WO2014053673A1 - Termo calentador semi instantáneo inducido por microondas - Google Patents

Termo calentador semi instantáneo inducido por microondas Download PDF

Info

Publication number
WO2014053673A1
WO2014053673A1 PCT/ES2012/070686 ES2012070686W WO2014053673A1 WO 2014053673 A1 WO2014053673 A1 WO 2014053673A1 ES 2012070686 W ES2012070686 W ES 2012070686W WO 2014053673 A1 WO2014053673 A1 WO 2014053673A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
semi
microwave
induced
heater
Prior art date
Application number
PCT/ES2012/070686
Other languages
English (en)
French (fr)
Inventor
Diego Jose Correa Hidalgo
Original Assignee
Diego Jose Correa Hidalgo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES12886154.9T priority Critical patent/ES2641962T3/es
Application filed by Diego Jose Correa Hidalgo filed Critical Diego Jose Correa Hidalgo
Priority to PCT/ES2012/070686 priority patent/WO2014053673A1/es
Priority to JP2015535069A priority patent/JP6085896B2/ja
Priority to KR1020157009699A priority patent/KR101741931B1/ko
Priority to US14/431,117 priority patent/US20150245425A1/en
Priority to EA201590476A priority patent/EA028316B1/ru
Priority to EP12886154.9A priority patent/EP2906019B1/en
Priority to AU2012391721A priority patent/AU2012391721B2/en
Priority to CA2883382A priority patent/CA2883382C/en
Priority to CN201280076157.1A priority patent/CN104685966B/zh
Publication of WO2014053673A1 publication Critical patent/WO2014053673A1/es
Priority to IL237927A priority patent/IL237927B/en
Priority to IN2607DEN2015 priority patent/IN2015DN02607A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/802Apparatus for specific applications for heating fluids
    • H05B6/804Water heaters, water boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/002Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/12Arrangements for connecting heaters to circulation pipes
    • F24H9/13Arrangements for connecting heaters to circulation pipes for water heaters
    • F24H9/133Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/14Cleaning; Sterilising; Preventing contamination by bacteria or microorganisms, e.g. by replacing fluid in tanks or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/045Microwave disinfection, sterilization, destruction of waste...

Definitions

  • thermo heater It is an object of the present invention, as the title of the invention establishes, a microwave-induced semi instantaneous thermo heater.
  • thermo object of the invention the combination of elements and materials in such a way that a term is achieved, which produces almost instantaneous water heating, which reduces energy consumption, and that ensures effective protection against legionella.
  • the present invention is circumscribed within the technical sector of water heating by electric power; both for domestic, industrial, or professional use. STATE OF THE TECHNIQUE
  • Hot water is used in showers, and all those running water procedures where it is necessary to heat it for use.
  • spot heater which is a step procedure (without tank);
  • the energy sources used are diverse from gas, fossil fuels, to solar and electrical sources.
  • electrical resistance By means of "electrical resistance”; which can be with magnesium anode, or by means of sealed resistances (layers of porcelain media and an interior finish in copper).
  • the electrical consumption of the coil thermos is different since the energy is consumed only when the water is heated, but the energy effort to instantly raise the water for consumption gives a high exponent, which is reflected in the energy billing. They really consume less energy since it is punctual, but forces the connections to be higher.
  • the current boiler thermoses are made of metal, undergo electrolysis. For very good metal by which the boiler vessels are made, they will lose electrons, this is minimized by adding to the anode magnesium heaters, which is a metal that when applying a low electrical intensity will act as a punishment anode, that is, to protect the oxidation of the boiler.
  • the problem derived from the use of these punishment anodes is that the disintegration salts of the magnesium anode are ferro bacteria food, just like any oxide inside the tank. These ferro bacteria are the legionella caviar. If we add to this process that water carries mud sludge, bacteria find a reservoir for its development.
  • the object of the invention is a semi-instantaneous thermoheater in which the heating is carried out by means of micro-rounds generated by magnetrons, where in addition the deposit is made of glass, hygienic material and prevents the formation of bacteria colonies, where it also has a mixing valve that performs double filtration that allows additional protection in the transfer of biofilms.
  • thermoheater comprises:
  • a double filter mixing valve is arranged and mounted under the lid.
  • thermoheater object of the invention provides an absolute isolation of the electrical elements of the water circuit; really the heat exchanger is the water itself.
  • the water will be heated by radiofrequencies in an innocuous element "a tank or boiler of recycled glass", said boiler has a plastic lid with internal conductive sheet, allowing this tank to be cleaned of tartar and debris, which would accumulate by the hours of use (Let's understand that the water is loaded with different sediments, that in other types of thermo heaters it is impossible to clean. And we must also understand that this type of particles and being a type of glass tank would not corrode or oxidize its walls).
  • the deposit is formed by two glass tanks in the form of an outer and an inner jar that will be one, fitting one inside the other. Internally they are separated by a double sheet of polyvinyl butyral or similar, leaving in the center a laminate of aluminum or conductive material with perforations. Being an isotropic, from its outermost laminate: Glass, butyral sheet, aluminum or conductive plate, butyral and glass. Material that obtains flexural capacity but great impact hardness.
  • Another advantage is the leakage safety system that it has.
  • the main function of metal rolling is not only the synergy of the entire structure of the tank, but also to prevent the radio frequencies of the microwaves and the interwoven of this metal grid from escaping to the outside, being a safety system against cracks.
  • Another advantage is the absolute electrical insulation, the shielding of the magnetrons is by porcelain elements. There are advanced materials like Graphite Composites, silicon carbide that allow maximum thermal exchange.
  • the mixing valve does not require a backstop system.
  • the existing valves on the market offer the possibility of mixing hot and cold water, but all are external to the water circuit, requiring an anti-return system. They save energy, but in contrast they can be a breeding ground for legionella, in the case of this invention the valve is internal, is plastic or porcelain, has no recoil and will be bathed by microwaves, saving energy and without generating countermeasures such as external
  • the heat chamber is faster than in conventional terms and with marked energy efficiency.
  • Magnetron which consists of two types of cadmium, neodymium, or alloys. They are subjected to very high tensions of the order of 5000 vo lt ios. In this moment, the tension is not more than a microsecond. Discharged by a capacitor that acts as a voltage duplicator, but although this tiny fraction of the energy application is one millionth of a second, repeated in a cycle of m i l iseconds. The magnetron will be constantly powered by a voltage of around 2000 volts. Being based on a circuit:
  • the magnetron will be constantly powered in the circuit, by the voltage delivered by the transformer. This heat is located in the resonant cavity where this constant tension is applied.
  • the images should not reach Curie temperature because if they did not lose their magnetic capacity, they would not force the electrons to spiral between the cavitations of the cavity and microwave radio frequencies would not occur. For this reason the magnetrons are cooled, the two systems currently applied are forced by air: A powerful fan extracts heat that dissipates by fins cooling the resonant cavity, or water cooling a small tube that will surround the cavity and that in a variable flow it will force the cooling.
  • This real invention lifts induction cooling.
  • the resonant cavity will be surrounded by two porcelain bodies, which will be sealed (bolting to each other) remaining as one around them, they are of high thermotransmitter capacity.
  • This element called "primary exchanger" is fully adapted by supplanting the entire fin element which is an air-forced restraint system.
  • the primary exchanger with the magnetron will fit inside the secondary or main exchanger, improving the contact, if necessary, also with thermotransmitter resin.
  • the function of the two exchangers is to form a solid body a highly dissipative assembly, which will be housed internally as a molding in the water boiler tank, ensuring the tightness and isolation of the magnetron.
  • a Wave Guide of a length of four centimeters, its function to drive the magnetron radio frequencies is really a hollow cylinder that protrudes from the secondary exchanger, made of porcelain, has an inner laminate of conductive material, closes with a microwave transparent lens (leaving the entire body tight) directing the magnetron antenna towards the center of the tank. Its length depends on the power and cycle of the magnetrons
  • the deposit can be made of polymers, but preferably it will be made of glass, and it can be and by its function of recycled glass, in the form of a Jar (the shape without profiles or angles is sought, it has a mouth of approximately 20 cm of hole where the interior will be accessed, with a variable capacity according to the needs or production function given the water consumption, of a sandwich structure in its molding.
  • the layers would be located according to their direction from outside to inside:
  • Conductive perforated sheet, or metal mesh being microwave screen.
  • the laminate, or mesh, would close at the neck-cover of the tank, this allows the contact with the lid to close to a centronics-type terminal by transmitting information to an EPROM memory or a CPU terminal.
  • the cover in turn carries the thermostat and the cold water inlet and hot water outlet valves; Both connections are at the top of this thermoheater, facilitating the emptying of the thermos for cleaning the tank.
  • the cold water inlet will connect with a plastic tube, this tube in turn with a mixing valve that has two inlets and one outlet.
  • the mixing valve will be of rotation and without backward movement and totally mechanical. This valve is crimped inside the cover that has three threaded connections:
  • thermoheater allows the temperature of the water to be raised to 85 to - 90 ° Celsius, but even at lower temperatures, such as 65 ° C, direct exposure is dangerous. For this fact, it has a mechanical stop that, in the event of an electrical failure, has a maximum mixture of cold water.
  • the adjustment of the stem and the amount of mixing is done externally, it can be manually or by solenoid, controlled by eprom
  • the internal thermostat will detect the temperature, turning off and on the system, to maintain a programmed temperature in the device.
  • the lid on its outlet has a thermostat with digital information. Therefore the system carries two thermostats and adaptation for these mechanisms, they are directly adapted to the cover and inform the eprom of the internal temperature of the water and the one that circulates through its outlet pipe.
  • the thermoheater system is based on microwave radio frequency heating, has two magnetrons of 1.2 kilowatts, with a total power of the two magnetrons of 2.4 Kw.
  • Each magnetron is located within its respective primary exchanger and each within its secondary exchanger, the exchange systems house the magnetrons within the reservoir itself, helping these dissipate the high temperatures produced by emitting the radio frequencies.
  • the wattage of magnetrons is variable in relation to the deposit and the needs that it marks.
  • the energy production cost of a magnetron is not more expensive than that of a resistor.
  • the resistances carry a constant but slower conduction process, while the heat generated by the m agnetrons is exponential, in turn the resistances lose capacity the closer they get to critical heating points, inverse to the magnetrons
  • Radio frequencies treat water as an electromagnetic conductor with conductor behaviors, the water temperature will have a more homogeneous coefficient and less energy will be needed to maintain it at an ideal heat temperature within the water tank. The hotter the water molecules, the greater the heat they will absorb, therefore if we approach the critical point of radio frequency absorption which is 78.8 ° we find a minimum effort on the part of the micro waves throughout an exponentially inverse contrast with the electrical resistances .
  • the waveguide in its radio frequency emission is exemplary since at its base it complies with the principle of felicitc operation and that air is a conductor and a dielectric that is water, and that in the case of this system is met.
  • the waveguide of this system will be immersed in water that is the perfect sample and in an almost perfect dielectric. This consequently brings that all the emissions not only the direct ones are absorbed by the water, that is to say maximum the unrecorded electronic frequencies would generate a TE (electrical transverse) that would massively polarize the water.
  • This new system connects two magnetrons being in inverted loads one to the positive and the other magnetron to negative, it is understood as an ideal model as a result of not having energies not provided for in the system, It works at ideal temperature and no microwave frequency would rebound in the magnetron. We consequently have a massively stable model.
  • the firing flow of a magnetron is an inverted clock frequency but synchronized to the second magnetron, which is operated under a scheme of fixed magnetron shots, not in frequency of sequential firing shots as in a microwave oven, that is to say always the nominal power value of a magnetron and constancy that 30% of energy that a magnetron will not be parasitized will be stolen from the magnetron in its shutdown cycle and delivered to the other magnetron before starting its ignition cycle, when rectifying this current will not collide against those delivered by the capacitor and the transformer constant, saving that effort 30% more than the transformer. When rectifying these currents it is estimated that this savings and stability values would be even greater.
  • the cover of the system will have a multipin connector, this will be connected to a similar cable and at the other end to an "EPROM" memory controller of the entire system, said EP ROM processor, will control all the functions receiving information from each of the processes within this invention: Its power 9-12- or 24 volts according to the most appropriate procedures, a second cable will lead to the high voltage power system with a protective fuse.
  • the information can be displayed by LEDs or by a small information screen Hosting water inlets and outlets adaptation for thermostat terminals and their electrical connections. A third sealed tube for possible relief.
  • the plunger that can be operated manually or by solenoid will stand out.
  • External protective box The tank and all the internal parts are covered with an external laminate, of synthetic foams in its internal part and a rigid laminate that reinforces it, insulates and seals, being a protective surface and which in turn carries in insulated boxes of the deposit, the electronics.
  • the insulating sheet can be of various materials.
  • the tank will be attached to the chassis by a plastic piece on which it will rest, in turn secured by a belt of the tank that makes it fixed.
  • thermos The doors of the thermos.
  • the thermos carries the door to be able to access its interior and how much it can be seen, its use or reposition of the chamber. Mechanically it will have a switch button, its function is to activate a safety circuit, which carries a maximum load resistance that will discharge capacitors, this mechanical safety function serves as a power switch for the entire system.
  • the capacitors should not maintain a charge in normal use and that after any operation operation should be discharged, that the system is grounded, and that this resistance that is of high safety will always discharge to the capacitors even if the system is considered shut down .
  • the water control can be carried out by mixing from the thermos itself, leaving the water at the desired temperature and controlled without mixtures outside the thermos.
  • the mixing key is a double filter for legionella and that it will always allow to deliver the water at the desired temperature, for this purpose an electronic connector terminal is available in an electrical connection tube that has a connection directly to the eprom. This connection will allow you to bring the temperature control outside the device.
  • shower or bath terminal this control makes double cold-hot pipes unnecessary;
  • the toilets can have communication control in compliance with European regulations 852/2004 Maximum of this law "Water at 82.2 is the best biocide", not leaving any type of contaminating waste.
  • the toilet will be connected by means of a Centronics cable to the thermos that has an internal key in the tank that will switch two positions: one from tank to tank and another to the discharge, being able in this way and when necessary to carry out a disinfection, bring water to high temperature subsequently the thermos, relax the cold shock with cold water. These tasks can be carried out with circulatory lock keys for process safety.
  • thermoheater object of the invention is shown in side view.
  • Figure 3 shows a representation of the different layers that are used in the formation of the tank of the heater
  • FIG. 5 A perspective representation of the lid is shown in Figure 5.
  • figure 6 shows the cover of the tank of the heater, in which the solenoid has been separated.
  • Figure 7 shows the lower shipping cover and its coupling to the mixing valve.
  • thermoheater such as that which is the object of the invention can be observed, comprising:
  • Magnetrons (3) supported by a support belt or skeleton (2) surrounding the tank (1) which allow the magnetrons to be supported and can be arranged inside the tank (1).
  • a set defined by: a plate or cover (4) is used, which fixed on the belt (2) has two openings on the that the magnetrons fixed and attached to the two parts of the primary exchanger (5) that wrap it like a glove are introduced and fixed in the main exchanger (6) and that is welded to a double wedge of union (31), which is a double piece that bites the tank (1) inside supporting the main exchangers to which it is welded (6) and outside being only a molding that protrudes and joins the tank (1) and is supported and weld also reinforcing from the tank belt (2).
  • the outer part of the double connecting wedge (31) is on which the cover (4) is fixed by screwing, leaving a tight assembly.
  • Each of the magnetrons (3) is housed in the interior space defined by a primary exchanger that in parts forms a single element (5), and in turn this assembly is housed in a main exchanger (6), both responsible for refraining and Exchange the temperature reached by the magnetrons with the water in the tank (3).
  • Both the primary exchanger (5) and the main (6) refrigeration can improve their contacts by thermoconductive resins.
  • the contacts between both exchangers are improved with some thermal superconductor compounds with semi-elastic qualities such as composite graphite
  • FIG 2 the previous representation is observed in side view in which one of the magnetrons and housed in the exchangers is arranged on one of the recesses of the plate (4) and housed inside the tank, while the other of the agnetrons is shown separately from the exchangers that house it.
  • Figure 3 shows the different layers that serve to form the tank (1) where a first layer or outer layer is a glass layer (1 .1) where its outer mouth is as or wider than its base, this allows ite unmold it quickly and easily from the mold has a main mouth, but another one on its side for the adaptation of the exchangers, this same adaptation allows to move the freed tank of the mold by cooling it, getting a tempered glass, much harder and more resistant at temperature cracks.
  • a first support gel (1 .2) is provided, followed by an aluminum foil (1 .3) that acts as a microwave screen.
  • a second support gel (1 .4) is then followed, followed by a glass of glass (1 .5) smaller.
  • the body being formed as an outer and inner glass laminate an aluminum screen separated from the two glass bodies by polyvinyl butyral gel or the like.
  • the set thus obtained can be baked or injected in cold silicones, the aluminum screen will fly as a flap over the other profiles, showing up as a flange for joining.
  • the closing belt (1, 6) and the cover (7) will fit one over the other, ensuring that connection with a series of through screws in the closing belt (1 .6), and a stop with a stop in the lid that secures the mechanism (7 ).
  • the aluminum profile is a panel-type grid, however the protruding flange is sealed and has a mounting molding, the closure belt (1 .6) and adapts sealing with waterproof epoxies leaving everything as a single body after curing the processes .
  • the lid (7) of the magnetron comprises:
  • the solenoid (8) is a potentiometer that as electric current is applied will rotate in one direction or another, its function is to regulate the mixing of water that is done in the mixer tap.
  • the regulation of the mixture will be done through a plunger (15) (figure 6) connected at one end with the solenoid (8) and at another with a mixing valve (20).
  • the solenoid (8) is electrically powered from the electronic contact (13), through the pipe (14) a "Centronics" type wiring that also carries the power to an "EPROM” type memory, not shown.
  • thermostat holder (18) protrudes impervious to the outside connected by terminal (9), allows the thermostat rod to be submerged in hot water.
  • the ruler (1 7) its function is to keep stable the piston (1 5) that rotates internally by the regidor (17), making its function watertight
  • the mixing valve (20) comprises: • An external box that stalls the mixer functions (21), in an open cylindrical shape at one of its ends, while the other has a threaded connection (19) (figure 9) for fixing the spout (17) and step of the plunger (15) that handles it,
  • a mixing disc (22) acts as a filter and is housed inside the mixing box (21), the mixing disc being closed by a sealed seal (23),
  • One of the connectors is an outlet connector (24) of the mixed water, to which an outlet tube (30) is connected (figure 7) that connects to the hot water outlet (12) (figure 5)
  • Another of the connectors is a hot water inlet connector (25) that connects the hot water inlet tube (27).
  • the last connector is a connection connector (26) to a divider bypass (29.1) to which a cold water pipe (29) is connected on one side, which runs through the inside of the tank to almost the bottom of it, and by on the other hand, a tube (28) that connects to the cold water inlet (1 1) (figure 5).
  • the Mixing disk (22) is a spherical hollow cylinder and a main shaft with a piston adaptation housing (22.1), it has a multiple capillarity that interconnects the inner hollow and its outer layer, the capillarity is divided into two different sectors,
  • the Mixing Disc rotates 90 °, having several positions that mechanically allows closing mainly the output to the mixed output connector, or the passage connection closes the entrance to hot water, allowing only cold water to enter, which goes directly through the connector output
  • the double capillarity of the mixing disc fulfills the function of restricting the passage of biofilm, these organic films are chanted to thermal shocks, breaking down into vesicles that are the active form of the infection of the legionella, if it is allowed to pass unfiltered it would reach the artichokes of shower where little by little it will release vesicles, but if we sift it not allowing the passage of the films it will be attacked not only by the thermal shock but by the TE (electric transverse) microwave radio frequency emission these make covalences between the hydrogen atoms Breaking the protein chain of bacteria.
  • FIG 1 1 you can see the spout (17) which has its ends (17.1) and (17.2) both threaded for fixing on the support (16) of the spreader and the threaded connector (19) of the mixer box (21 ).
  • Figure 12 shows a copper or plastic electrical connection tube, after cutting an installed pipe section it is threaded on both sides, the thread on both contacts is internal and external, thus adapting to 1 inch or 3 pipes / 4 the connection is inserted in the multiple connection terminals.
  • connection plug (34) and another external connection plug (33).
  • these pegs are all female.
  • these connections are parallel two internal two external grouped in a wall of the tube allow to connect Centronics type cables (35) of various terminal pins, but standardized, carrying low voltage power supply, and digital information through the cold water pipes, the wired connections can be external, internal, avoiding any obstacle since they are all connected thus carrying shower connections to thermos.
  • the connector terminal is always outside the parts that rotate to couple, not creating any problem of cable forcing. All terminals have a tight screw cap, when removed, the cable connector is closed by screwing and stalling the conduit, a silicone welding point will reinforce this junction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

Termo Calentador que comprende: un depósito (1) fabricado en vidrio, dotado con una tapa (7), unos magnetrones (3) soportados por un cinturón o esqueleto de soporte (2) que rodea al depósito (1), que permiten que los magnetrones queden soportados y se puedan disponer en el interior del depósito (1), cada uno de los magnetrones se aloja sobre un intercambiador primario (5) y éste a su vez sobre uno principal (6); en la tapa se dispone un solenoide (8), un soporte de un termostato de varilla y las entradas y salida de agua, bajo la tapa se dispone una válvula mezcladora (20) conectada por un regidor (17) con la tapa y actuada por medio de un embolo (15) unido al solenoide. La válvula mezcladora es una válvula de doble filtro. Gracias a las características de los materiales utilizados se consigue, por un lado un calentamiento casi instantáneo, una reducción del consumo energético, y una eficaz protección contra la proliferación de colonias tales como la legionella.

Description

TERMO CALENTADOR SEMI INSTANTÁNEO INDUCIDO POR
MICROONDAS
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
Es objeto de la presente invención, tal y como el título de la invención establece, un termo calentador semi instantáneo inducido por microondas.
Caracteriza al termo objeto de la invención la combinación de elementos y materiales de manera tal que se consigue un term o, que prod uce el calentamiento casi instantáneo del agua, que reduce el consumo energético, y que asegura una eficaz protección contra la legionela.
La presente invención se circunscribe dentro del sector técnico de calentam iento de agua por energía eléctrica; tanto para uso doméstico, industrial, o profesional. ESTADO DE LA TÉCNICA
En la actualidad existen diversos modos de calentar agua. El agua caliente se usa en duchas, y todos aquellos procedimientos de aguas corrientes donde es necesaria calentarla para su utilización.
Existen diferentes medios de calentar el agua:
• el más utilizado el calderas de acumulación
• también existen ; calentador de punto, que es un procedimiento de paso (sin tanque);
Las fuentes energéticas empleadas son diversas desde gas, combustibles fósiles, hasta fuentes solares y eléctricos.
Actualmente existen tres procedimientos eléctricos principales para el calentamiento de agua :
· Por medio de "Resistencia eléctrica"; que puede ser con ánodo de magnesio, o por medio de resistencias selladas (capas de medios porcelánicos y un acabado interior en cobre).
• por "serpentín eléctrico", que es una resistencia eléctrica que rodea un tubo metálico por donde circula el agua.
· Un tercero que es un híbrido de los dos anteriores.
En el procedimiento de resistencias eléctricas es empleado en sistemas de calderas eléctricas el agua se calienta lentamente y se mantiene así para su uso, aunque el sistema se mantenga aislado, la resistencia interna que está en contacto con el agua funcionará constantemente. Presentando tres problemas principales: Por un lado, un consumo eléctrico que es un exponencial inverso de la temperatura del agua y la temperatura exterior, obligando a mantener el agua caliente para y hasta el momento de su uso, generando por ende un esfuerzo energético de consumo importante que se ha llegado a medir hasta de un 30 por ciento de las facturas eléctricas. Por otro lado, son materiales contaminantes difíciles de reciclar.
Entendamos que el agua circula y estará estanca en depósitos que aunque vitrificados, son principalmente de bases metálicas.
El consumo eléctrico de los termos de serpentín es diferente ya que la energía se consume solo cuando se calienta el agua, pero el esfuerzo energético para elevar instantáneamente el agua para su consumo dan un exponente elevado, que se refleja en la facturación de la energía. Realmente consumen menos energía ya que es puntual, pero obl iga a que las acometidas sean más elevadas.
El resultado es un esfuerzo energético mayor y una desproporcionada factura energética, a su vez se suelen obturar con facilidad y más con aguas dura y solo son recomendables en climas templados. En su mayoría necesitan conexiones trifásicas.
Respecto del tercer modelo indicado, llamado "sem instantáneo" , "ecológico" es un híbrido de los dos anteriores, no obstante estos modelos se basan en el sistema eléctrico por resistencia, y siendo estas necesariamente blindadas y en algunos casos de hasta 8000 watios, no presentan más mejoras que su reducido tamaño.
Por otro lado, los actuales termos de caldera son de metal, sufren electrólisis. Por muy buen metal por el que se hagan los recipientes de las calderas, perderán electrones, esto se minimiza agregando a los calentadores ánodos de magnesio, que es un metal que al aplicar una baja intensidad eléctrica actuará como ánodo de castigo, es decir, para proteger la oxidación de la caldera. El problema derivado de la utilización de estos ánodos de castigo es que las sales de desintegración del ánodo de magnesio son alimento de ferro bacterias al igual que cualquier oxido dentro del depósito. Estas ferro bacterias son el caviar de la legionella. Si sumamos a este proceso que el agua transporta lodos barros, las bacterias encuentra un reservorio para su desarrollo. Para evitar la formación de colonia de legionella se hace necesario elevar la temperatura del agua por encima de 70°C porque las bacterias se enquistan en amebas que se refugian en la parte más fría de un calentador convencional que es el fondo donde se acumulan los lodos donde pueden sobrevivir en importantes núcleos contaminantes.
Por lo tanto, es objeto de la presente invención superar los inconvenientes apuntados, sobre todo relativos al consumo eléctrico, y formación de colonias de bacterias tales como la legionella y que además presente un factor de reciclado más eficiente tras su uso, desarrollando una caldera como la que a continuación se describe y queda recogida en la reivindicación primera.
DESCRIPCIÓN DE LA INVENCIÓN El objeto de la invención es un termocalentador semi instantáneo en el que el calentam iento se real iza por medio de m icroondas generadas por unos magnetrones, donde además el depósito está realizado en vidrio, material higiénico y que evita la formación de colonias de bacterias, donde además cuenta con una válvula mezcladora que realiza un doble filtrado que permite una protección adicional en la transferencia de biofilms.
El termocalentador comprende:
• Un depósito realizado en vidrio
· Unos magnetrones montados sobre el depósito y alojados en su interior
• Una tapa de cierre y conexión del depósito donde se disponen las conexiones de los elementos de control, tales como el termostato, o un solenoide, así como las conexiones de entrada y salida del agua. Bajo la tapa se dispone y monta una válvula mezcladora de doble filtro.
Ventajas que aporta esta invención
Por un lado el termocalentador objeto de la invención proporciona, un absoluto aislam iento de los elementos eléctricos del circuito de agua; realmente el intercambiador de calor es el propio agua.
Además, el agua será calentada por radiofrecuencias en un elemento inocuo "un depósito o caldera de vidrio reciclado", dicha caldera tiene una tapa de plástico con lámina conductora interna, permitiendo lim piarse de sarros y residuos este depósito, los que se ¡rían acumulando por las horas de uso (Entendamos que el agua está cargada de diferentes sedimentos, que en otros tipos de termo calentadores es imposible de limpiar. Y también debemos entender que este tipo de partículas y por ser un tipo de depósito de vidrio no corroerían ni oxidaran sus paredes).
El depósito está formado por dos depósitos de vidrio en forma de tarro uno externo y otro i nterno que se un irán , encajando uno dentro del otro. Internamente se separan por una doble lámina de butiral de polivinilo o similar, dejando en el centro un lam inado de alum inio o material conductor con perforaciones. Siendo un isótropo, desde su lam inado más exterior: Vidrio, lámina de butiral, plancha de aluminio o conductor, butiral y vidrio. Material que obtiene capacidad de flexión pero gran dureza al impacto.
Una diferencia de muy baja intensidad entre el agua y la lám ina de metal conductor o aluminio detectaría grietas. Cerrando el circuito
Otra ventaja es el sistema de seguridad de fugas con el que cuenta. La función principal del laminado de metal, no es sólo la sinergia de toda la estructura del depósito, sino y impedir que las radiofrecuencias de las microondas y por el entretejido de esta rejilla metálica fuguen al exterior, siendo un sistema de segundad ante grietas. También, el hecho de que el material no es degenerativo, no existen óxidos o emulsiones, el agua no se realimentaría de sedimentos. Lavable, con sistema de seguridad ante grietas o fugas de agua. Otra ventaja es el aislamiento eléctrico absoluto, el blindaje de los magnetrones es por elem entos porcelán icos. Existen m ateriales avanzados com o Composites de grafito, carburo de silicio que permiten un máximo intercambio térmico.
Por otro lado, la válvula mezcladora no precisa de sistema antiretroceso. Las válvulas existentes en el mercado ofrecen la posibilidad de mezclar agua caliente y fría, pero todas son externas al circuito de agua, necesitando un sistema antiretroceso. Economizan energía, pero en contraposición pueden ser un caldo de cultivo para legionella, en el caso de esta invención la válvula es interna, es plástica o de porcelana, no tiene retroceso y será bañada por las microondas, economizando energía y sin generar contramedidas como las externas. E l i ntercam bio de calor es m ás rápido q ue en los term os convencionales y con una marcada eficiencia energética.
Descripción de los elementos que conforman el diseño de esta invención
• El magnetrón: que se conforma por dos ¡manes de cadmio, neodimio, o aleaciones. Son sometidos a altísimas tensiones del orden de los 5000 vo lt ios . Rea l m ente esta a ltís i m a tens ió n no es m ás q u e u n microsegundo. Descargada por un condensador que hace las veces de duplicador de tensión, pero aunque esta ínfima fracción de aplicación energética es de una millonésima parte de segundo, repetido en ciclo de m i l isegundos. E l magnetrón se encontrará constantemente alimentado por una tensión que rondara los 2000 voltios. Estando basado en un circuito:
• Un transformador con un elemento secundario,
• en una bobina que multiplica por diez la tensión recibida;
• Un diodo rectificador
· y un condensador en línea que hacen la duplicación de tensión por acumulación de carga.
El magnetrón estará constantemente alimentado en el circuito, por la tensión que entrega el transformador. Este calor se localiza en la cavidad resonante donde se aplica esta tensión constante. Los ¡manes no deben alcanzar la tem peratura Curie ya que si no perdería su capacidad magnética, no forzarían a los electrones a circular en espiral entre las cavitaciones de la cavidad y no se producirían radio frecuencias de microondas. Por esta razón se refrigeran los magnetrones, los dos sistemas aplicados en la actualidad son forzados por aire: Un potente ventilador extrae el calor que se disipa por unas aletas refrigerando la cavidad resonante, o refrigeración por agua un pequeño tubo que rodeará la cavidad y que en un caudal variable forzara la refrigeración.
Esta invención real iza la refrigeración por inducción. La cavidad resonante estará rodeada por dos cuerpos porcelánicos, que se sellarán (atornillándose uno al otro) quedando como uno solo a su alrededor, son de elevada capacidad termotransmisora. Existe en el mercado grafitos sem ielásticos, es decir si el intercambiador está lam inado en estas características hacen un contacto perfecto, no obstante, si no tiene la suficiente capacidad elástica se mejora el contacto con el magnetrón p o r u n a re s i n a t érmica, de esta manera se conseguirá un intercambiador de calor entre el magnetrón y el agua. Este elemento l lam ado " intercam biador prim ario" se adapta com pletam ente suplantando a todo el elemento de aletas que es un sistema refngerante forzado por aire. Y a su vez el intercambiador primario con el magnetrón encajarán dentro del intercambiador secundario o principal mejorándose el contacto, si fuera necesario, tam bién con resina termotransm isora. La función de los dos intercambiadores es la de formar un cuerpo sólido un conjunto altamente disipador, que se alojará internamente como una moldura en el depósito de la caldera de agua, asegurando la estanqueidad y las aislación del magnetrón.
Elementos principales del intercambiador secundario:
• Una Guía de Ondas, de un largo de cuatro centímetros su función conducir las radio frecuencia del magnetrón realmente es un cilindro hueco que sobresale del intercambiador secundario, de porcelana, tiene laminado interior de material conductor, se cierra con una lente transparente a las microondas (quedando todo el cuerpo estanco) direccionando la antena del magnetrón hacia el centro del depósito. Su largo depende de la potencia y ciclo de los magnetrones
El depósito, puede ser de polímeros, pero preferentemente será de vidrio, pudiendo ser y por su función de reciclados de vidrio, en forma de Tarro ( se busca la forma sin perfiles ni angulaciones, tiene una boca de aproximadamente 20 cm de hueco por donde se accederá al interior. De capacidad variable según las necesidades o función de producción dado el consumo agua, de estructura tipo sándwich en su moldeado. Las capas se ubicaría según su direccionamiento de exterior a interior:
• capa de vidrio moldeada templada bajo impacto de enfriamiento
• capa de butiral de polivinilo o similar,
• Lámina perforada conductora, o malla metálica, siendo pantalla microondas.
• capa de butiral de polivinilo o similar,
• capa de vidrio moldeada templada bajo impacto de enfriamiento
• Según características de resistencia y volumen vahando de 0,5 a 1 cm , El diámetro y espesor de paredes se circunscribe a la capacidad de almacenamiento de agua
• La función de esta elemento cumple 3 funciones:
• 1 o contener las radiofrecuencias la Pantalla lám ina metálica lo impide;
• 2o ser un material sinérgico y con un elevado coeficiente de resistencia. • 3o de producirse una grieta la malla cerraría circuito, esto implicaría apagar todo el sistema enfriándose, (evitándose la posible explosión como en otros termos calentadores). En este dispositivo la medida más dramática sería una grieta por la que se aliviaría la presión, a su vez este invento lleva también adaptación válvula de desahogo. Lo explicado son añadidos de segundad.
El laminado, o mallado se cerraría en la boca- tapa cuello del depósito, esto perm ite que al cerrarse el contacto con la tapa sirva de puente hasta un terminal tipo centronics transmitiendo información a una memoria EPROM o un terminal CPU. · La tapa a su vez lleva el termostato y las válvulas de entrada de agua fría y salida de agua caliente; Ambas conexiones están en el alto de este termocalentador, facilitando el vaciado del termo para la limpieza del depósito. La entrada de agua fría conectará con un tubo plástico, este tubo a su vez con una válvula mezcladora que cuenta con dos entradas y una salida. La válvula mezcladora será de giro y sin retroceso y totalmente mecánica, Dicha válvula va engarzada en el interior de la tapa que tiene tres conexiones roscadas:
• 1 o lleva un tubo hasta el bajo del depósito a través de este se repondrá el agua fría;
• 2o tubo culmina en la parte mezcladora abierta en la salida del agua caliente. Es de tipo llave cuando un caudal abre el otro cierra, un vástago que sobre sale de esta y atraviesa la tapa la maneja desde el exterior y es hermético hace que este gire en un sentido cambiando las posibles mezclas. Siendo así la salida puede ser estandarizada no superando los 50°C o temperatura estándar de salida. Pero obligando a trabajar al sistema a temperatura estándar de calentam iento interno requerida. Se está internacionalizando obligando por aquellos países que como Canadá o Francia acepten esta reglamentación se usen vá lv u l as te rm oestát i cas o m ezcl ad o ras e n l os te rm o calentadores).
• 3o Salida de agua mezclada para su uso Este termocalentador permite elevar la temperatura del agua a 85a- 90° centígrados, pero aún, en temperaturas más bajas, como de 65° C, una exposición directa es peligrosa. Por ese hecho tiene tope mecánico que ante fallo eléctrico tiene máxima mezcla de agua fría.. El ajuste del vástago y cantidad de mezcla se hace exteriormente, pudiendo ser manualmente o por solenoide, controlado por eprom El termostato interno detectará la temperatura, apagando y encendiendo el sistema, para mantener una temperatura programada en el dispositivo. A su vez la tapa en su salida lleva termostato con información digital. Por lo tanto el sistema lleva dos termostatos y adaptación para estos mecanismos, son directamente adaptados a la tapa e informan a la eprom de la temperatura interna del agua y de la que circula por su tubo de salida.
El sistema del termocalentador está basado en el calentam iento por radiofrecuencias por microondas, tiene dos magnetrones de 1 .2 kilovatios, con un total de potencia de los dos magnetrones de 2.4 Kw. Cada magnetrón está ubicado dentro de su respectivo intercambiador primario y cada uno dentro de su intercambiador secundario, los sistemas intercam biadores alojan los magnetrones dentro del propio depósito ayudando a que estos disipen las altas temperaturas producidas al emitir las radiofrecuencias. No obstante, la potencia en watios de los magnetrones es variable en relación al depósito y las necesidades que este marque El coste productivo energético de un magnetrón no es más caro que el de una resistencia. Las resistencias llevan un proceso de conducción constante pero más lento, mientras que el calor generado por los m agnetrones es exponencial, a su vez las resistencias pierden capacidad cuanto más se acerquen a puntos de calentamiento críticos, inverso a los magnetrones
Las resistencias eléctricas tratan al agua como un conductor térmico, pero las radiofrecuencias tratan al agua como un conductor electromagnético con comportamientos de conductor, la temperatura del agua tendrá un coeficiente más homogéneo y será necesaria menos energía para mantenerla a una temperatura de calor ideal dentro del depósito de agua. Cuanto más caliente estén las moléculas de agua mayor calor absorberán, por lo tanto si nos acercamos a el punto crítico de absorción de radiofrecuencias que es 78.8° encontramos un mínimo esfuerzo por parte de las m icroondas en todo un contraste exponencialmente inverso con las resistencias eléctricas.
En resumen, se pone de manifiesto una marcada eficiencia energética a favor de los magnetrones en la comparación con las resistencias eléctricas. Y siempre el calor del esfuerzo de los magnetrones pasará al agua.
Hay un cable blindado que alimenta a los magnetrones que es llevado hasta otro cajetín donde se aloja el transformador de alta tensión con salida a uno o varios condensadores y un diodo rectificador que hará de puente entre los dos magnetrones. El planteamiento es alimentar con una carga diferente, en lugar de usar un sistema básico de duplicado de tensión, donde el magnetrón se considera en carga constantemente, convirtiendo esa carga de un 30 % sólo en tensiones. Se enviará esa carga a un segundo condensador o directamente al segundo magnetrón que estará conectado inversamente al primero rectificada por el diodo inversor. El magnetrón se puede considerar un condensador El sistema trabajará en forma modélica, la temperatura de trabajo de los magnetrones es estable, al intercambiar sus excesos con el agua, da un modelo de imperceptible modulación térmica.
La guía de ondas en su emisión de radiofrecuencias es modélica ya que en su base cumple con el principio de funcionam iento idílico y que es aire un conductor y un dieléctrico que es el agua, y que en el caso de este sistema se cumple. La guía de ondas de este sistema estará sumergida en el agua que es la muestra perfecta y en un dieléctrico casi perfecto. Esto en consecuencia trae que todas las emisiones no solo las directas sean absorbidas por el agua, es decir máximamente las frecuencia electrónicas no rectificadas generaría una TE (transversal eléctrica) que masivamente polarizaría el agua.
Entendamos que en otros modelos como los hornos microondas ninguna de estas particularidades se encuentran, realmente estas frecuencias no rectificadas se vuelven contra el propio sistema.
Este nuevo sistema conecta dos magnetrones siendo en cargas invertidas uno al positivo y el otro magnetrón a negativo, se entiende como modelo ideal como consecuencia de no tener energías no previstas en el sistema, Se trabaja en tem peratura ideal y ninguna frecuencia de m icroonda rebotarían en el magnetrón. Tenemos en consecuencia un modelo masivamente estable.
En los sistem as convencionales los m agnetrones deben al im entarse constantemente esta tensión variable ronda el 30% de las necesidades del sistema esta carga es una base que se suma desde la entrega del transformador y se suma al disparo del condensador. Esto en consecuencia da una redundancia de cargas parásitas o Dummy Load. Realmente todo el curso de acontecimientos de estos sistemas no permite calcular esas inestables corrientes e intercalar un diodo inversor que las rectificaría volviéndolas útiles al sistema. En nuestro sistema se dan todos los puntos para intercalar ese diodo inversor.
Entendamos que el flujo de disparo de un magnetrón es una frecuencia de reloj invertida pero sincronizada al segundo magnetrón, que se trabaja bajo un esquema de disparos de magnetrón fijos, no en frecuencia volubles de disparos secuenciados como en un horno microondas, es decir se tiene siempre el valor nominal de alimentación de un magnetrón y constancia ese 30% de energía que un magnetrón no se parasitará será robado del magnetrón en su ciclo de apagado y entregado al otro magnetrón antes que iniciará su ciclo de encendido, al rectificar esta corriente no chocará contra las entregadas por el condensador y a la constante del transformador, ahorrando ese esfuerzo de un 30 % de más a la del transformador. Al rectificar esta corrientes se estima que esto valores de ahorro y estabilidad serían aún mayores.
La Tapa del sistema llevará un conector multipin, este se conectará a un cable similar y en el otro extremo a una memoria "EPROM" controladora de todo el sistem a , dicha E P ROM procesadora, controlará todas las funciones recibiendo información de cada una de los procesos dentro de este invento: Su alimentación 9-12- o 24 voltios según los procedimientos más acordes, un segundo cable llevará al sistema de alimentación de alta tensión con un fusible protector. La información se puede mostrar mediante LEDs o por una pequeña pantalla de información Alojando las entradas y salidas de agua adaptación para terminales de termostatos y sus conexiones eléctricas. Un tercer tubo sellado para posibles desahogos. Sobresaldrá el embolo que se puede manejar manualmente o por solenoide.
Caja externa protectora: El depósito y todas las partes internas se cubren con un laminado exterior, de espumas sintéticas en su parte interna y un laminado rígido que lo refuerza, aisla y sella , siendo una superficie protectora y que a su vez lleva en cajetines aislados del depósito, la electrónica.
La lámina aislante puede ser de diversos materiales,. El depósito se sujetara al chasis por una pieza plásticas sobre la que descansará, sujeto a su vez por u cinturón del depósito que lo hace fijo.
Las puertas del termo. El termo lleva la puerta para poder acceder a su interior y cu m p l i rse ta reas co m o , s u l i m p i eza o repos i ció n d e recam b i o . Mecánicamente tendrá un botón interruptor, su función es la de activar un circuito de seguridad, que lleva una resistencia de carga máxima que descargará condensadores, esta función de seguridad mecánica sirve a su vez como interruptor de alimentación de todo el sistema. Los condensadores no deberán mantener carga en un uso normal y que tras toda operación de funcionamiento se debería descargar, que el sistema lleva toma a tierra, y que esta resistencia que es de alta de seguridad descargará siempre a los condensadores aunque el sistema se considere apagado.
El control de agua se puede llevar haciendo la mezcla desde el propio termo, saliendo el agua a la temperatura deseada y controlada sin mezclas exteriores al termo. Entendamos que la llave mezcladora es un doble filtro para la legionella y que permitirá siempre entregar el agua a la temperatura deseada, para este fin se dispone de un terminal conector electrónico en un tubo de conexiones eléctricas que lleva conexión directamente a la eprom . Esta conexión perm itirá llevar el control de tem peratura de forma exterior al dispositivo. Terminal de ducha, o baño, este control hace innecesario las dobles tuberías frío-calientes;
Como consecuencia del tubo de conexiones eléctricas que permite un control exterior al dispositivo se consigue:
• Disminuir los riesgos de infección de bacterias en las tuberías,
· El agua fría será a su vez tratada
• Al controlar la temperatura desde la ducha, una demanda de agua como desde la cocina, no hará que la temperatura de esta varié. Evitando el peligro de quemaduras. Entendamos que es la válvula interna al termo la que dará el agua ya mezclada.
Los inodoros pueden llevar control de comunicación cumpliendo con la normativa europea 852/2004 Máxima de esta ley " el Agua a 82.2 es el mejor biocida", No dejando ningún tipo de residuos contaminantes. El inodoro se conectará mediante un cable Centronics al termo que tiene una llave interna en el depósito que conmutará dos posiciones: una de carga a cisterna otra a la descarga, pudiendo de esta manera y cuando fuera necesario realizar una desinfección, llevar agua a alta temperatura posteriormente el termo, relajar con agua fría el choque térmico. Estas tareas se pueden llevar con llaves de cierre circulatorio para segundad del proceso..
EXPLICACIÓN DE LAS FIGURAS En la figura 1 y observamos una representación en perspectiva del termo y cómo se queda montando sobre él, un magnetrón. En la figura 2 se muestra en vista lateral el termocalentador objeto de la invención.
En la Figura 3 muestra una representación de las diferentes capas que se emplean en la conformación del depósito del termocalentador
En la figura 4 se muestra la tapa en vista inferior con un detalle del borde de la misma.
En la figura 5 se muestra una representación en perspectiva de la tapa.
En la figura 6 muestra la tapa del depósito del termocalentador, en el que se ha separado el solenoide.
En la figura 7 se aprecia la tapa envista inferior y su acoplamiento a la válvula mezcladora.
En la figura 8 se muestra en explosión la válvula mezcladora. En la figura 9 es otra representación de la válvula mezcladora.
En la figura 10 apreciamos la válvula mezcladora con los conductos de acceso y salida de la misma. En la figura 1 1 , se puede observar un detalle del regidor.
En la figura 12, se representa un tubo de conexiones eléctricas para un control externo al dispositivo
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En la figura 1 se puede observar un termocalentador como el que es objeto de la invención, que comprende:
· Un depósito (1 ) fabricado en vidrio
• Unos magnetrones (3) soportados por un cinturón o esqueleto de soporte (2) que rodea al depósito (1 ), que permiten que los magnetrones queden soportados y se puedan disponer en el interior del depósito (1 ). A su vez para la fijación de los dos magnetrones sobre el cinturón o esqueleto de soporte (2), se emplea un conjunto definido por: una placa o tapa (4), que fijada sobre el cinturón (2) cuenta con dos aperturas sobre las que se pasan y fijan los magnetrones fijados y sujetos a las dos partes del intercambiador primario (5) que lo envuelven como un guante introduciéndose en el el intercambiador principal (6) y que está soldado a una cuña doble de unión (31 ), que es una doble pieza que muerde el depósito (1 ) por dentro soportando los intercambiadores principales a los que va soldada (6) y por fuera siendo solo una moldura que sobresale y se une al depósito (1 ) y se soporta y suelda también reforzándose desde el cinturón deposito (2). La parte exterior de la cuña doble de unión (31 ) es sobre la que se fija la tapa (4) mediante atornillado, quedando un conjunto estanco.
Cada uno de los magnetrones (3) queda alojado en el espacio interior definido por un intercambiador primario que en partes forma un solo elemento (5), y a su vez este conjunto queda alojado en un intercambiador principal (6), encargados ambos de refngerar e intercambiar la temperatura alcanzada por los magnetrones con el agua del depósito (3). Tanto el intercambiador primario (5) como el principal (6) refrigeración, pueden mejorar sus contactos por resinas termoconductoras. Los contactos entre ambos intercambiadores se mejoran con algunos com puestos de superconductores térm icos con cualidades semielásticas como el grafito en composite
En la figura 2, se observa en vista lateral la anterior representación en la que uno de los magnetrones y alojado en los intercambiadores está dispuesto sobre una de las oquedades de la placa (4) y alojado en el interior del depósito, mientras que el otro de los m agnetrones se m uestra separado de los intercambiadores que lo alojan. En la figura 3 se observa las diferentes capas que sirven para conformar el depósito (1 ) donde una primera capa o capa exterior es una capa de vidrio (1 .1 ) donde su boca exterior es tan o más ancha que su base, esto perm ite desmoldarlo rápida y fácilmente del molde tiene una boca principal, pero otra en su costado para la adaptación de los intercambiadores, esta m isma adaptación perm ite mover el depósito l iberado del m olde enfriándolo, consiguiendo un vidrio templado, mucho más duro y resistente a grietas de temperatura. A continuación se dispone un primer gel de soporte (1 .2) seguido de una lámina de aluminio (1 .3) que hace de pantalla para las microondas A continuación se dispone un segundo gel soporte (1 .4) seguido por un vaso de vidrio (1 .5) más pequeño.
Quedando el cuerpo conformado como un laminado exterior e interior de vidrio una pantalla de aluminio separada de los dos cuerpos de vidrio por gel de butiral de polivinilo o similar.
El conjunto así obtenido se puede hornear o inyectar en frió siliconas, la pantalla de aluminio volará como solapa por encima de los demás perfiles asomando como una pestaña para unión. El cinto cierre (1 ,6) y la tapa (7) se encajarán uno sobre otra asegurándose esa unión con una serie de tornillos pasantes en el cinto cierre ( 1 .6), y pasante con tope en tapa que asegura el mecanismo (7). El perfil de aluminio es una rejilla tipo panel, no obstante la pestaña que sobresale es sellada y tiene una moldura de montaje, el cinto cierre (1 .6) e se adapta sellándose con epoxis impermeables quedando todo como un solo cuerpo tras curar los procesos.
En la figura 4, se muestra la tapa (7) del depósito y que por su borde inferior cuenta con un dentado de cierre (7.1 ) asociado con una junta de cierre (7.2) que permite el cierre de todo el conjunto. Asegurado por tornillos pasantes
En la figura 5 se observa que la tapa (7) del magnetrón comprende:
• Una salida a un vaso de expansión (10) sellada
• Una entrada de agua (1 1 )
• Una salida de agua caliente (12) junto a una salida de un contacto para alimentar termostato, analógico o digital
• Un contacto electrónico (13) de alimentación, multicontacto
• un solenoide (8)
• Un terminal (9) de un termostato de varilla
• Una canalización (14) para un cableado, discurriendo dicha canalización entre el contacto electrónico (13) y el solenoide (8) y el terminal (9) del termostato de varilla y el terminal (12)
El solenoide (8), es un potenciómetro que según se aplique corriente eléctrica girará en uno u otro sentido, su función es regular la mezcla de agua que se realiza en la llave mezcladora. La regulación de la mezcla se realizará a través de un émbolo (15) (figura 6) conectado en un extremo con el solenoide (8) y en otro con una válvula mezcladora (20).
El solenoide (8) se alimenta eléctricamente desde el contacto electrónico (13) discurriendo por la canalización (14) un cableado tipo "Centronics" que también lleva la alimentación a una memoria tipo "EPROM", no mostrada.
En la figura 7 se pueden observar elementos complementarios montados bajo la tapa (7) del depósito (1 ). Cabe reseñar la presencia de un soporte (18) para el termostato conectado por fuera en el terminal (9). Bajo la tapa (7) se dispone también un soporte (16) para un regidor (17), que en un extremo está conectado y roscado con la tapa (7) por medio del soporte (16) y en su otro extremo roscado y conectado a la válvula mezcladora (20).
El Soporte termostato (18) sobresale impermeable al exterior conectado por terminal (9), permite que la varilla del termostato se sumerja en el agua caliente.
El regidor ( 1 7) su función es mantener estable el émbolo ( 1 5) que gira internamente por el regidor (17), haciendo su función estanca
En la figura 7, como en la figura 10, se puede observar la válvula mezcladora (20) montada, mientras que en las figuras 8 y 9, se pueden ver desmontadas. La válvula mezcladora (20) comprende: • Un cajetín externo que estanca las funciones de mezclador (21 ), de forma cilindrica abierto en uno de sus extremos, mientras que en el otro cuenta con una conexión roscada (19) (figura 9) para fijación del regidor (17) y paso del émbolo (15) que lo maneja,
· Un disco de mezcla (22) hace de filtro y está alojado en el interior del cajetín mezclador (21 ), quedando cerrado el disco de mezcla por un cierre (23) sellado,
• Tres conectores donde:
• Uno de los conectores es un conector de salida (24) del agua mezclada, al que se conecta un tubo de salida (30) (figura 7) que conecta con la salida de agua caliente (12) (figura 5)
• Otro de los conectores, es un conector de entrada (25) de agua caliente la que se conecta el tubo (27) de entrada de agua caliente.
· El último conector es un conector de conexión (26) a un bypass divisor (29.1 ) al que están conectados por un lado un tubo de agua fría (29) que discurre por el interior del depósito hasta casi el fondo del mismo, y por otro lado, un tubo (28) que conecta con la entrada de agua fría (1 1 ) (figura 5).
El disco de Mezcla (22) es un cilindro con hueco esférico y un eje principal con alojamiento (22.1 ) de adaptación del émbolo (15), tiene un múltiple capilaridad que interconecta el hueco interior y su capa exterior, la capilaridad se divide en dos sectores diferentes,
• uno con mayor distribución y ángulo, que siempre hará contacto con la salida al Conector de salida de agua mezclada.
• el otro sector según gire hacia derecha o izquierda conectará con una mayor capilaridad con la conexión (26) al Bypass entrada agua fria o, (25) de agua caliente, esto permite que el flujo según gire dicho disco de mezcla permita que el agua mezclada varíe su mezcla, cuando la zona capi lar hace mayor contacto con la zona de Bypass o zona fría, disminuye el contacto capilar con el conector Entrada agua caliente. El Disco de Mezcla gira 90°, teniendo varias posiciones que mecánicamente permite cierres principalmente la de salida a conector salida mezclada, o conexión de paso se cierra la entrada a agua caliente, permitiendo que entre agua solo fría, la que sale directamente por el conector de salida. La doble capilaridad del disco de mezcla cumple la función de restringir paso de biofilm , estas películas orgánicas se acantonan ante choques térm icos deshaciéndose en vesículas que son la forma activa del contagio de la legionella, si se permite su paso sin filtrar llegaría a las alcachofas de ducha donde poco a poco soltará vesículas, peros si la tamizamos no permitiendo el paso de las películas esta será atacada no solo por el choque térmico sino por las TE(transversales eléctricas) emisión de radiofrecuencia por microondas estas hacen covalencias entre los átomos de hidrógeno rompiendo la cadena de proteínas de las bacterias. El filtrado es evitar que pasen, dando un mayor tiempo a las microondas para destruirlas. En la figura 1 1 se puede observar el regidor (17) que cuenta con sus extremos (17.1 ) y (17.2) ambos roscados para su fijación sobre el soporte (16) del regidor y del conector roscado (19) del cajetín mezclador (21 ). En la figura 12 se muestra un tubo de conexiones eléctricas de cobre, o plástico, tras cortar una sección de tubo instalado se rosca este en ambos lados, la rosca en ambos contactos es interior y exterior, adaptándose así a tuberías de 1 pulgada o 3/4 la conexión se intercala en los terminales múltiples de conexión.
Se puede observar en la figura que cuenta con una clavija para conexión interna (34) y otra clavija conexión externa (33). Estas clavijas son todas hembras. En total cuatro lleva cada tubo, estas conexiones son paralelas dos internas dos externas agrupadas en una pared del tubo perm iten conectar cables tipo Centronics (35) de diversos pin terminales, pero estandarizados, llevando alimentación de baja tensión, y información digital a través de los tubos de agua fría, las conexiones cableadas pueden ser externas, internas, salvando cualquier obstáculo ya que todas están conectadas llevando así conexiones ducha a termo.
El terminal conector siempre queda fuera de las partes que giran para acoplar, no creándose ningún problema de forzado de cables. Todos los terminales llevan tapa roscada estanca, cuando se retira esta el conector del cable se cierra atornillándose y estancando la conducción, un punto de soldadura de silicona reforzará esta uniones.

Claims

REIVINDICACIONES
1 .- Termo Calentador semi instantáneo inducido por microondas caracterizado porque comprende:
• Un depósito (1 ) fabricado en vidrio, dotado con una tapa (7)
• Unos magnetrones (3) interiores a un conjunto de intercambiadores térmicos (5 y 6) soportados por un cinturón o esqueleto de soporte (2) que rodea al depósito (1 ), que permiten que los magnetrones queden soportados y se puedan d isponer en el interior del depósito ( 1 ) refrigerando su temperatura de trabajo.
2- Termo Calentador sem i instantáneo inducido por m icroondas, según la reivindicación 1 caracterizado porque para la fijación de los dos magnetrones sobre el cinturón o esqueleto de soporte (2) se emplea un conjunto definido por una placa o tapa (4), que fijada sobre el cinturón (2) cuenta con dos aperturas sobre las que se pasan y fijan los magnetrones fijados y sujetos a las dos partes del intercambiador primario (5) que lo envuelven como un guante introduciéndose en el el intercambiador principal (6) y que está soldado a una cuña doble de unión (31 ), que es una doble pieza que muerde el depósito (1 ) por dentro soportando los intercambiadores principales a los que va soldada (6) y por fuera siendo solo una moldura que sobresale y se une al depósito (1 ) y se soporta y suelda también reforzándose desde el cinturón deposito (2). La parte exterior de la cuña doble de unión (31 ) es sobre la que se fija la tapa (4) mediante atornillado, quedando un conjunto estanco.
3.- Termo Calentador semi instantáneo inducido por microondas, según la reivindicación 1 caracterizado porque Cada uno de los magnetrones (3) queda alojado en el espacio interior definido por un intercambiador primario (5), y a su vez este conjunto queda alojado en un intercambiador principal (6), encargados ambos de refrigerar e intercambiar la temperatura alcanzada por los magnetrones (3).
4.- Termo Calentador semi instantáneo inducido por microondas, según la reivindicación 3 caracterizado porque ambos intercambiadores primario (5) y secundario (6) con el magnetrón, conjunto de intercambio térmico mejorado por las cualidades de sus composites, el intercambio térmico con el agua gracias a esta características es máximo sin sobrepresiones por dilatación ni riesgos de fracturas, constituyendo todo un solo elemento
5.- Termo Calentador semi instantáneo inducido por m icroondas, según la reivindicación 1 caracterizado porque las diferentes capas que sirven para conformar el depósito (1 ) son: una primera capa o capa exterior es una capa de vidrio (1 .1 ) a continuación se dispone un primer gel de soporte (1 .2) seguido de una lám ina de alum inio (1 .3) que hace de pantalla para las m icroondas, a continuación se dispone un segundo gel soporte (1 .4) seguido por un vaso de vidrio (1 .5) más pequeño, quedando conformado como un laminado exterior e interior de vidrio una pantalla de aluminio separada de los dos cuerpos de vidrio por gel de butiral de polivinilo o similar.
6. - Termo Calentador semi instantáneo inducido por microondas, según la reivindicación 1 caracterizado porque la tapa (7) del depósito y que por su borde inferior cuenta con un dentado de cierre (7.1 ) asociado con una junta de cierre (7.2) que permite el cierre de todo el conjunto. Asegurado por tornillos de fijación
7. - Termo Calentador semi instantáneo inducido por microondas, según la reivindicación 7 caracterizado porque la tapa (7) del magnetrón comprende:
• Una salida a un vaso de expansión (10)
• Una entrada de agua (1 1 )
• Una salida de agua caliente (12)
• Un contacto electrónico (13) de alimentación
• un solenoide (8)
• Un terminal (9) de un termostato de varilla
• Una canalización (14) para un cableado, discurriendo dicha canalización entre el contacto electrónico (13) y el solenoide (8) el terminal (9) del termostato de varilla, y contacto a (12) termostato de salida
8. - Termo Calentador semi instantáneo inducido m icroondas, según la reivindicación 7 caracterizado porque bajo la tapa (7) del depósito (1 ) se dispone un soporte (18) para el termostato, un soporte (16) para un regidor (17), que en un extremo está conectado con la tapa (7) por medio del soporte (16) y en su otro extremo a una válvula mezcladora (20). En la figura 7 se pueden observar elementos complementarios montados
9. - Termo Calentador sem i instantáneo inducido m icroondas, según la reivindicación 9 caracterizado porque la válvula mezcladora (20) comprende:
• Un cajetín mezclador (21 ), de forma cilindrica abierto en uno de sus extremos, mientras que en el otro cuenta con una conexión roscada (19) para fijación del regidor (17)
• Un disco de mezcla (22) alojado en el interior del cajetín soporte mezclador (21 ), quedando cerrado el disco de mezcla por un cierre (23)
• Tres conectores donde:
· Uno de los conectores es un conector de salida (24) del agua mezclada, al que se conecta un tubo de salida (30) que conecta con la salida de agua caliente (12) (figura 5)
• Otro de los conectores, es un conector de entrada (25) de agua caliente la que se conecta el tubo (27) de entrada de agua caliente.
• El último conector es un conector de conexión (26) a un bypass divisor (29.1 ) al que están conectados por un lado un tubo de agua fría (29) que discurre por el interior del depósito hasta casi el fondo del mismo, y por otro lado, un tubo (28) que conecta con la entrada de agua fría (1 1 ) (figura 5).
10.- Termo Calentador semi instantáneo inducido microondas, según la reivindicación 9 caracterizado porque el disco de mezcla (22) es un cilindro con hueco esférico y un eje principal con alojamiento (22.1 ) de adaptación del émbolo (15), tiene un múltiple capilaridad que interconecta el hueco interior y su capa exterior, la capilaridad se divide en dos sectores diferentes,
• uno con mayor distribución y ángulo, que siempre hará contacto con la salida al Conector de salida de agua mezclada.
• el otro sector según gire hacia derecha o izquierda conectará con una mayor capilaridad con la conexión (26) al Bypass o a la Entrada (25) de agua caliente,
1 1 .- Termo Calentador sem i instantáneo inducido m icroondas, según cualquiera de las reivindicaciones anteriores caracterizado porque el control de la temperatura se realiza de forma exterior al termocalenador mediante un tubo de conexiones eléctricas (32) que cuenta con al menos una clavija para conexión interna (34) y al menos otra clavija conexión externa (33). Estas clavijas son todas hembras agrupadas en una pared del tubo permiten conectar cables tipo Centronics (35) de diversos pin terminales.
PCT/ES2012/070686 2012-10-03 2012-10-03 Termo calentador semi instantáneo inducido por microondas WO2014053673A1 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EA201590476A EA028316B1 (ru) 2012-10-03 2012-10-03 Аппарат для нагрева воды под воздействием микроволнового излучения
PCT/ES2012/070686 WO2014053673A1 (es) 2012-10-03 2012-10-03 Termo calentador semi instantáneo inducido por microondas
JP2015535069A JP6085896B2 (ja) 2012-10-03 2012-10-03 マイクロ波によって誘発される準瞬間的サーモヒーター
KR1020157009699A KR101741931B1 (ko) 2012-10-03 2012-10-03 마이크로파-유도 반-순간 가열 서모 히터
US14/431,117 US20150245425A1 (en) 2012-10-03 2012-10-03 Semi-instantaneous microwave-induced thermo heater
ES12886154.9T ES2641962T3 (es) 2012-10-03 2012-10-03 Termo calentador semi instantáneo inducido por microondas
EP12886154.9A EP2906019B1 (en) 2012-10-03 2012-10-03 Semi-instantaneous microwave-induced thermo heater
CN201280076157.1A CN104685966B (zh) 2012-10-03 2012-10-03 由微波感应的半瞬时热加热器
CA2883382A CA2883382C (en) 2012-10-03 2012-10-03 Semi-instant thermo heater induced by microwaves
AU2012391721A AU2012391721B2 (en) 2012-10-03 2012-10-03 Semi-instantaneous microwave-induced thermo heater
IL237927A IL237927B (en) 2012-10-03 2015-03-24 Semi-instant thermal heater by microwaves
IN2607DEN2015 IN2015DN02607A (es) 2012-10-03 2015-03-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2012/070686 WO2014053673A1 (es) 2012-10-03 2012-10-03 Termo calentador semi instantáneo inducido por microondas

Publications (1)

Publication Number Publication Date
WO2014053673A1 true WO2014053673A1 (es) 2014-04-10

Family

ID=50434387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070686 WO2014053673A1 (es) 2012-10-03 2012-10-03 Termo calentador semi instantáneo inducido por microondas

Country Status (12)

Country Link
US (1) US20150245425A1 (es)
EP (1) EP2906019B1 (es)
JP (1) JP6085896B2 (es)
KR (1) KR101741931B1 (es)
CN (1) CN104685966B (es)
AU (1) AU2012391721B2 (es)
CA (1) CA2883382C (es)
EA (1) EA028316B1 (es)
ES (1) ES2641962T3 (es)
IL (1) IL237927B (es)
IN (1) IN2015DN02607A (es)
WO (1) WO2014053673A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871431A (zh) * 2017-03-30 2017-06-20 广东美的厨房电器制造有限公司 微波热水器
US20190075826A1 (en) * 2017-09-14 2019-03-14 Campbell Soup Company Electromagnetic wave food processing system and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571479A1 (fr) * 1984-10-04 1986-04-11 Prevalet Jean Denis Chauffe-eau a micro-ondes
WO1987005093A1 (en) * 1986-02-20 1987-08-27 Applied Agricultural Research Limited Microwave water heater
US20060006171A1 (en) * 2004-07-09 2006-01-12 Sedlmayr Steven R Distillation and distillate method by microwaves
CN102434959A (zh) * 2010-12-08 2012-05-02 苏州嘉言能源设备有限公司 即热式微波热水器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514485A (en) * 1947-11-28 1950-07-11 Leland N Goff Water heating device
US3715566A (en) * 1972-01-24 1973-02-06 Smith Corp A Corrosion guard system for electric water heater
US4358652A (en) * 1978-12-21 1982-11-09 Kaarup Darrell R Fluid heater apparatus
US4593169A (en) * 1984-03-05 1986-06-03 Thomas Perry W Water heater
KR940009069B1 (ko) * 1989-10-28 1994-09-29 대우전자 주식회사 순간온수 가열장치
US5363857A (en) * 1990-05-22 1994-11-15 Aerosport, Inc. Metabolic analyzer
WO2004089046A1 (ja) * 1991-11-05 2004-10-14 Nobumasa Suzuki 無端環状導波管を有するマイクロ波導入装置及び該装置を備えたプラズマ処理装置
JPH076638U (ja) * 1993-07-02 1995-01-31 株式会社日本コンサルト新潟 温水器
US5387780A (en) * 1993-09-23 1995-02-07 Edwin J. Riley Microwave hot water heating system
JP2570705Y2 (ja) * 1993-12-21 1998-05-13 住友電装株式会社 シールコネクタ
US5759220A (en) * 1995-03-24 1998-06-02 Ford Motor Company Method to fabricate shaped laminated glass panes
US6658204B2 (en) * 2002-04-16 2003-12-02 Aos Holding Company Door insulator with safety plug
US7002121B2 (en) * 2004-06-02 2006-02-21 Alfred Monteleone Steam generator
CN100402940C (zh) * 2006-02-21 2008-07-16 江存志 储能式微波热水器
US20090078218A1 (en) * 2007-09-26 2009-03-26 Bradford White Corporation Water heater having temperature control system with thermostatically controlled mixing device
JP4520518B2 (ja) * 2008-05-13 2010-08-04 茂 八嶋 融雪機
DE102010052448A1 (de) * 2010-11-24 2012-02-16 Kurt Fritzsche Verfahren zur Erwärmung eines Wasserkreislaufes für Heizsysteme mittels Mikrowellen
US9268342B2 (en) * 2011-06-15 2016-02-23 General Electric Company Water heater with integral thermal mixing valve assembly and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571479A1 (fr) * 1984-10-04 1986-04-11 Prevalet Jean Denis Chauffe-eau a micro-ondes
WO1987005093A1 (en) * 1986-02-20 1987-08-27 Applied Agricultural Research Limited Microwave water heater
US20060006171A1 (en) * 2004-07-09 2006-01-12 Sedlmayr Steven R Distillation and distillate method by microwaves
CN102434959A (zh) * 2010-12-08 2012-05-02 苏州嘉言能源设备有限公司 即热式微波热水器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2906019A4 *

Also Published As

Publication number Publication date
CN104685966B (zh) 2017-04-05
JP2015534236A (ja) 2015-11-26
CA2883382C (en) 2018-08-14
ES2641962T3 (es) 2017-11-14
IN2015DN02607A (es) 2015-09-18
AU2012391721A1 (en) 2015-04-02
EA028316B1 (ru) 2017-11-30
EA201590476A1 (ru) 2015-06-30
EP2906019B1 (en) 2017-06-28
AU2012391721B2 (en) 2017-12-07
EP2906019A1 (en) 2015-08-12
KR20150058359A (ko) 2015-05-28
CA2883382A1 (en) 2014-04-10
CN104685966A (zh) 2015-06-03
JP6085896B2 (ja) 2017-03-01
IL237927B (en) 2018-11-29
US20150245425A1 (en) 2015-08-27
KR101741931B1 (ko) 2017-06-15
EP2906019A4 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
ES2718486T3 (es) Dispositivo de calentamiento por inducción de un calentador de agua y calentador de agua provisto de tal dispositivo
US20050139594A1 (en) Water heater
ES2545602T3 (es) Horno de inducción eléctrico
JP2011238449A (ja) 電磁誘導加熱装置及びそれを用いた暖房・給湯装置
JP3750189B2 (ja) 液加熱装置
ES2641962T3 (es) Termo calentador semi instantáneo inducido por microondas
KR20100111337A (ko) 고주파 유도 코일을 이용한 열 발생 장치
KR100711734B1 (ko) 탄소섬유 히터를 이용한 전기 보일러
ES2652126T3 (es) Dispositivo de precalentamiento de fluido, concretamente de fluido de refrigeración de motor de combustión
ES2727875T3 (es) Dispositivo de calentamiento volumétrico para la preparación de bebidas o alimentos
KR101552345B1 (ko) 발열체를 이용한 축열식 무동력 유체순환장치
GB2577929A (en) Point-of-use induction water heater
CN201421174Y (zh) 微波热水器
KR101515879B1 (ko) 전기보일러용 히터
ES2384842B1 (es) Termo calentador de agua de inducción por microondas.
CN214148327U (zh) 热水器
KR200364816Y1 (ko) 탄소섬유 히터를 이용한 전기 보일러
KR20040047738A (ko) 온수기
CN203824051U (zh) 电磁感应速热式热水器及其电磁加热单元
ES1155709U9 (es) Termo acumulador de agua caliente sanitaria calentado por un sistema variable de inducción magnética
AU2002341126A1 (en) Water heater
UA22287U (en) Electric heater of liquid
JPH01102243A (ja) 温水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2883382

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015535069

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 237927

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 14431117

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 201590476

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2012886154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012886154

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012391721

Country of ref document: AU

Date of ref document: 20121003

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009699

Country of ref document: KR

Kind code of ref document: A