WO2014050782A1 - 肉厚検査装置 - Google Patents

肉厚検査装置 Download PDF

Info

Publication number
WO2014050782A1
WO2014050782A1 PCT/JP2013/075630 JP2013075630W WO2014050782A1 WO 2014050782 A1 WO2014050782 A1 WO 2014050782A1 JP 2013075630 W JP2013075630 W JP 2013075630W WO 2014050782 A1 WO2014050782 A1 WO 2014050782A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
bottle
electrode
measurement
electrode pattern
Prior art date
Application number
PCT/JP2013/075630
Other languages
English (en)
French (fr)
Inventor
直広 田中
悟郎 反保
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Priority to EP13841942.9A priority Critical patent/EP2889574B1/en
Priority to JP2013554497A priority patent/JP5718485B2/ja
Priority to CN201380050534.9A priority patent/CN104685315B/zh
Priority to ES13841942.9T priority patent/ES2626454T3/es
Priority to US14/432,196 priority patent/US9341461B2/en
Publication of WO2014050782A1 publication Critical patent/WO2014050782A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/087Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Definitions

  • the present invention relates to a thickness inspection apparatus for inspecting the thickness of a contact portion by bringing a sensor portion into contact with the surface of an inspection object such as a bottle.
  • the present invention has a barrel shape in which the shape of the body portion in plan view is a square shape (hereinafter referred to as “square bottle”) or an elliptic shape (hereinafter referred to as “elliptical bottle”).
  • the present invention relates to a thickness inspection apparatus capable of performing an accurate thickness inspection even for a bottle whose degree of curvature along the circumferential direction of the peripheral surface is not constant over the entire circumference.
  • bottles manufactured one after another in a plurality of sections of a bottle making machine are inspected for defects by passing through an inspection line while being transported to the final packaging process.
  • a bottle inspection apparatus installed in this type of inspection line there is a configuration in which a plurality of inspection stations are arranged around a star wheel.
  • the star wheel 8 shown in FIG. 17 is provided with a plurality of recesses 80 on the outer peripheral surface, and the bottle 10 introduced into each recess 80 is sequentially fed to each inspection station by the intermittent rotation of the star wheel 8.
  • the bottle 10 to be inspected is supported at the center of rotation of the upper surface of the support table, and the thickness of the bottle 10 is rotated by rotating the bottle 10 around the central axis by the rotation drive mechanism.
  • the thickness of the bottle 10 is measured over the entire circumference by an inspection device, and the quality of the bottle 10 is inspected.
  • a capacitance detector 9 that detects the capacitance between the electrode pattern of the measurement electrode and the electrode pattern of the ground electrode by bringing the sensor unit 90 into contact with the surface of the bottle 10 is provided.
  • Some have been used for example, see Patent Document 1). Since the electrostatic capacity detector 9 includes an elastic body 91 that urges and presses the sensor unit 90 toward the surface of the bottle 10, even if the bottle 10 vibrates, the vibration is detected by the elastic body. By absorbing by 91, the contact state between the sensor unit 90 and the surface of the bottle 10 is stably maintained.
  • the sensor unit 90 is obtained by bonding a synthetic resin electrode sheet 93 having an electrode pattern to the surface of a strip-shaped mounting substrate 92 that is curved over its entire length. Between the electrode pattern of the measurement electrode and the electrode pattern of the ground electrode, the capacitance of the part that is in contact with the bottle 10 is detected, and the detection output of the capacitance is taken into a calculation control device (not shown) Converted to thickness.
  • the object to be inspected is a round bottle 10 having a cylindrical shape as shown in FIG. 17, the degree of curvature along the circumferential direction of the peripheral surface of the barrel of the bottle 10 is constant over the entire circumference. is there. For this reason, the contact state between the sensor unit 90 and the outer peripheral surface of the bottle 10 is kept constant.
  • the object to be inspected is a square bottle 10A as shown in FIGS. 18 and 19, the degree of curvature along the circumferential direction of the peripheral surface of the body of the bottle 10A is not constant over the entire circumference. For this reason, the state (a state shown in FIG.
  • the object to be inspected is the elliptical bottle 10B shown in FIG. 20, and the degree of curvature along the circumferential direction of the circumferential surface of the body of the elliptical bottle 10B is not constant over the entire circumference. For this reason, the relative positional relationship between the surface of the elliptical bottle 10 ⁇ / b> B and the electrode pattern of the sensor unit 90 changes between the state in contact with the gently curved short diameter portion 13 and the state in contact with the sharply curved long diameter portion 14. . As a result, even if the wall thickness of the elliptical bottle 10B is uniform over the entire circumference, the detected capacitance varies depending on the region.
  • FIGS. 21 (1) and 21 (2) show the results of measuring the thickness of the upper end of the barrel of the square bottle 10A over the entire circumference.
  • a line graph I shows the thickness of the bottle over the entire circumference obtained by measuring the thickness of the square bottle 10A for each predetermined angle with a mechanical gauge (for example, dial thickness gauge 100 described later). The measured value (hereinafter referred to as “reference value”) is shown, and the line graph K measures the thickness of the square bottle 10A at every predetermined angle by the thickness inspection apparatus using the capacitance detector 9 shown in FIG. The measured value of the wall thickness over the entire circumference of the bottle is shown.
  • a line graph Q indicates a measurement error for each angle of the measurement value K with respect to the reference value I. Although the measurement error at the facing portion 11 is small, the measurement error at the corner portion 12 is shown. Is a large value.
  • 22 (1) and 22 (2) show the results of measuring the wall thickness of the lower end portion of the barrel portion of the square bottle 10A over the entire circumference.
  • a line graph I is obtained by measuring the thickness of the square bottle 10A at every predetermined angle with a mechanical gauge (for example, dial thickness gauge 100 described later) over the entire circumference of the bottle.
  • the measured value (reference value) of the wall thickness is shown
  • the line graph K is obtained by measuring the wall thickness of the square bottle 10A for each predetermined angle by the wall thickness inspection apparatus using the capacitance detector 9 shown in FIG.
  • the measurement value of the wall thickness obtained over the entire circumference of the bottle is shown, and the line graph Q shows the measurement error for each angle of the measurement value K with respect to the reference value I.
  • the measurement error at the facing portion 11 is small, but the corner The measurement error in the portion 12 is a large value.
  • the measurement error of the wall thickness of the elliptical bottle 10B also differs depending on the measurement site, and the long diameter portion that sharply curves with respect to the measurement error in the short diameter portion 13 that gently curves.
  • the measurement error at 14 increases.
  • the sensor unit 90 Is pulled in the rotation direction of the square bottle 10A (indicated by an arrow a in the figure), and the elastic body 91 may be compressed and deformed while being distorted in the rotation direction a.
  • the contact position of the sensor portion 90 with the outer peripheral surface of the bottle 10A changes between the corner portion 12 and the facing portion 11 of the bottle 10A, and not only the thickness measurement value varies.
  • the present invention has been made paying attention to the above problem, and the degree of curvature along the circumferential direction of the circumferential surface of the body portion is not constant over the entire circumference, such as a square bottle or an elliptic bottle, when the inspection object is a square bottle or an elliptic bottle. Even if it exists, it aims at providing the thickness inspection apparatus in which the relative positional relationship of the surface of a test object and an electrode pattern hardly changes, and an accurate thickness inspection is possible over the perimeter. Another object of the present invention is that there is no possibility of causing a jumping phenomenon in which the sensor portion is separated from the outer peripheral surface of the thickness inspection target portion even if the inspection target is a square bottle. It is to provide a thickness inspection apparatus.
  • a thickness inspection apparatus includes a capacitance detector that detects a capacitance of a target portion of a thickness inspection, and takes the capacitance detected by the capacitance detector and converts it into a thickness. And an arithmetic and control unit that executes processing.
  • the capacitance detector includes a sensor unit that makes contact with the surface of a target site for thickness inspection, and an elastic body that biases the sensor unit toward the target site, and the sensor unit has a radius of curvature.
  • R has a curved surface of 2 mm ⁇ R ⁇ 10 mm. The curved surface is formed so that at least one of the electrode pattern of the measurement electrode and the electrode pattern of the ground electrode is positioned on the surface of the curved portion of the belt-like mounting substrate. It is formed by sticking the made synthetic resin electrode sheet to the mounting substrate.
  • the degree of curvature along the circumferential direction of the circumferential surface of the body portion is not constant over the entire circumference, like a square bottle. Even so, since the radius of curvature R of the sensor part is set to the smallest possible value, the sensor part comes into contact with a substantially flat facing part with a small degree of curvature and a corner part with a large degree of curvature. The relative positional relationship between the surface of the object to be inspected and the electrode pattern of the sensor part hardly changes between the states. As a result, there is no risk that the detected capacitance will be different depending on the part, even though the thickness of the inspection object is the same over the entire circumference, and the thickness is mistakenly recognized. Can be prevented.
  • the electrode sheet is adhered from the front surface to the back surface of the mounting substrate, the electrode pattern of the measurement electrode is located on the front surface of the mounting substrate, and the electrode pattern of the ground electrode on the back surface.
