コンバーターの少なくとも1つを含むことを特徴とする請求項3に記載の排気加熱装置。
  5.  前記内燃機関から排出されるNOの量を求める手段をさらに具え、前記制御手段は、前記NOの量を求める手段によって求められたNOの量に応じて前記燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする請求項1から請求項4の何れかに記載の排気加熱装置。
  6.  前記制御手段は、前記内燃機関から排出されるNOの量が多いほど空燃比がより小さな値となるように、前記燃料添加弁からの燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする請求項5に記載の排気加熱装置。
  7.  前記制御手段は、空燃比が15から35までの範囲に収まるように、前記燃料添加弁から前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする請求項1から請求項6の何れかに記載の排気加熱装置。
  8.  内燃機関と排気通路に沿って直列に配される少なくとも2種類の排気浄化エレメントを有する排気浄化装置との間の排気通路に燃料を添加してこれを着火させ、加熱した排気を前記排気浄化装置に導く排気加熱方法であって、前記排気通路の上流側に配される前記排気浄化エレメントが酸化触媒コンバーターであり、
     この酸化触媒コンバーターの上流端部の温度を求めるステップと、
     前記酸化触媒コンバーターの下流端部の温度を求めるステップと、
     求められた前記酸化触媒コンバーターの上流端部および下流端部の温度に基づいて前記排気浄化装置に導かれる排気の温度を制御するステップと
     を具え、前記排気の温度を制御するステップは、
     前記酸化触媒コンバーターの上流端部の温度を第1の温度以上に間欠的に上昇させるステップと、
     前記酸化触媒コンバーターの下流端部の温度が前記第1の温度よりも低く、かつ前記第1の温度よりも低い第2の温度以上に維持されるように、前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を調整するステップと
     を含むことを特徴とする排気加熱方法。
  9.  前記排気の温度を制御するステップは、前記酸化触媒コンバーターの下流端部の温度が前記第2の温度と前記第1の温度よりも低くかつ前記第2の温度よりも高い第3の温度との間に維持されるように、前記排気通路への燃料の添加量および添加時期の少なくとも一方を制御するステップをさらに含むことを特徴とする請求項8に記載の排気加熱方法。
  10.  前記第1の温度は排気に含まれるNOが熱分解してNOに還元される反応の割合がその逆の反応の割合と同じか、それよりも多くなるような温度であり、前記第2の温度は排気に含まれるNOが排気に含まれるHCによりNOに還元されてしまう量が、排気に含まれるNOが前記酸化触媒コンバーターにて酸化されることにより生成するNOの量よりも多くなる上限温度であり、前記第3の温度は排気に含まれるNOの量が最も多くなるような温度であることを特徴とする請求項9に記載の排気加熱方法。
  11.  前記酸化触媒コンバーターよりも下流側に位置する前記排気浄化エレメントがディーゼルパティキュレートフィルターおよびNO選択還元触媒コンバーターまたはNO吸蔵還元触媒コンバーターの少なくとも1つを含むことを特徴とする請求項10に記載の排気加熱方法。
  12.  前記内燃機関から排出されるNOの量を求めるステップをさらに具え、前記排気の温度を制御するステップは、求められたNOの量に応じて前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御するステップをさらに含むことを特徴とする請求項8から請求項11の何れかに記載の排気加熱方法。
  13.  前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御するステップは、前記内燃機関から排出されるNOの量が多いほど空燃比がより小さな値となるように、前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を制御することを特徴とする請求項12に記載の排気加熱方法。
  14.  前記排気通路に添加される燃料の添加量および添加時期の少なくとも一方を調整するステップは、空燃比が15から35までの範囲に収まるように、燃料の添加量および添加時期の少なくとも一方を制御するステップを含むことを特徴とする請求項8から請求項13の何れかに記載の排気加熱方法。
PCT/JP2012/006272 2012-10-01 2012-10-01 内燃機関の排気加熱装置および排気加熱方法 WO2014054064A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006272 WO2014054064A1 (ja) 2012-10-01 2012-10-01 内燃機関の排気加熱装置および排気加熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006272 WO2014054064A1 (ja) 2012-10-01 2012-10-01 内燃機関の排気加熱装置および排気加熱方法

