WO2014050826A1 - Glass-melting method, process for manufacturing glass substrate and glass-melting apparatus - Google Patents

Glass-melting method, process for manufacturing glass substrate and glass-melting apparatus Download PDF

Info

Publication number
WO2014050826A1
WO2014050826A1 PCT/JP2013/075734 JP2013075734W WO2014050826A1 WO 2014050826 A1 WO2014050826 A1 WO 2014050826A1 JP 2013075734 W JP2013075734 W JP 2013075734W WO 2014050826 A1 WO2014050826 A1 WO 2014050826A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
electrode
glass
pressing
melting
Prior art date
Application number
PCT/JP2013/075734
Other languages
French (fr)
Japanese (ja)
Inventor
正恭 松林
英明 染井
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2013553733A priority Critical patent/JP5706544B2/en
Priority to CN201380003757.XA priority patent/CN103917498B/en
Publication of WO2014050826A1 publication Critical patent/WO2014050826A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls

Definitions

  • the present invention relates to a glass melting method, a glass substrate manufacturing method, and a glass melting apparatus.
  • a glass raw material put into a melting tank is melted to produce a molten glass.
  • This molten glass is clarified by defoaming or the like, and then formed into a sheet-like glass by a forming apparatus.
  • a glass substrate is obtained by cutting the sheet-like glass with a predetermined length.
  • the glass raw material charged on the liquid surface of the molten glass is melted by a flame such as a burner. Specifically, the glass raw material starts to melt gradually by the heat radiation of the furnace wall heated by a burner or the like or a high-temperature gas phase atmosphere, and then melts in the molten glass below.
  • the molten glass is stored in a melting tank and is energized using a pair of electrodes in contact with the molten glass. By this energization, the molten glass itself generates Joule heat, and this Joule heat heats the molten glass itself.
  • Patent Document 1 It is known to use a heat-resistant material such as platinum, a platinum rhodium alloy, molybdenum, or tin oxide as a material used for an electrode used in a dissolution tank (Patent Document 1).
  • the tip portion in contact with the molten glass is worn away by erosion and becomes shorter with time.
  • a large amount of current flows through the wall of the dissolution tank, and the dissolution tank wall may be eroded. Therefore, when the electrode is eroded and the position of the tip of the electrode is retracted from a predetermined position, it is necessary to push the electrode toward the inside of the dissolution tank so that the tip of the electrode becomes a predetermined position.
  • the electrode is arranged in a through hole provided in the wall of the dissolution tank. If the frictional resistance between the electrode and the through-hole is large when pushing the electrode toward the inside of the dissolution tank, a force is applied to the wall of the dissolution tank, which may damage the wall of the dissolution tank.
  • the present invention can reduce the frictional resistance between the electrode and the through-hole when the electrode is pushed into the through-hole of the melting tank, and can dissolve the glass stably over a long period of time using the melting tank. It aims at providing the melting method of glass, the manufacturing method of a glass substrate, and the melting apparatus of glass.
  • One embodiment of the present invention is a method for melting glass stored in a dissolution tank in which electrodes made of tin oxide are provided in at least a pair of through holes.
  • This glass melting method includes a measurement step of measuring the inclination of the rear end face of the electrode with respect to the central axis of the through hole when the shortened electrode is pushed out by a pressing member in the molten glass direction; and the measurement obtained in the measurement step A determining step of determining a pressing direction of the pressing member based on the result; and a pressing step of pressing the rear end face of the electrode by the pressing member based on the pressing direction obtained in the determining step.
  • the pressing direction is determined in the determining step so as to reduce the inclination of the rear end face.
  • the rear end surface of the electrode is supported in a state where at least a part of the electrode protruding outside the dissolution tank is supported from a direction intersecting the central axis of the through hole. It is preferable to press.
  • Another aspect of the present invention is a method for producing a glass substrate including the glass melting method described above.
  • another aspect of the present invention includes a melting tank in which electrodes made of tin oxide are provided in at least a pair of through holes; a pressing member that pushes the shortened electrode in the direction of molten glass; and a central axis of the through holes Measuring device for measuring the inclination of the rear end face of the electrode with respect to the glass melting device.
  • FIG. 1 is a process diagram illustrating the steps of the glass substrate manufacturing method of the present embodiment.
  • the glass substrate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a molding step (ST5), and a slow cooling step (ST6). And a cutting step (ST7).
  • a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
  • FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7).
  • the apparatus mainly includes a melting apparatus 200, a molding apparatus 300, and a cutting apparatus 400.
  • the dissolution apparatus 200 mainly has a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
  • the glass raw material supplied into the melting tank 201 is heated and melted with a flame generated from the burner 206 (see FIG. 3), whereby the molten glass MG is made. Thereafter, the molten glass MG is energized and heated using the electrode body 208 (see FIG. 3).
  • the clarification step (ST2) is performed in the clarification tank 202. When the molten glass MG in the clarification tank 202 is heated, bubbles such as O 2 contained in the molten glass MG grow by absorbing oxygen generated by the reductive reaction of the clarifier and float on the liquid surface. And released.
  • the molten glass MG in the stirring vessel 203 supplied through the first pipe 204 is stirred using a stirrer, so that the glass components are homogenized.
  • the molten glass MG in the supplying step (ST4) is supplied to the molding apparatus 300 through the second pipe 205.
  • a molding process (ST5) and a slow cooling process (ST6) are performed.
  • the forming step (ST5) the molten glass MG is formed into a sheet glass, and a flow of the sheet glass is created.
  • an overflow downdraw method is used.
  • the slow cooling step (ST6) the sheet-like glass that is formed and flowed is cooled to have a desired thickness, so that internal distortion does not occur and the thermal shrinkage rate does not increase.
  • the cutting step (ST7) the cutting device 400 cuts the sheet-like glass supplied from the forming device 300 into a predetermined length, thereby obtaining a glass substrate.
  • the cut glass substrate is further cut into a predetermined size to produce a glass substrate of a target size. Thereafter, the glass substrate is ground and polished, and then cleaned. Further, the glass substrate is inspected for abnormal defects such as bubbles and striae, and the glass substrate that has passed the inspection is packed as a final product. .
  • FIG. 3 is a diagram illustrating a melting tank 201 that performs a melting step.
  • the melting tank 201 has a wall 210 made of a refractory member that is a refractory brick.
  • the dissolution tank 201 has an internal space surrounded by a wall 210.
  • the internal space of the melting tank 201 is formed in a liquid tank B that accommodates the molten glass MG formed by melting the glass raw material introduced into the space while being heated, and an upper layer of the molten glass MG.
  • an upper space A which is a gas phase.
  • the wall 210 of the upper space A is provided with a burner 206 that emits a flame by burning combustion gas mixed with fuel and oxygen.
  • the burner 206 heats the refractory member in the upper space A with a flame to raise the temperature of the wall 210.
  • the glass raw material is heated and melted by the radiant heat of the wall 210 which has become high temperature and by the gas phase atmosphere which has become high temperature.
  • the walls 210 and 210 facing the liquid tank B of the dissolution tank 201 are each provided with three through holes 210a.
  • three pairs of electrode bodies 208 made of a heat-resistant conductive material such as tin oxide or molybdenum are arranged in the through hole 210a.
  • the electrode body 208 is made of tin oxide. All of the three pairs of electrode bodies 208 extend from the outside of the dissolution tank 201 toward the inner wall surface of the liquid tank B through the through holes 210a.
  • Each pair of the three pairs of electrode bodies 208 is disposed in the through hole 210a so as to face each other through the molten glass MG.
  • Each pair of electrode bodies 208 serves as a positive electrode and a negative electrode, and allows a current to flow through the molten glass MG between the electrodes. This energization generates Joule heat in the molten glass MG, and the molten glass MG is heated by the Joule heat generated by itself.
  • the molten glass MG is heated to, for example, 1500 ° C. or higher.
  • the heated molten glass MG is sent to the clarification tank 202 through a glass supply pipe.
  • the dissolution tank 201 is provided with three pairs of electrode bodies 208, but may be provided with one pair, two pairs, or four or more pairs of electrode bodies. That is, in this embodiment, the glass stored in the melting tank 201 is melted using the melting tank 201 in which the electrode body 208 is provided in each of at least the pair of through holes 210a and 210a.
  • FIG. 4 is a cross-sectional view parallel to the xz plane in the vicinity of the electrode body 208 and the through hole 210a of the dissolution tank 201.
  • FIG. 5 is a cross-sectional view parallel to the xy plane in the vicinity of the electrode body 208 and the through hole 210a.
  • FIG. 6 is an enlarged front view of the vicinity of the electrode body 208 and the through hole 210a as seen from the x direction. In FIGS. 4 to 6, illustration of connectors and the like provided on the electrode body 208 is omitted.
  • the electrode body 208 is a composite body in which a plurality of long electrode body elements 208a are bundled so as to extend in one direction, and each of the electrode body elements 208a energizes the molten glass MG.
  • the front end surface 208f and the rear end surface 208b of the electrode body 208 are configured to be perpendicular to the central axis C1 of the electrode body 208. 4 to 6, the electrode body element 208a is composed of a total of 16 electrode body elements 208a, with four rows in the vertical direction and four rows in the horizontal direction.
  • the electrode body 208 as a composite body including the electrode body elements 208a is limited to a structure composed of a total of 16 electrode body elements 208a in four rows in the vertical direction and four rows in the horizontal direction as in this embodiment.
  • the total number, the number of columns in the vertical direction, and the number of columns in the horizontal direction are not particularly limited.
  • the electrode body 208 may be composed of one electrode body element 208a.
  • the wall 210 of the melting tank 201 is configured by stacking refractory members that are refractory bricks.
  • the wall 210 is provided with a through hole 210a.
  • the central axis C1 of the through hole 210a and the wall surface of the through hole 210a are provided in parallel with the x axis. That is, the central axis C1 of the through hole 210a and the wall surface of the through hole 210a are provided perpendicular to the wall 210 parallel to the yz plane.
  • the electrode body 208 is inserted and installed in the through hole 210a. That is, the electrode body 208 extends toward the inner wall surface of the liquid tank B, and the refractory member around the electrode body 208 constituting the wall 210, specifically, the lower side, upper side, and It is held by a refractory member on the side. 4 and 5, the central axis C2 of the electrode body 208 coincides with the central axis C1 of the through hole 210a.
  • the position of the front end surface 208f is aligned with the position P0 of the inner wall surface of the liquid tank B (the inner surface of the wall 210). That is, the front end surface 208f of the electrode body 208 and the inner wall surface of the dissolution tank 201 are adjacent to each other without a step. That is, the front end surface 208 f can be arranged on the same plane as the inner wall surface of the liquid tank B.
  • the tip surface 208f of the electrode 208 may be disposed so as to protrude to the inside of the liquid tank B from the through hole 210a to some extent, but the position of the tip surface 208f is matched with the position P0 of the inner wall surface of the liquid tank B.
  • erosion of the electrode body 208 and erosion of the refractory member constituting the wall 210 of the dissolution tank 201 can be reduced.
  • the molten glass MG is energized and heated, so that the tip portion in contact with the molten glass MG is eroded and worn by the molten glass MG, and the position of the tip surface 208f is liquid as shown in FIGS.
  • the tank B moves backward from the position P0 of the inner wall surface of the tank B to the outside of the dissolution tank 201.
  • the front end surface 208f of the electrode body 208 is recessed from the inner wall surface of the liquid tank B to the inside of the through hole 210a, not only the voltage between the opposing electrode bodies 208 and 208 increases, but also the electrode body The wall 210 near 208 is easily eroded. Therefore, a pressing structure 220 for pressing the electrode body 208 in the direction of the molten glass MG is provided outside the melting tank 201.
  • the pressing structure (pressing member) 220 includes a horizontal jig 221 and a vertical jig 222 disposed on the rear end surface 208b of the electrode body 208, a worm jack 223 that applies a pressing force to the vertical jig 222, and a reference plane setting device. 224 and a measurement gauge 225.
  • the horizontal jig 221 is stretched over all the electrode body elements 208a adjacent in the horizontal direction, and is provided in each stage from the uppermost stage to the lowermost stage of the electrode body element 208a. It has been.
  • the vertical jig 222 is stretched over each horizontal jig 221 adjacent in the vertical direction.
  • the worm jack 223 includes a flange portion 223a, a pressing shaft 223b, and a drive portion 223c.
  • the flange portion 223a is provided so as to be fixed at an arbitrary position of a frame-like structure (not shown) provided outside the melting tank 201, and the inclination of the surface facing the electrode body 208 can be adjusted by a bolt or the like. It has become.
  • the pressing shaft 223b is provided perpendicular to the flange portion 223a, and a trapezoidal screw is formed on the outer peripheral surface.
  • the drive unit 223c includes a worm gear having a gear.
  • the gear is formed with a trapezoidal screw on the inner periphery and is screwed to the trapezoidal screw of the pressing shaft 223b.
  • a handle (not shown) is attached to the drive unit 223c and rotated, the gear of the worm gear rotates, and the pressing shaft 223b moves forward and backward in a direction perpendicular to the flange portion 223a by the action of the trapezoidal screw.
  • the worm jack 223 moves the pressing shaft 223b forward in the negative direction of the x-axis with the tip of the pressing shaft 223b in contact with the vertical jig 222, so that the electrode is interposed via the vertical jig 222 and the horizontal jig 221.
  • a pressing force is applied to the rear end surface 208b of the body 208.
  • one worm jack 223 is installed, but the number of installed worm jacks 223 may be two or more.
  • the reference plane setting device 224 can use, for example, a commercially available laser marking device or laser level.
  • the reference plane setting device 224 is configured to set a reference plane or a reference line in the surrounding space by irradiating laser light from the main body 224a along the vertical plane and the horizontal plane.
  • a vertical plane parallel to the wall 210 of the dissolution tank 201 and separated from the wall 210 by a predetermined distance D0 is set as the reference plane R. That is, the reference plane R is set in parallel with the yz plane.
  • the central axis C ⁇ b> 1 of the through hole 210 a provided in the wall 210 of the dissolution tank 201 and the wall surface of the through hole 210 a are provided perpendicular to the wall 210. Therefore, the reference plane R is perpendicular to the central axis C1 of the through hole 210a and the wall surface of the through hole 210a.
  • the measurement gauge (measuring instrument) 225 is a gauge capable of measuring the distance between two points, and measures the distance between an arbitrary point on the rear end surface 208b of the electrode body 208 and the reference plane R.
  • the electrode body 208 is inserted into the through hole 210 a provided in the wall 210 of the liquid tank B of the dissolution tank 201, and the rear end part is inserted into the dissolution tank 201 from the through hole 210 a. It is arranged in a state protruding from the outside. Below the rear end of the electrode body 208, there is provided an electrode support base 230 that supports at least a part of the electrode body 208 protruding outside the dissolution tank 201 from the z direction intersecting the central axis C1 of the through hole 210a. It has been.
  • the electrode support base 230 includes a pedestal part 231, an elevating part 232, an adjusting screw 233, an insulating part 234, and an electrode support part 235.
  • the pedestal portion 231 supports the lifting / lowering portion 232 via the adjustment screw 233.
  • the elevating unit 232 is configured to elevate in the vertical direction (z direction) by the adjusting screw 233.
  • An insulating part 234 made of an insulator is disposed on the elevating part 232.
  • the electrode support part 235 which consists of a refractory brick is arrange
  • the electrode support base 230 supports the electrode body 208 so that the central axis C2 of the electrode body 208 is horizontal by raising and lowering the elevating part 232 with the adjusting screw 233 and setting the electrode support part 235 to an appropriate height. is doing.
  • the glass raw material is supplied into the melting tank 201. Is done.
  • the glass raw material is heated and melted by the flame generated by the burner 206, and the molten glass MG is stored in the liquid tank B.
  • the molten glass MG is energized and heated using the electrode body 208.
  • the tip of the electrode body 208 is eroded by the molten glass MG.
  • the position of the distal end surface 208 f of the electrode body 208 retreats from the initial position P 0 to the inside of the through hole 210 a.
  • the shortened electrode body 208 is used as the molten glass MG in the melting tank 201.
  • a process of extruding in the direction is required.
  • the process of extruding the electrode body 208 in the molten glass MG direction in the melting tank 201 will be described.
  • FIG. 7A and 7B are cross-sectional views parallel to the xz plane, where FIG. 7A is a cross-sectional view showing the periphery of the electrode body 208 before being pushed in, and FIG. 7B is a cross-sectional view showing the periphery of the electrode body 208 after being pushed in.
  • 8A and 8B are cross-sectional views parallel to the xy plane, where FIG. 8A is a cross-sectional view showing the periphery of the electrode body 208 before being pushed in, and FIG. 8B is a cross-sectional view showing the periphery of the electrode body 208 after being pushed in.
  • the electrode support 230 is not shown. As shown in FIG.
  • the electrode body 208 may have its center axis C2 inclined with respect to the center axis C1 of the through hole 210a in the vertical plane. Further, as shown in FIG. 8A, the electrode body 208 may have its central axis C2 inclined with respect to the central axis C1 of the through hole 210a in the horizontal plane.
  • the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a in the xz plane is defined as the vertical inclination
  • the central axis of the through hole 210a in the xy plane horizontal plane
  • the inclination of the central axis C2 of the electrode body 208 with respect to C1 is defined as the left-right inclination.
  • the central axis C2 of the electrode body 208 is inclined upward with respect to the central axis C1 of the through hole 210a or the x axis.
  • the central axis C2 of the electrode body 208 is inclined downward with respect to the central axis C1 of the through-hole 210a or the x-axis.
  • the central axis C2 of the electrode body 208 is inclined to the right with respect to the central axis C1 of the through hole 210a or the x axis.
  • the central axis C2 of the electrode body 208 when the inclination of the central axis C2 of the electrode body 208 is negative, the central axis C2 of the electrode body 208 is inclined to the left with respect to the central axis C1 or the x axis of the through hole 210a.
  • the factors that cause the central axis C2 of the electrode body 208 to incline with respect to the central axis C1 of the through hole 210a as described above are, for example, thermal expansion of the wall 210 due to the temperature rise of the dissolution tank 201, and the weight of the rear end of the electrode body 208.
  • the electrode body 208 When the electrode body 208 is pushed out in the direction of the molten glass MG without properly determining the pressing direction of the electrode body 208 in a state where the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a, the electrode A large frictional force is generated between the body 208 and the through hole 210a, and a large force is required to push the electrode body 208. If the electrode 208 is pushed into the through-hole 210a in such a state, the wall 210 of the liquid tank B of the dissolution tank 201 may be damaged by receiving a large force.
  • the shortened electrode body 208 when the shortened electrode body 208 is pushed out by the pressing structure 220 in the direction of the molten glass MG in the melting tank 201, the inclination of the rear end surface 208b of the electrode body 208 with respect to the central axis C1 of the through hole 210a is set.
  • the measurement process to measure is implemented.
  • distances in the x direction between the reference plane R and the rear end surface 208b of the electrode body 208 are measured at a plurality of locations in the z direction.
  • the front end of the measurement gauge 225 is brought into contact with the rear end surface 208b of the electrode body 208, and the measurement gauge 225 is kept parallel to the x-axis using a leveler or a reference surface setting device 224.
  • the distance in the x direction between the rear end surface 208b of the electrode body 208 and the reference surface R is read by reading the scale of the measurement gauge 225 irradiated with the laser beam indicating the reference surface R from the reference surface setting device 224. Measure.
  • the slope inside is determined.
  • the measurement of the distance of the x direction between the rear end surface 208b of the electrode body 208 and the reference plane R is performed at three or more places.
  • the rear end surface 208 b of the electrode body 208 is provided perpendicular to the central axis C ⁇ b> 2 of the electrode body 208.
  • the central axis C1 of the through hole 210a is parallel to the x axis.
  • the inclination of the central axis C2 of the electrode body 208 in the xz plane is obtained from the inclination of the rear end surface 208b of the electrode body 208 in the xz plane, and further, the electrode body 208 with respect to the central axis C1 of the through hole 210a in the xz plane.
  • the inclination of the central axis C2 is obtained.
  • the distance in the x direction between the reference plane R and the rear end face 208b of the electrode body 208 is measured at a plurality of points in the y direction.
  • the distance D3 in the x direction between the rear end surface 208b of the electrode body 208 and the reference surface R is obtained by bringing the front end of the measurement gauge 225 into contact with the left end and the right end of the rear end surface 208b of the electrode body 208. , D4 is measured.
  • the rear end surface 208b of the electrode body 208 by the pressing structure (pressing member) 220 is measured.
  • a determination step for determining the pressing direction is performed.
  • the pressing direction is determined so as to reduce the inclination of the rear end surface 208b of the electrode body 208.
  • the pressing position of the rear end surface 208b is determined together with the pressing direction of the rear end surface 208b.
  • the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing structure 220 is determined.
  • the flange portion 223a of the worm jack 223 and the reference surface R The distances d1, d2, d3, and d4 are measured at a plurality of locations in the z direction and the y direction by the measurement gauge 225, and the inclination of the flange portion 223a with respect to the reference plane R is obtained.
  • the distance between the flange part 223a and the reference plane R is measured at three or more places.
  • the inclination of the flange portion 223a is adjusted by an adjustment screw (not shown) so that the flange portion 223a is parallel to the reference plane R.
  • the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is made parallel to the x-axis. That is, the pressing direction of the rear end surface 208b of the electrode body 208 is parallel to the central axis C1 of the through hole 210a.
  • the pressing position can be determined without determining the pressing direction.
  • the determination of the pressing position can be performed as follows. When the central axis C2 of the electrode body 208 is inclined downward with respect to the central axis C1 of the through hole 210a, the worm jack 223 is moved, and the pressing position of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b is the center. It should be above the axis C2.
  • the worm jack 223 is moved and the pressing position of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b. Is to the right of the center axis C2. That is, the pressing position of the rear end surface 208b of the electrode body 208 by the pressing structure 220 is such that the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a with respect to the center axis C2 of the electrode body 208. Decide on the opposite side of the direction.
  • a pressing step of pressing the rear end surface 208b of the electrode body 208 by the pressing member 220 is performed. Specifically, the rear end surface 208 b of the electrode body 208 is pressed by the pressing shaft 223 b of the worm jack 223 through the horizontal jig 221 and the vertical jig 222.
  • the pressing direction of the rear end surface 208b of the electrode body 208 is parallel to the central axis C1 of the through hole 210a. Therefore, even when the central axis C2 of the electrode body 208 is inclined with respect to the central axis C1 of the through hole 210a, the electrode body 208 is pushed by pushing the electrode body 208 along the central axis C1 of the through hole 210a. The inclination of the central axis C2 can be reduced. Therefore, the frictional resistance between the electrode body 208 and the through hole 210a when the electrode body 208 is pushed into the through hole 210a can be reduced.
  • the pressing position of the pressing member 220 is such that the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a with respect to the center axis C2 of the electrode body 208; It has been decided on the other side. Therefore, when the electrode body 208 is pressed by the pressing structure 220, a rotational force that reduces the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a of the electrode body 208 acts on the electrode body 208. .
  • the through hole The electrode body 208 can be pushed into the through-hole 210a so that the central axis C1 of 210a and the central axis C2 of the electrode body 208 coincide. Therefore, the frictional resistance between the electrode body 208 and the through-hole 210a is reduced, and the wall 210 of the liquid tank B of the dissolution tank 201 is prevented from being damaged by the pressing of the electrode body 208. Glass can be melted stably over a period of time.
  • the electrode support base 230 is provided to support from the direction to perform. Therefore, when the electrode body 208 is pushed out in the direction of the molten glass MG, the center axis C2 of the electrode body 208 is prevented from being inclined downward with respect to the center axis C1 of the through hole 210a.
  • the height of the electrode support base 230 is adjustable, it is possible to more effectively prevent the electrode body 208 from being tilted by its own weight by appropriately setting the height of the electrode support base 230. .
  • the electrode body 208 and the through hole when the electrode body 208 is pushed into the through hole 208a of the melting tank 201 Friction resistance with 208a can be reduced, and the glass can be stably melted over a long period of time using the melting tank 201.
  • the pressing of the electrode body 208 can be divided into a plurality of times, and the process of measuring the inclination of the rear end face 208b and the process of determining the pressing position or pressing direction of the pressing structure 220 can be repeated. Thereby, the pressing position and the pressing direction by the pressing structure 220 can be finely adjusted while measuring the inclination of the central axis C1 of the electrode body 208 with respect to the central axis C1 of the through hole 210a.
  • the electrode body 208 is directly pushed into the through hole 210a by the pressing structure 220 without changing the pressing direction. But it ’s okay. Moreover, it is also possible to determine only the pressing direction as the optimum direction without changing the pressing position. In this case, the pressing direction is set so as to face the direction opposite to the direction in which the central axis C2 of the electrode body 208 is inclined with respect to the central axis C1 of the through hole 210a in the xz plane and the xy plane.
  • a rotational force that reduces the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a is applied to the electrode body 208, so that the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a
  • the inclination can be reduced.
  • the pressing direction of the rear end surface 208b of the electrode body 208 may not be parallel to the central axis C1 of the through hole 210a as long as the inclination of the rear end surface 208b of the electrode body 208 can be reduced. For example, as shown in FIG.
  • the electrode by the pressing shaft 223b of the worm jack 223 is used.
  • the pressing direction may be determined so that the pressing direction of the rear end surface 208b of the body 208 faces obliquely upward.
  • the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is The pressing direction may be determined so as to face obliquely downward.
  • the electrode by the pressing shaft 223b of the worm jack 223 is used.
  • the pressing direction may be determined so that the pressing direction of the rear end surface 208b of the body 208 faces diagonally to the left.
  • the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is The pressing direction may be determined so as to face diagonally right.
  • the pressing structure 220 is configured to press the rear end surface 208b of the electrode body 208 via the horizontal jig 221 and the vertical jig 222.
  • a grid-like jig or a plate-like jig is used. You may press the rear-end surface 208b of the electrode body 208 using the jig
  • the measurement gauge 225 is used as the measuring device.
  • a non-contact type distance sensor such as an optical type may be used as the measuring device.
  • an acceleration sensor may be provided on the rear end surface of the horizontal jig 221 and the gravitational acceleration may be measured using the acceleration sensor to obtain the inclination of the rear end surface of the electrode.
  • the electrode support base 230 is configured to support the electrode body 208 from below.
  • the direction in which the electrode body 208 is indicated is not particularly limited as long as at least a part of the electrode body 208 protruding outside the dissolution tank 201 is supported from the direction intersecting the central axis C1 of the through hole 210a.
  • the rear end portion of the electrode body 208 may be supported by being suspended from above, or may be supported from an oblique direction.
  • the method of the present invention makes it possible to advantageously perform a glass melting step particularly in the production of a glass substrate by molding molten glass.
  • Electrode body (electrode) 208b Rear end face 210a Through hole 220 Press structure (press member) 225 Measuring instrument C1, C2 Center axis MG Molten glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

Provided are: a glass-melting method by which the increase in frictional resistance between an electrode and a through hole of a melting vessel in thrusting the electrode through the through hole is suppressed to enable stable and long-term melting of glass in the melting vessel; a process for manufacturing a glass substrate; and a glass-melting apparatus. This glass-melting method includes: a measurement step for measuring, in subjecting an electrode which has shortened to pushing with a pressing member toward molten glass, the inclination of the rear end face of the electrode with respect to the central axis of a through hole; a deciding step for deciding, on the basis of the result obtained in the measurement step, the pressing direction in which the pressing member is to be pressed; and a pressing step for pressing the rear end face of the electrode with the pressing member in the pressing direction decided in the deciding step.

Description

ガラスの溶解方法、ガラス基板の製造方法及びガラスの溶解装置Glass melting method, glass substrate manufacturing method, and glass melting apparatus
 本発明は、ガラスの溶解方法、ガラス基板の製造方法及びガラスの溶解装置に関する。 The present invention relates to a glass melting method, a glass substrate manufacturing method, and a glass melting apparatus.
 例えばフラットパネルディスプレイ(FPD)用のガラス基板を製造する場合、一般に、溶解槽に投入されたガラス原料を溶解させて溶融ガラスがつくられる。この溶融ガラスは、脱泡等により清澄されたのち、成形装置でシート状ガラスに成形される。このシート状ガラスが所定の長さで切断されることによりガラス基板が得られる。 For example, when manufacturing a glass substrate for a flat panel display (FPD), generally, a glass raw material put into a melting tank is melted to produce a molten glass. This molten glass is clarified by defoaming or the like, and then formed into a sheet-like glass by a forming apparatus. A glass substrate is obtained by cutting the sheet-like glass with a predetermined length.
 ガラス原料を溶解して溶融ガラスをつくるとき、溶融ガラスの液面上に投入されたガラス原料は、バーナー等の火炎により溶解される。具体的には、ガラス原料は、バーナー等により加熱された炉壁の熱輻射や高温化した気相雰囲気により次第に溶解を始め、下方の溶融ガラスに溶けて行く。一方、溶融ガラスは、溶解槽に蓄えられ、溶融ガラスと接触する一対の電極を用いて通電される。この通電により、溶融ガラス自身はジュール熱を発し、このジュール熱が溶融ガラス自身を加熱する。 When melting glass raw material to make molten glass, the glass raw material charged on the liquid surface of the molten glass is melted by a flame such as a burner. Specifically, the glass raw material starts to melt gradually by the heat radiation of the furnace wall heated by a burner or the like or a high-temperature gas phase atmosphere, and then melts in the molten glass below. On the other hand, the molten glass is stored in a melting tank and is energized using a pair of electrodes in contact with the molten glass. By this energization, the molten glass itself generates Joule heat, and this Joule heat heats the molten glass itself.
 溶解槽に用いる電極に使用する材料として、白金や白金ロジウム合金、モリブデン、酸化錫等の耐熱性材料を使用することが知られている(特許文献1)。 It is known to use a heat-resistant material such as platinum, a platinum rhodium alloy, molybdenum, or tin oxide as a material used for an electrode used in a dissolution tank (Patent Document 1).
特開2003-292323号公報JP 2003-292323 A
 しかしながら、酸化錫やモリブデンを用いた電極は、溶融ガラスと接触した先端の部分が浸食によって減耗し、経時的に短小化してしまう。浸食により電極の先端の位置が所定の位置よりも後退すると、溶解槽の壁により多くの電流が流れて、溶解槽の壁が浸食されるおそれがある。そのため、電極が浸食されてその先端の位置が所定の位置よりも後退したら、電極の先端が所定の位置になるように、電極を溶解槽の内側へ向けて押し込む必要がある。 However, in the electrode using tin oxide or molybdenum, the tip portion in contact with the molten glass is worn away by erosion and becomes shorter with time. When the position of the tip of the electrode is retracted from a predetermined position due to erosion, a large amount of current flows through the wall of the dissolution tank, and the dissolution tank wall may be eroded. Therefore, when the electrode is eroded and the position of the tip of the electrode is retracted from a predetermined position, it is necessary to push the electrode toward the inside of the dissolution tank so that the tip of the electrode becomes a predetermined position.
 電極は溶解槽の壁に設けられた貫通孔に配置されている。電極を溶解槽の内側へ向けて押し込む際に、電極と貫通孔との間の摩擦抵抗が大きいと、溶解槽の壁に力がかかり、溶解槽の壁に損傷を与えるおそれがある。 The electrode is arranged in a through hole provided in the wall of the dissolution tank. If the frictional resistance between the electrode and the through-hole is large when pushing the electrode toward the inside of the dissolution tank, a force is applied to the wall of the dissolution tank, which may damage the wall of the dissolution tank.
 そこで、本発明は、溶解槽の貫通孔に電極を押し込む際の電極と貫通孔との間の摩擦抵抗を低減し、溶解槽を用いて長期間に亘り安定的にガラスを溶解することができるガラスの溶解方法、ガラス基板の製造方法及びガラスの溶解装置を提供することを目的とする。 Therefore, the present invention can reduce the frictional resistance between the electrode and the through-hole when the electrode is pushed into the through-hole of the melting tank, and can dissolve the glass stably over a long period of time using the melting tank. It aims at providing the melting method of glass, the manufacturing method of a glass substrate, and the melting apparatus of glass.
 本発明の一態様は、少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽に収納したガラスを溶解する方法である。このガラス溶解方法は、短小化した電極を溶融ガラス方向に押圧部材によって押し出す際、前記貫通孔の中心軸に対する前記電極の後端面の傾きを測定する測定工程と;前記測定工程で得られた測定結果に基づいて、前記押圧部材の押圧方向を決定する決定工程と;前記決定工程で得られた押圧方向に基づいて、前記押圧部材によって前記電極の後端面を押圧する押圧工程と;を有する。
 上記の態様では、前記決定工程において、前記後端面の傾きを低減させるように、前記押圧方向を決定することが好ましい。
 また、上記の態様では、前記押圧工程において、前記溶解槽の外側に突出した前記電極の少なくとも一部を、前記貫通孔の中心軸に交差する方向から支持した状態で、前記電極の後端面を押圧することが好ましい。
 本発明の別の一態様は、上記のガラス溶解方法を含むガラス基板の製造方法である。
 また、本発明の別の一態様は、少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽と;短小化した前記電極を溶融ガラス方向に押し出す押圧部材と;前記貫通孔の中心軸に対する前記電極の後端面の傾きを測定する測定器と;を有するガラスの溶解装置である。
One embodiment of the present invention is a method for melting glass stored in a dissolution tank in which electrodes made of tin oxide are provided in at least a pair of through holes. This glass melting method includes a measurement step of measuring the inclination of the rear end face of the electrode with respect to the central axis of the through hole when the shortened electrode is pushed out by a pressing member in the molten glass direction; and the measurement obtained in the measurement step A determining step of determining a pressing direction of the pressing member based on the result; and a pressing step of pressing the rear end face of the electrode by the pressing member based on the pressing direction obtained in the determining step.
In the above aspect, it is preferable that the pressing direction is determined in the determining step so as to reduce the inclination of the rear end face.
Further, in the above aspect, in the pressing step, the rear end surface of the electrode is supported in a state where at least a part of the electrode protruding outside the dissolution tank is supported from a direction intersecting the central axis of the through hole. It is preferable to press.
Another aspect of the present invention is a method for producing a glass substrate including the glass melting method described above.
Further, another aspect of the present invention includes a melting tank in which electrodes made of tin oxide are provided in at least a pair of through holes; a pressing member that pushes the shortened electrode in the direction of molten glass; and a central axis of the through holes Measuring device for measuring the inclination of the rear end face of the electrode with respect to the glass melting device.
 上記の態様によれば、溶解槽の貫通孔に電極を押し込む際の電極と貫通孔との間の摩擦抵抗を低減し、溶解槽を用いて長期間に亘り安定的にガラスを溶解することができる。 According to the above aspect, it is possible to reduce the frictional resistance between the electrode and the through hole when the electrode is pushed into the through hole of the melting tank, and to dissolve the glass stably over a long period of time using the melting tank. it can.
本実施形態のガラスの製造方法の工程を説明する工程図である。It is process drawing explaining the process of the manufacturing method of the glass of this embodiment. 図1に示す溶解工程から切断工程までを行う装置を模式的に示す図である。It is a figure which shows typically the apparatus which performs from the melt | dissolution process shown in FIG. 1 to a cutting process. 図1に示す溶解工程を行う溶解槽を説明する図である。It is a figure explaining the dissolution tank which performs the melt | dissolution process shown in FIG. 図3に示すxyz直交座標系のxz平面における電極体近傍の断面図である。It is sectional drawing of the electrode body vicinity in the xz plane of the xyz orthogonal coordinate system shown in FIG. 同直交座標系のxy平面おける電極体近傍の断面図である。It is sectional drawing of the electrode body vicinity in xy plane of the orthogonal coordinate system. 同直交座標系のx方向から見た電極体近傍の正面拡大図である。It is the front enlarged view of the electrode body vicinity seen from the x direction of the orthogonal coordinate system. 同直交座標系のxz平面における電極体の傾きを示す断面図である。It is sectional drawing which shows the inclination of the electrode body in xz plane of the orthogonal coordinate system. 同直交座標系のxy平面における電極体の傾きを示す断面図である。It is sectional drawing which shows the inclination of the electrode body in xy plane of the orthogonal coordinate system.
 以下、本実施形態のガラスの製造方法について説明する。図1は、本実施形態のガラス基板の製造方法の工程を説明する工程図である。
 ガラス基板の製造方法は、溶解工程(ST1)と、清澄工程(ST2)と、均質化工程(ST3)と、供給工程(ST4)と、成形工程(ST5)と、徐冷工程(ST6)と、切断工程(ST7)と、を主に有する。この他に、研削工程、研磨工程、洗浄工程、検査工程、梱包工程等を有し、梱包工程で積層された複数のガラス板は、納入先の業者に搬送される。
Hereinafter, the manufacturing method of the glass of this embodiment is demonstrated. FIG. 1 is a process diagram illustrating the steps of the glass substrate manufacturing method of the present embodiment.
The glass substrate manufacturing method includes a melting step (ST1), a clarification step (ST2), a homogenization step (ST3), a supply step (ST4), a molding step (ST5), and a slow cooling step (ST6). And a cutting step (ST7). In addition, a plurality of glass plates that have a grinding process, a polishing process, a cleaning process, an inspection process, a packing process, and the like and are stacked in the packing process are conveyed to a supplier.
 図2は、溶解工程(ST1)から切断工程(ST7)までを行う装置を模式的に示す図である。当該装置は、図2に示すように、主に溶解装置200と、成形装置300と、切断装置400と、を有する。溶解装置200は、溶解槽201と、清澄槽202と、攪拌槽203と、第1配管204と、第2配管205と、を主に有する。 FIG. 2 is a diagram schematically showing an apparatus for performing the melting step (ST1) to the cutting step (ST7). As shown in FIG. 2, the apparatus mainly includes a melting apparatus 200, a molding apparatus 300, and a cutting apparatus 400. The dissolution apparatus 200 mainly has a dissolution tank 201, a clarification tank 202, a stirring tank 203, a first pipe 204, and a second pipe 205.
 溶解工程(ST1)では、溶解槽201内に供給されたガラス原料を、バーナー206(図3参照)から発する火焔で加熱して溶解することで、溶融ガラスMGが作られる。この後、電極体208(図3参照)を用いて溶融ガラスMGが通電加熱される。
 清澄工程(ST2)は、清澄槽202において行われる。清澄槽202内の溶融ガラスMGが加熱されることにより、溶融ガラスMG中に含まれるO等の気泡は、清澄剤の還元反応により生成される酸素を吸収して成長し、液面に浮上して放出される。あるいは、気泡中の酸素等のガス成分が、清澄剤の酸化反応のために溶融ガラス中に吸収されて、気泡が消滅する。
 均質化工程(ST3)では、第1配管204を通って供給された攪拌槽203内の溶融ガラスMGがスターラを用いて攪拌されることにより、ガラス成分の均質化が行われる。
 供給工程(ST4)では、第2配管205を通して溶融ガラスMGが成形装置300に供給される。
In the melting step (ST1), the glass raw material supplied into the melting tank 201 is heated and melted with a flame generated from the burner 206 (see FIG. 3), whereby the molten glass MG is made. Thereafter, the molten glass MG is energized and heated using the electrode body 208 (see FIG. 3).
The clarification step (ST2) is performed in the clarification tank 202. When the molten glass MG in the clarification tank 202 is heated, bubbles such as O 2 contained in the molten glass MG grow by absorbing oxygen generated by the reductive reaction of the clarifier and float on the liquid surface. And released. Or gas components, such as oxygen in a bubble, are absorbed in molten glass for the oxidation reaction of a clarifying agent, and a bubble disappears.
In the homogenizing step (ST3), the molten glass MG in the stirring vessel 203 supplied through the first pipe 204 is stirred using a stirrer, so that the glass components are homogenized.
In the supplying step (ST4), the molten glass MG is supplied to the molding apparatus 300 through the second pipe 205.
 成形装置300では、成形工程(ST5)及び徐冷工程(ST6)が行われる。
 成形工程(ST5)では、溶融ガラスMGがシート状ガラスに成形され、シート状ガラスの流れが作られる。本実施形態では、オーバーフローダウンドロー法を用いる。徐冷工程(ST6)では、成形されて流れるシート状ガラスが所望の厚さになり、内部歪が生じないように、さらに、熱収縮率が大きくならないように、冷却される。
 切断工程(ST7)では、切断装置400において、成形装置300から供給されたシート状ガラスを所定の長さに切断することで、ガラス基板が得られる。切断されたガラス基板は、さらに所定のサイズに切断され、目標サイズのガラス基板が作られる。この後、ガラス基板は、端面の研削および研磨がされた後、洗浄が行われ、さらに気泡や脈理等の異常欠陥の有無が検査され、検査合格品のガラス基板が最終製品として梱包される。
In the molding apparatus 300, a molding process (ST5) and a slow cooling process (ST6) are performed.
In the forming step (ST5), the molten glass MG is formed into a sheet glass, and a flow of the sheet glass is created. In this embodiment, an overflow downdraw method is used. In the slow cooling step (ST6), the sheet-like glass that is formed and flowed is cooled to have a desired thickness, so that internal distortion does not occur and the thermal shrinkage rate does not increase.
In the cutting step (ST7), the cutting device 400 cuts the sheet-like glass supplied from the forming device 300 into a predetermined length, thereby obtaining a glass substrate. The cut glass substrate is further cut into a predetermined size to produce a glass substrate of a target size. Thereafter, the glass substrate is ground and polished, and then cleaned. Further, the glass substrate is inspected for abnormal defects such as bubbles and striae, and the glass substrate that has passed the inspection is packed as a final product. .
 図3は、溶解工程を行う溶解槽201を説明する図である。
 溶解槽201は、耐火レンガである耐火物部材により構成された壁210を有する。溶解槽201は、壁210で囲まれた内部空間を有する。溶解槽201の内部空間は、上記空間に投入されたガラス原料が溶解してできた溶融ガラスMGを加熱しながら収容する液槽Bと、溶融ガラスMGの上層に形成され、ガラス原料が投入される、気相である上部空間Aとを有する。
 上部空間Aの壁210には、燃料と酸素等を混合した燃焼ガスが燃焼して火炎を発するバーナー206が設けられる。バーナー206は火炎によって上部空間Aの耐火物部材を加熱して壁210を高温にする。ガラス原料は、高温になった壁210の輻射熱により、また、高温となった気相の雰囲気により加熱されて溶解する。
FIG. 3 is a diagram illustrating a melting tank 201 that performs a melting step.
The melting tank 201 has a wall 210 made of a refractory member that is a refractory brick. The dissolution tank 201 has an internal space surrounded by a wall 210. The internal space of the melting tank 201 is formed in a liquid tank B that accommodates the molten glass MG formed by melting the glass raw material introduced into the space while being heated, and an upper layer of the molten glass MG. And an upper space A which is a gas phase.
The wall 210 of the upper space A is provided with a burner 206 that emits a flame by burning combustion gas mixed with fuel and oxygen. The burner 206 heats the refractory member in the upper space A with a flame to raise the temperature of the wall 210. The glass raw material is heated and melted by the radiant heat of the wall 210 which has become high temperature and by the gas phase atmosphere which has become high temperature.
 溶解槽201の液槽Bの向かい合う壁210,210には、それぞれ3つの貫通孔210aが設けられている。貫通孔210aには、酸化錫あるいはモリブデン等の耐熱性を有する導電性材料で構成された3対の電極体208が配置されている。本実施形態においては、電極体208は酸化錫により構成されている。3対の電極体208はいずれも、貫通孔210aを通して溶解槽201の外側から液槽Bの内壁面に向かって延びている。 The walls 210 and 210 facing the liquid tank B of the dissolution tank 201 are each provided with three through holes 210a. In the through hole 210a, three pairs of electrode bodies 208 made of a heat-resistant conductive material such as tin oxide or molybdenum are arranged. In the present embodiment, the electrode body 208 is made of tin oxide. All of the three pairs of electrode bodies 208 extend from the outside of the dissolution tank 201 toward the inner wall surface of the liquid tank B through the through holes 210a.
 3対の電極体208のそれぞれの対のうち、図中奥側の電極体は図示されていない。3対の電極体208の各対は、溶融ガラスMGを通してお互いに対向するように、貫通孔210aに配置されている。各対の電極体208は、正電極、負電極となってこの電極間の溶融ガラスMGに電流を流す。この通電により溶融ガラスMGにジュール熱が発生し、溶融ガラスMGは自ら発するジュール熱により加熱される。溶解槽201では、溶融ガラスMGは例えば1500℃以上に加熱される。加熱された溶融ガラスMGは、ガラス供給管を通して清澄槽202へ送られる。 Of the three pairs of electrode bodies 208, the electrode bodies on the far side in the figure are not shown. Each pair of the three pairs of electrode bodies 208 is disposed in the through hole 210a so as to face each other through the molten glass MG. Each pair of electrode bodies 208 serves as a positive electrode and a negative electrode, and allows a current to flow through the molten glass MG between the electrodes. This energization generates Joule heat in the molten glass MG, and the molten glass MG is heated by the Joule heat generated by itself. In the melting tank 201, the molten glass MG is heated to, for example, 1500 ° C. or higher. The heated molten glass MG is sent to the clarification tank 202 through a glass supply pipe.
 本実施形態では、溶解槽201には3対の電極体208が設けられるが、1対、2対あるいは4対以上の電極体が設けられてもよい。すなわち、本実施形態では、少なくとも一対の貫通孔210a,210aの各々に電極体208を設けた溶解槽201を用い、溶解槽201に収納したガラスを溶解する。 In this embodiment, the dissolution tank 201 is provided with three pairs of electrode bodies 208, but may be provided with one pair, two pairs, or four or more pairs of electrode bodies. That is, in this embodiment, the glass stored in the melting tank 201 is melted using the melting tank 201 in which the electrode body 208 is provided in each of at least the pair of through holes 210a and 210a.
 以下、鉛直方向をz軸とし、xy平面が水平面であるxyz直交座標系を用いて説明する。図3に示すように、溶解槽201の液槽Bの向かい合う壁210,210は、yz平面と平行に設けられている。
 図4は、溶解槽201の電極体208及び貫通孔210a近傍のxz平面に平行な断面図である。図5は、電極体208及び貫通孔210a近傍のxy平面に平行な断面図である。図6は、電極体208及び貫通孔210a近傍をx方向から見た正面拡大図である。図4から図6では、電極体208に設けられるコネクタ等の図示は省略されている。
Hereinafter, description will be made using an xyz orthogonal coordinate system in which the vertical direction is the z-axis and the xy plane is a horizontal plane. As shown in FIG. 3, the opposing walls 210 and 210 of the liquid tank B of the dissolution tank 201 are provided in parallel to the yz plane.
FIG. 4 is a cross-sectional view parallel to the xz plane in the vicinity of the electrode body 208 and the through hole 210a of the dissolution tank 201. FIG. 5 is a cross-sectional view parallel to the xy plane in the vicinity of the electrode body 208 and the through hole 210a. FIG. 6 is an enlarged front view of the vicinity of the electrode body 208 and the through hole 210a as seen from the x direction. In FIGS. 4 to 6, illustration of connectors and the like provided on the electrode body 208 is omitted.
 電極体208は、複数の長尺状の電極体要素208aを一方向に延びるように束ねた複合体であり、電極体要素208aの各々が溶融ガラスMGに通電する。電極体208の先端面208f及び後端面208bは、電極体208の中心軸C1と垂直になるように構成されている。図4から図6では、縦方向に4段、横方向に4列、合計16本の電極体要素208aで構成されている。電極体要素208aからなる複合体としての電極体208は、本実施形態のように、縦方向に4段、横方向に4列、合計16本の電極体要素208aで構成されることに限定されず、合計本数、縦方向の段数、横方向の列数は特に制限されない。例えば、電極体208は、1つの電極体要素208aで構成されてもよい。 The electrode body 208 is a composite body in which a plurality of long electrode body elements 208a are bundled so as to extend in one direction, and each of the electrode body elements 208a energizes the molten glass MG. The front end surface 208f and the rear end surface 208b of the electrode body 208 are configured to be perpendicular to the central axis C1 of the electrode body 208. 4 to 6, the electrode body element 208a is composed of a total of 16 electrode body elements 208a, with four rows in the vertical direction and four rows in the horizontal direction. The electrode body 208 as a composite body including the electrode body elements 208a is limited to a structure composed of a total of 16 electrode body elements 208a in four rows in the vertical direction and four rows in the horizontal direction as in this embodiment. The total number, the number of columns in the vertical direction, and the number of columns in the horizontal direction are not particularly limited. For example, the electrode body 208 may be composed of one electrode body element 208a.
 図4及び図5に示すように、溶解槽201の壁210は、耐火レンガである耐火物部材が積層されて構成されている。壁210には、貫通孔210aが設けられている。貫通孔210aの中心軸C1及び貫通孔210aの壁面は、x軸と平行に設けられている。すなわち、貫通孔210aの中心軸C1及び貫通孔210aの壁面は、yz平面と平行な壁210と垂直に設けられている。 As shown in FIGS. 4 and 5, the wall 210 of the melting tank 201 is configured by stacking refractory members that are refractory bricks. The wall 210 is provided with a through hole 210a. The central axis C1 of the through hole 210a and the wall surface of the through hole 210a are provided in parallel with the x axis. That is, the central axis C1 of the through hole 210a and the wall surface of the through hole 210a are provided perpendicular to the wall 210 parallel to the yz plane.
 この貫通孔210aに電極体208が挿入されて設置されている。すなわち、電極体208は、液槽Bの内壁面に向かって延びて、壁210を構成する電極体208周りの耐火物部材、具体的には、電極体208の図中の下方、上方、及び側方にある耐火物部材によって保持されている。図4及び図5において、電極体208の中心軸C2は、貫通孔210aの中心軸C1と一致している。 The electrode body 208 is inserted and installed in the through hole 210a. That is, the electrode body 208 extends toward the inner wall surface of the liquid tank B, and the refractory member around the electrode body 208 constituting the wall 210, specifically, the lower side, upper side, and It is held by a refractory member on the side. 4 and 5, the central axis C2 of the electrode body 208 coincides with the central axis C1 of the through hole 210a.
 電極体208は、設置時に、先端面208fの位置が液槽Bの内壁面(壁210の内表面)の位置P0に合せられている。すなわち、電極体208の先端面208fと溶解槽201の内壁面とは段差なく隣接している。すなわち、先端面208fは、液槽Bの内壁面と同一の平面上に配置することができる。なお、電極208の先端面208fは、ある程度、貫通孔210aから液槽Bの内側に突出するように配置しても良いが、先端面208fの位置を液槽Bの内壁面の位置P0に合せることで、電極体208の浸食および溶解槽201の壁210を構成する耐火物部材の浸食を低減することができる。 When the electrode body 208 is installed, the position of the front end surface 208f is aligned with the position P0 of the inner wall surface of the liquid tank B (the inner surface of the wall 210). That is, the front end surface 208f of the electrode body 208 and the inner wall surface of the dissolution tank 201 are adjacent to each other without a step. That is, the front end surface 208 f can be arranged on the same plane as the inner wall surface of the liquid tank B. The tip surface 208f of the electrode 208 may be disposed so as to protrude to the inside of the liquid tank B from the through hole 210a to some extent, but the position of the tip surface 208f is matched with the position P0 of the inner wall surface of the liquid tank B. Thus, erosion of the electrode body 208 and erosion of the refractory member constituting the wall 210 of the dissolution tank 201 can be reduced.
 電極体208は、溶融ガラスMGを通電加熱することで、溶融ガラスMGに接する先端部が溶融ガラスMGによって浸食されて磨耗し、図4及び図5に示すように、先端面208fの位置が液槽Bの内壁面の位置P0よりも溶解槽201の外側へ後退していく。このように、電極体208の先端面208fが液槽Bの内壁面から貫通孔210aの内側に窪んだ状態になると、対向する電極体208,208間の電圧が上昇するだけでなく、電極体208の近傍の壁210が浸食されやすくなる。そのため、溶解槽201の外側には、電極体208を溶融ガラスMG方向へ押し込むための押圧構造220が設けられている。 In the electrode body 208, the molten glass MG is energized and heated, so that the tip portion in contact with the molten glass MG is eroded and worn by the molten glass MG, and the position of the tip surface 208f is liquid as shown in FIGS. The tank B moves backward from the position P0 of the inner wall surface of the tank B to the outside of the dissolution tank 201. Thus, when the front end surface 208f of the electrode body 208 is recessed from the inner wall surface of the liquid tank B to the inside of the through hole 210a, not only the voltage between the opposing electrode bodies 208 and 208 increases, but also the electrode body The wall 210 near 208 is easily eroded. Therefore, a pressing structure 220 for pressing the electrode body 208 in the direction of the molten glass MG is provided outside the melting tank 201.
 押圧構造(押圧部材)220は、電極体208の後端面208bに配置された水平治具221および垂直治具222と、垂直治具222に押圧力を作用させるウォームジャッキ223と、基準面設定装置224と、測定ゲージ225と、を備えている。
 図6に示すように、水平治具221は、水平方向に隣接するすべての電極体要素208aに掛け渡され、電極体要素208aの最も上の段から最も下の段までの各段にそれぞれ設けられている。垂直治具222は、上下方向に隣接する水平治具221の各々に掛け渡されている。
The pressing structure (pressing member) 220 includes a horizontal jig 221 and a vertical jig 222 disposed on the rear end surface 208b of the electrode body 208, a worm jack 223 that applies a pressing force to the vertical jig 222, and a reference plane setting device. 224 and a measurement gauge 225.
As shown in FIG. 6, the horizontal jig 221 is stretched over all the electrode body elements 208a adjacent in the horizontal direction, and is provided in each stage from the uppermost stage to the lowermost stage of the electrode body element 208a. It has been. The vertical jig 222 is stretched over each horizontal jig 221 adjacent in the vertical direction.
 図4及び図5に示すように、ウォームジャッキ223は、フランジ部223aと、押圧軸223bと、駆動部223cとを備えている。フランジ部223aは、溶解槽201の外側に設けられた不図示のフレーム状の構造体の任意の位置に固定できるように設けられ、ボルトなどにより電極体208に対向する面の傾きが調整できるようになっている。押圧軸223bは、フランジ部223aに対して垂直に設けられ、外周面に台形ネジが形成されている。駆動部223cは、歯車を有するウォームギアを備えている。歯車は、内周部に台形ネジが形成されて押圧軸223bの台形ネジに螺合されている。駆動部223cに不図示のハンドルを取り付けて回転させるとウォームギアの歯車が回転し、押圧軸223bが台形ネジの作用によりフランジ部223aと垂直な方向に前進及び後退する。ウォームジャッキ223は、押圧軸223bの先端を垂直治具222に当接させた状態で、押圧軸223bをx軸負方向に前進させることで、垂直治具222及び水平治具221を介して電極体208の後端面208bに押圧力を作用させる。本実施形態では、ウォームジャッキ223が1つ設置されているが、ウォームジャッキ223の設置数は2つ以上であっても良い。 4 and 5, the worm jack 223 includes a flange portion 223a, a pressing shaft 223b, and a drive portion 223c. The flange portion 223a is provided so as to be fixed at an arbitrary position of a frame-like structure (not shown) provided outside the melting tank 201, and the inclination of the surface facing the electrode body 208 can be adjusted by a bolt or the like. It has become. The pressing shaft 223b is provided perpendicular to the flange portion 223a, and a trapezoidal screw is formed on the outer peripheral surface. The drive unit 223c includes a worm gear having a gear. The gear is formed with a trapezoidal screw on the inner periphery and is screwed to the trapezoidal screw of the pressing shaft 223b. When a handle (not shown) is attached to the drive unit 223c and rotated, the gear of the worm gear rotates, and the pressing shaft 223b moves forward and backward in a direction perpendicular to the flange portion 223a by the action of the trapezoidal screw. The worm jack 223 moves the pressing shaft 223b forward in the negative direction of the x-axis with the tip of the pressing shaft 223b in contact with the vertical jig 222, so that the electrode is interposed via the vertical jig 222 and the horizontal jig 221. A pressing force is applied to the rear end surface 208b of the body 208. In this embodiment, one worm jack 223 is installed, but the number of installed worm jacks 223 may be two or more.
 図4に示すように、基準面設定装置224は、例えば市販のレーザー墨出し器あるいはレーザー水準器を用いることができる。基準面設定装置224は、本体224aから鉛直面および水平面に沿ってレーザー光を照射することで、周囲の空間に基準面あるいは基準線を設定できるように構成されている。本実施形態では、図3に示すように、溶解槽201の壁210と平行で、壁210から所定の距離D0だけ離れた鉛直面を基準面Rとして設定する。すなわち、基準面Rはyz平面と平行に設定されている。また、溶解槽201の壁210に設けられた貫通孔210aの中心軸C1及び貫通孔210aの壁面は、壁210と垂直に設けられている。そのため、基準面Rは、貫通孔210aの中心軸C1及び貫通孔210aの壁面に対して垂直である。
 測定ゲージ(測定器)225は、2点間の距離を測定可能なゲージであり、電極体208の後端面208b上の任意の点と基準面Rとの距離を測定する。
As shown in FIG. 4, the reference plane setting device 224 can use, for example, a commercially available laser marking device or laser level. The reference plane setting device 224 is configured to set a reference plane or a reference line in the surrounding space by irradiating laser light from the main body 224a along the vertical plane and the horizontal plane. In the present embodiment, as shown in FIG. 3, a vertical plane parallel to the wall 210 of the dissolution tank 201 and separated from the wall 210 by a predetermined distance D0 is set as the reference plane R. That is, the reference plane R is set in parallel with the yz plane. Further, the central axis C <b> 1 of the through hole 210 a provided in the wall 210 of the dissolution tank 201 and the wall surface of the through hole 210 a are provided perpendicular to the wall 210. Therefore, the reference plane R is perpendicular to the central axis C1 of the through hole 210a and the wall surface of the through hole 210a.
The measurement gauge (measuring instrument) 225 is a gauge capable of measuring the distance between two points, and measures the distance between an arbitrary point on the rear end surface 208b of the electrode body 208 and the reference plane R.
 図4及び図5に示すように、電極体208は、先端部が溶解槽201の液槽Bの壁210に設けられた貫通孔210aに挿入され、後端部が貫通孔210aから溶解槽201の外側に突出した状態で配置される。電極体208の後端部の下方には、溶解槽201の外側に突出した電極体208の少なくとも一部を、貫通孔210aの中心軸C1に交差するz方向から支持する電極支持台230が設けられている。 As shown in FIGS. 4 and 5, the electrode body 208 is inserted into the through hole 210 a provided in the wall 210 of the liquid tank B of the dissolution tank 201, and the rear end part is inserted into the dissolution tank 201 from the through hole 210 a. It is arranged in a state protruding from the outside. Below the rear end of the electrode body 208, there is provided an electrode support base 230 that supports at least a part of the electrode body 208 protruding outside the dissolution tank 201 from the z direction intersecting the central axis C1 of the through hole 210a. It has been.
 図4及び図6に示すように、電極支持台230は、台座部231と、昇降部232と、調節ネジ233と、絶縁部234と、電極支持部235と、により構成されている。台座部231は、調節ネジ233を介して昇降部232を支持している。昇降部232は、調節ネジ233により、鉛直方向(z方向)に昇降するように構成されている。昇降部232上には、絶縁体からなる絶縁部234が配置されている。絶縁部234上には、耐火レンガからなる電極支持部235が配置されている。電極支持台230は、調節ネジ233により昇降部232を昇降させて、電極支持部235を適切な高さにすることで、電極体208の中心軸C2が水平になるように電極体208を支持している。 As shown in FIGS. 4 and 6, the electrode support base 230 includes a pedestal part 231, an elevating part 232, an adjusting screw 233, an insulating part 234, and an electrode support part 235. The pedestal portion 231 supports the lifting / lowering portion 232 via the adjustment screw 233. The elevating unit 232 is configured to elevate in the vertical direction (z direction) by the adjusting screw 233. An insulating part 234 made of an insulator is disposed on the elevating part 232. On the insulating part 234, the electrode support part 235 which consists of a refractory brick is arrange | positioned. The electrode support base 230 supports the electrode body 208 so that the central axis C2 of the electrode body 208 is horizontal by raising and lowering the elevating part 232 with the adjusting screw 233 and setting the electrode support part 235 to an appropriate height. is doing.
 次に、本実施形態の作用について説明する。
 図1に示すガラス基板の製造方法の溶解工程(ST1)においては、溶解槽201の液槽Bの壁210の貫通孔210aに電極体208を配置した後、溶解槽201内にガラス原料が供給される。ガラス原料は、バーナー206が発する火焔によって加熱されて溶解して、溶融ガラスMGが液槽Bに蓄えられる。その後、電極体208を用いて溶融ガラスMGが通電加熱される。溶融ガラスMGの通電加熱を長期間継続すると、電極体208の先端部が溶融ガラスMGによって浸食される。これにより、図4及び図5に示すように、電極体208の先端面208fの位置が、初期の位置P0から貫通孔210aの内側へ後退する。
Next, the operation of this embodiment will be described.
In the melting step (ST1) of the glass substrate manufacturing method shown in FIG. 1, after the electrode body 208 is disposed in the through hole 210a of the wall 210 of the liquid tank B of the melting tank 201, the glass raw material is supplied into the melting tank 201. Is done. The glass raw material is heated and melted by the flame generated by the burner 206, and the molten glass MG is stored in the liquid tank B. Thereafter, the molten glass MG is energized and heated using the electrode body 208. When the energization heating of the molten glass MG is continued for a long time, the tip of the electrode body 208 is eroded by the molten glass MG. As a result, as shown in FIGS. 4 and 5, the position of the distal end surface 208 f of the electrode body 208 retreats from the initial position P 0 to the inside of the through hole 210 a.
 このように、少なくとも一対の貫通孔210aに酸化錫からなる電極体208を設けた溶解槽201に収納したガラスを溶解する方法においては、短小化した電極体208を溶解槽201内の溶融ガラスMG方向に押し出す工程が必要になる。以下、電極体208を溶解槽201内の溶融ガラスMG方向に押し出す工程について説明する。 Thus, in the method of melting the glass stored in the melting tank 201 in which the electrode body 208 made of tin oxide is provided in at least a pair of the through holes 210a, the shortened electrode body 208 is used as the molten glass MG in the melting tank 201. A process of extruding in the direction is required. Hereinafter, the process of extruding the electrode body 208 in the molten glass MG direction in the melting tank 201 will be described.
 図7は、xz平面に平行な断面図であり、(a)は押し込み前の電極体208の周辺を示す断面図、(b)は押し込み後の電極体208の周辺を示す断面図である。図8は、xy平面に平行な断面図であり、(a)は押し込み前の電極体208の周辺を示す断面図、(b)は押し込み後の電極体208の周辺を示す断面図である。なお、図7において、電極支持台230の図示は省略している。
 図7の(a)に示すように、電極体208は、鉛直面内において、その中心軸C2が、貫通孔210aの中心軸C1に対して傾く場合がある。また、図8の(a)に示すように、電極体208は、水平面内において、その中心軸C2が、貫通孔210aの中心軸C1に対して傾く場合がある。
7A and 7B are cross-sectional views parallel to the xz plane, where FIG. 7A is a cross-sectional view showing the periphery of the electrode body 208 before being pushed in, and FIG. 7B is a cross-sectional view showing the periphery of the electrode body 208 after being pushed in. 8A and 8B are cross-sectional views parallel to the xy plane, where FIG. 8A is a cross-sectional view showing the periphery of the electrode body 208 before being pushed in, and FIG. 8B is a cross-sectional view showing the periphery of the electrode body 208 after being pushed in. In FIG. 7, the electrode support 230 is not shown.
As shown in FIG. 7A, the electrode body 208 may have its center axis C2 inclined with respect to the center axis C1 of the through hole 210a in the vertical plane. Further, as shown in FIG. 8A, the electrode body 208 may have its central axis C2 inclined with respect to the central axis C1 of the through hole 210a in the horizontal plane.
 本実施形態においては、xz平面(鉛直面)内における貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きを上下の傾きとし、xy平面(水平面)内における貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きを左右の傾きとする。なお、図7に示すxz平面内において、電極体208の中心軸C2の傾きが正の場合、電極体208の中心軸C2は貫通孔210aの中心軸C1あるいはx軸に対して上に傾いているといい、電極体208の中心軸C2の傾きが負の場合、電極体208の中心軸C2は貫通孔210aの中心軸C1あるいはx軸に対して下に傾いているという。また、図8に示すxy平面において、電極体208の中心軸C2の傾きが正の場合、電極体208の中心軸C2は貫通孔210aの中心軸C1あるいはx軸に対して右に傾いているといい、電極体208の中心軸C2の傾きが負の場合、電極体208の中心軸C2は貫通孔210aの中心軸C1あるいはx軸に対して左に傾いているという。 In the present embodiment, the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a in the xz plane (vertical plane) is defined as the vertical inclination, and the central axis of the through hole 210a in the xy plane (horizontal plane) The inclination of the central axis C2 of the electrode body 208 with respect to C1 is defined as the left-right inclination. In the xz plane shown in FIG. 7, when the inclination of the central axis C2 of the electrode body 208 is positive, the central axis C2 of the electrode body 208 is inclined upward with respect to the central axis C1 of the through hole 210a or the x axis. If the inclination of the central axis C2 of the electrode body 208 is negative, the central axis C2 of the electrode body 208 is inclined downward with respect to the central axis C1 of the through-hole 210a or the x-axis. In the xy plane shown in FIG. 8, when the inclination of the central axis C2 of the electrode body 208 is positive, the central axis C2 of the electrode body 208 is inclined to the right with respect to the central axis C1 of the through hole 210a or the x axis. In other words, when the inclination of the central axis C2 of the electrode body 208 is negative, the central axis C2 of the electrode body 208 is inclined to the left with respect to the central axis C1 or the x axis of the through hole 210a.
 このように電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾く要因としては、例えば、溶解槽201の温度上昇による壁210の熱膨張、電極体208の後端部の自重、ウォームジャッキ223のフランジ部223aの固定不良、ウォームジャッキ223のフランジ部223aが固定されている不図示の構造体の反りなどがある。
 電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾いた状態で、電極体208の押圧方向を適切に決定せずに、電極体208を溶融ガラスMG方向に押し出すと、電極体208と貫通孔210aとの間に大きな摩擦力が発生し、電極体208の押し込みに大きな力が必要になる。このような状態で電極208を貫通孔210aに押し込むと、溶解槽201の液槽Bの壁210が大きな力を受けて損傷するおそれがある。
The factors that cause the central axis C2 of the electrode body 208 to incline with respect to the central axis C1 of the through hole 210a as described above are, for example, thermal expansion of the wall 210 due to the temperature rise of the dissolution tank 201, and the weight of the rear end of the electrode body 208. There are improper fixing of the flange portion 223a of the worm jack 223, warping of a structure (not shown) to which the flange portion 223a of the worm jack 223 is fixed, and the like.
When the electrode body 208 is pushed out in the direction of the molten glass MG without properly determining the pressing direction of the electrode body 208 in a state where the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a, the electrode A large frictional force is generated between the body 208 and the through hole 210a, and a large force is required to push the electrode body 208. If the electrode 208 is pushed into the through-hole 210a in such a state, the wall 210 of the liquid tank B of the dissolution tank 201 may be damaged by receiving a large force.
 そこで、本実施形態においては、短小化した電極体208を押圧構造220によって溶解槽201内の溶融ガラスMG方向へ押し出す際、貫通孔210aの中心軸C1に対する電極体208の後端面208bの傾きを測定する測定工程を実施する。 Therefore, in this embodiment, when the shortened electrode body 208 is pushed out by the pressing structure 220 in the direction of the molten glass MG in the melting tank 201, the inclination of the rear end surface 208b of the electrode body 208 with respect to the central axis C1 of the through hole 210a is set. The measurement process to measure is implemented.
 具体的には、図7の(a)に示すように、基準面Rと電極体208の後端面208bとの間のx方向の距離を、z方向の複数の個所で測定する。本実施形態では、測定ゲージ225の先端を電極体208の後端面208bに当接させ、水平器や基準面設定装置224を用いて測定ゲージ225をx軸と平行に保つ。この状態で、基準面設定装置224から基準面Rを示すレーザー光が照射された測定ゲージ225の目盛りを読むことで、電極体208の後端面208bと基準面Rとの間のx方向の距離を測定する。これをz方向の複数の箇所で行って、電極体208の後端面208bと基準面Rとの間のx方向の距離D1,D2を測定することにより、電極体208の後端面208bのxz面内における傾きが求められる。なお、電極体208の後端面208bと基準面Rとの間のx方向の距離の測定は、3箇所以上で行うことが好ましい。
 ここで、電極体208の後端面208bは、電極体208の中心軸C2と垂直に設けられている。また、貫通孔210aの中心軸C1は、x軸と平行である。したがって、xz平面内における電極体208の後端面208bの傾きから、xz平面内における電極体208の中心軸C2の傾きが求められ、さらにxz平面内における貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きが求められる。
Specifically, as shown in FIG. 7A, distances in the x direction between the reference plane R and the rear end surface 208b of the electrode body 208 are measured at a plurality of locations in the z direction. In this embodiment, the front end of the measurement gauge 225 is brought into contact with the rear end surface 208b of the electrode body 208, and the measurement gauge 225 is kept parallel to the x-axis using a leveler or a reference surface setting device 224. In this state, the distance in the x direction between the rear end surface 208b of the electrode body 208 and the reference surface R is read by reading the scale of the measurement gauge 225 irradiated with the laser beam indicating the reference surface R from the reference surface setting device 224. Measure. This is performed at a plurality of locations in the z direction, and the distances D1 and D2 in the x direction between the rear end surface 208b of the electrode body 208 and the reference surface R are measured, whereby the xz plane of the rear end surface 208b of the electrode body 208 is measured. The slope inside is determined. In addition, it is preferable that the measurement of the distance of the x direction between the rear end surface 208b of the electrode body 208 and the reference plane R is performed at three or more places.
Here, the rear end surface 208 b of the electrode body 208 is provided perpendicular to the central axis C <b> 2 of the electrode body 208. The central axis C1 of the through hole 210a is parallel to the x axis. Therefore, the inclination of the central axis C2 of the electrode body 208 in the xz plane is obtained from the inclination of the rear end surface 208b of the electrode body 208 in the xz plane, and further, the electrode body 208 with respect to the central axis C1 of the through hole 210a in the xz plane. The inclination of the central axis C2 is obtained.
 同様に、図8(a)に示すように、基準面Rと電極体208の後端面208bとの間のx方向の距離を、y方向の複数の点で測定する。本実施形態では、例えば、測定ゲージ225の先端を電極体208の後端面208bの左端と右端に当接させて、電極体208の後端面208bと基準面Rとの間のx方向の距離D3,D4を測定する。これにより、xy平面内における電極体208の後端面208bの傾きが求められ、さらにxy平面内における貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きが求められる。 Similarly, as shown in FIG. 8A, the distance in the x direction between the reference plane R and the rear end face 208b of the electrode body 208 is measured at a plurality of points in the y direction. In the present embodiment, for example, the distance D3 in the x direction between the rear end surface 208b of the electrode body 208 and the reference surface R is obtained by bringing the front end of the measurement gauge 225 into contact with the left end and the right end of the rear end surface 208b of the electrode body 208. , D4 is measured. Thereby, the inclination of the rear end face 208b of the electrode body 208 in the xy plane is obtained, and further, the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a in the xy plane is obtained.
 このようにして、貫通孔210aの中心軸C1に対する電極体208の傾きを測定した後、測定工程で得られた測定結果に基づいて押圧構造(押圧部材)220による電極体208の後端面208bの押圧方向を決定する決定工程を実施する。決定工程においては、好ましくは、電極体208の後端面208bの傾きを低減させるように、押圧方向を決定する。また、決定工程においては、好ましくは、後端面208bの押圧方向とともに、後端面208bの押圧位置を決定する。 Thus, after measuring the inclination of the electrode body 208 with respect to the central axis C1 of the through-hole 210a, based on the measurement result obtained by the measurement process, the rear end surface 208b of the electrode body 208 by the pressing structure (pressing member) 220 is measured. A determination step for determining the pressing direction is performed. In the determination step, preferably, the pressing direction is determined so as to reduce the inclination of the rear end surface 208b of the electrode body 208. In the determination step, preferably, the pressing position of the rear end surface 208b is determined together with the pressing direction of the rear end surface 208b.
 具体的には、図7の(a)に示すように、押圧構造220による電極体208の後端面208bの押圧方向を決定する。本実施形態においては、電極体208の後端面208bの傾きを測定する場合と同様に、図7(a)及び図8(a)に示すように、ウォームジャッキ223のフランジ部223aと基準面Rとの間の距離d1,d2,d3,d4を、測定ゲージ225によりz方向及びy方向の複数の箇所で測定して、フランジ部223aの基準面Rに対する傾きを求める。なお、フランジ部223aと基準面Rとの間の距離の測定は、3箇所以上で行うことが好ましい。
 次に、フランジ部223aが基準面Rと平行になるように、不図示の調節ネジによりフランジ部223aの傾きを調整する。これにより、ウォームジャッキ223の押圧軸223bによる電極体208の後端面208bの押圧方向が、x軸と平行になるようにしている。すなわち、電極体208の後端面208bの押圧方向は、貫通孔210aの中心軸C1と平行である。
Specifically, as shown in FIG. 7A, the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing structure 220 is determined. In the present embodiment, as in the case of measuring the inclination of the rear end surface 208b of the electrode body 208, as shown in FIGS. 7A and 8A, the flange portion 223a of the worm jack 223 and the reference surface R The distances d1, d2, d3, and d4 are measured at a plurality of locations in the z direction and the y direction by the measurement gauge 225, and the inclination of the flange portion 223a with respect to the reference plane R is obtained. In addition, it is preferable to measure the distance between the flange part 223a and the reference plane R at three or more places.
Next, the inclination of the flange portion 223a is adjusted by an adjustment screw (not shown) so that the flange portion 223a is parallel to the reference plane R. Thereby, the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is made parallel to the x-axis. That is, the pressing direction of the rear end surface 208b of the electrode body 208 is parallel to the central axis C1 of the through hole 210a.
 また、上記のように押圧方向の決定とともに、押圧位置を決定してもよい。あるいは、押圧方向の決定を行わず、押圧位置の決定を行うこともできる。押圧位置の決定は、以下のように行うことができる。電極体208の中心軸C2が貫通孔210aの中心軸C1に対して下に傾いている場合、ウォームジャッキ223を移動させて、押圧軸223bによる電極体208の後端面208bの押圧位置が、中心軸C2よりも上になるようにする。逆に、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して上に傾いている場合、ウォームジャッキ223を移動させて、押圧軸223bによる電極体208の後端面208bの押圧位置が中心軸C2よりも下になるようにする。また、図8の(a)に示すように、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して右に傾いている場合、ウォームジャッキ223を移動させて、押圧軸223bによる電極体208の後端面208bの押圧位置が中心軸C2よりも左になるようにする。逆に、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して左に傾いている場合、ウォームジャッキ223を移動させて、押圧軸223bによる電極体208の後端面208bの押圧位置が中心軸C2よりも右になるようにする。
 すなわち、押圧構造220による電極体208の後端面208bの押圧位置は、電極体208の中心軸C2を基準として、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾いている方向と反対側に決定する。
Moreover, you may determine a press position with the determination of a press direction as mentioned above. Alternatively, the pressing position can be determined without determining the pressing direction. The determination of the pressing position can be performed as follows. When the central axis C2 of the electrode body 208 is inclined downward with respect to the central axis C1 of the through hole 210a, the worm jack 223 is moved, and the pressing position of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b is the center. It should be above the axis C2. Conversely, when the center axis C2 of the electrode body 208 is inclined upward with respect to the center axis C1 of the through hole 210a, the worm jack 223 is moved, and the pressing position of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b. Is lower than the central axis C2. Further, as shown in FIG. 8A, when the central axis C2 of the electrode body 208 is inclined to the right with respect to the central axis C1 of the through-hole 210a, the worm jack 223 is moved and the pressing shaft 223b is used. The pressing position of the rear end surface 208b of the electrode body 208 is set to the left of the center axis C2. Conversely, when the center axis C2 of the electrode body 208 is tilted to the left with respect to the center axis C1 of the through hole 210a, the worm jack 223 is moved and the pressing position of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b. Is to the right of the center axis C2.
That is, the pressing position of the rear end surface 208b of the electrode body 208 by the pressing structure 220 is such that the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a with respect to the center axis C2 of the electrode body 208. Decide on the opposite side of the direction.
 上記のように、電極体208の後端面208bの押圧位置及び/または押圧方向を決定した後、押圧部材220によって電極体208の後端面208bを押圧する押圧工程を実施する。具体的には、水平治具221及び垂直治具222を介して、ウォームジャッキ223の押圧軸223bにより、電極体208の後端面208bを押圧する。 As described above, after determining the pressing position and / or the pressing direction of the rear end surface 208b of the electrode body 208, a pressing step of pressing the rear end surface 208b of the electrode body 208 by the pressing member 220 is performed. Specifically, the rear end surface 208 b of the electrode body 208 is pressed by the pressing shaft 223 b of the worm jack 223 through the horizontal jig 221 and the vertical jig 222.
 このとき、図7の(a)および図8の(a)に示すように、本実施形態では、電極体208の後端面208bの押圧方向は、貫通孔210aの中心軸C1と平行である。そのため、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾いている場合であっても、電極体208を貫通孔210aの中心軸C1に沿って押し込むことで、電極体208の中心軸C2の傾きを低減することができる。したがって、電極体208を貫通孔210aに押し込む際の電極体208と貫通孔210aとの間の摩擦抵抗を低減させることができる。 At this time, as shown in FIGS. 7A and 8A, in this embodiment, the pressing direction of the rear end surface 208b of the electrode body 208 is parallel to the central axis C1 of the through hole 210a. Therefore, even when the central axis C2 of the electrode body 208 is inclined with respect to the central axis C1 of the through hole 210a, the electrode body 208 is pushed by pushing the electrode body 208 along the central axis C1 of the through hole 210a. The inclination of the central axis C2 can be reduced. Therefore, the frictional resistance between the electrode body 208 and the through hole 210a when the electrode body 208 is pushed into the through hole 210a can be reduced.
 また、本実施形態では、押圧部材220の押圧位置は、電極体208の中心軸C2を基準として、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾いている方向と、反対側に決定されている。そのため、電極体208を押圧構造220により押圧すると、電極体208には、電極体208の貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きを低減させるような回転力が作用する。したがって、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して傾いている場合であっても、電極体208を溶融ガラスMG方向に押し出すに従って、貫通孔210aの中心軸C1に対する電極体208の中心軸C1の傾きが低減される。これにより、図7(b)及び図8(b)に示すように、電極体208の先端面208fが目的の位置P0に達するまで、電極体208を溶融ガラスMG方向に押し出す際に、貫通孔210aの中心軸C1と電極体208の中心軸C2とが一致するように、電極体208を貫通孔210aに押し込むことができる。よって、電極体208と貫通孔210aとの間の摩擦抵抗が低減され、溶解槽201の液槽Bの壁210が電極体208の押し込みによって損傷することが防止され、溶解槽201を用いて長期間に亘り安定的にガラスを溶解することができる。 In the present embodiment, the pressing position of the pressing member 220 is such that the center axis C2 of the electrode body 208 is inclined with respect to the center axis C1 of the through hole 210a with respect to the center axis C2 of the electrode body 208; It has been decided on the other side. Therefore, when the electrode body 208 is pressed by the pressing structure 220, a rotational force that reduces the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a of the electrode body 208 acts on the electrode body 208. . Therefore, even when the central axis C2 of the electrode body 208 is inclined with respect to the central axis C1 of the through hole 210a, the electrode with respect to the central axis C1 of the through hole 210a is pushed out as the electrode body 208 is pushed in the direction of the molten glass MG. The inclination of the central axis C1 of the body 208 is reduced. Thus, as shown in FIGS. 7B and 8B, when the electrode body 208 is pushed out in the direction of the molten glass MG until the tip surface 208f of the electrode body 208 reaches the target position P0, the through hole The electrode body 208 can be pushed into the through-hole 210a so that the central axis C1 of 210a and the central axis C2 of the electrode body 208 coincide. Therefore, the frictional resistance between the electrode body 208 and the through-hole 210a is reduced, and the wall 210 of the liquid tank B of the dissolution tank 201 is prevented from being damaged by the pressing of the electrode body 208. Glass can be melted stably over a period of time.
 また、本実施形態においては、押圧構造220によって電極体208の後端面を押圧する際に、溶解槽201の外側に突出した電極体208の少なくとも一部を、貫通孔210aの中心軸C1に交差する方向から支持する電極支持台230が設けられている。そのため、電極体208を溶融ガラスMG方向に押し出す際に、電極体208の中心軸C2が貫通孔210aの中心軸C1に対して下に傾くことが防止される。また、電極支持台230の高さが調節可能に設けられているので、電極支持台230の高さを適切に設定することで、電極体208が自重によって傾くことがより効果的に防止される。 Further, in this embodiment, when pressing the rear end surface of the electrode body 208 by the pressing structure 220, at least a part of the electrode body 208 protruding to the outside of the dissolution tank 201 intersects the central axis C1 of the through hole 210a. An electrode support base 230 is provided to support from the direction to perform. Therefore, when the electrode body 208 is pushed out in the direction of the molten glass MG, the center axis C2 of the electrode body 208 is prevented from being inclined downward with respect to the center axis C1 of the through hole 210a. In addition, since the height of the electrode support base 230 is adjustable, it is possible to more effectively prevent the electrode body 208 from being tilted by its own weight by appropriately setting the height of the electrode support base 230. .
 以上説明したように、本実施形態のガラスの溶解方法、ガラス基板の製造方法及びガラスの溶解装置によれば、溶解槽201の貫通孔208aに電極体208を押し込む際の電極体208と貫通孔208aとの間の摩擦抵抗を低減し、溶解槽201を用いて長期間に亘り安定的にガラスを溶解することができる。 As described above, according to the glass melting method, the glass substrate manufacturing method, and the glass melting apparatus of the present embodiment, the electrode body 208 and the through hole when the electrode body 208 is pushed into the through hole 208a of the melting tank 201. Friction resistance with 208a can be reduced, and the glass can be stably melted over a long period of time using the melting tank 201.
 なお、本発明は上記の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよい。
 例えば、電極体208の押し込みは、複数回に分け、後端面208bの傾きを測定する工程と押圧構造220の押圧位置または押圧方向を決定する工程とを繰り返して行うことができる。これにより、貫通孔210aの中心軸C1に対する電極体208の中心軸C1の傾きを測定しつつ、押圧構造220による押圧位置および押圧方向を微調整することができる。
 また、電極体208の後端面208bの傾きの程度によっては、上記のように押圧位置を適切に決定した後、押圧方向を変更せず、そのまま電極体208を押圧構造220によって貫通孔210aに押し込んでも良い。
 また、押圧位置を変更せず、押圧方向のみを最適な方向に決定することもできる。この場合、押圧方向は、xz平面およびxy平面における貫通孔210aの中心軸C1に対して電極体208の中心軸C2が傾いている方向と逆の方向を向くように設定する。これにより、電極体208に、貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きを低減する回転力を作用させ、貫通孔210aの中心軸C1に対する電極体208の中心軸C2の傾きを低減することができる。
 電極体208の後端面208bの押圧方向は、電極体208の後端面208bの傾きを低減することができる方向であれば、貫通孔210aの中心軸C1と平行でなくてもよい。例えば、図7の(a)に示すように、電極体208の中心軸C2が貫通孔210aの中心軸C1あるいはx軸に対して下に傾いている場合、ウォームジャッキ223の押圧軸223bによる電極体208の後端面208bの押圧方向が、斜め上方を向くように押圧方向を決定してもよい。逆に、電極体208の中心軸C2が貫通孔210aの中心軸C1あるいはx軸に対して上に傾いている場合、ウォームジャッキ223の押圧軸223bによる電極体208の後端面208bの押圧方向が、斜め下方を向くように押圧方向を決定してもよい。また、図8の(a)に示すように、電極体208の中心軸C2が貫通孔210aの中心軸C1あるいはx軸に対して右に傾いている場合、ウォームジャッキ223の押圧軸223bによる電極体208の後端面208bの押圧方向が、斜め左方を向くように押圧方向を決定してもよい。逆に、電極体208の中心軸C2が貫通孔210aの中心軸C1あるいはx軸に対して左に傾いている場合、ウォームジャッキ223の押圧軸223bによる電極体208の後端面208bの押圧方向が、斜め右方を向くように押圧方向を決定してもよい。このように、電極体208が傾いている方向と逆の方向に押圧方向を決定することで、電極体208に傾きを低減する回転力を作用させ、電極体208の傾きを低減することができる。
 また、上述の実施形態では、押圧構造220は、水平治具221及び垂直治具222を介して電極体208の後端面208bを押圧する構成としたが、例えば格子状の治具や板状の一体的に形成された治具を用いて電極体208の後端面208bを押圧しても良い。
 また、上述の実施形態では、測定器として測定ゲージ225を用いる例を説明したが、基準面Rと電極体の後端面208bとの間の距離を複数の点で測定可能なものであれば、測定器として光学式など、非接触式の距離センサーを用いても良い。また、水平治具221の後端面に加速度センサーを設けて、この加速度センサーを用いて重力加速度を測定することにより、電極の後端面の傾きを求めても良い。
 また、上述の実施形態では、電極支持台230は、電極体208を下方から支持する構成とした。しかし、電極体208を指示する方向は、溶解槽201の外側に突出した電極体208の少なくとも一部を、貫通孔210aの中心軸C1に交差する方向から支持する構成であれば、特に限定されない。例えば、電極体208の後端部を上方から吊り下げて支持したり、斜め方向から支持したりしてもよい。
In addition, this invention is not limited to said embodiment, You may make various improvement and change in the range which does not deviate from the main point of this invention.
For example, the pressing of the electrode body 208 can be divided into a plurality of times, and the process of measuring the inclination of the rear end face 208b and the process of determining the pressing position or pressing direction of the pressing structure 220 can be repeated. Thereby, the pressing position and the pressing direction by the pressing structure 220 can be finely adjusted while measuring the inclination of the central axis C1 of the electrode body 208 with respect to the central axis C1 of the through hole 210a.
Further, depending on the degree of inclination of the rear end surface 208b of the electrode body 208, after appropriately determining the pressing position as described above, the electrode body 208 is directly pushed into the through hole 210a by the pressing structure 220 without changing the pressing direction. But it ’s okay.
Moreover, it is also possible to determine only the pressing direction as the optimum direction without changing the pressing position. In this case, the pressing direction is set so as to face the direction opposite to the direction in which the central axis C2 of the electrode body 208 is inclined with respect to the central axis C1 of the through hole 210a in the xz plane and the xy plane. Accordingly, a rotational force that reduces the inclination of the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a is applied to the electrode body 208, so that the central axis C2 of the electrode body 208 with respect to the central axis C1 of the through hole 210a The inclination can be reduced.
The pressing direction of the rear end surface 208b of the electrode body 208 may not be parallel to the central axis C1 of the through hole 210a as long as the inclination of the rear end surface 208b of the electrode body 208 can be reduced. For example, as shown in FIG. 7A, when the center axis C2 of the electrode body 208 is inclined downward with respect to the center axis C1 or the x axis of the through hole 210a, the electrode by the pressing shaft 223b of the worm jack 223 is used. The pressing direction may be determined so that the pressing direction of the rear end surface 208b of the body 208 faces obliquely upward. Conversely, when the center axis C2 of the electrode body 208 is inclined upward with respect to the center axis C1 or the x axis of the through hole 210a, the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is The pressing direction may be determined so as to face obliquely downward. Further, as shown in FIG. 8A, when the center axis C2 of the electrode body 208 is inclined to the right with respect to the center axis C1 or the x axis of the through hole 210a, the electrode by the pressing shaft 223b of the worm jack 223 is used. The pressing direction may be determined so that the pressing direction of the rear end surface 208b of the body 208 faces diagonally to the left. Conversely, when the central axis C2 of the electrode body 208 is inclined to the left with respect to the central axis C1 or the x axis of the through hole 210a, the pressing direction of the rear end surface 208b of the electrode body 208 by the pressing shaft 223b of the worm jack 223 is The pressing direction may be determined so as to face diagonally right. Thus, by determining the pressing direction in the direction opposite to the direction in which the electrode body 208 is tilted, a rotational force that reduces the tilt is applied to the electrode body 208, and the tilt of the electrode body 208 can be reduced. .
In the above-described embodiment, the pressing structure 220 is configured to press the rear end surface 208b of the electrode body 208 via the horizontal jig 221 and the vertical jig 222. However, for example, a grid-like jig or a plate-like jig is used. You may press the rear-end surface 208b of the electrode body 208 using the jig | tool formed integrally.
In the above-described embodiment, the example in which the measurement gauge 225 is used as the measuring device has been described. However, if the distance between the reference surface R and the rear end surface 208b of the electrode body can be measured at a plurality of points, A non-contact type distance sensor such as an optical type may be used as the measuring device. In addition, an acceleration sensor may be provided on the rear end surface of the horizontal jig 221 and the gravitational acceleration may be measured using the acceleration sensor to obtain the inclination of the rear end surface of the electrode.
In the above-described embodiment, the electrode support base 230 is configured to support the electrode body 208 from below. However, the direction in which the electrode body 208 is indicated is not particularly limited as long as at least a part of the electrode body 208 protruding outside the dissolution tank 201 is supported from the direction intersecting the central axis C1 of the through hole 210a. . For example, the rear end portion of the electrode body 208 may be supported by being suspended from above, or may be supported from an oblique direction.
 本発明の方法は、溶融ガラスを成形することによるガラス基板の製造において、特にガラスの溶解工程を有利に行うことを可能とする。 The method of the present invention makes it possible to advantageously perform a glass melting step particularly in the production of a glass substrate by molding molten glass.
201 溶解槽
208 電極体(電極)
208b 後端面
210a 貫通孔
220 押圧構造(押圧部材)
225 測定器
C1,C2 中心軸
MG 溶融ガラス
201 Dissolution bath 208 Electrode body (electrode)
208b Rear end face 210a Through hole 220 Press structure (press member)
225 Measuring instrument C1, C2 Center axis MG Molten glass

Claims (5)

  1.  少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽に収納したガラスを溶解する方法において、
     短小化した前記電極を前記溶解槽内の溶融ガラス方向に押圧部材によって押し出す際、前記貫通孔の中心軸に対する前記電極の後端面の傾きを測定する測定工程と、
     前記測定工程で得られた測定結果に基づいて、前記押圧部材の押圧方向を決定する決定工程と、
     前記決定工程で得られた押圧方向に基づいて、前記押圧部材によって前記電極の後端面を押圧する押圧工程と、
    を有することを特徴とするガラスの溶解方法。
    In a method of melting glass stored in a melting tank provided with an electrode made of tin oxide in at least a pair of through holes,
    A measurement step of measuring the inclination of the rear end face of the electrode with respect to the central axis of the through-hole when extruding the shortened electrode in the melting glass direction in the melting tank by a pressing member;
    A determination step of determining a pressing direction of the pressing member based on the measurement result obtained in the measuring step;
    Based on the pressing direction obtained in the determining step, a pressing step of pressing the rear end surface of the electrode by the pressing member;
    A method for melting glass, comprising:
  2.  前記決定工程において、
     前記後端面の傾きを低減させるように、前記押圧方向を決定する、
     請求項1に記載のガラスの溶解方法。
    In the determination step,
    Determining the pressing direction so as to reduce the inclination of the rear end face;
    The method for melting glass according to claim 1.
  3.  前記押圧工程において、
     前記溶解槽の外側に突出した前記電極の少なくとも一部を、前記貫通孔の中心軸に交差する方向から支持した状態で、前記電極の後端面を押圧する、
     請求項1または2に記載のガラスの溶解方法。
    In the pressing step,
    In a state where at least a part of the electrode protruding outside the dissolution tank is supported from a direction intersecting the central axis of the through hole, the rear end surface of the electrode is pressed.
    The method for melting glass according to claim 1 or 2.
  4.  請求項1から3のいずれか一項に記載のガラスの溶解方法を含むことを特徴とする、ガラス基板の製造方法。 A method for producing a glass substrate, comprising the glass melting method according to any one of claims 1 to 3.
  5.  ガラスの溶解装置であって、
     少なくとも一対の貫通孔に酸化錫からなる電極を設けた溶解槽と、
     短小化した前記電極を前記溶解槽内の溶融ガラス方向に押し出す押圧部材と、
     前記貫通孔の中心軸に対する前記電極の後端面の傾きを測定する測定器と、
    を有することを特徴とするガラスの溶解装置。
    A glass melting device,
    A dissolution tank provided with an electrode made of tin oxide in at least a pair of through holes;
    A pressing member for extruding the shortened electrode toward the molten glass in the melting tank;
    A measuring instrument for measuring the inclination of the rear end face of the electrode with respect to the central axis of the through hole;
    An apparatus for melting glass, comprising:
PCT/JP2013/075734 2012-09-28 2013-09-24 Glass-melting method, process for manufacturing glass substrate and glass-melting apparatus WO2014050826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013553733A JP5706544B2 (en) 2012-09-28 2013-09-24 Glass melting method, glass substrate manufacturing method, and glass melting apparatus
CN201380003757.XA CN103917498B (en) 2012-09-28 2013-09-24 The fusing device of the melting method of glass, the manufacture method of glass substrate and glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-218822 2012-09-28
JP2012218822 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050826A1 true WO2014050826A1 (en) 2014-04-03

Family

ID=50388223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075734 WO2014050826A1 (en) 2012-09-28 2013-09-24 Glass-melting method, process for manufacturing glass substrate and glass-melting apparatus

Country Status (3)

Country Link
JP (2) JP5706544B2 (en)
CN (2) CN106007340B (en)
WO (1) WO2014050826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430709B2 (en) 2018-09-06 2024-02-13 コーニング インコーポレイテッド Melting furnace electrode operating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722021B2 (en) * 2016-03-31 2020-07-15 AvanStrate株式会社 Glass substrate manufacturing method and glass melting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292323A (en) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd Glass-fusing furnace and glass-fusing method
JP2012162422A (en) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
JP2012250906A (en) * 2011-05-31 2012-12-20 Corning Inc Glass melt handling equipment and method
JP2013082608A (en) * 2011-09-30 2013-05-09 Avanstrate Inc Method for manufacturing glass plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381197A (en) * 2008-10-20 2009-03-11 河南安飞电子玻璃有限公司 Fluxing apparatus of LCD glass melting furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292323A (en) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd Glass-fusing furnace and glass-fusing method
JP2012162422A (en) * 2011-02-08 2012-08-30 Nippon Electric Glass Co Ltd Method for manufacturing glass article and glass melting furnace
JP2012250906A (en) * 2011-05-31 2012-12-20 Corning Inc Glass melt handling equipment and method
JP2013082608A (en) * 2011-09-30 2013-05-09 Avanstrate Inc Method for manufacturing glass plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430709B2 (en) 2018-09-06 2024-02-13 コーニング インコーポレイテッド Melting furnace electrode operating device

Also Published As

Publication number Publication date
JPWO2014050826A1 (en) 2016-08-22
CN103917498B (en) 2016-07-06
CN106007340B (en) 2018-10-12
CN106007340A (en) 2016-10-12
JP5706544B2 (en) 2015-04-22
JP2015155369A (en) 2015-08-27
JP5941175B2 (en) 2016-06-29
CN103917498A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5890559B2 (en) Manufacturing method of glass substrate
KR101972254B1 (en) Manufacturing method of glass substrate
WO2012132473A1 (en) Glass substrate production method
JP5941175B2 (en) Method for melting glass and method for producing glass substrate
KR20140141568A (en) Apparatus and method for making glass sheet
JP5731437B2 (en) Manufacturing method of glass plate
US11370684B2 (en) Method and device for manufacturing glass article
JP2014047124A (en) Glass substrate manufacturing method, and glass substrate manufacturing device
KR101634417B1 (en) Method of manufacturing glass
JP2015051896A (en) Glass melting apparatus, glass sheet manufacturing apparatus, electrode for glass melting apparatus, and glass sheet manufacturing method
JP5768082B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP2016034894A (en) Method and apparatus for manufacturing glass substrate
JP6722021B2 (en) Glass substrate manufacturing method and glass melting apparatus
JP2017178709A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
KR20170003405A (en) Method for producing glass substrate
TW201831409A (en) Glass article production method and glass substrate group
JP2014069980A (en) Method for producing glass substrate and glass substrate producing apparatus
US20240010540A1 (en) Apparatus and method for producing glass article
JP6002525B2 (en) Manufacturing method of glass plate
JP2017178649A (en) Manufacturing method for glass substrate
JP6263354B2 (en) Glass melting apparatus and glass sheet manufacturing method
JP5668066B2 (en) Manufacturing method of glass substrate
JP2017065992A (en) Production method of glass substrate
JP6721311B2 (en) Glass substrate manufacturing method
CN105314821B (en) For manufacturing the device of glass and using the method for the device manufacturing glass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553733

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842528

Country of ref document: EP

Kind code of ref document: A1