  • Each electrode pattern is represented so that is positioned.
  • the elastic body is a fan-shaped sponge having a constant thickness or an open-cell foam, and the whole of the elastic body is expanded and contracted with a portion corresponding to the fan-shaped crimp as a fulcrum.
  • the mounting substrate is attached to the first side end face so that the curved portion faces outward, and the other second side end face is attached to the substrate.
  • the sensor portion when the sensor portion is brought into contact with the outer peripheral surface of the square bottle, when the state of contact with the facing portion is changed from the state of contact with the facing portion by the shaft rotation of the square bottle, the sensor is Even if the part is pulled in the direction of rotation of the bottle, the elastic body does not distort in the direction of rotation and the whole body compresses and deforms around the fulcrum. The position of contact with the outer peripheral surface of the plate hardly changes.
  • the contact position of the sensor portion with respect to the outer peripheral surface of the square bottle moves from the corner portion to the facing portion, the elastic body is compressed and deformed without being distorted in the rotation direction, so that the restoring force of the elastic body may be weakened. As a result, the restoring force effectively acts in the direction toward the square bottle.
  • the sensor unit moves following the rotation of the square bottle, and a jumping phenomenon that deviates from the outer peripheral surface of the square bottle is prevented.
  • the inspection object is a square bottle or an elliptic bottle
  • the degree of curvature along the circumferential direction of the circumferential surface of the body portion is not constant over the entire circumference
  • the surface of the inspection object The relative positional relationship between the electrode pattern and the electrode pattern hardly changes over the entire circumference, and an accurate thickness inspection is possible over the entire circumference.
  • the elastic body is configured by using a fan-shaped sponge having a constant thickness or an open-cell foam, so that a jumping phenomenon in which the sensor part is separated from the surface of the inspection object is generated. Can be prevented.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5. It is sectional drawing which shows the other Example of an electrode pattern. It is a figure which shows the thickness conversion curve for converting the detected electrostatic capacitance into thickness.
  • FIG. 1 shows the overall configuration of a thickness inspection apparatus 1 according to an embodiment of the present invention.
  • the illustrated thickness inspection apparatus 1 is used to inspect the thickness of a glass bottle, but is not limited to this, and it is also possible to inspect the thickness of a synthetic resin bottle, Not only bottles, but also the thickness of various containers, and the thickness of plate-like bodies can also be inspected.
  • the illustrated thickness inspection apparatus 1 inspects the square bottle 10A shown in FIG. 19 and is installed in one of a plurality of inspection stations provided around a star wheel (not shown). .
  • the illustrated thickness inspection apparatus 1 is suitable for the thickness inspection of the rectangular bottle 10A, but is also suitable for inspecting the thickness of the elliptical bottle 10B shown in FIG.
  • the square bottle 10A is not limited to a quadrangular shape in the plan view, but may be a pentagonal shape, a hexagonal shape, or the like.
  • a plurality of recesses are provided on the outer peripheral surface of the star wheel.
  • a square bottle (hereinafter simply referred to as “bottle”) 10A introduced into each recess is constrained in the recess, It is forwarded to each inspection station by intermittent rotation.
  • the bottle 10A to be inspected is supported on the rotation center of a freely rotatable horizontal support table 20.
  • the bottle 10A is rotated about the central axis c of the bottle 10A by the rotation drive mechanism 2, and thereby the thickness of the bottle 10A is inspected over the entire circumference.
  • the rotation drive mechanism 2 in the illustrated example includes the support table 20, a drive roller 21 that contacts the outer peripheral surface of the mouth of the bottle 10A supported on the support table 20, and rotationally drives the bottle 10A by frictional force during rotation.
  • the pair of left and right universal rollers 22 and 23 that support the opening of the bottle 10A with the driving roller 21 and a driving device (not shown) that rotationally drives the driving roller 21 are configured.
  • the rotation drive mechanism 2 may be of a type that directly rotates the support table 20.
  • FIG. 1 shows a state in which the thickness of the bottle 10A is simultaneously measured and inspected at two locations, the upper position and the lower position of the body portion. There may be three or more locations.
  • two capacitance detectors 4 and 4 are electrically connected to the apparatus main body 3 by means of cord lines 30 and 30, respectively.
  • an operation unit 32 in which a plurality of key switches and display lamps are arranged is provided on the front surface of the apparatus body 3.
  • Each capacitance detector 4 is fixedly mounted on fixing bases 34 and 35 arranged so as to be movable up and down along a vertical mounting stand 33.
  • the detection output of the analog quantity obtained by each of the capacitance detectors 4 and 4 is extracted at a predetermined sampling period, converted into a digital quantity, and taken into an arithmetic control device incorporated in the apparatus body 3.
  • a calculation control device converts each sample data of the detection output by the capacitance detector 4 into a wall thickness based on the wall thickness conversion curves A and B (details will be described later) as shown in FIG. . Further, the arithmetic and control unit controls a series of input / output operations of the operation unit 32 and controls a display operation of the monitor unit 31.
  • This arithmetic and control unit includes a microprocessor that is a subject of arithmetic and control, a memory that stores programs and data, and the like. The memory stores conversion data constituting the thickness conversion curves A and B.
  • the microprocessor refers to the memory, converts each sample data for one round of the detection output bottle 10A by the capacitance detector 4 into a wall thickness, stores the sample data in the memory, and stores the stored data in the monitor unit 31. Display.
  • Each capacitance detector 4 detects the capacitance of the portion of the support table 20 that is in contact with the bottle 10A that rotates on its axis. As shown in FIGS. 2 and 3, the capacitance detector 4 is applied to the surface of the bottle 10A.
  • a sensor unit 5 to be contacted, an elastic body 6 that urges and presses the sensor unit 5 toward the surface of the bottle 10 ⁇ / b> A, and a detector main body 40 are configured.
  • the detector body 40 is electrically connected to an electrode pattern (details will be described later) of the synthetic resin electrode sheet 7 constituting the sensor unit 5 via a printed wiring board 41 and three connector pins 42a to 42c. It has a built-in capacitance detection circuit.
  • the sensor unit 5 has a curved surface 50 set to a predetermined radius of curvature R.
  • a protective film 54 for covering an electrode sheet 7 to be described later is put on the curved surface 50 of the sensor unit 5.
  • the curved surface 50 is formed by rolling the flexible electrode sheet 7 so that an electrode pattern 71 of a measurement electrode, which will be described later, is positioned on the surface of a curved portion 52 formed at one end of a strip-shaped mounting substrate 51. It is configured by bending and sticking in an arc.
  • the radius of curvature R of the curved surface 50 is desirably set as small as possible. In this embodiment, the radius of curvature R is set to 4 mm. However, if 2 mm ⁇ R ⁇ 10 mm, the curved surface 50 can be manufactured.
  • the measurement error described above is also practically acceptable.
  • the curvature radius R is set to 2 mm or more and 10 mm or less, which will be described later.
  • the electrode sheet 7 has a strip shape and is formed to have a constant width over the entire length, and is attached to the curved portion 52 and the flat portion 53 of the mounting substrate 51.
  • the elastic body 6 is formed of a sponge having a constant thickness or an open-cell foam.
  • a portion that hits the sector shape is used as a fulcrum 60, and the elastic body 6 is formed so that the angle ⁇ formed by the side end surfaces 61 and 62 with the fulcrum 60 as the center is small.
  • the whole of contracts are attached to one first side end surface 61 of the elastic body 6 with the sensor unit 5 facing outward.
  • the other second side end face 62 of the elastic body 6 is attached to the upper surface of a strip-like printed wiring board 41 attached on the opening of the case body 43 constituting the detector body 40.
  • the electrode sheet 7 has an electrode pattern of measurement electrodes (hereinafter referred to as “measurement electrode pattern”) 71 and electrode patterns of ground electrodes (hereinafter referred to as “earth electrode patterns”) 72a and 72b. Is represented.
  • electrode patterns hereinafter referred to as “guard electrode patterns” 73a and 73b of guard electrodes for suppressing the influence of capacitance other than the bottle 10A are further shown.
  • S1 is an area positioned and fixed on the surface of the curved portion 52 of the mounting substrate 51, and only the measurement electrode pattern 71 exists in this area S1.
  • S2 is an area positioned and fixed along the back surface of the curved portion 52. In this area S2, the guard electrode pattern 73b and the ground electrode patterns 72b and 72b exist so as to sandwich the guard electrode pattern 73b.
  • S3 is an area positioned and fixed along the surface of the flat portion 53 of the mounting substrate 51, and the measurement electrode pattern 71, the guard electrode pattern 73a, and the ground electrode pattern 72a exist in this area S3.
  • S4 is a region fixed along the back surface of the flat surface portion 53 of the mounting substrate 51 and the surface of the printed wiring board 41.
  • connection patterns 74 to 76 that are electrically connected to the three connector pins 42a to 42c are formed at the end of the region S4.
  • the measurement electrode pattern 71 is located at the center of the width.
  • the ground electrode pattern 72 b is positioned on the back side of the curved surface 50, that is, on both side edges of the back surface of the curved portion 52 of the mounting substrate 51.
  • the measurement sensitivity of capacitance is increased.
  • the arrows indicated by dotted lines indicate lines of electric force extending from the measurement electrode pattern 71 to the ground electrode patterns 72b (FIG. 6) and 72 (FIG. 7).
  • Lead wires 55a and 55b are connected to the measurement electrode pattern 71 and the guard electrode pattern 73a of the electrode sheet 7 located on the flat portion 53 of the mounting substrate 51.
  • the two lead wires 55a and 55b are bundled into one lead wire 55 and led to the back surface of the printed wiring board 41, and the conductive pattern (not shown) printed on the back surface of the printed wiring board 41 is electrically connected. It is connected.
  • the ground electrode pattern 72a on the flat surface portion 53 of the mounting substrate 51 is electrically connected to the ground electrode patterns 72b and 72b on both sides of the back surface by conducting wires 56 and 56.
  • the conductive pattern on the back surface of the printed wiring board 41 and the connection patterns 74 to 76 of the electrode sheet 7 are electrically connected to the connector pins 42a to 42c.
  • Each connector pin 42a to 42c is connected to a connector (not shown) incorporated in the detector body 40, whereby the measurement electrode pattern 71, ground electrode patterns 72a and 72b, and guard electrode pattern 73a of the electrode sheet 7 are connected. 73b and a capacitance detection circuit incorporated in the detector body 40 are electrically connected.
  • the capacitance detection circuit outputs a voltage value V corresponding to the capacitance of the part to be subjected to thickness inspection, that is, the part where the sensor unit 5 is in contact. This detection output is taken into an arithmetic control device incorporated in the apparatus body 3.
  • the configuration of the capacitance detection circuit is a known one disclosed in Patent Document 1 (Japanese Patent No. 3416084), and detailed description thereof is omitted here.
  • FIG. 8 illustrates a wall thickness conversion curve used for converting the voltage value V into the wall thickness d in the arithmetic and control unit.
  • A is the capacitance detector 4 (hereinafter referred to as “new type capacitance detector 4”) having the above-described configuration, and the curvature radius R of the curved surface 50 of the sensor unit 5 is 4 mm. It is a thickness conversion curve applied.
  • B is a thickness conversion curve applied to the conventional capacitance detector 9 shown in FIG. 17 (hereinafter referred to as “old type capacitance detector 9”).
  • Each of the wall thickness conversion curves A and B is obtained by multiplying the measurement data obtained by measuring the wall thickness of a plate glass whose wall thickness is known by the respective capacitance detectors 4 and 9 by a coefficient. The coefficient is determined so that the multiplication value becomes a known thickness value.
  • the old-type capacitance detector 9 is mainly used for thickness inspection for objects other than the square bottle 10A and the elliptical bottle 10B, and the above-described thickness conversion curve B is applied.
  • the radius of curvature R of the curved surface of the sensor unit 90 is set to 17 mm.
  • FIG. 9 (1) shows a dial thickness gauge 100 and a new type of electrostatic discharge for sample 1 made of a flat plate, sample 2 made of a cylinder having a radius of 30 mm, and sample 3 made of a cylinder having a radius of 14 mm.
  • the capacitance detector 4 having the curvature radius R of the curved surface 50 of the sensor unit 5 of 4 mm, 8 mm, and 10 mm, and the old type capacitance detector 9 has a wall thickness of 2 mm.
  • the measurement results when measuring the thickness of each sample 1 to 3 are shown.
  • I 1 to I 3 are thickness measurement data (reference data) by the dial thickness gauge 100 shown in FIG.
  • J 1 to J 3 are new capacitances having a curvature radius R of the curved surface 50 of 4 mm.
  • Thickness measurement data by the detector 4 N 1 to N 3 are thickness measurement data by the new type capacitance detector 4 having a curvature radius R of the curved surface 50 of 8 mm, and M 1 to M 3 are curved surfaces
  • K 1 to K 3 are thickness measurement data by the old type capacitance detector 9.
  • Samples 1 to 3 are made of synthetic resin, and the material is polyvinylidene fluoride (PVDF) having a dielectric constant similar to that of soda glass.
  • PVDF polyvinylidene fluoride
  • a dial thickness gauge 100 shown in FIG. 11 is provided with contacts 102 and 103 facing each other at the tips of flexible U-shaped arms 101 and 101, and a sample is provided between the contacts 102 and 103.
  • the pointer 105 of the dial 104 touches the scale corresponding to the thickness according to the thickness.
  • the reference measurement for the data I 1 ⁇ I 3 data J 1 ⁇ J 3, N 1 ⁇ N 3, M 1 ⁇ M 3, K 1 ⁇ K 3 of the measurement error P 1 ⁇ P 3, R 1 to R 3 , S 1 to S 3 , and Q 1 to Q 3 are shown.
  • the measurement errors P 2 to P 3 , R 2 to R 3 , and S 2 to S 3 of the thickness measurement data by the new type capacitance detector 4 are the old type.
  • the measurement error Q 2 to Q 3 of the wall thickness measurement data by the capacitance detector 9 is sufficiently smaller than P 2 , R 2 , S 2 ⁇ Q 2 , P 3 , R 3 , S 3 ⁇ Q 3 is there.
  • the measurement errors P 2 to P 3 , R 2 to R 3 , and S 2 to S 3 of the thickness measurement data by the new type capacitance detector 4 are caused by the curvature radius R of the curved surface 50 of the sensor unit 5. Is smaller, and P 2 ⁇ R 2 ⁇ S 2 and P 3 ⁇ R 3 ⁇ S 3 .
  • N 3 , and M 3 , N 3 ⁇ N 2 , M 3 ⁇ M 2 , and the measurement errors are R 2 ⁇ R 3 , S 2 ⁇ S 3 , but the measurement data J 2 , J for 3 is J 2 ⁇ J 3, the measurement error is also P 2 ⁇ P 3.
  • FIGS. 10 (1) and 10 (2) show a dial thickness gauge 100 and a new type capacitance detector 4 for the samples 1 to 3 having a thickness of 1 mm, and the curved surface 50 of the sensor unit 5.
  • the measurement data when the radius of curvature R is 4 mm, 8 mm and 10 mm, and the old type capacitance detector 9 and the measurement error when the thickness measurement is performed are shown. .
  • the measurement errors P 2 to P 3 , R 2 to R 3 , and S 2 to S 3 of the thickness measurement data by the new type capacitance detector 4 are the old type.
  • the measurement error Q 2 to Q 3 of the wall thickness measurement data by the capacitance detector 9 is sufficiently smaller than P 2 , R 2 , S 2 ⁇ Q 2 , P 3 , R 3 , S 3 ⁇ Q 3 is there.
  • the measurement errors P 2 to P 3 , R 2 to R 3 , and S 2 to S 3 of the thickness measurement data by the new type capacitance detector 4 are caused by the curvature radius R of the curved surface 50 of the sensor unit 5. Is smaller, and P 2 ⁇ R 2 ⁇ S 2 and P 3 ⁇ R 3 ⁇ S 3 .
  • N 3 , and M 3 , N 2 ⁇ N 3 , M 2 ⁇ M 3 , J 2 ⁇ J 3 , and measurement errors are also R 2 ⁇ R 3 , S 2 ⁇ S 3 , P 2 ⁇ P 3 .
  • FIGS. 12 (1) and 12 (2) show a state in which the thickness of the square bottle 10A is measured by the old-type capacitance detector 9 described above.
  • 12 (1) shows a state in which the sensor unit 90 is in contact with the facing portion 11 with a small degree of bending along the circumferential direction
  • FIG. 12 (2) shows a corner where the sensor unit 90 has a large degree of bending along the circumferential direction.
  • Each of the states in contact with the portion 12 is shown. Assuming that the capacitance of the region from the surface of the square bottle 10A to the distance L is measured, the measurement range e2 of the corner portion 12 and the measurement range e1 of the facing portion 11 are e2 ⁇ e1, and both The ratio (e1 / e2) is a value greater than 1. Since the capacitance is proportional to the area of the electrode, the measured thickness value of the corner portion 12 is smaller than the measured thickness value of the facing portion 11.
  • FIGS. 13 (1) and 13 (2) show a state in which the thickness of the square bottle 10A is measured by a new type capacitance detector 4 with a curvature radius R of the curved surface 50 of the sensor unit 5 of 4 mm. Is shown.
  • FIG. 13 (1) shows a state in which the sensor unit 5 is in contact with the facing portion 11 where the degree of bending along the circumferential direction is small
  • FIG. 13 (2) shows a corner where the sensor unit 5 has a large degree of bending along the circumferential direction.
  • Each of the states in contact with the portion 12 is shown.
  • the measurement range f2 of the corner portion 12 and the measurement range f1 of the facing portion 11 are f2 ⁇ f1, and both
  • the ratio (f1 / f2) is a value close to 1, and the measured value of the thickness of the corner portion 12 and the measured value of the thickness of the facing portion 11 are substantially the same value.
  • the radius of curvature R of the curved surface 50 of the sensor unit 5 is desirably as small as possible.
  • the measured thickness value of 12 and the measured thickness value of the facing portion 11 are close to each other.
  • the curvature radius R of the curved surface 50 is preferably set to a value lower than 10 mm with the upper limit being 10 mm.
  • PVDF polyvinylidene fluoride
  • the measurement error is 0. 3 mm (see FIG. 10 (2)). If the curvature radius R of the curved surface 50 of the sensor unit 5 exceeds 10 mm, the measurement error is further increased and is not practical, so the upper limit value of the curvature radius R is 10 mm. From the above, considering both manufacturing efficiency and measurement error, it is more desirable to set the curvature radius R of the curved surface 50 of the sensor unit 5 to around 4 mm, that is, from 3 mm to 5 mm.
  • 14 (1) and 14 (2) show the measurement of the wall thickness of the upper end of the body of the square bottle 10A using the electrostatic capacitance detector 4 having a radius of curvature R of the curved surface 50 of the sensor unit 5 of 4 mm.
  • 15 (1) and (2) show the results of measuring the wall thickness of the lower end portion of the barrel portion of the square bottle 10A over the entire circumference.
  • a line graph I shows the measured value (reference value) of the wall thickness of the entire circumference of the bottle obtained by measuring the thickness of the square bottle 10A for each predetermined angle with the dial thickness gauge 100 described above.
  • the line graph Q shows the measurement error for each angle of the measurement value J with respect to the reference value I, and the measurement error at the facing portion 11 is measured at the corner portion 12 for both the upper end portion and the lower end portion of the trunk portion. The error is also suppressed to a sufficiently small value.
  • FIGS. 16 (1) and 16 (2) show the body of the elliptical bottle 10A using the electrostatic capacity detector 4 having a radius of curvature R of the curved surface 50 of the sensor unit 5 of 4 mm. The result of having measured the wall thickness of the upper end part of a part over the perimeter is shown. According to the figure, the measurement error is suppressed to a sufficiently small value regardless of whether it is the short diameter portion 13 or the long diameter portion 14 of the elliptical bottle 10B.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 肉厚検査の対象部位の静電容量を検出する静電容量検出器4と、この静電容量検出器4により検出された静電容量を取り込んで肉厚に換算する処理を実行する演算制御装置とから成る肉厚検査装置であって、前記静電容量検出器4は、肉厚検査の対象部位の表面に当接させるセンサー部5と、そのセンサー部5を対象部位に向けて付勢する弾性体6とを有している。前記センサー部5は、曲率半径Rが2mm≦R≦10mmの湾曲面50を有しており、前記湾曲面50は、帯板状の取付基板51の湾曲させた部分の表面に、測定電極の電極パターンとアース電極の電極パターンのうちの少なくとも測定電極の電極パターンが位置するように各電極パターンが表された合成樹脂製の電極シート7を取付基板51に貼着することにより形成されている。

Description

肉厚検査装置
 この発明は、びんなどの検査対象物の表面にセンサー部を当接させてその当接部位の肉厚を検査する肉厚検査装置に関する。この発明は特に、平面視した胴部の形状が角形形状をなすびん(以下「角形びん」という。)や楕円形状をなすびん(以下「楕円形びん」という。)のように、胴部の周面の周方向に沿う湾曲の度合が全周にわたって一定でないびんであっても正確な肉厚検査が可能な肉厚検査装置に関する。
 例えば、製びん工場では、製びん機の複数のセクションで次々に製造されるびんは、最終の包装工程まで搬送される間に、検査ラインを通過して欠陥の有無などが検査される。この種の検査ラインに設置されるびん検査装置として、スターホイールの周囲に複数の検査ステーションを配置する構成のものがある。図17に示すスターホイール8は、外周面に複数の凹部80が設けられており、各凹部80内へ導入されたびん10は、スターホイール8の間欠回転により各検査ステーションへ順送りされる。びん10の肉厚を検査する検査ステーションでは、検査対象のびん10は支持テーブルの上面の回転中心に支持され、このびん10を回転駆動機構により中心軸のまわりに軸回転させることにより、肉厚検査装置によりびん10の肉厚を全周にわたって測定し、びん10の良否を検査している。
 この種の肉厚検査装置として、びん10の表面にセンサー部90を当接させて測定電極の電極パターンとアース電極の電極パターンとの間の静電容量を検出する静電容量検出器9を用いたものがある(例えば、特許文献1参照)。この静電容量検出器9は、前記センサー部90をびん10の表面に向けて付勢して押し付ける弾性体91を備えているので、たとえ、びん10が振動しても、その振動を弾性体91により吸収することで、センサー部90とびん10の表面との接触状態を安定保持している。
 センサー部90は、全長にわたって湾曲する帯板状の取付基板92の表面に、電極パターンが表された合成樹脂製の電極シート93が貼り合わされたものである。測定電極の電極パターンとアース電極の電極パターンとの間で、びん10に当接した部位の静電容量が検出されるとともに、静電容量の検出出力が図示しない演算制御装置に取り込まれて肉厚に換算される。
特許第3416084号公報
 検査対象物が図17に示すような胴部の形状が円筒形をなす丸形のびん10である場合、びん10の胴部の周面の周方向に沿う湾曲の度合は全周にわたって一定である。このため、センサー部90とびん10の外周面との当接状態は一定に保たれる。これに対して、検査対象物が図18および図19に示すような角形びん10Aである場合、びん10Aの胴部の周面の周方向に沿う湾曲の度合は全周にわたって一定でない。このため、湾曲の度合が小さいほぼフラットな対面部分11に当接する状態(図18(1)に示す状態)と湾曲の度合が大きいコーナー部分12に当接する状態(図18(2)(3)に示す状態)とでは、角形びん10Aの表面とセンサー部90の電極パターンとの相対位置関係が変化する。その結果、たとえ、角形びん10Aの肉厚が全周にわたって均一であっても、検出される静電容量が部位により違った値となり、角形びん10Aの肉厚が誤って認識される。
 検査対象物が図20に示す楕円形びん10Bである場合も同様であり、楕円形びん10Bの胴部の周面の周方向に沿う湾曲の度合が全周にわたって一定でない。このため、緩やかに湾曲する短径部分13に当接する状態と急峻に湾曲する長径部分14に当接する状態とでは楕円形びん10Bの表面とセンサー部90の電極パターンとの相対位置関係が変化する。その結果、たとえ、楕円形びん10Bの肉厚が全周にわたって均一であっても、検出される静電容量は部位によって違った値となる。
 図21(1)(2)は、角形びん10Aの胴部の上端部の肉厚を全周にわたって測定した結果を示している。図21(1)において、折線グラフIは機械式ゲージ(例えば、後述するダイヤル厚みゲージ100)により角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値(以下「基準値」という。)を示し、折線グラフKは図17に示した静電容量検出器9を用いた肉厚検査装置により角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値を示している。また、図21(2)において、折線グラフQは基準値Iに対する測定値Kの角度毎の測定誤差を示すもので、前記対面部分11での測定誤差は小さいが、コーナー部分12での測定誤差は大きな値となっている。
 図22(1)(2)は、角形びん10Aの胴部の下端部の肉厚を全周にわたって測定した結果を示している。図22(1)(2)において、折線グラフIは機械式ゲージ(例えば、後述するダイヤル厚みゲージ100)により角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値(基準値)を示し、折線グラフKは図17に示した静電容量検出器9を用いた肉厚検査装置により角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値を示し、折線グラフQは基準値Iに対する測定値Kの角度毎の測定誤差を示しており、前記対面部分11での測定誤差は小さいが、コーナー部分12での測定誤差は大きな値となっている。
 なお、図示していないが、楕円形びん10Bについても測定部位によって肉厚の測定誤差が相違するもので、緩やかに湾曲する短径部分13での測定誤差に対して、急峻に湾曲する長径部分14での測定誤差が大きくなる。
 また、角形びん10Aでは、対面部分11に当接する状態(図18(1)に示す状態)からコーナー部分12に当接する状態(図18(3)に示す状態)へ移行するとき、センサー部90が角形びん10Aの回転方向(図中、矢印aで示す。)に引っ張られて弾性体91が回転方向aへ歪みながら圧縮変形するおそれがある。このような変形が生じると、びん10Aのコーナー部分12と対面部分11とでは、センサー部90のびん10Aの外周面との当接位置が変わり、肉厚の測定値にバラツキが生じるだけでなく、次に、びん10Aの外周面に対するセンサー部90の当接位置がコーナー部分12から対面部分11へ移るとき、びん10Aの対面部分11とコーナー部分12との差が大きい場合や、その差が小さくてもびん10Aの回転速度が速い場合は、弾性体91の復元力が十分でないため、センサー部90は角形びん10Aの回転に追従できない。このため、センサー部90が角形びん10Aの外周面より乖離する現象(以下、「ジャンピング現象」という。)が起こり、肉厚が測定できない箇所(図中、点線で示す。)が生じるおそれがある。
 この発明は、上記問題に着目してなされたもので、検査対象物が角形びんや楕円形びんのように、胴部の周面の周方向に沿う湾曲の度合が全周にわたって一定でないものであっても、検査対象物の表面と電極パターンとの相対位置関係が殆ど変化せず、全周にわたり正確な肉厚検査が可能な肉厚検査装置を提供することを目的とする。
 また、この発明が他に目的とするところは、検査対象物が角形びんのようなものであっても、センサー部が肉厚検査の対象部位の外周面より乖離するジャンピング現象が起こるおそれのない肉厚検査装置を提供することにある。
 この発明による肉厚検査装置は、肉厚検査の対象部位の静電容量を検出する静電容量検出器と、この静電容量検出器により検出された静電容量を取り込んで肉厚に換算する処理を実行する演算制御装置とから成るものである。前記静電容量検出器は、肉厚検査の対象部位の表面に当接させるセンサー部と、そのセンサー部を対象部位に向けて付勢する弾性体とを有し、前記センサー部は、曲率半径Rが2mm≦R≦10mmの湾曲面を有している。前記湾曲面は、帯板状の取付基板の湾曲させた部分の表面に、測定電極の電極パターンとアース電極の電極パターンのうちの少なくとも測定電極の電極パターンが位置するように各電極パターンが表された合成樹脂製の電極シートを取付基板に貼着することにより形成されている。
 上記した構成の肉厚検査装置により例えばびんの肉厚を検査する場合、検査対象物が角形びんのように、胴部の周面の周方向に沿う湾曲の度合が全周にわたって一定でないものであっても、センサー部の曲率半径Rをできる限り小さな値に設定しているので、センサー部が湾曲の度合の小さいほぼフラットな対面部分に当接する状態と湾曲の度合の大きなコーナー部分に当接する状態との間で、検査対象物の表面とセンサー部の電極パターンとの相対位置関係が殆ど変化しない。その結果、検査対象物の肉厚が全周にわたって同一であるにもかかわらず検出される静電容量が部位によって違った値となるなどのおそれはなく、肉厚が誤まって認識されるのを防止できる。
 この発明の好ましい実施態様においては、前記電極シートは、前記取付基板の表面から裏面にわたって貼着されており、前記取付基板の表面に測定電極の電極パターンが位置し、裏面にアース電極の電極パターンが位置するように各電極パターンが表されている。
 この実施態様によると、測定電極の電極パターンとアース電極の電極パターンとがともに取付基板の表面に位置するものと比較して、肉厚検査の対象部位に多くの電荷が蓄えられる結果、静電容量の測定感度が高められる。
 この発明のさらに好ましい実施態様においては、前記弾性体は、扇形状をなす一定肉厚のスポンジまたは連続気泡の発泡体であり、扇形状のかなめに当たる部分を支点として全体が拡縮するように、一方の第1の側端面には前記湾曲する部分が外向きとなるように前記取付基板が貼着され、他方の第2の側端面は基板上に貼着されている。
 この実施態様によると、例えば、角形びんの外周面にセンサー部を当接させた場合において、角形びんの軸回転により対面部分に当接する状態からコーナー部分に当接する状態へ移行するとき、たとえセンサー部がびんの回転方向に引っ張られても、弾性体は回転方向へ歪まずに支点を中心として全体が圧縮変形するので、コーナー部分であっても対面部分であっても、センサー部の角形びんの外周面との当接位置は殆ど変わらない。また、角形びんの外周面に対するセンサー部の当接位置がコーナー部分から対面部分へ移るとき、弾性体は回転方向へ歪まずに圧縮変形しているから、弾性体の復元力が弱められることがなく、角形びんに向かう方向へその復元力が有効に作用する結果、センサー部は角形びんの回転に追従して動き、角形びんの外周面より乖離するジャンピング現象が起こるのが防止される。
 この発明によれば、検査対象物が角形びんや楕円形びんのように、胴部の周面の周方向に沿う湾曲の度合が全周にわたって一定でないものであっても、検査対象物の表面と電極パターンとの相対位置関係が全周にわたって殆ど変化せず、全周にわたり正確な肉厚検査が可能である。
 また、好ましい実施態様のものでは、弾性体は扇形状をなす一定肉厚のスポンジまたは連続気泡の発泡体を用いて構成されるので、検査対象物の表面よりセンサー部が乖離するジャンピング現象の発生を防ぐことができる。
この発明の一実施例である肉厚検査装置の概略構成を示す正面図である。 静電容量検出器の構成を示す正面図である。 静電容量検出器のセンサー部の構成を拡大して示す側面図である。 電極シートに表された電極パターンを示す平面図である。 取付基板に電極シートが貼着された状態を拡大して示す斜視図である。 図5のA-A線に沿う断面図である。 電極パターンの他の実施例を示す断面図である。 検出された静電容量を肉厚に変換するための肉厚変換曲線を示す図である。 厚みが2mmの複数種のサンプルについての複数種の静電容量検出器による肉厚の測定結果とその測定誤差とを示す図である。 厚みが1mmの複数種のサンプルについての複数種の静電容量検出器による肉厚の測定結果とその測定誤差とを示す図である。 肉厚の測定に用いられる機械式ゲージの構成を示す正面図である。 従来の静電容量検出器による肉厚の測定状態を説明するための図である。 この発明に係る静電容量検出器による肉厚の測定状態を説明するための図である。 この発明に係る静電容量検出器による角形びんの胴部の上端部についての肉厚の測定結果を示す図である。 この発明に係る静電容量検出器による角形びんの胴部の下端部についての肉厚の測定結果を示す図である。 この発明に係る静電容量検出器による楕円形びんの肉厚の測定結果を示す図である。 従来のびんの肉厚検査装置に用いられる静電容量検出器の構成を示す平面図である。 図17の静電容量検出器による角形びんの肉厚検査の状況を示す平面図である。 角形びんの一例を示す斜視図である。 楕円形びんの一例を示す斜視図である。 従来の静電容量検出器による角形びんの胴部の上端部についての肉厚の測定結果を示す図である。 従来の静電容量検出器による角形びんの胴部の下端部についての肉厚の測定結果を示す図である。
 図1は、この発明の一実施例である肉厚検査装置1の全体の構成を示している。図示の肉厚検査装置1は、ガラス製のびんの肉厚を検査するのに用いているが、これに限らず、合成樹脂製のびんの肉厚を検査することも可能であり、また、びんに限らず、各種の容器の肉厚、さらには、板状体の肉厚を検査することもできる。
 図示の肉厚検査装置1は、図19に示した角形びん10Aを検査しており、スターホイール(図示せず)の周囲に設けられた複数の検査ステーションのうちのいずれかに設置されている。なお、図示例の肉厚検査装置1は、角形びん10Aの肉厚検査に適しているが、図20に示した楕円形びん10Bの肉厚を検査するのにも好適である。また、角形びん10Aは、平面視した胴部の形状が四角形のものに限らず、五角形のもの、六角形のものなどであってもよい。スターホイールの外周面には複数の凹部が設けられており、各凹部内へ導入された角形びん(以下、単に「びん」という。)10Aは、凹部内に拘束された状態で、スターホイールの間欠回転によって各検査ステーションへ順送りされる。
 肉厚検査装置1が設置されている検査ステーションでは、検査対象のびん10Aは回転自由な水平な支持テーブル20の回転中心上に支持されている。このびん10Aは回転駆動機構2によりびん10Aの中心軸cのまわりに軸回転させられ、これによりびん10Aの肉厚が全周にわたって検査される。図示例の回転駆動機構2は、前記支持テーブル20と、支持テーブル20上に支持されたびん10Aの口部の外周面に接して回転時の摩擦力によりびん10Aを回転駆動する駆動ローラ21と、駆動ローラ21との間でびん10Aの口部を支持する左右一対の自在ローラ22,23と、駆動ローラ21を回転駆動する図示しない駆動装置とで構成されている。なお、回転駆動機構2は、支持テーブル20を直接回転駆動する方式のものであってもよい。
 図1には、びん10Aの肉厚を胴部の上部位置と下部位置との2か所で同時に測定して検査している状態が示されているが、測定箇所は1か所であっても3か所以上であってもよい。同時に2か所の肉厚を測定する場合は、装置本体3に2個の静電容量検出器4,4をそれぞれコード線30,30により電気接続する。装置本体3の前面には、検査結果などの各種のデータを表示するためのモニター部31の他、複数個のキースイッチや表示ランプなどが配置された操作部32が設けられている。各静電容量検出器4は、縦設された取付スタンド33に沿って昇降可能に配備された固定台34,35上にそれぞれ取付け固定されている。各静電容量検出器4,4により得られたアナログ量の検出出力は所定のサンプリング周期で抽出されてデジタル量に変換され、装置本体3に組み込まれた演算制御装置に取り込まれる。
 図示しない演算制御装置は、図8に示されるような肉厚変換曲線A,B(詳細は後述する。)に基づいて静電容量検出器4による検出出力の各サンプルデータを肉厚に換算する。また、演算制御装置は、前記操作部32の入出力動作を一連に制御したり、モニター部31の表示動作を制御したりする。この演算制御装置には、演算および制御の主体となるマイクロプロセッサ、プログラムやデータを記憶させるメモリなどが含まれる。メモリには前記肉厚変換曲線A,Bを構成する変換データが記憶されている。マイクロプロセッサは、メモリを参照して静電容量検出器4による検出出力のびん10Aの一周分の各サンプルデータをそれぞれ肉厚に変換してメモリに記憶させるとともに、その記憶データをモニター部31に表示させる。
 各静電容量検出器4は、支持テーブル20上で軸回転するびん10Aに当接した部位の静電容量を検出するもので、図2および図3に示すように、びん10Aの表面に当接させるセンサー部5と、センサー部5をびん10Aの表面に向けて付勢して押し付ける弾性体6と、検出器本体40とで構成されている。検出器本体40は、センサー部5を構成する合成樹脂製の電極シート7の電極パターン(詳細は後述する。)にプリント配線基板41および3本のコネクターピン42a~42cを介して電気接続される静電容量検出回路を内蔵するものである。
 センサー部5は、所定の曲率半径Rに設定された湾曲面50を有するものである。センサー部5の湾曲面50上には後述する電極シート7を保護するための保護フィルム54が被せられている。前記湾曲面50は、帯板状の取付基板51の一端に形成された湾曲部52の表面に、後述する測定電極の電極パターン71が位置するように、可撓性を有する電極シート7を円弧状に撓ませて貼着することにより構成されている。この湾曲面50の曲率半径Rは、可能な限り小さな値に設定するのが望ましく、この実施例では4mmに設定されているが、2mm≦R≦10mmであれば、湾曲面50の製作が可能であり、かつ、上記した測定誤差も実用上許容し得るものである。なお、曲率半径Rを2mm以上、10mm以下とすることについては後述する。
 上記の電極シート7は、図4に示すように、帯状をなし、ほぼ全長にわたって一定幅に形成されており、取付基板51の湾曲部52および平面部53の表裏にわたって貼着されている。
 前記弾性体6は、扇形状をなす一定肉厚のスポンジまたは連続気泡の発泡体により構成されている。センサー部5の湾曲面50に対して押圧力が作用すると、扇形状のかなめに当たる部分を支点60とし、この支点60を中心として両側端面61,62がなす角度θが小さくなるように弾性体6の全体が収縮する。この弾性体6の一方の第1の側端面61には前記取付基板51がセンサー部5を外向きにして貼着されている。弾性体6の他方の第2の側端面62は、検出器本体40を構成するケース体43の開口部上に取り付けられた帯板状のプリント配線基板41の上面に貼着されている。
 前記電極シート7には、図4に示すように、測定電極の電極パターン(以下「測定電極パターン」という。)71とアース電極の電極パターン(以下「アース電極パターン」という。)72a,72bとが表されている。また、この実施例では、びん10A以外の静電容量の影響を抑えるためのガード電極の電極パターン(以下「ガード電極パターン」という。)73a,73bがさらに表されている。
 図4において、S1は前記取付基板51の湾曲部52の表面に位置決め固定される領域であり、この領域S1には測定電極パターン71のみが存在する。S2は湾曲部52の裏面に沿って位置決め固定される領域であり、この領域S2にはガード電極パターン73bとそれを挟むようにアース電極パターン72b,72bが存在する。S3は取付基板51の平面部53の表面に沿って位置決め固定される領域であり、この領域S3には測定電極パターン71とガード電極パターン73aとアース電極パターン72aとが存在する。S4は取付基板51の平面部53の裏面およびプリント配線基板41の表面に沿って固定される領域であり、この領域S4にはガード電極パターン73bとそれを挟むようにアース電極パターン72b,72bが存在する。また、領域S4の端部には、3本のコネクターピン42a~42cと導通させる接続パターン74~76が形成されている。
 センサー部5の湾曲面50では、図5および図6に示すように、測定電極パターン71が幅中央部に位置している。また、アース電極パターン72bは、湾曲面50の裏側、すなわち、取付基板51の湾曲部52の裏面の両側縁に位置している。この実施例によると、湾曲部52の表面の両側縁にアース電極パターン72を位置させた図7に示す他の実施例と比較して、センサー部5が当接する肉厚検査の対象部位に多くの電荷が蓄えられる結果、静電容量の測定感度が高められる。なお、図6および図7において、点線で示す矢印は測定電極パターン71からアース電極パターン72b(図6),72(図7)に至る電気力線を示している。
 取付基板51の平面部53上に位置する電極シート7の測定電極パターン71とガード電極パターン73aにはリード線55a,55bが接続されている。この2本のリード線55a,55bは1本のリード線55に束ねられて前記プリント配線基板41の裏面まで導かれ、プリント配線基板41の裏面に印刷された導電パターン(図示せず)に電気接続されている。また、取付基板51の平面部53上のアース電極パターン72aは裏面の両側のアース電極パターン72b,72bに導線56,56によって導通させてある。プリント配線基板41の裏面の前記導電パターンと電極シート7の前記接続パターン74~76とはコネクターピン42a~42cに導通させている。各コネクターピン42a~42cは検出器本体40の内部に組み込まれたコネクタ(図示せず)に接続され、これにより電極シート7の測定電極パターン71、アース電極パターン72a,72b、およびガード電極パターン73a,73bと検出器本体40に組み込まれた静電容量検出回路とが電気接続されている。
 なお、静電容量検出回路は肉厚検査の対象部位、すなわち、センサー部5を当接させた部位の静電容量に相応する電圧値Vを出力する。この検出出力は装置本体3に組み込まれた演算制御装置に取り込まれる。なお、静電容量検出回路の構成は、前記した特許文献1(特許第3416084)に開示された公知のものであり、ここでは詳細な説明を省略する。
 図8は、演算制御装置において前記電圧値Vを肉厚dに変換するのに用いられる肉厚変換曲線を例示している。図中、Aは上記した構成の静電容量検出器4(以下、「新タイプ静電容量検出器4」という。)であってセンサー部5の湾曲面50の曲率半径Rが4mmのものに適用される肉厚変換曲線である。また、Bは図17に示した従来の静電容量検出器9(以下、「旧タイプの静電容量検出器9」という。)に適用される肉厚変換曲線である。いずれの肉厚変換曲線A,Bも、それぞれの静電容量検出器4,9により肉厚が既知の板ガラスの肉厚を測定して得られた測定データに係数を掛けることにより求められるもので、前記係数はその乗算値が既知の肉厚の値となるように定められる。なお、旧タイプの静電容量検出器9は、主として、角形びん10Aや楕円形びん10B以外のものを対象とした肉厚検査に用いられるもので、上記の肉厚変換曲線Bが適用されるもののセンサー部90の湾曲面の曲率半径Rは17mmに設定されたものである。
 図9(1)は、平板より成るサンプル1、半径が30mmの円筒体より成るサンプル2、および半径が14mmの円筒体より成るサンプル3のそれぞれについて、ダイヤル厚みゲージ100と、新タイプの静電容量検出器4であってセンサー部5の湾曲面50の曲率半径Rが4mmのもの、8mmのもの、および10mmのものと、旧タイプの静電容量検出器9とによって、肉厚が2mmの各サンプル1~3を対象として肉厚測定を行ったときの測定結果を示している。
 図中、I~Iは図11に示すダイヤル厚みゲージ100による肉厚の測定データ(基準データ)、J~Jは湾曲面50の曲率半径Rが4mmの新タイプの静電容量検出器4による肉厚の測定データ、N~Nは湾曲面50の曲率半径Rが8mmの新タイプの静電容量検出器4による肉厚の測定データ、M~Mは湾曲面50の曲率半径Rが10mmの新タイプの静電容量検出器4による肉厚の測定データ、K~Kは旧タイプの静電容量検出器9による肉厚の測定データである。なお、各サンプル1~3は合成樹脂製であり、材質はソーダガラスと誘電率が似通ったポリフッ化ビニリデン(PVDF)である。
 図11に示すダイヤル厚みゲージ100は、可撓性を有するU字状のアーム101,101の先端に互いに対向する接触子102,103が設けられたものであり、接触子102,103間でサンプル1~3を挟んだとき、その肉厚に応じてダイヤル104の指針105が触れて肉厚に相当する目盛を指すようになっている。 
 図9(2)は、前記基準データI~Iに対する測定データJ~J,N~N,M~M,K~Kの測定誤差P~P,R~R,S~S,Q~Qをそれぞれ示している。
 図9(1)(2)によると、新タイプの静電容量検出器4による肉厚の測定データの測定誤差P~P,R~R,S~Sは、旧タイプの静電容量検出器9による肉厚の測定データの測定誤差Q~Qより十分に小さく、P,R,S<Q、P,R,S<Qである。また、新タイプの静電容量検出器4による肉厚の測定データの測定誤差P~P,R~R,S~Sは、センサー部5の湾曲面50の曲率半径Rが小さいものほど小さく、P<R<S、P<R<Sである。
 つぎに、旧タイプの静電容量検出器9による半径が30mmのサンプル2の肉厚の測定データKと半径が14mmのサンプル3の肉厚の測定データKとを比較すると、K<Kであり、測定誤差もQ<Qである。このことは、旧タイプの静電容量検出器9により角形びん10Aの肉厚を測定した場合、対面部分11の肉厚とコーナー部分12の肉厚とが同じであるにもかかわらず、肉厚の測定値はコーナー部分12の方が小さな値に検出されることを示している。
 これに対して、新タイプの静電容量検出器4による半径が30mmのサンプル2の肉厚の測定データJ,N,Mと半径が14mmのサンプル3の肉厚の測定データJ,N,Mとを比較すると、N<N,M<Mであって、測定誤差はR<R、S<Sであるが、測定データJ,JについてはJ≒Jであり、測定誤差もP≒Pである。このことは、新タイプの静電容量検出器4であってセンサー部5の湾曲面50の曲率半径Rが4mmのものにより肉厚が2mmの角形びん10Aの肉厚を測定した場合、対面部分11の肉厚の測定値とコーナー部分12の肉厚の測定値とがほぼ同じになることを示している。
 図10(1)(2)は、肉厚が1mmの各サンプル1~3を対象として、ダイヤル厚みゲージ100と、新タイプの静電容量検出器4であってセンサー部5の湾曲面50の曲率半径Rが4mmのもの、8mmのもの、および10mmのものと、旧タイプの静電容量検出器9とによって、肉厚測定を行ったときの測定データと前記した測定誤差とを示している。
 図10(1)(2)によると、新タイプの静電容量検出器4による肉厚の測定データの測定誤差P~P,R~R,S~Sは、旧タイプの静電容量検出器9による肉厚の測定データの測定誤差Q~Qより十分に小さく、P,R,S<Q、P,R,S<Qである。また、新タイプの静電容量検出器4による肉厚の測定データの測定誤差P~P,R~R,S~Sは、センサー部5の湾曲面50の曲率半径Rが小さいものほど小さく、P<R<S、P<R<Sである。
 つぎに、旧タイプの静電容量検出器9による半径が30mmのサンプル2の肉厚の測定データKと半径が14mmのサンプル3の肉厚の測定データKとを比較すると、K<Kであり、測定誤差もQ<Qである。このことは、旧タイプの静電容量検出器9により角形びん10Aの肉厚を測定した場合、対面部分11の肉厚とコーナー部分12の肉厚とが同じであるにもかかわらず、肉厚の測定値はコーナー部分12の方が小さな値に検出されることを示している。
 これに対して、新タイプの静電容量検出器4による半径が30mmのサンプル2の肉厚の測定データJ,N,Mと半径が14mmのサンプル3の肉厚の測定データJ,N,Mとを比較すると、N≒N、M≒M、J≒Jであり、測定誤差もR≒R、S≒S、P≒Pである。このことは、新タイプの静電容量検出器4により肉厚が1mmの角形びん10Aの肉厚を測定した場合、対面部分11の肉厚の測定値とコーナー部分12の肉厚の測定値がほぼ同じになることを示している。
 図12(1)(2)は、上記した旧タイプの静電容量検出器9により角形びん10Aの肉厚を測定している状態を示している。図12(1)はセンサー部90が周方向に沿う湾曲の度合が小さい対面部分11に当接している状態を、図12(2)はセンサー部90が周方向に沿う湾曲の度合が大きいコーナー部分12に当接している状態を、それぞれ示している。いま、角形びん10Aの表面から距離Lまでの領域の静電容量が測定されるものと仮定すると、コーナー部分12の測定範囲e2と対面部分11の測定範囲e1とはe2<e1となり、両者の比(e1/e2)は1より大きな値となる。静電容量は電極の面積に比例するから、コーナー部分12の肉厚の測定値は対面部分11の肉厚の測定値より小さな値となる。
 図13(1)(2)は、新タイプの静電容量検出器4であってセンサー部5の湾曲面50の曲率半径Rが4mmのものにより角形びん10Aの肉厚を測定している状態を示している。図13(1)はセンサー部5が周方向に沿う湾曲の度合が小さい対面部分11に当接している状態を、図13(2)はセンサー部5が周方向に沿う湾曲の度合が大きいコーナー部分12に当接している状態を、それぞれ示している。いま、角形びん10Aの表面から距離Lまでの領域の静電容量が測定されるものと仮定すると、コーナー部分12の測定範囲f2と対面部分11の測定範囲f1とはf2≒f1となり、両者の比(f1/f2)は1に近い値となり、コーナー部分12の肉厚の測定値と対面部分11の肉厚の測定値とはほぼ同じ値となる。
 上記した図9,10,12,13から明らかなように、センサー部5の湾曲面50の曲率半径Rは、できる限り小さい値であることが望ましく、曲率半径Rが小さければ小さい程、コーナー部分12の肉厚の測定値と対面部分11の肉厚の測定値とは近い値になる。ところが、センサー部5の湾曲面50は、取付基板51の湾曲部52上に電極シート7を貼着するなどして形成する必要があるため、製作技術、製作効率、製作コストなどの観点から、曲率半径Rを2mmより小さな値に設定するのが難しく、曲率半径Rの下限値は2mmとする。
 一方、製造規格値で最も薄いガラスびんの肉厚が1mm程度であることを考慮すると、湾曲面50の曲率半径Rは10mmを上限値とし、それ以下の値に設定するのが望ましい。肉厚が最も薄い1.0mmのガラスびんと誘電率が同等のポリフッ化ビニリデン(PVDF)製のサンプルの肉厚を上記した旧タイプの静電容量検出器9(R=17mm)により測定した場合、図10(2)に示したように、測定誤差は0.5mmとなり(サンプル3)、これでは1.5mm以下のものを肉厚不良として廃棄するものとせざるを得ず、良品破棄が多くなって実用上支障がある。これに対して、新タイプの静電容量検出器4であってセンサー部5の湾曲面50の曲率半径Rが10mmのもので上記のサンプル3の肉厚を測定した場合、測定誤差は0.3mmとなる(図10(2)参照)。センサー部5の湾曲面50の曲率半径Rが10mmを超えると、測定誤差がさらに大きくなって実用的でないので、曲率半径Rの上限値は10mmとする。
 上記のことから、製作効率と測定誤差の双方を考慮すると、センサー部5の湾曲面50の曲率半径Rは、4mmの前後、すなわち、3mm以上、5mm以下に設定するのがより望ましい。
 図14(1)(2)は、センサー部5の湾曲面50の曲率半径Rが4mmの静電容量検出器4を用いて角形びん10Aの胴部の上端部の肉厚を全周にわたって測定した結果を示し、図15(1)(2)は、角形びん10Aの胴部の下端部の肉厚を全周にわたって測定した結果を示している。同図中、折線グラフIは前記したダイヤル厚みゲージ100により角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値(基準値)を示し、折線グラフJは新タイプの静電容量検出器4(R=4mm)を用いて角形びん10Aの肉厚を所定の角度毎に測定して得られたびん全周にわたる肉厚の測定値を示し、折線グラフQは基準値Iに対する測定値Jの角度毎の測定誤差を示しており、胴部の上端部および下端部のいずれについても、前記対面部分11での測定誤差もコーナー部分12での測定誤差も十分に小さい値に抑えられている。
 楕円形びん10Bについても同様であり、図16(1)(2)には、センサー部5の湾曲面50の曲率半径Rが4mmの静電容量検出器4を用いて楕円形びん10Aの胴部の上端部の肉厚を全周にわたって測定した結果が示してある。同図によれば、楕円形びん10Bの短径部分13であっても長径部分14であっても測定誤差は十分に小さい値に抑えられている。
 1  肉厚検査装置
 4  静電容量検出器
 5  センサー部
 6  弾性体
 7  電極シート
 10 びん
 10A 角形びん
 10B 楕円形びん
 50 湾曲面
 51 取付基板
 52 湾曲部
 60 支点
 71 測定電極パターン
 72 アース電極パターン