Publications (1)

Publication Number Publication Date
WO2014054064A1 true WO2014054064A1 (ja) 2014-04-10

Family

ID=50434436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006272 WO2014054064A1 (ja) 2012-10-01 2012-10-01 内燃機関の排気加熱装置および排気加熱方法

Country Status (1)

Country Link
WO (1) WO2014054064A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134729A (ja) * 2020-02-27 2021-09-13 いすゞ自動車株式会社 排気浄化システムおよびその制御方法
JP2021134730A (ja) * 2020-02-27 2021-09-13 いすゞ自動車株式会社 排気浄化システムおよびその制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036120A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010127186A (ja) * 2008-11-27 2010-06-10 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010265862A (ja) * 2009-05-18 2010-11-25 Toyota Industries Corp 排気ガス浄化装置
JP2011231718A (ja) * 2010-04-28 2011-11-17 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036120A (ja) * 2007-08-02 2009-02-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010127186A (ja) * 2008-11-27 2010-06-10 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010265862A (ja) * 2009-05-18 2010-11-25 Toyota Industries Corp 排気ガス浄化装置
JP2011231718A (ja) * 2010-04-28 2011-11-17 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134729A (ja) * 2020-02-27 2021-09-13 いすゞ自動車株式会社 排気浄化システムおよびその制御方法
JP2021134730A (ja) * 2020-02-27 2021-09-13 いすゞ自動車株式会社 排気浄化システムおよびその制御方法
JP7298511B2 (ja) 2020-02-27 2023-06-27 いすゞ自動車株式会社 排気浄化システムおよびその制御方法
JP7298512B2 (ja) 2020-02-27 2023-06-27 いすゞ自動車株式会社 排気浄化システムおよびその制御方法

Similar Documents

Publication Publication Date Title
US7818960B2 (en) SCR cold start heating system for a diesel exhaust
RU2641865C2 (ru) Способ работы системы выпуска двигателя и система выпуска двигателя транспортного средства
US7146800B2 (en) Exhaust purification device and exhaust purification method of internal combustion engine
US10113460B2 (en) Method for adjusting the temperature of an exhaust gas aftertreatment device
JP5152413B2 (ja) 内燃機関
JP5338985B1 (ja) 排気加熱方法
JP5141824B2 (ja) 内燃機関の排気浄化装置
US9551250B2 (en) Operation control apparatus and method for internal combustion engine
JP5120503B2 (ja) 内燃機関
CN109209588A (zh) 用于调整燃烧以缓解排气过温的系统和方法
JP2019513930A (ja) 自動車のための排出ガス制御システムおよび方法
WO2014054064A1 (ja) 内燃機関の排気加熱装置および排気加熱方法
JP6128122B2 (ja) 内燃機関の排気浄化装置
CN110857650B (zh) 半经验引擎排放烟尘模型
CN109538341B (zh) 排放控制系统及其计算机实施方法
JP5614004B2 (ja) 触媒昇温装置
JP6504474B2 (ja) エンジンの排気浄化装置
JP6977587B2 (ja) エンジンの排気浄化制御装置
JP5949942B2 (ja) 内燃機関の運転制御装置および方法
JP2004092497A (ja) ディーゼルエンジンの排気浄化装置
JP2005090249A (ja) 温度制御装置
WO2017179674A1 (ja) 内燃機関の排ガス浄化装置
JP3557930B2 (ja) 内燃機関の排気浄化装置
JP6079567B2 (ja) 排気浄化装置の制御方法
JP6947056B2 (ja) エンジンの排気浄化制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP