WO2014050824A1 - Device for manufacturing glass substrate, and method for manufacturing glass substrate - Google Patents

Device for manufacturing glass substrate, and method for manufacturing glass substrate Download PDF

Info

Publication number
WO2014050824A1
WO2014050824A1 PCT/JP2013/075732 JP2013075732W WO2014050824A1 WO 2014050824 A1 WO2014050824 A1 WO 2014050824A1 JP 2013075732 W JP2013075732 W JP 2013075732W WO 2014050824 A1 WO2014050824 A1 WO 2014050824A1
Authority
WO
WIPO (PCT)
Prior art keywords
clarification
glass substrate
tube
glass
molten glass
Prior art date
Application number
PCT/JP2013/075732
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 藤本
貴央 ▲はま▼谷
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2013553731A priority Critical patent/JP5752811B2/en
Priority to KR1020147010687A priority patent/KR101622057B1/en
Publication of WO2014050824A1 publication Critical patent/WO2014050824A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

Provided is a device for manufacturing a glass substrate and a method for manufacturing a glass substrate, whereby the amount of volatile matter that adheres to the inside of a clarification tube can be reduced even when SnO2, etc., having a low environmental impact is used as a clarifying agent during degassing processing by heating a clarification tube in the process of manufacturing a glass substrate. During degassing by passing molten glass through a clarification tube, a vapor-phase space as a space above a liquid surface of the molten glass is set in advance in a top region inside the clarification tube. A reinforcing part is formed in a least a portion of the set vapor-phase space so as to have a shape that does not cause stagnation of an air flow in the vapor-phase space.

Description

ガラス基板の製造装置及びガラス基板の製造方法Glass substrate manufacturing apparatus and glass substrate manufacturing method
 本発明は、ガラス原料を溶融して生成させた溶融ガラスを成形することによりガラス基板を製造する、ガラス基板の製造装置及びガラス基板の製造方法に関する。 The present invention relates to a glass substrate manufacturing apparatus and a glass substrate manufacturing method for manufacturing a glass substrate by molding a molten glass produced by melting a glass raw material.
 ガラス基板は、一般的に、ガラス原料から溶融ガラスを生成させた後、溶融ガラスをガラス基板へと成形する工程を経て製造される。上記の工程中に、必要に応じて溶融ガラスが内包する微小な気泡を除去する工程(以下、清澄ともいう)が含まれる。清澄は、清澄管を加熱しながら、この清澄管にAs等の清澄剤を配合させた溶融ガラスを通過させ、清澄剤の酸化還元反応により溶融ガラス中の泡が取り除かれることで行われる。より具体的には、粗溶解した溶融ガラスの温度をさらに上げて清澄剤を機能させ、泡を浮上脱泡させる。その後、温度を下げることにより、脱泡しきれずに残った比較的小さな泡を溶融ガラスに吸収させる。すなわち、清澄は、泡を浮上脱泡させる処理(以下、脱泡処理または脱泡工程ともいう)及び小泡を溶融ガラスへ吸収させる処理(以下、吸収処理または吸収工程ともいう)を含む。清澄剤は従来Asが一般的であったが、近年、環境負荷を低減する観点から、SnOやFe等が用いられるようになってきている。 A glass substrate is generally manufactured through a process of forming molten glass from a glass raw material and then forming the molten glass into a glass substrate. The above step includes a step of removing minute bubbles contained in the molten glass (hereinafter also referred to as clarification) as necessary. The clarification is performed by passing the molten glass containing a clarifying agent such as As 2 O 3 through the clarification tube while heating the clarification tube, and removing bubbles in the molten glass by the oxidation-reduction reaction of the clarification agent. Is called. More specifically, the temperature of the melted molten glass is further raised to make the fining agent function and the bubbles are floated and defoamed. Thereafter, by lowering the temperature, the relatively small bubbles remaining without being completely defoamed are absorbed by the molten glass. That is, clarification includes a process for floating and defoaming bubbles (hereinafter also referred to as a defoaming process or a defoaming process) and a process for absorbing small bubbles into molten glass (hereinafter also referred to as an absorption process or an absorption process). Conventionally, As 2 O 3 has been commonly used as a fining agent, but recently, SnO 2 , Fe 2 O 3, and the like have been used from the viewpoint of reducing the environmental load.
 高温の溶融ガラスから品位の高いガラス基板を量産するためには、ガラス基板の欠陥の要因となる異物等が、ガラス基板を製造するいずれの装置からも溶融ガラスへ混入しないよう考慮することが望まれる。このため、ガラス基板の製造過程において溶融ガラスに接する部材の内壁は、その部材に接する溶融ガラスの温度、要求されるガラス基板の品質等に応じ、適切な材料により構成する必要がある。たとえば、上述の清澄管を構成する材料は、通常白金または白金合金等の白金族金属が用いられていることが知られている(特許文献1)。白金または白金合金は、高価ではあるが融点が高く、溶融ガラスに対する耐食性にも優れている。
 脱泡工程時に清澄管を加熱する温度は、成形するべきガラス基板の組成によって相違するが、1000~1650℃程度である。
 清澄管に上述の溶融ガラスを通過させる際に、清澄管の内部表面と溶融ガラスの液面との間に一定広さの脱泡用の気相空間を有するようにすることが必要である。
In order to mass-produce high-quality glass substrates from high-temperature molten glass, it is desirable to consider that foreign substances that cause defects in the glass substrate are not mixed into the molten glass from any apparatus that manufactures the glass substrate. It is. For this reason, in the process of manufacturing the glass substrate, the inner wall of the member in contact with the molten glass needs to be made of an appropriate material according to the temperature of the molten glass in contact with the member, the required quality of the glass substrate, and the like. For example, it is known that a platinum group metal such as platinum or a platinum alloy is generally used as a material constituting the above-mentioned clarification tube (Patent Document 1). Platinum or a platinum alloy is expensive but has a high melting point and excellent corrosion resistance against molten glass.
The temperature at which the clarification tube is heated during the defoaming step is about 1000 to 1650 ° C., although it varies depending on the composition of the glass substrate to be molded.
When passing the above-mentioned molten glass through the clarification tube, it is necessary to have a defoaming gas phase space of a certain width between the inner surface of the clarification tube and the liquid surface of the molten glass.
特表2006-522001号公報Special table 2006-522001 gazette
 上述の気相空間には溶融ガラスから酸素を含む気泡が放出されるため、清澄管のうち気相空間に接する内壁部分の白金または白金合金が揮発する。
 ところで、ガラス基板の製造においては、用いる清澄剤によって清澄作用が効果的に発揮される温度が異なることが知られている。例えば、As(亜ヒ酸)は、気泡を除去する能力に優れており、清澄温度も1500℃程度以上の範囲で足りるため、従来は清澄剤としてAsを用いるのが一般的であった。しかし、亜ヒ酸は環境負荷が高いため、既に述べたように近年は環境負荷が高くない清澄剤としてSnO(酸化錫)等が用いられるようになってきている。しかし、酸化錫は亜ヒ酸と比較して脱泡工程時に泡を放出する力が弱いため、ガラスの粘性を低くして脱泡効果を上げる必要があり、したがって高い温度で清澄を行う必要がある。例えば、酸化錫を清澄剤として使用した場合は、1600℃以上に昇温させることが好ましい。このため、上述の気相空間に接する清澄管の内壁部分において、この内壁部分が従来よりも揮発しやすくなってしまうという課題があった。このような白金の揮発による薄肉化や、高温による強度の低下を防止するため、清澄管には周方向にリング状の補強材などの補強部が設けられる場合、補強部の近傍で白金の揮発物が付着しやすくなる。この付着した揮発物が落下して脱泡工程中の溶融ガラス中に混入し、ガラス基板の品質の低下を招くおそれがあった。
 本発明は以上の点を鑑み、ガラス基板の製造過程において清澄管を加熱して脱泡処理を行う際、清澄剤として環境負荷の少ないSnO等を用いても、清澄管の強度を保ちつつ、清澄管の補強部の近傍に付着する揮発物を低減することができるガラス基板の製造方法及び製造装置を提供する。
Since bubbles containing oxygen are released from the molten glass into the gas phase space described above, platinum or a platinum alloy in the inner wall portion in contact with the gas phase space in the clarification tube volatilizes.
By the way, in manufacture of a glass substrate, it is known that the temperature in which a clarification effect | action is exhibited effectively differs with the clarifier to be used. For example, As 2 O 3 (arsenous acid) is excellent in the ability to remove bubbles, and the refining temperature is sufficient in the range of about 1500 ° C. or higher, so conventionally, As 2 O 3 is generally used as a refining agent. It was the target. However, since arsenous acid has a high environmental load, SnO 2 (tin oxide) or the like has recently been used as a clarifying agent that does not have a high environmental load as described above. However, tin oxide has a weaker ability to release bubbles during the defoaming process than arsenous acid, so it is necessary to lower the viscosity of the glass to increase the defoaming effect, and therefore it is necessary to clarify at a high temperature. is there. For example, when tin oxide is used as a fining agent, it is preferable to raise the temperature to 1600 ° C. or higher. For this reason, in the inner wall part of the clarification pipe | tube which touches the above-mentioned gaseous-phase space, there existed a subject that this inner wall part would volatilize more easily than before. In order to prevent such thinning due to the volatilization of platinum and a decrease in strength due to high temperature, when the clarification pipe is provided with a reinforcing part such as a ring-shaped reinforcing material in the circumferential direction, the volatilization of platinum in the vicinity of the reinforcing part. Things are likely to adhere. There was a possibility that the adhering volatiles would fall and be mixed in the molten glass during the defoaming process, leading to a deterioration in the quality of the glass substrate.
In view of the above points, the present invention maintains the strength of the clarification tube even when SnO 2 having a low environmental load is used as a clarification agent when the defoaming treatment is performed by heating the clarification tube in the manufacturing process of the glass substrate. A glass substrate manufacturing method and a manufacturing apparatus capable of reducing volatile substances adhering to the vicinity of a reinforcing portion of a clarification tube are provided.
 上述した目的を達成するために、本発明の一態様は、ガラス基板の製造工程において、溶融ガラスを清澄するための清澄槽を有するガラス基板の製造装置であって、前記清澄槽は、白金または白金合金からなる清澄管と、前記清澄管の周方向に設けられ、前記清澄管を補強する補強部と、前記清澄管の内部表面の上部の領域であって、前記清澄管に溶融ガラスを通過させて清澄する際に、前記溶融ガラスの液面上の空間として予め設定された気相空間と、を備え、前記補強部は、前記気相空間の少なくとも一部において、前記気相空間における気流の滞留が生じない形状に形成されている。すなわち、前記補強部は、前記気相空間において白金の揮発物の濃度が局所的に上昇することを防止する形状に形成されている。換言すると、前記補強部は、前記気相空間における気流と逆向きの気流を生じさせない形状に形成されている。
 また、本発明の別の態様は、ガラス基板の製造工程において、溶融ガラスを清澄するための清澄槽を有するガラス基板の製造装置であって、前記清澄槽は、白金または白金合金からなる清澄管と、前記清澄管の周方向に設けられ、前記清澄管の内部表面から前記清澄管の内側へ突出する補強部と、前記清澄管の内部表面の上部の領域であって、前記清澄管に溶融ガラスを通過させて清澄する際に、前記溶融ガラスの液面上の空間として予め設定された気相空間と、を備え、前記気相空間に属する前記補強部の少なくとも一部が取り除かれている。
 上記の態様において、前記気相空間に属する補強部の少なくとも一部を曲面状に形成してもよい。
 また、本発明の別の態様は、ガラス基板の製造方法であって、上記のガラス基板の製造装置を用い、前記清澄管を加熱しながら、清澄剤を配合させた溶融ガラスを前記清澄管に通過させて脱泡する脱泡工程を含む。
 上記の態様は、前記清澄剤が酸化錫である場合に特に適している。
 上記の態様は、前記溶融ガラスは、粘度を102.5ポアズとする場合に、1300℃以上の溶融温度を要する材料で構成する場合に特に適している。
In order to achieve the above-described object, one aspect of the present invention is a glass substrate manufacturing apparatus having a clarification tank for clarifying molten glass in a glass substrate manufacturing process, wherein the clarification tank is platinum or A clarification tube made of a platinum alloy, a reinforcing portion that is provided in the circumferential direction of the clarification tube, reinforces the clarification tube, and an upper region of the inner surface of the clarification tube, and passes the molten glass through the clarification tube A gas phase space that is preset as a space on the liquid surface of the molten glass when clarified, and the reinforcing portion has an air flow in the gas phase space in at least a part of the gas phase space. It is formed in a shape in which no stagnation occurs. In other words, the reinforcing portion is formed in a shape that prevents the concentration of platinum volatiles from rising locally in the gas phase space. In other words, the reinforcing part is formed in a shape that does not generate an airflow opposite to the airflow in the gas phase space.
Another aspect of the present invention is a glass substrate manufacturing apparatus having a clarification tank for clarifying molten glass in a glass substrate manufacturing process, wherein the clarification tank is made of platinum or a platinum alloy. A reinforcing portion that is provided in a circumferential direction of the clarification tube and protrudes from the inner surface of the clarification tube to the inside of the clarification tube; and an upper region of the inner surface of the clarification tube, and is melted in the clarification tube A gas phase space set in advance as a space on the liquid surface of the molten glass when the glass is clarified, and at least a part of the reinforcing portion belonging to the gas phase space is removed .
In the above aspect, at least a part of the reinforcing portion belonging to the gas phase space may be formed in a curved shape.
Moreover, another aspect of the present invention is a method for producing a glass substrate, wherein the above-mentioned glass substrate production apparatus is used to heat molten glass containing a fining agent while heating the fining tube to the fining tube. A defoaming step of passing and defoaming.
The above aspect is particularly suitable when the fining agent is tin oxide.
The above aspect is particularly suitable when the molten glass is made of a material that requires a melting temperature of 1300 ° C. or higher when the viscosity is 10 2.5 poise.
 本発明のガラス基板の製造装置及びガラス基板の製造方法によれば、清澄に係る温度が従来よりも高温を要するようになっても、補強部により清澄管の強度を保ちつつ、補強部の近傍において揮発物が付着し難くなる。したがって、脱泡工程中に溶融ガラスに異物が混入するのを避けることができるため、ガラス製品の品質を保つことができる。 According to the glass substrate manufacturing apparatus and glass substrate manufacturing method of the present invention, even if the temperature related to fining requires higher temperature than before, the strength of the fining tube is maintained by the reinforcing portion, and in the vicinity of the reinforcing portion. In this case, volatile substances are difficult to adhere. Therefore, since it can avoid that a foreign material mixes into a molten glass during a defoaming process, the quality of glass products can be maintained.
実施の形態のガラス基板の製造方法を説明するための、ガラス基板製造装置の概略的な構成図である。It is a schematic block diagram of the glass substrate manufacturing apparatus for demonstrating the manufacturing method of the glass substrate of embodiment. 清澄槽の基本的な構成を示す概略図である。It is the schematic which shows the basic composition of a clarification tank. (a)は図2の3a-3a線に沿う断面図であり、(b)は補強部の平面図である。(A) is a sectional view taken along line 3a-3a in FIG. 2, and (b) is a plan view of a reinforcing portion. 本実施形態の変形例を示す図であり、(a)及び(b)は図2の3a-3a線に沿う断面図である。It is a figure which shows the modification of this embodiment, (a) And (b) is sectional drawing which follows the 3a-3a line | wire of FIG. 従来の補強部近傍における気流の滞留を説明する断面図である。It is sectional drawing explaining the retention of the airflow in the conventional reinforcement part vicinity. 本実施形態の変形例を示す補強部近傍の拡大断面図である。It is an expanded sectional view near the reinforcement part which shows the modification of this embodiment.
 以下、図面を参照しながら、本発明のガラス基板の製造方法の実施の形態について説明する。 Hereinafter, embodiments of the glass substrate manufacturing method of the present invention will be described with reference to the drawings.
 図1は、実施の形態のガラス基板の製造方法を説明するための概略図であり、ガラス基板の製造における基本的な流れを簡略的に示したものである。
 ガラス基板製造装置(以下、単に装置ともいう)100は、ガラス原料を加熱して溶融ガラスを生成する溶融槽10と、溶融ガラスを清澄する清澄槽30と、溶融ガラスを成形する成形装置(図示せず)と、これらの間を接続する移送管20、40とを備えている。
 移送管20は、溶融槽10と清澄槽30とを接続し、溶融槽10から導出された溶融ガラスを清澄槽30に供給する。移送管40は、清澄槽30と成形装置(図示せず)を接続し、清澄槽30から導出された溶融ガラスを成形装置(図示せず)に供給する。なお、清澄槽30と成形装置との間には溶融ガラスを撹拌して均質化するための撹拌槽が配置されることがある。矢印は溶融ガラスが流れる方向を示す。
FIG. 1 is a schematic diagram for explaining a glass substrate manufacturing method according to an embodiment, and shows a basic flow in manufacturing a glass substrate in a simplified manner.
A glass substrate manufacturing apparatus (hereinafter also simply referred to as an apparatus) 100 includes a melting tank 10 that heats a glass raw material to produce molten glass, a clarification tank 30 that clarifies molten glass, and a molding apparatus that molds molten glass (FIG. (Not shown) and transfer pipes 20 and 40 for connecting them.
The transfer pipe 20 connects the melting tank 10 and the clarification tank 30, and supplies the molten glass derived from the melting tank 10 to the clarification tank 30. The transfer pipe 40 connects the clarification tank 30 and a molding apparatus (not shown), and supplies the molten glass derived from the clarification tank 30 to the molding apparatus (not shown). In addition, between the clarification tank 30 and a shaping | molding apparatus, the stirring tank for stirring and homogenizing a molten glass may be arrange | positioned. The arrow indicates the direction in which the molten glass flows.
 溶融槽10に投入されるガラス原料は、製造するべきガラス基板の組成に応じて適宜調製される。一例として、TFT型LCD用基板として用いるガラス基板を製造する場合を挙げると、ガラス基板を構成するガラス組成物を質量%で表示して、
SiO:50~70%、
Al:0~25%、
:1~15%、
MgO:0~10%、
CaO:0~20%、
SrO:0~20%、
BaO:0~10%、
RO:5~30%(ただし、RはMg、Ca、Sr及びBaから選ばれる少なくとも1種であり、質量%はこれらの合計量を意味する。)、
を含有する無アルカリガラスであることが、好ましい。
 なお、本実施形態では無アルカリガラスとしたが、ガラス基板はアルカリ金属を微量含んだアルカリ微量含有ガラスであってもよい。アルカリ金属を含有させる場合、R’Oの合計が0.10%以上0.5%以下、好ましくは0.20%以上0.5%以下(ただし、R’はLi、Na及びKから選ばれる少なくとも1種であり、ガラス基板が含有するものである)含むことが好ましい。勿論、R’Oの合計が0.10%未満でもよい。
 また、本発明のガラス基板の製造方法を適用する場合は、ガラス組成物が、上記各成分に加えて、質量%で表示して、SnO:0.01~1%(好ましくは0.01~0.5%)、Fe:0~0.2%(好ましくは0.01~0.08%)を含有し、環境負荷を考慮して、As、Sb及びPbOを実質的に含有しないようにガラス原料を調製しても良い。
The glass raw material thrown into the melting tank 10 is appropriately prepared according to the composition of the glass substrate to be produced. As an example, when producing a glass substrate used as a TFT type LCD substrate, the glass composition constituting the glass substrate is displayed in mass%,
SiO 2 : 50 to 70%,
Al 2 O 3 : 0 to 25%,
B 2 O 3 : 1 to 15%,
MgO: 0 to 10%,
CaO: 0-20%,
SrO: 0 to 20%,
BaO: 0 to 10%,
RO: 5 to 30% (where R is at least one selected from Mg, Ca, Sr and Ba, and mass% means the total amount thereof),
It is preferable that it is an alkali free glass containing.
Although the alkali-free glass is used in this embodiment, the glass substrate may be a glass containing a trace amount of alkali containing a trace amount of alkali metal. When an alkali metal is contained, the total of R ′ 2 O is 0.10% or more and 0.5% or less, preferably 0.20% or more and 0.5% or less (where R ′ is selected from Li, Na, and K) It is preferable that the glass substrate contains at least one kind. Of course, the total of R ′ 2 O may be less than 0.10%.
In addition, when the method for producing a glass substrate of the present invention is applied, the glass composition is represented by mass% in addition to the above components, and SnO 2 : 0.01 to 1% (preferably 0.01 To 0.5%), Fe 2 O 3 : 0 to 0.2% (preferably 0.01 to 0.08%), and considering the environmental burden, As 2 O 3 , Sb 2 O 3 And you may prepare a glass raw material so that PbO may not be included substantially.
 溶融槽10で生成した溶融ガラスは、移送管20を介して清澄槽30に送られる。清澄槽30では、溶融ガラスが所定温度(上記組成のガラスの場合は例えば1500℃以上)に保たれて、溶融ガラスに含まれる気泡の除去を行う脱泡工程を含む清澄が行われる。さらに、清澄槽30で清澄された溶融ガラスは、移送管40を介して成形装置へと送られる。溶融ガラスは、清澄槽30から成形装置に送られる際の移送管40において、成形に適した温度(上記組成のガラスの場合は例えば1200℃程度)となるように冷却される。成形装置では、溶融ガラスがガラス基板へと成形される。 The molten glass generated in the melting tank 10 is sent to the clarification tank 30 through the transfer pipe 20. In the clarification tank 30, the molten glass is kept at a predetermined temperature (in the case of glass having the above composition, for example, 1500 ° C. or higher), and clarification including a defoaming step for removing bubbles contained in the molten glass is performed. Further, the molten glass clarified in the clarification tank 30 is sent to the molding apparatus via the transfer pipe 40. The molten glass is cooled in the transfer pipe 40 when it is sent from the clarification tank 30 to the molding apparatus so as to have a temperature suitable for molding (for example, about 1200 ° C. in the case of glass having the above composition). In the forming apparatus, molten glass is formed into a glass substrate.
 次に、脱泡工程を含む清澄について図2を用いて説明する。図2は清澄槽30の基本的な構成を示す側面図である。
 清澄槽30は、主に清澄管31、清澄管31に接続されたヒータ電極32a及び32b、及び清澄管を補強する補強材としての補強部33により構成されている。
 清澄管31は白金あるいは白金ロジウム合金等の白金合金の金属管であり、一般的に円筒状のものが採用されている。清澄管31の管路を流路として、溶融ガラスMGは清澄管31の内部を流れる。
Next, clarification including a defoaming step will be described with reference to FIG. FIG. 2 is a side view showing a basic configuration of the clarification tank 30.
The clarification tank 30 mainly includes a clarification tube 31, heater electrodes 32a and 32b connected to the clarification tube 31, and a reinforcing portion 33 as a reinforcing material for reinforcing the clarification tube.
The clarification tube 31 is a metal tube of a platinum alloy such as platinum or a platinum rhodium alloy, and generally has a cylindrical shape. The molten glass MG flows through the inside of the clarification tube 31 using the pipe line of the clarification tube 31 as a flow path.
 ヒータ電極32a及び32bは、清澄管31の外周壁面から清澄管31に電流を流す。清澄管31に電流が流れると、清澄管31の抵抗によってジュール熱が生じ、清澄管31の外周壁が加熱され、溶融ガラスMGの温度が所定の温度に上昇する。このようにして、清澄槽30は、溶融ガラスMGを加熱しながら、清澄剤を配合させた溶融ガラスMGを清澄管31に通過させて、溶融ガラスMGの脱泡を行う。 The heater electrodes 32 a and 32 b cause a current to flow from the outer peripheral wall surface of the clarification tube 31 to the clarification tube 31. When a current flows through the clarification tube 31, Joule heat is generated by the resistance of the clarification tube 31, the outer peripheral wall of the clarification tube 31 is heated, and the temperature of the molten glass MG rises to a predetermined temperature. In this way, the clarification tank 30 passes the molten glass MG mixed with the clarifier while heating the molten glass MG through the clarification tube 31 to degas the molten glass MG.
 補強部33は、白金あるいは白金ロジウム合金等の白金合金の金属板であり、清澄管31、31の間に配置され、両側に清澄管31、31が溶接されて接続されたリング状の板材である。補強部33は、清澄管31の周方向に設けられて、清澄管31を補強している。本実施形態では、補強部33の外径は、清澄管31と等しくされている。なお、補強部33の外径を清澄管31よりもやや大きくして、補強部33が清澄管31の外周面から突出するようにしてもよい。これにより、溶接の施工性を向上させるとともに、清澄管31の強度をより向上させることができる。 The reinforcing portion 33 is a metal plate of platinum alloy such as platinum or platinum rhodium alloy, and is disposed between the clarification tubes 31 and 31 and is a ring-shaped plate material in which the clarification tubes 31 and 31 are welded and connected to both sides. is there. The reinforcing portion 33 is provided in the circumferential direction of the clarification tube 31 to reinforce the clarification tube 31. In the present embodiment, the outer diameter of the reinforcing portion 33 is made equal to the clarification tube 31. The outer diameter of the reinforcing portion 33 may be slightly larger than that of the clarification tube 31 so that the reinforcement portion 33 protrudes from the outer peripheral surface of the clarification tube 31. Thereby, while improving the construction property of welding, the intensity | strength of the clarification pipe | tube 31 can be improved more.
 清澄管31の内部を流れる溶融ガラスMGは、清澄管31の流路断面全体を流れるのではなく、通常、清澄管31内部の上方には、溶融ガラスMGの脱泡処理により脱泡した泡を放出させるための気相空間gが存在する。気相空間gは、清澄管31に溶融ガラスMGを通過させて脱泡する際に、溶融ガラスMGの液面上の空間として、予め設定されている。また、清澄管31上部には、気相空間gから放出した泡中のガス成分を大気に放出させるためのガス排気口30aが設けられている。気相空間gにおける気流Fは、清澄管31の内部表面31aに沿って、ガス排気口30aに向けて流れている。 The molten glass MG flowing inside the clarification tube 31 does not flow in the entire cross-section of the flow path of the clarification tube 31, but normally, bubbles defoamed by defoaming treatment of the molten glass MG are provided above the clarification tube 31. There is a gas phase space g for release. The gas phase space g is set in advance as a space on the liquid surface of the molten glass MG when the molten glass MG is passed through the clarification tube 31 and defoamed. In addition, a gas exhaust port 30a is provided at the upper part of the clarification tube 31 for releasing the gas component in the bubbles released from the gas phase space g to the atmosphere. The airflow F in the gas phase space g flows along the inner surface 31a of the clarification tube 31 toward the gas exhaust port 30a.
 次に、本実施形態のガラス基板の製造方法、及びガラス基板製造用の清澄槽につき、図3を用いて詳細に説明する。図3において、(a)は、図2の3a-3a線に沿う断面図であり、(b)は補強部33の正面図である。
 図3の(a)に示すように、補強部33は清澄管31の周方向に設けられ、清澄管31の内部表面31aから清澄管31の内側へ突出したリング状の部材である。補強部33の周方向の座屈強度は、清澄管31の周方向の座屈強度よりも高い。そのため、清澄管31に補強部33を設けることで、清澄管31の周方向の座屈強度が向上する。本実施形態においては、上述の脱泡工程を含むガラス基板の製造方法において、清澄管31の内部表面31aの上部の領域であって、清澄管31に溶融ガラスMGを通過させて脱泡する際に溶融ガラスMGの液面上の空間として予め気相空間gを設定する。そして、気相空間gに属する補強部33を取り除いている。
Next, the manufacturing method of the glass substrate of this embodiment and the clarification tank for glass substrate manufacture are demonstrated in detail using FIG. 3A is a cross-sectional view taken along line 3a-3a in FIG. 2, and FIG. 3B is a front view of the reinforcing portion 33. FIG.
As shown in FIG. 3A, the reinforcing portion 33 is a ring-shaped member that is provided in the circumferential direction of the clarification tube 31 and protrudes from the inner surface 31 a of the clarification tube 31 to the inside of the clarification tube 31. The buckling strength in the circumferential direction of the reinforcing portion 33 is higher than the buckling strength in the circumferential direction of the clarification tube 31. Therefore, the buckling strength in the circumferential direction of the clarification tube 31 is improved by providing the reinforcement portion 33 in the clarification tube 31. In the present embodiment, in the glass substrate manufacturing method including the above-described defoaming step, when the defoaming is performed by passing the molten glass MG through the clarification tube 31, which is an upper region of the inner surface 31 a of the clarification tube 31. The gas phase space g is set in advance as a space on the liquid surface of the molten glass MG. And the reinforcement part 33 which belongs to the gaseous-phase space g is removed.
 図3の(b)に示すように、補強部33は、気相空間gに属する部分に対応して、切り欠き部33aが設けられている。切り欠き部33aの内縁を構成する円弧の半径rは、清澄管31の内周円の半径R、すなわち清澄管31の内径Dの1/2と等しい。そのため、補強部33に切り欠き部33aが形成されている部分は、図3の(a)に示すように、清澄管31の内部表面31aから補強部33が突出せず、気相空間gに属する部分が取り除かれた状態になる。すなわち、本実施形態では、気相空間gにおいて、清澄管31の内部表面31aから補強部33が突出する量pが0になるようにしている。その他の部分では、補強部33は、清澄管31の内部表面31aから、0よりも大きい所定の突出量pで突出するように設けられている。ここで、補強部33の突出量pは、清澄管31の内部表面31aからの清澄管31の径方向の高さであり、清澄管31の肉厚t、揮発量、温度および強度、補強部33の板厚などを考慮して、決定される。また、本実施形態において、切り欠き部33aの幅wは、清澄管31の肉厚tと等しいか、やや大きくなっている。 As shown in FIG. 3B, the reinforcing part 33 is provided with a notch 33a corresponding to a part belonging to the gas phase space g. The radius r of the arc constituting the inner edge of the notch 33a is equal to the radius R of the inner circumference of the clarification tube 31, that is, ½ of the inner diameter D of the clarification tube 31. Therefore, as shown in FIG. 3A, the portion where the notch 33a is formed in the reinforcing portion 33 does not protrude from the inner surface 31a of the clarification tube 31 and the gas phase space g The part to which it belongs is removed. That is, in this embodiment, the amount p of the reinforcing portion 33 protruding from the inner surface 31a of the clarification tube 31 is set to 0 in the gas phase space g. In other portions, the reinforcing portion 33 is provided so as to protrude from the inner surface 31a of the clarification tube 31 with a predetermined protrusion amount p larger than zero. Here, the protrusion amount p of the reinforcing portion 33 is the radial height of the clarification tube 31 from the inner surface 31a of the clarification tube 31, and the thickness t, volatilization amount, temperature and strength of the clarification tube 31, and the reinforcement portion It is determined in consideration of the thickness of 33. In the present embodiment, the width w of the notch 33a is equal to or slightly larger than the thickness t of the clarification tube 31.
 気相空間gは、清澄槽30の清澄管31を流れる溶融ガラスMGの液位の調整をすることにより所定の広さを得ることが可能である。また、一定の広さの気相空間gを保持することもできる。上記の液位は、たとえばレーザ変位計を用いて必要に応じて計測し、溶融槽10に投入するガラス材料の量を増減する等の好適な方法により調整する。溶融ガラスの液位が下がると、補強部33の清澄管31の内部表面31aから突出した部分が気相空間gに露出するおそれがあるため、溶融ガラスの液位は予め設定した気相空間gの下限よりも下にならないように調整することが望ましい。 The gas phase space g can have a predetermined size by adjusting the liquid level of the molten glass MG flowing through the clarification tube 31 of the clarification tank 30. In addition, a gas space g having a certain size can be maintained. The liquid level is measured by using a laser displacement meter, for example, as necessary, and adjusted by a suitable method such as increasing or decreasing the amount of glass material put into the melting tank 10. When the liquid level of the molten glass is lowered, a portion protruding from the inner surface 31a of the clarification tube 31 of the reinforcing portion 33 may be exposed to the gas phase space g. Therefore, the liquid level of the molten glass is set to the gas phase space g set in advance. It is desirable to adjust so as not to fall below the lower limit of.
 清澄管31の内部表面31aから揮発した揮発物は気相空間g内の気流Fが滞留する部分に付着する。図2に示すように、気相空間gにおける気流Fは、清澄管31の内部表面31aに沿って、ガス排出口30aに向かうように形成されている。そのため、図5に示すように、清澄管に補強部が設けられる場合、補強部が清澄管の内部表面から清澄管の内側へ突出していると、補強部の近傍の気流Fに生じる渦流などにより、補強部の近傍に気流Fが滞留する。これにより、補強部の近傍の揮発物の濃度が上昇して過飽和の状態なると、その付近に揮発物が付着しやすくなる。ここで、補強部の近傍とは、補強部の表面を含み、補強部の影響を受けて気流Fが滞留し得る領域である。この補強部の近傍に付着した揮発物が落下して脱泡工程中の溶融ガラスMG中に混入し、ガラス基板の品質の低下を招くおそれがあった。 Volatiles that have volatilized from the inner surface 31a of the clarification tube 31 adhere to the portion where the air flow F in the gas phase space g stays. As shown in FIG. 2, the air flow F in the gas phase space g is formed along the inner surface 31 a of the clarification tube 31 toward the gas discharge port 30 a. Therefore, as shown in FIG. 5, when the reinforcing part is provided in the clarification tube, if the reinforced part protrudes from the inner surface of the clarification pipe to the inside of the clarification pipe, the vortex generated in the airflow F in the vicinity of the reinforcement part The air flow F stays in the vicinity of the reinforcing part. Thereby, when the concentration of the volatile matter in the vicinity of the reinforcing portion increases and becomes supersaturated, the volatile matter tends to adhere to the vicinity. Here, the vicinity of the reinforcing portion is a region including the surface of the reinforcing portion and where the airflow F can stay under the influence of the reinforcing portion. Volatile substances adhering to the vicinity of the reinforcing portion may fall and be mixed into the molten glass MG during the defoaming process, leading to a decrease in the quality of the glass substrate.
 本実施形態のガラス基板の製造方法、及びガラス基板製造用の清澄槽30では、清澄管31に溶融ガラスを通過させて脱泡処理を行う際に、溶融ガラスMGの液面上の空間として予め気相空間gを設定している。そして、気相空間gに属する補強部33を取り除くことで、補強部33を気相空間gにおける気流Fの滞留が生じない形状に形成している。すなわち、補強部33は、気相空間gの少なくとも一部において、白金の揮発物の濃度が局所的に上昇することを防止する形状に設けられている。換言すると、補強部33は、気相空間gの少なくとも一部において、ガス排気口30aに向かう気流Fと逆向きの気流や、気流Fの流れを停滞、滞留させる気流を生じさせない形状に形成されている。
 このため、溶融ガラスMGに配合させる清澄剤として環境負荷の少ないSnOを用いることにより清澄に係る温度が高温を要し、清澄管31の気相空間gに接する部分が揮発をした場合であっても、補強部33の近傍に気相空間g内の気流が滞留せず、揮発物の濃度が局所的に上昇して過飽和状態になることがないため、揮発物が補強部33の近傍に付着しない。また、気相空間gを除いて、補強部33が清澄管31の周方向に設けられているので、補強部33によって清澄管31の強度を保つことができる。したがって、脱泡工程中に、清澄管31の強度を保ちつつ、溶融ガラスMGに異物が混入するのを効果的に避けることができ、ガラス製品の品質を保つことができる。
In the glass substrate manufacturing method and the glass substrate manufacturing clarification tank 30 of the present embodiment, when the defoaming treatment is performed by passing the molten glass through the clarification tube 31, a space on the liquid surface of the molten glass MG is previously stored. A gas phase space g is set. Then, by removing the reinforcing portion 33 belonging to the gas phase space g, the reinforcing portion 33 is formed in a shape in which the airflow F does not stay in the gas phase space g. That is, the reinforcing portion 33 is provided in a shape that prevents the concentration of platinum volatiles from rising locally in at least a part of the gas phase space g. In other words, the reinforcing portion 33 is formed in at least a part of the gas phase space g so as not to generate an airflow opposite to the airflow F toward the gas exhaust port 30a or an airflow that stagnates and stays in the airflow F. ing.
For this reason, when SnO 2 having a low environmental load is used as a fining agent to be blended in the molten glass MG, the temperature related to fining requires a high temperature, and the portion in contact with the gas phase space g of the fining tube 31 is volatilized. However, since the airflow in the gas phase space g does not stay in the vicinity of the reinforcing portion 33 and the concentration of the volatile matter does not rise locally and become supersaturated, the volatile matter is in the vicinity of the reinforcing portion 33. Does not adhere. Moreover, since the reinforcement part 33 is provided in the circumferential direction of the clarification pipe 31 except the gas phase space g, the strength of the clarification pipe 31 can be maintained by the reinforcement part 33. Therefore, it is possible to effectively avoid foreign matters from being mixed into the molten glass MG while maintaining the strength of the clarification tube 31 during the defoaming step, and the quality of the glass product can be maintained.
 ところで、清澄槽30内においては、溶融ガラスは清澄剤の酸素の放出反応が促進されるように、泡が浮上しやすい粘度、好ましくは、120poise(ポアズ)から400ポアズまでの範囲となるように、清澄槽30に供給される前に加熱される。たとえば、無アルカリガラスやアルカリを微量しか含まないアルカリ微量含有ガラス(高温粘性ガラス)、すなわち、たとえば102.5ポアズとする場合に1300℃以上、好ましくは1400℃以上、さらに好ましくは1500℃以上の溶融温度を要するガラス材料の場合は、1700℃、好ましくは1710℃、さらに好ましくは1720℃近傍まで昇温される。
 つまり、清澄槽30の温度を、清澄槽30を構成する清澄管31の白金または白金合金の耐温度近傍まで上げる必要がある。
By the way, in the clarification tank 30, the molten glass has a viscosity at which bubbles are likely to rise, preferably in a range from 120 poise to 400 poise so that the oxygen release reaction of the clarifier is promoted. It is heated before being supplied to the clarification tank 30. For example, a non-alkali glass or alkali alkali trace containing glass containing only trace amounts (high-temperature viscosity glass), i.e., for example, when a 10 2.5 poise 1300 ° C. or higher, preferably 1400 ° C. or more, more preferably 1500 ° C. or higher In the case of a glass material that requires a melting temperature of 1,700 ° C., preferably 1710 ° C., more preferably 1720 ° C.
That is, it is necessary to raise the temperature of the clarification tank 30 to near the temperature resistance of platinum or platinum alloy of the clarification pipe 31 constituting the clarification tank 30.
 したがって本実施形態は、高温粘性の高いガラス材料を用いてガラス基板を製造する場合に特に適している。具体的には、溶融ガラスを102.5ポアズとする場合に1300℃以上の溶融温度を要するガラス材料で構成する場合に特に適している。上記の溶融温度は1400℃以上、さらに1500℃以上の溶融温度を要するガラス材料により好適である。
 また、酸化錫を清澄剤として使用した場合は、1630℃~1700℃、好ましくは1630℃~1710℃、さらに好ましくは1630℃~1720℃近傍まで昇温される。つまり、清澄槽30の温度を、清澄槽30を構成する本体1の白金または白金合金の耐熱温度近傍まで上げる必要がある。したがって、本発明は酸化錫を清澄剤として使用するガラス基板の製造に特に適している。
 本発明は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどのフラットパネルディスプレイ(FPD)用のガラス基板の製造に特に適している。
 いずれの場合も本発明を適用することにより、清澄管31の内壁の、気相空間gに接する部分が揮発した場合であっても、清澄管31の内部表面31aに揮発物が付着することを抑制できる。
Therefore, this embodiment is particularly suitable when a glass substrate is manufactured using a glass material having a high temperature viscosity. Specifically, it is particularly suitable when made of glass requiring 1300 ° C. or more melting temperature in the case of a 10 2.5 poise molten glass. The melting temperature is preferably 1400 ° C. or higher, more preferably a glass material that requires a melting temperature of 1500 ° C. or higher.
When tin oxide is used as a fining agent, the temperature is raised to 1630 ° C. to 1700 ° C., preferably 1630 ° C. to 1710 ° C., more preferably 1630 ° C. to 1720 ° C. That is, it is necessary to raise the temperature of the clarification tank 30 to near the heat resistance temperature of platinum or platinum alloy of the main body 1 constituting the clarification tank 30. Therefore, the present invention is particularly suitable for the production of glass substrates using tin oxide as a fining agent.
The present invention is particularly suitable for manufacturing glass substrates for flat panel displays (FPD) such as liquid crystal displays, plasma displays, and organic EL displays.
In any case, by applying the present invention, even when the portion of the inner wall of the clarification tube 31 in contact with the gas phase space g is volatilized, the volatile matter adheres to the inner surface 31a of the clarification tube 31. Can be suppressed.
 本発明のガラス基板の製造方法の実施に際し、上述の実施形態の製造方法に限定されるものではないことは明らかである。たとえば、上述の実施形態で例示したガラス原料以外のガラス原料についても、従来から用いられてきた汎用の原料を使用すれば本発明のガラス基板の製造方法を適用することができる。
 また、上述の実施形態では、溶融ガラスMGの液面上の空間として予め設定された気相空間gに属する補強部33をすべて取り除くようにした。しかし、図4の(a)あるいは図4の(b)に示すように、補強部33は、気相空間gに属する少なくとも一部を取り除くことで、取り除いた部分における気流の滞留が生じない形状に形成することもできる。清澄管31の気相空間gに接する部分が揮発した場合、清澄管31の頂部aにおいて揮発物が付着しやすい傾向がある。そのため、気相空間gの少なくとも頂部aにおいて、清澄管31の内部表面31aから補強部33が突出しないように、補強部33の一部を取り除く。これにより、補強部33は、頂部aの近傍で気流の滞留が生じない形状になり、補強部33の近傍への揮発物の付着が抑制される。したがって、補強部33によって清澄管31の強度を保ちつつ、溶融ガラスMGへの異物の混入を抑制し、ガラス製品の品質を保つことができる。また、気相空間gに属する補強部33に1または2以上の孔を形成することで、補強部33の近傍における気流の滞留が生じないようにしてもよい。また、気相空間gの少なくとも一部において、清澄管31の内部表面31aから補強部33が突出する量pを、その他の部分よりも小さくするだけでも一定の効果が得られる。すなわち、清澄管31の内部表面31aから補強部33が突出する量pが従来よりも減少するので、補強部33の近傍における気流の滞留が抑制され、揮発物の付着が抑制され、溶融ガラスMGへの異物の混入が抑制され、ガラス製品の品質を保つことができる。また、図6に示すように、気相空間gに属する補強部33の少なくとも一部を曲面状、好ましくは滑らかな曲面状に形成して、補強部33の近傍における気流Fの滞留が生じないようにしてもよい。
 上述の実施形態では、補強部33は、周方向に切れ目のないリング状の板材を用い、清澄管31、31の間に補強部33を配置して、補強部33の両側に清澄管31が接続される構成を採用している。しかし、本発明の態様は上述の実施形態に限られない。例えば、切れ目を有するリング状の補強部を清澄管31の内部表面31aに固定し、補強部33の切れ目の部分を清澄管31の内部に予め設定された気相空間gに対応させる。このようにして、補強部33の切れ目の部分を、清澄管31の内部表面31aから補強部33が突出しない領域として設定してもよい。また、補強部33は、切り欠き部33aを有する周方向に切れ目のないリング状の板材を、清澄管31の内部表面31aに固定しても良い。また、切り欠き部33aの円弧の半径rを、ガス排気口30aに近づくほど大きくすることにより、気流Fがガス排気口30aに向かうようにしても良い。
 なお、本明細書において、「白金族金属」は、白金族元素からなる金属を意味し、単一の白金族元素からなる金属のみならず白金族元素の合金を含む用語として使用する。ここで、白金族元素とは、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、オスミウム(Os)、イリジウム(Ir)の6元素を指す。白金族金属は高価ではあるが、融点が高く、溶融ガラスに対する耐食性にも優れている。
 また、清澄槽は、図示したように円筒形であることが好ましいが、溶融ガラスMGをその内部に収容する空間が確保されていればその形状に制限はなく、例えばその外形が直方体などであってもよい。
 本発明は、オーバーフロー・ダウンドロー法でガラスを成形するガラス基板の製造に適する。本発明は、オーバーフロー・ダウンドロー法でガラスを成形するガラス基板の製造に適する。オーバーフロー・ダウンドロー法は、溶融ガラスを楔状成形体の両側面に沿って流下させて、前述の楔状成形体の下端部で合流させることにより板状ガラスに成形し、成形された板状ガラスを徐冷し、切断する。オーバーフロー・ダウンドロー法は、溶解したガラスを何物にも触れることなく垂直方向に引き伸ばして冷却することで、滑らかな表面を実現することができる。その後、切断された板状ガラスは、さらに、顧客の仕様に合わせて所定にサイズに切断され、端面研磨、洗浄などが行われ、出荷される。
 本発明は、例えば、厚さが0.5~0.7mmで、サイズが300×400mm~2850×3050mmのFPD用ガラス基板の製造に適する。
 なお、液晶表示装置用ガラス基板等は、その表面に半導体素子が形成されるため、アルカリ金属成分を全く含有しないか、または含まれていても半導体素子に影響を及ぼさない程度の微量であることが好ましい。また、液晶表示装置用ガラス基板等は、ガラス基板中に泡が存在すると表示欠陥の原因となるため、泡を極力低減することが好ましい。これらのことから、液晶表示装置用ガラス基板等では、上述したように、ガラス組成、溶融ガラスの温度、清澄剤等が選択されるので、本発明は、液晶表示装置用ガラス基板等の製造に適する。
 その他、発明の主旨を逸脱しない範囲で種々好適な他の形態への変更が可能である。
 例えば、上述の実施形態では、補強部としてリング状の板材を用いる場合について説明したが、補強部は清澄管を屈曲させて清澄管の周方向に設けた凹凸であってもよい。清澄管を径方向外側に突出するように屈曲させて補強部を形成した場合には、清澄管の内部表面には凹部が形成される。また、清澄管を径方向内側に突出するように屈曲させて補強部を形成した場合には、清澄管の内部表面には凸部が形成される。補強部としてこのような凹部または凸部を有する場合、気相空間の少なくとも一部において、これらの凹部または凸部を気相空間における気流の滞留が生じない形状に形成することができる。具体的には、気相空間における凹部または凸部をその他の領域よりも小さく形成するか、あるいは気相空間において凹部または凸部を形成せず、清澄管の内部表面を平坦にすることができる。
Obviously, the method for manufacturing a glass substrate of the present invention is not limited to the manufacturing method of the above-described embodiment. For example, the glass substrate manufacturing method of the present invention can be applied to glass raw materials other than the glass raw materials exemplified in the above-described embodiment, using conventional raw materials that have been conventionally used.
In the above-described embodiment, all the reinforcing portions 33 belonging to the gas phase space g set in advance as a space on the liquid surface of the molten glass MG are removed. However, as shown in FIG. 4 (a) or FIG. 4 (b), the reinforcing portion 33 has a shape in which airflow does not stay in the removed portion by removing at least a part belonging to the gas phase space g. It can also be formed. When the portion of the clarification tube 31 in contact with the gas phase space g is volatilized, volatiles tend to adhere to the top portion a of the clarification tube 31. Therefore, a part of the reinforcing part 33 is removed so that the reinforcing part 33 does not protrude from the inner surface 31a of the clarification tube 31 at least at the top part a of the gas phase space g. Thereby, the reinforcement part 33 becomes a shape in which the stay of an air current does not arise in the vicinity of the top part a, and adhesion of the volatile matter to the vicinity of the reinforcement part 33 is suppressed. Therefore, while maintaining the strength of the clarification tube 31 by the reinforcing portion 33, mixing of foreign matters into the molten glass MG can be suppressed, and the quality of the glass product can be maintained. Further, by forming one or two or more holes in the reinforcing portion 33 belonging to the gas phase space g, it is possible to prevent airflow from staying in the vicinity of the reinforcing portion 33. Further, in at least a part of the gas phase space g, a certain effect can be obtained only by making the amount p of the reinforcing portion 33 protruding from the inner surface 31a of the clarification tube 31 smaller than the other portions. That is, since the amount p of the reinforcing portion 33 protruding from the inner surface 31a of the clarification tube 31 is reduced as compared with the conventional case, the stay of the air current in the vicinity of the reinforcing portion 33 is suppressed, the adhesion of volatiles is suppressed, and the molten glass MG The foreign matter is prevented from being mixed into the glass, and the quality of the glass product can be maintained. Further, as shown in FIG. 6, at least a part of the reinforcing portion 33 belonging to the gas phase space g is formed in a curved shape, preferably a smooth curved shape, so that the air flow F does not stay in the vicinity of the reinforcing portion 33. You may do it.
In the above-described embodiment, the reinforcing portion 33 uses a ring-shaped plate material that is continuous in the circumferential direction. The reinforcing portion 33 is disposed between the clarification tubes 31 and 31, and the clarification tube 31 is disposed on both sides of the reinforcement portion 33. A connected configuration is adopted. However, the aspect of the present invention is not limited to the above-described embodiment. For example, a ring-shaped reinforcing part having a cut is fixed to the inner surface 31 a of the clarification pipe 31, and the cut part of the reinforcing part 33 is made to correspond to the gas phase space g preset in the clarification pipe 31. In this way, the cut portion of the reinforcing portion 33 may be set as a region where the reinforcing portion 33 does not protrude from the inner surface 31a of the clarification tube 31. Further, the reinforcing portion 33 may fix a ring-shaped plate material having a cutout portion 33 a in the circumferential direction to the inner surface 31 a of the clarification tube 31. Moreover, you may make it the air flow F go to the gas exhaust port 30a by enlarging the radius r of the circular arc of the notch 33a, so that it approaches the gas exhaust port 30a.
In this specification, the “platinum group metal” means a metal composed of a platinum group element, and is used as a term including not only a metal composed of a single platinum group element but also an alloy of the platinum group element. Here, the platinum group element refers to six elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), and iridium (Ir). Platinum group metals are expensive, but have a high melting point and excellent corrosion resistance to molten glass.
In addition, the clarification tank is preferably cylindrical as shown in the figure, but there is no limitation on its shape as long as a space for accommodating the molten glass MG is secured therein. For example, its outer shape is a rectangular parallelepiped. May be.
The present invention is suitable for manufacturing a glass substrate on which glass is formed by an overflow downdraw method. The present invention is suitable for manufacturing a glass substrate on which glass is formed by an overflow downdraw method. In the overflow downdraw method, molten glass is caused to flow down along both side surfaces of the wedge-shaped molded body, and is merged at the lower end portion of the wedge-shaped molded body to be formed into a sheet glass. Slowly cool and cut. The overflow downdraw method can realize a smooth surface by stretching the molten glass in the vertical direction without touching anything and cooling it. After that, the cut glass sheet is further cut into a predetermined size according to the customer's specifications, subjected to end face polishing, cleaning, etc., and shipped.
The present invention is suitable for manufacturing a glass substrate for FPD having a thickness of 0.5 to 0.7 mm and a size of 300 × 400 mm to 2850 × 3050 mm, for example.
In addition, since a semiconductor element is formed on the surface of a glass substrate for a liquid crystal display device, the alkali metal component is not included at all, or even if it is included, it is a trace amount that does not affect the semiconductor element. Is preferred. Moreover, since the glass substrate for liquid crystal display devices etc. will cause a display defect when a bubble exists in a glass substrate, it is preferable to reduce a bubble as much as possible. From these, in the glass substrate for liquid crystal display devices and the like, as described above, the glass composition, the temperature of the molten glass, the fining agent, and the like are selected, so the present invention is suitable for the production of glass substrates for liquid crystal display devices and the like. Suitable.
In addition, various suitable modifications can be made without departing from the spirit of the invention.
For example, in the above-described embodiment, the case where a ring-shaped plate material is used as the reinforcing portion has been described. However, the reinforcing portion may be unevenness provided by bending the clarification tube in the circumferential direction of the clarification tube. In the case where the reinforcing portion is formed by bending the fining tube so as to protrude radially outward, a concave portion is formed on the inner surface of the fining tube. Further, when the reinforcing portion is formed by bending the clarification tube so as to protrude radially inward, a convex portion is formed on the inner surface of the clarification tube. When such a concave portion or convex portion is provided as the reinforcing portion, in at least a part of the gas phase space, these concave portion or convex portion can be formed in a shape that does not cause a stagnation of airflow in the gas phase space. Specifically, the concave or convex portion in the gas phase space is formed smaller than the other regions, or the concave tube or convex portion is not formed in the gas phase space, and the inner surface of the clarification tube can be flattened. .
 本発明の装置は、溶融ガラスを成形することによりガラス基板、特に液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどのフラットパネルディスプレイ(FPD)用のガラス基板を製造する際に有利に用いることができる。 The apparatus of the present invention can be advantageously used when a molten glass is formed to produce a glass substrate, particularly a glass substrate for a flat panel display (FPD) such as a liquid crystal display, a plasma display, and an organic EL display.
31 清澄管
31a 清澄管の内部表面
33 補強部
10 溶融槽
20、40 移送管
30 清澄槽
g 気相空間
31 Clarification tube 31a Inner surface 33 of clarification tube Reinforcement part 10 Melting tank 20, 40 Transfer pipe 30 Clarification tank g Gas phase space

Claims (4)

  1.  ガラス基板の製造工程において、溶融ガラスを清澄するための清澄槽を有するガラス基板の製造装置であって、
     前記清澄槽は、
     白金または白金合金からなる清澄管と、
     前記清澄管の周方向に設けられ、前記清澄管を補強する補強部と、
     前記清澄管の内部表面の上部の領域であって、前記清澄管に溶融ガラスを通過させて清澄する際に、前記溶融ガラスの液面上の空間として予め設定された気相空間と、
     を備え、
     前記補強部は、前記気相空間の少なくとも一部において、前記気相空間における気流の滞留が生じない形状に形成されていることを特徴とする、
     ガラス基板の製造装置。
    In the glass substrate manufacturing process, a glass substrate manufacturing apparatus having a clarification tank for clarifying molten glass,
    The clarification tank is
    A clear tube made of platinum or a platinum alloy;
    A reinforcing portion that is provided in a circumferential direction of the clarification tube and reinforces the clarification tube;
    The upper region of the inner surface of the clarification tube, when passing the molten glass through the clarification tube for clarification, a gas phase space preset as a space on the liquid surface of the molten glass;
    With
    The reinforcing part is formed in a shape in which at least a part of the gas phase space does not cause a stay of airflow in the gas phase space,
    Glass substrate manufacturing equipment.
  2.  ガラス基板の製造工程において、溶融ガラスを清澄するための清澄槽を有するガラス基板の製造装置であって、
     前記清澄槽は、
     白金または白金合金からなる清澄管と、
     前記清澄管の周方向に設けられ、前記清澄管の内部表面から前記清澄管の内側へ突出する補強部と、
     前記清澄管の内部表面の上部の領域であって、前記清澄管に溶融ガラスを通過させて清澄する際に、前記溶融ガラスの液面上の空間として予め設定された気相空間と、
     を備え、
     前記気相空間に属する前記補強部の少なくとも一部が取り除かれている、
     ガラス基板の製造装置。
    In the glass substrate manufacturing process, a glass substrate manufacturing apparatus having a clarification tank for clarifying molten glass,
    The clarification tank is
    A clear tube made of platinum or a platinum alloy;
    A reinforcing portion provided in a circumferential direction of the clarification tube, and protruding from the inner surface of the clarification tube to the inside of the clarification tube;
    The upper region of the inner surface of the clarification tube, when passing the molten glass through the clarification tube for clarification, a gas phase space preset as a space on the liquid surface of the molten glass;
    With
    At least a part of the reinforcing part belonging to the gas phase space is removed,
    Glass substrate manufacturing equipment.
  3.  前記気相空間に属する補強部の少なくとも一部を曲面状に形成する、
     請求項1または2に記載のガラス基板の製造装置。
    Forming at least a part of the reinforcing portion belonging to the gas phase space in a curved shape;
    The manufacturing apparatus of the glass substrate of Claim 1 or 2.
  4.  請求項1から3のいずれか一項に記載のガラスの製造装置を用い、
     前記清澄管を加熱しながら、清澄剤を配合させた溶融ガラスを前記清澄管に通過させて脱泡する脱泡工程を含むことを特徴とする、ガラス基板の製造方法。
     
    Using the glass manufacturing apparatus according to any one of claims 1 to 3,
    A method for producing a glass substrate, comprising: a defoaming step of defoaming the molten glass mixed with a fining agent while passing through the fining tube while heating the fining tube.
PCT/JP2013/075732 2012-09-27 2013-09-24 Device for manufacturing glass substrate, and method for manufacturing glass substrate WO2014050824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013553731A JP5752811B2 (en) 2012-09-27 2013-09-24 Glass substrate manufacturing apparatus and glass substrate manufacturing method
KR1020147010687A KR101622057B1 (en) 2012-09-27 2013-09-24 Apparatus and method for making glass sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012215285 2012-09-27
JP2012-215285 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014050824A1 true WO2014050824A1 (en) 2014-04-03

Family

ID=50329240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075732 WO2014050824A1 (en) 2012-09-27 2013-09-24 Device for manufacturing glass substrate, and method for manufacturing glass substrate

Country Status (5)

Country Link
JP (1) JP5752811B2 (en)
KR (1) KR101622057B1 (en)
CN (1) CN203498243U (en)
TW (1) TWI585052B (en)
WO (1) WO2014050824A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533313A (en) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド Glass manufacturing apparatus and method
WO2018110218A1 (en) * 2016-12-16 2018-06-21 日本電気硝子株式会社 Sheet glass production method, clarification container, and sheet glass production apparatus
JP2018172225A (en) * 2017-03-31 2018-11-08 AvanStrate株式会社 Device for manufacturing glass substrate and method for manufacturing glass substrate
WO2019230488A1 (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Glass article production method
US11919800B2 (en) 2018-09-27 2024-03-05 Corning Incorporated Modular molten glass delivery apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060820A1 (en) * 2002-12-27 2004-07-22 Asahi Glass Company, Limited Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
JP2010520141A (en) * 2007-03-01 2010-06-10 コーニング インコーポレイテッド Glass refining equipment
JP2011502934A (en) * 2007-11-08 2011-01-27 コーニング インコーポレイテッド Glass clarification method and system
WO2013150912A1 (en) * 2012-04-05 2013-10-10 AvanStrate株式会社 Method for producing glass substrate and device for producing glass substrate
JP2013216519A (en) * 2012-04-05 2013-10-24 Avanstrate Inc Method for manufacturing glass substrate and device for manufacturing glass substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266544A (en) * 2002-03-18 2003-09-24 Youwa:Kk Tubular member joining method
JP2006206439A (en) * 2003-02-04 2006-08-10 Asahi Glass Co Ltd Conduit for molten glass, connecting conduit for molten glass and vacuum degassing apparatus
JP4617089B2 (en) * 2004-02-26 2011-01-19 株式会社日立国際電気 Substrate processing apparatus, exhaust pipe and substrate processing method
JP4789072B2 (en) * 2006-10-20 2011-10-05 日本電気硝子株式会社 Heat-resistant metal reinforcing tube, glass article manufacturing apparatus, and glass article manufacturing method
JP2011092799A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Water treatment apparatus, and water passage thereof
JP5737288B2 (en) * 2010-05-19 2015-06-17 旭硝子株式会社 Vacuum degassing apparatus for molten glass, method for producing molten glass, and method for producing glass product
JP5818164B2 (en) * 2012-05-25 2015-11-18 日本電気硝子株式会社 Tubular body for molten glass, molten glass supply device, and pipe member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060820A1 (en) * 2002-12-27 2004-07-22 Asahi Glass Company, Limited Conduit for molten glass, molten glass degassing method, and molten glass degassing apparatus
JP2010520141A (en) * 2007-03-01 2010-06-10 コーニング インコーポレイテッド Glass refining equipment
JP2011502934A (en) * 2007-11-08 2011-01-27 コーニング インコーポレイテッド Glass clarification method and system
WO2013150912A1 (en) * 2012-04-05 2013-10-10 AvanStrate株式会社 Method for producing glass substrate and device for producing glass substrate
JP2013216519A (en) * 2012-04-05 2013-10-24 Avanstrate Inc Method for manufacturing glass substrate and device for manufacturing glass substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533313A (en) * 2013-10-18 2016-10-27 コーニング インコーポレイテッド Glass manufacturing apparatus and method
JP2019163205A (en) * 2013-10-18 2019-09-26 コーニング インコーポレイテッド Glass manufacturing apparatus and method
WO2018110218A1 (en) * 2016-12-16 2018-06-21 日本電気硝子株式会社 Sheet glass production method, clarification container, and sheet glass production apparatus
JP2018095535A (en) * 2016-12-16 2018-06-21 日本電気硝子株式会社 Sheet glass manufacturing method, clear container, and sheet glass manufacturing device
JP2018172225A (en) * 2017-03-31 2018-11-08 AvanStrate株式会社 Device for manufacturing glass substrate and method for manufacturing glass substrate
WO2019230488A1 (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Glass article production method
JP2019206457A (en) * 2018-05-30 2019-12-05 日本電気硝子株式会社 Method for manufacturing glass article
JP7138843B2 (en) 2018-05-30 2022-09-20 日本電気硝子株式会社 Method for manufacturing glass article
US11919800B2 (en) 2018-09-27 2024-03-05 Corning Incorporated Modular molten glass delivery apparatus

Also Published As

Publication number Publication date
KR20140078695A (en) 2014-06-25
JP5752811B2 (en) 2015-07-22
CN203498243U (en) 2014-03-26
KR101622057B1 (en) 2016-05-17
TW201427916A (en) 2014-07-16
JPWO2014050824A1 (en) 2016-08-22
TWI585052B (en) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101486133B1 (en) Method and apparatus for making glass sheet
JP5752811B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
JP5752648B2 (en) Glass substrate manufacturing method and manufacturing apparatus
JP6722096B2 (en) Glass substrate and glass substrate laminate
JP5956009B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
KR101627484B1 (en) Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
TW201300337A (en) Method for producing glass plate
JP5728445B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP5730806B2 (en) Manufacturing method of glass substrate
JP2013216519A (en) Method for manufacturing glass substrate and device for manufacturing glass substrate
JP2016069252A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP6630215B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2016069250A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP6494969B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP6433224B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2016069247A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP6043550B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2016069249A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
JP2016069248A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553731

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010687

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840264

Country of ref document: EP

Kind code of ref document: A1