Claims (3)

  1.  肉厚検査の対象部位の静電容量を検出する静電容量検出器と、この静電容量検出器により検出された静電容量を取り込んで肉厚に換算する処理を実行する演算制御装置とから成る肉厚検査装置であって、前記静電容量検出器は、肉厚検査の対象部位の表面に当接させるセンサー部と、そのセンサー部を対象部位に向けて付勢する弾性体とを有し、前記センサー部は、曲率半径Rが2mm≦R≦10mmの湾曲面を有しており、前記湾曲面は、帯板状の取付基板の湾曲させた部分の表面に、測定電極の電極パターンとアース電極の電極パターンのうちの少なくとも測定電極の電極パターンが位置するように各電極パターンが表された合成樹脂製の電極シートを取付基板に貼着することにより形成されて成る肉厚検査装置。
  2.  前記電極シートは、前記取付基板の表面から裏面にわたって貼着されており、前記取付基板の表面に測定電極の電極パターンが位置し、裏面側にアース電極の電極パターンが位置するように各電極パターンが表されている請求項1に記載された肉厚検査装置。
  3.  前記弾性体は、扇形状をなす一定肉厚のスポンジまたは連続気泡の発泡体であり、扇形状のかなめに当たる部分を支点として全体が拡縮するように、一方の第1の側端面には前記湾曲する部分が外向きとなるように前記取付基板が貼着され、他方の第2の側端面は基板上に貼着されている請求項1に記載された肉厚検査装置。
PCT/JP2013/075630 2012-09-28 2013-09-24 肉厚検査装置 WO2014050782A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13841942.9A EP2889574B1 (en) 2012-09-28 2013-09-24 Thickness inspection device
JP2013554497A JP5718485B2 (ja) 2012-09-28 2013-09-24 肉厚検査装置
CN201380050534.9A CN104685315B (zh) 2012-09-28 2013-09-24 壁厚检查装置
ES13841942.9T ES2626454T3 (es) 2012-09-28 2013-09-24 Dispositivo de inspección de espesor de pared
US14/432,196 US9341461B2 (en) 2012-09-28 2013-09-24 Wall thickness inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-217308 2012-09-28
JP2012217308 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050782A1 true WO2014050782A1 (ja) 2014-04-03

Family

ID=50388183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075630 WO2014050782A1 (ja) 2012-09-28 2013-09-24 肉厚検査装置

Country Status (8)

Country Link
US (1) US9341461B2 (ja)
EP (1) EP2889574B1 (ja)
JP (1) JP5718485B2 (ja)
CN (1) CN104685315B (ja)
ES (1) ES2626454T3 (ja)
PL (1) PL2889574T3 (ja)
PT (1) PT2889574T (ja)
WO (1) WO2014050782A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117244A1 (ja) * 2015-01-21 2016-07-28 日本山村硝子株式会社 容器の肉厚検査装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015118232B4 (de) * 2015-10-26 2023-09-14 Truedyne Sensors AG System und Verfahren zum Überwachen eines Kanals, insbesondere eines MEMS-Kanals
CN107677199A (zh) * 2017-08-10 2018-02-09 江苏潮华玻璃制品有限公司 一种瓶体长度电子自动测量装置
US10466576B2 (en) * 2017-10-20 2019-11-05 Himax Technologies Limited Method for controlling projector and associated electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425001A (en) * 1987-07-02 1989-01-27 Emhart Ind Capacitive probe
EP0544022A1 (en) * 1990-10-09 1993-06-02 Agr International, Inc. Apparatus for inspecting the wall thickness of a container and corresponding method
US5558233A (en) * 1994-10-27 1996-09-24 Agr International, Inc. Container inspection apparatus for determining the wall thickness of non-round containers and associated method
JP2001082908A (ja) * 1999-09-13 2001-03-30 Nihon Yamamura Glass Co Ltd 瓶の肉厚検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
US4870342A (en) * 1988-10-05 1989-09-26 Emhart Industries, Inc. Glass container wall thickness inspecting machine
JPH11108608A (ja) * 1997-10-03 1999-04-23 Toppan Printing Co Ltd 誘電体の膜厚測定方法及びその装置
EP1720135A1 (de) * 2005-05-06 2006-11-08 BEB Industrie-Elektronik AG Einrichtung zum Feststellen von Dicken und Dickenvariationen
US7877888B2 (en) * 2007-10-25 2011-02-01 General Electric Company System and method for measuring installation dimensions for flow measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425001A (en) * 1987-07-02 1989-01-27 Emhart Ind Capacitive probe
EP0544022A1 (en) * 1990-10-09 1993-06-02 Agr International, Inc. Apparatus for inspecting the wall thickness of a container and corresponding method
US5558233A (en) * 1994-10-27 1996-09-24 Agr International, Inc. Container inspection apparatus for determining the wall thickness of non-round containers and associated method
JP2001082908A (ja) * 1999-09-13 2001-03-30 Nihon Yamamura Glass Co Ltd 瓶の肉厚検査装置
JP3416084B2 (ja) 1999-09-13 2003-06-16 日本山村硝子株式会社 瓶の肉厚検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2889574A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117244A1 (ja) * 2015-01-21 2016-07-28 日本山村硝子株式会社 容器の肉厚検査装置
CN107110632A (zh) * 2015-01-21 2017-08-29 日本山村硝子株式会社 容器壁厚度检测设备
EP3249345A4 (en) * 2015-01-21 2018-07-18 Nihon Yamamura Glass Co., Ltd. Container wall thickness inspection device

Also Published As

Publication number Publication date
EP2889574B1 (en) 2017-04-05
CN104685315A (zh) 2015-06-03
EP2889574A1 (en) 2015-07-01
EP2889574A4 (en) 2016-06-01
JPWO2014050782A1 (ja) 2016-08-22
US9341461B2 (en) 2016-05-17
ES2626454T3 (es) 2017-07-25
JP5718485B2 (ja) 2015-05-13
US20150276370A1 (en) 2015-10-01
CN104685315B (zh) 2017-05-03
PT2889574T (pt) 2017-05-25
PL2889574T3 (pl) 2017-09-29

Similar Documents

Publication Publication Date Title
JP5718485B2 (ja) 肉厚検査装置
CN103565414B (zh) 粘弹性测量装置
TWI675191B (zh) 顯示一體型輸入裝置
CN102539022A (zh) 检测装置、电子设备以及机械手
US20170343332A1 (en) Container wall thickness inspection device
TWI597793B (zh) Workpiece holding device and work piece using the same
CN105674848B (zh) 厚度检测仪
CN103090901B (zh) 传感器在线校准方法
JP2015118032A (ja) 圧電センサの検査方法
KR101358732B1 (ko) 플렉시블 디스플레이 장치의 트위스트 측정장치
JP5701800B2 (ja) センサー保持機構およびびんの肉厚検査装置
KR101177509B1 (ko) 터치스크린 검사장치
JP4237805B2 (ja) 薄型化されたガラス基板の後処理装置
JP2015080600A (ja) 超音波プローブおよび超音波画像装置
JP4367097B2 (ja) 回転操作型電子部品の検査装置および検査方法
JP4454415B2 (ja) 物品の硬度測定装置および物品の硬度測定方法
JP4830111B2 (ja) 硬度及び湿潤度識別装置
JP4386427B2 (ja) 圧力計測装置
JP3543790B2 (ja) チューブ状検査物の表面微小突起の計測方法
CN108168775B (zh) 一种力敏电阻测试仪
JP2001082908A (ja) 瓶の肉厚検査装置
JP5776181B2 (ja) 厚み検査装置
JPH01304343A (ja) 線条体表面の突起検出装置
JP2001012901A (ja) シートの接合部の検査方法
JP2016180682A (ja) 外力分布測定システムの校正用器具及びその校正方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554497

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841942

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013841942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013841942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14432196

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE