WO2014050663A1 - Adhesive sheet for semiconductor device production, semiconductor device, and method for producing semiconductor device - Google Patents

Adhesive sheet for semiconductor device production, semiconductor device, and method for producing semiconductor device Download PDF

Info

Publication number
WO2014050663A1
WO2014050663A1 PCT/JP2013/075174 JP2013075174W WO2014050663A1 WO 2014050663 A1 WO2014050663 A1 WO 2014050663A1 JP 2013075174 W JP2013075174 W JP 2013075174W WO 2014050663 A1 WO2014050663 A1 WO 2014050663A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
layer
sheet
adhesive sheet
pedestal
Prior art date
Application number
PCT/JP2013/075174
Other languages
French (fr)
Japanese (ja)
Inventor
宇圓田 大介
石井 淳
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012218418A external-priority patent/JP2014072444A/en
Priority claimed from JP2012218410A external-priority patent/JP2014070182A/en
Priority claimed from JP2012218414A external-priority patent/JP2014070183A/en
Priority claimed from JP2012218420A external-priority patent/JP2014072445A/en
Priority claimed from JP2012240292A external-priority patent/JP2014088523A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014050663A1 publication Critical patent/WO2014050663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/21Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being formed by alternating adhesive areas of different nature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Definitions

  • the first aspect of the present invention relates to an adhesive sheet for manufacturing a semiconductor device, a semiconductor device, and a method for manufacturing the semiconductor device.
  • a predetermined process such as back grinding is performed on the semiconductor wafer, and then the pedestal is separated from the semiconductor wafer. There is. In such a process, it is important that the pedestal can be easily separated from the semiconductor wafer.
  • liquid adhesive As a method for temporarily fixing a semiconductor wafer on a pedestal, it is known to use a liquid adhesive.
  • the liquid adhesive is applied to the semiconductor wafer or the pedestal by spin coating.
  • Patent Document 1 a device wafer as a first substrate and a carrier substrate as a second substrate are pressure-bonded through a filling layer that does not form a strong adhesive bond, and a bonding material is filled into the periphery of the filling layer.
  • a method of forming an edge bond by curing and bonding the first substrate and the second substrate is disclosed.
  • Patent Document 2 discloses a bonding composition layer containing a compound selected from the group consisting of oligomers and polymers, selected from the group consisting of polymers and oligomers of imides, amidoimides and amidoimide-siloxanes. A method of joining the first substrate and the second substrate via the above is disclosed.
  • the filling layer described in Patent Document 1 and the bonding composition layer described in Patent Document 2 are applied by spin coating or the like. However, if a layer with a thickness of 10 ⁇ m or more necessary for adhesion is formed by coating, the coated surface is generally rough, the unevenness followability is poor, the desired adhesive force cannot be obtained, and the semiconductor wafer is sufficiently fixed to the pedestal. There are cases where it is not possible.
  • the inventor of the present application has found that the above problem can be solved by adopting the following configuration, and has completed the first present invention.
  • the first aspect of the present invention is an adhesive sheet for manufacturing a semiconductor device used for fixing a semiconductor wafer to a pedestal, and includes a first adhesive layer and a second adhesive force lower than that of the first adhesive layer. And at least a peripheral portion of the adhesive sheet for manufacturing a semiconductor device is formed of the first adhesive layer.
  • the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
  • the peripheral part of the said adhesive sheet is formed of the said 1st adhesive bond layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion. Moreover, since it has not only the 1st adhesive layer but the 2nd layer whose adhesive force is lower than the 1st adhesive layer, if even the adhesive force of the 1st adhesive layer is lowered, it will be removed from the semiconductor wafer by external force. The pedestal can be easily separated.
  • a method for reducing the adhesive strength of the first adhesive layer a method of reducing the adhesive strength by dissolving the first adhesive layer with a solvent, a physical cutting with a cutter, laser or the like in the first adhesive layer.
  • Examples thereof include a method for reducing the adhesive strength by heating, a method for forming the first adhesive layer with a material whose adhesive strength decreases by heating, and a method for decreasing the adhesive strength by heating. Since the first adhesive layer is formed in the peripheral portion of the adhesive sheet, the first adhesive layer is dissolved by a solvent, or physically cut by a cutter or a laser, It is easy to reduce the adhesive force of one adhesive layer, and to easily separate the pedestal from the semiconductor wafer.
  • the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are the 90 ° peel peeling from the silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. I say power.
  • the 90 degree peel peel force in the state for example, after imidation or after thermosetting
  • the second layer is bonded by imidization, thermosetting, or the like, it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer.
  • a semiconductor wafer or a base can be firmly fixed in the surface which only the 1st adhesive bond layer has exposed.
  • the central portion is formed by stacking the first adhesive layer and the second layer, the central portion is relatively bonded to the peripheral portion formed only by the first adhesive layer. Power is low. Therefore, the base can be easily separated from the semiconductor wafer by an external force if at least the adhesive strength of the peripheral portion is reduced.
  • the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
  • a central portion inside the peripheral portion is formed by the second layer.
  • the center part is formed with the 2nd layer, if the adhesive force of a 1st adhesive bond layer is reduced, a base can be easily isolate
  • a third layer having a lower adhesive force than the first adhesive layer is formed over the peripheral portion and the central portion.
  • the adhesive sheet can be easily peeled from the semiconductor wafer. Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
  • the first aspect of the present invention also relates to a semiconductor device obtained using the adhesive sheet for manufacturing a semiconductor device.
  • the first aspect of the present invention also relates to a method for manufacturing a semiconductor device, comprising: a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device; and a step of separating the pedestal from the semiconductor wafer.
  • the 2-1 of the present invention is an adhesive sheet for manufacturing a semiconductor device used for fixing a semiconductor wafer to a pedestal, and includes a first adhesive layer and a second adhesive layer having an adhesive force lower than that of the first adhesive layer.
  • the present invention relates to an adhesive sheet for manufacturing a semiconductor device.
  • the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
  • the 1st adhesive bond layer and the 2nd layer whose adhesive force is lower than the said 1st adhesive bond layer are laminated
  • the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. Refers to peel strength.
  • the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to a silicon wafer is said. Specifically, it can be measured by the method described in the examples.
  • the 2-1st aspect of the present invention also relates to a method for manufacturing a semiconductor device, including a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device, and a step of separating the pedestal from the semiconductor wafer.
  • the step of fixing the semiconductor wafer to the pedestal using the adhesive sheet for manufacturing a semiconductor device includes attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer.
  • the step of fixing the semiconductor wafer to the pedestal is not limited to attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer.
  • the first adhesive layer has a higher adhesive force than the second layer, and is excellent in unevenness followability such as the surface of a semiconductor wafer.
  • a 1st adhesive bond layer can track the unevenness
  • a semiconductor wafer can be favorably fixed to a base.
  • the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
  • the 2-2 of the present invention is obtained by the step (A) of attaching a semiconductor wafer to the adhesive sheet (a), the step (B) of attaching a base to the adhesive sheet (b), and the step (A). Bonding the adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) (C)
  • the present invention relates to a method for manufacturing a semiconductor device in which one adhesive force of the adhesive sheets (a) and (b) is lower than the other.
  • one adhesive force of the said adhesive sheet (a) and (b) is lower than the other. For this reason, it is easy to separate the pedestal from the semiconductor wafer. In addition, since the adhesive sheet having a relatively high adhesive force is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • the adhesive strength of the adhesive sheet (a) and the adhesive strength of the adhesive sheet (b) are 90 ° C. on a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force.
  • 90 ° in a state fixed to the silicon wafer for example, after imidization or thermosetting.
  • peel strength refers to peel strength. Specifically, it can be measured by the method described in the examples.
  • the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
  • an adhesive sheet (a) has higher adhesive force than an adhesive sheet (b), and is excellent in uneven
  • the third aspect of the present invention includes a step (A) of attaching a semiconductor wafer to one surface of the temporary fixing sheet, a step (B) of attaching a pedestal having a beveled portion to the other surface of the temporary fixing sheet, and (C) a step of forming an adhesive layer having a higher adhesive force than the temporary fixing sheet between the temporary fixing sheet and the bevel portion of the pedestal, and fixing the temporary fixing sheet to the pedestal.
  • the present invention relates to a method for manufacturing a semiconductor device including:
  • the temporary fixing sheet used in the third aspect of the present invention is in the form of a sheet, and the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. For this reason, the temporary fixing sheet can be satisfactorily bonded to the semiconductor wafer. Moreover, since the adhesive layer having higher adhesive strength than the temporary fixing sheet is used, the temporary fixing sheet can be firmly fixed to the pedestal. As a result, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • an adhesive layer having a higher adhesive force than the temporary fixing sheet is formed between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing sheet is fixed to the pedestal. That is, the adhesive layer plays a role of fixing the temporary fixing sheet to the base.
  • the temporary fixing sheet since the adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal, the temporary fixing sheet may be cut or the adhesive force of the adhesive layer may be reduced. It is easy and separation can be performed easily.
  • the adhesive strength of the temporary fixing sheet and the adhesive strength of the adhesive layer are the 90 ° peel peel force on a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peel rate of 300 mm / min.
  • the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer is said.
  • the adhesive layer is bonded by imidization or thermosetting, it means 90 ° peel peel force in a state where it is fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • step (C) it is preferable to include a step of separating the pedestal from the temporary fixing sheet.
  • the 4-1 of the present invention includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer.
  • a step of preparing an adhesive sheet in which a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer; and a semiconductor wafer is mounted using the adhesive sheet And a step of cutting the first adhesive layer until reaching the second layer to separate the pedestal from the semiconductor wafer.
  • an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
  • the peripheral part of the adhesive sheet is formed by the first adhesive layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion. Moreover, the center part inside a peripheral part is formed by lamination
  • the first adhesive layer is cut.
  • the continuity of a 1st adhesive bond layer can be destroyed and a base can be easily isolate
  • the 1st adhesive bond layer is formed in the peripheral part of the adhesive sheet, it is easy to cut
  • the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. Refers to peel strength.
  • the 90 degree peel peel force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer.
  • the second layer is bonded by imidization, thermosetting, or the like, it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • the present invention of No. 4-2 includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer.
  • an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
  • the peripheral part of the adhesive sheet is formed by the first adhesive layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion. In addition, a central portion inside the peripheral portion is formed by the second layer. Since the second layer is in contact with the pedestal, the adhesive sheet is easily peeled off, the adhesive residue is small, and the pedestal is easy to reuse.
  • the first adhesive layer is cut.
  • the continuity of a 1st adhesive bond layer can be destroyed and a base can be easily isolate
  • the 1st adhesive bond layer is formed in the peripheral part of the adhesive sheet, it is easy to make a cut
  • the definition of the adhesive force of the first adhesive layer and the adhesive force of the second layer is the same as in the case of the 4-1 invention.
  • the present invention of No. 4-3 provides a step of preparing an adhesive sheet in which a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated, and using the adhesive sheet Fixing the semiconductor wafer to the pedestal, and cutting the boundary between the first adhesive layer and the second layer to separate the first adhesive layer and the second layer.
  • the present invention relates to a method for manufacturing a semiconductor device.
  • an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
  • the said adhesive sheet is a laminated body of a 1st adhesive bond layer and a 2nd layer whose adhesive force is lower than a 1st adhesive bond layer. In the fixing step, this is used to fix the semiconductor wafer to the pedestal. Since the adhesive sheet having the first adhesive layer is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • a cut is made at the boundary between the first adhesive layer and the second layer having a lower adhesive force than the first adhesive layer. Since the adhesive force of the second layer is lower than that of the first adhesive layer, the first adhesive layer and the second layer can be easily separated starting from the cut portion.
  • the definitions of the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are the same as in the case of the 4th invention.
  • the step of fixing the semiconductor wafer to the pedestal using the adhesive sheet includes attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer. It is preferable that it is the process of fixing to the said base.
  • the first adhesive layer has a higher adhesive force than the second layer, and is excellent in unevenness followability such as the surface of a semiconductor wafer.
  • a 1st adhesive bond layer can track the unevenness
  • a semiconductor wafer can be favorably fixed to a base.
  • the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
  • the 4-4th aspect of the present invention is obtained by the step (A) of attaching a semiconductor wafer to the adhesive sheet (a), the step (B) of attaching a pedestal to the adhesive sheet (b), and the step (A).
  • the adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) are bonded together, and the base and the adhesive Step (C) for obtaining a laminate in which the sheet (b), the adhesive sheet (a), and the semiconductor wafer are sequentially laminated, and the boundary between the adhesive sheet (a) and the adhesive sheet (b) in the laminate
  • the present invention relates to a method for manufacturing a semiconductor device.
  • an adhesive sheet having a low adhesive strength but also an adhesive sheet having a relatively high adhesive strength is used together, so that the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • a cut is made at the boundary between the adhesive sheet (a) and the adhesive sheet (b) in the laminate. Since the adhesive strength of one of the adhesive sheets (a) and (b) is lower than the other, the adhesive sheets (a) and (b) can be easily separated from the notched portion.
  • the adhesive strength of the adhesive sheet (a) and the adhesive strength of the adhesive sheet (b) are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force.
  • the 90 ° peel peel force in a state fixed to the silicon wafer for example, after imidization or after thermosetting
  • the adhesive sheet (b) is bonded by imidization or thermosetting
  • it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
  • an adhesive sheet (a) has higher adhesive force than an adhesive sheet (b), and is excellent in uneven
  • the 4-5th aspect of the present invention includes a step (I) of attaching a semiconductor wafer to one surface of the temporary fixing sheet; The step (II) of attaching a pedestal having a beveled portion to the other surface of the temporary fixing sheet, and the adhesive strength between the temporary fixing sheet and the beveled portion of the pedestal is higher than that of the temporary fixing sheet. Forming a high temporary adhesive layer and fixing the temporary fixing sheet to the pedestal (III); and after the steps (I) to (III), cutting the temporary fixing sheet And a step (IV) of separating the pedestal from the temporary fixing sheet.
  • the temporary fixing sheet has a sheet shape, and the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. For this reason, the temporary fixing sheet can be satisfactorily bonded to the semiconductor wafer. In addition, since the temporary fixing adhesive layer having higher adhesive strength than the temporary fixing sheet is used, the temporary fixing sheet can be firmly fixed to the pedestal. Accordingly, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • step (IV) a cut is made in the temporary fixing sheet.
  • the continuity of the temporary fixing sheet can be destroyed, and the pedestal can be easily separated from the temporary fixing sheet.
  • the temporary fixing adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal, it is easy to cut the temporary fixing sheet.
  • the adhesive strength of the temporary fixing sheet and the adhesive strength of the temporary adhesive layer are 90 ° to silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force.
  • the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer is said.
  • the temporary fixing adhesive layer is bonded by imidization or thermosetting, it means 90 ° peel peel force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • this invention is the adhesive sheet for semiconductor device manufacture used in order to fix a semiconductor wafer to a base, Comprising: The structure and / or nonwoven fabric-like structure which have a 1st adhesive bond layer and many through-holes And a second layer having a body as a skeleton, wherein the adhesive strength of the second layer is lower than the adhesive strength of the first adhesive layer.
  • the adhesive sheet Since the adhesive sheet has a sheet shape, the material is not wasted unlike spin coating. In addition, it is not necessary to remove the dirt on the spin coater, and the apparatus maintenance is easy. Since the adhesive sheet is in the form of a sheet, the surface of the first adhesive layer can be formed more uniformly than when the adhesive layer is formed by spin coating, and the adhesive force of the first adhesive layer can be improved.
  • the said adhesive sheet has a 1st adhesive bond layer, a semiconductor wafer can be favorably fixed to a base.
  • the second layer having a lower adhesive force than the first adhesive layer is provided, the pedestal can be easily separated from the semiconductor wafer by an external force.
  • the second layer is a layer having a structure having a large number of through holes and / or a non-woven structure as a skeleton, and can be formed of a mesh such as a wire mesh, a non-woven fabric, or the like. For this reason, what is necessary is just to prepare the adhesive composition of a 1st adhesive bond layer as an adhesive material in manufacture of an adhesive sheet, and it is not necessary to prepare two types of adhesives, a filling layer and an edge bond like patent document 1. .
  • the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are: 90 ° peel peeling with respect to a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min. I say power.
  • the 90 degree peel peel force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer.
  • the through holes and the pores of the nonwoven fabric-like structure are filled with an adhesive composition.
  • the area where the adhesive composition comes into contact with the semiconductor wafer or the pedestal can be controlled by the aperture ratio of the structure having through holes, the density of the non-woven structure, etc. Can be formed.
  • At least a peripheral portion of the adhesive sheet for manufacturing a semiconductor device is formed by the first adhesive layer. Since the peripheral part of the said adhesive sheet is formed of the 1st adhesive bond layer, it can fix favorably in this part.
  • a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer.
  • a semiconductor wafer or a base can be firmly fixed by the surface which consists only of a 1st adhesive bond layer.
  • the semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer and the second layer.
  • the first adhesive layer is formed in the peripheral portion of the adhesive sheet, it is easy to cut the first adhesive layer or to reduce the adhesive force of the first adhesive layer, and to be easily separated. Can be done.
  • a central portion inside the peripheral portion is formed by the second layer.
  • a semiconductor wafer or a base can be favorably fixed by the surface which has a 1st adhesive bond layer and a 2nd layer.
  • the first adhesive layer is formed in the peripheral portion of the adhesive sheet, it is easy to cut the first adhesive layer or to reduce the adhesive force of the first adhesive layer, and to be easily separated. Can be done.
  • the adhesive sheet is preferably formed by stacking the first adhesive layer and the second layer.
  • the fifth aspect of the present invention also relates to a method for manufacturing a semiconductor device, comprising: a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device; and a step of separating the pedestal from the semiconductor wafer.
  • the semiconductor wafer can be firmly fixed to the pedestal, and the pedestal can be easily separated from the semiconductor wafer.
  • FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in (4-1) the present invention.
  • FIG. 4 is a plan view of an adhesive sheet that can be used in the fourth embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in (4-1) the present invention.
  • the 4-1 of this invention it is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base.
  • FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in the 4-2th invention. It is a top view of the adhesive sheet which can be used by the 4-2th this invention.
  • FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in the 4-2th invention. In the 4-2th present invention, it is a mimetic diagram showing signs that the 1st adhesive layer was cut. It is a cross-sectional schematic diagram of an adhesive sheet that can be used in the 4th aspect of the present invention. It is a cross-sectional schematic diagram of an adhesive sheet that can be used in the 4th aspect of the present invention.
  • FIG. 14 is a schematic diagram showing a state in which a semiconductor wafer is fixed to a pedestal in the fourth to third present invention.
  • FIG. 6 is a schematic diagram showing a state in which a cut is made at the boundary between the first adhesive layer and the second layer in the fourth to third present invention.
  • It is a cross-sectional schematic diagram of the adhesive sheet (a) that can be used in the 4th aspect of the present invention. It is a schematic diagram which shows a mode that the semiconductor wafer was affixed on the adhesive sheet (a).
  • FIG. 6 is a cross-sectional view of a temporary fixing sheet that can be used in the fourth to fifth present inventions. It is a figure which shows a mode that the semiconductor wafer was affixed on the sheet
  • FIG. 1 It is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet
  • A is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet
  • B is an enlarged view around the bevel portion of the pedestal.
  • A) is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet
  • (B) is an enlarged view of the periphery of the bevel portion of the semiconductor wafer. It is a figure which shows a mode that it cut
  • the adhesive sheet for manufacturing a semiconductor device includes a first adhesive layer and a second layer having an adhesive force lower than that of the first adhesive layer, and at least the adhesive sheet for manufacturing a semiconductor device. A peripheral portion is formed by the first adhesive layer.
  • FIG. 1 is a schematic cross-sectional view of the adhesive sheet 5 of the first embodiment.
  • the adhesive sheet 5 has a peripheral portion 54 formed of a first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has a first adhesive layer 50 and a second adhesive layer 50. It is formed by stacking with the layer 51. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
  • the peripheral portion 54 of the adhesive sheet 5 is formed by the first adhesive layer 50. Since the first adhesive layer 50 having higher adhesive strength than the second layer 51 is present in the peripheral portion 54, the semiconductor wafer can be firmly fixed to the pedestal in this portion. Moreover, since it has not only the 1st adhesive bond layer 50 but the 2nd layer 51 whose adhesive force is lower than the 1st adhesive bond layer 50, if even the adhesive force of the 1st adhesive bond layer 50 falls, it will be by external force. The pedestal can be easily separated from the semiconductor wafer. Since the first adhesive layer 50 is formed in the peripheral portion 54 of the adhesive sheet 5 in the adhesive sheet 5, the first adhesive layer 50 is dissolved by a solvent, or physically cut by a cutter or a laser. And it is easy to reduce the adhesive force of the 1st adhesive bond layer 50, and it is easy to isolate
  • the central portion 53 inside the peripheral portion 54 is formed by stacking the first adhesive layer 50 and the second layer 51.
  • the semiconductor wafer or the pedestal can be firmly fixed on the surface where only the first adhesive layer 50 is exposed.
  • the central portion 53 is formed by stacking the first adhesive layer 50 and the second layer 51, the central portion 53 is more than the peripheral portion 54 formed by only the first adhesive layer 50.
  • the adhesive strength is relatively low. Therefore, the base can be easily separated from the semiconductor wafer by an external force if the adhesive force of the peripheral portion 54 is reduced at least.
  • the adhesive sheet 5 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
  • the thickness of the adhesive sheet 5 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 ⁇ m or more, the unevenness on the surface of the semiconductor wafer device can be followed, and the adhesive sheet can be filled without a gap. Moreover, the thickness of the adhesive sheet 5 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the thickness of the 1st adhesive bond layer 50 in the center part 53 can be set suitably, Preferably it is 0.1 micrometer or more, More preferably, it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more. Moreover, this thickness becomes like this. Preferably it is 300 micrometers or less, More preferably, it is 200 micrometers or less. Further, the thickness of the second layer 51 in the central portion 53 can be set as appropriate.
  • the first adhesive layer generally has a lower elastic modulus than the second layer, undulation is likely to occur on the surface during formation. From such a viewpoint, it is preferable to make the first adhesive layer thinner and the second layer thicker. On the other hand, since the first adhesive layer generally has a higher glass transition temperature than the second layer, the shrinkage during formation is large. From such a viewpoint, it is preferable to make the first adhesive layer thick and the second layer thin.
  • FIG. 2 is a plan view of the adhesive sheet 5 of the first embodiment. As shown in FIG. 2, the adhesive sheet 5 has a circular shape when viewed in plan.
  • the diameter of the adhesive sheet 5 is not particularly limited.
  • the diameter of the adhesive sheet 5 is preferably +1.0 to ⁇ 1.0 mm with respect to the diameter of the pedestal.
  • the shape of the second layer 51 is circular.
  • the area of the second layer 51 when the adhesive sheet 5 is viewed in plan is preferably 10% or more, more preferably 20% or more with respect to the area of the adhesive sheet 5 when the adhesive sheet 5 is viewed in plan. Preferably it is 50% or more. When it is 10% or more, the adhesive force of the first adhesive layer 50 formed on the peripheral portion 54 is likely to be reduced, and the pedestal is easily separated from the semiconductor wafer.
  • the area of the second layer 51 is preferably 99.95% or less, more preferably 99.9% or less. A semiconductor wafer can be firmly fixed to a base as it is 99.95% or less.
  • FIG. 3 is a schematic cross-sectional view of the adhesive sheet of the second embodiment.
  • the peripheral portion 64 is formed by the first adhesive layer 60
  • the central portion 63 inside the peripheral portion 64 is formed by the second layer 61.
  • the adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
  • a central portion 63 inside the peripheral portion 64 is formed by the second layer 61. Since the central portion 63 is formed of the second layer 61, if the adhesive force of the first adhesive layer 60 in the peripheral portion 64 is reduced, the pedestal can be easily separated from the semiconductor wafer by an external force. Further, since the second layer 61 is in contact with the pedestal, the adhesive sheet 6 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
  • the thickness of the adhesive sheet 6 is not specifically limited, For example, it is the same as that of the adhesive sheet 5 of Embodiment 1.
  • FIG. 4 is a plan view of the adhesive sheet 6 according to the second embodiment.
  • the adhesive sheet 6 has a circular shape when viewed in plan.
  • the diameter of the adhesive sheet 6 is not specifically limited, For example, it is the same as that of what was illustrated by the adhesive sheet 5 of Embodiment 1.
  • FIG. Further, the area of the second layer 61 when the adhesive sheet 6 is viewed in plan is not particularly limited, and for example, is the same as that exemplified for the adhesive sheet 5 of the first embodiment.
  • the adhesive force of the second layers 51 and 61 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layers 50 and 60.
  • the adhesive strength of the second layers 51 and 61 is preferably such that, for example, the 90 ° peel peeling force for a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 0.20 N / 20 mm or less. If it is less than 0.30 N / 20 mm, the second layers 51 and 61 can be easily peeled off.
  • the lower limit of the 90 ° peel strength is not particularly limited, and is, for example, 0 N / 20 mm or more, preferably 0.001 N / 20 mm or more. The lower the 90 ° peel peel force, the easier the second layers 51 and 61 are peeled.
  • the adhesive strength of the first adhesive layers 50 and 60 is, for example, that the 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. Is preferable, and 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be favorably held on the pedestal, and back grinding and the like can be favorably performed.
  • the upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • the adhesive sheet of the first aspect of the present invention may have other layers formed thereon.
  • 5 and 6 are schematic cross-sectional views of an adhesive sheet including a third layer.
  • a third layer 55 is formed across the peripheral portion 54 and the central portion 53.
  • a third layer 65 is formed across the peripheral portion 64 and the central portion 63.
  • Adhesive sheet with the third layers 55 and 65 from the semiconductor wafer by affixing the surface on which the third layers 55 and 65 having lower adhesive strength than the first adhesive layers 50 and 60 are exposed to the semiconductor wafer. 5 and 6 can be easily peeled off. Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
  • the adhesive force of the third layers 55 and 65 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layers 50 and 60.
  • the 90 ° peel peeling force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min is preferably less than 0.30 N / 20 mm, and preferably 0.20 N / 20 mm or less. More preferred.
  • the thickness is less than 0.30 N / 20 mm, the adhesive can be peeled without residue, and the semiconductor wafer cleaning process can be omitted.
  • the minimum of this 90 degree peeling force is not specifically limited, For example, it is 0 N / 20mm or more, Preferably it is 0.001 N / 20mm or more.
  • a semiconductor wafer can be favorably hold
  • the adhesive force of the 1st adhesive bond layers 50 and 60 may become higher than the adhesive force of the 2nd layers 51 and 61 as an adhesive composition which comprises the 1st adhesive bond layers 50 and 60.
  • an adhesive composition which comprises the 1st adhesive bond layers 50 and 60.
  • a polyimide resin having an imide group and having a structural unit derived from a diamine having an ether structure at least partially can be used.
  • a silicone resin can also be used suitably.
  • the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
  • the polyimide resin can be generally obtained by imidizing (dehydrating and condensing) a polyamic acid that is a precursor thereof.
  • a method for imidizing the polyamic acid for example, a conventionally known heat imidization method, azeotropic dehydration method, chemical imidization method and the like can be employed. Of these, the heating imidization method is preferable.
  • the heat imidization method it is preferable to perform heat treatment under a nitrogen atmosphere or an inert atmosphere such as a vacuum in order to prevent deterioration of the polyimide resin due to oxidation.
  • the polyamic acid is charged in an appropriately selected solvent such that an acid anhydride and a diamine (including both a diamine having an ether structure and a diamine not having an ether structure) have a substantially equimolar ratio. Can be obtained by reaction.
  • the diamine having an ether structure is not particularly limited as long as it is a compound having an ether structure and having at least two terminals having an amine structure. Examples thereof include diamine having a glycol skeleton.
  • diamine having a glycol skeleton examples include a polypropylene glycol structure and a diamine having one amino group at each end, a polyethylene glycol structure, and one amino group at each end.
  • examples thereof include a diamine having a polytetramethylene glycol structure and a diamine having an alkylene glycol such as a diamine having one amino group at each end.
  • the diamine which has two or more of these glycol structures and has one amino group in both the ends can be mentioned.
  • the molecular weight of the diamine having an ether structure is preferably in the range of 100 to 5000, and more preferably 150 to 4800.
  • the molecular weight of the diamine having an ether structure is in the range of 100 to 5,000, the first adhesive layers 50 and 60 having high adhesive strength at low temperatures and exhibiting peelability at high temperatures are easily obtained.
  • a diamine having no ether structure can be used in combination with a diamine having an ether structure.
  • the diamine having no ether structure include aliphatic diamines and aromatic diamines.
  • the mixing ratio of the diamine having an ether structure and the diamine having no ether structure is preferably in the range of 100: 0 to 10:90, more preferably 100: 0 to 20: 80, more preferably 99: 1 to 30:70.
  • the thermal peelability at high temperature is excellent.
  • Examples of the aliphatic diamine include ethylenediamine, hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,9-dioxa-1,12-diaminododecane, , 3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane ( ⁇ , ⁇ -bisaminopropyltetramethyldisiloxane) and the like.
  • the molecular weight of the aliphatic diamine is usually 50 to 1,000,000, preferably 100 to 30,000.
  • aromatic diamine examples include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, m-phenylenediamine, p-phenylenediamine, and 4,4′-diaminodiphenylpropane.
  • the molecular weight of the aromatic diamine is usually 50 to 1000, preferably 100 to 500.
  • the molecular weight of the aliphatic diamine and the molecular weight of the aromatic diamine are values measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene (weight average molecular weight).
  • Examples of the acid anhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 2,2-bis (2, 3-Dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), bis (2,3-dicarboxyphenyl) methane dianhydride Bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis
  • Examples of the solvent for reacting the acid anhydride with the diamine include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and cyclopentanone. These may be used alone or in combination. Further, in order to adjust the solubility of raw materials and resins, a nonpolar solvent such as toluene or xylene may be appropriately mixed and used.
  • silicone resin examples include peroxide cross-linked silicone pressure-sensitive adhesives, addition reaction type silicone pressure-sensitive adhesives, dehydrogenation reaction type silicone pressure-sensitive adhesives, and moisture-curing type silicone pressure-sensitive adhesives.
  • the said silicone resin may be used individually by 1 type, and may use 2 or more types together. When the silicone resin is used, the heat resistance becomes high, and the storage elastic modulus and adhesive strength at high temperatures can be appropriate values.
  • addition reaction type silicone pressure-sensitive adhesives are preferable in terms of few impurities.
  • the adhesive composition constituting the first adhesive layers 50 and 60 may contain other additives.
  • other additives include flame retardants, silane coupling agents, and ion trapping agents.
  • flame retardant include antimony trioxide, antimony pentoxide, and brominated epoxy resin.
  • silane coupling agent include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like.
  • the ion trapping agent include hydrotalcites and bismuth hydroxide. Such other additives may be only one kind or two or more kinds.
  • the material constituting the second layers 51 and 61 is not particularly limited as long as the second layers 51 and 61 are selected so that the adhesive strength of the second layers 51 and 61 is lower than the adhesive strength of the first adhesive layers 50 and 60.
  • Examples of the material constituting the second layers 51 and 61 include inorganic materials such as Cu, Cr, Ni, and Ti.
  • the above-mentioned polyimide resin and the above-mentioned silicone resin can also be used.
  • the material constituting the third layers 55 and 65 is not particularly limited as long as the adhesive force of the third layers 55 and 65 is selected to be lower than the adhesive force of the first adhesive layers 50 and 60.
  • the same layer as the second layers 51 and 61 can be used.
  • the adhesive sheet 5 is produced as follows, for example. First, a solution containing a material for forming the second layer 51 is prepared. Next, the solution is applied to a base material so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the second layer 51.
  • the substrate include metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine-based release agent, and long-chain alkyl acrylate-type release agent.
  • a plastic film, paper, or the like whose surface is coated with a release agent such as, can be used. Moreover, it does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, spin coat coating etc. are mentioned.
  • a solution containing a composition for forming the first adhesive layer 50 is prepared.
  • a solution containing a composition for forming the first adhesive layer 50 is formed on the substrate on which the second layer 51 punched into a predetermined shape is laminated.
  • a coating film is formed by coating from the side 51 to a predetermined thickness. Thereafter, the coating film is dried under predetermined conditions to form the first adhesive layer 50.
  • the adhesive sheet 5 shown in FIGS. Note that the adhesive sheet 6 shown in FIGS. 3 and 4 can be formed by a method substantially similar to that of the adhesive sheet 5.
  • the third layers 55 and 65 shown in FIGS. 5 and 6 can be formed by the same method as the second layer 51.
  • the adhesive sheets 5 and 6 having a circular shape when viewed in plan have been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheets 5 and 6 in which the shapes of the second layers 51 and 61 are circular when viewed in plan have been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheet for manufacturing a semiconductor device according to the first aspect of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in a semiconductor device manufacturing method described later.
  • the manufacturing method of the semiconductor device of 1st this invention includes the process of fixing a semiconductor wafer to a base using an adhesive sheet, and the process of isolate
  • a method including a step of fixing a semiconductor wafer to a pedestal using an adhesive sheet, a step of back grinding the semiconductor wafer, and a step of separating the pedestal from the back-ground semiconductor wafer.
  • FIG. 7 is a schematic diagram illustrating a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheet of the first embodiment.
  • a process of fixing the semiconductor wafer 3 to the base 1 using the adhesive sheet 5 is performed. Specifically, the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the base 1, and only the first adhesive layer 50 of the adhesive sheet 5 is exposed. The surface is attached to the circuit forming surface of the semiconductor wafer 3.
  • the semiconductor wafer 3 is not particularly limited, and examples thereof include a compound semiconductor wafer such as a germanium wafer, a gallium-arsenic wafer, a gallium-phosphorus wafer, a gallium-arsenic-aluminum wafer, and a sapphire wafer. Among these, a silicon wafer is preferable.
  • a semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used. Moreover, what has a through silicon via (through-silicon via) can be used conveniently. This is because a silicon wafer having through silicon vias is usually thinned by back grinding, which will be described later, so that it is desirable to fix the silicon wafer to the pedestal 1 and reinforce the strength.
  • the thickness of the semiconductor wafer 3 is not particularly limited, but is, for example, 400 to 1200 ⁇ m, preferably 450 to 1000 ⁇ m.
  • the diameter of the semiconductor wafer 3 is not particularly limited, but is, for example, 75 to 450 mm.
  • a semiconductor wafer 3 a commercially available 200 mm wafer, 300 mm wafer, or the like can be used.
  • the pedestal 1 is not particularly limited, and examples thereof include compound wafers such as silicon wafers, SiC wafers, and GaAs wafers, glass wafers, metal foils such as SUS, 6-4 Alloy, Ni foil, and Al foil.
  • compound wafers such as silicon wafers, SiC wafers, and GaAs wafers
  • glass wafers such as GaAs wafers
  • metal foils such as SUS, 6-4 Alloy, Ni foil, and Al foil.
  • a silicon wafer or a glass wafer is preferable.
  • a SUS board or a glass plate is preferable.
  • the base 1 for example, low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, etc.
  • Polyphenyl sulphates id, aramid (paper) can be glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, also possible to use paper or the like.
  • the pedestal 1 may be used alone or in combination of two or more.
  • the thickness of the pedestal 1 is not particularly limited, but is usually about 10 ⁇ m to 20 mm, for example.
  • the diameter of the pedestal 1 is not particularly limited, but is, for example, 75 to 450 mm, and preferably 100 to 450 mm.
  • a commercially available 200 mm wafer, 300 mm wafer, or the like can be used.
  • the method of attaching is not particularly limited, but pressure bonding is preferable.
  • the crimping is usually performed while pressing with a pressing means such as a crimping roll.
  • As the pressure bonding conditions for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable.
  • the crimping time is usually 0.1 to 10 minutes.
  • the first adhesive layer 50 and the second layer 51 are imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1.
  • Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 50 and the second layer 51 may be imidized.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • the pedestal 1 is separated from the semiconductor wafer 3.
  • a method for separating the pedestal 1 from the semiconductor wafer 3 is not particularly limited, but it is preferable to separate the pedestal 1 after reducing the adhesive force of the first adhesive layer 50 in the peripheral portion 54. Thereby, it can isolate
  • a method of reducing the adhesive force of the first adhesive layer 50 a method of lowering the adhesive force by dissolving the first adhesive layer 50 with a solvent, a physical method using a cutter, a laser, or the like is applied to the first adhesive layer 50. Examples thereof include a method of reducing the adhesive force by cutting a slit, a method of forming the first adhesive layer 50 with a material whose adhesive force is reduced by heating, and a method of reducing the adhesive force by heating.
  • the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 1.
  • the method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 3 has been described.
  • the method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 1 and the adhesive sheet is attached.
  • 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 3.
  • the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
  • the semiconductor wafer 3 fixed to the base 1 is back-ground has been described.
  • back grinding is not essential, and the semiconductor wafer 3 may be processed without back grinding.
  • Second Invention the second aspect of the present invention (the 2-1 aspect of the present invention and the 2-2 aspect of the present invention) will be described while referring to differences from the first aspect of the present invention.
  • a second object of the present invention is to provide an adhesive sheet for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and easily separate the pedestal from the semiconductor wafer.
  • a second object of the present invention is to provide a method for manufacturing a semiconductor device in which a semiconductor wafer can be satisfactorily fixed to a pedestal and the pedestal can be easily separated from the semiconductor wafer.
  • Adhesive sheet In the adhesive sheet for manufacturing a semiconductor device according to the 2-1 of the present invention, a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated.
  • FIG. 8 is a schematic cross-sectional view of the adhesive sheet 7 of the first embodiment. As shown in FIG. 8, the adhesive sheet 7 is formed by laminating a first adhesive layer 70 and a second layer 71. The adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
  • the adhesive sheet 7 has the first adhesive layer 70, the semiconductor wafer can be satisfactorily fixed to the pedestal. Moreover, since it has the 2nd layer 71 whose adhesive force is lower than the 1st adhesive bond layer 70, a base can be easily isolate
  • the thickness of the 1st adhesive bond layer 70 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 ⁇ m or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet 7 can be filled without a gap. Moreover, the thickness of the 1st adhesive bond layer 70 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the thickness of the 2nd layer 71 is not specifically limited, For example, it is 1 micrometer or more, Preferably it is 5 micrometers or more. When it is 1 ⁇ m or more, it is easy to bond to the pedestal.
  • the thickness of the second layer 71 is, for example, 500 ⁇ m or less, and preferably 300 ⁇ m or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the shape of the adhesive sheet 7 when viewed from above is not particularly limited, but is usually circular.
  • the adhesive force of the second layer 71 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layer 70.
  • the adhesive strength of the second layer 71 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. When it is less than 0.30 N / 20 mm, the pedestal can be easily separated from the semiconductor wafer.
  • the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more.
  • the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
  • the adhesive force of the first adhesive layer 70 is preferably, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be satisfactorily fixed to the pedestal, and back grinding and the like can be favorably performed.
  • the upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • the adhesive sheet of the 2-1st invention may be one in which other layers are formed (Embodiment 2).
  • FIG. 9 is a schematic cross-sectional view of an adhesive sheet including a third layer.
  • the adhesive sheet 7 of FIG. 9 is formed by stacking a third layer 75, a second layer 71, and a first adhesive layer 70.
  • the adhesive force of the third layer 75 is preferably lower than the adhesive force of the first adhesive layer 70.
  • the adhesive strength of the third layer 75 is preferably such that the 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less.
  • the adhesive sheet 7 can be peeled easily as it is less than 0.30 N / 20 mm. Further, the adhesive residue on the pedestal and the like can be eliminated, and the cleaning process for the pedestal and the like can be omitted.
  • the lower limit of the 90 ° peel peel force is preferably 0.001 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
  • the adhesive composition constituting the first adhesive layer 70 is not particularly limited as long as it is selected so that the adhesive force of the first adhesive layer 70 is higher than the adhesive force of the second layer 71.
  • the adhesive composition constituting the first adhesive layer 70 the polyimide resin and the silicone resin described in the first aspect of the present invention can be suitably used. Of these, polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
  • the material constituting the second layer 71 is not particularly limited as long as it is selected so that the adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
  • the aforementioned polyimide resin and the aforementioned silicone resin can also be used.
  • the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
  • the material constituting the third layer 75 is not particularly limited as long as the material is selected so that the adhesive force of the third layer 75 is lower than the adhesive force of the first adhesive layer 70. What was illustrated by the layer 71 of this is mentioned.
  • the adhesive sheet 7 is produced as follows, for example. First, a solution containing a material for forming the second layer 71 is prepared. Next, the solution is applied on a substrate so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the second layer 71.
  • the substrate include metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine-based release agent, and long-chain alkyl acrylate-type release agent.
  • a plastic film, paper, or the like whose surface is coated with a release agent such as, can be used. Moreover, it does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, spin coat coating etc. are mentioned.
  • a solution containing a composition for forming the first adhesive layer 70 is prepared.
  • a solution containing a composition for forming the first adhesive layer 70 is formed on the base material on which the second layer 71 is laminated to a predetermined thickness from the second layer 71 side. In this way, a coating film is formed. Thereafter, the coating film is dried under predetermined conditions to form the first adhesive layer 70. From the above, the adhesive sheet 7 shown in FIG. 8 is obtained.
  • the third layer 75 illustrated in FIG. 9 can be formed by a method similar to that of the second layer 71.
  • the 2-1 adhesive sheet for manufacturing a semiconductor device of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in the 2-1 semiconductor device manufacturing method of the present invention described later.
  • a 2-1 semiconductor device manufacturing method of the present invention includes a step of fixing a semiconductor wafer to a pedestal using an adhesive sheet and a step of separating the pedestal from the semiconductor wafer.
  • the step of fixing the semiconductor wafer to the pedestal by attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer, and the step of separating the pedestal from the semiconductor wafer
  • the first adhesive layer can follow the irregularities on the surface of the semiconductor wafer, and the semiconductor wafer can be fixed to the pedestal satisfactorily.
  • the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
  • FIG. 10 is a schematic diagram illustrating a state in which a semiconductor wafer is attached to the adhesive sheet of the first embodiment.
  • FIG. 11 is a schematic diagram illustrating a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheet of the first embodiment.
  • the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used.
  • the bonding method is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa. In addition, what is necessary is just to cut the adhesive sheet 7 before bonding or after bonding as needed, when the area of the adhesive sheet 7 is larger than the area of the semiconductor wafer 3.
  • the pedestal 1 described in the first aspect of the present invention can be suitably used.
  • the bonding method is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa. In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 1.
  • FIG. 1 A bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa. In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 1.
  • the first adhesive layer 70 and the second layer 71 are imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 70 and the second layer 71 may be imidized.
  • the first adhesive layer 70 and the second layer 71 may be thermoset as necessary.
  • a silicone resin is used as the first adhesive layer 70 and the second layer 71, the semiconductor wafer 3 can be satisfactorily fixed to the base 1 by thermosetting. Only one of the first adhesive layer 70 and the second layer 71 may be thermally cured.
  • the semiconductor wafer 3 fixed to the base 1 can be back-ground.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • the pedestal 1 After performing desired processing such as back grinding and processing on the semiconductor wafer 3, the pedestal 1 is separated from the semiconductor wafer 3.
  • the method for separating the pedestal 1 from the semiconductor wafer 3 is not particularly limited, and examples thereof include a method of applying an external force. Specifically, a method of separating only the pedestal 1, a method of separating the second layer 71 with the pedestal 1, and the like can be given. In addition, a method of cutting and separating the boundary between the first adhesive layer 70 and the second layer 71 is also suitable.
  • the base 1 may be separated from the semiconductor wafer 3 after the adhesive force of the first adhesive layer 70 is reduced.
  • a method of reducing the adhesive force of the first adhesive layer 70 a method of lowering the adhesive force by dissolving the first adhesive layer 70 with a solvent, the first adhesive layer 70 is physically applied with a cutter or a laser.
  • the first adhesive layer 70 is made of a material whose adhesive strength is reduced by heating, and the adhesive strength is reduced by heating, and heating in the presence of a surfactant.
  • a method of ultrasonic cleaning, a method of penetrating a chemical solution into the first adhesive layer 70 for example, a method of performing SC-1 cleaning, a method of penetrating a solution such as N-methyl-2-pyrrolidone), etc. Can be mentioned.
  • the present invention is not limited to this, and the base 1 may be attached to the first adhesive layer 70 and the semiconductor wafer 3 may be attached to the second layer 71.
  • the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
  • the manufacturing method of the semiconductor device according to 2-2 of the present invention includes a step (A) of attaching a semiconductor wafer to the adhesive sheet (a), a step (B) of attaching a pedestal to the adhesive sheet (b), and the above steps.
  • the adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) obtained by (A) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) are bonded together.
  • Step (C) one adhesive force of the said adhesive sheet (a) and (b) is lower than the other.
  • the pedestal Since one adhesive force of the adhesive sheets (a) and (b) is lower than the other, the pedestal is easily separated from the semiconductor wafer. In addition, since the adhesive sheet having a relatively high adhesive force is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
  • the adhesive sheet (a) has a higher adhesive force than the adhesive sheet (b), and is excellent in irregularity followability on the surface of the semiconductor wafer and the like. Therefore, since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
  • FIG. 12 is a schematic cross-sectional view of the adhesive sheet (a).
  • FIG. 13 is a schematic view showing a state in which a semiconductor wafer is attached to the adhesive sheet (a).
  • FIG. 14 is a schematic cross-sectional view of the adhesive sheet (b).
  • FIG. 15 is a schematic view showing a state in which a pedestal is attached to the adhesive sheet (b).
  • FIG. 16 is a schematic diagram showing a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheets (a) and (b).
  • Step (A) In the step (A), the semiconductor wafer 4 is bonded to the adhesive sheet (a) 13 (FIG. 13).
  • the adhesive sheet (a) 13 will be described. As shown in FIG. 12, the adhesive sheet (a) 13 has a substrate 12 on one side and a separator 14 on the other side.
  • the adhesive strength of the adhesive sheet (a) 13 is preferably, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer 4 can be fixed to the pedestal satisfactorily and back grinding can be performed well.
  • the upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine release agent, long chain alkyl acrylate release agent
  • metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine release agent, long chain alkyl acrylate release agent
  • PET polyethylene terephthalate
  • fluorine release agent polypropylene
  • long chain alkyl acrylate release agent examples thereof include a plastic film or paper whose surface is coated with a release agent such as
  • Examples of the separator 14 include plastic film and paper whose surface is coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, and a long-chain alkyl acrylate release agent.
  • a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, and a long-chain alkyl acrylate release agent.
  • step A the separator 14 is peeled off, and the semiconductor wafer 4 is attached to the adhesive sheet (a) 13.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the adhesive sheet (a) 13 may be cut as necessary before or after the attachment.
  • the adhesive sheet (b) 23 has a base material 22 on one side and a separator 24 on the other side.
  • the adhesive strength of the adhesive sheet (b) 23 is preferably such that, for example, the 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm, More preferably, it is 0.20 N / 20 mm or less. If it is less than 0.30 N / 20 mm, the base 2 can be easily separated from the semiconductor wafer 4.
  • the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer 4 can be fixed to the base 2 satisfactorily, and back grinding and the like can be performed satisfactorily.
  • the pedestal 2 is not particularly limited, and the pedestal 1 described in the first aspect of the present invention can be suitably used.
  • step B the separator 24 is peeled off, and the base 2 is attached to the adhesive sheet (b) 23.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the adhesive sheet (b) 23 may be cut before or after application as necessary.
  • step (C) the adhesive sheet (a) 13 of the semiconductor wafer 4 with the adhesive sheet (a) 13 obtained in the step (A) and the base 2 with the adhesive sheet (b) 23 obtained in the step (B).
  • the adhesive sheet (b) 23 is bonded together (FIG. 16). Thereby, the semiconductor wafer 4 can be fixed to the base 2.
  • the bonding method is not particularly limited. After bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 are imidized as necessary. Thereby, the semiconductor wafer 4 can be favorably fixed to the base 2. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be imidized.
  • the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermoset as necessary.
  • a silicone resin is used as the adhesive sheet (a) 13 and the adhesive sheet (b) 23, the semiconductor wafer 4 can be satisfactorily fixed to the base 2 by thermosetting. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermally cured.
  • the semiconductor wafer 4 fixed to the other process base 2 can be back-ground.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 4 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • the pedestal 2 is separated from the semiconductor wafer 4.
  • the method for separating the pedestal 2 from the semiconductor wafer 4 is not particularly limited, and examples thereof include the method exemplified in the description of the method for separating the pedestal 1 from the semiconductor wafer 3.
  • the adhesive strength of the adhesive sheet (b) 23 is lower than that of the adhesive sheet (a) 13 has been described.
  • the present invention is not limited to this, and the adhesive strength of the adhesive sheet (b) 23 may be higher than that of the adhesive sheet (a) 13.
  • the adhesive force of the adhesive sheet (b) 23 is, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. It is preferable that it is 0.40 N / 20 mm or more.
  • the upper limit of the 90 ° peel peel force is, for example, 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • the adhesive strength of the adhesive sheet (a) 13 is, for example, that the 90 ° peel peeling force for a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C.
  • a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. Preferably, it is 0.20 N / 20 mm or less.
  • the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and further preferably 0.010 N / 20 mm or more.
  • the adhesive sheet (a) 13 has the base material 12 and the separator 14 was demonstrated.
  • the present invention is not limited to this, and the adhesive sheet (a) 13 may not have the separator 14 and may not have the substrate 12.
  • the adhesive sheet (b) 23 is the same, and the adhesive sheet (b) 23 may not have the separator 24 and may not have the base material 22.
  • a third object of the present invention is to provide a method for manufacturing a semiconductor device in which a semiconductor wafer can be satisfactorily fixed to a pedestal and the pedestal can be easily separated from the semiconductor wafer.
  • step (B) an adhesive layer having higher adhesive force than the temporary fixing sheet is formed between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing sheet is formed on the pedestal.
  • a fixing step (C) A fixing step (C).
  • the order of the steps (A) to (C) is not particularly limited.
  • the order of step (A), step (B) and step (C) the order of step (B), step (A) and step (C), step (A), step (C) and step (B) Order, step (B), step (C), step (A), and the like.
  • the process (A), the process (B) and the process (C) are easy because the adhesive layer is easy to form and the possibility that the adhesive layer protrudes and the possibility that the adhesive layer is formed more than necessary is low. ) Is preferred.
  • FIG. 17 is a cross-sectional view of the temporary fixing sheet.
  • FIG. 18 is a diagram illustrating a state in which a semiconductor wafer is attached to the temporary fixing sheet.
  • FIG. 19 is a diagram illustrating a state in which an adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal.
  • Step (A) In the step (A), the semiconductor wafer 3 is attached to one surface of the temporary fixing sheet 81 (FIG. 18).
  • a method of attaching the semiconductor wafer 3 to the temporary fixing sheet 81 is not particularly limited, but it is preferable to apply the circuit forming surface of the semiconductor wafer 3 to the temporary fixing sheet 81.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the temporary fixing sheet 81 is imidized as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 3 can be favorably bonded. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
  • the temporary fixing sheet 81 may be thermally cured as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 3 can be favorably bonded.
  • the heat curing can be performed by a conventionally known method.
  • the heat curing can be performed in a nitrogen atmosphere at 100 to 350 ° C. (preferably 150 to 350 ° C.) for 0.1 to 5 hours.
  • the thickness of the temporary fixing sheet 81 is not particularly limited, and is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more. When the thickness is 10 ⁇ m or more, the unevenness on the surface of the semiconductor wafer can be followed, and the temporarily fixing sheet 81 can be filled without a gap. Further, the thickness of the temporary fixing sheet 81 is, for example, 500 ⁇ m or less, and preferably 300 ⁇ m or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the shape of the temporary fixing sheet 81 in plan view is not particularly limited, but is usually circular.
  • the adhesive force of the temporary fixing sheet 81 is lower than the adhesive force of the adhesive layer 80 described later.
  • the adhesive force of the temporary fixing sheet 81 is preferably, for example, a 90 ° peel peeling force to a silicon wafer under a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less.
  • the adhesive residue of the semiconductor wafer 3 can be prevented as it is less than 0.30 N / 20 mm.
  • the lower limit of the 90 ° peel strength is preferably 0.01 N / 20 mm or more, more preferably 0.02 N / 20 mm or more, and still more preferably 0.05 N / 20 mm or more.
  • the semiconductor wafer 3 can be fixed to the pedestal 1 satisfactorily, and back grinding and the like can be performed satisfactorily.
  • the adhesive composition constituting the temporary fixing sheet 81 is not particularly limited as long as it is selected so that the adhesive force of the temporary fixing sheet 81 is lower than the adhesive force of the adhesive layer 80 described later.
  • the adhesive composition constituting the temporary fixing sheet 81 the polyimide resin and the silicone resin described in the first aspect of the present invention can be suitably used. Of these, polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
  • the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used.
  • the semiconductor wafer 3 usually has a bevel portion.
  • the pedestal 1 having a bevel portion is attached to the other surface of the temporary fixing sheet 81.
  • the attaching method is not particularly limited, but is preferably attached by roll lamination or a vacuum press.
  • the affixing conditions are not particularly limited, but can be affixed at 23 to 250 ° C. and 0.01 to 10 MPa, for example.
  • An inclined surface that is inclined from the upper surface and the lower surface of the pedestal 1 toward the side surface (outer side) is formed on the periphery of the pedestal 1.
  • a peripheral portion where such an inclined surface is formed is a bevel portion.
  • the base 1 is not particularly limited as long as it has a bevel portion.
  • the pedestal 1 described in the first aspect of the present invention can be suitably used.
  • a silicon wafer or a glass wafer is preferable because of smoothness, availability, and contamination.
  • step (C) an adhesive layer 80 having a higher adhesive force than the temporary fixing sheet 81 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 1, and the temporary fixing sheet 81 is placed on the pedestal 1. Fix (FIG. 19).
  • the adhesive layer 80 is formed by applying a liquid adhesive composition between the temporary fixing sheet 81 and the bevel portion of the pedestal 1 and drying the adhesive composition 80. 81 is fixed to the base 1.
  • the adhesive force of the adhesive layer 80 is preferably, for example, a 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. More preferably, it is 40 N / 20 mm or more. When it is 0.30 N / 20 mm or more, the temporarily fixing sheet 81 can be fixed to the pedestal 1 satisfactorily, and back grinding can be performed well.
  • the upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • the material constituting the adhesive layer 80 is not particularly limited as long as it is selected so that the adhesive force of the adhesive layer 80 is higher than the adhesive force of the temporary fixing sheet 81.
  • the aforementioned polyimide resin and the aforementioned silicone resin can be suitably used.
  • the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
  • FIG. 20A is a diagram illustrating a state in which an adhesive layer 80 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 1.
  • FIG. 20B is an enlarged view around the bevel portion.
  • the end portion of the temporary fixing sheet 81 is inside the end portion of the pedestal 1 and outside the tilt start position of the bevel portion of the pedestal 1.
  • the distance in the lateral direction (horizontal to the surface of the pedestal 1) between the end of the pedestal 1 and the end of the temporary fixing sheet 81 is D1
  • the end of the pedestal 1 and the bevel portion of the pedestal 1 If the lateral distance from the tilt start position is D2, D1 is preferably one-tenth of D2, that is, larger than (D2) / 10.
  • D1 is larger than 1/10 of D2, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
  • D1 is preferably smaller than two-thirds of D2, that is, (D2) ⁇ (2/3).
  • D1 is smaller than two-thirds of D2, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
  • D2 is usually 0.1 to 0.4 mm.
  • FIG. 21 is a figure which shows a mode that the adhesive bond layer was formed between the sheet
  • FIG. 21B is an enlarged view around the bevel portion of the semiconductor wafer. As shown in FIG. 21B, the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the semiconductor wafer 3 and outside the tilt start position of the bevel portion of the semiconductor wafer 3. .
  • D3 is preferably one-tenth of D4, that is, larger than (D4) / 10.
  • D3 is preferably smaller than two-thirds of D4, that is, (D4) ⁇ (2/3).
  • D4 is usually 0.1 to 0.4 mm.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • the method for separating the pedestal 1 from the temporary fixing sheet 81 is not particularly limited.
  • a method of cutting and separating the temporary fixing sheet 80 and a method of separating by reducing the adhesive force of the adhesive layer 80 are suitable.
  • a method of cutting and temporarily separating the temporary fixing sheet 81 is preferable because a load is not applied to the semiconductor wafer 3.
  • FIG. 22 is a diagram illustrating a state in which the temporary fixing sheet 81 has been cut. As shown in FIG. 22, it is preferable to make a cut 99 in the temporary fixing sheet 81 until it reaches the pedestal 1, and it is more preferable to make a cut 99 in the temporary fixing sheet 81 until it reaches the bevel portion of the pedestal 1.
  • the cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
  • the method for reducing the adhesive strength of the adhesive layer 80 is not particularly limited.
  • the adhesive layer 80 is dissolved with a solvent, the adhesive layer 80 is formed of a material whose adhesive strength is reduced by heating, and the adhesive layer 80 is bonded by heating.
  • a method for reducing the force is mentioned.
  • the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
  • the semiconductor wafer 3 fixed to the pedestal 1 by the steps (A) to (C) is processed after back grinding has been described.
  • the semiconductor wafer 3 may be processed without back grinding.
  • the case where the cross section was a rectangle was demonstrated as a shape of the sheet
  • the shape of the temporary fixing sheet is not particularly limited.
  • the temporary fixing sheet may be provided with a recess in the peripheral edge.
  • the order of the steps (A) to (C) is not particularly limited.
  • the step (C) can be performed before the step (B).
  • an adhesive layer as a sheet-like material is provided in advance on the peripheral edge portion (portion corresponding to the bevel portion) of the temporary fixing sheet, so that the adhesive layer adheres to the bevel portion.
  • a pedestal can be attached.
  • a fourth aspect of the present invention is to provide a method for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and can easily separate the pedestal from the semiconductor wafer.
  • the 4-1 semiconductor device manufacturing method of the present invention includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of an adhesive sheet is the first adhesive layer.
  • a step of preparing an adhesive sheet that is formed by one adhesive layer, and a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer; and And fixing the semiconductor wafer to the pedestal, and cutting the first adhesive layer until reaching the second layer to separate the pedestal from the semiconductor wafer.
  • An adhesive sheet is prepared in which an inner central portion is formed by stacking the first adhesive layer and the second layer.
  • FIG. 24 is a schematic cross-sectional view of the adhesive sheet 5 that can be used in the fourth embodiment of the present invention.
  • the adhesive sheet 5 has a peripheral portion 54 formed by the first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has the first adhesive layer 50 and the second adhesive layer 50. It is formed by stacking with the layer 51. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
  • a peripheral portion 54 of the adhesive sheet 5 is formed by the first adhesive layer 50. Since the first adhesive layer 50 having higher adhesive strength than the second layer 51 is present in the peripheral portion 54, the semiconductor wafer can be firmly fixed to the pedestal in this portion. A central portion 53 inside the peripheral portion 54 is formed by stacking the first adhesive layer 50 and the second layer 51. The semiconductor wafer or the pedestal can be firmly fixed on the surface where only the first adhesive layer 50 is exposed. Further, when the second layer 51 is in contact with the pedestal, the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
  • FIG. 25 is a plan view of the adhesive sheet 5 that can be used in the fourth embodiment of the present invention. As shown in FIG. 25, the adhesive sheet 5 has a circular shape when viewed in plan. As the adhesive sheet 5, the adhesive sheet 5 described in the first aspect of the present invention can be suitably used.
  • FIG. 26 is a schematic cross-sectional view of the adhesive sheet 5 that can be used in (4-1) the present invention.
  • a third layer 55 is formed across the peripheral portion 54 and the central portion 53.
  • the adhesive sheet 5 with the third layer 55 can be easily peeled from the semiconductor wafer by sticking the surface on which the third layer 55 having a lower adhesive strength than the first adhesive layer 50 is exposed to the semiconductor wafer. . Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
  • FIG. 27 is a schematic diagram showing a state in which the semiconductor wafer 41 is fixed to the pedestal 31.
  • the method for fixing the semiconductor wafer 41 to the pedestal 31 using the adhesive sheet 5 is not particularly limited, but the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the pedestal 31.
  • a method of adhering the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 41 is suitable (FIG. 27).
  • the semiconductor wafer 41 As the semiconductor wafer 41, the semiconductor wafer 3 described in the first aspect of the present invention can be suitably used. As the pedestal 31, the pedestal 1 described in the first aspect of the present invention can be suitably used.
  • the method of attaching is not particularly limited, but pressure bonding is preferable.
  • the crimping is usually performed while pressing with a pressing means such as a crimping roll.
  • As the pressure bonding conditions for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable.
  • the crimping time is usually 0.1 to 10 minutes.
  • the first adhesive layer 50 and the second layer 51 are imidized as necessary. Thereby, the semiconductor wafer 41 can be satisfactorily fixed to the pedestal 31.
  • Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 50 and the second layer 51 may be imidized.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (back ground surface) of the semiconductor wafer 41 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • FIG. 28 is a schematic diagram illustrating a state in which the first adhesive layer 50 is cut.
  • the cutting method is not particularly limited, and it can be cut by a conventionally known method such as a cutter or a laser.
  • the first adhesive layer 50 is cut. Thereby, the continuity of the 1st adhesive bond layer 50 can be destroyed, and the base 31 can be easily isolate
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheet 5 whose shape of the 2nd layer 51 is circular when planarly viewed was used was demonstrated.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 31.
  • the method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 41 has been described.
  • the method for fixing the semiconductor wafer 41 to the pedestal 31 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 31, and the adhesive sheet 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 41.
  • the manufacturing method of a semiconductor device includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of an adhesive sheet is the first adhesive layer.
  • first adhesive layer has a first adhesive layer and a second layer whose adhesive strength is lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer, and is more than the peripheral portion.
  • An adhesive sheet having an inner central portion formed by the second layer is prepared.
  • FIG. 29 is a schematic cross-sectional view of the adhesive sheet 6 that can be used in the 4-2th aspect of the present invention.
  • the peripheral portion 64 is formed by the first adhesive layer 60
  • the central portion 63 inside the peripheral portion 64 is formed by the second layer 61.
  • the adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
  • the peripheral portion 64 of the adhesive sheet 6 is formed by the first adhesive layer 60. Since the first adhesive layer 60 having a higher adhesive force than the second layer 61 is present in the peripheral portion 64, the semiconductor wafer can be firmly fixed to the pedestal in this portion. A central portion 63 inside the peripheral portion 64 is formed by the second layer 61. Since the second layer 61 is in contact with the pedestal, the adhesive sheet 6 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
  • FIG. 30 is a plan view of the adhesive sheet 6 that can be used in the 4-2th aspect of the present invention. As shown in FIG. 30, the adhesive sheet 6 has a circular shape when viewed in plan. As the adhesive sheet 6, the adhesive sheet 6 described in the first aspect of the present invention can be suitably used.
  • FIG. 31 is a schematic sectional view of an adhesive sheet 6 that can be used in the 4-2th aspect of the present invention.
  • a third layer 65 is formed across the peripheral portion 64 and the central portion 63.
  • the adhesive sheet 6 with the third layer 65 can be easily peeled from the semiconductor wafer by attaching the surface on which the third layer 65 having a lower adhesive strength than the first adhesive layer 60 is exposed to the semiconductor wafer. . Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
  • the semiconductor wafer 42 is fixed to the base 32 using the adhesive sheet 6.
  • the fixing method is not particularly limited, but pressure bonding is preferable.
  • the crimping is usually performed while pressing with a pressing means such as a crimping roll.
  • As the pressure bonding conditions for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable.
  • the crimping time is usually 0.1 to 10 minutes.
  • the first adhesive layer 60 and the second layer 61 are imidized as necessary. Thereby, the semiconductor wafer 42 can be satisfactorily fixed to the pedestal 32.
  • Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 60 and the second layer 61 may be imidized.
  • the semiconductor wafer 42 is the same as the semiconductor wafer 41.
  • the pedestal 32 is the same as the pedestal 31.
  • the semiconductor wafer 42 is preferably back-ground.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (back ground surface) of the semiconductor wafer 42 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • FIG. 32 is a schematic diagram illustrating a state in which the first adhesive layer is cut.
  • the cutting method is not particularly limited, and it can be cut by a conventionally known method such as a cutter or a laser.
  • the first adhesive layer 60 is cut. Thereby, the continuity of the 1st adhesive bond layer 60 can be destroyed, and the base 32 can be easily isolate
  • the adhesive sheet 6 having a circular shape when viewed in plan has been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheet 6 in which the shape of the second layer 61 is circular when viewed in plan has been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • a method for manufacturing a semiconductor device includes a step of preparing an adhesive sheet in which a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated.
  • an adhesive sheet is prepared in which a first adhesive layer and a second layer whose adhesive strength is lower than that of the first adhesive layer are laminated.
  • FIG. 33 is a schematic cross-sectional view of an adhesive sheet 7 that can be used in the fourth to third aspects of the present invention.
  • the adhesive sheet 7 is formed by laminating a first adhesive layer 70 and a second layer 71.
  • the adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
  • the adhesive sheet 7 described in the second aspect of the present invention can be suitably used.
  • FIG. 34 is a schematic cross-sectional view of an adhesive sheet that can be used in the fourth to fourth present inventions.
  • the adhesive sheet 7 of FIG. 34 is formed by laminating a third layer 75, a second layer 71, and a first adhesive layer 70.
  • the adhesive force of the third layer 75 is preferably lower than the adhesive force of the first adhesive layer 70.
  • FIG. 35 is a schematic diagram illustrating a state in which the semiconductor wafer 43 is attached to the adhesive sheet 7.
  • FIG. 36 is a schematic diagram showing a state in which the semiconductor wafer 43 is fixed to the pedestal 33.
  • the semiconductor wafer 43 is fixed to the pedestal 33 using the adhesive sheet 7.
  • the semiconductor wafer 43 is bonded to the first adhesive layer 70, and the pedestal 33 is bonded to the second layer 71, thereby fixing the semiconductor wafer 43 to the pedestal 33.
  • the first adhesive layer 70 can follow the irregularities on the surface of the semiconductor wafer 43, and the semiconductor wafer 43 can be fixed to the pedestal 33 well.
  • the second layer 71 having an adhesive force lower than that of the first adhesive layer 70 is in contact with the pedestal 33, the adhesive sheet 7 is easily peeled from the pedestal 33.
  • the bonding method is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the adhesive sheet 7 may be cut before or after bonding as necessary.
  • the semiconductor wafer 43 is the same as the semiconductor wafer 41.
  • the bonding method is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa. In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 33.
  • FIG. 1 A bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa. In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 33.
  • the pedestal 33 is the same as the pedestal 31.
  • the first adhesive layer 70 and the second layer 71 are imidized as necessary. Thereby, the semiconductor wafer 43 can be satisfactorily fixed to the pedestal 33. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 70 and the second layer 71 may be imidized.
  • the first adhesive layer 70 and the second layer 71 may be thermoset as necessary.
  • a silicone resin is used as the first adhesive layer 70 and the second layer 71, the semiconductor wafer 43 can be satisfactorily fixed to the pedestal 33 by thermosetting. Only one of the first adhesive layer 70 and the second layer 71 may be thermally cured.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (back ground surface) of the semiconductor wafer 43 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • FIG. 37 is a schematic diagram showing a state in which a cut 103 is made at the boundary between the first adhesive layer 70 and the second layer 71.
  • the cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
  • the cutting depth is not particularly limited, but is usually 0.1 to 10 mm.
  • the first adhesive layer 70 and the second layer 71 can be easily separated from the notch 103 by applying an external force as necessary. it can.
  • the present invention is not limited to this, and the base 33 may be attached to the first adhesive layer 70 and the semiconductor wafer 43 may be attached to the second layer 71.
  • the semiconductor wafer can be satisfactorily fixed to the pedestal because the adhesive sheet having a relatively high adhesive force is used in combination instead of using only the adhesive sheet having a low adhesive force.
  • the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
  • the adhesive sheet (a) has a higher adhesive force than the adhesive sheet (b), and is excellent in irregularity followability on the surface of the semiconductor wafer and the like. Therefore, since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
  • FIG. 38 is a schematic cross-sectional view of an adhesive sheet (a) that can be used in the fourth to fourth present inventions.
  • FIG. 39 is a schematic diagram showing a state in which a semiconductor wafer is attached to the adhesive sheet (a).
  • FIG. 40 is a schematic cross-sectional view of an adhesive sheet adhesive sheet (b) that can be used in the fourth to fourth present invention.
  • FIG. 41 is a schematic diagram showing a state in which a pedestal is attached to the adhesive sheet (b).
  • FIG. 42 is a schematic diagram showing a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheets (a) and (b).
  • Step (A) In the step (A), the semiconductor wafer 44 is attached to the adhesive sheet (a) 13 (FIG. 39).
  • the adhesive sheet (a) 13 will be described. As shown in FIG. 38, the adhesive sheet (a) 13 has a substrate 12 on one side and a separator 14 on the other side. As the adhesive sheet (a) 13, the adhesive sheet (a) 13 described in the second aspect of the present invention can be suitably used.
  • the semiconductor wafer 44 is the same as the semiconductor wafer 41.
  • step A the separator 14 is peeled off, and the semiconductor wafer 44 is attached to the adhesive sheet (a) 13.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the adhesive sheet (a) 13 may be cut before or after attachment as necessary.
  • the adhesive sheet (b) 23 has a base material 22 on one surface and a separator 24 on the other surface.
  • the adhesive sheet (b) 23 described in the second aspect of the present invention can be suitably used.
  • the pedestal 34 is the same as the pedestal 31.
  • step B the separator 24 is peeled off, and a pedestal 34 is attached to the adhesive sheet (b) 23.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the adhesive sheet (b) 23 may be cut before or after attachment as necessary.
  • step (C) the adhesive sheet (a) 13 of the semiconductor wafer 44 with the adhesive sheet (a) 13 obtained in the step (A) and the pedestal 34 with the adhesive sheet (b) 23 obtained in the step (B).
  • the adhesive sheet (b) 23 is bonded.
  • the laminated body in which the base 34, the adhesive sheet (b) 23, the adhesive sheet (a) 13, and the semiconductor wafer 44 are sequentially laminated is obtained (FIG. 42).
  • the bonding method is not particularly limited. After bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 are imidized as necessary. Thereby, the semiconductor wafer 44 can be satisfactorily fixed to the pedestal 34. Imidization can be performed by a conventionally known method, For example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be imidized.
  • the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermoset as necessary.
  • a silicone resin is used as the adhesive sheet (a) 13 and the adhesive sheet (b) 23, the semiconductor wafer 44 can be satisfactorily fixed to the pedestal 34 by thermosetting. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermally cured.
  • the semiconductor wafer 44 fixed to the pedestal 34 in the step (C) can be back-ground.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (back ground surface) of the semiconductor wafer 44 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • FIG. 43 is a schematic diagram showing a state in which a cut 104 is made at the boundary between the adhesive sheet (a) 13 and the adhesive sheet (b) 23.
  • the cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
  • the cutting depth is not particularly limited, but is usually 0.1 to 10 mm.
  • the adhesive sheet (a) 13 and the adhesive sheet (b) 23 can be easily started from the notch 104 by applying an external force as necessary. Can be separated.
  • the adhesive strength of the adhesive sheet (b) 23 is lower than that of the adhesive sheet (a) 13 has been described.
  • the present invention is not limited to this, and the adhesive strength of the adhesive sheet (b) 23 may be higher than that of the adhesive sheet (a) 13.
  • the values described in the second aspect of the present invention can be adopted as the adhesive force of the adhesive sheet (b) 23 and the adhesive force of the adhesive sheet (a) 13.
  • the adhesive sheet (a) 13 has the base material 12 and the separator 14 was demonstrated.
  • the present invention is not limited to this, and the adhesive sheet (a) 13 may not have the separator 14 and may not have the substrate 12.
  • the adhesive sheet (b) 23 is the same, and the adhesive sheet (b) 23 may not have the separator 24 and may not have the base material 22.
  • a semiconductor device manufacturing method comprising: a step (I) of attaching a semiconductor wafer to one surface of a temporary fixing sheet; and a pedestal having a bevel portion on the other surface of the temporary fixing sheet.
  • a temporary fixing adhesive layer having a higher adhesive force than the temporary fixing sheet between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing
  • a step (III) of fixing the sheet to the pedestal and a step of cutting the temporary fixing sheet after the steps (I) to (III) to separate the pedestal from the temporary fixing sheet (IV ).
  • the order of the steps (I) to (III) is not particularly limited.
  • the temporary fixing adhesive layer is easy to form, and the possibility of the temporary fixing adhesive layer sticking out and the possibility of forming the temporary fixing adhesive layer more than the necessary amount are low.
  • the order of step (II) and step (III) is preferred.
  • FIG. 44 is a cross-sectional view of the temporary fixing sheet.
  • FIG. 45 is a diagram illustrating a state in which a semiconductor wafer is attached to the temporary fixing sheet.
  • FIG. 46 is a diagram illustrating a state in which an adhesive layer for temporary fixing is formed between the temporary fixing sheet and the bevel portion of the pedestal.
  • Step (I) In step (I), the semiconductor wafer 45 is attached to one surface of the temporary fixing sheet 81 (FIG. 45).
  • the method for attaching the semiconductor wafer 45 to the temporary fixing sheet 81 is not particularly limited, but it is preferable to apply the circuit forming surface of the semiconductor wafer 45 to the temporary fixing sheet 81.
  • the attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
  • the temporary fixing sheet 81 is imidized as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 45 can be favorably bonded. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
  • the temporary fixing sheet 81 may be thermally cured as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 45 can be favorably bonded.
  • the heat curing can be performed by a conventionally known method.
  • the heat curing can be performed in a nitrogen atmosphere at 100 to 350 ° C. (preferably 150 to 350 ° C.) for 0.1 to 5 hours.
  • the temporary fixing sheet 81 As the temporary fixing sheet 81, the temporary fixing sheet 81 described in the third aspect of the present invention can be suitably used.
  • the semiconductor wafer 45 is the same as the semiconductor wafer 41.
  • Step (II) In step (II), a pedestal 35 having a bevel portion is attached to the other surface of the temporary fixing sheet 81.
  • the attaching method is not particularly limited, but is preferably attached by roll lamination or a vacuum press.
  • the affixing conditions are not particularly limited, but can be affixed at 23 to 250 ° C. and 0.01 to 10 MPa, for example.
  • An inclined surface that is inclined from the upper surface and the lower surface of the pedestal 35 toward the side surface (outer side) is formed on the periphery of the pedestal 35.
  • a peripheral portion where such an inclined surface is formed is a bevel portion.
  • the pedestal 35 is not particularly limited as long as it has a bevel portion, and the pedestal 1 described in the third aspect of the present invention can be suitably used.
  • Step (III) In the step (III), a temporary fixing adhesive layer 80 having higher adhesive force than the temporary fixing sheet 81 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 35, and the temporary fixing sheet 81 is It fixes to the base 35 (FIG. 46).
  • a temporary adhesive layer 80 is formed by applying a liquid adhesive composition between the temporary fixing sheet 81 and the bevel portion of the pedestal 35 and drying it.
  • the stopping sheet 81 is fixed to the base 35.
  • the adhesive layer 80 described in the third aspect of the present invention can be preferably used.
  • FIG. 47A is a diagram illustrating a state in which the temporary fixing adhesive layer 80 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 35.
  • FIG. 47B is an enlarged view around the bevel portion.
  • the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the pedestal 35 and outside the tilt start position of the bevel portion of the pedestal 35.
  • D1 is preferably one-tenth of D2, that is, larger than (D2) / 10.
  • D1 is preferably smaller than two-thirds of D2, that is, (D2) ⁇ (2/3).
  • D1 is smaller than two-thirds of D2, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
  • D2 is usually 0.1 to 0.4 mm.
  • FIG. 48A is a diagram illustrating a state in which a temporary fixing adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal.
  • FIG. 48B is an enlarged view around the bevel portion of the semiconductor wafer.
  • the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the semiconductor wafer 45 and outside the tilt start position of the bevel portion of the semiconductor wafer 45. .
  • the distance in the lateral direction (horizontal direction of the surface of the semiconductor wafer 45) between the end portion of the semiconductor wafer 45 and the end portion of the temporary fixing sheet 81 is D3, and the end portion of the semiconductor wafer 45 and the semiconductor wafer 45 are aligned.
  • D3 is preferably one-tenth of D4, that is, larger than (D4) / 10.
  • D3 is larger than 1/10 of D4, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
  • D3 is preferably smaller than two-thirds of D4, that is, (D4) ⁇ (2/3).
  • D4 is usually 0.1 to 0.4 mm.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 45 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • Step (IV) After performing desired processing such as back grinding and processing on the semiconductor wafer 45, the temporary fixing sheet 81 is cut to separate the pedestal 35 from the temporary fixing sheet 81.
  • FIG. 49 is a diagram illustrating a state in which a cut 105 has been made in the temporary fixing sheet 81. As shown in FIG. 49, it is preferable to make a cut 105 in the temporary fixing sheet 81 until it reaches the pedestal 35, and it is more preferable to make a cut 105 in the temporary fixing sheet 81 until it reaches the bevel portion of the pedestal 35.
  • the cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
  • the shape of the temporary fixing sheet is not particularly limited.
  • the temporary fixing sheet may be provided with a concave portion at the peripheral edge.
  • step (III) can be performed before step (II).
  • a temporary fixing adhesive layer as a sheet-like material is provided in advance on the peripheral edge portion of the temporary fixing sheet (the portion corresponding to the bevel portion) so that the temporary fixing adhesive layer adheres to the bevel portion.
  • a pedestal may be attached to the temporary fixing sheet.
  • a fifth object of the present invention is to provide an adhesive sheet for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and can easily separate the pedestal from the semiconductor wafer. Moreover, it aims at providing the manufacturing method of the semiconductor device using this adhesive sheet for semiconductor device manufacture.
  • the adhesive sheet for manufacturing a semiconductor device includes a first adhesive layer and a second layer having a structure having a large number of through holes and / or a non-woven fabric structure as a skeleton, The adhesive force of the second layer is lower than the adhesive force of the first adhesive layer.
  • FIG. 51 is a cross-sectional view of the adhesive sheet 5 of the first embodiment.
  • the adhesive sheet 5 has a peripheral portion 54 formed by the first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has a large number of penetrations through the first adhesive layer 50. It is formed by lamination with a second layer 51 having a structure having holes and / or a non-woven structure as a skeleton. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
  • the semiconductor wafer or the pedestal can be firmly fixed on the surface composed of only the first adhesive layer 50.
  • the semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer 50 and the second layer 51.
  • the adhesive sheet 5 has the second layer 51 having a low adhesive force, for example, the base is easily separated from the semiconductor wafer by an external force by cutting the first adhesive layer 50 or reducing the adhesive force. it can. Since the first adhesive layer 50 is formed in the peripheral portion 54, the adhesive sheet 5 is easy to cut the first adhesive layer 50 or reduce the adhesive force of the first adhesive layer 50, and is separated. Can be easily performed.
  • the thickness of the adhesive sheet 5 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 ⁇ m or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet can be filled without a gap. Moreover, the thickness of the adhesive sheet 5 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the thickness of the 1st adhesive bond layer 50 in the center part 53 can be set suitably, Preferably it is 0.1 micrometer or more, More preferably, it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more. Moreover, this thickness becomes like this. Preferably it is 300 micrometers or less, More preferably, it is 200 micrometers or less. Further, the thickness of the second layer 51 in the central portion 53 can be set as appropriate.
  • FIG. 52 is a plan view of the adhesive sheet 5 according to the first embodiment. As shown in FIG. 52, the adhesive sheet 5 has a circular shape when viewed in plan.
  • the diameter of the adhesive sheet 5 is not particularly limited.
  • the diameter of the adhesive sheet 5 is preferably +1.0 to ⁇ 1.0 mm with respect to the diameter of the pedestal.
  • the shape of the second layer 51 is circular.
  • the area of the second layer 51 when the adhesive sheet 5 is viewed in plan is preferably 10% or more, more preferably 20% or more with respect to the area of the adhesive sheet 5 when the adhesive sheet 5 is viewed in plan. Preferably it is 50% or more. If it is 10% or more, it is easy to cut the first adhesive layer 50 formed on the peripheral portion 54 or to reduce the adhesive force, and to easily separate the pedestal from the semiconductor wafer.
  • the area of the second layer 51 is preferably 99.95% or less, more preferably 99.9% or less. A semiconductor wafer can be firmly fixed to a base as it is 99.95% or less.
  • the adhesive strength of the first adhesive layer 50 is preferably, for example, a 90 ° peel peel force on a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be favorably held on the pedestal, and back grinding and the like can be favorably performed.
  • the upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
  • the polyimide resin and silicone resin described in the first aspect of the present invention can be suitably used.
  • polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
  • the second layer 51 has a structure 57 having a large number of through holes 56 and / or a non-woven structure as a skeleton.
  • FIG. 53 is a plan view of a structure 57 having a large number of through holes 56. As shown in FIG. 53, the through-hole 56 penetrates in the thickness direction of the structure 57 (also referred to as the thickness direction of the adhesive sheet 5).
  • the adhesive force of the second layer 51 can be adjusted by adjusting the aperture ratio of the structure 57 having a large number of through holes 56. Specifically, when the through hole 56 is filled with an adhesive composition described later, the adhesive force can be increased by increasing the aperture ratio, and the adhesive force can be decreased by decreasing the aperture ratio.
  • the porosity of the structure 57 is preferably 5% or more, more preferably 8% or more, and further preferably 10% or more. When it is 5% or more, the adhesive composition filled in the through holes 56 can reach the adherend, and the adhesive force of the second layer 51 can be adjusted.
  • the open area ratio is preferably 98% or less, more preferably 95% or less, and still more preferably 90% or less. When it is 98% or less, the adhesive force of the second layer 51 can be made lower than that of the first adhesive layer 50 even when the same adhesive composition as that of the first adhesive layer 50 is filled in the through holes 56.
  • the shape of the through hole 56 (the shape of the through hole 56 when the adhesive sheet 5 is viewed in plan) is not particularly limited, and examples thereof include a circle, an ellipse, and a polygon.
  • the shapes of the through holes 56 may all be the same or different.
  • the size (area) of one through hole 56 is preferably 70 ⁇ m 2 or more, more preferably 100 ⁇ m 2 or more. Further, it is preferably 20 mm 2 or less, more preferably 7 mm 2 or less. The sizes of the through holes 56 may all be the same or different.
  • the material of the structure 57 having a large number of through-holes 56 and the non-woven fabric structure is not particularly limited.
  • polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide resin, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper),
  • metal materials such as iron, copper, nickel, tungsten, aluminum, gold, silver, copper, brass, red copper, phosphor bronze, nichrome, monel metal, bronze, and stainless steel (SUS) can be used. These may be used alone or in combination of two or more.
  • a metal material, the above-mentioned polyimide resin, and the above-mentioned silicone resin are preferable, and SUS and aluminum are more preferable.
  • the above-described polyimide resin, the above-described silicone resin, and metal material are preferable from the viewpoint of heat resistance and contamination.
  • the force is preferably less than 0.30 N / 20 mm, more preferably 0.20 N / 20 mm or less, and even more preferably 0.10 N / 20 mm or less. If the thickness is less than 0.30 N / 20 mm, the second layer 51 can be easily peeled off.
  • the lower limit of the 90 ° peel peeling force is, for example, 0 N / 20 mm or more and 0.001 N / 20 mm or more.
  • the 90 ° peel peeling force is fixed to the silicon wafer.
  • the 90 ° peel peel force in a state (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
  • the through-hole 56 and the porosity of the nonwoven fabric-like structure may be filled with the adhesive composition or may not be filled. It is preferable that the second layer having a low adhesive force can be easily formed by controlling the aperture ratio of the structure 57 and the density of the non-woven structure.
  • an adhesive composition which fills the through-hole 56 or the porosity of a nonwoven fabric For example, the above-mentioned polyimide resin, the above-mentioned silicone resin, etc. are mentioned.
  • the adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
  • the adhesive force of the second layer 51 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ⁇ 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. If the thickness is less than 0.30 N / 20 mm, the second layer 51 can be easily peeled off.
  • the lower limit of the 90 ° peel peel force is preferably as low as possible, but is preferably 0 N / 20 mm or more, more preferably 0.001 N / 20 mm or more, still more preferably 0.01 N / 20 mm or more, and particularly preferably 0.10 N. / 20 mm or more.
  • the adhesive strength of the second layer 51 depends on the opening ratio of the structure 57, the density of the nonwoven structure, the type of the adhesive composition that fills the pores of the through holes 56 and the nonwoven fabric, the material of the structure 57, and the like. Can be adjusted.
  • FIG. 54 is a cross-sectional view of the adhesive sheet 5 including the third layer 55.
  • a third layer 55 is formed across the peripheral portion 54 and the central portion 53.
  • the adhesive force of the third layer 55 is lower than the adhesive force of the first adhesive layer 50.
  • the adhesive sheet 5 When the surface which consists only of the 3rd layer 55 is affixed on a semiconductor wafer or a base, the adhesive sheet 5 can be peeled easily. Further, the adhesive residue on the semiconductor wafer or the pedestal can be eliminated, and the cleaning process can be omitted.
  • the adhesive force of the third layer 55 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layer 50.
  • the 90 ° peel peeling force for a silicon wafer under conditions of a temperature of 23 ⁇ 2 ° C. and a peeling speed of 300 mm / min is preferably less than 0.30 N / 20 mm, and preferably 0.20 N / 20 mm or less. More preferred.
  • the adhesive can be peeled without residue, and the semiconductor wafer cleaning process can be omitted.
  • the minimum of this 90 degree peeling force is not specifically limited, For example, it is 0 N / 20mm or more, Preferably it is 0.001 N / 20mm or more.
  • a semiconductor wafer can be hold
  • the material constituting the third layer 55 is not particularly limited as long as it is selected so that the adhesive force of the third layer 55 is lower than the adhesive force of the first adhesive layer 50.
  • a polyimide resin and the above-mentioned silicone resin can be used suitably.
  • the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
  • the manufacturing method of the adhesive sheet 5 is not particularly limited.
  • a solution containing a composition for forming the first adhesive layer 50 is applied to the structure 57 having a large number of through-holes 56 and the periphery thereof (region around the structure 57), and the through-holes 56 are applied.
  • the coating layer is formed on the structure 57 and around the structure 57.
  • the coating layer formed around the structure 57 becomes the first adhesive layer 50 in the peripheral portion 54.
  • a solution containing the composition for forming the first adhesive layer 50 is applied to the non-woven structure and the periphery thereof, It can be manufactured by filling the pores of the non-woven structure with the solution and forming a coating layer on and around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 50 in the peripheral portion 54.
  • the viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
  • FIG. 55 is a cross-sectional view of the adhesive sheet 6 of the second embodiment.
  • FIG. 56 is a plan view of the adhesive sheet 6 according to the second embodiment.
  • the adhesive sheet 6 has a structure in which the peripheral portion 64 is formed by the first adhesive layer 60 and the central portion 63 inside the peripheral portion 64 has a large number of through holes 66.
  • a second layer 61 having a body as a skeleton is formed. The adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
  • the second layer 61 may have a non-woven structure as a skeleton.
  • the semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer 60 and the second layer 61.
  • the adhesive sheet 6 has the second layer 61 having a low adhesive force, for example, the base is easily separated from the semiconductor wafer by an external force by cutting the first adhesive layer 60 or reducing the adhesive force. it can. Since the first adhesive layer 60 is formed in the peripheral portion 64, the adhesive sheet 6 can be easily cut off or reduced in the adhesive strength of the first adhesive layer 60, and separated. Can be easily performed.
  • the thickness of the adhesive sheet 6 is not specifically limited, For example, what was illustrated by the adhesive sheet 5 of Embodiment 1 is mentioned.
  • the adhesive sheet 6 has a circular shape when viewed in plan.
  • the diameter of the adhesive sheet 6 is not specifically limited, For example, what was illustrated by the adhesive sheet 5 of Embodiment 1 is mentioned.
  • the area of the 2nd layer 61 when the adhesive sheet 6 is planarly viewed is not specifically limited, For example, what was illustrated with the adhesive sheet 5 of Embodiment 1 is mentioned.
  • Examples of the adhesive force of the first adhesive layer 60 include those exemplified for the first adhesive layer 50.
  • the description of the first adhesive layer 60 is the same as the content of the first adhesive layer 50.
  • Examples of the adhesive force of the second layer 61 include those exemplified for the second layer 51.
  • the description of the second layer 61 is the same as the content of the second layer 51.
  • the manufacturing method of the adhesive sheet 6 is not particularly limited.
  • a solution including a composition for forming the first adhesive layer 60 is applied to a structure having a large number of through-holes 66 and the periphery thereof (region around the structure), and the through-holes 66 are formed as described above. It can be manufactured by filling with a solution and forming a coating layer around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 60 in the peripheral portion 64.
  • a solution containing the composition for forming the first adhesive layer 60 is applied to the non-woven structure and the periphery thereof. It can be produced by filling the pores of the non-woven structure with the solution and forming a coating layer around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 60 in the peripheral portion 64.
  • the viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
  • FIG. 57 is a cross-sectional view of the adhesive sheet 7 of the third embodiment.
  • the adhesive sheet 7 is formed by stacking a first adhesive layer 70 and a second layer 71 having a structure having a large number of through holes and / or a non-woven fabric structure as a skeleton. Has been.
  • the adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
  • the adhesive sheet 7 has the first adhesive layer 70
  • the semiconductor wafer can be satisfactorily fixed to the pedestal.
  • the 2nd layer 71 whose adhesive force is lower than the 1st adhesive bond layer 70
  • a base can be easily isolate
  • the thickness of the 1st adhesive bond layer 70 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 ⁇ m or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet 7 can be filled without a gap. Moreover, the thickness of the 1st adhesive bond layer 70 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the thickness of the 2nd layer 71 is not specifically limited, For example, it is 1 micrometer or more, Preferably it is 5 micrometers or more. When it is 1 ⁇ m or more, it is easy to bond to the pedestal.
  • the thickness of the second layer 71 is, for example, 500 ⁇ m or less, and preferably 300 ⁇ m or less. When the thickness is 500 ⁇ m or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
  • the shape of the adhesive sheet 7 when viewed from above is not particularly limited, but is usually circular.
  • Examples of the adhesive force of the first adhesive layer 70 include those exemplified for the first adhesive layer 50.
  • the description of the first adhesive layer 70 is the same as the content of the first adhesive layer 50.
  • the adhesive strength of the second layer 71 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ⁇ 2 ° C. and a peel speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. When it is less than 0.30 N / 20 mm, the pedestal can be easily separated from the semiconductor wafer.
  • the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
  • the description of the second layer 71 is the same as the content of the second layer 51.
  • the manufacturing method of the adhesive sheet 7 is not particularly limited.
  • a solution containing a composition for forming the first adhesive layer 70 is applied to a structure having a large number of through holes, the through holes are filled with the solution, and a coating layer is formed on the structure. Can be manufactured.
  • a non-woven structure is applied to the non-woven structure by applying a solution containing the composition for forming the first adhesive layer 70. It can be manufactured by filling the pores of the structure with the solution and forming a coating layer on the structure.
  • the viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
  • the adhesive sheets 5 to 7 having a circular shape in plan view have been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheets 5 to 7 in which the shapes of the second layers 51, 61, and 71 are circular when viewed in plan have been described.
  • the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
  • the adhesive sheet for manufacturing a semiconductor device according to the fifth aspect of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in a semiconductor device manufacturing method described later.
  • the manufacturing method of the semiconductor device of 5th this invention includes the process of fixing a semiconductor wafer to a base using an adhesive sheet, and the process of isolate
  • FIG. 58 is a schematic diagram illustrating a state in which the semiconductor wafer 3 is fixed to the base 1 using the adhesive sheet 5 of the first embodiment.
  • a process of fixing the semiconductor wafer 3 to the base 1 using the adhesive sheet 5 is performed. Specifically, the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the base 1, and only the first adhesive layer 50 of the adhesive sheet 5 is exposed. The surface is attached to the circuit forming surface of the semiconductor wafer 3.
  • the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used.
  • the pedestal 1 described in the first aspect of the present invention can be suitably used.
  • the method of attaching is not particularly limited, but pressure bonding is preferable.
  • the crimping is usually performed while pressing with a pressing means such as a crimping roll.
  • As the pressure bonding conditions for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable.
  • the crimping time is usually 0.1 to 10 minutes.
  • the first adhesive layer 50 is imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1.
  • Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
  • an adhesive composition filled in the pores of through holes and nonwoven fabrics may be imidized, and a structure having a large number of through holes or a nonwoven structure May be imidized.
  • the back grinding can be performed by a conventionally known method.
  • the thickness of the back-ground semiconductor wafer is, for example, 1 to 300 ⁇ m, and preferably 5 to 100 ⁇ m.
  • the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed.
  • processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
  • the pedestal 1 is separated from the semiconductor wafer 3.
  • the separation method is not particularly limited, a method of cutting and separating the first adhesive layer 50 and a method of separating by reducing the adhesive force of the first adhesive layer 50 are suitable.
  • the cutting method is not particularly limited, and examples thereof include a method of cutting the first adhesive layer 50 by cutting the first adhesive layer 50 from the side surface of the adhesive sheet 5 inward.
  • the cutting can be performed by a conventionally known method such as a cutter or a laser.
  • the method for reducing the adhesive strength of the first adhesive layer 50 is not particularly limited, and the first adhesive layer 50 is formed of a method for dissolving the first adhesive layer 50 with a solvent or a material whose adhesive strength is reduced by heating. In addition, a method of reducing the adhesive force by heating, and the like can be mentioned.
  • the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 1.
  • the method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 3 has been described.
  • the method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 1 and the adhesive sheet is attached.
  • 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 3.
  • the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
  • PMDA pyromellitic dianhydride (molecular weight: 218.1)
  • DDE 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
  • D-4000 Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
  • DMAc N, N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • D-2000 polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • PPD p-phenylenediamine separator (long polyester film treated on one side with a silicone-based release agent: thickness 38 ⁇ m) Long polyester film (thickness 25 ⁇ m)
  • An adhesive sheet was produced by the following method.
  • Examples 1 and 5 ⁇ Preparation of First Adhesive Layer Solution and Second Layer Solution>
  • 929.05 g of DMAc was mixed with D-4000 258.25 g, DDE 78.95 g, and PMDA 100 g at 70 ° C., and reacted to obtain a first adhesive layer solution (polyamide).
  • An acid solution A) was obtained.
  • the resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
  • a second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the formulation in Table 1 was followed.
  • the resulting second layer solution was cooled to room temperature (23 ° C.).
  • the polyester film of the circular sheet was peeled off, and the first adhesive layer solution was applied on the second layer of the circular sheet so as to have a diameter of 200 mm or more, and dried at 90 ° C. for 3 minutes.
  • a long polyester film was laminated on the dried first adhesive layer to obtain an adhesive sheet having the shape of Embodiment 1 shown in FIGS.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 100 ⁇ m.
  • the diameter of the second layer was 198 mm, and the thickness of the second layer was 2 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 98 micrometers.
  • Example 2 ⁇ Preparation of first adhesive layer solution> A first adhesive layer solution was obtained in the same manner as in Example 1 except that the composition according to Table 1 was followed. ⁇ Preparation of adhesive sheet> On a SUS foil (manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA), Cu plating with a copper sulfate plating bath was performed so that the Cu film thickness was 0.5 ⁇ m to obtain a SUS foil with Cu plating. The obtained Cu-plated SUS foil was cooled to room temperature (23 ° C.). The 1st adhesive layer solution of the mixing
  • SUS foil manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 120 ⁇ m.
  • the diameter of the second layer was 195 mm, and the thickness of the second layer was 0.5 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 119.5 micrometers.
  • Example 2 when the adhesive sheet is formed, a shape in which the second layer is formed on the first adhesive layer (a shape in which the first adhesive layer does not exist on the side surface side of the second layer).
  • the second layer is as thin as 0.5 ⁇ m
  • the first adhesive layer is as thick as 120 ⁇ m
  • the first adhesive layer is relatively soft (low elastic modulus).
  • the second layer is embedded in the first adhesive layer. Therefore, the adhesive sheet of Example 2 has the cross-sectional shape shown in FIG.
  • Example 3 An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 1 was followed.
  • Example 4 ⁇ Production of circular sheet>
  • the second layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer.
  • a long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal was performed to obtain a circular sheet (thickness: 200 ⁇ m).
  • the first adhesive layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer.
  • a long polyester film is laminated on the first adhesive layer of the obtained sheet, half-cut to 198 mm in diameter with a Thomson die, and the punched portion leaving the outside (inside punched with the Thomson die) Was removed to obtain a hollow sheet (thickness: 200 ⁇ m).
  • the separator of the circular sheet and the hollow sheet is peeled off and bonded so that the second layer of the circular sheet fits into the part where the first adhesive layer of the hollow sheet does not exist.
  • An adhesive sheet having the shape of Embodiment 2 shown in FIG. The entire adhesive sheet had a diameter of 200 mm and a thickness of 200 ⁇ m.
  • the diameter of the second layer was 198 mm, and the thickness of the second layer was 200 ⁇ m.
  • Comparative Example 1 A single-layer adhesive sheet composed of the same first adhesive layer as in Example 1 was obtained.
  • the adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 ⁇ m.
  • the first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 ⁇ m.
  • the first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
  • the first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 1.
  • the second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 ⁇ m.
  • the second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
  • a second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was.
  • the results are shown in Table 1.
  • 90 degree peel evaluation was performed using what bonded the 2nd layer to the 8-inch silicon wafer.
  • Examples 1 to 4 The surfaces on which the first adhesive layer and the second layer of the adhesive sheets of Examples 1 to 4 were exposed were attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 ⁇ m). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 ⁇ m. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C.
  • Example 5 Process resistance was evaluated in the same manner as in Examples 1 to 4, except that the surface exposed only by the first adhesive layer was attached to the pedestal. Comparative Example 1 A laminate was obtained by the same method as in Examples 1 to 4, and the process resistance was evaluated. The results are shown in Table 1.
  • the silicon wafer could be sufficiently fixed and the back grinding could be performed satisfactorily. Moreover, the silicon wafer and the pedestal could be easily separated by cutting. On the other hand, Comparative Example 1 could not be peeled even when a cut was made in the adhesive sheet layer.
  • PMDA pyromellitic dianhydride (molecular weight: 218.1)
  • DDE 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
  • D-4000 Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
  • DMAc N, N-dimethylacetamide
  • D-2000 Polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • PPD p-phenylenediamine separator (long polyester film treated on one side with a silicone-based release agent: thickness 38 ⁇ m)
  • An adhesive sheet was produced by the following method.
  • Example 1 In an atmosphere under a nitrogen stream, D-4000 239.8 g, DDE 79.9 g, and PMDA 100.0 g were mixed and reacted at 1912.0 g of DMAc at 70 ° C. to obtain a first adhesive layer solution (Polyamic acid solution A) was obtained. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.). A second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the composition in Table 2 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.). The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer.
  • the first adhesive layer solution was applied and dried at 90 ° C. for 3 minutes to form a first adhesive layer.
  • an adhesive sheet in which the first adhesive layer and the second layer were laminated was obtained.
  • the entire diameter of the adhesive sheet was 200 mm, and the thickness was 100 ⁇ m.
  • the diameter of the first adhesive layer was 200 mm, and the thickness was 90 ⁇ m.
  • the diameter of the second layer was 200 mm and the thickness was 10 ⁇ m.
  • Examples 2 to 3 An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 2 was followed.
  • Comparative Example 1 Using the first adhesive layer solution of Example 1, an adhesive sheet (single layer) composed of the first adhesive layer was obtained.
  • the adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 ⁇ m.
  • the first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 ⁇ m.
  • the first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
  • the first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 2.
  • the second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 ⁇ m.
  • the second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
  • a second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was.
  • the results are shown in Table 2.
  • Examples 1 to 3 The second layer of the adhesive sheets of Examples 1 to 3 was attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 ⁇ m). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 ⁇ m. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours.
  • Example 1 In an atmosphere under a nitrogen stream, D-4000 29.5 g, DDE 90.3 g, and PMDA 100.0 g were mixed and reacted at 2528.0 g of DMAc at 70 ° C. to obtain a sheet solution (polyamic acid solution). A) was obtained. The obtained sheet solution was cooled to room temperature (23 ° C.). The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet. The obtained sheet had a diameter of 200 mm and a thickness of 100 ⁇ m. An adhesive layer solution (polyamic acid solution B) was obtained in the same manner as the sheet solution except that the composition in Table 3 was followed. The obtained adhesive layer solution was cooled to room temperature (23 ° C.).
  • Examples 2-3 and Comparative Example 1 A sheet and an adhesive layer solution were obtained in the same manner as in Example 1 except that the composition according to Table 3 was followed.
  • Example 1 The sheet was attached to a circuit forming surface of a silicon wafer having a bevel portion having a diameter of 200 mm and a thickness of 725 ⁇ m. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. A pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 ⁇ m) having a bevel portion was attached to the back surface of the sheet surface to which the silicon wafer was attached. Pasting was performed at a temperature of 120 ° C. and a pressure of 0.3 MPa.
  • An adhesive sheet was produced by the following method.
  • Examples 1 and 5 ⁇ Preparation of First Adhesive Layer Solution and Second Layer Solution>
  • 929.05 g of DMAc was mixed with D-4000 258.25 g, DDE 78.95 g, and PMDA 100 g at 70 ° C., and reacted to obtain a first adhesive layer solution (polyamide).
  • An acid solution A) was obtained.
  • the resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
  • a second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the composition according to Table 4 was followed.
  • the resulting second layer solution was cooled to room temperature (23 ° C.).
  • the polyester film of the circular sheet was peeled off, and the first adhesive layer solution was applied on the second layer of the circular sheet so as to have a diameter of 200 mm or more, and dried at 90 ° C. for 3 minutes.
  • a long polyester film was laminated on the dried first adhesive layer to obtain an adhesive sheet having the shape shown in FIGS.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 100 ⁇ m.
  • the diameter of the second layer was 198 mm, and the thickness of the second layer was 2 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 98 micrometers.
  • Example 2 ⁇ Preparation of first adhesive layer solution> A first adhesive layer solution was obtained in the same manner as in Example 1 except that the composition according to Table 4 was followed. ⁇ Preparation of adhesive sheet> On a SUS foil (manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA), Cu plating with a copper sulfate plating bath was performed so that the Cu film thickness was 0.5 ⁇ m to obtain a SUS foil with Cu plating. The obtained Cu-plated SUS foil was cooled to room temperature (23 ° C.). The first adhesive layer solution having the composition shown in Table 4 was applied to a Cu-plated SUS foil and dried at 90 ° C. for 2 minutes.
  • SUS foil manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA
  • Cu plating with a copper sulfate plating bath was performed so that the Cu film thickness was 0.5 ⁇ m to obtain a SUS foil with Cu plating.
  • the SUS foil was peeled to obtain a polyamic acid layer with Cu plating.
  • Cu etching was performed on the obtained polyamic acid layer with Cu plating.
  • a circular (195 mm diameter) Cu plated portion (second layer) was left, and the others were removed.
  • an adhesive sheet having the shape shown in FIGS. 24 and 25 was obtained.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 120 ⁇ m.
  • the diameter of the second layer was 195 mm, and the thickness of the second layer was 0.5 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 119.5 micrometers.
  • Example 2 when the adhesive sheet is formed, a shape in which the second layer is formed on the first adhesive layer (a shape in which the first adhesive layer does not exist on the side surface side of the second layer).
  • the second layer is as thin as 0.5 ⁇ m
  • the first adhesive layer is as thick as 120 ⁇ m
  • the first adhesive layer is relatively soft (low elastic modulus).
  • the second layer is embedded in the first adhesive layer. Therefore, the adhesive sheet of Example 2 has the cross-sectional shape shown in FIG.
  • Example 3 An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 4 was followed.
  • Example 4 ⁇ Production of circular sheet>
  • the second layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer.
  • a long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal was performed to obtain a circular sheet (thickness: 200 ⁇ m).
  • the first adhesive layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer.
  • a long polyester film is laminated on the first adhesive layer of the obtained sheet, half-cut to 198 mm in diameter with a Thomson die, and the punched portion leaving the outside (inside punched with the Thomson die) Was removed to obtain a hollow sheet (thickness: 200 ⁇ m). 29 and 30, the separator of the circular sheet and the hollow sheet is peeled off and bonded so that the second layer of the circular sheet fits into the part where the first adhesive layer of the hollow sheet does not exist.
  • An adhesive sheet having the shape shown in FIG. The entire adhesive sheet had a diameter of 200 mm and a thickness of 200 ⁇ m.
  • the diameter of the second layer was 198 mm, and the thickness of the second layer was 200 ⁇ m.
  • Comparative Example 1 A single-layer adhesive sheet composed of the same first adhesive layer as in Example 1 was obtained.
  • the adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 ⁇ m.
  • the first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 ⁇ m.
  • the first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
  • the first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 4.
  • the second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 ⁇ m.
  • the second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
  • a second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was.
  • the results are shown in Table 4.
  • 90 degree peel evaluation was performed using what bonded the 2nd layer to the 8-inch silicon wafer.
  • Example 5 Process resistance was evaluated in the same manner as in Examples 1 to 4, except that the surface exposed only by the first adhesive layer was attached to the pedestal. Comparative Example 1 A laminate was obtained by the same method as in Examples 1 to 4, and the process resistance was evaluated. The results are shown in Table 4.
  • Example 6 In an atmosphere under a nitrogen stream, D-4000 239.8 g, DDE 79.9 g, and PMDA 100.0 g were mixed and reacted at 1912.0 g of DMAc at 70 ° C. to obtain a first adhesive layer solution Got. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.). A second layer solution was obtained in the same manner as the first adhesive layer solution except that the composition in Table 5 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.). The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer. On the obtained sheet, the first adhesive layer solution was applied and dried at 90 ° C.
  • first adhesive layer a first adhesive layer.
  • the entire diameter of the adhesive sheet was 200 mm, and the thickness was 100 ⁇ m.
  • the diameter of the first adhesive layer was 200 mm, and the thickness was 90 ⁇ m.
  • the diameter of the second layer was 200 mm and the thickness was 10 ⁇ m.
  • Examples 7-8 An adhesive sheet was obtained in the same manner as in Example 6 except that the composition according to Table 5 was followed.
  • Comparative Example 2 Using the first adhesive layer solution of Example 6, an adhesive sheet (single layer) composed of the first adhesive layer was obtained.
  • the adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 ⁇ m.
  • Example 9 In an atmosphere under a nitrogen stream, D-4000 29.5 g, DDE 90.3 g, and PMDA 100.0 g were mixed and reacted at 2528.0 g of DMAc at 70 ° C. to obtain a sheet solution. The obtained sheet solution was cooled to room temperature (23 ° C.). The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet. The obtained sheet had a diameter of 200 mm and a thickness of 100 ⁇ m. An adhesive layer solution was obtained in the same manner as the sheet solution except that the composition in Table 6 was followed. The obtained adhesive layer solution was cooled to room temperature (23 ° C.).
  • Examples 10-11, Comparative Example 3 A sheet and an adhesive layer solution were obtained in the same manner as in Example 9 except that the composition according to Table 6 was followed.
  • Example 9 The sheet was attached to a circuit forming surface of a silicon wafer having a bevel portion having a diameter of 200 mm and a thickness of 725 ⁇ m. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. A pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 ⁇ m) having a bevel portion was attached to the back surface of the sheet surface to which the silicon wafer was attached. Pasting was performed at a temperature of 120 ° C. and a pressure of 0.3 MPa.
  • PMDA pyromellitic dianhydride (molecular weight: 218.1)
  • DDE 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
  • D-4000 Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
  • DMAc N, N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • D-2000 polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • PPD p-phenylenediamine separator (long polyester film treated on one side with a silicone release agent)
  • Example 1 In an atmosphere under a nitrogen stream, D-4000 365 g, DDE 74 g, and PMDA 100 g were mixed and reacted at 70 ° C. in 1257 g of DMAc, and then cooled to room temperature (23 ° C.). An adhesive solution was obtained. A second adhesive solution was obtained in the same manner as the first adhesive solution except that the composition according to Table 7 was followed. The second adhesive solution is applied to the separator and dried at 90 ° C. for 3 minutes to produce a sheet having a coating layer of the second adhesive solution. A sheet was obtained. The shape of the through hole when the perforated sheet was viewed in plan was circular, and the area of each through hole when the perforated sheet was viewed in plan was 78.5 ⁇ m 2 .
  • the diameter of each through hole was 10 ⁇ m.
  • the aperture ratio was 50%.
  • the first adhesive solution was applied to the perforated sheet and its periphery (region around the perforated sheet), the through holes were filled with the first adhesive solution, and an application layer of the first adhesive solution was formed. Then, it was made to dry for 3 minutes at 90 degreeC, and the adhesive sheet of the shape of Embodiment 1 shown to FIG.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 100 ⁇ m.
  • the diameter of the second layer was 196 mm, and the thickness of the second layer was 1 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 99 micrometers.
  • Example 2 A first adhesive solution was obtained in the same manner as in Example 1 except that the composition according to Table 7 was followed.
  • An adhesive sheet having the shape of Embodiment 1 shown in FIGS. 51 and 52 was obtained in the same manner as in Example 1 except that an aluminum mesh having an aperture ratio of 80% was used instead of the perforated sheet.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 120.5 ⁇ m.
  • the diameter of the second layer was 198 mm, and the thickness of the second layer was 0.5 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 120 micrometers.
  • Example 3 The point which obtained the 1st adhesive solution and the 2nd adhesive solution according to the composition of Table 7, the shape of the through hole when the perforated sheet is viewed in plan, and the area of each through hole are 7.0 mm 2
  • the adhesive sheet having the shape of Embodiment 1 shown in FIGS. 51 and 52 was obtained in the same manner as in Example 1 except that the opening ratio was 10%.
  • the entire adhesive sheet had a diameter of 200 mm and a thickness of 100 ⁇ m.
  • the diameter of the second layer was 197 mm, and the thickness of the second layer was 1 ⁇ m.
  • the thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 99 micrometers.
  • Comparative Example 1 A first adhesive solution was obtained in the same manner as in Example 1 except that the composition according to Table 7 was followed. The first adhesive solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a single-layer adhesive sheet made of the first adhesive. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 ⁇ m.
  • Examples 1 and 3 The perforated sheets of Examples 1 and 3 were bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a perforated sheet with a silicon wafer.
  • a perforated sheet with a silicon wafer was processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. .
  • the results are shown in Table 7.
  • Example 2 The aluminum mesh was bonded to an 8-inch silicon wafer to obtain an aluminum mesh with a silicon wafer.
  • the obtained aluminum mesh with a silicon wafer was processed into a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corp., Autograph AGS-H). went. The results are shown in Table 7.
  • a second layer (a second layer comprising a perforated sheet or an aluminum mesh and a first adhesive filled in the through holes) is cut out from the adhesive sheet, and the cut second layer is cut into an 8-inch silicon wafer. And imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
  • a second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was. The results are shown in Table 7.

Abstract

The objective of the present invention is to provide an adhesive sheet that is for semiconductor device production, can be firmly affixed to the pedestal of a semiconductor wafer, and is such that the pedestal is easily separated from the semiconductor wafer. The present invention pertains to the adhesive sheet for semiconductor device production and used for affixing a semiconductor wafer to a pedestal, wherein the adhesive sheet has a first adhesive layer and a second layer having a lower adhesive strength than the first adhesive layer, and at least the peripheral section of the adhesive sheet for semiconductor device production is formed from a first adhesive layer.

Description

半導体装置製造用接着シート、半導体装置、及び半導体装置の製造方法Adhesive sheet for manufacturing semiconductor device, semiconductor device, and method for manufacturing semiconductor device
第1の本発明は、半導体装置製造用接着シート、半導体装置、及び半導体装置の製造方法に関する。 The first aspect of the present invention relates to an adhesive sheet for manufacturing a semiconductor device, a semiconductor device, and a method for manufacturing the semiconductor device.
従来、半導体装置の製造工程において、台座上に半導体ウェハを仮固定した後、半導体ウェハに対してバックグラインドなどの所定の処理を行い、その後、半導体ウェハから台座を分離するといった工程が行なわれることがある。このような工程では、半導体ウェハから台座を容易に分離できることが重要である。 Conventionally, in a semiconductor device manufacturing process, after a semiconductor wafer is temporarily fixed on a pedestal, a predetermined process such as back grinding is performed on the semiconductor wafer, and then the pedestal is separated from the semiconductor wafer. There is. In such a process, it is important that the pedestal can be easily separated from the semiconductor wafer.
台座上に半導体ウェハを仮固定する方法として、液状の接着剤を使用することが知られている。液状の接着剤はスピンコートにより半導体ウェハ又は台座に塗布される。 As a method for temporarily fixing a semiconductor wafer on a pedestal, it is known to use a liquid adhesive. The liquid adhesive is applied to the semiconductor wafer or the pedestal by spin coating.
特許文献1には、第1基板としてのデバイスウェハと第2基板としてのキャリアー基板とを強い接着結合を形成しない充填層を介して圧着するとともに、充填層の周縁に対して接合素材を充填して硬化することによりエッジボンドを形成して、第1基板と第2基板とを接着する方法が開示されている。 In Patent Document 1, a device wafer as a first substrate and a carrier substrate as a second substrate are pressure-bonded through a filling layer that does not form a strong adhesive bond, and a bonding material is filled into the periphery of the filling layer. A method of forming an edge bond by curing and bonding the first substrate and the second substrate is disclosed.
また、特許文献2には、イミド、アミドイミドおよびアミドイミド-シロキサンのポリマーおよびオリゴマーからなる群の中から選択される、オリゴマーおよびポリマーからなる群の中から選択される化合物を含む接合用組成物層を介して第1の基板と第2の基板とを接合する方法が開示されている。 Patent Document 2 discloses a bonding composition layer containing a compound selected from the group consisting of oligomers and polymers, selected from the group consisting of polymers and oligomers of imides, amidoimides and amidoimide-siloxanes. A method of joining the first substrate and the second substrate via the above is disclosed.
特表2011-510518号公報Special table 2011-510518 gazette 特表2010-531385号公報Special table 2010-53385 gazette
特許文献1に記載の充填層や特許文献2に記載の接合用組成物層は、スピンコート等により塗布されている。しかしながら、接着に必要な厚さ10μm以上の層を塗布により形成すると、一般的に塗布面が粗くなり、凹凸追従性が悪く、所望の接着力が得られず、半導体ウェハを台座に充分に固定できない場合がある。 The filling layer described in Patent Document 1 and the bonding composition layer described in Patent Document 2 are applied by spin coating or the like. However, if a layer with a thickness of 10 μm or more necessary for adhesion is formed by coating, the coated surface is generally rough, the unevenness followability is poor, the desired adhesive force cannot be obtained, and the semiconductor wafer is sufficiently fixed to the pedestal. There are cases where it is not possible.
また、スピンコートにより塗布する場合、材料の大半が無駄になるといった問題がある。また、材料が接着用の粘度の高いものであるため、スピンコーターの汚れを取り除くには、労力を要する。 In addition, when applying by spin coating, there is a problem that most of the material is wasted. In addition, since the material has a high viscosity for bonding, labor is required to remove the dirt on the spin coater.
第1の本発明は前記問題点に鑑みなされたものであり、半導体ウェハを台座に強固に固定できるとともに、半導体ウェハから台座を分離し易い半導体装置製造用接着シートを提供することにある。また、該半導体装置製造用接着シートを用いた半導体装置、及び半導体装置の製造方法を提供することにある。 The first aspect of the present invention has been made in view of the above problems, and it is an object of the present invention to provide an adhesive sheet for manufacturing a semiconductor device that can firmly fix a semiconductor wafer to a pedestal and easily separate the pedestal from the semiconductor wafer. Another object of the present invention is to provide a semiconductor device using the adhesive sheet for manufacturing a semiconductor device and a method for manufacturing the semiconductor device.
本願発明者は、下記の構成を採用することにより、前記の課題を解決できることを見出して第1の本発明を完成させるに至った。 The inventor of the present application has found that the above problem can be solved by adopting the following configuration, and has completed the first present invention.
すなわち、第1の本発明は、半導体ウェハを台座に固定するために用いられる半導体装置製造用接着シートであって、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、少なくとも前記半導体装置製造用接着シートの周辺部が前記第1接着剤層により形成されている半導体装置製造用接着シートに関する。 That is, the first aspect of the present invention is an adhesive sheet for manufacturing a semiconductor device used for fixing a semiconductor wafer to a pedestal, and includes a first adhesive layer and a second adhesive force lower than that of the first adhesive layer. And at least a peripheral portion of the adhesive sheet for manufacturing a semiconductor device is formed of the first adhesive layer.
前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。さらに、スピンコートのように材料を無駄にすることがない。また、シート状であるため簡便に使用できる。 Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
また、前記接着シートの周辺部は、前記第1接着剤層により形成されている。第2の層と比較して接着力の高い第1接着剤層が周辺部に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
また、第1接着剤層のみではなく、第1接着剤層よりも接着力の低い第2の層を有するため、第1接着剤層の接着力さえ低下させれば、外力により、半導体ウェハから台座を容易に分離できる。
第1接着剤層の接着力を低下させる方法としては、溶剤により第1接着剤層を溶解させて接着力を低下させる方法、第1接着剤層に、カッターやレーザー等により物理的な切り込みを入れて接着力を低下させる方法、加熱により接着力が低下する材料で第1接着剤層を形成しておき、加熱により接着力を低下させる方法等を挙げることができる。前記接着シートは第1接着剤層が接着シートにおける周辺部に形成されているため、第1接着剤層を溶剤により溶解させたり、カッターやレーザー等により物理的に切り込みを入れたりして、第1接着剤層の接着力を低下させ易く、半導体ウェハから台座を分離し易い。
Moreover, the peripheral part of the said adhesive sheet is formed of the said 1st adhesive bond layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
Moreover, since it has not only the 1st adhesive layer but the 2nd layer whose adhesive force is lower than the 1st adhesive layer, if even the adhesive force of the 1st adhesive layer is lowered, it will be removed from the semiconductor wafer by external force. The pedestal can be easily separated.
As a method for reducing the adhesive strength of the first adhesive layer, a method of reducing the adhesive strength by dissolving the first adhesive layer with a solvent, a physical cutting with a cutter, laser or the like in the first adhesive layer. Examples thereof include a method for reducing the adhesive strength by heating, a method for forming the first adhesive layer with a material whose adhesive strength decreases by heating, and a method for decreasing the adhesive strength by heating. Since the first adhesive layer is formed in the peripheral portion of the adhesive sheet, the first adhesive layer is dissolved by a solvent, or physically cut by a cutter or a laser, It is easy to reduce the adhesive force of one adhesive layer, and to easily separate the pedestal from the semiconductor wafer.
第1の本発明において、第1接着剤層の接着力、及び第2の層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、第1接着剤層が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。第2の層が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the first aspect of the present invention, the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are the 90 ° peel peeling from the silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. I say power. In addition, when a 1st adhesive bond layer is what adhere | attaches by performing imidation, thermosetting, etc., the 90 degree peel peel force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer. Say. When the second layer is bonded by imidization, thermosetting, or the like, it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
前記接着シートは、前記周辺部よりも内側の中央部が、前記第1接着剤層と前記第2の層との積層により形成されていることが好ましい。前記構成によれば、第1接着剤層のみが表出している面では、半導体ウェハ又は台座を強固に固定できる。また、中央部は、第1接着剤層と第2の層との積層により形成されているため、中央部は、第1接着剤層のみで形成されている周辺部よりも、相対的に接着力が低い。従って、周辺部の接着力を少なくとも低下させれば、外力により、半導体ウェハから台座を容易に分離できる。また、第2の層が台座と接する場合、接着シートを台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。 In the adhesive sheet, it is preferable that a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer. According to the said structure, a semiconductor wafer or a base can be firmly fixed in the surface which only the 1st adhesive bond layer has exposed. In addition, since the central portion is formed by stacking the first adhesive layer and the second layer, the central portion is relatively bonded to the peripheral portion formed only by the first adhesive layer. Power is low. Therefore, the base can be easily separated from the semiconductor wafer by an external force if at least the adhesive strength of the peripheral portion is reduced. Further, when the second layer is in contact with the pedestal, the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
前記接着シートは、前記周辺部よりも内側の中央部が、前記第2の層により形成されていることも好ましい。前記構成によれば、中央部が第2の層により形成されているため、第1接着剤層の接着力を低下させれば、外力により、半導体ウェハから台座を容易に分離できる。また、第2の層が台座と接するため、接着シートを台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。 In the adhesive sheet, it is also preferable that a central portion inside the peripheral portion is formed by the second layer. According to the said structure, since the center part is formed with the 2nd layer, if the adhesive force of a 1st adhesive bond layer is reduced, a base can be easily isolate | separated from a semiconductor wafer by external force. Further, since the second layer is in contact with the pedestal, the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
前記周辺部及び前記中央部にわたって、前記第1接着剤層よりも接着力の低い第3の層が形成されていることが好ましい。第1接着剤層よりも接着力の低い第3の層が表出している面を半導体ウェハに貼り付けた場合、半導体ウェハから接着シートを容易に剥離できる。また、半導体ウェハの糊残りを無くすことができ、半導体ウェハの洗浄工程を省略できる。 It is preferable that a third layer having a lower adhesive force than the first adhesive layer is formed over the peripheral portion and the central portion. When the surface on which the third layer having a lower adhesive strength than the first adhesive layer is exposed is attached to the semiconductor wafer, the adhesive sheet can be easily peeled from the semiconductor wafer. Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
第1の本発明はまた、前記半導体装置製造用接着シートを用いて得られる半導体装置に関する。 The first aspect of the present invention also relates to a semiconductor device obtained using the adhesive sheet for manufacturing a semiconductor device.
第1の本発明はまた、前記半導体装置製造用接着シートを用いて半導体ウェハを台座に固定する工程と、前記半導体ウェハから前記台座を分離する工程とを含む半導体装置の製造方法に関する。 The first aspect of the present invention also relates to a method for manufacturing a semiconductor device, comprising: a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device; and a step of separating the pedestal from the semiconductor wafer.
第2-1の本発明は、半導体ウェハを台座に固定するために用いられる半導体装置製造用接着シートであって、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とが積層されている半導体装置製造用接着シートに関する。 The 2-1 of the present invention is an adhesive sheet for manufacturing a semiconductor device used for fixing a semiconductor wafer to a pedestal, and includes a first adhesive layer and a second adhesive layer having an adhesive force lower than that of the first adhesive layer. The present invention relates to an adhesive sheet for manufacturing a semiconductor device.
前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。さらに、スピンコートのように材料を無駄にすることがない。また、シート状であるため簡便に使用できる。 Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
また、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とが積層されている。第1接着剤層を有するため半導体ウェハを台座に良好に固定できる。第1接着剤層よりも接着力の低い第2の層を有するため、外力により、半導体ウェハから台座を容易に分離できる。 Moreover, the 1st adhesive bond layer and the 2nd layer whose adhesive force is lower than the said 1st adhesive bond layer are laminated | stacked. Since it has a 1st adhesive bond layer, a semiconductor wafer can be favorably fixed to a base. Since the second layer having a lower adhesive force than the first adhesive layer is provided, the pedestal can be easily separated from the semiconductor wafer by an external force.
第2-1の本発明において、第1接着剤層の接着力、及び第2の層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、イミド化や熱硬化等を行なうことにより半導体ウェハを台座に固定する接着シートにおいては、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the 2-1st aspect of the present invention, the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. Refers to peel strength. In addition, in the adhesive sheet which fixes a semiconductor wafer to a base by performing imidation, thermosetting, etc., the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to a silicon wafer is said. Specifically, it can be measured by the method described in the examples.
第2-1の本発明はまた、前記半導体装置製造用接着シートを用いて半導体ウェハを台座に固定する工程と、前記半導体ウェハから前記台座を分離する工程とを含む半導体装置の製造方法に関する。 The 2-1st aspect of the present invention also relates to a method for manufacturing a semiconductor device, including a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device, and a step of separating the pedestal from the semiconductor wafer.
前記半導体装置製造用接着シートを用いて前記半導体ウェハを前記台座に固定する工程は、前記半導体ウェハを前記第1接着剤層に貼り付け、前記台座を前記第2の層に貼り付けることにより、前記半導体ウェハを前記台座に固定する工程であることが好ましい。 The step of fixing the semiconductor wafer to the pedestal using the adhesive sheet for manufacturing a semiconductor device includes attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer. Preferably, the step of fixing the semiconductor wafer to the pedestal.
第1接着剤層は、接着力が第2の層より高く、半導体ウェハ表面などの凹凸追従性に優れる。前記構成によれば、第1接着剤層が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が第1接着剤層より低い第2の層が台座と接するため、接着シートを台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 The first adhesive layer has a higher adhesive force than the second layer, and is excellent in unevenness followability such as the surface of a semiconductor wafer. According to the said structure, since a 1st adhesive bond layer can track the unevenness | corrugation on the surface of a semiconductor wafer, a semiconductor wafer can be favorably fixed to a base. On the other hand, since the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
第2-2の本発明は、接着シート(a)に半導体ウェハを貼り付ける工程(A)と、接着シート(b)に台座を貼り付ける工程(B)と、前記工程(A)により得られた接着シート(a)付き半導体ウェハの前記接着シート(a)、及び前記工程(B)により得られた接着シート(b)付き台座の前記接着シート(b)を貼り合わせる工程(C)とを含み、前記接着シート(a)及び(b)の一方の接着力が、他方より低い半導体装置の製造方法に関する。 The 2-2 of the present invention is obtained by the step (A) of attaching a semiconductor wafer to the adhesive sheet (a), the step (B) of attaching a base to the adhesive sheet (b), and the step (A). Bonding the adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) (C) In addition, the present invention relates to a method for manufacturing a semiconductor device in which one adhesive force of the adhesive sheets (a) and (b) is lower than the other.
シート状の前記接着シート(a)及び(b)を使用するため、スピンコートのように材料を無駄にすることがない。 Since the sheet-like adhesive sheets (a) and (b) are used, materials are not wasted unlike spin coating.
また、前記接着シート(a)及び(b)の一方の接着力が、他方より低い。このため、半導体ウェハから台座を分離し易い。また、相対的に接着力が高い接着シートを使用するため、半導体ウェハを台座に良好に固定できる。 Moreover, one adhesive force of the said adhesive sheet (a) and (b) is lower than the other. For this reason, it is easy to separate the pedestal from the semiconductor wafer. In addition, since the adhesive sheet having a relatively high adhesive force is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
第2-2の本発明において、接着シート(a)の接着力、及び接着シート(b)の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、接着シート(a)及び(b)が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the 2-2 of the present invention, the adhesive strength of the adhesive sheet (a) and the adhesive strength of the adhesive sheet (b) are 90 ° C. on a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force. In the case where the adhesive sheets (a) and (b) are bonded by imidization or thermosetting, 90 ° in a state fixed to the silicon wafer (for example, after imidization or thermosetting). Refers to peel strength. Specifically, it can be measured by the method described in the examples.
前記接着シート(b)の接着力が前記接着シート(a)より低いことが好ましい。 It is preferable that the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
前記構成によれば、接着シート(a)は、接着力が接着シート(b)より高く、半導体ウェハ表面などの凹凸追従性に優れる。接着シート(a)が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が接着シート(a)より低い接着シート(b)が台座と接するため、接着シート(b)を台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 According to the said structure, an adhesive sheet (a) has higher adhesive force than an adhesive sheet (b), and is excellent in uneven | corrugated followable | trackability, such as a semiconductor wafer surface. Since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal. On the other hand, since the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
第3の本発明は、仮止め用シートの一方の面に半導体ウェハを貼り付ける工程(A)、前記仮止め用シートの他方の面にベベル部を有する台座を貼り付ける工程(B)、及び前記仮止め用シートと前記台座の前記ベベル部との間に、前記仮止めシートよりも接着力が高い接着剤層を形成して、前記仮止め用シートを前記台座に固定する工程(C)を含む半導体装置の製造方法に関する。 The third aspect of the present invention includes a step (A) of attaching a semiconductor wafer to one surface of the temporary fixing sheet, a step (B) of attaching a pedestal having a beveled portion to the other surface of the temporary fixing sheet, and (C) a step of forming an adhesive layer having a higher adhesive force than the temporary fixing sheet between the temporary fixing sheet and the bevel portion of the pedestal, and fixing the temporary fixing sheet to the pedestal. The present invention relates to a method for manufacturing a semiconductor device including:
第3の本発明で使用する仮止め用シートはシート状であり、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。このため、仮止め用シートは半導体ウェハと良好に接着できる。また、仮止めシートよりも接着力が高い接着剤層を用いるため、仮止め用シートを台座に強固に固定できる。この結果、半導体ウェハを台座に良好に固定できる。 The temporary fixing sheet used in the third aspect of the present invention is in the form of a sheet, and the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. For this reason, the temporary fixing sheet can be satisfactorily bonded to the semiconductor wafer. Moreover, since the adhesive layer having higher adhesive strength than the temporary fixing sheet is used, the temporary fixing sheet can be firmly fixed to the pedestal. As a result, the semiconductor wafer can be satisfactorily fixed to the pedestal.
また、第3の本発明では、仮止め用シートと台座のベベル部との間に、仮止めシートよりも接着力が高い接着剤層を形成して、仮止め用シートを台座に固定する。つまり、接着剤層が仮止め用シートを台座に固定する役割を果たす。
第3の本発明では、接着剤層が仮止め用シートと台座のベベル部との間に形成されるため、仮止め用シートに切り込みを入れたり、接着剤層の接着力を低下させたりし易く、分離を容易に行うことができる。
In the third aspect of the present invention, an adhesive layer having a higher adhesive force than the temporary fixing sheet is formed between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing sheet is fixed to the pedestal. That is, the adhesive layer plays a role of fixing the temporary fixing sheet to the base.
In the third invention, since the adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal, the temporary fixing sheet may be cut or the adhesive force of the adhesive layer may be reduced. It is easy and separation can be performed easily.
第3の本発明において、仮止め用シートの接着力、及び接着剤層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、仮止め用シートが、イミド化や熱硬化等を行ない接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。接着剤層が、イミド化や熱硬化等を行ない接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the third aspect of the present invention, the adhesive strength of the temporary fixing sheet and the adhesive strength of the adhesive layer are the 90 ° peel peel force on a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peel rate of 300 mm / min. Say. In addition, when the sheet | seat for temporary fixing performs imidation, thermosetting, etc. and makes it adhere | attach, the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer is said. In the case where the adhesive layer is bonded by imidization or thermosetting, it means 90 ° peel peel force in a state where it is fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
前記工程(C)の後、前記仮止め用シートから前記台座を分離する工程を含むことが好ましい。 After the step (C), it is preferable to include a step of separating the pedestal from the temporary fixing sheet.
第4-1の本発明は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が前記第1接着剤層と前記第2の層との積層により形成されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第2の層に達するまで前記第1接着剤層に切り込みを入れ、前記半導体ウェハから前記台座を分離する工程とを含むことを特徴とする半導体装置の製造方法に関する。 The 4-1 of the present invention includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer. A step of preparing an adhesive sheet in which a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer; and a semiconductor wafer is mounted using the adhesive sheet And a step of cutting the first adhesive layer until reaching the second layer to separate the pedestal from the semiconductor wafer.
第4-1の本発明では、まず、接着シートを準備する。前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。さらに、スピンコートのように材料を無駄にすることがない。また、シート状であるため簡便に使用できる。 In the 4-1 of the present invention, first, an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
接着シートの周辺部は、前記第1接着剤層により形成されている。第2の層と比較して接着力の高い第1接着剤層が周辺部に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
また、周辺部よりも内側の中央部が第1接着剤層と第2の層との積層により形成されている。第1接着剤層のみが表出している面では、半導体ウェハ又は台座を強固に固定できる。また、第2の層が台座と接する場合、接着シートを台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。
The peripheral part of the adhesive sheet is formed by the first adhesive layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
Moreover, the center part inside a peripheral part is formed by lamination | stacking with a 1st adhesive bond layer and a 2nd layer. On the surface where only the first adhesive layer is exposed, the semiconductor wafer or the pedestal can be firmly fixed. Further, when the second layer is in contact with the pedestal, the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
分離工程においては、第1接着剤層を切断する。これにより、第1接着剤層の連続性を破壊でき、半導体ウェハから台座を容易に分離できる。また、接着シートはその周辺部に第1接着剤層が形成されているため、第1接着剤層を切断し易い。 In the separation step, the first adhesive layer is cut. Thereby, the continuity of a 1st adhesive bond layer can be destroyed and a base can be easily isolate | separated from a semiconductor wafer. Moreover, since the 1st adhesive bond layer is formed in the peripheral part of the adhesive sheet, it is easy to cut | disconnect a 1st adhesive bond layer.
第4-1の本発明において、第1接着剤層の接着力、及び第2の層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、第1接着剤層が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。第2の層が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the 4-1 of the present invention, the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. Refers to peel strength. In addition, when a 1st adhesive bond layer is what adhere | attaches by performing imidation, thermosetting, etc., the 90 degree peel peel force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer. Say. When the second layer is bonded by imidization, thermosetting, or the like, it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
第4-2の本発明は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が、前記第2の層により形成されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第2の層に達するまで前記第1接着剤層に切り込みを入れ、前記半導体ウェハから前記台座を分離する工程とを含むことを特徴とする半導体装置の製造方法に関する。 The present invention of No. 4-2 includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer. A step of preparing an adhesive sheet in which a central portion inside the peripheral portion is formed by the second layer, a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet, and the second And a step of cutting the first adhesive layer until reaching the layer, and separating the pedestal from the semiconductor wafer.
第4-2の本発明では、まず、接着シートを準備する。前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。さらに、スピンコートのように材料を無駄にすることがない。また、シート状であるため簡便に使用できる。 In the 4-2 of the present invention, first, an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
接着シートの周辺部は、前記第1接着剤層により形成されている。第2の層と比較して接着力の高い第1接着剤層が周辺部に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
また、前記周辺部よりも内側の中央部が、前記第2の層により形成されている。第2の層が台座と接するため、接着シートを剥離し易く、糊残りが少なく、台座を再利用しやすい。
The peripheral part of the adhesive sheet is formed by the first adhesive layer. Since the first adhesive layer having a higher adhesive force than the second layer is present in the peripheral portion, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
In addition, a central portion inside the peripheral portion is formed by the second layer. Since the second layer is in contact with the pedestal, the adhesive sheet is easily peeled off, the adhesive residue is small, and the pedestal is easy to reuse.
分離工程においては、第1接着剤層を切断する。これにより、第1接着剤層の連続性を破壊でき、半導体ウェハから台座を容易に分離できる。また、接着シートはその周辺部に第1接着剤層が形成されているため、第1接着剤層に切り込みを入れ易い。 In the separation step, the first adhesive layer is cut. Thereby, the continuity of a 1st adhesive bond layer can be destroyed and a base can be easily isolate | separated from a semiconductor wafer. Moreover, since the 1st adhesive bond layer is formed in the peripheral part of the adhesive sheet, it is easy to make a cut | incision in a 1st adhesive bond layer.
第4-2の本発明において、第1接着剤層の接着力、及び第2の層の接着力の定義は、第4-1の本発明の場合と同様である。 In the 4-2th invention, the definition of the adhesive force of the first adhesive layer and the adhesive force of the second layer is the same as in the case of the 4-1 invention.
第4-3の本発明は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とが積層されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第1接着剤層と前記第2の層との境界に切り込みを入れて、前記第1接着剤層と前記第2の層を分離する工程とを含む半導体装置の製造方法に関する。 The present invention of No. 4-3 provides a step of preparing an adhesive sheet in which a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated, and using the adhesive sheet Fixing the semiconductor wafer to the pedestal, and cutting the boundary between the first adhesive layer and the second layer to separate the first adhesive layer and the second layer. The present invention relates to a method for manufacturing a semiconductor device.
第4-3の本発明では、まず、接着シートを準備する。前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。さらに、スピンコートのように材料を無駄にすることがない。また、シート状であるため簡便に使用できる。 In the fourth to third present invention, first, an adhesive sheet is prepared. Since the adhesive sheet is in the form of a sheet, the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. Furthermore, the material is not wasted like spin coating. Moreover, since it is a sheet form, it can be used simply.
前記接着シートは、第1接着剤層と、接着力が第1接着剤層より低い第2の層との積層体である。固定工程では、これを用いて半導体ウェハを台座に固定する。第1接着剤層を有する接着シートを用いるため半導体ウェハを台座に良好に固定できる。 The said adhesive sheet is a laminated body of a 1st adhesive bond layer and a 2nd layer whose adhesive force is lower than a 1st adhesive bond layer. In the fixing step, this is used to fix the semiconductor wafer to the pedestal. Since the adhesive sheet having the first adhesive layer is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
分離工程では、第1接着剤層と、接着力が第1接着剤層より低い第2の層との境界に切り込みを入れる。第2の層の接着力が第1接着剤層より低いため、切り込み部分を起点として第1接着剤層と第2の層を容易に分離できる。 In the separation step, a cut is made at the boundary between the first adhesive layer and the second layer having a lower adhesive force than the first adhesive layer. Since the adhesive force of the second layer is lower than that of the first adhesive layer, the first adhesive layer and the second layer can be easily separated starting from the cut portion.
第4-3の本発明において、第1接着剤層の接着力、及び第2の層の接着力の定義は、第4-1の本発明の場合と同様である。 In the 4th invention, the definitions of the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are the same as in the case of the 4th invention.
前記接着シートを用いて前記半導体ウェハを前記台座に固定する工程は、前記半導体ウェハを前記第1接着剤層に貼り付け、前記台座を前記第2の層に貼り付けることにより、前記半導体ウェハを前記台座に固定する工程であることが好ましい。 The step of fixing the semiconductor wafer to the pedestal using the adhesive sheet includes attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer. It is preferable that it is the process of fixing to the said base.
第1接着剤層は、接着力が第2の層より高く、半導体ウェハ表面などの凹凸追従性に優れる。前記構成によれば、第1接着剤層が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が第1接着剤層より低い第2の層が台座と接するため、接着シートを台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 The first adhesive layer has a higher adhesive force than the second layer, and is excellent in unevenness followability such as the surface of a semiconductor wafer. According to the said structure, since a 1st adhesive bond layer can track the unevenness | corrugation on the surface of a semiconductor wafer, a semiconductor wafer can be favorably fixed to a base. On the other hand, since the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
第4-4の本発明は、接着シート(a)に半導体ウェハを貼り付ける工程(A)と、接着シート(b)に台座を貼り付ける工程(B)と、前記工程(A)により得られた接着シート(a)付き半導体ウェハの前記接着シート(a)、及び前記工程(B)により得られた接着シート(b)付き台座の前記接着シート(b)を貼り合わせ、前記台座、前記接着シート(b)、前記接着シート(a)及び前記半導体ウェハが順に積層された積層体を得る工程(C)と、前記積層体における前記接着シート(a)と前記接着シート(b)との境界に切り込みを入れて、前記接着シート(a)と前記接着シート(b)を分離する工程(D)とを含み、前記接着シート(a)及び(b)の一方の接着力が、他方より低い半導体装置の製造方法に関する。 The 4-4th aspect of the present invention is obtained by the step (A) of attaching a semiconductor wafer to the adhesive sheet (a), the step (B) of attaching a pedestal to the adhesive sheet (b), and the step (A). The adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) are bonded together, and the base and the adhesive Step (C) for obtaining a laminate in which the sheet (b), the adhesive sheet (a), and the semiconductor wafer are sequentially laminated, and the boundary between the adhesive sheet (a) and the adhesive sheet (b) in the laminate A step (D) for separating the adhesive sheet (a) and the adhesive sheet (b), wherein one adhesive force of the adhesive sheets (a) and (b) is lower than the other. The present invention relates to a method for manufacturing a semiconductor device.
シート状の接着シート(a)及び(b)を使用するため、スピンコートのように材料を無駄にすることがない。 Since the sheet-like adhesive sheets (a) and (b) are used, the material is not wasted like spin coating.
積層体を得る工程では、接着力の低い接着シートだけを使用するのではなく、相対的に接着力が高い接着シートを併用するため、半導体ウェハを台座に良好に固定できる。 In the step of obtaining the laminate, not only an adhesive sheet having a low adhesive strength but also an adhesive sheet having a relatively high adhesive strength is used together, so that the semiconductor wafer can be satisfactorily fixed to the pedestal.
分離工程では、積層体における接着シート(a)と接着シート(b)との境界に切り込みを入れる。接着シート(a)及び(b)の一方の接着力が、他方より低いため、切り込み部分を起点として接着シート(a)と(b)を容易に分離できる。 In the separation step, a cut is made at the boundary between the adhesive sheet (a) and the adhesive sheet (b) in the laminate. Since the adhesive strength of one of the adhesive sheets (a) and (b) is lower than the other, the adhesive sheets (a) and (b) can be easily separated from the notched portion.
第4-4の本発明において、接着シート(a)の接着力、及び接着シート(b)の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、接着シート(a)が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。接着シート(b)が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the 4-4th aspect of the present invention, the adhesive strength of the adhesive sheet (a) and the adhesive strength of the adhesive sheet (b) are 90 ° with respect to a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force. When the adhesive sheet (a) is bonded by imidization or thermosetting, the 90 ° peel peel force in a state fixed to the silicon wafer (for example, after imidization or after thermosetting) Say. In the case where the adhesive sheet (b) is bonded by imidization or thermosetting, it means 90 ° peel peeling force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
前記接着シート(b)の接着力が前記接着シート(a)より低いことが好ましい。 It is preferable that the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a).
前記構成によれば、接着シート(a)は、接着力が接着シート(b)より高く、半導体ウェハ表面などの凹凸追従性に優れる。接着シート(a)が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が接着シート(a)より低い接着シート(b)が台座と接するため、接着シート(b)を台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 According to the said structure, an adhesive sheet (a) has higher adhesive force than an adhesive sheet (b), and is excellent in uneven | corrugated followable | trackability, such as a semiconductor wafer surface. Since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal. On the other hand, since the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and the pedestal is easy to reuse.
第4-5の本発明は、仮止め用シートの一方の面に半導体ウェハを貼り付ける工程(I)と、
前記仮止め用シートの他方の面にベベル部を有する台座を貼り付ける工程(II)と、前記仮止め用シートと前記台座の前記ベベル部との間に、前記仮止めシートよりも接着力が高い仮止め用接着剤層を形成して、前記仮止め用シートを前記台座に固定する工程(III)と、前記工程(I)~(III)の後、前記仮止め用シートに切り込みを入れて前記仮止め用シートから前記台座を分離する工程(IV)とを含む半導体装置の製造方法に関する。
The 4-5th aspect of the present invention includes a step (I) of attaching a semiconductor wafer to one surface of the temporary fixing sheet;
The step (II) of attaching a pedestal having a beveled portion to the other surface of the temporary fixing sheet, and the adhesive strength between the temporary fixing sheet and the beveled portion of the pedestal is higher than that of the temporary fixing sheet. Forming a high temporary adhesive layer and fixing the temporary fixing sheet to the pedestal (III); and after the steps (I) to (III), cutting the temporary fixing sheet And a step (IV) of separating the pedestal from the temporary fixing sheet.
仮止め用シートはシート状であり、スピンコートにより接着剤層を形成する場合に比べ、表面を均一に形成できる。このため、仮止め用シートは半導体ウェハと良好に接着できる。また、仮止めシートよりも接着力が高い仮止め用接着剤層を用いるため、仮止め用シートを台座に強固に固定できる。したがって、半導体ウェハを台座に良好に固定できる。 The temporary fixing sheet has a sheet shape, and the surface can be formed more uniformly than when the adhesive layer is formed by spin coating. For this reason, the temporary fixing sheet can be satisfactorily bonded to the semiconductor wafer. In addition, since the temporary fixing adhesive layer having higher adhesive strength than the temporary fixing sheet is used, the temporary fixing sheet can be firmly fixed to the pedestal. Accordingly, the semiconductor wafer can be satisfactorily fixed to the pedestal.
工程(IV)においては、仮止め用シートに切り込みを入れる。これにより、仮止め用シートの連続性を破壊でき、仮止め用シートから台座を容易に分離できる。また、仮止め用接着剤層を仮止め用シートと台座のベベル部との間に形成するため、仮止め用シートに切り込みを入れ易い。 In step (IV), a cut is made in the temporary fixing sheet. Thereby, the continuity of the temporary fixing sheet can be destroyed, and the pedestal can be easily separated from the temporary fixing sheet. Further, since the temporary fixing adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal, it is easy to cut the temporary fixing sheet.
第4-5の本発明において、仮止め用シートの接着力、及び仮止め用接着剤層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、仮止め用シートが、イミド化や熱硬化等を行ない接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。仮止め用接着剤層が、イミド化や熱硬化等を行ない接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。 In the 4-5th aspect of the present invention, the adhesive strength of the temporary fixing sheet and the adhesive strength of the temporary adhesive layer are 90 ° to silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. ° Peel peeling force. In addition, when the sheet | seat for temporary fixing performs imidation, thermosetting, etc. and makes it adhere | attach, the 90 degree peel peeling force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer is said. When the temporary fixing adhesive layer is bonded by imidization or thermosetting, it means 90 ° peel peel force in a state of being fixed to a silicon wafer (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
第5の本発明は、半導体ウェハを台座に固定するために用いられる半導体装置製造用接着シートであって、第1接着剤層と、多数の貫通孔を有する構造体及び/又は不織布状の構造体を骨格とする第2の層とを有し、前記第2の層の接着力が、前記第1接着剤層の接着力より低い半導体装置製造用接着シートに関する。 5th this invention is the adhesive sheet for semiconductor device manufacture used in order to fix a semiconductor wafer to a base, Comprising: The structure and / or nonwoven fabric-like structure which have a 1st adhesive bond layer and many through-holes And a second layer having a body as a skeleton, wherein the adhesive strength of the second layer is lower than the adhesive strength of the first adhesive layer.
前記接着シートはシート状であるため、スピンコートのように材料を無駄にすることがない。また、スピンコーターの汚れを取り除く必要がなく装置メンテナンスが容易である。前記接着シートはシート状であるため、スピンコートにより接着剤層を形成する場合に比べ、第1接着剤層表面を均一に形成でき、第1接着剤層の接着力を良好なものにできる。 Since the adhesive sheet has a sheet shape, the material is not wasted unlike spin coating. In addition, it is not necessary to remove the dirt on the spin coater, and the apparatus maintenance is easy. Since the adhesive sheet is in the form of a sheet, the surface of the first adhesive layer can be formed more uniformly than when the adhesive layer is formed by spin coating, and the adhesive force of the first adhesive layer can be improved.
前記接着シートは第1接着剤層を有するため半導体ウェハを台座に良好に固定できる。一方、第1接着剤層よりも接着力の低い第2の層を有するため、外力により、半導体ウェハから台座を容易に分離できる。 Since the said adhesive sheet has a 1st adhesive bond layer, a semiconductor wafer can be favorably fixed to a base. On the other hand, since the second layer having a lower adhesive force than the first adhesive layer is provided, the pedestal can be easily separated from the semiconductor wafer by an external force.
また、第2の層は、多数の貫通孔を有する構造体及び/又は不織布状の構造体を骨格とする層であり、例えば、金網などのメッシュ、不織布などにより形成できる。このため、接着シートの製造にあたり接着材料として第1接着剤層の接着剤組成物を用意すればよく、特許文献1のように充填層とエッジボンドの2種類の接着剤を用意する必要がない。 The second layer is a layer having a structure having a large number of through holes and / or a non-woven structure as a skeleton, and can be formed of a mesh such as a wire mesh, a non-woven fabric, or the like. For this reason, what is necessary is just to prepare the adhesive composition of a 1st adhesive bond layer as an adhesive material in manufacture of an adhesive sheet, and it is not necessary to prepare two types of adhesives, a filling layer and an edge bond like patent document 1. .
第5の本発明において、第1接着剤層の接着力、及び第2の層の接着力とは、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力をいう。なお、第1接着剤層が、イミド化や熱硬化等を行なうことにより接着させるものである場合、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。第2の層についても同様である。具体的には実施例に記載の方法で測定できる。 In the fifth aspect of the present invention, the adhesive strength of the first adhesive layer and the adhesive strength of the second layer are: 90 ° peel peeling with respect to a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. I say power. In addition, when a 1st adhesive bond layer is what adhere | attaches by performing imidation, thermosetting, etc., the 90 degree peel peel force in the state (for example, after imidation or after thermosetting) fixed to the silicon wafer. Say. The same applies to the second layer. Specifically, it can be measured by the method described in the examples.
前記貫通孔及び前記不織布状の構造体の多孔が接着剤組成物により充填されていることが好ましい。この場合、接着剤組成物が半導体ウェハ又は台座と接触する面積を、貫通孔を有する構造体の開口率や不織布状の構造体の密度などによってコントロールでき、低接着力の第2の層を容易に形成できる。 It is preferable that the through holes and the pores of the nonwoven fabric-like structure are filled with an adhesive composition. In this case, the area where the adhesive composition comes into contact with the semiconductor wafer or the pedestal can be controlled by the aperture ratio of the structure having through holes, the density of the non-woven structure, etc. Can be formed.
前記半導体装置製造用接着シートの少なくとも周辺部が前記第1接着剤層により形成されていることが好ましい。
前記接着シートの周辺部が第1接着剤層により形成されているため、この部分において良好に固定できる。
It is preferable that at least a peripheral portion of the adhesive sheet for manufacturing a semiconductor device is formed by the first adhesive layer.
Since the peripheral part of the said adhesive sheet is formed of the 1st adhesive bond layer, it can fix favorably in this part.
前記周辺部よりも内側の中央部が、前記第1接着剤層と前記第2の層との積層により形成されていることが好ましい。
前記構成によれば、第1接着剤層のみからなる面で、半導体ウェハ又は台座を強固に固定できる。第1接着剤層及び第2の層を有する面で、半導体ウェハ又は台座を良好に固定できる。
また、前記接着シートは、第1接着剤層が周辺部に形成されているため、第1接着剤層を切断したり、第1接着剤層の接着力を低下させたりし易く、分離を容易に行うことができる。
It is preferable that a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer.
According to the said structure, a semiconductor wafer or a base can be firmly fixed by the surface which consists only of a 1st adhesive bond layer. The semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer and the second layer.
Further, since the first adhesive layer is formed in the peripheral portion of the adhesive sheet, it is easy to cut the first adhesive layer or to reduce the adhesive force of the first adhesive layer, and to be easily separated. Can be done.
前記接着シートは、前記周辺部よりも内側の中央部が、前記第2の層により形成されていることも好ましい。前記構成によれば、第1接着剤層及び第2の層を有する面で、半導体ウェハ又は台座を良好に固定できる。
また、前記接着シートは、第1接着剤層が周辺部に形成されているため、第1接着剤層を切断したり、第1接着剤層の接着力を低下させたりし易く、分離を容易に行うことができる。
In the adhesive sheet, it is also preferable that a central portion inside the peripheral portion is formed by the second layer. According to the said structure, a semiconductor wafer or a base can be favorably fixed by the surface which has a 1st adhesive bond layer and a 2nd layer.
Further, since the first adhesive layer is formed in the peripheral portion of the adhesive sheet, it is easy to cut the first adhesive layer or to reduce the adhesive force of the first adhesive layer, and to be easily separated. Can be done.
また、前記接着シートは、前記第1接着剤層と、前記第2の層との積層により形成されていることも好ましい。 The adhesive sheet is preferably formed by stacking the first adhesive layer and the second layer.
第5の本発明はまた、前記半導体装置製造用接着シートを用いて半導体ウェハを台座に固定する工程と、前記半導体ウェハから前記台座を分離する工程とを含む半導体装置の製造方法に関する。 The fifth aspect of the present invention also relates to a method for manufacturing a semiconductor device, comprising: a step of fixing a semiconductor wafer to a pedestal using the adhesive sheet for manufacturing a semiconductor device; and a step of separating the pedestal from the semiconductor wafer.
第1の本発明によれば、半導体ウェハを台座に強固に固定できるとともに、半導体ウェハから台座を容易に分離できる。 According to the first aspect of the present invention, the semiconductor wafer can be firmly fixed to the pedestal, and the pedestal can be easily separated from the semiconductor wafer.
第1の本発明の実施形態1の接着シートの断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet of Embodiment 1 of 1st this invention. 第1の本発明の実施形態1の接着シートの平面図である。It is a top view of the adhesive sheet of Embodiment 1 of the 1st present invention. 第1の本発明の実施形態2の接着シートの断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet of Embodiment 2 of 1st this invention. 第1の本発明の実施形態2の接着シートの平面図である。It is a top view of the adhesive sheet of Embodiment 2 of the 1st present invention. 第1の本発明の第3の層を備える接着シートの断面模式図である。It is a cross-sectional schematic diagram of an adhesive sheet provided with the 3rd layer of 1st this invention. 第1の本発明の第3の層を備える接着シートの断面模式図である。It is a cross-sectional schematic diagram of an adhesive sheet provided with the 3rd layer of 1st this invention. 第1の本発明の実施形態1の接着シートを用いて半導体ウェハを台座に固定した様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base using the adhesive sheet of Embodiment 1 of 1st this invention. 第2-1の本発明の実施形態1の接着シートの断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet of Embodiment 2-1 of the 2-1 of this invention. 第2-1の本発明の実施形態2の接着シートの断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet of Embodiment 2-1 of the 2-1 of this invention. 第2-1の本発明の実施形態1の接着シートに半導体ウェハを貼り付けた様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was affixed on the adhesive sheet of Embodiment 2-1 of the 2nd this invention. 第2-1の本発明の実施形態1の接着シートを用いて半導体ウェハを台座に固定した様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base using the adhesive sheet of Embodiment 2-1 of the 2nd this invention. 第2-2の本発明の接着シート(a)の断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet (a) of the 2-2 of the present invention. 第2-2の本発明の接着シート(a)に半導体ウェハを貼り付けた様子を示す模式図である。It is a schematic diagram showing a state where a semiconductor wafer is attached to the adhesive sheet (a) of the 2-2 of the present invention. 第2-2の本発明の接着シート(b)の断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet (b) of the 2-2 of the present invention. 第2-2の本発明の接着シート(b)に台座を貼り付けた様子を示す模式図である。It is a schematic diagram showing a state where a pedestal is attached to the adhesive sheet (b) of the 2-2 of the present invention. 第2-2の本発明の接着シート(a)及び(b)を用いて半導体ウェハを台座に固定した様子を示す模式図である。It is a schematic diagram showing a state in which a semiconductor wafer is fixed to a pedestal using the adhesive sheet (a) and (b) of the 2-2 of the present invention. 第3の本発明で使用できる仮止め用シートの断面図である。It is sectional drawing of the sheet | seat for temporary fixing which can be used by 3rd this invention. 仮止め用シートに半導体ウェハを貼り付けた様子を示す図である。It is a figure which shows a mode that the semiconductor wafer was affixed on the sheet | seat for temporary fixing. 仮止め用シートと台座のベベル部との間に、接着剤層を形成した様子を示す図である。It is a figure which shows a mode that the adhesive bond layer was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (a)は、仮止め用シートと台座のベベル部との間に、接着剤層を形成した様子を示す図である。(b)は、台座のベベル部周辺の拡大図である。(A) is a figure which shows a mode that the adhesive bond layer was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (B) is an enlarged view around the bevel portion of the pedestal. (a)は、仮止め用シートと台座のベベル部との間に、接着剤層を形成した様子を示す図である。(b)は、半導体ウェハのベベル部周辺の拡大図である。(A) is a figure which shows a mode that the adhesive bond layer was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (B) is an enlarged view of the periphery of the bevel portion of the semiconductor wafer. 仮止め用シートに切り込みを入れた様子を示す図である。It is a figure which shows a mode that it cut | incised into the sheet | seat for temporary fixing. 凹部を有する仮止め用シートの断面図である。It is sectional drawing of the sheet | seat for temporary fixing which has a recessed part. 第4-1の本発明で使用できる接着シートの断面模式図である。FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in (4-1) the present invention. 第4-1の本発明で使用できる接着シートの平面図である。FIG. 4 is a plan view of an adhesive sheet that can be used in the fourth embodiment of the present invention. 第4-1の本発明で使用できる接着シートの断面模式図である。FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in (4-1) the present invention. 第4-1の本発明において、半導体ウェハを台座に固定した様子を示す模式図である。In the 4-1 of this invention, it is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base. 第4-1の本発明において、第1接着剤層を切断した様子を示す模式図である。In the 4-1 of this invention, it is a schematic diagram which shows a mode that the 1st adhesive bond layer was cut | disconnected. 第4-2の本発明で使用できる接着シートの断面模式図である。FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in the 4-2th invention. 第4-2の本発明で使用できる接着シートの平面図である。It is a top view of the adhesive sheet which can be used by the 4-2th this invention. 第4-2の本発明で使用できる接着シートの断面模式図である。FIG. 4 is a schematic cross-sectional view of an adhesive sheet that can be used in the 4-2th invention. 第4-2の本発明において、第1接着剤層を切断した様子を示す模式図である。In the 4-2th present invention, it is a mimetic diagram showing signs that the 1st adhesive layer was cut. 第4-3の本発明で使用できる接着シートの断面模式図である。It is a cross-sectional schematic diagram of an adhesive sheet that can be used in the 4th aspect of the present invention. 第4-3の本発明で使用できる接着シートの断面模式図である。It is a cross-sectional schematic diagram of an adhesive sheet that can be used in the 4th aspect of the present invention. 第4-3の本発明において、接着シートに半導体ウェハを貼り付けた様子を示す模式図である。In the 4th-3rd aspect of this invention, it is a schematic diagram which shows a mode that the semiconductor wafer was affixed on the adhesive sheet. 第4-3の本発明において、半導体ウェハを台座に固定した様子を示す模式図である。FIG. 14 is a schematic diagram showing a state in which a semiconductor wafer is fixed to a pedestal in the fourth to third present invention. 第4-3の本発明において、第1接着剤層と第2の層との境界に切り込みを入れた様子を示す模式図である。FIG. 6 is a schematic diagram showing a state in which a cut is made at the boundary between the first adhesive layer and the second layer in the fourth to third present invention. 第4-4の本発明で使用できる接着シート(a)の断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet (a) that can be used in the 4th aspect of the present invention. 接着シート(a)に半導体ウェハを貼り付けた様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was affixed on the adhesive sheet (a). 第4-4の本発明で使用できる接着シート(b)の断面模式図である。It is a cross-sectional schematic diagram of the adhesive sheet (b) that can be used in the 4th aspect of the present invention. 接着シート(b)に台座を貼り付けた様子を示す模式図である。It is a schematic diagram which shows a mode that the base was affixed on the adhesive sheet (b). 接着シート(a)及び(b)を用いて半導体ウェハを台座に固定した様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base using the adhesive sheets (a) and (b). 接着シート(a)と接着シート(b)との境界に切り込みを入れた様子を示す模式図である。It is a schematic diagram which shows a mode that it cut | incised into the boundary of an adhesive sheet (a) and an adhesive sheet (b). 第4-5の本発明で使用できる仮止め用シートの断面図である。FIG. 6 is a cross-sectional view of a temporary fixing sheet that can be used in the fourth to fifth present inventions. 仮止め用シートに半導体ウェハを貼り付けた様子を示す図である。It is a figure which shows a mode that the semiconductor wafer was affixed on the sheet | seat for temporary fixing. 仮止め用シートと台座のベベル部との間に、仮止め用接着剤層を形成した様子を示す図である。It is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (a)は、仮止め用シートと台座のベベル部との間に、仮止め用接着剤層を形成した様子を示す図である。(b)は、台座のベベル部周辺の拡大図である。(A) is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (B) is an enlarged view around the bevel portion of the pedestal. (a)は、仮止め用シートと台座のベベル部との間に、仮止め用接着剤層を形成した様子を示す図である。(b)は、半導体ウェハのベベル部周辺の拡大図である。(A) is a figure which shows a mode that the adhesive layer for temporary fixing was formed between the sheet | seat for temporary fixing, and the bevel part of a base. (B) is an enlarged view of the periphery of the bevel portion of the semiconductor wafer. 仮止め用シートに切り込みを入れた様子を示す図である。It is a figure which shows a mode that it cut | incised into the sheet | seat for temporary fixing. 凹部を有する仮止め用シートの断面図である。It is sectional drawing of the sheet | seat for temporary fixing which has a recessed part. 第5の本発明の実施形態1の接着シートの断面図である。It is sectional drawing of the adhesive sheet of Embodiment 1 of 5th this invention. 第5の本発明の実施形態1の接着シートの平面図である。It is a top view of the adhesive sheet of Embodiment 1 of the 5th present invention. 多数の貫通孔を有する構造体の平面図である。It is a top view of the structure which has many through-holes. 第3の層を備える接着シートの断面図である。It is sectional drawing of an adhesive sheet provided with a 3rd layer. 第5の本発明の実施形態2の接着シートの断面図である。It is sectional drawing of the adhesive sheet of Embodiment 2 of 5th this invention. 第5の本発明の実施形態2の接着シートの平面図である。It is a top view of the adhesive sheet of Embodiment 2 of the 5th present invention. 第5の本発明の実施形態3の接着シートの断面図である。It is sectional drawing of the adhesive sheet of Embodiment 3 of 5th this invention. 第5の本発明の実施形態1の接着シートを用いて半導体ウェハを台座に固定した様子を示す模式図である。It is a schematic diagram which shows a mode that the semiconductor wafer was fixed to the base using the adhesive sheet of Embodiment 1 of 5th this invention.
<<第1の本発明>>
[接着シート]
第1の本発明の半導体装置製造用接着シートは、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、少なくとも前記半導体装置製造用接着シートの周辺部が前記第1接着剤層により形成されている。
<< First Present Invention >>
[Adhesive sheet]
The adhesive sheet for manufacturing a semiconductor device according to the first aspect of the present invention includes a first adhesive layer and a second layer having an adhesive force lower than that of the first adhesive layer, and at least the adhesive sheet for manufacturing a semiconductor device. A peripheral portion is formed by the first adhesive layer.
以下、第1の本発明の接着シートについて図面を参照しつつ説明する。 Hereinafter, the adhesive sheet of the first invention will be described with reference to the drawings.
図1は、実施形態1の接着シート5の断面模式図である。図1に示すように、接着シート5は、周辺部54が第1接着剤層50により形成されるとともに、周辺部54よりも内側の中央部53が、第1接着剤層50と第2の層51との積層により形成されている。すなわち、接着シート5は、第2の層51と、第2の層51上に第2の層51の上面及び側面を覆う態様で積層された第1接着剤層50とを有する。第2の層51の接着力は、第1接着剤層50の接着力よりも低い。 FIG. 1 is a schematic cross-sectional view of the adhesive sheet 5 of the first embodiment. As shown in FIG. 1, the adhesive sheet 5 has a peripheral portion 54 formed of a first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has a first adhesive layer 50 and a second adhesive layer 50. It is formed by stacking with the layer 51. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
接着シート5の周辺部54は、第1接着剤層50により形成されている。第2の層51と比較して接着力の高い第1接着剤層50が周辺部54に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
また、第1接着剤層50のみではなく、第1接着剤層50よりも接着力の低い第2の層51を有するため、第1接着剤層50の接着力さえ低下させれば、外力により、半導体ウェハから台座を容易に分離できる。
接着シート5は第1接着剤層50が接着シート5における周辺部54に形成されているため、第1接着剤層50を溶剤により溶解させたり、カッターやレーザー等により物理的に切り込みを入れたりして、第1接着剤層50の接着力を低下させ易く、半導体ウェハから台座を分離し易い。
The peripheral portion 54 of the adhesive sheet 5 is formed by the first adhesive layer 50. Since the first adhesive layer 50 having higher adhesive strength than the second layer 51 is present in the peripheral portion 54, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
Moreover, since it has not only the 1st adhesive bond layer 50 but the 2nd layer 51 whose adhesive force is lower than the 1st adhesive bond layer 50, if even the adhesive force of the 1st adhesive bond layer 50 falls, it will be by external force. The pedestal can be easily separated from the semiconductor wafer.
Since the first adhesive layer 50 is formed in the peripheral portion 54 of the adhesive sheet 5 in the adhesive sheet 5, the first adhesive layer 50 is dissolved by a solvent, or physically cut by a cutter or a laser. And it is easy to reduce the adhesive force of the 1st adhesive bond layer 50, and it is easy to isolate | separate a base from a semiconductor wafer.
接着シート5は、周辺部54よりも内側の中央部53が、第1接着剤層50と第2の層51との積層により形成されている。第1接着剤層50のみが表出している面では、半導体ウェハ又は台座を強固に固定できる。また、中央部53は、第1接着剤層50と第2の層51との積層により形成されているため、中央部53は、第1接着剤層50のみで形成されている周辺部54よりも、相対的に接着力が低い。従って、周辺部54の接着力を少なくとも低下させれば、外力により、半導体ウェハから台座を容易に分離できる。また、第2の層51が台座と接する場合、接着シート5を台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。 In the adhesive sheet 5, the central portion 53 inside the peripheral portion 54 is formed by stacking the first adhesive layer 50 and the second layer 51. The semiconductor wafer or the pedestal can be firmly fixed on the surface where only the first adhesive layer 50 is exposed. Further, since the central portion 53 is formed by stacking the first adhesive layer 50 and the second layer 51, the central portion 53 is more than the peripheral portion 54 formed by only the first adhesive layer 50. However, the adhesive strength is relatively low. Therefore, the base can be easily separated from the semiconductor wafer by an external force if the adhesive force of the peripheral portion 54 is reduced at least. Further, when the second layer 51 is in contact with the pedestal, the adhesive sheet 5 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
接着シート5の厚さは特に限定されず、例えば、10μm以上であり、好ましくは50μm以上である。10μm以上であると、半導体ウェハデバイス表面の凹凸を追従でき、隙間なく接着シートを充填できる。また、接着シート5の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the adhesive sheet 5 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 μm or more, the unevenness on the surface of the semiconductor wafer device can be followed, and the adhesive sheet can be filled without a gap. Moreover, the thickness of the adhesive sheet 5 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
中央部53における第1接着剤層50の厚さは適宜設定できるが、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上である。また、該厚さは、好ましくは300μm以下であり、より好ましくは200μm以下である。
また、中央部53における第2の層51の厚さは適宜設定できる。
Although the thickness of the 1st adhesive bond layer 50 in the center part 53 can be set suitably, Preferably it is 0.1 micrometer or more, More preferably, it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more. Moreover, this thickness becomes like this. Preferably it is 300 micrometers or less, More preferably, it is 200 micrometers or less.
Further, the thickness of the second layer 51 in the central portion 53 can be set as appropriate.
第1接着剤層は、第2の層に比較して一般的に弾性率が低いため、形成時に表面にうねりが生じやすい。このような観点からは、第1接着剤剤層を薄くし、第2の層を厚くすることが好ましい。一方、第1接着剤層は、第2の層に比較して一般的にガラス転移温度が高いため、形成時の収縮が大きい。このような観点からは、第1接着剤剤層を厚くし、第2の層を薄くすることが好ましい。 Since the first adhesive layer generally has a lower elastic modulus than the second layer, undulation is likely to occur on the surface during formation. From such a viewpoint, it is preferable to make the first adhesive layer thinner and the second layer thicker. On the other hand, since the first adhesive layer generally has a higher glass transition temperature than the second layer, the shrinkage during formation is large. From such a viewpoint, it is preferable to make the first adhesive layer thick and the second layer thin.
図2は、実施形態1の接着シート5の平面図である。図2に示すように、接着シート5は、平面視したときの形状が円形である。
接着シート5の直径は特に限定されない。例えば、接着シート5の直径は、台座の直径に対して+1.0~-1.0mmが好ましい。
FIG. 2 is a plan view of the adhesive sheet 5 of the first embodiment. As shown in FIG. 2, the adhesive sheet 5 has a circular shape when viewed in plan.
The diameter of the adhesive sheet 5 is not particularly limited. For example, the diameter of the adhesive sheet 5 is preferably +1.0 to −1.0 mm with respect to the diameter of the pedestal.
また、接着シート5を平面視したとき、第2の層51の形状が円形である。接着シート5を平面視したときの第2の層51の面積は、接着シート5を平面視したときの接着シート5の面積に対して、好ましくは10%以上、より好ましくは20%以上、更に好ましくは50%以上である。10%以上であると、周辺部54に形成された第1接着剤層50の接着力を低下させ易く、半導体ウェハから台座を分離し易い。また、第2の層51の面積は、好ましくは99.95%以下、より好ましくは99.9%以下である。99.95%以下であると、半導体ウェハを台座に強固に固定できる。 Further, when the adhesive sheet 5 is viewed in plan, the shape of the second layer 51 is circular. The area of the second layer 51 when the adhesive sheet 5 is viewed in plan is preferably 10% or more, more preferably 20% or more with respect to the area of the adhesive sheet 5 when the adhesive sheet 5 is viewed in plan. Preferably it is 50% or more. When it is 10% or more, the adhesive force of the first adhesive layer 50 formed on the peripheral portion 54 is likely to be reduced, and the pedestal is easily separated from the semiconductor wafer. The area of the second layer 51 is preferably 99.95% or less, more preferably 99.9% or less. A semiconductor wafer can be firmly fixed to a base as it is 99.95% or less.
第1の本発明の接着シートは、実施形態1の接着シート5に限定されない。図3は、実施形態2の接着シートの断面模式図である。図3に示すように、接着シート6は、周辺部64が第1接着剤層60により形成されるとともに、周辺部64よりも内側の中央部63が、第2の層61により形成されている。第2の層61の接着力は、第1接着剤層60の接着力よりも低い。 The adhesive sheet of the first invention is not limited to the adhesive sheet 5 of the first embodiment. FIG. 3 is a schematic cross-sectional view of the adhesive sheet of the second embodiment. As shown in FIG. 3, in the adhesive sheet 6, the peripheral portion 64 is formed by the first adhesive layer 60, and the central portion 63 inside the peripheral portion 64 is formed by the second layer 61. . The adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
接着シート6は、周辺部64よりも内側の中央部63が、第2の層61により形成されている。中央部63が第2の層61により形成されているため、周辺部64にある第1接着剤層60の接着力を低下させれば、外力により、半導体ウェハから台座を容易に分離できる。また、第2の層61が台座と接するため、接着シート6を台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。 In the adhesive sheet 6, a central portion 63 inside the peripheral portion 64 is formed by the second layer 61. Since the central portion 63 is formed of the second layer 61, if the adhesive force of the first adhesive layer 60 in the peripheral portion 64 is reduced, the pedestal can be easily separated from the semiconductor wafer by an external force. Further, since the second layer 61 is in contact with the pedestal, the adhesive sheet 6 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
接着シート6の厚さは特に限定されず、例えば、実施形態1の接着シート5で例示したものと同様である。 The thickness of the adhesive sheet 6 is not specifically limited, For example, it is the same as that of the adhesive sheet 5 of Embodiment 1.
図4は、実施形態2の接着シート6の平面図である。図4に示すように、接着シート6は、平面視したときの形状が円形である。接着シート6の直径は特に限定されず、例えば、実施形態1の接着シート5で例示したものと同様である。また、接着シート6を平面視したときの第2の層61の面積は特に限定されず、例えば、実施形態1の接着シート5で例示したものと同様である。 FIG. 4 is a plan view of the adhesive sheet 6 according to the second embodiment. As shown in FIG. 4, the adhesive sheet 6 has a circular shape when viewed in plan. The diameter of the adhesive sheet 6 is not specifically limited, For example, it is the same as that of what was illustrated by the adhesive sheet 5 of Embodiment 1. FIG. Further, the area of the second layer 61 when the adhesive sheet 6 is viewed in plan is not particularly limited, and for example, is the same as that exemplified for the adhesive sheet 5 of the first embodiment.
第2の層51、61の接着力は、第1接着剤層50、60の接着力よりも低ければ、特に制限されない。第2の層51、61の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、第2の層51、61を容易に剥離できる。該90°ピール剥離力の下限は、特に限定されず、例えば、0N/20mm以上であり、好ましくは0.001N/20mm以上である。該90°ピール剥離力は低いほど第2の層51、61を剥離し易い。 The adhesive force of the second layers 51 and 61 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layers 50 and 60. The adhesive strength of the second layers 51 and 61 is preferably such that, for example, the 90 ° peel peeling force for a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 0.20 N / 20 mm or less. If it is less than 0.30 N / 20 mm, the second layers 51 and 61 can be easily peeled off. The lower limit of the 90 ° peel strength is not particularly limited, and is, for example, 0 N / 20 mm or more, preferably 0.001 N / 20 mm or more. The lower the 90 ° peel peel force, the easier the second layers 51 and 61 are peeled.
第1接着剤層50、60の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。0.30N/20mm以上であると、半導体ウェハを台座に良好に保持でき、バックグラインドなどを良好に行うことができる。また、該90°ピール剥離力の上限は、特に限定されず、大きいほど好ましいが、例えば、30N/20mm以下、好ましくは20N/20mm以下である。 The adhesive strength of the first adhesive layers 50 and 60 is, for example, that the 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. Is preferable, and 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be favorably held on the pedestal, and back grinding and the like can be favorably performed. The upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
図5、6に示すように、第1の本発明の接着シートは、他の層が形成されたものであってもよい。図5、6は、第3の層を備える接着シートの断面模式図である。図5の接着シート5は、周辺部54及び中央部53にわたって、第3の層55が形成されている。図6の接着シート6は、周辺部64及び中央部63にわたって、第3の層65が形成されている。第1接着剤層50、60よりも接着力の低い第3の層55、65が表出している面を半導体ウェハに貼り付けることで、半導体ウェハから第3の層55、65付きの接着シート5、6を容易に剥離できる。また、半導体ウェハの糊残りを無くすことができ、半導体ウェハの洗浄工程を省略できる。 As shown in FIGS. 5 and 6, the adhesive sheet of the first aspect of the present invention may have other layers formed thereon. 5 and 6 are schematic cross-sectional views of an adhesive sheet including a third layer. In the adhesive sheet 5 of FIG. 5, a third layer 55 is formed across the peripheral portion 54 and the central portion 53. In the adhesive sheet 6 of FIG. 6, a third layer 65 is formed across the peripheral portion 64 and the central portion 63. Adhesive sheet with the third layers 55 and 65 from the semiconductor wafer by affixing the surface on which the third layers 55 and 65 having lower adhesive strength than the first adhesive layers 50 and 60 are exposed to the semiconductor wafer. 5 and 6 can be easily peeled off. Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
第3の層55、65の接着力は、第1接着剤層50、60の接着力よりも低ければ、特に制限されない。例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、糊残りなく剥離でき、半導体ウェハ等の洗浄工程を省略できる。また、該90°ピール剥離力の下限は、特に限定されず、例えば、0N/20mm以上であり、好ましくは0.001N/20mm以上である。0N/20mm以上であると、半導体ウェハを台座に良好に保持できる。 The adhesive force of the third layers 55 and 65 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layers 50 and 60. For example, the 90 ° peel peeling force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min is preferably less than 0.30 N / 20 mm, and preferably 0.20 N / 20 mm or less. More preferred. When the thickness is less than 0.30 N / 20 mm, the adhesive can be peeled without residue, and the semiconductor wafer cleaning process can be omitted. Moreover, the minimum of this 90 degree peeling force is not specifically limited, For example, it is 0 N / 20mm or more, Preferably it is 0.001 N / 20mm or more. A semiconductor wafer can be favorably hold | maintained to a base as it is 0 N / 20mm or more.
第1接着剤層50、60を構成する接着剤組成物としては、第1接着剤層50、60の接着力が、第2の層51、61の接着力よりも高くなるように選択する限り、特に限定されない。 As long as it selects so that the adhesive force of the 1st adhesive bond layers 50 and 60 may become higher than the adhesive force of the 2nd layers 51 and 61 as an adhesive composition which comprises the 1st adhesive bond layers 50 and 60. There is no particular limitation.
第1接着剤層50、60を構成する接着剤組成物としては、イミド基を有し、且つ、少なくとも一部にエーテル構造を有するジアミンに由来する構成単位を有するポリイミド樹脂を好適に使用できる。また、シリコーン樹脂も好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、前記ポリイミド樹脂が好ましい。 As the adhesive composition constituting the first adhesive layers 50 and 60, a polyimide resin having an imide group and having a structural unit derived from a diamine having an ether structure at least partially can be used. Moreover, a silicone resin can also be used suitably. Especially, the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
前記ポリイミド樹脂は、一般的に、その前駆体であるポリアミド酸をイミド化(脱水縮合)することにより得ることができる。ポリアミド酸をイミド化する方法としては、例えば、従来公知の加熱イミド化法、共沸脱水法、化学的イミド化法等を採用することができる。なかでも、加熱イミド化法が好ましい。加熱イミド化法を採用する場合、ポリイミド樹脂の酸化による劣化を防止するため、窒素雰囲気下や、真空中等の不活性雰囲気下にて加熱処理を行なうことが好ましい。 The polyimide resin can be generally obtained by imidizing (dehydrating and condensing) a polyamic acid that is a precursor thereof. As a method for imidizing the polyamic acid, for example, a conventionally known heat imidization method, azeotropic dehydration method, chemical imidization method and the like can be employed. Of these, the heating imidization method is preferable. When the heat imidization method is employed, it is preferable to perform heat treatment under a nitrogen atmosphere or an inert atmosphere such as a vacuum in order to prevent deterioration of the polyimide resin due to oxidation.
前記ポリアミド酸は、適宜選択した溶媒中で、酸無水物とジアミン(エーテル構造を有するジアミンと、エーテル構造を有さないジアミンの両方を含む)とを実質的に等モル比となるように仕込み、反応させて得ることができる。 The polyamic acid is charged in an appropriately selected solvent such that an acid anhydride and a diamine (including both a diamine having an ether structure and a diamine not having an ether structure) have a substantially equimolar ratio. Can be obtained by reaction.
前記エーテル構造を有するジアミンは、エーテル構造を有し、且つ、アミン構造を有する端末を少なくとも2つ有する化合物である限り、特に限定されない。例えば、グリコール骨格を有するジアミンなどが挙げられる。 The diamine having an ether structure is not particularly limited as long as it is a compound having an ether structure and having at least two terminals having an amine structure. Examples thereof include diamine having a glycol skeleton.
前記グリコール骨格を有するジアミンとしては、例えば、ポリプロピレングリコール構造を有し、且つ、アミノ基を両末端に1つずつ有するジアミン、ポリエチレングリコール構造を有し、且つ、アミノ基を両末端に1つずつ有するジアミン、ポリテトラメチレングリコール構造を有し、且つ、アミノ基を両末端に1つずつ有するジアミン等のアルキレングリコールを有するジアミンを挙げることができる。また、これらのグリコール構造の複数を有し、且つ、アミノ基を両末端に1つずつ有するジアミンを挙げることができる。 Examples of the diamine having a glycol skeleton include a polypropylene glycol structure and a diamine having one amino group at each end, a polyethylene glycol structure, and one amino group at each end. Examples thereof include a diamine having a polytetramethylene glycol structure and a diamine having an alkylene glycol such as a diamine having one amino group at each end. Moreover, the diamine which has two or more of these glycol structures and has one amino group in both the ends can be mentioned.
前記エーテル構造を有するジアミンの分子量は、100~5000の範囲内であることが好ましく、150~4800であることがより好ましい。前記エーテル構造を有するジアミンの分子量が100~5000の範囲内であると、低温での接着力が高く、且つ、高温において剥離性を奏する第1接着剤層50、60をえやすい。 The molecular weight of the diamine having an ether structure is preferably in the range of 100 to 5000, and more preferably 150 to 4800. When the molecular weight of the diamine having an ether structure is in the range of 100 to 5,000, the first adhesive layers 50 and 60 having high adhesive strength at low temperatures and exhibiting peelability at high temperatures are easily obtained.
前記ポリイミド樹脂の形成には、エーテル構造を有するジアミン以外に、エーテル構造を有さないジアミンを併用することもできる。エーテル構造を有さないジアミンとしては、脂肪族ジアミンや芳香族ジアミンを挙げることができる。エーテル構造を有さないジアミンを併用することにより、被着体との密着力をコントロールすることができる。エーテル構造を有するジアミンと、エーテル構造を有さないジアミンとの配合割合は、モル比で、100:0~10:90の範囲内にあることが好ましく、より好ましくは、100:0~20:80であり、さらに好ましくは、99:1~30:70である。前記エーテル構造を有するジアミンと前記エーテル構造を有さないジアミンとの配合割合が、モル比で、100:0~10:90の範囲内にあると、高温での熱剥離性により優れる。 In the formation of the polyimide resin, a diamine having no ether structure can be used in combination with a diamine having an ether structure. Examples of the diamine having no ether structure include aliphatic diamines and aromatic diamines. By using a diamine having no ether structure in combination, the adhesion with the adherend can be controlled. The mixing ratio of the diamine having an ether structure and the diamine having no ether structure is preferably in the range of 100: 0 to 10:90, more preferably 100: 0 to 20: 80, more preferably 99: 1 to 30:70. When the mixing ratio of the diamine having an ether structure and the diamine having no ether structure is in the range of 100: 0 to 10:90 in terms of molar ratio, the thermal peelability at high temperature is excellent.
前記脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、4,9-ジオキサ-1,12-ジアミノドデカン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン(α、ω-ビスアミノプロピルテトラメチルジシロキサン)などが挙げられる。前記脂肪族ジアミンの分子量は、通常、50~1,000,000であり、好ましくは100~30,000である。 Examples of the aliphatic diamine include ethylenediamine, hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,9-dioxa-1,12-diaminododecane, , 3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane (α, ω-bisaminopropyltetramethyldisiloxane) and the like. The molecular weight of the aliphatic diamine is usually 50 to 1,000,000, preferably 100 to 30,000.
芳香族ジアミンとしては、例えば、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、4,4’-ジアミノベンゾフェノン等が挙げられる。前記芳香族ジアミンの分子量は、通常、50~1000であり、好ましくは100~500である。前記脂肪族ジアミンの分子量、及び、前記芳香族ジアミンの分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値(重量平均分子量)をいう。 Examples of the aromatic diamine include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, m-phenylenediamine, p-phenylenediamine, and 4,4′-diaminodiphenylpropane. 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) -2,2- Dimethylpropane, 4,4'-diaminobenzophenone, etc. It is. The molecular weight of the aromatic diamine is usually 50 to 1000, preferably 100 to 500. The molecular weight of the aliphatic diamine and the molecular weight of the aromatic diamine are values measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene (weight average molecular weight).
前記酸無水物としては、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ピロメリット酸二無水物、エチレングリコールビストリメリット酸二無水物等が挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。 Examples of the acid anhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 2,2-bis (2, 3-Dicarboxyphenyl) hexafluoropropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), bis (2,3-dicarboxyphenyl) methane dianhydride Bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfone Anhydride, pyromellitic dianhydride, ethylene glycol bis trimellitic dianhydride and the like. These may be used alone or in combination of two or more.
前記酸無水物と前記ジアミンを反応させる際の溶媒としては、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、シクロペンタノン等を挙げることができる。これらは、単独で使用してもよく、複数を混合して用いてもよい。また、原材料や樹脂の溶解性を調整するために、トルエンや、キシレン等の非極性の溶媒を適宜、混合して用いてもよい。 Examples of the solvent for reacting the acid anhydride with the diamine include N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, and cyclopentanone. These may be used alone or in combination. Further, in order to adjust the solubility of raw materials and resins, a nonpolar solvent such as toluene or xylene may be appropriately mixed and used.
前記シリコーン樹脂としては、例えば、過酸化物架橋型シリコーン系粘着剤、付加反応型シリコーン系粘着剤、脱水素反応型シリコーン系粘着剤、湿気硬化型シリコーン系粘着剤等が挙げられる。前記シリコーン樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。前記シリコーン樹脂を用いると、耐熱性が高くなり、高温下における貯蔵弾性率や粘着力が適切な値となり得る。前記シリコーン樹脂の中でも、不純物が少ない点で、付加反応型シリコーン系粘着剤が好ましい。 Examples of the silicone resin include peroxide cross-linked silicone pressure-sensitive adhesives, addition reaction type silicone pressure-sensitive adhesives, dehydrogenation reaction type silicone pressure-sensitive adhesives, and moisture-curing type silicone pressure-sensitive adhesives. The said silicone resin may be used individually by 1 type, and may use 2 or more types together. When the silicone resin is used, the heat resistance becomes high, and the storage elastic modulus and adhesive strength at high temperatures can be appropriate values. Among the silicone resins, addition reaction type silicone pressure-sensitive adhesives are preferable in terms of few impurities.
第1接着剤層50、60を構成する接着剤組成物は、他の添加剤を含有していてもよい。このような他の添加剤としては、例えば、難燃剤、シランカップリング剤、イオントラップ剤などが挙げられる。難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂などが挙げられる。シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシランなどが挙げられる。イオントラップ剤としては、例えば、ハイドロタルサイト類、水酸化ビスマスなどが挙げられる。このような他の添加剤は、1種のみであっても良いし、2種以上であっても良い。 The adhesive composition constituting the first adhesive layers 50 and 60 may contain other additives. Examples of such other additives include flame retardants, silane coupling agents, and ion trapping agents. Examples of the flame retardant include antimony trioxide, antimony pentoxide, and brominated epoxy resin. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. Such other additives may be only one kind or two or more kinds.
第2の層51、61を構成する材料としては、第2の層51、61の接着力が、第1接着剤層50、60の接着力よりも低くなるように選択する限り、特に限定されない。第2の層51、61を構成する材料としては、Cu、Cr、Ni、Ti等の無機材料を挙げることができる。また、前述のポリイミド樹脂、前述のシリコーン樹脂も使用できる。 The material constituting the second layers 51 and 61 is not particularly limited as long as the second layers 51 and 61 are selected so that the adhesive strength of the second layers 51 and 61 is lower than the adhesive strength of the first adhesive layers 50 and 60. . Examples of the material constituting the second layers 51 and 61 include inorganic materials such as Cu, Cr, Ni, and Ti. Moreover, the above-mentioned polyimide resin and the above-mentioned silicone resin can also be used.
第3の層55、65を構成する材料としては、第3の層55、65の接着力が、第1接着剤層50、60の接着力よりも低くなるように選択する限り、特に限定されず、例えば、第2の層51、61と同様のものを採用できる。 The material constituting the third layers 55 and 65 is not particularly limited as long as the adhesive force of the third layers 55 and 65 is selected to be lower than the adhesive force of the first adhesive layers 50 and 60. For example, the same layer as the second layers 51 and 61 can be used.
(接着シートの製造)
接着シート5は、例えば、次の通りにして作製される。まず、第2の層51を形成するための材料を含む溶液を作製する。次に、前記溶液を基材上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させる等して、第2の層51とする。前記基材としては、SUS304、6-4アロイ、アルミ箔、銅箔、Ni箔などの金属箔や、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等が使用可能である。また、塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工、スピンコート塗工等が挙げられる。
(Manufacture of adhesive sheets)
The adhesive sheet 5 is produced as follows, for example. First, a solution containing a material for forming the second layer 51 is prepared. Next, the solution is applied to a base material so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the second layer 51. Examples of the substrate include metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine-based release agent, and long-chain alkyl acrylate-type release agent. A plastic film, paper, or the like whose surface is coated with a release agent such as, can be used. Moreover, it does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, spin coat coating etc. are mentioned.
次に、第2の層51側から打ち抜き加工等により、所定の形状(例えば、円形、矩形等)に打ち抜き、打ち抜いた部分(円形状、矩形状等の第2の層51)を残して、外側を剥離して取り除く。 Next, by punching or the like from the second layer 51 side, it is punched into a predetermined shape (for example, circular, rectangular, etc.), leaving a punched portion (second layer 51 of circular shape, rectangular shape, etc.) Remove the outside.
一方、第1接着剤層50を形成するための組成物を含む溶液を作製する。 On the other hand, a solution containing a composition for forming the first adhesive layer 50 is prepared.
次に、所定の形状に打ち抜かれた第2の層51が積層されている前記基材の上に、前記の第1接着剤層50を形成するための組成物を含む溶液を第2の層51の側から所定厚みとなる様に塗布して塗布膜を形成する。その後、該塗布膜を所定条件下で乾燥させる等して、第1接着剤層50とする。以上より、図1、2に示す接着シート5が得られる。なお、図3、4に示す接着シート6は、接着シート5とほぼ同様の方法により作成できる。 Next, a solution containing a composition for forming the first adhesive layer 50 is formed on the substrate on which the second layer 51 punched into a predetermined shape is laminated. A coating film is formed by coating from the side 51 to a predetermined thickness. Thereafter, the coating film is dried under predetermined conditions to form the first adhesive layer 50. From the above, the adhesive sheet 5 shown in FIGS. Note that the adhesive sheet 6 shown in FIGS. 3 and 4 can be formed by a method substantially similar to that of the adhesive sheet 5.
また、図5、6に示す第3の層55、65は第2の層51と同様の方法で形成できる。 The third layers 55 and 65 shown in FIGS. 5 and 6 can be formed by the same method as the second layer 51.
以上の説明では、平面視したときの形状が円形である接着シート5、6を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 In the above description, the adhesive sheets 5 and 6 having a circular shape when viewed in plan have been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
また、平面視したとき、第2の層51、61の形状が円形である接着シート5、6を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 In addition, the adhesive sheets 5 and 6 in which the shapes of the second layers 51 and 61 are circular when viewed in plan have been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
第1の本発明の半導体装置製造用接着シートは、半導体ウェハを台座に固定するために用いられる。具体的には、後述の半導体装置の製造方法に好適に使用できる。 The adhesive sheet for manufacturing a semiconductor device according to the first aspect of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in a semiconductor device manufacturing method described later.
[半導体装置の製造方法]
第1の本発明の半導体装置の製造方法は、接着シートを用いて半導体ウェハを台座に固定する工程と、半導体ウェハから台座を分離する工程とを含む。例えば、接着シートを用いて半導体ウェハを台座に固定する工程と、半導体ウェハをバックグラインドする工程と、バックグラインドされた半導体ウェハから台座を分離する工程とを含む方法が挙げられる。
[Method for Manufacturing Semiconductor Device]
The manufacturing method of the semiconductor device of 1st this invention includes the process of fixing a semiconductor wafer to a base using an adhesive sheet, and the process of isolate | separating a base from a semiconductor wafer. For example, there is a method including a step of fixing a semiconductor wafer to a pedestal using an adhesive sheet, a step of back grinding the semiconductor wafer, and a step of separating the pedestal from the back-ground semiconductor wafer.
以下の説明では、実施形態1の接着シート5を用いた場合について説明する。図7は、実施形態1の接着シートを用いて半導体ウェハを台座に固定した様子を示す模式図である。 In the following description, the case where the adhesive sheet 5 of Embodiment 1 is used will be described. FIG. 7 is a schematic diagram illustrating a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheet of the first embodiment.
まず、接着シート5を用いて半導体ウェハ3を台座1に固定する工程を行う。具体的には、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座1に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ3の回路形成面に貼り付ける。 First, a process of fixing the semiconductor wafer 3 to the base 1 using the adhesive sheet 5 is performed. Specifically, the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the base 1, and only the first adhesive layer 50 of the adhesive sheet 5 is exposed. The surface is attached to the circuit forming surface of the semiconductor wafer 3.
半導体ウェハ3としては特に限定されず、例えば、ゲルマニウムウエハ、ガリウム-ヒ素ウエハ、ガリウム-リンウエハ、ガリウム-ヒ素-アルミニウムウエハ、サファイアウェハ等の化合物半導体ウェハなどが挙げられる。なかでも、シリコンウェハが好ましい。 The semiconductor wafer 3 is not particularly limited, and examples thereof include a compound semiconductor wafer such as a germanium wafer, a gallium-arsenic wafer, a gallium-phosphorus wafer, a gallium-arsenic-aluminum wafer, and a sapphire wafer. Among these, a silicon wafer is preferable.
半導体ウェハ3として、回路形成面及び非回路形成面を有するものを使用する。また、シリコン貫通電極(through-silicon via)を有するものを好適に使用できる。通常、シリコン貫通電極を有するシリコンウェハは、後述のバックグラインドにより薄型化されるため、台座1に固定し、強度を補強することが望ましいからである。 A semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used. Moreover, what has a through silicon via (through-silicon via) can be used conveniently. This is because a silicon wafer having through silicon vias is usually thinned by back grinding, which will be described later, so that it is desirable to fix the silicon wafer to the pedestal 1 and reinforce the strength.
半導体ウェハ3の厚さは特に限定されないが、例えば、400~1200μmであり、好ましくは450~1000μmである。 The thickness of the semiconductor wafer 3 is not particularly limited, but is, for example, 400 to 1200 μm, preferably 450 to 1000 μm.
半導体ウェハ3の直径は特に限定されないが、例えば、75~450mmである。このような半導体ウェハ3としては、市販の200mmウェハ、300mmウェハなどを使用できる。 The diameter of the semiconductor wafer 3 is not particularly limited, but is, for example, 75 to 450 mm. As such a semiconductor wafer 3, a commercially available 200 mm wafer, 300 mm wafer, or the like can be used.
台座1としては、特に限定されないが、シリコンウェハ、SiCウェハ、GaAsウェハ等の化合物ウェハ、ガラスウェハ、SUS、6-4Alloy,Ni箔、Al箔等の金属箔等が挙げられる。平面視で、丸い形状を採用する場合は、シリコンウェハ又はガラスウェハが好ましい。また、平面視で矩形の場合は、SUS板、又は、ガラス板が好ましい。 The pedestal 1 is not particularly limited, and examples thereof include compound wafers such as silicon wafers, SiC wafers, and GaAs wafers, glass wafers, metal foils such as SUS, 6-4 Alloy, Ni foil, and Al foil. In the case of adopting a round shape in plan view, a silicon wafer or a glass wafer is preferable. Moreover, when it is a rectangle by planar view, a SUS board or a glass plate is preferable.
また、台座1として、例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、紙等を用いることもできる。 Moreover, as the base 1, for example, low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, etc. Polyolefin, ethylene-vinyl acetate copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene -Hexene copolymers, polyesters such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide Polyphenyl sulphates id, aramid (paper), can be glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, also possible to use paper or the like.
台座1は、単独で使用してもよく、2種以上を組み合わせて使用しても良い。台座1の厚みは、特に限定されないが、例えば、通常10μm~20mm程度である。 The pedestal 1 may be used alone or in combination of two or more. The thickness of the pedestal 1 is not particularly limited, but is usually about 10 μm to 20 mm, for example.
台座1の直径は特に限定されないが、例えば75~450mmであり、好ましくは100~450mmである。このような台座1としては、市販の200mmウェハ、300mmウェハなどを使用できる。 The diameter of the pedestal 1 is not particularly limited, but is, for example, 75 to 450 mm, and preferably 100 to 450 mm. As such a pedestal 1, a commercially available 200 mm wafer, 300 mm wafer, or the like can be used.
貼り付け(固定)方法は特に限定されないが、圧着が好ましい。圧着は、通常、圧着ロール等の押圧手段により押圧しながら行われる。圧着の条件としては、例えば、20~300℃、0.001~10MPa、0.001~10mm/secが好ましい。圧着時間は、通常0.1~10分である。
圧着後、必要に応じて、第1接着剤層50及び第2の層51をイミド化する。これにより、半導体ウェハ3を台座1に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、第1接着剤層50及び第2の層51の一方のみをイミド化してもよい。
The method of attaching (fixing) is not particularly limited, but pressure bonding is preferable. The crimping is usually performed while pressing with a pressing means such as a crimping roll. As the pressure bonding conditions, for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable. The crimping time is usually 0.1 to 10 minutes.
After the pressure bonding, the first adhesive layer 50 and the second layer 51 are imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 50 and the second layer 51 may be imidized.
次いで、前記半導体ウェハ3をバックグラインドする。バックグラインドは、従来公知の方法で行うことができる。 Next, the semiconductor wafer 3 is back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ3の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などを行った後、半導体ウェハ3から台座1を分離する。 After back grinding and processing, the pedestal 1 is separated from the semiconductor wafer 3.
半導体ウェハ3から台座1を分離する方法としては特に限定されないが、周辺部54にある第1接着剤層50の接着力を低下させた後に、分離することが好ましい。これにより、容易に分離できる。第1接着剤層50の接着力を低下させる方法としては、溶剤により第1接着剤層50を溶解させて接着力を低下させる方法、第1接着剤層50に、カッターやレーザー等により物理的な切り込みを入れて接着力を低下させる方法、第1接着剤層50を加熱により接着力が低下する材料で形成しておき、加熱により接着力を低下させる方法等を挙げることができる。 A method for separating the pedestal 1 from the semiconductor wafer 3 is not particularly limited, but it is preferable to separate the pedestal 1 after reducing the adhesive force of the first adhesive layer 50 in the peripheral portion 54. Thereby, it can isolate | separate easily. As a method of reducing the adhesive force of the first adhesive layer 50, a method of lowering the adhesive force by dissolving the first adhesive layer 50 with a solvent, a physical method using a cutter, a laser, or the like is applied to the first adhesive layer 50. Examples thereof include a method of reducing the adhesive force by cutting a slit, a method of forming the first adhesive layer 50 with a material whose adhesive force is reduced by heating, and a method of reducing the adhesive force by heating.
以上の説明では、接着シート5を用いて半導体ウェハ3を台座1に固定する方法として、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座1に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ3の回路形成面に貼り付ける方法を説明した。しかし、接着シート5を用いて半導体ウェハ3を台座1に固定する方法は特に限定されず、接着シート5の第1接着剤層50のみが表出している面を台座1に貼り付け、接着シート5の第1接着剤層50及び第2の層51が表出している面を半導体ウェハ3の回路形成面に貼り付ける方法などであってもよい。 In the above description, as a method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5, the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 1. The method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 3 has been described. However, the method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 1 and the adhesive sheet is attached. 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 3.
また、半導体ウェハ3として、回路形成面及び非回路形成面を有するもの使用する場合について説明した。しかし、回路形成面及び非回路形成面を有するものに限定されず、両面が非回路形成面のものなどでもよい。 Further, the case where the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
また、台座1に固定された半導体ウェハ3をバックグラインドする場合について説明した。しかし、バックグラインドは必須ではなく、バックグラインドせずに半導体ウェハ3を加工してもよい。 Further, the case where the semiconductor wafer 3 fixed to the base 1 is back-ground has been described. However, back grinding is not essential, and the semiconductor wafer 3 may be processed without back grinding.
<<第2の本発明>>
以下、第2の本発明(第2-1の本発明及び第2-2の本発明)に関し、第1の本発明と異なる点を説明する。
<< Second Invention >>
Hereinafter, the second aspect of the present invention (the 2-1 aspect of the present invention and the 2-2 aspect of the present invention) will be described while referring to differences from the first aspect of the present invention.
第2の本発明は、半導体ウェハを台座に良好に固定できるとともに、半導体ウェハから台座を分離し易い半導体装置製造用接着シートを提供することを目的とする。また、第2の本発明は、半導体ウェハを台座に良好に固定できるとともに、半導体ウェハから台座を容易に分離できる半導体装置の製造方法を提供することを目的とする。 A second object of the present invention is to provide an adhesive sheet for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and easily separate the pedestal from the semiconductor wafer. A second object of the present invention is to provide a method for manufacturing a semiconductor device in which a semiconductor wafer can be satisfactorily fixed to a pedestal and the pedestal can be easily separated from the semiconductor wafer.
[接着シート]
第2-1の本発明の半導体装置製造用接着シートは、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とが積層されている。
[Adhesive sheet]
In the adhesive sheet for manufacturing a semiconductor device according to the 2-1 of the present invention, a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated.
以下、第2-1の本発明の接着シートについて図面を参照しつつ説明する。 The 2-1 adhesive sheet of the present invention will be described below with reference to the drawings.
図8は、実施形態1の接着シート7の断面模式図である。図8に示すように、接着シート7は、第1接着剤層70と、第2の層71との積層により形成されている。第2の層71の接着力は、第1接着剤層70の接着力よりも低い。 FIG. 8 is a schematic cross-sectional view of the adhesive sheet 7 of the first embodiment. As shown in FIG. 8, the adhesive sheet 7 is formed by laminating a first adhesive layer 70 and a second layer 71. The adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
接着シート7は、第1接着剤層70を有するため半導体ウェハを台座に良好に固定できる。また、第1接着剤層70よりも接着力の低い第2の層71を有するため、外力により、半導体ウェハから台座を容易に分離できる。 Since the adhesive sheet 7 has the first adhesive layer 70, the semiconductor wafer can be satisfactorily fixed to the pedestal. Moreover, since it has the 2nd layer 71 whose adhesive force is lower than the 1st adhesive bond layer 70, a base can be easily isolate | separated from a semiconductor wafer with external force.
第1接着剤層70の厚さは特に限定されず、例えば、10μm以上であり、好ましくは50μm以上である。10μm以上であると、半導体ウェハ表面の凹凸を追従でき、接着シート7を隙間なく充填できる。また、第1接着剤層70の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the 1st adhesive bond layer 70 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 μm or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet 7 can be filled without a gap. Moreover, the thickness of the 1st adhesive bond layer 70 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
第2の層71の厚さは特に限定されず、例えば、1μm以上であり、好ましくは5μm以上である。1μm以上であると、台座との貼り合せが容易である。また、第2の層71の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the 2nd layer 71 is not specifically limited, For example, it is 1 micrometer or more, Preferably it is 5 micrometers or more. When it is 1 μm or more, it is easy to bond to the pedestal. The thickness of the second layer 71 is, for example, 500 μm or less, and preferably 300 μm or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
なお、接着シート7を平面視したときの形状は特に限定されないが、通常、円形である。 The shape of the adhesive sheet 7 when viewed from above is not particularly limited, but is usually circular.
第2の層71の接着力は、第1接着剤層70の接着力よりも低ければ、特に制限されない。第2の層71の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、半導体ウェハから台座を容易に分離できる。一方、該90°ピール剥離力の下限は、好ましくは0.001N/20mm以上であり、より好ましくは0.005N/20mm以上、更に好ましくは0.010N/20mm以上である。0.001N/20mm以上であると、半導体ウェハを台座に良好に固定でき、バックグラインドなどを良好に行うことができる。 The adhesive force of the second layer 71 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layer 70. The adhesive strength of the second layer 71 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. When it is less than 0.30 N / 20 mm, the pedestal can be easily separated from the semiconductor wafer. On the other hand, the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
第1接着剤層70の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。0.30N/20mm以上であると、半導体ウェハを台座に良好に固定でき、バックグラインドなどを良好に行うことができる。また、該90°ピール剥離力の上限は、特に限定されず、大きいほど好ましいが、例えば、30N/20mm以下、好ましくは20N/20mm以下である。 The adhesive force of the first adhesive layer 70 is preferably, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be satisfactorily fixed to the pedestal, and back grinding and the like can be favorably performed. The upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
図9に示すように、第2-1の本発明の接着シートは、他の層が形成されたものであってもよい(実施形態2)。図9は、第3の層を備える接着シートの断面模式図である。図9の接着シート7は、第3の層75と、第2の層71と、第1接着剤層70との積層により形成されている。 As shown in FIG. 9, the adhesive sheet of the 2-1st invention may be one in which other layers are formed (Embodiment 2). FIG. 9 is a schematic cross-sectional view of an adhesive sheet including a third layer. The adhesive sheet 7 of FIG. 9 is formed by stacking a third layer 75, a second layer 71, and a first adhesive layer 70.
第3の層75の接着力は、第1接着剤層70の接着力よりも低いことが好ましい。これにより、接着シート7の第3の層75を台座に貼り付けた場合に、接着シート7を台座から容易に剥離できる。また、台座の糊残りを無くすことができ、台座の洗浄工程を省略できる。 The adhesive force of the third layer 75 is preferably lower than the adhesive force of the first adhesive layer 70. Thereby, when the 3rd layer 75 of the adhesive sheet 7 is affixed on a base, the adhesive sheet 7 can be easily peeled from a base. Further, the adhesive residue on the pedestal can be eliminated, and the pedestal cleaning step can be omitted.
第3の層75の接着力は、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、接着シート7を容易に剥離できる。また、台座等の糊残りを無くすことができ、台座等の洗浄工程を省略できる。一方、該90°ピール剥離力の下限は、好ましくは0.001N/20mm以上である。0.001N/20mm以上であると、半導体ウェハを台座に良好に固定でき、バックグラインドなどを良好に行うことができる。 The adhesive strength of the third layer 75 is preferably such that the 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. The adhesive sheet 7 can be peeled easily as it is less than 0.30 N / 20 mm. Further, the adhesive residue on the pedestal and the like can be eliminated, and the cleaning process for the pedestal and the like can be omitted. On the other hand, the lower limit of the 90 ° peel peel force is preferably 0.001 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
第1接着剤層70を構成する接着剤組成物としては、第1接着剤層70の接着力が、第2の層71の接着力よりも高くなるように選択する限り、特に限定されない。第1接着剤層70を構成する接着剤組成物としては、第1の本発明で説明したポリイミド樹脂、シリコーン樹脂を好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、ポリイミド樹脂が好ましい。 The adhesive composition constituting the first adhesive layer 70 is not particularly limited as long as it is selected so that the adhesive force of the first adhesive layer 70 is higher than the adhesive force of the second layer 71. As the adhesive composition constituting the first adhesive layer 70, the polyimide resin and the silicone resin described in the first aspect of the present invention can be suitably used. Of these, polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
第2の層71を構成する材料としては、第2の層71の接着力が、第1接着剤層70の接着力よりも低くなるように選択する限り、特に限定されない。第2の層71を構成する材料としては、前述のポリイミド樹脂、前述のシリコーン樹脂も使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、前記ポリイミド樹脂が好ましい。 The material constituting the second layer 71 is not particularly limited as long as it is selected so that the adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70. As a material constituting the second layer 71, the aforementioned polyimide resin and the aforementioned silicone resin can also be used. Especially, the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
第3の層75を構成する材料としては、第3の層75の接着力が、第1接着剤層70の接着力よりも低くなるように選択する限り、特に限定されず、例えば、第2の層71で例示したものが挙げられる。 The material constituting the third layer 75 is not particularly limited as long as the material is selected so that the adhesive force of the third layer 75 is lower than the adhesive force of the first adhesive layer 70. What was illustrated by the layer 71 of this is mentioned.
(接着シートの製造)
接着シート7は、例えば、次の通りにして作製される。まず、第2の層71を形成するための材料を含む溶液を作製する。次に、前記溶液を基材上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させる等して、第2の層71とする。前記基材としては、SUS304、6-4アロイ、アルミ箔、銅箔、Ni箔などの金属箔や、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等が使用可能である。また、塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工、スピンコート塗工等が挙げられる。
(Manufacture of adhesive sheets)
The adhesive sheet 7 is produced as follows, for example. First, a solution containing a material for forming the second layer 71 is prepared. Next, the solution is applied on a substrate so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the second layer 71. Examples of the substrate include metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine-based release agent, and long-chain alkyl acrylate-type release agent. A plastic film, paper, or the like whose surface is coated with a release agent such as, can be used. Moreover, it does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, spin coat coating etc. are mentioned.
一方、第1接着剤層70を形成するための組成物を含む溶液を作製する。 On the other hand, a solution containing a composition for forming the first adhesive layer 70 is prepared.
次に、第2の層71が積層されている前記基材の上に、前記第1接着剤層70を形成するための組成物を含む溶液を第2の層71の側から所定厚みとなる様に塗布して塗布膜を形成する。その後、該塗布膜を所定条件下で乾燥させる等して、第1接着剤層70とする。以上より、図8に示す接着シート7が得られる。 Next, a solution containing a composition for forming the first adhesive layer 70 is formed on the base material on which the second layer 71 is laminated to a predetermined thickness from the second layer 71 side. In this way, a coating film is formed. Thereafter, the coating film is dried under predetermined conditions to form the first adhesive layer 70. From the above, the adhesive sheet 7 shown in FIG. 8 is obtained.
なお、図9に示す第3の層75は第2の層71と同様の方法で形成できる。 Note that the third layer 75 illustrated in FIG. 9 can be formed by a method similar to that of the second layer 71.
第2-1の本発明の半導体装置製造用接着シートは、半導体ウェハを台座に固定するために用いられる。具体的には、後述する第2-1の本発明の半導体装置の製造方法に好適に使用できる。 The 2-1 adhesive sheet for manufacturing a semiconductor device of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in the 2-1 semiconductor device manufacturing method of the present invention described later.
[半導体装置の製造方法]
第2-1の本発明の半導体装置の製造方法は、接着シートを用いて半導体ウェハを台座に固定する工程と、半導体ウェハから台座を分離する工程とを含む。このような方法として、例えば、半導体ウェハを第1接着剤層に貼り付け、台座を第2の層に貼り付けることにより、半導体ウェハを台座に固定する工程と、半導体ウェハから台座を分離する工程とを含む方法が挙げられる。当該方法の場合、第1接着剤層が半導体ウェハ表面の凹凸に追従でき、半導体ウェハを台座に良好に固定できる。一方、接着力が第1接着剤層より低い第2の層が台座と接するため、接着シートを台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。
[Method for Manufacturing Semiconductor Device]
A 2-1 semiconductor device manufacturing method of the present invention includes a step of fixing a semiconductor wafer to a pedestal using an adhesive sheet and a step of separating the pedestal from the semiconductor wafer. As such a method, for example, the step of fixing the semiconductor wafer to the pedestal by attaching the semiconductor wafer to the first adhesive layer and attaching the pedestal to the second layer, and the step of separating the pedestal from the semiconductor wafer The method containing these is mentioned. In the case of the method, the first adhesive layer can follow the irregularities on the surface of the semiconductor wafer, and the semiconductor wafer can be fixed to the pedestal satisfactorily. On the other hand, since the 2nd layer whose adhesive force is lower than a 1st adhesive bond layer contacts a base, it is easy to peel an adhesive sheet from a base. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
以下の説明では、実施形態1の接着シート7を用いた場合について説明する。図10は、実施形態1の接着シートに半導体ウェハを貼り付けた様子を示す模式図である。図11は、実施形態1の接着シートを用いて半導体ウェハを台座に固定した様子を示す模式図である。 In the following description, the case where the adhesive sheet 7 of Embodiment 1 is used will be described. FIG. 10 is a schematic diagram illustrating a state in which a semiconductor wafer is attached to the adhesive sheet of the first embodiment. FIG. 11 is a schematic diagram illustrating a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheet of the first embodiment.
まず、半導体ウェハ3の回路形成面と第1接着剤層70を貼り合わせる(図10)。 First, the circuit formation surface of the semiconductor wafer 3 and the first adhesive layer 70 are bonded together (FIG. 10).
半導体ウェハ3としては、第1の本発明で説明した半導体ウェハ3を好適に使用できる。 As the semiconductor wafer 3, the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used.
貼り合わせ方法(貼り付け方法)は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート7の面積が半導体ウェハ3の面積より大きい場合は、必要に応じて、貼り合わせ前または貼り合わせ後に、接着シート7をカットすればよい。
The bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, what is necessary is just to cut the adhesive sheet 7 before bonding or after bonding as needed, when the area of the adhesive sheet 7 is larger than the area of the semiconductor wafer 3.
次いで、台座1と第2の層71を貼り合わせる(図11)。 Next, the base 1 and the second layer 71 are bonded together (FIG. 11).
台座1としては、第1の本発明で説明した台座1を好適に使用できる。 As the pedestal 1, the pedestal 1 described in the first aspect of the present invention can be suitably used.
貼り合わせ方法(貼り付け方法)は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート7の面積が台座1の面積より大きい場合は、必要に応じて接着シート7をカットすればよい。
The bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 1. FIG.
貼り合わせ後、必要に応じて、第1接着剤層70及び第2の層71をイミド化する。これにより、半導体ウェハ3を台座1に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、第1接着剤層70及び第2の層71の一方のみをイミド化してもよい。 After bonding, the first adhesive layer 70 and the second layer 71 are imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 70 and the second layer 71 may be imidized.
また、貼り合わせ後、必要に応じて、第1接着剤層70及び第2の層71を熱硬化してもよい。第1接着剤層70及び第2の層71としてシリコーン樹脂を用いた場合、熱硬化により半導体ウェハ3を台座1に良好に固定できる。なお、第1接着剤層70及び第2の層71の一方のみを熱硬化してもよい。 In addition, after bonding, the first adhesive layer 70 and the second layer 71 may be thermoset as necessary. When a silicone resin is used as the first adhesive layer 70 and the second layer 71, the semiconductor wafer 3 can be satisfactorily fixed to the base 1 by thermosetting. Only one of the first adhesive layer 70 and the second layer 71 may be thermally cured.
次いで、台座1に固定された半導体ウェハ3をバックグラインドできる。バックグラインドは、従来公知の方法で行うことができる。 Subsequently, the semiconductor wafer 3 fixed to the base 1 can be back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ3の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などの所望の処理を半導体ウェハ3に施した後、半導体ウェハ3から台座1を分離する。 After performing desired processing such as back grinding and processing on the semiconductor wafer 3, the pedestal 1 is separated from the semiconductor wafer 3.
半導体ウェハ3から台座1を分離する方法としては特に限定されず、例えば、外力を加える方法が挙げられる。具体的には、台座1のみを分離する方法、台座1付きの第2の層71を分離する方法などが挙げられる。また、第1接着剤層70と第2の層71との境界に切り込みを入れて分離する方法も好適である。 The method for separating the pedestal 1 from the semiconductor wafer 3 is not particularly limited, and examples thereof include a method of applying an external force. Specifically, a method of separating only the pedestal 1, a method of separating the second layer 71 with the pedestal 1, and the like can be given. In addition, a method of cutting and separating the boundary between the first adhesive layer 70 and the second layer 71 is also suitable.
なお、第1接着剤層70の接着力を低下させた後に、半導体ウェハ3から台座1を分離してもよい。第1接着剤層70の接着力を低下させる方法としては、溶剤により第1接着剤層70を溶解させて接着力を低下させる方法、第1接着剤層70に、カッターやレーザー等により物理的な切り込みを入れて接着力を低下させる方法、第1接着剤層70を加熱により接着力が低下する材料で形成しておき、加熱により接着力を低下させる方法、界面活性剤の存在下で加熱しながら超音波洗浄を行う方法、薬液を第1接着剤層70に浸透させる方法(例えば、SC-1洗浄を行う方法、N-メチル-2-ピロリドンなどの溶解液を浸透させる方法)等を挙げることができる。 Note that the base 1 may be separated from the semiconductor wafer 3 after the adhesive force of the first adhesive layer 70 is reduced. As a method of reducing the adhesive force of the first adhesive layer 70, a method of lowering the adhesive force by dissolving the first adhesive layer 70 with a solvent, the first adhesive layer 70 is physically applied with a cutter or a laser. The first adhesive layer 70 is made of a material whose adhesive strength is reduced by heating, and the adhesive strength is reduced by heating, and heating in the presence of a surfactant. A method of ultrasonic cleaning, a method of penetrating a chemical solution into the first adhesive layer 70 (for example, a method of performing SC-1 cleaning, a method of penetrating a solution such as N-methyl-2-pyrrolidone), etc. Can be mentioned.
以上の説明では、半導体ウェハ3を第1接着剤層70に貼り付け、台座1を第2の層71に貼り付ける方法を説明した。しかし、これに限定されず、台座1を第1接着剤層70に貼り付け、半導体ウェハ3を第2の層71に貼り付けてもよい。 In the above description, the method of attaching the semiconductor wafer 3 to the first adhesive layer 70 and attaching the pedestal 1 to the second layer 71 has been described. However, the present invention is not limited to this, and the base 1 may be attached to the first adhesive layer 70 and the semiconductor wafer 3 may be attached to the second layer 71.
また、半導体ウェハ3として、回路形成面及び非回路形成面を有するもの使用する場合について説明した。しかし、回路形成面及び非回路形成面を有するものに限定されず、両面が非回路形成面のものなどでもよい。 Further, the case where the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
[他の半導体装置の製造方法]
第2-2の本発明の半導体装置の製造方法は、接着シート(a)に半導体ウェハを貼り付ける工程(A)と、接着シート(b)に台座を貼り付ける工程(B)と、前記工程(A)により得られた接着シート(a)付き半導体ウェハの前記接着シート(a)、及び前記工程(B)により得られた接着シート(b)付き台座の前記接着シート(b)を貼り合わせる工程(C)とを含む。また、前記接着シート(a)及び(b)の一方の接着力が、他方より低い。
[Manufacturing method of other semiconductor device]
The manufacturing method of the semiconductor device according to 2-2 of the present invention includes a step (A) of attaching a semiconductor wafer to the adhesive sheet (a), a step (B) of attaching a pedestal to the adhesive sheet (b), and the above steps. The adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) obtained by (A) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) are bonded together. Step (C). Moreover, one adhesive force of the said adhesive sheet (a) and (b) is lower than the other.
接着シート(a)及び(b)の一方の接着力が、他方より低いため、半導体ウェハから台座を分離し易い。また、相対的に接着力が高い接着シートを使用するため、半導体ウェハを台座に良好に固定できる。 Since one adhesive force of the adhesive sheets (a) and (b) is lower than the other, the pedestal is easily separated from the semiconductor wafer. In addition, since the adhesive sheet having a relatively high adhesive force is used, the semiconductor wafer can be satisfactorily fixed to the pedestal.
接着シート(b)の接着力が前記接着シート(a)より低いことが好ましい。この場合、接着シート(a)は、接着力が接着シート(b)より高く、半導体ウェハ表面などの凹凸追従性に優れる。よって、接着シート(a)が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が接着シート(a)より低い接着シート(b)が台座と接するため、接着シート(b)を台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 It is preferable that the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a). In this case, the adhesive sheet (a) has a higher adhesive force than the adhesive sheet (b), and is excellent in irregularity followability on the surface of the semiconductor wafer and the like. Therefore, since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal. On the other hand, since the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
以下の説明では、接着シート(b)の接着力が前記接着シート(a)より低い場合について説明する。 In the following description, a case where the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a) will be described.
以下、第2-2の本発明の半導体装置の製造方法について図面を参照しつつ説明する。
図12は、接着シート(a)の断面模式図である。図13は、接着シート(a)に半導体ウェハを貼り付けた様子を示す模式図である。図14は、接着シート(b)の断面模式図である。図15は、接着シート(b)に台座を貼り付けた様子を示す模式図である。図16は、接着シート(a)及び(b)を用いて半導体ウェハを台座に固定した様子を示す模式図である。
Hereinafter, a method for manufacturing a semiconductor device according to the 2-2 of the present invention will be described with reference to the drawings.
FIG. 12 is a schematic cross-sectional view of the adhesive sheet (a). FIG. 13 is a schematic view showing a state in which a semiconductor wafer is attached to the adhesive sheet (a). FIG. 14 is a schematic cross-sectional view of the adhesive sheet (b). FIG. 15 is a schematic view showing a state in which a pedestal is attached to the adhesive sheet (b). FIG. 16 is a schematic diagram showing a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheets (a) and (b).
工程(A)
工程(A)では、接着シート(a)13に半導体ウェハ4を貼り付ける(図13)。
Step (A)
In the step (A), the semiconductor wafer 4 is bonded to the adhesive sheet (a) 13 (FIG. 13).
まず、接着シート(a)13について説明する。図12に示すように、接着シート(a)13は一方の面に基材12を有し、他方の面にセパレータ14を有している。 First, the adhesive sheet (a) 13 will be described. As shown in FIG. 12, the adhesive sheet (a) 13 has a substrate 12 on one side and a separator 14 on the other side.
接着シート(a)13を構成する接着剤組成物としては特に限定されないが、第1接着剤層70で例示したものが好適である。 Although it does not specifically limit as an adhesive composition which comprises the adhesive sheet (a) 13, What was illustrated by the 1st adhesive bond layer 70 is suitable.
接着シート(a)13の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。0.30N/20mm以上であると、半導体ウェハ4を台座に良好に固定でき、バックグラインドなどを良好に行うことができる。また、該90°ピール剥離力の上限は、特に限定されず、大きいほど好ましいが、例えば、30N/20mm以下、好ましくは20N/20mm以下である。 The adhesive strength of the adhesive sheet (a) 13 is preferably, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer 4 can be fixed to the pedestal satisfactorily and back grinding can be performed well. The upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
基材12としては、SUS304、6-4アロイ、アルミ箔、銅箔、Ni箔などの金属箔や、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等が挙げられる。 As the substrate 12, metal foil such as SUS304, 6-4 alloy, aluminum foil, copper foil, Ni foil, polyethylene terephthalate (PET), polyethylene, polypropylene, fluorine release agent, long chain alkyl acrylate release agent Examples thereof include a plastic film or paper whose surface is coated with a release agent such as
セパレータ14としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等が挙げられる。 Examples of the separator 14 include plastic film and paper whose surface is coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, and a long-chain alkyl acrylate release agent.
半導体ウェハ4としては特に限定されず、第1の本発明で説明した半導体ウェハ3を好適に使用できる。 It does not specifically limit as the semiconductor wafer 4, The semiconductor wafer 3 demonstrated by 1st this invention can be used conveniently.
工程Aでは、セパレータ14を剥離して、接着シート(a)13に半導体ウェハ4を貼り付ける。 In step A, the separator 14 is peeled off, and the semiconductor wafer 4 is attached to the adhesive sheet (a) 13.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート(a)13の面積が半導体ウェハ4の面積より大きい場合は、必要に応じて、貼り付け前または貼り付け後に、接着シート(a)13をカットすればよい。
The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, when the area of the adhesive sheet (a) 13 is larger than the area of the semiconductor wafer 4, the adhesive sheet (a) 13 may be cut as necessary before or after the attachment.
工程(B)
工程(B)では、接着シート(b)23に台座2を貼り付ける(図15)。
Process (B)
At a process (B), the base 2 is affixed on the adhesive sheet (b) 23 (FIG. 15).
図14に示すように、接着シート(b)23は一方の面に基材22を有し、他方の面にセパレータ24を有している。 As shown in FIG. 14, the adhesive sheet (b) 23 has a base material 22 on one side and a separator 24 on the other side.
接着シート(b)23を構成する接着剤組成物としては特に限定されないが、第2の層71で例示したものが好適である。 Although it does not specifically limit as an adhesive composition which comprises the adhesive sheet (b) 23, What was illustrated by the 2nd layer 71 is suitable.
接着シート(b)23の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、半導体ウェハ4から台座2を容易に分離できる。一方、該90°ピール剥離力の下限は、好ましくは0.001N/20mm以上であり、より好ましくは0.005N/20mm以上、更に好ましくは0.010N/20mm以上である。0.001N/20mm以上であると、半導体ウェハ4を台座2に良好に固定でき、バックグラインドなどを良好に行うことができる。 The adhesive strength of the adhesive sheet (b) 23 is preferably such that, for example, the 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm, More preferably, it is 0.20 N / 20 mm or less. If it is less than 0.30 N / 20 mm, the base 2 can be easily separated from the semiconductor wafer 4. On the other hand, the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer 4 can be fixed to the base 2 satisfactorily, and back grinding and the like can be performed satisfactorily.
基材22としては特に限定されず、基材12で例示したものなどが挙げられる。セパレータ24としては特に限定されず、セパレータ14で例示したものなどが挙げられる。 It does not specifically limit as the base material 22, What was illustrated by the base material 12 etc. are mentioned. It does not specifically limit as the separator 24, What was illustrated by the separator 14 etc. are mentioned.
台座2としては特に限定されず、第1の本発明で説明した台座1を好適に使用できる。 The pedestal 2 is not particularly limited, and the pedestal 1 described in the first aspect of the present invention can be suitably used.
工程Bでは、セパレータ24を剥離して、接着シート(b)23に台座2を貼り付ける。 In step B, the separator 24 is peeled off, and the base 2 is attached to the adhesive sheet (b) 23.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート(b)23の面積が台座2の面積より大きい場合は、必要に応じて、貼り付け前または貼り付け後に、接着シート(b)23をカットすればよい。
The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
When the area of the adhesive sheet (b) 23 is larger than the area of the pedestal 2, the adhesive sheet (b) 23 may be cut before or after application as necessary.
工程(C)
工程(C)では、工程(A)により得られた接着シート(a)13付き半導体ウェハ4の接着シート(a)13、及び工程(B)により得られた接着シート(b)23付き台座2の接着シート(b)23を貼り合わせる(図16)。これにより、半導体ウェハ4を台座2に固定できる。
Process (C)
In the step (C), the adhesive sheet (a) 13 of the semiconductor wafer 4 with the adhesive sheet (a) 13 obtained in the step (A) and the base 2 with the adhesive sheet (b) 23 obtained in the step (B). The adhesive sheet (b) 23 is bonded together (FIG. 16). Thereby, the semiconductor wafer 4 can be fixed to the base 2.
貼り合わせ方法は特に限定されない。貼り合わせ後、必要に応じて、接着シート(a)13及び接着シート(b)23をイミド化する。これにより、半導体ウェハ4を台座2に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、接着シート(a)13及び接着シート(b)23の一方のみをイミド化してもよい。 The bonding method is not particularly limited. After bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 are imidized as necessary. Thereby, the semiconductor wafer 4 can be favorably fixed to the base 2. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be imidized.
また、貼り合わせ後、必要に応じて、接着シート(a)13及び接着シート(b)23を熱硬化してもよい。接着シート(a)13及び接着シート(b)23としてシリコーン樹脂を用いた場合、熱硬化により半導体ウェハ4を台座2に良好に固定できる。なお、接着シート(a)13及び接着シート(b)23の一方のみを熱硬化してもよい。 Moreover, after bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermoset as necessary. When a silicone resin is used as the adhesive sheet (a) 13 and the adhesive sheet (b) 23, the semiconductor wafer 4 can be satisfactorily fixed to the base 2 by thermosetting. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermally cured.
他の工程
台座2に固定された半導体ウェハ4をバックグラインドできる。バックグラインドは、従来公知の方法で行うことができる。
The semiconductor wafer 4 fixed to the other process base 2 can be back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ4の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 4 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などの所望の処理を半導体ウェハ4に施した後、半導体ウェハ4から台座2を分離する。 After a desired process such as back grinding or processing is performed on the semiconductor wafer 4, the pedestal 2 is separated from the semiconductor wafer 4.
半導体ウェハ4から台座2を分離する方法としては特に限定されず、半導体ウェハ3から台座1を分離する方法の説明で例示した方法が挙げられる。 The method for separating the pedestal 2 from the semiconductor wafer 4 is not particularly limited, and examples thereof include the method exemplified in the description of the method for separating the pedestal 1 from the semiconductor wafer 3.
以上の説明では、接着シート(b)23の接着力が前記接着シート(a)13より低い場合について説明した。しかし、これに限定されず、接着シート(b)23の接着力が接着シート(a)13より高くてもよい。 In the above description, the case where the adhesive strength of the adhesive sheet (b) 23 is lower than that of the adhesive sheet (a) 13 has been described. However, the present invention is not limited to this, and the adhesive strength of the adhesive sheet (b) 23 may be higher than that of the adhesive sheet (a) 13.
この場合、接着シート(b)23の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。該90°ピール剥離力の上限は、例えば、30N/20mm以下、好ましくは20N/20mm以下である。
また、接着シート(a)13の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。該90°ピール剥離力の下限は、好ましくは0.001N/20mm以上であり、より好ましくは0.005N/20mm以上、更に好ましくは0.010N/20mm以上である。
In this case, the adhesive force of the adhesive sheet (b) 23 is, for example, a 90 ° peel peel force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. It is preferable that it is 0.40 N / 20 mm or more. The upper limit of the 90 ° peel peel force is, for example, 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
Moreover, the adhesive strength of the adhesive sheet (a) 13 is, for example, that the 90 ° peel peeling force for a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. Preferably, it is 0.20 N / 20 mm or less. The lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and further preferably 0.010 N / 20 mm or more.
また、以上の説明では、接着シート(a)13が基材12及びセパレータ14を有している場合について説明した。しかし、これに限定されず、接着シート(a)13は、セパレータ14を有していなくてもよく、基材12を有していなくともよい。接着シート(b)23も同様であり、接着シート(b)23は、セパレータ24を有していなくてもよく、基材22を有していなくともよい。 Moreover, in the above description, the case where the adhesive sheet (a) 13 has the base material 12 and the separator 14 was demonstrated. However, the present invention is not limited to this, and the adhesive sheet (a) 13 may not have the separator 14 and may not have the substrate 12. The adhesive sheet (b) 23 is the same, and the adhesive sheet (b) 23 may not have the separator 24 and may not have the base material 22.
<<第3の本発明>>
以下、第3の本発明に関し、第1の本発明と異なる点を説明する。
<< Third Present Invention >>
Hereinafter, regarding the third aspect of the present invention, differences from the first aspect of the present invention will be described.
第3の本発明は、半導体ウェハを台座に良好に固定できるとともに、半導体ウェハから台座を容易に分離できる半導体装置の製造方法を提供することを目的とする。 A third object of the present invention is to provide a method for manufacturing a semiconductor device in which a semiconductor wafer can be satisfactorily fixed to a pedestal and the pedestal can be easily separated from the semiconductor wafer.
第3の本発明の半導体装置の製造方法は、仮止め用シートの一方の面に半導体ウェハを貼り付ける工程(A)、前記仮止め用シートの他方の面にベベル部を有する台座を貼り付ける工程(B)、及び前記仮止め用シートと前記台座の前記ベベル部との間に、前記仮止めシートよりも接着力が高い接着剤層を形成して、前記仮止め用シートを前記台座に固定する工程(C)を含む。 In the method of manufacturing a semiconductor device according to the third aspect of the present invention, the step (A) of attaching a semiconductor wafer to one surface of the temporary fixing sheet, and attaching a pedestal having a beveled portion to the other surface of the temporary fixing sheet. In step (B), an adhesive layer having higher adhesive force than the temporary fixing sheet is formed between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing sheet is formed on the pedestal. A fixing step (C).
工程(A)~(C)の順序は特に限定されない。例えば、工程(A)、工程(B)及び工程(C)の順序、工程(B)、工程(A)及び工程(C)の順序、工程(A)、工程(C)及び工程(B)の順序、工程(B)、工程(C)及び工程(A)の順序等が挙げられる。
なかでも、接着剤層が形成し易く、接着剤層がはみ出す可能性や接着剤層を必要量以上に形成する可能性が低いという理由から、工程(A)、工程(B)及び工程(C)の順序が好ましい。
The order of the steps (A) to (C) is not particularly limited. For example, the order of step (A), step (B) and step (C), the order of step (B), step (A) and step (C), step (A), step (C) and step (B) Order, step (B), step (C), step (A), and the like.
Among them, the process (A), the process (B) and the process (C) are easy because the adhesive layer is easy to form and the possibility that the adhesive layer protrudes and the possibility that the adhesive layer is formed more than necessary is low. ) Is preferred.
以下、第3の本発明の半導体装置の製造方法について、図面を参照しつつ説明する。
図17は、仮止め用シートの断面図である。図18は、仮止め用シートに半導体ウェハを貼り付けた様子を示す図である。図19は、仮止め用シートと台座のベベル部との間に、接着剤層を形成した様子を示す図である。
Hereinafter, a method for manufacturing a semiconductor device according to a third aspect of the present invention will be described with reference to the drawings.
FIG. 17 is a cross-sectional view of the temporary fixing sheet. FIG. 18 is a diagram illustrating a state in which a semiconductor wafer is attached to the temporary fixing sheet. FIG. 19 is a diagram illustrating a state in which an adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal.
工程(A)
工程(A)では、仮止め用シート81の一方の面に半導体ウェハ3を貼り付ける(図18)。
Step (A)
In the step (A), the semiconductor wafer 3 is attached to one surface of the temporary fixing sheet 81 (FIG. 18).
仮止め用シート81に半導体ウェハ3を貼り付ける方法は特に限定されないが、仮止め用シート81に半導体ウェハ3の回路形成面を貼り付けることが好ましい。 A method of attaching the semiconductor wafer 3 to the temporary fixing sheet 81 is not particularly limited, but it is preferable to apply the circuit forming surface of the semiconductor wafer 3 to the temporary fixing sheet 81.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。 The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
貼り付け後、必要に応じて、仮止め用シート81をイミド化する。これにより、仮止め用シート81及び半導体ウェハ3を良好に接着できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。 After pasting, the temporary fixing sheet 81 is imidized as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 3 can be favorably bonded. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
貼り付け後、必要に応じて、仮止め用シート81を熱硬化してもよい。これにより、仮止め用シート81及び半導体ウェハ3を良好に接着できる。熱硬化は従来公知の方法で行うことができ、例えば、100~350℃(好ましくは150~350℃)、0.1~5時間、窒素雰囲気下で熱硬化できる。 After pasting, the temporary fixing sheet 81 may be thermally cured as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 3 can be favorably bonded. The heat curing can be performed by a conventionally known method. For example, the heat curing can be performed in a nitrogen atmosphere at 100 to 350 ° C. (preferably 150 to 350 ° C.) for 0.1 to 5 hours.
仮止め用シート81の厚さは特に限定されず、例えば、10μm以上であり、好ましくは50μm以上である。10μm以上であると、半導体ウェハ表面の凹凸を追従でき、仮止め用シート81を隙間なく充填できる。また、仮止め用シート81の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the temporary fixing sheet 81 is not particularly limited, and is, for example, 10 μm or more, preferably 50 μm or more. When the thickness is 10 μm or more, the unevenness on the surface of the semiconductor wafer can be followed, and the temporarily fixing sheet 81 can be filled without a gap. Further, the thickness of the temporary fixing sheet 81 is, for example, 500 μm or less, and preferably 300 μm or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
仮止め用シート81を平面視したときの形状は特に限定されないが、通常、円形である。 The shape of the temporary fixing sheet 81 in plan view is not particularly limited, but is usually circular.
仮止め用シート81の接着力は、後述する接着剤層80の接着力よりも低い。仮止め用シート81の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、半導体ウェハ3の糊残りを防止できる。一方、該90°ピール剥離力の下限は、好ましくは0.01N/20mm以上であり、より好ましくは0.02N/20mm以上、更に好ましくは0.05N/20mm以上である。0.01N/20mm以上であると、半導体ウェハ3を台座1に良好に固定でき、バックグラインドなどを良好に行うことができる。 The adhesive force of the temporary fixing sheet 81 is lower than the adhesive force of the adhesive layer 80 described later. The adhesive force of the temporary fixing sheet 81 is preferably, for example, a 90 ° peel peeling force to a silicon wafer under a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. The adhesive residue of the semiconductor wafer 3 can be prevented as it is less than 0.30 N / 20 mm. On the other hand, the lower limit of the 90 ° peel strength is preferably 0.01 N / 20 mm or more, more preferably 0.02 N / 20 mm or more, and still more preferably 0.05 N / 20 mm or more. When it is 0.01 N / 20 mm or more, the semiconductor wafer 3 can be fixed to the pedestal 1 satisfactorily, and back grinding and the like can be performed satisfactorily.
仮止め用シート81を構成する接着剤組成物としては、仮止め用シート81の接着力が、後述する接着剤層80の接着力よりも低くなるように選択する限り、特に限定されない。仮止め用シート81を構成する接着剤組成物としては、第1の本発明で説明したポリイミド樹脂、シリコーン樹脂を好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、ポリイミド樹脂が好ましい。 The adhesive composition constituting the temporary fixing sheet 81 is not particularly limited as long as it is selected so that the adhesive force of the temporary fixing sheet 81 is lower than the adhesive force of the adhesive layer 80 described later. As the adhesive composition constituting the temporary fixing sheet 81, the polyimide resin and the silicone resin described in the first aspect of the present invention can be suitably used. Of these, polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
半導体ウェハ3としては、第1の本発明で説明した半導体ウェハ3を好適に使用できる。また、半導体ウェハ3は、通常、ベベル部を有する。 As the semiconductor wafer 3, the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used. The semiconductor wafer 3 usually has a bevel portion.
工程(B)
工程(B)では、仮止め用シート81の他方の面にベベル部を有する台座1を貼り付ける。
Process (B)
In the step (B), the pedestal 1 having a bevel portion is attached to the other surface of the temporary fixing sheet 81.
貼り付け方法は特に限定されないが、ロールラミネートや真空プレスで貼り付けることが好ましい。貼り付け条件は特に限定されないが、例えば、23~250℃、0.01~10MPaで貼り付けできる。 The attaching method is not particularly limited, but is preferably attached by roll lamination or a vacuum press. The affixing conditions are not particularly limited, but can be affixed at 23 to 250 ° C. and 0.01 to 10 MPa, for example.
台座1の周縁部には、台座1の上面及び下面から側面(外側)に向かって傾斜した傾斜面が形成されている。このような傾斜面が形成された周縁部がベベル部である。 An inclined surface that is inclined from the upper surface and the lower surface of the pedestal 1 toward the side surface (outer side) is formed on the periphery of the pedestal 1. A peripheral portion where such an inclined surface is formed is a bevel portion.
台座1としては、ベベル部を有する限り特に限定されない。台座1としては、第1の本発明で説明した台座1を好適に使用できる。なかでも、平滑性、入手し易さ、汚染性という理由から、シリコンウェハ又はガラスウェハが好ましい。 The base 1 is not particularly limited as long as it has a bevel portion. As the pedestal 1, the pedestal 1 described in the first aspect of the present invention can be suitably used. Among these, a silicon wafer or a glass wafer is preferable because of smoothness, availability, and contamination.
工程(C)
工程(C)では、仮止め用シート81と台座1のベベル部との間に、仮止めシート81よりも接着力が高い接着剤層80を形成して、仮止め用シート81を台座1に固定する(図19)。
Process (C)
In the step (C), an adhesive layer 80 having a higher adhesive force than the temporary fixing sheet 81 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 1, and the temporary fixing sheet 81 is placed on the pedestal 1. Fix (FIG. 19).
具体的には、仮止め用シート81と台座1のベベル部との間に、液状の接着剤組成物を塗布し、乾燥等させることにより、接着剤層80を形成して、仮止め用シート81を台座1に固定する。 Specifically, the adhesive layer 80 is formed by applying a liquid adhesive composition between the temporary fixing sheet 81 and the bevel portion of the pedestal 1 and drying the adhesive composition 80. 81 is fixed to the base 1.
接着剤層80の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。0.30N/20mm以上であると、仮止め用シート81を台座1に良好に固定でき、バックグラインドなどを良好に行うことができる。また、該90°ピール剥離力の上限は、特に限定されず、大きいほど好ましいが、例えば、30N/20mm以下、好ましくは20N/20mm以下である。 The adhesive force of the adhesive layer 80 is preferably, for example, a 90 ° peel peel force for a silicon wafer under the conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. More preferably, it is 40 N / 20 mm or more. When it is 0.30 N / 20 mm or more, the temporarily fixing sheet 81 can be fixed to the pedestal 1 satisfactorily, and back grinding can be performed well. The upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
接着剤層80を構成する材料としては、接着剤層80の接着力が、仮止め用シート81の接着力よりも高くなるように選択する限り、特に限定されない。接着剤層80を構成する材料としては、前述のポリイミド樹脂、前述のシリコーン樹脂を好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、前記ポリイミド樹脂が好ましい。 The material constituting the adhesive layer 80 is not particularly limited as long as it is selected so that the adhesive force of the adhesive layer 80 is higher than the adhesive force of the temporary fixing sheet 81. As a material constituting the adhesive layer 80, the aforementioned polyimide resin and the aforementioned silicone resin can be suitably used. Especially, the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
図20の(a)は、仮止め用シート81と台座1のベベル部との間に、接着剤層80を形成した様子を示す図である。図20の(b)は、ベベル部周辺の拡大図である。
図20(b)に示すように、仮止め用シート81の端部は、台座1の端部よりも内側、且つ、台座1のベベル部の傾斜開始位置よりも外側であることが好ましい。具体的には、台座1の端部と仮止め用シート81の端部との横方向(台座1の面に水平方向)の距離をD1とし、台座1の端部と台座1のベベル部の傾斜開始位置との横方向の距離をD2とすると、D1は、D2の10分の1、すなわち、(D2)/10よりも大きいことが好ましい。D1が、D2の10分の1よりも大きいと、仮止め用シート81が他の部材(例えば、搬送に使用するカセット)に触れ、めくれ上がることを防止できる。
一方、D1は、D2の3分の2、すなわち、(D2)×(2/3)よりも小さいことが好ましい。D1が、D2の3分の2よりも小さいと、接着剤剤層80による接着部分の面積をある程度確保でき、接着信頼性に優れる。
なお、D2は、通常、0.1~0.4mmである。
FIG. 20A is a diagram illustrating a state in which an adhesive layer 80 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 1. FIG. 20B is an enlarged view around the bevel portion.
As shown in FIG. 20B, it is preferable that the end portion of the temporary fixing sheet 81 is inside the end portion of the pedestal 1 and outside the tilt start position of the bevel portion of the pedestal 1. Specifically, the distance in the lateral direction (horizontal to the surface of the pedestal 1) between the end of the pedestal 1 and the end of the temporary fixing sheet 81 is D1, and the end of the pedestal 1 and the bevel portion of the pedestal 1 If the lateral distance from the tilt start position is D2, D1 is preferably one-tenth of D2, that is, larger than (D2) / 10. When D1 is larger than 1/10 of D2, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
On the other hand, D1 is preferably smaller than two-thirds of D2, that is, (D2) × (2/3). When D1 is smaller than two-thirds of D2, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
Note that D2 is usually 0.1 to 0.4 mm.
図21の(a)は、仮止め用シートと台座のベベル部との間に、接着剤層を形成した様子を示す図である。図21の(b)は、半導体ウェハのベベル部周辺の拡大図である。
図21(b)に示すように、仮止め用シート81の端部は、半導体ウェハ3の端部よりも内側、且つ、半導体ウェハ3のベベル部の傾斜開始位置よりも外側であることが好ましい。
具体的には、半導体ウェハ3の端部と仮止め用シート81の端部との横方向(半導体ウェハ3の面に水平方向)の距離をD3とし、半導体ウェハ3の端部と半導体ウェハ3のベベル部の傾斜開始位置との横方向の距離をD4とすると、D3は、D4の10分の1、すなわち、(D4)/10よりも大きいことが好ましい。D3が、D4の10分の1よりも大きいと、仮止め用シート81が他の部材(例えば、搬送に使用するカセット)に触れ、めくれ上がることを防止できる。
一方、D3は、D4の3分の2、すなわち、(D4)×(2/3)よりも小さいことが好ましい。D3が、D4の3分の2よりも小さいと、接着剤剤層80による接着部分の面積をある程度確保でき、接着信頼性に優れる。
なお、D4は、通常、0.1~0.4mmである。
(A) of FIG. 21 is a figure which shows a mode that the adhesive bond layer was formed between the sheet | seat for temporary fixing, and the bevel part of a base. FIG. 21B is an enlarged view around the bevel portion of the semiconductor wafer.
As shown in FIG. 21B, the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the semiconductor wafer 3 and outside the tilt start position of the bevel portion of the semiconductor wafer 3. .
Specifically, the distance in the horizontal direction (horizontal direction of the surface of the semiconductor wafer 3) between the end of the semiconductor wafer 3 and the end of the temporary fixing sheet 81 is D3, and the end of the semiconductor wafer 3 and the semiconductor wafer 3 When the distance in the horizontal direction from the inclination start position of the bevel portion is D4, D3 is preferably one-tenth of D4, that is, larger than (D4) / 10. When D3 is larger than 1/10 of D4, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
On the other hand, D3 is preferably smaller than two-thirds of D4, that is, (D4) × (2/3). When D3 is smaller than two-thirds of D4, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
D4 is usually 0.1 to 0.4 mm.
他の工程
工程(A)~(C)により台座1に固定された半導体ウェハ3に対して、バックグラインドを行うことが好ましい。バックグラインドは、従来公知の方法で行うことができる。
It is preferable to perform back grinding on the semiconductor wafer 3 fixed to the pedestal 1 by other process steps (A) to (C). The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ3の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などの所望の処理を半導体ウェハ3に施した後、仮止め用シート81から台座1を分離することが好ましい。 It is preferable to separate the pedestal 1 from the temporary fixing sheet 81 after the semiconductor wafer 3 is subjected to desired processing such as back grinding and processing.
仮止め用シート81から台座1を分離する方法としては特に限定されない。
例えば、仮止め用シート80に切り込みを入れて分離する方法、接着剤層80の接着力を低下させて分離する方法が好適である。なかでも、半導体ウェハ3に負荷をかけないという理由から、仮止め用シート81に切り込みを入れて分離する方法が好ましい。
The method for separating the pedestal 1 from the temporary fixing sheet 81 is not particularly limited.
For example, a method of cutting and separating the temporary fixing sheet 80 and a method of separating by reducing the adhesive force of the adhesive layer 80 are suitable. Among these, a method of cutting and temporarily separating the temporary fixing sheet 81 is preferable because a load is not applied to the semiconductor wafer 3.
図22は、仮止め用シート81に切り込みを入れた様子を示す図である。図22に示すように、仮止め用シート81に台座1に達するまで切り込み99を入れることが好ましく、仮止め用シート81に台座1のベベル部に達するまで切り込み99を入れることがより好ましい。切り込み方法は特に限定されず、カッターやレーザー等従来公知の方法により切り込みできる。 FIG. 22 is a diagram illustrating a state in which the temporary fixing sheet 81 has been cut. As shown in FIG. 22, it is preferable to make a cut 99 in the temporary fixing sheet 81 until it reaches the pedestal 1, and it is more preferable to make a cut 99 in the temporary fixing sheet 81 until it reaches the bevel portion of the pedestal 1. The cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
接着剤層80の接着力を低下させる方法は特に限定されず、溶剤により接着剤層80を溶解させる方法、加熱により接着力が低下する材料で接着剤層80を形成しておき、加熱により接着力を低下させる方法などが挙げられる。 The method for reducing the adhesive strength of the adhesive layer 80 is not particularly limited. The adhesive layer 80 is dissolved with a solvent, the adhesive layer 80 is formed of a material whose adhesive strength is reduced by heating, and the adhesive layer 80 is bonded by heating. A method for reducing the force is mentioned.
以上の説明では、半導体ウェハ3として、回路形成面及び非回路形成面を有するもの使用する場合について説明した。しかし、回路形成面及び非回路形成面を有するものに限定されず、両面が非回路形成面のものなどでもよい。 In the above description, the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
また、工程(A)~(C)により台座1に固定された半導体ウェハ3に対して、バックグラインドを行った後、加工する場合について説明した。しかし、バックグラインドせずに半導体ウェハ3を加工してもよい。 Further, the case where the semiconductor wafer 3 fixed to the pedestal 1 by the steps (A) to (C) is processed after back grinding has been described. However, the semiconductor wafer 3 may be processed without back grinding.
また、仮止め用シートの形状として、断面が矩形の場合について説明した。しかし、仮止め用シートの形状は特に限定されない。例えば、図23に示すように仮止め用シートの周縁部に凹部が設けられたものなどでもよい。 Moreover, the case where the cross section was a rectangle was demonstrated as a shape of the sheet | seat for temporary fixing. However, the shape of the temporary fixing sheet is not particularly limited. For example, as shown in FIG. 23, the temporary fixing sheet may be provided with a recess in the peripheral edge.
前述のとおり、第3の本発明の製造方法において、工程(A)~(C)の順序は特に限定されない。例えば、工程(B)の前に工程(C)を行うことができる。この場合、仮止め用シートの周縁部(ベベル部に対応する部分)にシート状物としての接着剤層を予め設けておき、接着剤層がベベル部に接着するように、仮止め用シートに台座を貼り付ければよい。 As described above, in the third production method of the present invention, the order of the steps (A) to (C) is not particularly limited. For example, the step (C) can be performed before the step (B). In this case, an adhesive layer as a sheet-like material is provided in advance on the peripheral edge portion (portion corresponding to the bevel portion) of the temporary fixing sheet, so that the adhesive layer adheres to the bevel portion. A pedestal can be attached.
<<第4の本発明>>
以下、第4の本発明(第4-1の本発明、第4-2の本発明、第4-3の本発明、第4-4の本発明及び第4-5の本発明)に関し、第1の本発明と異なる点を説明する。
<< Fourth Invention >>
Hereinafter, regarding the fourth invention (4-1 invention, 4-2 invention, 4-3 invention, 4-4 invention and 4-5 invention), Differences from the first invention will be described.
第4の本発明は、半導体ウェハを台座に良好に固定できるとともに、半導体ウェハから台座を容易に分離できる半導体装置の製造方法を提供することを目的とする。 A fourth aspect of the present invention is to provide a method for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and can easily separate the pedestal from the semiconductor wafer.
[第4-1の本発明]
第4-1の本発明の半導体装置の製造方法は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が前記第1接着剤層と前記第2の層との積層により形成されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第2の層に達するまで前記第1接着剤層に切り込みを入れ、前記半導体ウェハから前記台座を分離する工程とを含む。
[4-1 Present Invention]
The 4-1 semiconductor device manufacturing method of the present invention includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of an adhesive sheet is the first adhesive layer. A step of preparing an adhesive sheet that is formed by one adhesive layer, and a central portion inside the peripheral portion is formed by stacking the first adhesive layer and the second layer; and And fixing the semiconductor wafer to the pedestal, and cutting the first adhesive layer until reaching the second layer to separate the pedestal from the semiconductor wafer.
まず、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が前記第1接着剤層と前記第2の層との積層により形成されている接着シートを準備する。 First, it has a first adhesive layer and a second layer whose adhesive strength is lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer, and is more than the peripheral portion. An adhesive sheet is prepared in which an inner central portion is formed by stacking the first adhesive layer and the second layer.
図24は、第4-1の本発明で使用できる接着シート5の断面模式図である。図24に示すように、接着シート5は、周辺部54が第1接着剤層50により形成されるとともに、周辺部54よりも内側の中央部53が、第1接着剤層50と第2の層51との積層により形成されている。すなわち、接着シート5は、第2の層51と、第2の層51上に第2の層51の上面及び側面を覆う態様で積層された第1接着剤層50とを有する。第2の層51の接着力は、第1接着剤層50の接着力よりも低い。 FIG. 24 is a schematic cross-sectional view of the adhesive sheet 5 that can be used in the fourth embodiment of the present invention. As shown in FIG. 24, the adhesive sheet 5 has a peripheral portion 54 formed by the first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has the first adhesive layer 50 and the second adhesive layer 50. It is formed by stacking with the layer 51. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
接着シート5の周辺部54は、前記第1接着剤層50により形成されている。第2の層51と比較して接着力の高い第1接着剤層50が周辺部54に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
周辺部54よりも内側の中央部53が第1接着剤層50と第2の層51との積層により形成されている。第1接着剤層50のみが表出している面では、半導体ウェハ又は台座を強固に固定できる。また、第2の層51が台座と接する場合、接着シートを台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。
A peripheral portion 54 of the adhesive sheet 5 is formed by the first adhesive layer 50. Since the first adhesive layer 50 having higher adhesive strength than the second layer 51 is present in the peripheral portion 54, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
A central portion 53 inside the peripheral portion 54 is formed by stacking the first adhesive layer 50 and the second layer 51. The semiconductor wafer or the pedestal can be firmly fixed on the surface where only the first adhesive layer 50 is exposed. Further, when the second layer 51 is in contact with the pedestal, the adhesive sheet is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
図25は、第4-1の本発明で使用できる接着シート5の平面図である。
図25に示すように、接着シート5は、平面視したときの形状が円形である。接着シート5としては、第1の本発明で説明した接着シート5を好適に使用できる。
FIG. 25 is a plan view of the adhesive sheet 5 that can be used in the fourth embodiment of the present invention.
As shown in FIG. 25, the adhesive sheet 5 has a circular shape when viewed in plan. As the adhesive sheet 5, the adhesive sheet 5 described in the first aspect of the present invention can be suitably used.
図26に示すように、接着シート5は、他の層が形成されたものであってもよい。図26は、第4-1の本発明で使用できる接着シート5の断面模式図である。図26の接着シート5は、周辺部54及び中央部53にわたって、第3の層55が形成されている。第1接着剤層50よりも接着力の低い第3の層55が表出している面を半導体ウェハに貼り付けることで、半導体ウェハから第3の層55付きの接着シート5を容易に剥離できる。また、半導体ウェハの糊残りを無くすことができ、半導体ウェハの洗浄工程を省略できる。 As shown in FIG. 26, the adhesive sheet 5 may have other layers formed thereon. FIG. 26 is a schematic cross-sectional view of the adhesive sheet 5 that can be used in (4-1) the present invention. In the adhesive sheet 5 of FIG. 26, a third layer 55 is formed across the peripheral portion 54 and the central portion 53. The adhesive sheet 5 with the third layer 55 can be easily peeled from the semiconductor wafer by sticking the surface on which the third layer 55 having a lower adhesive strength than the first adhesive layer 50 is exposed to the semiconductor wafer. . Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
以下の説明では、図24、25に示す接着シート5を用いた場合について説明する。 In the following description, the case where the adhesive sheet 5 shown in FIGS. 24 and 25 is used will be described.
接着シート5を準備した後、接着シート5を用いて半導体ウェハ41を台座31に固定する。図27は、半導体ウェハ41を台座31に固定した様子を示す模式図である。 After preparing the adhesive sheet 5, the semiconductor wafer 41 is fixed to the pedestal 31 using the adhesive sheet 5. FIG. 27 is a schematic diagram showing a state in which the semiconductor wafer 41 is fixed to the pedestal 31.
接着シート5を用いて半導体ウェハ41を台座31に固定する方法は特に限定されないが、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座31に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ41の回路形成面に貼り付ける方法が好適である(図27)。 The method for fixing the semiconductor wafer 41 to the pedestal 31 using the adhesive sheet 5 is not particularly limited, but the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the pedestal 31. A method of adhering the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 41 is suitable (FIG. 27).
半導体ウェハ41としては、第1の本発明で説明した半導体ウェハ3を好適に使用できる。台座31としては、第1の本発明で説明した台座1を好適に使用できる。 As the semiconductor wafer 41, the semiconductor wafer 3 described in the first aspect of the present invention can be suitably used. As the pedestal 31, the pedestal 1 described in the first aspect of the present invention can be suitably used.
貼り付け(固定)方法は特に限定されないが、圧着が好ましい。圧着は、通常、圧着ロール等の押圧手段により押圧しながら行われる。圧着の条件としては、例えば、20~300℃、0.001~10MPa、0.001~10mm/secが好ましい。圧着時間は、通常0.1~10分である。
圧着後、必要に応じて、第1接着剤層50及び第2の層51をイミド化する。これにより、半導体ウェハ41を台座31に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、第1接着剤層50及び第2の層51の一方のみをイミド化してもよい。
The method of attaching (fixing) is not particularly limited, but pressure bonding is preferable. The crimping is usually performed while pressing with a pressing means such as a crimping roll. As the pressure bonding conditions, for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable. The crimping time is usually 0.1 to 10 minutes.
After the pressure bonding, the first adhesive layer 50 and the second layer 51 are imidized as necessary. Thereby, the semiconductor wafer 41 can be satisfactorily fixed to the pedestal 31. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 50 and the second layer 51 may be imidized.
次いで、前記半導体ウェハ41をバックグラインドすることが好ましい。バックグラインドは、従来公知の方法で行うことができる。 Next, it is preferable to back grind the semiconductor wafer 41. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ41の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (back ground surface) of the semiconductor wafer 41 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工など所望の処理を施した後、第1接着剤層50を切断し、半導体ウェハ41から台座31を分離する。図28は、第1接着剤層50を切断した様子を示す模式図である。
切断方法は特に限定されず、カッターやレーザー等従来公知の方法により切断できる。
After performing desired processing such as back grinding and processing, the first adhesive layer 50 is cut and the pedestal 31 is separated from the semiconductor wafer 41. FIG. 28 is a schematic diagram illustrating a state in which the first adhesive layer 50 is cut.
The cutting method is not particularly limited, and it can be cut by a conventionally known method such as a cutter or a laser.
分離工程においては、第1接着剤層50を切断する。これにより、第1接着剤層50の連続性を破壊でき、必要に応じて外力を加えることにより半導体ウェハ41から台座31を容易に分離できる。また、接着シート5はその周辺部54に第1接着剤層50が形成されているため、第1接着剤層50に切断101を入れ易い。 In the separation step, the first adhesive layer 50 is cut. Thereby, the continuity of the 1st adhesive bond layer 50 can be destroyed, and the base 31 can be easily isolate | separated from the semiconductor wafer 41 by applying external force as needed. Moreover, since the 1st adhesive bond layer 50 is formed in the peripheral part 54 of the adhesive sheet 5, it is easy to put the cutting | disconnection 101 in the 1st adhesive bond layer 50. FIG.
以上の説明では、平面視したときの形状が円形である接着シート5を用いた場合について説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 In the above description, the case where the adhesive sheet 5 having a circular shape in plan view is used has been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
また、平面視したとき、第2の層51の形状が円形である接着シート5を用いた場合について説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 Moreover, the case where the adhesive sheet 5 whose shape of the 2nd layer 51 is circular when planarly viewed was used was demonstrated. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
以上の説明では、接着シート5を用いて半導体ウェハ41を台座31に固定する方法として、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座31に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ41の回路形成面に貼り付ける方法を説明した。しかし、接着シート5を用いて半導体ウェハ41を台座31に固定する方法は特に限定されず、接着シート5の第1接着剤層50のみが表出している面を台座31に貼り付け、接着シート5の第1接着剤層50及び第2の層51が表出している面を半導体ウェハ41の回路形成面に貼り付ける方法などであってもよい。 In the above description, as a method of fixing the semiconductor wafer 41 to the pedestal 31 using the adhesive sheet 5, the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 31. The method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 41 has been described. However, the method for fixing the semiconductor wafer 41 to the pedestal 31 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 31, and the adhesive sheet 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 41.
また、半導体ウェハ41として、回路形成面及び非回路形成面を有するもの使用する場合について説明した。しかし、回路形成面及び非回路形成面を有するものに限定されず、両面が非回路形成面のものなどでもよい。 Moreover, the case where what has a circuit formation surface and a non-circuit formation surface was used as the semiconductor wafer 41 was demonstrated. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
[第4-2の本発明]
第4-2の本発明の半導体装置の製造方法は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が、前記第2の層により形成されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第2の層に達するまで前記第1接着剤層に切り込みを入れ、前記半導体ウェハから前記台座を分離する工程とを含む。
[4-2th Invention]
The manufacturing method of a semiconductor device according to the 4-2 of the present invention includes a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer, and a peripheral portion of an adhesive sheet is the first adhesive layer. A step of preparing an adhesive sheet formed by one adhesive layer and having a central portion inside the peripheral portion formed by the second layer; and fixing the semiconductor wafer to the pedestal using the adhesive sheet And cutting the first adhesive layer until the second layer is reached, separating the pedestal from the semiconductor wafer.
まず、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、接着シートの周辺部が前記第1接着剤層により形成され、前記周辺部よりも内側の中央部が、前記第2の層により形成されている接着シートを準備する。 First, it has a first adhesive layer and a second layer whose adhesive strength is lower than that of the first adhesive layer, and a peripheral portion of the adhesive sheet is formed by the first adhesive layer, and is more than the peripheral portion. An adhesive sheet having an inner central portion formed by the second layer is prepared.
図29は、第4-2の本発明で使用できる接着シート6の断面模式図である。図29に示すように、接着シート6は、周辺部64が第1接着剤層60により形成されるとともに、周辺部64よりも内側の中央部63が、第2の層61により形成されている。第2の層61の接着力は、第1接着剤層60の接着力よりも低い。 FIG. 29 is a schematic cross-sectional view of the adhesive sheet 6 that can be used in the 4-2th aspect of the present invention. As shown in FIG. 29, in the adhesive sheet 6, the peripheral portion 64 is formed by the first adhesive layer 60, and the central portion 63 inside the peripheral portion 64 is formed by the second layer 61. . The adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
接着シート6の周辺部64は、第1接着剤層60により形成されている。第2の層61と比較して接着力の高い第1接着剤層60が周辺部64に存在するため、この部分において半導体ウェハを台座に強固に固定できる。
周辺部64よりも内側の中央部63が、第2の層61により形成されている。第2の層61が台座と接するため、接着シート6を台座から剥離し易く、糊残りが少なく、台座を再利用しやすい。
The peripheral portion 64 of the adhesive sheet 6 is formed by the first adhesive layer 60. Since the first adhesive layer 60 having a higher adhesive force than the second layer 61 is present in the peripheral portion 64, the semiconductor wafer can be firmly fixed to the pedestal in this portion.
A central portion 63 inside the peripheral portion 64 is formed by the second layer 61. Since the second layer 61 is in contact with the pedestal, the adhesive sheet 6 is easily peeled off from the pedestal, the adhesive residue is small, and the pedestal is easy to reuse.
図30は、第4-2の本発明で使用できる接着シート6の平面図である。図30に示すように、接着シート6は、平面視したときの形状が円形である。接着シート6としては、第1の本発明で説明した接着シート6を好適に使用できる。 FIG. 30 is a plan view of the adhesive sheet 6 that can be used in the 4-2th aspect of the present invention. As shown in FIG. 30, the adhesive sheet 6 has a circular shape when viewed in plan. As the adhesive sheet 6, the adhesive sheet 6 described in the first aspect of the present invention can be suitably used.
図31に示すように、接着シートは、他の層が形成されたものであってもよい。図31は、第4-2の本発明で使用できる接着シート6の断面模式図である。図31の接着シート6は、周辺部64及び中央部63にわたって、第3の層65が形成されている。第1接着剤層60よりも接着力の低い第3の層65が表出している面を半導体ウェハに貼り付けることで、半導体ウェハから第3の層65付きの接着シート6を容易に剥離できる。また、半導体ウェハの糊残りを無くすことができ、半導体ウェハの洗浄工程を省略できる。 As shown in FIG. 31, the adhesive sheet may be formed with other layers. FIG. 31 is a schematic sectional view of an adhesive sheet 6 that can be used in the 4-2th aspect of the present invention. In the adhesive sheet 6 of FIG. 31, a third layer 65 is formed across the peripheral portion 64 and the central portion 63. The adhesive sheet 6 with the third layer 65 can be easily peeled from the semiconductor wafer by attaching the surface on which the third layer 65 having a lower adhesive strength than the first adhesive layer 60 is exposed to the semiconductor wafer. . Further, the adhesive residue on the semiconductor wafer can be eliminated, and the semiconductor wafer cleaning step can be omitted.
以下の説明では、図29、30に示す接着シート6を用いた場合について説明する。 In the following description, the case where the adhesive sheet 6 shown in FIGS. 29 and 30 is used will be described.
接着シート6を準備した後、接着シート6を用いて半導体ウェハ42を台座32に固定する。 After preparing the adhesive sheet 6, the semiconductor wafer 42 is fixed to the base 32 using the adhesive sheet 6.
固定方法は特に限定されないが、圧着が好ましい。圧着は、通常、圧着ロール等の押圧手段により押圧しながら行われる。圧着の条件としては、例えば、20~300℃、0.001~10MPa、0.001~10mm/secが好ましい。圧着時間は、通常0.1~10分である。
圧着後、必要に応じて、第1接着剤層60及び第2の層61をイミド化する。これにより、半導体ウェハ42を台座32に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、第1接着剤層60及び第2の層61の一方のみをイミド化してもよい。
The fixing method is not particularly limited, but pressure bonding is preferable. The crimping is usually performed while pressing with a pressing means such as a crimping roll. As the pressure bonding conditions, for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable. The crimping time is usually 0.1 to 10 minutes.
After the pressure bonding, the first adhesive layer 60 and the second layer 61 are imidized as necessary. Thereby, the semiconductor wafer 42 can be satisfactorily fixed to the pedestal 32. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 60 and the second layer 61 may be imidized.
半導体ウェハ42は、半導体ウェハ41と同様である。台座32は、台座31と同様である。 The semiconductor wafer 42 is the same as the semiconductor wafer 41. The pedestal 32 is the same as the pedestal 31.
次いで、前記半導体ウェハ42をバックグラインドすることが好ましい。バックグラインドは、従来公知の方法で行うことができる。 Next, the semiconductor wafer 42 is preferably back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ42の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (back ground surface) of the semiconductor wafer 42 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工など所望の処理を施した後、第1接着剤層60を切断し、半導体ウェハ42から台座32を分離する。図32は、第1接着剤層を切断した様子を示す模式図である。
切断方法は特に限定されず、カッターやレーザー等従来公知の方法により切断できる。
After performing desired processing such as back grinding and processing, the first adhesive layer 60 is cut, and the pedestal 32 is separated from the semiconductor wafer 42. FIG. 32 is a schematic diagram illustrating a state in which the first adhesive layer is cut.
The cutting method is not particularly limited, and it can be cut by a conventionally known method such as a cutter or a laser.
分離工程においては、第1接着剤層60を切断する。これにより、第1接着剤層60の連続性を破壊でき、必要に応じて外力を加えることにより半導体ウェハ42から台座32を容易に分離できる。また、接着シート6はその周辺部64に第1接着剤層60が形成されているため、第1接着剤層60に切断102を入れ易い。 In the separation step, the first adhesive layer 60 is cut. Thereby, the continuity of the 1st adhesive bond layer 60 can be destroyed, and the base 32 can be easily isolate | separated from the semiconductor wafer 42 by applying external force as needed. Further, since the first adhesive layer 60 is formed on the peripheral portion 64 of the adhesive sheet 6, it is easy to make a cut 102 in the first adhesive layer 60.
以上の説明では、平面視したときの形状が円形である接着シート6を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 In the above description, the adhesive sheet 6 having a circular shape when viewed in plan has been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
また、平面視したとき、第2の層61の形状が円形である接着シート6を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 Further, the adhesive sheet 6 in which the shape of the second layer 61 is circular when viewed in plan has been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
[第4-3の本発明]
第4-3の本発明の半導体装置の製造方法は、第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とが積層されている接着シートを準備する工程と、前記接着シートを用いて半導体ウェハを台座に固定する工程と、前記第1接着剤層と前記第2の層との境界に切り込みを入れて、前記第1接着剤層と前記第2の層を分離する工程とを含む。
[4-3 Present Invention]
A method for manufacturing a semiconductor device according to a fourth aspect of the present invention includes a step of preparing an adhesive sheet in which a first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer are laminated. A step of fixing the semiconductor wafer to a pedestal using the adhesive sheet, and a cut is made at a boundary between the first adhesive layer and the second layer, and the first adhesive layer and the second layer Separating.
まず、第1接着剤層と、接着力が第1接着剤層より低い第2の層とが積層されている接着シートを準備する。 First, an adhesive sheet is prepared in which a first adhesive layer and a second layer whose adhesive strength is lower than that of the first adhesive layer are laminated.
図33は、第4-3の本発明で使用できる接着シート7の断面模式図である。図33に示すように、接着シート7は、第1接着剤層70と、第2の層71との積層により形成されている。第2の層71の接着力は、第1接着剤層70の接着力よりも低い。 FIG. 33 is a schematic cross-sectional view of an adhesive sheet 7 that can be used in the fourth to third aspects of the present invention. As shown in FIG. 33, the adhesive sheet 7 is formed by laminating a first adhesive layer 70 and a second layer 71. The adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
接着シート7としては、第2の本発明で説明した接着シート7を好適に使用できる。 As the adhesive sheet 7, the adhesive sheet 7 described in the second aspect of the present invention can be suitably used.
図34に示すように、接着シートは、他の層が形成されたものであってもよい。図34は、第4-3の本発明で使用できる接着シートの断面模式図である。図34の接着シート7は、第3の層75と、第2の層71と、第1接着剤層70との積層により形成されている。 As shown in FIG. 34, the adhesive sheet may be formed with other layers. FIG. 34 is a schematic cross-sectional view of an adhesive sheet that can be used in the fourth to fourth present inventions. The adhesive sheet 7 of FIG. 34 is formed by laminating a third layer 75, a second layer 71, and a first adhesive layer 70.
第3の層75の接着力は、第1接着剤層70の接着力よりも低いことが好ましい。これにより、接着シート7の第3の層75を台座に貼り付けた場合に、接着シート7を台座から容易に剥離できる。また、台座の糊残りを無くすことができ、台座の洗浄工程を省略できる。 The adhesive force of the third layer 75 is preferably lower than the adhesive force of the first adhesive layer 70. Thereby, when the 3rd layer 75 of the adhesive sheet 7 is affixed on a base, the adhesive sheet 7 can be easily peeled from a base. Further, the adhesive residue on the pedestal can be eliminated, and the pedestal cleaning step can be omitted.
以下の説明では、図33に示す接着シート7を用いた場合について説明する。 In the following description, the case where the adhesive sheet 7 shown in FIG. 33 is used will be described.
図35は、接着シート7に半導体ウェハ43を貼り付けた様子を示す模式図である。図36は、半導体ウェハ43を台座33に固定した様子を示す模式図である。 FIG. 35 is a schematic diagram illustrating a state in which the semiconductor wafer 43 is attached to the adhesive sheet 7. FIG. 36 is a schematic diagram showing a state in which the semiconductor wafer 43 is fixed to the pedestal 33.
接着シート7を用いて半導体ウェハ43を台座33に固定する。例えば、半導体ウェハ43を第1接着剤層70に貼り付け、台座33を第2の層71に貼り付けることにより、半導体ウェハ43を台座33に固定する。当該方法の場合、第1接着剤層70が半導体ウェハ43表面の凹凸に追従でき、半導体ウェハ43を台座33に良好に固定できる。一方、接着力が第1接着剤層70より低い第2の層71が台座33と接するため、接着シート7を台座33から剥離し易い。また、台座33の糊残りが少なく、台座33を再利用しやすい。 The semiconductor wafer 43 is fixed to the pedestal 33 using the adhesive sheet 7. For example, the semiconductor wafer 43 is bonded to the first adhesive layer 70, and the pedestal 33 is bonded to the second layer 71, thereby fixing the semiconductor wafer 43 to the pedestal 33. In the case of this method, the first adhesive layer 70 can follow the irregularities on the surface of the semiconductor wafer 43, and the semiconductor wafer 43 can be fixed to the pedestal 33 well. On the other hand, since the second layer 71 having an adhesive force lower than that of the first adhesive layer 70 is in contact with the pedestal 33, the adhesive sheet 7 is easily peeled from the pedestal 33. Moreover, there is little adhesive residue of the base 33, and the base 33 is easy to reuse.
まず、半導体ウェハ43の回路形成面と第1接着剤層70を貼り合わせる(図35)。 First, the circuit formation surface of the semiconductor wafer 43 and the first adhesive layer 70 are bonded together (FIG. 35).
貼り合わせ方法(貼り付け方法)は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート7の面積が半導体ウェハ43の面積より大きい場合は、必要に応じて、貼り合わせ前または貼り合わせ後に、接着シート7をカットすればよい。
The bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa.
When the area of the adhesive sheet 7 is larger than the area of the semiconductor wafer 43, the adhesive sheet 7 may be cut before or after bonding as necessary.
なお、半導体ウェハ43は、半導体ウェハ41と同様である。 The semiconductor wafer 43 is the same as the semiconductor wafer 41.
次いで、台座33と第2の層71を貼り合わせる(図36)。 Next, the base 33 and the second layer 71 are bonded together (FIG. 36).
貼り合わせ方法(貼り付け方法)は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート7の面積が台座33の面積より大きい場合は、必要に応じて接着シート7をカットすればよい。
The bonding method (sticking method) is not particularly limited, and examples thereof include a method of bonding at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, what is necessary is just to cut the adhesive sheet 7 as needed, when the area of the adhesive sheet 7 is larger than the area of the base 33. FIG.
なお、台座33は、台座31と同様である。 The pedestal 33 is the same as the pedestal 31.
貼り合わせ後、必要に応じて、第1接着剤層70及び第2の層71をイミド化する。これにより、半導体ウェハ43を台座33に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、第1接着剤層70及び第2の層71の一方のみをイミド化してもよい。 After bonding, the first adhesive layer 70 and the second layer 71 are imidized as necessary. Thereby, the semiconductor wafer 43 can be satisfactorily fixed to the pedestal 33. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the first adhesive layer 70 and the second layer 71 may be imidized.
また、貼り合わせ後、必要に応じて、第1接着剤層70及び第2の層71を熱硬化してもよい。第1接着剤層70及び第2の層71としてシリコーン樹脂を用いた場合、熱硬化により半導体ウェハ43を台座33に良好に固定できる。なお、第1接着剤層70及び第2の層71の一方のみを熱硬化してもよい。 In addition, after bonding, the first adhesive layer 70 and the second layer 71 may be thermoset as necessary. When a silicone resin is used as the first adhesive layer 70 and the second layer 71, the semiconductor wafer 43 can be satisfactorily fixed to the pedestal 33 by thermosetting. Only one of the first adhesive layer 70 and the second layer 71 may be thermally cured.
次いで、台座33に固定された半導体ウェハ43をバックグラインドすることが好ましい。バックグラインドは、従来公知の方法で行うことができる。 Next, it is preferable to back grind the semiconductor wafer 43 fixed to the pedestal 33. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ43の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (back ground surface) of the semiconductor wafer 43 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などの所望の処理を半導体ウェハ43に施した後、第1接着剤層70と第2の層71との境界に切り込みを入れて、第1接着剤層70と第2の層71を分離する。図37は、第1接着剤層70と第2の層71との境界に切り込み103を入れた様子を示す模式図である。
切り込み方法は特に限定されず、カッターやレーザー等従来公知の方法により切り込みできる。切り込み深さは特に限定されないが、通常、0.1~10mmである。
After a desired process such as back grinding or processing is performed on the semiconductor wafer 43, a cut is made at the boundary between the first adhesive layer 70 and the second layer 71, and the first adhesive layer 70 and the second layer are formed. 71 is separated. FIG. 37 is a schematic diagram showing a state in which a cut 103 is made at the boundary between the first adhesive layer 70 and the second layer 71.
The cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser. The cutting depth is not particularly limited, but is usually 0.1 to 10 mm.
第2の層71の接着力が第1接着剤層70より低いため、必要に応じて外力を加えることにより、切り込み103を起点として第1接着剤層70と第2の層71を容易に分離できる。 Since the adhesive force of the second layer 71 is lower than that of the first adhesive layer 70, the first adhesive layer 70 and the second layer 71 can be easily separated from the notch 103 by applying an external force as necessary. it can.
以上の説明では、半導体ウェハ43を第1接着剤層70に貼り付け、台座33を第2の層71に貼り付ける方法を説明した。しかし、これに限定されず、台座33を第1接着剤層70に貼り付け、半導体ウェハ43を第2の層71に貼り付けてもよい。 In the above description, the method of attaching the semiconductor wafer 43 to the first adhesive layer 70 and attaching the pedestal 33 to the second layer 71 has been described. However, the present invention is not limited to this, and the base 33 may be attached to the first adhesive layer 70 and the semiconductor wafer 43 may be attached to the second layer 71.
[第4-4の本発明]
第4-4の本発明の半導体装置の製造方法は、接着シート(a)に半導体ウェハを貼り付ける工程(A)と、接着シート(b)に台座を貼り付ける工程(B)と、前記工程(A)により得られた接着シート(a)付き半導体ウェハの前記接着シート(a)、及び前記工程(B)により得られた接着シート(b)付き台座の前記接着シート(b)を貼り合わせ、前記台座、前記接着シート(b)、前記接着シート(a)及び前記半導体ウェハが順に積層された積層体を得る工程(C)と、前記積層体における前記接着シート(a)と前記接着シート(b)との境界に切り込みを入れて、前記接着シート(a)と前記接着シート(b)を分離する工程(D)とを含む。また、前記接着シート(a)及び(b)の一方の接着力が、他方より低い。
[4-4 Present Invention]
According to a fourth method of manufacturing a semiconductor device of the present invention, a step (A) of attaching a semiconductor wafer to the adhesive sheet (a), a step (B) of attaching a base to the adhesive sheet (b), and the above steps Bonding the adhesive sheet (a) of the semiconductor wafer with the adhesive sheet (a) obtained by (A) and the adhesive sheet (b) of the base with the adhesive sheet (b) obtained by the step (B) , A step (C) of obtaining a laminate in which the pedestal, the adhesive sheet (b), the adhesive sheet (a), and the semiconductor wafer are sequentially laminated, and the adhesive sheet (a) and the adhesive sheet in the laminate A step (D) of cutting the boundary with (b) to separate the adhesive sheet (a) and the adhesive sheet (b). Moreover, one adhesive force of the said adhesive sheet (a) and (b) is lower than the other.
接着力の低い接着シートだけを使用するのではなく、相対的に接着力が高い接着シートを併用するため、半導体ウェハを台座に良好に固定できる。 The semiconductor wafer can be satisfactorily fixed to the pedestal because the adhesive sheet having a relatively high adhesive force is used in combination instead of using only the adhesive sheet having a low adhesive force.
接着シート(b)の接着力が前記接着シート(a)より低いことが好ましい。この場合、接着シート(a)は、接着力が接着シート(b)より高く、半導体ウェハ表面などの凹凸追従性に優れる。よって、接着シート(a)が半導体ウェハ表面の凹凸に追従できるため、半導体ウェハを台座に良好に固定できる。一方、接着力が接着シート(a)より低い接着シート(b)が台座と接するため、接着シート(b)を台座から剥離し易い。また、台座の糊残りが少なく、台座を再利用しやすい。 It is preferable that the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a). In this case, the adhesive sheet (a) has a higher adhesive force than the adhesive sheet (b), and is excellent in irregularity followability on the surface of the semiconductor wafer and the like. Therefore, since the adhesive sheet (a) can follow the irregularities on the surface of the semiconductor wafer, the semiconductor wafer can be satisfactorily fixed to the pedestal. On the other hand, since the adhesive sheet (b) having an adhesive force lower than that of the adhesive sheet (a) is in contact with the pedestal, the adhesive sheet (b) is easily peeled from the pedestal. In addition, there is little adhesive residue on the pedestal and it is easy to reuse the pedestal.
以下の説明では、接着シート(b)の接着力が前記接着シート(a)より低い場合について説明する。 In the following description, a case where the adhesive strength of the adhesive sheet (b) is lower than that of the adhesive sheet (a) will be described.
図38は、第4-4の本発明で使用できる接着シート(a)の断面模式図である。図39は、接着シート(a)に半導体ウェハを貼り付けた様子を示す模式図である。図40は、第4-4の本発明で使用できる接着シート接着シート(b)の断面模式図である。図41は、接着シート(b)に台座を貼り付けた様子を示す模式図である。図42は、接着シート(a)及び(b)を用いて半導体ウェハを台座に固定した様子を示す模式図である。 FIG. 38 is a schematic cross-sectional view of an adhesive sheet (a) that can be used in the fourth to fourth present inventions. FIG. 39 is a schematic diagram showing a state in which a semiconductor wafer is attached to the adhesive sheet (a). FIG. 40 is a schematic cross-sectional view of an adhesive sheet adhesive sheet (b) that can be used in the fourth to fourth present invention. FIG. 41 is a schematic diagram showing a state in which a pedestal is attached to the adhesive sheet (b). FIG. 42 is a schematic diagram showing a state in which the semiconductor wafer is fixed to the pedestal using the adhesive sheets (a) and (b).
工程(A)
工程(A)では、接着シート(a)13に半導体ウェハ44を貼り付ける(図39)。
Step (A)
In the step (A), the semiconductor wafer 44 is attached to the adhesive sheet (a) 13 (FIG. 39).
まず、接着シート(a)13について説明する。図38に示すように、接着シート(a)13は一方の面に基材12を有し、他方の面にセパレータ14を有している。接着シート(a)13としては、第2の本発明で説明した接着シート(a)13を好適に使用できる。 First, the adhesive sheet (a) 13 will be described. As shown in FIG. 38, the adhesive sheet (a) 13 has a substrate 12 on one side and a separator 14 on the other side. As the adhesive sheet (a) 13, the adhesive sheet (a) 13 described in the second aspect of the present invention can be suitably used.
半導体ウェハ44は、半導体ウェハ41と同様である。 The semiconductor wafer 44 is the same as the semiconductor wafer 41.
工程Aでは、セパレータ14を剥離して、接着シート(a)13に半導体ウェハ44を貼り付ける。 In step A, the separator 14 is peeled off, and the semiconductor wafer 44 is attached to the adhesive sheet (a) 13.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート(a)13の面積が半導体ウェハ44の面積より大きい場合は、必要に応じて、貼り付け前または貼り付け後に、接着シート(a)13をカットすればよい。
The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, when the area of the adhesive sheet (a) 13 is larger than the area of the semiconductor wafer 44, the adhesive sheet (a) 13 may be cut before or after attachment as necessary.
工程(B)
工程(B)では、接着シート(b)23に台座34を貼り付ける(図41)。
Process (B)
In the step (B), a pedestal 34 is attached to the adhesive sheet (b) 23 (FIG. 41).
図40に示すように、接着シート(b)23は一方の面に基材22を有し、他方の面にセパレータ24を有している。接着シート(b)23としては、第2の本発明で説明した接着シート(b)23を好適に使用できる。 As shown in FIG. 40, the adhesive sheet (b) 23 has a base material 22 on one surface and a separator 24 on the other surface. As the adhesive sheet (b) 23, the adhesive sheet (b) 23 described in the second aspect of the present invention can be suitably used.
台座34は、台座31と同様である。 The pedestal 34 is the same as the pedestal 31.
工程Bでは、セパレータ24を剥離して、接着シート(b)23に台座34を貼り付ける。 In step B, the separator 24 is peeled off, and a pedestal 34 is attached to the adhesive sheet (b) 23.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。
なお、接着シート(b)23の面積が台座34の面積より大きい場合は、必要に応じて、貼り付け前または貼り付け後に、接着シート(b)23をカットすればよい。
The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
In addition, when the area of the adhesive sheet (b) 23 is larger than the area of the pedestal 34, the adhesive sheet (b) 23 may be cut before or after attachment as necessary.
工程(C)
工程(C)では、工程(A)により得られた接着シート(a)13付き半導体ウェハ44の接着シート(a)13、及び工程(B)により得られた接着シート(b)23付き台座34の接着シート(b)23を貼り合わせる。これにより、台座34、接着シート(b)23、接着シート(a)13及び半導体ウェハ44が順に積層された積層体を得る(図42)。
Process (C)
In the step (C), the adhesive sheet (a) 13 of the semiconductor wafer 44 with the adhesive sheet (a) 13 obtained in the step (A) and the pedestal 34 with the adhesive sheet (b) 23 obtained in the step (B). The adhesive sheet (b) 23 is bonded. Thereby, the laminated body in which the base 34, the adhesive sheet (b) 23, the adhesive sheet (a) 13, and the semiconductor wafer 44 are sequentially laminated is obtained (FIG. 42).
貼り合わせ方法は特に限定されない。貼り合わせ後、必要に応じて、接着シート(a)13及び接着シート(b)23をイミド化する。これにより、半導体ウェハ44を台座34に良好に固定できる。イミド化は従来公知の方法で行うことができ、
例えば、150~500℃、0.5~5時間の条件でイミド化できる。なお、接着シート(a)13及び接着シート(b)23の一方のみをイミド化してもよい。
The bonding method is not particularly limited. After bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 are imidized as necessary. Thereby, the semiconductor wafer 44 can be satisfactorily fixed to the pedestal 34. Imidization can be performed by a conventionally known method,
For example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be imidized.
また、貼り合わせ後、必要に応じて、接着シート(a)13及び接着シート(b)23を熱硬化してもよい。接着シート(a)13及び接着シート(b)23としてシリコーン樹脂を用いた場合、熱硬化により半導体ウェハ44を台座34に良好に固定できる。なお、接着シート(a)13及び接着シート(b)23の一方のみを熱硬化してもよい。 Moreover, after bonding, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermoset as necessary. When a silicone resin is used as the adhesive sheet (a) 13 and the adhesive sheet (b) 23, the semiconductor wafer 44 can be satisfactorily fixed to the pedestal 34 by thermosetting. Only one of the adhesive sheet (a) 13 and the adhesive sheet (b) 23 may be thermally cured.
工程(C)により台座34に固定された半導体ウェハ44を、バックグラインドできる。バックグラインドは、従来公知の方法で行うことができる。 The semiconductor wafer 44 fixed to the pedestal 34 in the step (C) can be back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ44の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After back grinding, the non-circuit forming surface (back ground surface) of the semiconductor wafer 44 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
工程(D)
バックグラインドや加工などの所望の処理を半導体ウェハ44に施した後、接着シート(a)13と接着シート(b)23との境界に切り込みを入れて、接着シート(a)13と接着シート(b)23を分離する。図43は、接着シート(a)13と接着シート(b)23との境界に切り込み104を入れた様子を示す模式図である。
切り込み方法は特に限定されず、カッターやレーザー等従来公知の方法により切り込みできる。切り込み深さは特に限定されないが、通常、0.1~10mmである。
Process (D)
After performing desired processing such as back grinding and processing on the semiconductor wafer 44, a cut is made at the boundary between the adhesive sheet (a) 13 and the adhesive sheet (b) 23, and the adhesive sheet (a) 13 and the adhesive sheet ( b) Separate 23. FIG. 43 is a schematic diagram showing a state in which a cut 104 is made at the boundary between the adhesive sheet (a) 13 and the adhesive sheet (b) 23.
The cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser. The cutting depth is not particularly limited, but is usually 0.1 to 10 mm.
接着シート(b)23の接着力が接着シート(a)13より低いため、必要に応じて外力を加えることにより、切り込み104を起点として接着シート(a)13と接着シート(b)23を容易に分離できる。 Since the adhesive force of the adhesive sheet (b) 23 is lower than that of the adhesive sheet (a) 13, the adhesive sheet (a) 13 and the adhesive sheet (b) 23 can be easily started from the notch 104 by applying an external force as necessary. Can be separated.
以上の説明では、接着シート(b)23の接着力が前記接着シート(a)13より低い場合について説明した。しかし、これに限定されず、接着シート(b)23の接着力が接着シート(a)13より高くてもよい。 In the above description, the case where the adhesive strength of the adhesive sheet (b) 23 is lower than that of the adhesive sheet (a) 13 has been described. However, the present invention is not limited to this, and the adhesive strength of the adhesive sheet (b) 23 may be higher than that of the adhesive sheet (a) 13.
この場合、接着シート(b)23の接着力及び接着シート(a)13の接着力として、第2の本発明で説明した値を採用できる。 In this case, the values described in the second aspect of the present invention can be adopted as the adhesive force of the adhesive sheet (b) 23 and the adhesive force of the adhesive sheet (a) 13.
また、以上の説明では、接着シート(a)13が基材12及びセパレータ14を有している場合について説明した。しかし、これに限定されず、接着シート(a)13は、セパレータ14を有していなくてもよく、基材12を有していなくともよい。接着シート(b)23も同様であり、接着シート(b)23は、セパレータ24を有していなくてもよく、基材22を有していなくともよい。 Moreover, in the above description, the case where the adhesive sheet (a) 13 has the base material 12 and the separator 14 was demonstrated. However, the present invention is not limited to this, and the adhesive sheet (a) 13 may not have the separator 14 and may not have the substrate 12. The adhesive sheet (b) 23 is the same, and the adhesive sheet (b) 23 may not have the separator 24 and may not have the base material 22.
[第4-5の本発明]
第4-5の本発明の半導体装置の製造方法は、仮止め用シートの一方の面に半導体ウェハを貼り付ける工程(I)と、前記仮止め用シートの他方の面にベベル部を有する台座を貼り付ける工程(II)と、前記仮止め用シートと前記台座の前記ベベル部との間に、前記仮止めシートよりも接着力が高い仮止め用接着剤層を形成して、前記仮止め用シートを前記台座に固定する工程(III)と、前記工程(I)~(III)の後、前記仮止め用シートに切り込みを入れて前記仮止め用シートから前記台座を分離する工程(IV)とを含む。
[4-5 Present Invention]
According to a fourth aspect of the present invention, there is provided a semiconductor device manufacturing method comprising: a step (I) of attaching a semiconductor wafer to one surface of a temporary fixing sheet; and a pedestal having a bevel portion on the other surface of the temporary fixing sheet. A temporary fixing adhesive layer having a higher adhesive force than the temporary fixing sheet between the temporary fixing sheet and the bevel portion of the pedestal, and the temporary fixing A step (III) of fixing the sheet to the pedestal, and a step of cutting the temporary fixing sheet after the steps (I) to (III) to separate the pedestal from the temporary fixing sheet (IV ).
工程(I)~(III)の順序は特に限定されない。例えば、工程(I)、工程(II)及び工程(III)の順序、工程(II)、工程(I)及び工程(III)の順序、工程(I)、工程(III)及び工程(II)の順序、工程(II)、工程(III)及び工程(I)の順序等が挙げられる。なかでも、仮止め用接着剤層が形成し易く、仮止め用接着剤層がはみ出す可能性や仮止め用接着剤層を必要量以上に形成する可能性が低いという理由から、工程(I)、工程(II)及び工程(III)の順序が好ましい。 The order of the steps (I) to (III) is not particularly limited. For example, the order of step (I), step (II) and step (III), the order of step (II), step (I) and step (III), step (I), step (III) and step (II) And the order of step (II), step (III) and step (I). Among them, the temporary fixing adhesive layer is easy to form, and the possibility of the temporary fixing adhesive layer sticking out and the possibility of forming the temporary fixing adhesive layer more than the necessary amount are low. The order of step (II) and step (III) is preferred.
図44は、仮止め用シートの断面図である。図45は、仮止め用シートに半導体ウェハを貼り付けた様子を示す図である。図46は、仮止め用シートと台座のベベル部との間に、仮止め用接着剤層を形成した様子を示す図である。 FIG. 44 is a cross-sectional view of the temporary fixing sheet. FIG. 45 is a diagram illustrating a state in which a semiconductor wafer is attached to the temporary fixing sheet. FIG. 46 is a diagram illustrating a state in which an adhesive layer for temporary fixing is formed between the temporary fixing sheet and the bevel portion of the pedestal.
工程(I)
工程(I)では、仮止め用シート81の一方の面に半導体ウェハ45を貼り付ける(図45)。
Step (I)
In step (I), the semiconductor wafer 45 is attached to one surface of the temporary fixing sheet 81 (FIG. 45).
仮止め用シート81に半導体ウェハ45を貼り付ける方法は特に限定されないが、仮止め用シート81に半導体ウェハ45の回路形成面を貼り付けることが好ましい。 The method for attaching the semiconductor wafer 45 to the temporary fixing sheet 81 is not particularly limited, but it is preferable to apply the circuit forming surface of the semiconductor wafer 45 to the temporary fixing sheet 81.
貼り付け方法は特に限定されず、例えば、23~250℃、0.01~10MPaで貼り付ける方法が挙げられる。 The attaching method is not particularly limited, and examples thereof include a method of attaching at 23 to 250 ° C. and 0.01 to 10 MPa.
貼り付け後、必要に応じて、仮止め用シート81をイミド化する。これにより、仮止め用シート81及び半導体ウェハ45を良好に接着できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。 After pasting, the temporary fixing sheet 81 is imidized as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 45 can be favorably bonded. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
貼り付け後、必要に応じて、仮止め用シート81を熱硬化してもよい。これにより、仮止め用シート81及び半導体ウェハ45を良好に接着できる。熱硬化は従来公知の方法で行うことができ、例えば、100~350℃(好ましくは150~350℃)、0.1~5時間、窒素雰囲気下で熱硬化できる。 After pasting, the temporary fixing sheet 81 may be thermally cured as necessary. Thereby, the temporary fixing sheet 81 and the semiconductor wafer 45 can be favorably bonded. The heat curing can be performed by a conventionally known method. For example, the heat curing can be performed in a nitrogen atmosphere at 100 to 350 ° C. (preferably 150 to 350 ° C.) for 0.1 to 5 hours.
仮止め用シート81としては、第3の本発明で説明した仮止め用シート81を好適に使用できる。 As the temporary fixing sheet 81, the temporary fixing sheet 81 described in the third aspect of the present invention can be suitably used.
半導体ウェハ45は、半導体ウェハ41と同様である。 The semiconductor wafer 45 is the same as the semiconductor wafer 41.
工程(II)
工程(II)では、仮止め用シート81の他方の面にベベル部を有する台座35を貼り付ける。
Step (II)
In step (II), a pedestal 35 having a bevel portion is attached to the other surface of the temporary fixing sheet 81.
貼り付け方法は特に限定されないが、ロールラミネートや真空プレスで貼り付けることが好ましい。貼り付け条件は特に限定されないが、例えば、23~250℃、0.01~10MPaで貼り付けできる。 The attaching method is not particularly limited, but is preferably attached by roll lamination or a vacuum press. The affixing conditions are not particularly limited, but can be affixed at 23 to 250 ° C. and 0.01 to 10 MPa, for example.
台座35の周縁部には、台座35の上面及び下面から側面(外側)に向かって傾斜した傾斜面が形成されている。このような傾斜面が形成された周縁部がベベル部である。 An inclined surface that is inclined from the upper surface and the lower surface of the pedestal 35 toward the side surface (outer side) is formed on the periphery of the pedestal 35. A peripheral portion where such an inclined surface is formed is a bevel portion.
台座35は、ベベル部を有する限り特に限定されず、第3の本発明で説明した台座1を好適に使用できる。 The pedestal 35 is not particularly limited as long as it has a bevel portion, and the pedestal 1 described in the third aspect of the present invention can be suitably used.
工程(III)
工程(III)では、仮止め用シート81と台座35のベベル部との間に、仮止めシート81よりも接着力が高い仮止め用接着剤層80を形成して、仮止め用シート81を台座35に固定する(図46)。
Step (III)
In the step (III), a temporary fixing adhesive layer 80 having higher adhesive force than the temporary fixing sheet 81 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 35, and the temporary fixing sheet 81 is It fixes to the base 35 (FIG. 46).
具体的には、仮止め用シート81と台座35のベベル部との間に、液状の接着剤組成物を塗布し、乾燥等させることにより、仮止め用接着剤層80を形成して、仮止め用シート81を台座35に固定する。 Specifically, a temporary adhesive layer 80 is formed by applying a liquid adhesive composition between the temporary fixing sheet 81 and the bevel portion of the pedestal 35 and drying it. The stopping sheet 81 is fixed to the base 35.
仮止め用接着剤層80としては、第3の本発明で説明した接着剤層80を好適に使用できる。 As the temporary fixing adhesive layer 80, the adhesive layer 80 described in the third aspect of the present invention can be preferably used.
図47の(a)は、仮止め用シート81と台座35のベベル部との間に、仮止め用接着剤層80を形成した様子を示す図である。図47の(b)は、ベベル部周辺の拡大図である。
図47(b)に示すように、仮止め用シート81の端部は、台座35の端部よりも内側、且つ、台座35のベベル部の傾斜開始位置よりも外側であることが好ましい。具体的には、台座35の端部と仮止め用シート81の端部との横方向(台座35の面に水平方向)の距離をD1とし、台座35の端部と台座35のベベル部の傾斜開始位置との横方向の距離をD2とすると、D1は、D2の10分の1、すなわち、(D2)/10よりも大きいことが好ましい。D1が、D2の10分の1よりも大きいと、仮止め用シート81が他の部材(例えば、搬送に使用するカセット)に触れ、めくれ上がることを防止できる。
一方、D1は、D2の3分の2、すなわち、(D2)×(2/3)よりも小さいことが好ましい。D1が、D2の3分の2よりも小さいと、接着剤剤層80による接着部分の面積をある程度確保でき、接着信頼性に優れる。
なお、D2は、通常、0.1~0.4mmである。
FIG. 47A is a diagram illustrating a state in which the temporary fixing adhesive layer 80 is formed between the temporary fixing sheet 81 and the bevel portion of the pedestal 35. FIG. 47B is an enlarged view around the bevel portion.
As shown in FIG. 47 (b), the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the pedestal 35 and outside the tilt start position of the bevel portion of the pedestal 35. Specifically, the distance in the horizontal direction (horizontal to the surface of the pedestal 35) between the end of the pedestal 35 and the end of the temporary fixing sheet 81 is D1, and the end of the pedestal 35 and the bevel portion of the pedestal 35 are If the lateral distance from the tilt start position is D2, D1 is preferably one-tenth of D2, that is, larger than (D2) / 10. When D1 is larger than 1/10 of D2, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
On the other hand, D1 is preferably smaller than two-thirds of D2, that is, (D2) × (2/3). When D1 is smaller than two-thirds of D2, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
Note that D2 is usually 0.1 to 0.4 mm.
図48の(a)は、仮止め用シートと台座のベベル部との間に、仮止め用接着剤層を形成した様子を示す図である。図48の(b)は、半導体ウェハのベベル部周辺の拡大図である。図48(b)に示すように、仮止め用シート81の端部は、半導体ウェハ45の端部よりも内側、且つ、半導体ウェハ45のベベル部の傾斜開始位置よりも外側であることが好ましい。
具体的には、半導体ウェハ45の端部と仮止め用シート81の端部との横方向(半導体ウェハ45の面に水平方向)の距離をD3とし、半導体ウェハ45の端部と半導体ウェハ45のベベル部の傾斜開始位置との横方向の距離をD4とすると、D3は、D4の10分の1、すなわち、(D4)/10よりも大きいことが好ましい。D3が、D4の10分の1よりも大きいと、仮止め用シート81が他の部材(例えば、搬送に使用するカセット)に触れ、めくれ上がることを防止できる。
一方、D3は、D4の3分の2、すなわち、(D4)×(2/3)よりも小さいことが好ましい。D3が、D4の3分の2よりも小さいと、接着剤剤層80による接着部分の面積をある程度確保でき、接着信頼性に優れる。
なお、D4は、通常、0.1~0.4mmである。
FIG. 48A is a diagram illustrating a state in which a temporary fixing adhesive layer is formed between the temporary fixing sheet and the bevel portion of the pedestal. FIG. 48B is an enlarged view around the bevel portion of the semiconductor wafer. As shown in FIG. 48 (b), the end portion of the temporary fixing sheet 81 is preferably inside the end portion of the semiconductor wafer 45 and outside the tilt start position of the bevel portion of the semiconductor wafer 45. .
Specifically, the distance in the lateral direction (horizontal direction of the surface of the semiconductor wafer 45) between the end portion of the semiconductor wafer 45 and the end portion of the temporary fixing sheet 81 is D3, and the end portion of the semiconductor wafer 45 and the semiconductor wafer 45 are aligned. When the distance in the horizontal direction from the inclination start position of the bevel portion is D4, D3 is preferably one-tenth of D4, that is, larger than (D4) / 10. When D3 is larger than 1/10 of D4, it is possible to prevent the temporarily fixing sheet 81 from touching another member (for example, a cassette used for conveyance) and turning up.
On the other hand, D3 is preferably smaller than two-thirds of D4, that is, (D4) × (2/3). When D3 is smaller than two-thirds of D4, the area of the bonded portion by the adhesive layer 80 can be secured to some extent, and the bonding reliability is excellent.
D4 is usually 0.1 to 0.4 mm.
他の工程
工程(I)~(III)により台座35に固定された半導体ウェハ45に対して、バックグラインドを行うことが好ましい。バックグラインドは、従来公知の方法で行うことができる。
It is preferable to perform back grinding on the semiconductor wafer 45 fixed to the pedestal 35 by the other process steps (I) to (III). The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ45の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 45 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
工程(IV)
バックグラインドや加工などの所望の処理を半導体ウェハ45に施した後、仮止め用シート81に切り込みを入れて仮止め用シート81から台座35を分離する。
Step (IV)
After performing desired processing such as back grinding and processing on the semiconductor wafer 45, the temporary fixing sheet 81 is cut to separate the pedestal 35 from the temporary fixing sheet 81.
図49は、仮止め用シート81に切り込み105を入れた様子を示す図である。図49に示すように、仮止め用シート81に台座35に達するまで切り込み105を入れることが好ましく、仮止め用シート81に台座35のベベル部に達するまで切り込み105を入れることがより好ましい。切り込み方法は特に限定されず、カッターやレーザー等従来公知の方法により切り込みできる。 FIG. 49 is a diagram illustrating a state in which a cut 105 has been made in the temporary fixing sheet 81. As shown in FIG. 49, it is preferable to make a cut 105 in the temporary fixing sheet 81 until it reaches the pedestal 35, and it is more preferable to make a cut 105 in the temporary fixing sheet 81 until it reaches the bevel portion of the pedestal 35. The cutting method is not particularly limited, and can be cut by a conventionally known method such as a cutter or a laser.
以上の説明では、仮止め用シートの形状として、断面が矩形の場合について説明した。しかし、仮止め用シートの形状は特に限定されない。例えば、図50に示すように仮止め用シートの周縁部に凹部が設けられたものなどでもよい。 In the above description, the case where the cross section is rectangular has been described as the shape of the temporary fixing sheet. However, the shape of the temporary fixing sheet is not particularly limited. For example, as shown in FIG. 50, the temporary fixing sheet may be provided with a concave portion at the peripheral edge.
前述のとおり、工程(I)~(III)の順序は特に限定されない。例えば、工程(II)の前に工程(III)を行うことができる。この場合、仮止め用シートの周縁部(ベベル部に対応する部分)にシート状物としての仮止め用接着剤層を予め設けておき、仮止め用接着剤層がベベル部に接着するように、仮止め用シートに台座を貼り付ければよい。 As described above, the order of steps (I) to (III) is not particularly limited. For example, step (III) can be performed before step (II). In this case, a temporary fixing adhesive layer as a sheet-like material is provided in advance on the peripheral edge portion of the temporary fixing sheet (the portion corresponding to the bevel portion) so that the temporary fixing adhesive layer adheres to the bevel portion. A pedestal may be attached to the temporary fixing sheet.
<<第5の本発明>>
以下、第5の本発明に関し、第1の本発明と異なる点を説明する。
<< Fifth Invention >>
Hereinafter, regarding the fifth aspect of the present invention, differences from the first aspect of the present invention will be described.
第5の本発明は、半導体ウェハを台座に良好に固定できるとともに、半導体ウェハから台座を容易に分離できる半導体装置製造用接着シートを提供することを目的とする。また、該半導体装置製造用接着シートを用いた半導体装置の製造方法を提供することを目的とする。 A fifth object of the present invention is to provide an adhesive sheet for manufacturing a semiconductor device that can satisfactorily fix a semiconductor wafer to a pedestal and can easily separate the pedestal from the semiconductor wafer. Moreover, it aims at providing the manufacturing method of the semiconductor device using this adhesive sheet for semiconductor device manufacture.
[接着シート]
第5の本発明の半導体装置製造用接着シートは、第1接着剤層と、多数の貫通孔を有する構造体及び/又は不織布状の構造体を骨格とする第2の層とを有し、前記第2の層の接着力が、前記第1接着剤層の接着力より低い。
[Adhesive sheet]
The adhesive sheet for manufacturing a semiconductor device according to a fifth aspect of the present invention includes a first adhesive layer and a second layer having a structure having a large number of through holes and / or a non-woven fabric structure as a skeleton, The adhesive force of the second layer is lower than the adhesive force of the first adhesive layer.
以下、第5の本発明の接着シートについて図面を参照しつつ説明する。 Hereinafter, the adhesive sheet of the fifth aspect of the present invention will be described with reference to the drawings.
[実施形態1]
図51は、実施形態1の接着シート5の断面図である。図51に示すように、接着シート5は、周辺部54が第1接着剤層50により形成されるとともに、周辺部54よりも内側の中央部53が、第1接着剤層50と多数の貫通孔を有する構造体及び/又は不織布状の構造体を骨格とする第2の層51との積層により形成されている。すなわち、接着シート5は、第2の層51と、第2の層51上に第2の層51の上面及び側面を覆う態様で積層された第1接着剤層50とを有する。第2の層51の接着力は、第1接着剤層50の接着力よりも低い。
[Embodiment 1]
FIG. 51 is a cross-sectional view of the adhesive sheet 5 of the first embodiment. As shown in FIG. 51, the adhesive sheet 5 has a peripheral portion 54 formed by the first adhesive layer 50, and a central portion 53 inside the peripheral portion 54 has a large number of penetrations through the first adhesive layer 50. It is formed by lamination with a second layer 51 having a structure having holes and / or a non-woven structure as a skeleton. That is, the adhesive sheet 5 includes a second layer 51 and a first adhesive layer 50 that is laminated on the second layer 51 in such a manner as to cover the upper surface and side surfaces of the second layer 51. The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50.
第1接着剤層50のみからなる面で、半導体ウェハ又は台座を強固に固定できる。第1接着剤層50及び第2の層51を有する面で、半導体ウェハ又は台座を良好に固定できる。 The semiconductor wafer or the pedestal can be firmly fixed on the surface composed of only the first adhesive layer 50. The semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer 50 and the second layer 51.
接着シート5は、接着力が低い第2の層51を有するため、例えば、第1接着剤層50を切断したり、接着力を低下させることで、外力により、半導体ウェハから台座を容易に分離できる。接着シート5は、第1接着剤層50が周辺部54に形成されているため、第1接着剤層50を切断したり、第1接着剤層50の接着力を低下させたりし易く、分離を容易に行うことができる。 Since the adhesive sheet 5 has the second layer 51 having a low adhesive force, for example, the base is easily separated from the semiconductor wafer by an external force by cutting the first adhesive layer 50 or reducing the adhesive force. it can. Since the first adhesive layer 50 is formed in the peripheral portion 54, the adhesive sheet 5 is easy to cut the first adhesive layer 50 or reduce the adhesive force of the first adhesive layer 50, and is separated. Can be easily performed.
接着シート5の厚さは特に限定されず、例えば、10μm以上であり、好ましくは50μm以上である。10μm以上であると、半導体ウェハ表面の凹凸に追従でき、隙間なく接着シートを充填できる。また、接着シート5の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the adhesive sheet 5 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 μm or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet can be filled without a gap. Moreover, the thickness of the adhesive sheet 5 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
中央部53における第1接着剤層50の厚さは適宜設定できるが、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上である。また、該厚さは、好ましくは300μm以下であり、より好ましくは200μm以下である。
また、中央部53における第2の層51の厚さは適宜設定できる。
Although the thickness of the 1st adhesive bond layer 50 in the center part 53 can be set suitably, Preferably it is 0.1 micrometer or more, More preferably, it is 0.5 micrometer or more, More preferably, it is 1 micrometer or more. Moreover, this thickness becomes like this. Preferably it is 300 micrometers or less, More preferably, it is 200 micrometers or less.
Further, the thickness of the second layer 51 in the central portion 53 can be set as appropriate.
図52は、実施形態1の接着シート5の平面図である。図52に示すように、接着シート5は、平面視したときの形状が円形である。
接着シート5の直径は特に限定されない。例えば、接着シート5の直径は、台座の直径に対して+1.0~-1.0mmが好ましい。
FIG. 52 is a plan view of the adhesive sheet 5 according to the first embodiment. As shown in FIG. 52, the adhesive sheet 5 has a circular shape when viewed in plan.
The diameter of the adhesive sheet 5 is not particularly limited. For example, the diameter of the adhesive sheet 5 is preferably +1.0 to −1.0 mm with respect to the diameter of the pedestal.
また、接着シート5を平面視したとき、第2の層51の形状が円形である。接着シート5を平面視したときの第2の層51の面積は、接着シート5を平面視したときの接着シート5の面積に対して、好ましくは10%以上、より好ましくは20%以上、更に好ましくは50%以上である。10%以上であると、周辺部54に形成された第1接着剤層50を切断したり、接着力を低下させたりし易く、半導体ウェハから台座を分離し易い。また、第2の層51の面積は、好ましくは99.95%以下、より好ましくは99.9%以下である。99.95%以下であると、半導体ウェハを台座に強固に固定できる。 Further, when the adhesive sheet 5 is viewed in plan, the shape of the second layer 51 is circular. The area of the second layer 51 when the adhesive sheet 5 is viewed in plan is preferably 10% or more, more preferably 20% or more with respect to the area of the adhesive sheet 5 when the adhesive sheet 5 is viewed in plan. Preferably it is 50% or more. If it is 10% or more, it is easy to cut the first adhesive layer 50 formed on the peripheral portion 54 or to reduce the adhesive force, and to easily separate the pedestal from the semiconductor wafer. The area of the second layer 51 is preferably 99.95% or less, more preferably 99.9% or less. A semiconductor wafer can be firmly fixed to a base as it is 99.95% or less.
第1接着剤層50の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm以上であることが好ましく、0.40N/20mm以上であることがより好ましい。0.30N/20mm以上であると、半導体ウェハを台座に良好に保持でき、バックグラインドなどを良好に行うことができる。また、該90°ピール剥離力の上限は、特に限定されず、大きいほど好ましいが、例えば、30N/20mm以下、好ましくは20N/20mm以下である。 The adhesive strength of the first adhesive layer 50 is preferably, for example, a 90 ° peel peel force on a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is 0.30 N / 20 mm or more. 0.40 N / 20 mm or more is more preferable. When it is 0.30 N / 20 mm or more, the semiconductor wafer can be favorably held on the pedestal, and back grinding and the like can be favorably performed. The upper limit of the 90 ° peel peel force is not particularly limited and is preferably as large as possible. For example, it is 30 N / 20 mm or less, preferably 20 N / 20 mm or less.
第1接着剤層50を構成する接着剤組成物としては、第1の本発明で説明したポリイミド樹脂、シリコーン樹脂を好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、ポリイミド樹脂が好ましい。 As the adhesive composition constituting the first adhesive layer 50, the polyimide resin and silicone resin described in the first aspect of the present invention can be suitably used. Of these, polyimide resins are preferred from the viewpoints of heat resistance, chemical resistance, and adhesive residue.
第2の層51は、多数の貫通孔56を有する構造体57及び/又は不織布状の構造体を骨格とする。図53は、多数の貫通孔56を有する構造体57の平面図である。図53に示すように、貫通孔56は、構造体57の厚さ方向(接着シート5の厚さ方向ともいえる)に貫通している。 The second layer 51 has a structure 57 having a large number of through holes 56 and / or a non-woven structure as a skeleton. FIG. 53 is a plan view of a structure 57 having a large number of through holes 56. As shown in FIG. 53, the through-hole 56 penetrates in the thickness direction of the structure 57 (also referred to as the thickness direction of the adhesive sheet 5).
多数の貫通孔56を有する構造体57の開孔率を調整することで、第2の層51の接着力を調整できる。具体的には、貫通孔56が後述の接着剤組成物により充填されている場合、開孔率を大きくすることで接着力を高くでき、開口率を小さくすることで接着力を低くできる。
構造体57の開孔率は、好ましくは5%以上であり、より好ましくは8%以上、更に好ましくは10%以上である。5%以上であると、貫通孔56に充填した接着剤組成物が被着体に到達でき、第2の層51の接着力を調整することが可能となる。
また、開孔率は、好ましくは98%以下であり、より好ましくは95%以下であり、更に好ましくは90%以下である。98%以下であると、第1接着剤層50と同じ接着剤組成物を貫通孔56に充填した場合でも、第2の層51の接着力を第1接着剤層50に比べて低くできる。
The adhesive force of the second layer 51 can be adjusted by adjusting the aperture ratio of the structure 57 having a large number of through holes 56. Specifically, when the through hole 56 is filled with an adhesive composition described later, the adhesive force can be increased by increasing the aperture ratio, and the adhesive force can be decreased by decreasing the aperture ratio.
The porosity of the structure 57 is preferably 5% or more, more preferably 8% or more, and further preferably 10% or more. When it is 5% or more, the adhesive composition filled in the through holes 56 can reach the adherend, and the adhesive force of the second layer 51 can be adjusted.
The open area ratio is preferably 98% or less, more preferably 95% or less, and still more preferably 90% or less. When it is 98% or less, the adhesive force of the second layer 51 can be made lower than that of the first adhesive layer 50 even when the same adhesive composition as that of the first adhesive layer 50 is filled in the through holes 56.
構造体57において、貫通孔56の形状(接着シート5を平面視したときの貫通孔56の形状)は特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。貫通孔56の形状は全て同じであってもよく、異なっていてもよい。 In the structure 57, the shape of the through hole 56 (the shape of the through hole 56 when the adhesive sheet 5 is viewed in plan) is not particularly limited, and examples thereof include a circle, an ellipse, and a polygon. The shapes of the through holes 56 may all be the same or different.
接着シート5を平面視したとき、ひとつの貫通孔56の大きさ(面積)は、好ましくは70μm以上、より好ましくは100μm以上である。また、好ましくは20mm以下、より好ましくは7mm以下である。なお、貫通孔56の大きさは全て同じであってもよく、異なっていてもよい。 When the adhesive sheet 5 is viewed in plan, the size (area) of one through hole 56 is preferably 70 μm 2 or more, more preferably 100 μm 2 or more. Further, it is preferably 20 mm 2 or less, more preferably 7 mm 2 or less. The sizes of the through holes 56 may all be the same or different.
多数の貫通孔56を有する構造体57及び不織布状の構造体の材料は特に限定されない。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド樹脂、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、紙等が挙げられる。また、鉄、銅、ニッケル、タングステン、アルミ、金、銀、銅、真鍮、丹銅、燐青銅、ニクロム、モネルメタル、ブロンズ、ステンレス(SUS)等の金属材料が挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。なかでも、多数の貫通孔56を有する構造体57である場合、耐熱性の点から、金属材料、前述のポリイミド樹脂、前述のシリコーン樹脂が好ましく、SUS、アルミがより好ましい。不織布状の構造体の場合、耐熱性、汚染性の点から、前述のポリイミド樹脂、前述のシリコーン樹脂、金属材料が好ましい。 The material of the structure 57 having a large number of through-holes 56 and the non-woven fabric structure is not particularly limited. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide resin, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, paper and the like. In addition, metal materials such as iron, copper, nickel, tungsten, aluminum, gold, silver, copper, brass, red copper, phosphor bronze, nichrome, monel metal, bronze, and stainless steel (SUS) can be used. These may be used alone or in combination of two or more. Especially, when it is the structure 57 which has many through-holes 56, from a heat resistant point, a metal material, the above-mentioned polyimide resin, and the above-mentioned silicone resin are preferable, and SUS and aluminum are more preferable. In the case of a non-woven structure, the above-described polyimide resin, the above-described silicone resin, and metal material are preferable from the viewpoint of heat resistance and contamination.
多数の貫通孔56を有する構造体57及び不織布状の構造体の接着力は、低いほど好ましい、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましく、0.10N/20mm以下であることが更に好ましい。0.30N/20mm未満であると、第2の層51を容易に剥離できる。該90°ピール剥離力の下限は、例えば、0N/20mm以上であり、0.001N/20mm以上である。
なお、多数の貫通孔56を有する構造体57及び不織布状の構造体が、イミド化や熱硬化等を行なうことにより接着させるものである場合、前記90°ピール剥離力は、シリコンウェハに固定した状態(例えば、イミド化後や熱硬化後)における90°ピール剥離力をいう。具体的には実施例に記載の方法で測定できる。
The lower the adhesive strength of the structure 57 having a large number of through-holes 56 and the non-woven structure, the more preferable, for example, 90 ° peel peeling with respect to a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min. The force is preferably less than 0.30 N / 20 mm, more preferably 0.20 N / 20 mm or less, and even more preferably 0.10 N / 20 mm or less. If the thickness is less than 0.30 N / 20 mm, the second layer 51 can be easily peeled off. The lower limit of the 90 ° peel peeling force is, for example, 0 N / 20 mm or more and 0.001 N / 20 mm or more.
When the structure 57 having a large number of through holes 56 and the non-woven structure are bonded by imidization or thermosetting, the 90 ° peel peeling force is fixed to the silicon wafer. The 90 ° peel peel force in a state (for example, after imidization or after thermosetting). Specifically, it can be measured by the method described in the examples.
貫通孔56及び不織布状の構造体の多孔は、接着剤組成物により充填されていてもよく、充填されていなくともよい。構造体57の開口率や不織布状の構造体の密度などをコントロールすることによって低接着力の第2の層を容易に形成できるという点から、充填されていることが好ましい。 The through-hole 56 and the porosity of the nonwoven fabric-like structure may be filled with the adhesive composition or may not be filled. It is preferable that the second layer having a low adhesive force can be easily formed by controlling the aperture ratio of the structure 57 and the density of the non-woven structure.
貫通孔56や不織布の多孔を充填する接着剤組成物としては特に限定されず、例えば、前述のポリイミド樹脂、前述のシリコーン樹脂などが挙げられる。 It does not specifically limit as an adhesive composition which fills the through-hole 56 or the porosity of a nonwoven fabric, For example, the above-mentioned polyimide resin, the above-mentioned silicone resin, etc. are mentioned.
第2の層51の接着力は、第1接着剤層50の接着力よりも低い。第2の層51の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、第2の層51を容易に剥離できる。該90°ピール剥離力の下限は、低いほど好ましいが、好ましくは0N/20mm以上であり、より好ましくは0.001N/20mm以上、更に好ましくは0.01N/20mm以上、特に好ましくは0.10N/20mm以上である。
第2の層51の接着力は、構造体57の開口率や不織布状の構造体の密度、貫通孔56や不織布の多孔に充填する接着剤組成物の種類、構造体57の材料等によって、調整できる。
The adhesive force of the second layer 51 is lower than the adhesive force of the first adhesive layer 50. The adhesive force of the second layer 51 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ± 2 ° C. and a peel rate of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. If the thickness is less than 0.30 N / 20 mm, the second layer 51 can be easily peeled off. The lower limit of the 90 ° peel peel force is preferably as low as possible, but is preferably 0 N / 20 mm or more, more preferably 0.001 N / 20 mm or more, still more preferably 0.01 N / 20 mm or more, and particularly preferably 0.10 N. / 20 mm or more.
The adhesive strength of the second layer 51 depends on the opening ratio of the structure 57, the density of the nonwoven structure, the type of the adhesive composition that fills the pores of the through holes 56 and the nonwoven fabric, the material of the structure 57, and the like. Can be adjusted.
図54に示すように、接着シート5は、他の層が形成されたものであってもよい。図54は、第3の層55を備える接着シート5の断面図である。図54の接着シート5は、周辺部54及び中央部53にわたって、第3の層55が形成されている。第3の層55の接着力は、第1接着剤層50の接着力よりも低い。 As shown in FIG. 54, the adhesive sheet 5 may have other layers formed thereon. FIG. 54 is a cross-sectional view of the adhesive sheet 5 including the third layer 55. In the adhesive sheet 5 of FIG. 54, a third layer 55 is formed across the peripheral portion 54 and the central portion 53. The adhesive force of the third layer 55 is lower than the adhesive force of the first adhesive layer 50.
第3の層55のみからなる面を半導体ウェハ又は台座に貼り付けた場合、接着シート5を容易に剥離できる。また、半導体ウェハ又は台座への糊残りを無くすことができ、洗浄工程を省略できる。 When the surface which consists only of the 3rd layer 55 is affixed on a semiconductor wafer or a base, the adhesive sheet 5 can be peeled easily. Further, the adhesive residue on the semiconductor wafer or the pedestal can be eliminated, and the cleaning process can be omitted.
第3の層55の接着力は、第1接着剤層50の接着力よりも低ければ、特に制限されない。例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が、0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、糊残りなく剥離でき、半導体ウェハ等の洗浄工程を省略できる。また、該90°ピール剥離力の下限は、特に限定されず、例えば、0N/20mm以上であり、好ましくは0.001N/20mm以上である。0N/20mm以上であると、半導体ウェハを台座に保持できる。 The adhesive force of the third layer 55 is not particularly limited as long as it is lower than the adhesive force of the first adhesive layer 50. For example, the 90 ° peel peeling force for a silicon wafer under conditions of a temperature of 23 ± 2 ° C. and a peeling speed of 300 mm / min is preferably less than 0.30 N / 20 mm, and preferably 0.20 N / 20 mm or less. More preferred. When the thickness is less than 0.30 N / 20 mm, the adhesive can be peeled without residue, and the semiconductor wafer cleaning process can be omitted. Moreover, the minimum of this 90 degree peeling force is not specifically limited, For example, it is 0 N / 20mm or more, Preferably it is 0.001 N / 20mm or more. A semiconductor wafer can be hold | maintained to a base as it is 0 N / 20mm or more.
第3の層55を構成する材料としては、第3の層55の接着力が、第1接着剤層50の接着力よりも低くなるように選択する限り、特に限定されず、例えば、前述のポリイミド樹脂、前述のシリコーン樹脂を好適に使用できる。なかでも、耐熱性、耐薬性、糊残り性という点から、前記ポリイミド樹脂が好ましい。 The material constituting the third layer 55 is not particularly limited as long as it is selected so that the adhesive force of the third layer 55 is lower than the adhesive force of the first adhesive layer 50. A polyimide resin and the above-mentioned silicone resin can be used suitably. Especially, the said polyimide resin is preferable from the point of heat resistance, chemical resistance, and adhesive residue.
接着シート5の製造方法は特に限定されない。例えば、多数の貫通孔56を有する構造体57及びその周囲(構造体57の周囲の領域)に、第1接着剤層50を形成するための組成物を含む溶液を塗布して、貫通孔56を前記溶液で充填するとともに構造体57上及び構造体57の周囲に塗布層を形成することにより製造できる。この方法では、構造体57の周囲に形成された塗布層が周辺部54の第1接着剤層50となる。 The manufacturing method of the adhesive sheet 5 is not particularly limited. For example, a solution containing a composition for forming the first adhesive layer 50 is applied to the structure 57 having a large number of through-holes 56 and the periphery thereof (region around the structure 57), and the through-holes 56 are applied. And the coating layer is formed on the structure 57 and around the structure 57. In this method, the coating layer formed around the structure 57 becomes the first adhesive layer 50 in the peripheral portion 54.
なお、第2の層51が不織布状の構造体を骨格とする場合、不織布状の構造体及びその周囲に、第1接着剤層50を形成するための組成物を含む溶液を塗布して、不織布状の構造体の多孔を前記溶液で充填するとともに構造体上及び構造体の周囲に塗布層を形成することにより製造できる。この方法では、構造体の周囲に形成された塗布層が周辺部54の第1接着剤層50となる。 In addition, when the second layer 51 has a non-woven structure as a skeleton, a solution containing the composition for forming the first adhesive layer 50 is applied to the non-woven structure and the periphery thereof, It can be manufactured by filling the pores of the non-woven structure with the solution and forming a coating layer on and around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 50 in the peripheral portion 54.
塗布する溶液の粘度は適宜設定できる。塗布量は適宜設定すればよい。 The viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
[実施形態2]
第5の本発明の接着シートは、接着シート5の形状に限定されない。図55は、実施形態2の接着シート6の断面図である。図56は、実施形態2の接着シート6の平面図である。図55、56に示すように、接着シート6は、周辺部64が第1接着剤層60により形成されるとともに、周辺部64よりも内側の中央部63が、多数の貫通孔66を有する構造体を骨格とする第2の層61により形成されている。第2の層61の接着力は、第1接着剤層60の接着力よりも低い。
[Embodiment 2]
The adhesive sheet of the fifth aspect of the present invention is not limited to the shape of the adhesive sheet 5. FIG. 55 is a cross-sectional view of the adhesive sheet 6 of the second embodiment. FIG. 56 is a plan view of the adhesive sheet 6 according to the second embodiment. As shown in FIGS. 55 and 56, the adhesive sheet 6 has a structure in which the peripheral portion 64 is formed by the first adhesive layer 60 and the central portion 63 inside the peripheral portion 64 has a large number of through holes 66. A second layer 61 having a body as a skeleton is formed. The adhesive force of the second layer 61 is lower than the adhesive force of the first adhesive layer 60.
なお、第2の層61は不織布状の構造体を骨格とするものでもよい。 The second layer 61 may have a non-woven structure as a skeleton.
第1接着剤層60及び第2の層61を有する面で、半導体ウェハ又は台座を良好に固定できる。 The semiconductor wafer or the pedestal can be satisfactorily fixed on the surface having the first adhesive layer 60 and the second layer 61.
接着シート6は、接着力が低い第2の層61を有するため、例えば、第1接着剤層60を切断したり、接着力を低下させることで、外力により、半導体ウェハから台座を容易に分離できる。接着シート6は、第1接着剤層60が周辺部64に形成されているため、第1接着剤層60を切断したり、第1接着剤層60の接着力を低下させたりし易く、分離を容易に行うことができる。 Since the adhesive sheet 6 has the second layer 61 having a low adhesive force, for example, the base is easily separated from the semiconductor wafer by an external force by cutting the first adhesive layer 60 or reducing the adhesive force. it can. Since the first adhesive layer 60 is formed in the peripheral portion 64, the adhesive sheet 6 can be easily cut off or reduced in the adhesive strength of the first adhesive layer 60, and separated. Can be easily performed.
接着シート6の厚さは特に限定されず、例えば、実施形態1の接着シート5で例示したものが挙げられる。 The thickness of the adhesive sheet 6 is not specifically limited, For example, what was illustrated by the adhesive sheet 5 of Embodiment 1 is mentioned.
図56に示すように、接着シート6は、平面視したときの形状が円形である。接着シート6の直径は特に限定されず、例えば、実施形態1の接着シート5で例示したものが挙げられる。また、接着シート6を平面視したときの第2の層61の面積は特に限定されず、例えば、実施形態1の接着シート5で例示したものが挙げられる。 As shown in FIG. 56, the adhesive sheet 6 has a circular shape when viewed in plan. The diameter of the adhesive sheet 6 is not specifically limited, For example, what was illustrated by the adhesive sheet 5 of Embodiment 1 is mentioned. Moreover, the area of the 2nd layer 61 when the adhesive sheet 6 is planarly viewed is not specifically limited, For example, what was illustrated with the adhesive sheet 5 of Embodiment 1 is mentioned.
第1接着剤層60の接着力としては、第1接着剤層50で例示したものが挙げられる。
第1接着剤層60の説明は、第1接着剤層50の内容と同様である。
Examples of the adhesive force of the first adhesive layer 60 include those exemplified for the first adhesive layer 50.
The description of the first adhesive layer 60 is the same as the content of the first adhesive layer 50.
第2の層61の接着力としては、第2の層51で例示したものが挙げられる。
第2の層61の説明は、第2の層51の内容と同様である。
Examples of the adhesive force of the second layer 61 include those exemplified for the second layer 51.
The description of the second layer 61 is the same as the content of the second layer 51.
接着シート6の製造方法は特に限定されない。例えば、多数の貫通孔66を有する構造体及びその周囲(構造体の周囲の領域)に、第1接着剤層60を形成するための組成物を含む溶液を塗布して、貫通孔66を前記溶液で充填するとともに構造体の周囲に塗布層を形成することにより製造できる。この方法では、構造体の周囲に形成された塗布層が周辺部64の第1接着剤層60となる。 The manufacturing method of the adhesive sheet 6 is not particularly limited. For example, a solution including a composition for forming the first adhesive layer 60 is applied to a structure having a large number of through-holes 66 and the periphery thereof (region around the structure), and the through-holes 66 are formed as described above. It can be manufactured by filling with a solution and forming a coating layer around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 60 in the peripheral portion 64.
なお、第2の層61が不織布状の構造体を骨格とする場合、不織布状の構造体及びその周囲に、第1接着剤層60を形成するための組成物を含む溶液を塗布して、不織布状の構造体の多孔を前記溶液で充填するとともに構造体の周囲に塗布層を形成することにより製造できる。この方法では、構造体の周囲に形成された塗布層が周辺部64の第1接着剤層60となる。 When the second layer 61 has a non-woven structure as a skeleton, a solution containing the composition for forming the first adhesive layer 60 is applied to the non-woven structure and the periphery thereof. It can be produced by filling the pores of the non-woven structure with the solution and forming a coating layer around the structure. In this method, the coating layer formed around the structure becomes the first adhesive layer 60 in the peripheral portion 64.
塗布する溶液の粘度は適宜設定できる。塗布量は適宜設定すればよい。 The viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
[実施形態3]
第5の本発明の接着シートは、接着シート5、6の形状に限定されない。図57は、実施形態3の接着シート7の断面図である。図57に示すように、接着シート7は、第1接着剤層70と、多数の貫通孔を有する構造体及び/又は不織布状の構造体を骨格とする第2の層71との積層により形成されている。第2の層71の接着力は、第1接着剤層70の接着力よりも低い。
[Embodiment 3]
The adhesive sheet of the fifth aspect of the present invention is not limited to the shape of the adhesive sheets 5 and 6. FIG. 57 is a cross-sectional view of the adhesive sheet 7 of the third embodiment. As shown in FIG. 57, the adhesive sheet 7 is formed by stacking a first adhesive layer 70 and a second layer 71 having a structure having a large number of through holes and / or a non-woven fabric structure as a skeleton. Has been. The adhesive force of the second layer 71 is lower than the adhesive force of the first adhesive layer 70.
接着シート7は、第1接着剤層70を有するため半導体ウェハを台座に良好に固定できる。また、第1接着剤層70よりも接着力の低い第2の層71を有するため、外力により、半導体ウェハから台座を容易に分離できる。例えば、第1接着剤層70と第2の層71との境界に切り込みを入れて分離する方法等が挙げられる。 Since the adhesive sheet 7 has the first adhesive layer 70, the semiconductor wafer can be satisfactorily fixed to the pedestal. Moreover, since it has the 2nd layer 71 whose adhesive force is lower than the 1st adhesive bond layer 70, a base can be easily isolate | separated from a semiconductor wafer with external force. For example, a method of cutting and separating the boundary between the first adhesive layer 70 and the second layer 71 may be used.
第1接着剤層70の厚さは特に限定されず、例えば、10μm以上であり、好ましくは50μm以上である。10μm以上であると、半導体ウェハ表面の凹凸を追従でき、接着シート7を隙間なく充填できる。また、第1接着剤層70の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the 1st adhesive bond layer 70 is not specifically limited, For example, it is 10 micrometers or more, Preferably it is 50 micrometers or more. When the thickness is 10 μm or more, the unevenness on the surface of the semiconductor wafer can be followed, and the adhesive sheet 7 can be filled without a gap. Moreover, the thickness of the 1st adhesive bond layer 70 is 500 micrometers or less, for example, Preferably it is 300 micrometers or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
第2の層71の厚さは特に限定されず、例えば、1μm以上であり、好ましくは5μm以上である。1μm以上であると、台座との貼り合せが容易である。また、第2の層71の厚さは、例えば、500μm以下であり、好ましくは300μm以下である。500μm以下であると、厚みのばらつきや加熱時の収縮・膨張を抑制又は防止できる。 The thickness of the 2nd layer 71 is not specifically limited, For example, it is 1 micrometer or more, Preferably it is 5 micrometers or more. When it is 1 μm or more, it is easy to bond to the pedestal. The thickness of the second layer 71 is, for example, 500 μm or less, and preferably 300 μm or less. When the thickness is 500 μm or less, variation in thickness and shrinkage / expansion during heating can be suppressed or prevented.
なお、接着シート7を平面視したときの形状は特に限定されないが、通常、円形である。 The shape of the adhesive sheet 7 when viewed from above is not particularly limited, but is usually circular.
第1接着剤層70の接着力としては、第1接着剤層50で例示したものが挙げられる。
第1接着剤層70の説明は、第1接着剤層50の内容と同様である。
Examples of the adhesive force of the first adhesive layer 70 include those exemplified for the first adhesive layer 50.
The description of the first adhesive layer 70 is the same as the content of the first adhesive layer 50.
第2の層71の接着力は、例えば、温度23±2℃、剥離速度300mm/minの条件下でのシリコンウェハに対する90°ピール剥離力が0.30N/20mm未満であることが好ましく、0.20N/20mm以下であることがより好ましい。0.30N/20mm未満であると、半導体ウェハから台座を容易に分離できる。一方、該90°ピール剥離力の下限は、好ましくは0.001N/20mm以上であり、より好ましくは0.005N/20mm以上、更に好ましくは0.010N/20mm以上である。0.001N/20mm以上であると、半導体ウェハを台座に良好に固定でき、バックグラインドなどを良好に行うことができる。 The adhesive strength of the second layer 71 is preferably, for example, a 90 ° peel peel force for a silicon wafer under a temperature of 23 ± 2 ° C. and a peel speed of 300 mm / min is less than 0.30 N / 20 mm. More preferably, it is 20 N / 20 mm or less. When it is less than 0.30 N / 20 mm, the pedestal can be easily separated from the semiconductor wafer. On the other hand, the lower limit of the 90 ° peel strength is preferably 0.001 N / 20 mm or more, more preferably 0.005 N / 20 mm or more, and still more preferably 0.010 N / 20 mm or more. When it is 0.001 N / 20 mm or more, the semiconductor wafer can be fixed to the pedestal well, and back grinding and the like can be performed well.
第2の層71の説明は、第2の層51の内容と同様である。 The description of the second layer 71 is the same as the content of the second layer 51.
接着シート7の製造方法は特に限定されない。例えば、多数の貫通孔を有する構造体に、第1接着剤層70を形成するための組成物を含む溶液を塗布して、貫通孔を前記溶液で充填するとともに構造体上に塗布層を形成することにより製造できる。 The manufacturing method of the adhesive sheet 7 is not particularly limited. For example, a solution containing a composition for forming the first adhesive layer 70 is applied to a structure having a large number of through holes, the through holes are filled with the solution, and a coating layer is formed on the structure. Can be manufactured.
なお、第2の層71が不織布状の構造体を骨格とする場合、不織布状の構造体に、第1接着剤層70を形成するための組成物を含む溶液を塗布して、不織布状の構造体の多孔を前記溶液で充填するとともに構造体上に塗布層を形成することにより製造できる。 When the second layer 71 has a non-woven structure as a skeleton, a non-woven structure is applied to the non-woven structure by applying a solution containing the composition for forming the first adhesive layer 70. It can be manufactured by filling the pores of the structure with the solution and forming a coating layer on the structure.
塗布する溶液の粘度は適宜設定できる。塗布量は適宜設定すればよい。 The viscosity of the solution to be applied can be set as appropriate. What is necessary is just to set the application quantity suitably.
以上の説明では、平面視したときの形状が円形である接着シート5~7を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 In the above description, the adhesive sheets 5 to 7 having a circular shape in plan view have been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
また、平面視したとき、第2の層51、61、71の形状が円形である接着シート5~7を説明した。しかし、該形状は特に限定されず、多角形、楕円形等、他の形状でもよい。 Further, the adhesive sheets 5 to 7 in which the shapes of the second layers 51, 61, and 71 are circular when viewed in plan have been described. However, the shape is not particularly limited, and may be another shape such as a polygon or an ellipse.
第5の本発明の半導体装置製造用接着シートは、半導体ウェハを台座に固定するために用いられる。具体的には、後述の半導体装置の製造方法に好適に使用できる。 The adhesive sheet for manufacturing a semiconductor device according to the fifth aspect of the present invention is used for fixing a semiconductor wafer to a pedestal. Specifically, it can be suitably used in a semiconductor device manufacturing method described later.
[半導体装置の製造方法]
第5の本発明の半導体装置の製造方法は、接着シートを用いて半導体ウェハを台座に固定する工程と、半導体ウェハから台座を分離する工程とを含む。
[Method for Manufacturing Semiconductor Device]
The manufacturing method of the semiconductor device of 5th this invention includes the process of fixing a semiconductor wafer to a base using an adhesive sheet, and the process of isolate | separating a base from a semiconductor wafer.
以下の説明では、実施形態1の接着シート5を用いた場合について説明する。図58は、実施形態1の接着シート5を用いて半導体ウェハ3を台座1に固定した様子を示す模式図である。 In the following description, the case where the adhesive sheet 5 of Embodiment 1 is used will be described. FIG. 58 is a schematic diagram illustrating a state in which the semiconductor wafer 3 is fixed to the base 1 using the adhesive sheet 5 of the first embodiment.
まず、接着シート5を用いて半導体ウェハ3を台座1に固定する工程を行う。具体的には、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座1に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ3の回路形成面に貼り付ける。 First, a process of fixing the semiconductor wafer 3 to the base 1 using the adhesive sheet 5 is performed. Specifically, the surface of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the base 1, and only the first adhesive layer 50 of the adhesive sheet 5 is exposed. The surface is attached to the circuit forming surface of the semiconductor wafer 3.
半導体ウェハ3としては、第1の本発明で説明した半導体ウェハ3を好適に使用できる。台座1としては、第1の本発明で説明した台座1を好適に使用できる。 As the semiconductor wafer 3, the semiconductor wafer 3 described in the first aspect of the present invention can be preferably used. As the pedestal 1, the pedestal 1 described in the first aspect of the present invention can be suitably used.
貼り付け(固定)方法は特に限定されないが、圧着が好ましい。圧着は、通常、圧着ロール等の押圧手段により押圧しながら行われる。圧着の条件としては、例えば、20~300℃、0.001~10MPa、0.001~10mm/secが好ましい。圧着時間は、通常0.1~10分である。
圧着後、必要に応じて、第1接着剤層50をイミド化する。これにより、半導体ウェハ3を台座1に良好に固定できる。イミド化は従来公知の方法で行うことができ、例えば、150~500℃、0.5~5時間の条件でイミド化できる。
なお、第1接着剤層50のイミド化に加えて、貫通孔や不織布の多孔に充填された接着剤組成物をイミド化してもよく、多数の貫通孔を有する構造体又は不織布状の構造体をイミド化してもよい。
The method of attaching (fixing) is not particularly limited, but pressure bonding is preferable. The crimping is usually performed while pressing with a pressing means such as a crimping roll. As the pressure bonding conditions, for example, 20 to 300 ° C., 0.001 to 10 MPa, and 0.001 to 10 mm / sec are preferable. The crimping time is usually 0.1 to 10 minutes.
After the pressure bonding, the first adhesive layer 50 is imidized as necessary. Thereby, the semiconductor wafer 3 can be favorably fixed to the base 1. Imidization can be performed by a conventionally known method, for example, imidization can be performed under conditions of 150 to 500 ° C. and 0.5 to 5 hours.
In addition to the imidization of the first adhesive layer 50, an adhesive composition filled in the pores of through holes and nonwoven fabrics may be imidized, and a structure having a large number of through holes or a nonwoven structure May be imidized.
次いで、前記半導体ウェハ3をバックグラインドする。バックグラインドは、従来公知の方法で行うことができる。 Next, the semiconductor wafer 3 is back-ground. The back grinding can be performed by a conventionally known method.
バックグラインドした半導体ウェハの厚さは、例えば、1~300μmであり、好ましくは5~100μmである。 The thickness of the back-ground semiconductor wafer is, for example, 1 to 300 μm, and preferably 5 to 100 μm.
バックグラインドした後、半導体ウェハ3の非回路形成面(バックグラインドされた面)は加工することができる。加工方法としては、電極形成、金属配線形成、保護膜形成等が挙げられる。なお、当該加工により、シリコン貫通電極が形成されてもよい。 After the back grinding, the non-circuit forming surface (the back ground surface) of the semiconductor wafer 3 can be processed. Examples of processing methods include electrode formation, metal wiring formation, and protective film formation. Note that a through silicon via may be formed by the processing.
バックグラインドや加工などを行った後、半導体ウェハ3から台座1を分離する。 After back grinding and processing, the pedestal 1 is separated from the semiconductor wafer 3.
分離方法は特に限定されないが、第1接着剤層50を切断して分離する方法、第1接着剤層50の接着力を低下させて分離する方法が好適である。 Although the separation method is not particularly limited, a method of cutting and separating the first adhesive layer 50 and a method of separating by reducing the adhesive force of the first adhesive layer 50 are suitable.
切断方法は特に限定されず、例えば、接着シート5の側面から内側に向かって第1接着剤層50に切り込みを入れて第1接着剤層50を切断する方法が挙げられる。切断は、カッターやレーザー等従来公知の方法で行うことができる。
第1接着剤層50の接着力を低下させる方法は特に限定されず、溶剤により第1接着剤層50を溶解させる方法、加熱により接着力が低下する材料で第1接着剤層50を形成しておき、加熱により接着力を低下させる方法などが挙げられる。
The cutting method is not particularly limited, and examples thereof include a method of cutting the first adhesive layer 50 by cutting the first adhesive layer 50 from the side surface of the adhesive sheet 5 inward. The cutting can be performed by a conventionally known method such as a cutter or a laser.
The method for reducing the adhesive strength of the first adhesive layer 50 is not particularly limited, and the first adhesive layer 50 is formed of a method for dissolving the first adhesive layer 50 with a solvent or a material whose adhesive strength is reduced by heating. In addition, a method of reducing the adhesive force by heating, and the like can be mentioned.
以上の説明では、接着シート5を用いて半導体ウェハ3を台座1に固定する方法として、接着シート5の第1接着剤層50及び第2の層51が表出している面を台座1に貼り付け、接着シート5の第1接着剤層50のみが表出している面を半導体ウェハ3の回路形成面に貼り付ける方法を説明した。しかし、接着シート5を用いて半導体ウェハ3を台座1に固定する方法は特に限定されず、接着シート5の第1接着剤層50のみが表出している面を台座1に貼り付け、接着シート5の第1接着剤層50及び第2の層51が表出している面を半導体ウェハ3の回路形成面に貼り付ける方法などであってもよい。 In the above description, as a method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5, the surfaces of the adhesive sheet 5 on which the first adhesive layer 50 and the second layer 51 are exposed are pasted on the pedestal 1. The method of attaching the surface of the adhesive sheet 5 where only the first adhesive layer 50 is exposed to the circuit forming surface of the semiconductor wafer 3 has been described. However, the method of fixing the semiconductor wafer 3 to the pedestal 1 using the adhesive sheet 5 is not particularly limited, and the surface of the adhesive sheet 5 on which only the first adhesive layer 50 is exposed is attached to the pedestal 1 and the adhesive sheet is attached. 5 may be a method in which the surface on which the first adhesive layer 50 and the second layer 51 are exposed is attached to the circuit forming surface of the semiconductor wafer 3.
また、半導体ウェハ3として、回路形成面及び非回路形成面を有するもの使用する場合について説明した。しかし、回路形成面及び非回路形成面を有するものに限定されず、両面が非回路形成面のものなどでもよい。 Further, the case where the semiconductor wafer 3 having a circuit forming surface and a non-circuit forming surface is used has been described. However, it is not limited to those having a circuit formation surface and a non-circuit formation surface, and both surfaces may be those having a non-circuit formation surface.
以下、第1~第5の本発明に関し実施例を用いて詳細に説明するが、第1~第5の本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the first to fifth aspects of the present invention will be described in detail using examples. However, the first to fifth aspects of the present invention are not limited to the following examples as long as they do not exceed the gist thereof.
<<第1の本発明の実施例>>
実施例で使用した成分について説明する。
PMDA:ピロメリット酸二無水物(分子量:218.1)
DDE:4,4‘-ジアミノジフェニルエーテル(分子量:200.2)
D-4000:ハインツマン製のポリエーテルジアミン(分子量:4023.5)
DMAc:N,N-ジメチルアセトアミド
NMP:N-メチル-2-ピロリドン
D-2000:ハインツマン製のポリエーテルジアミン(分子量:1990.8)
BPDA:3,3´,4,4´-ビフェニルテトラカルボン酸ニ無水物
PPD:p-フェニレンジアミン
セパレータ(片面がシリコーン系剥離剤にて処理された長尺ポリエステルフィルム:厚さ38μm)
長尺ポリエステルフィルム(厚さ25μm)
<< Embodiment of First Invention >>
The components used in the examples will be described.
PMDA: pyromellitic dianhydride (molecular weight: 218.1)
DDE: 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
D-4000: Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
DMAc: N, N-dimethylacetamide NMP: N-methyl-2-pyrrolidone D-2000: polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: p-phenylenediamine separator (long polyester film treated on one side with a silicone-based release agent: thickness 38 μm)
Long polyester film (thickness 25μm)
以下の方法により接着シートを作製した。 An adhesive sheet was produced by the following method.
実施例1、5
<第1接着剤層用溶液、第2の層用溶液の作製>
窒素気流下の雰囲気において、929.05gのDMAc中に、D-4000 258.25g、DDE 78.95g、及び、PMDA 100gを70℃で混合して反応させ、第1接着剤層用溶液(ポリアミド酸溶液A)を得た。得られた第1接着剤層用溶液が室温(23℃)になるまで冷却した。
表1の配合に従った点以外は第1接着剤層用溶液と同様の方法で第2の層用溶液(ポリアミド酸溶液B)を得た。得られた第2の層用溶液が室温(23℃)になるまで冷却した。
<円形シートの作製>
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。
得られたシートの第2の層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、打ち抜いた部分(トムソン金型で打ち抜いた内側)を残して、外側を除去し、円形シートを得た。なお、上記のハーフカットとは、ポリエステルフィルム及び第2の層を完全にカットし、且つ、セパレータを完全にはカットしない(セパレータの途中までカットする)態様でのカットをいう。
<接着シートの作製>
円形シートのポリエステルフィルムを剥離し、第1接着剤層用溶液を、直径200mm以上となるように円形シートの第2の層上に塗布し、90℃で3分間乾燥させた。乾燥させた第1接着剤層上に長尺ポリエステルフィルムを積層し、図1、2に示す実施形態1の形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは100μmであった。第2の層の直径は198mm、第2の層の厚さは2μmであった。接着シートの中央部における第1接着剤層の厚さは98μmであった。
Examples 1 and 5
<Preparation of First Adhesive Layer Solution and Second Layer Solution>
In an atmosphere under a nitrogen stream, 929.05 g of DMAc was mixed with D-4000 258.25 g, DDE 78.95 g, and PMDA 100 g at 70 ° C., and reacted to obtain a first adhesive layer solution (polyamide). An acid solution A) was obtained. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
A second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the formulation in Table 1 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.).
<Production of circular sheet>
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer.
A long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal gave a circular sheet. In addition, said half cut means the cut in the aspect which cuts a polyester film and a 2nd layer completely, and does not cut a separator completely (cut to the middle of a separator).
<Preparation of adhesive sheet>
The polyester film of the circular sheet was peeled off, and the first adhesive layer solution was applied on the second layer of the circular sheet so as to have a diameter of 200 mm or more, and dried at 90 ° C. for 3 minutes. A long polyester film was laminated on the dried first adhesive layer to obtain an adhesive sheet having the shape of Embodiment 1 shown in FIGS.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 100 μm. The diameter of the second layer was 198 mm, and the thickness of the second layer was 2 μm. The thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 98 micrometers.
実施例2
<第1接着剤層用溶液の作製>
表1の配合に従った点以外は実施例1と同様の方法で、第1接着剤層用溶液を得た。
<接着シートの作製>
SUS箔(東洋製箔(株)製、SUS 304H-TA)上に、Cu膜厚が0.5μmとなるよう、硫酸銅めっき浴によるCuめっきを行い、Cuめっき付きSUS箔を得た。得られたCuめっき付きSUS箔が室温(23℃)になるまで冷却した。
表1の配合の第1接着剤層用溶液をCuめっき付きSUS箔に塗布し、90℃で2分間乾燥させた。次いで、SUS箔を剥離してCuめっき付きポリアミド酸層を得た。得られたCuめっき付きポリアミド酸層に対して、Cuエッチングを行った。これにより、円形(直径195mm)のCuめっき部分(第2の層)を残し、他を取り除いた。以上より、図1、2に示す実施形態1の形状の接着シートを得た。
接着シート全体の直径200mm、厚さ120μmであった。第2の層の直径は195mm、第2の層の厚さは0.5μmであった。接着シートの中央部における第1接着剤層の厚さは119.5μmであった。
なお、実施例2では、接着シートの形成時には、第1接着剤層上に、第2の層が形成された形状(第2の層の側面側には第1接着剤層が存在しない形状)となるが、第2の層が0.5μmと薄い一方、第1接着剤層が120μmと厚く、また、第1接着剤層が比較的柔らかい(低弾性率である)ため、使用時には、圧力により、第2の層が第1接着剤層に埋め込まれることになる。従って、実施例2の接着シートは、図1に示す断面形状を有することとなる。
Example 2
<Preparation of first adhesive layer solution>
A first adhesive layer solution was obtained in the same manner as in Example 1 except that the composition according to Table 1 was followed.
<Preparation of adhesive sheet>
On a SUS foil (manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA), Cu plating with a copper sulfate plating bath was performed so that the Cu film thickness was 0.5 μm to obtain a SUS foil with Cu plating. The obtained Cu-plated SUS foil was cooled to room temperature (23 ° C.).
The 1st adhesive layer solution of the mixing | blending of Table 1 was apply | coated to SUS foil with Cu plating, and it was dried at 90 degreeC for 2 minutes. Next, the SUS foil was peeled to obtain a polyamic acid layer with Cu plating. Cu etching was performed on the obtained polyamic acid layer with Cu plating. As a result, a circular (195 mm diameter) Cu plated portion (second layer) was left, and the others were removed. From the above, an adhesive sheet having the shape of Embodiment 1 shown in FIGS.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 120 μm. The diameter of the second layer was 195 mm, and the thickness of the second layer was 0.5 μm. The thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 119.5 micrometers.
In Example 2, when the adhesive sheet is formed, a shape in which the second layer is formed on the first adhesive layer (a shape in which the first adhesive layer does not exist on the side surface side of the second layer). However, since the second layer is as thin as 0.5 μm, the first adhesive layer is as thick as 120 μm, and the first adhesive layer is relatively soft (low elastic modulus). Thus, the second layer is embedded in the first adhesive layer. Therefore, the adhesive sheet of Example 2 has the cross-sectional shape shown in FIG.
実施例3
表1の配合に従った点以外は実施例1と同様の方法で、接着シートを得た。
Example 3
An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 1 was followed.
実施例4
<円形シートの作製>
実施例1にて作成した第2の層用溶液をセパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。
得られたシートの第2の層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、打ち抜いた部分(トムソン金型で打ち抜いた内側)を残して、外側を除去し、円形シートを得た(厚さ:200μm)。
<接着シートの作製>
実施例1にて作成した第1接着剤層用溶液をセパレータに塗布し、90℃で3分間乾燥させ、第1接着剤層を有するシートを得た。
得られたシートの第1接着剤層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、外側を残して、打ち抜いた部分(トムソン金型で打ち抜いた内側)を除去し、中抜けのシートを得た(厚さ:200μm)。
円形シート、及び中抜けのシートのセパレータを剥離し、中抜けのシートの第1接着剤層が存在しない部分に、円形シートの第2の層が嵌まり込むように貼り合わせ、図3、4に示す実施形態2の形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは200μmであった。第2の層の直径は198mm、第2の層の厚さは200μmであった。
Example 4
<Production of circular sheet>
The second layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer.
A long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal was performed to obtain a circular sheet (thickness: 200 μm).
<Preparation of adhesive sheet>
The first adhesive layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer.
A long polyester film is laminated on the first adhesive layer of the obtained sheet, half-cut to 198 mm in diameter with a Thomson die, and the punched portion leaving the outside (inside punched with the Thomson die) Was removed to obtain a hollow sheet (thickness: 200 μm).
The separator of the circular sheet and the hollow sheet is peeled off and bonded so that the second layer of the circular sheet fits into the part where the first adhesive layer of the hollow sheet does not exist. An adhesive sheet having the shape of Embodiment 2 shown in FIG.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 200 μm. The diameter of the second layer was 198 mm, and the thickness of the second layer was 200 μm.
比較例1
実施例1と同様の第1接着剤層からなる単層の接着シートを得た。接着シートは円形であり、直径200mm、厚さ150μmであった。
Comparative Example 1
A single-layer adhesive sheet composed of the same first adhesive layer as in Example 1 was obtained. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 μm.
[第1接着剤層の接着力の測定]
第1接着剤層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第1接着剤層を有するシートを得た。
得られたシートの第1接着剤層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第1接着剤層を得た。
シリコンウェハ付き第1接着剤層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表1に示す。
[Measurement of adhesive strength of first adhesive layer]
The first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 μm.
The first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
The first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 1.
[第2の層の接着力の測定]
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第2の層を有するシートを得た。
得られたシートの第2の層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第2の層を得た。
シリコンウェハ付き第2の層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表1に示す。
なお、実施例2の第2の層の接着力については、8インチシリコンウェハに第2の層を貼り合せたものを用いて、90°ピール評価を行った。
[Measurement of adhesive strength of second layer]
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 μm.
The second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
A second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was. The results are shown in Table 1.
In addition, about the adhesive force of the 2nd layer of Example 2, 90 degree peel evaluation was performed using what bonded the 2nd layer to the 8-inch silicon wafer.
[プロセス耐性評価]
実施例1~4
実施例1~4の接着シートの第1接着剤層及び第2の層が表出している面を台座(直径200mm、厚さ726μmのシリコンウエハ)に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaのロールラミネートにより行った。
次に、台座付き接着シートの接着シート面を、直径200mm、厚さ725μmのシリコンウエハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃で1.5時間、窒素雰囲気下で接着シートをイミド化した。これにより、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
実施例5
第1接着剤層のみが表出している面を台座に貼り付けた以外は、実施例1~4と同様の方法でプロセス耐性を評価した。
比較例1
実施例1~4と同様の方法により積層体を得て、プロセス耐性を評価した。
結果を表1に示す。
[Process resistance evaluation]
Examples 1 to 4
The surfaces on which the first adhesive layer and the second layer of the adhesive sheets of Examples 1 to 4 were exposed were attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa.
Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. As a result, a laminated body in which the base, the adhesive sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Example 5
Process resistance was evaluated in the same manner as in Examples 1 to 4, except that the surface exposed only by the first adhesive layer was attached to the pedestal.
Comparative Example 1
A laminate was obtained by the same method as in Examples 1 to 4, and the process resistance was evaluated.
The results are shown in Table 1.
[剥離性評価]
前記プロセス耐性評価と同様の方法により、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
トムソン刃を用いて、接着シート層の側面から内側向かって切り込みを入れた。切り込みは、第2の層に達するまで行った。切り込みの後、積層体の上側(シリコンウェハ側)に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着できた場合を○、吸着できなかった場合を×として評価した。結果を表1に示す。
[Peelability evaluation]
A laminated body in which a pedestal, an adhesive sheet, and a silicon wafer were sequentially laminated was obtained by the same method as in the process resistance evaluation.
Using a Thomson blade, a cut was made inward from the side surface of the adhesive sheet layer. The cut was made until the second layer was reached. After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the upper side (silicon wafer side) of the laminate. The case where it was able to adsorb | suck was evaluated as (circle) and the case where it was not able to adsorb was evaluated as x. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
実施例1~5では、シリコンウェハを充分に固定でき良好にバックグラインドできた。また、切り込みを入れることで、シリコンウェハと台座を容易に分離できた。一方、比較例1は、接着シート層に切り込みを入れても、剥離できなかった。 In Examples 1 to 5, the silicon wafer could be sufficiently fixed and the back grinding could be performed satisfactorily. Moreover, the silicon wafer and the pedestal could be easily separated by cutting. On the other hand, Comparative Example 1 could not be peeled even when a cut was made in the adhesive sheet layer.
<<第2の本発明の実施例>>
実施例で使用した成分について説明する。
PMDA:ピロメリット酸二無水物(分子量:218.1)
DDE:4,4‘-ジアミノジフェニルエーテル(分子量:200.2)
D-4000:ハインツマン製のポリエーテルジアミン(分子量:4023.5)
DMAc:N,N-ジメチルアセトアミド
D-2000:ハインツマン製のポリエーテルジアミン(分子量:1990.8)
BPDA:3,3´,4,4´-ビフェニルテトラカルボン酸ニ無水物
PPD:p-フェニレンジアミン
セパレータ(片面がシリコーン系剥離剤にて処理された長尺ポリエステルフィルム:厚さ38μm)
<< Example of Second Invention >>
The components used in the examples will be described.
PMDA: pyromellitic dianhydride (molecular weight: 218.1)
DDE: 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
D-4000: Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
DMAc: N, N-dimethylacetamide D-2000: Polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: p-phenylenediamine separator (long polyester film treated on one side with a silicone-based release agent: thickness 38 μm)
以下の方法により接着シートを作製した。 An adhesive sheet was produced by the following method.
実施例1
窒素気流下の雰囲気において、1912.0gのDMAc中に、D-4000 239.8g、DDE 79.9g、及び、PMDA 100.0gを70℃で混合して反応させ、第1接着剤層用溶液(ポリアミド酸溶液A)を得た。得られた第1接着剤層用溶液が室温(23℃)になるまで冷却した。
表2の配合に従った点以外は第1接着剤層用溶液と同様の方法で第2の層用溶液(ポリアミド酸溶液B)を得た。得られた第2の層用溶液が室温(23℃)になるまで冷却した。
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。得られたシートに上に、第1接着剤層用溶液を塗布し、90℃で3分間乾燥させ、第1接着剤層を形成した。これにより、第1接着剤層と第2の層とが積層された接着シートを得た。
接着シートの全体の直径は200mm、厚さは100μmであった。
第1接着剤層の直径は200mm、厚さは90μmであった。
第2の層の直径は200mm、厚さは10μmであった。
Example 1
In an atmosphere under a nitrogen stream, D-4000 239.8 g, DDE 79.9 g, and PMDA 100.0 g were mixed and reacted at 1912.0 g of DMAc at 70 ° C. to obtain a first adhesive layer solution (Polyamic acid solution A) was obtained. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
A second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the composition in Table 2 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.).
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer. On the obtained sheet, the first adhesive layer solution was applied and dried at 90 ° C. for 3 minutes to form a first adhesive layer. As a result, an adhesive sheet in which the first adhesive layer and the second layer were laminated was obtained.
The entire diameter of the adhesive sheet was 200 mm, and the thickness was 100 μm.
The diameter of the first adhesive layer was 200 mm, and the thickness was 90 μm.
The diameter of the second layer was 200 mm and the thickness was 10 μm.
実施例2~3
表2の配合に従った点以外は実施例1と同様の方法で、接着シートを得た。
Examples 2 to 3
An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 2 was followed.
比較例1
実施例1の第1接着剤層用溶液を用いて、第1接着剤層からなる接着シート(単層)を得た。接着シートは円形であり、直径200mm、厚さ150μmであった。
Comparative Example 1
Using the first adhesive layer solution of Example 1, an adhesive sheet (single layer) composed of the first adhesive layer was obtained. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 μm.
[第1接着剤層の接着力の測定]
第1接着剤層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第1接着剤層を有するシートを得た。
得られたシートの第1接着剤層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第1接着剤層を得た。
シリコンウェハ付き第1接着剤層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表2に示す。
[Measurement of adhesive strength of first adhesive layer]
The first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 μm.
The first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
The first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 2.
[第2の層の接着力の測定]
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第2の層を有するシートを得た。
得られたシートの第2の層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第2の層を得た。
シリコンウェハ付き第2の層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表2に示す。
[Measurement of adhesive strength of second layer]
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 μm.
The second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
A second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was. The results are shown in Table 2.
[プロセス耐性評価]
実施例1~3
実施例1~3の接着シートの第2の層を台座(直径200mm、厚さ726μmのシリコンウエハ)に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaのロールラミネートにより行った。
次に、台座付き接着シートの接着シート面を、直径200mm、厚さ725μmのシリコンウエハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃で1.5時間、窒素雰囲気下で接着シートをイミド化した。これにより、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
比較例1
実施例1~3と同様の方法により積層体を得て、プロセス耐性を評価した。
結果を表2に示す。
[Process resistance evaluation]
Examples 1 to 3
The second layer of the adhesive sheets of Examples 1 to 3 was attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa.
Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. As a result, a laminated body in which the pedestal, the adhesive sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Comparative Example 1
A laminate was obtained by the same method as in Examples 1 to 3, and the process resistance was evaluated.
The results are shown in Table 2.
[剥離性評価]
前記プロセス耐性評価と同様の方法により、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
第1接着剤層と第2の層との境界にトムソン刃を用いて切り込み(シリコンウェハ端部から1mmの切り込み)を入れた。切り込みの後、積層体のシリコンウェハ側に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着によりシリコンウェハ付き第1接着剤層を積層体から剥離できた場合を○、剥離できなかった場合を×として評価した。結果を表2に示す。
[Peelability evaluation]
A laminated body in which a pedestal, an adhesive sheet, and a silicon wafer were sequentially laminated was obtained by the same method as in the process resistance evaluation.
A cut was made at the boundary between the first adhesive layer and the second layer using a Thomson blade (1 mm cut from the edge of the silicon wafer). After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the silicon wafer side of the laminate. The case where the first adhesive layer with a silicon wafer was peeled from the laminate by adsorption was evaluated as ◯, and the case where the first adhesive layer was not peeled was evaluated as x. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
<<第3の本発明の実施例>>
実施例で使用した成分について説明する。
PMDA:ピロメリット酸二無水物(分子量:218.1)
DDE:4,4‘-ジアミノジフェニルエーテル(分子量:200.2)
D-4000:ハインツマン製のポリエーテルジアミン(分子量:4023.5)
DMAc:N,N-ジメチルアセトアミド
BPDA:3,3´,4,4´-ビフェニルテトラカルボン酸ニ無水物
PPD:p-フェニレンジアミン
NMP:N-メチル-2-ピロリドン
SD4587L:東レ・ダウコーニング(株)製のシリコーン粘着剤(付加硬化型)
SRX-212:東レ・ダウコーニング(株)製の白金触媒
セパレータ(片面がシリコーン系剥離剤にて処理された長尺ポリエステルフィルム:厚さ38μm)
<< Example of Third Invention >>
The components used in the examples will be described.
PMDA: pyromellitic dianhydride (molecular weight: 218.1)
DDE: 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
D-4000: Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
DMAc: N, N-dimethylacetamide BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: p-phenylenediamine NMP: N-methyl-2-pyrrolidone SD4587L: Toray Dow Corning ) Made silicone adhesive (addition curing type)
SRX-212: Platinum catalyst separator manufactured by Toray Dow Corning Co., Ltd. (long polyester film treated on one side with a silicone-based release agent: thickness 38 μm)
[シート及び接着剤層用溶液の作製]
実施例1
窒素気流下の雰囲気において、2528.0gのDMAc中に、D-4000 29.5g、DDE 90.3g、及び、PMDA 100.0gを70℃で混合して反応させ、シート用溶液(ポリアミド酸溶液A)を得た。得られたシート用溶液が室温(23℃)になるまで冷却した。シート用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、シートを得た。
得られたシートの直径は200mm、厚さは100μmであった。
表3の配合に従った点以外はシート用溶液と同様の方法で接着剤層用溶液(ポリアミド酸溶液B)を得た。得られた接着剤層用溶液が室温(23℃)になるまで冷却した。
[Preparation of solution for sheet and adhesive layer]
Example 1
In an atmosphere under a nitrogen stream, D-4000 29.5 g, DDE 90.3 g, and PMDA 100.0 g were mixed and reacted at 2528.0 g of DMAc at 70 ° C. to obtain a sheet solution (polyamic acid solution). A) was obtained. The obtained sheet solution was cooled to room temperature (23 ° C.). The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet.
The obtained sheet had a diameter of 200 mm and a thickness of 100 μm.
An adhesive layer solution (polyamic acid solution B) was obtained in the same manner as the sheet solution except that the composition in Table 3 was followed. The obtained adhesive layer solution was cooled to room temperature (23 ° C.).
実施例2~3、比較例1
表3の配合に従った点以外は実施例1と同様の方法で、シート及び接着剤層用溶液を得た。
Examples 2-3 and Comparative Example 1
A sheet and an adhesive layer solution were obtained in the same manner as in Example 1 except that the composition according to Table 3 was followed.
[シートの接着力の測定]
シート用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmのサンプルシート1を得た。得られたサンプルシート1を8インチシリコンウェハに貼り合せ、300℃、1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付きサンプルシート1を得た。シリコンウェハ付きサンプルシート1を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表3に示す。
[Measurement of adhesive strength of sheet]
The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sample sheet 1 having a thickness of 20 μm. The obtained sample sheet 1 was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a sample sheet 1 with a silicon wafer. Sample sheet 1 with a silicon wafer was processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. . The results are shown in Table 3.
[接着剤層の接着力の測定]
接着剤層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmのサンプルシート2を得た。得られたサンプルシート2を8インチシリコンウェハに貼り合せた後、イミド化(実施例1、比較例1)又は熱硬化(実施例2、3)させた。
イミド化は、300℃、1.5時間、窒素雰囲気中で行った。
熱硬化は、150℃、1時間、大気雰囲気下で行った。
これにより得られたシリコンウェハ付きサンプルシート2を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表3に示す。
[Measurement of adhesive strength of adhesive layer]
The adhesive layer solution was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sample sheet 2 having a thickness of 20 μm. The obtained sample sheet 2 was bonded to an 8-inch silicon wafer, and then imidized (Example 1, Comparative Example 1) or thermally cured (Examples 2 and 3).
The imidization was performed in a nitrogen atmosphere at 300 ° C. for 1.5 hours.
Thermosetting was performed at 150 ° C. for 1 hour in an air atmosphere.
The sample sheet 2 with silicon wafer thus obtained was processed into a width of 20 mm and a length of 100 mm, and 90 ° at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corp., Autograph AGS-H). Peel evaluation was performed. The results are shown in Table 3.
[プロセス耐性評価]
実施例1
シートを直径200mm、厚さ725μmのベベル部を有するシリコンウェハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃、1.5時間、窒素雰囲気下でシートをイミド化した。
シリコンウェハが貼り付けられたシート面の裏面に、ベベル部を有する台座(直径200mm、厚さ726μmのシリコンウエハ)を貼り付けた。貼り付けは、温度120℃、圧力0.3MPaで行った。
次いで、シートと台座のベベル部との間に、接着剤層用溶液を塗布し、乾燥・イミド化させ、接着剤層を形成した。これにより、シートを台座に固定した。
以上により、台座、シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
実施例2~3
イミド化に代えて、150℃、1時間、大気雰囲気下で接着剤層の熱硬化を行った点以外は実施例1と同様の方法で、積層体を得た。得られた積層体を用いて、実施例1と同様の方法で評価した。
比較例1
接着剤層用溶液を塗布しなかった点以外は、実施例1と同様の方法で、積層体を得た。得られた積層体を用いて、実施例1と同様の方法で評価した。結果を表3に示す。
[Process resistance evaluation]
Example 1
The sheet was attached to a circuit forming surface of a silicon wafer having a bevel portion having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours.
A pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm) having a bevel portion was attached to the back surface of the sheet surface to which the silicon wafer was attached. Pasting was performed at a temperature of 120 ° C. and a pressure of 0.3 MPa.
Next, an adhesive layer solution was applied between the sheet and the pedestal bevel, dried and imidized to form an adhesive layer. Thereby, the sheet was fixed to the pedestal.
As described above, a laminate in which the pedestal, the sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Examples 2 to 3
Instead of imidization, a laminate was obtained in the same manner as in Example 1 except that the adhesive layer was thermally cured at 150 ° C. for 1 hour in the air atmosphere. Evaluation was performed in the same manner as in Example 1 using the obtained laminate.
Comparative Example 1
A laminate was obtained in the same manner as in Example 1 except that the adhesive layer solution was not applied. Evaluation was performed in the same manner as in Example 1 using the obtained laminate. The results are shown in Table 3.
[剥離性評価]
前記プロセス耐性評価と同様の方法により、積層体を得た。
図22に示すように、シート側面から台座1のベベル部に達するまでシートに切り込みを入れた(切り込み深さ0.5mm)。
切り込みの後、積層体のシリコンウェハ側に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着によりシリコンウェハ付きシートを積層体から剥離できた場合を○、剥離できなかった場合を×として評価した。結果を表3に示す。
[Peelability evaluation]
A laminate was obtained by the same method as in the process resistance evaluation.
As shown in FIG. 22, the sheet was cut from the side of the sheet until it reached the bevel portion of the pedestal 1 (the depth of cut was 0.5 mm).
After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the silicon wafer side of the laminate. The case where the sheet with the silicon wafer could be peeled from the laminate by adsorption was evaluated as ◯, and the case where the sheet was not peeled was evaluated as x. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
<<第4の本発明の実施例>>
実施例で使用した成分について説明する。
PMDA:ピロメリット酸二無水物(分子量:218.1)
DDE:4,4‘-ジアミノジフェニルエーテル(分子量:200.2)
D-4000:ハインツマン製のポリエーテルジアミン(分子量:4023.5)
DMAc:N,N-ジメチルアセトアミド
NMP:N-メチル-2-ピロリドン
D-2000:ハインツマン製のポリエーテルジアミン(分子量:1990.8)
BPDA:3,3´,4,4´-ビフェニルテトラカルボン酸ニ無水物
PPD:p-フェニレンジアミン
SD4587L:東レ・ダウコーニング(株)製のシリコーン粘着剤(付加硬化型)
SRX-212:東レ・ダウコーニング(株)製の白金触媒
セパレータ(片面がシリコーン系剥離剤にて処理された長尺ポリエステルフィルム:厚さ38μm)
長尺ポリエステルフィルム(厚さ25μm)
<< Example of Fourth Invention >>
The components used in the examples will be described.
PMDA: pyromellitic dianhydride (molecular weight: 218.1)
DDE: 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
D-4000: Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
DMAc: N, N-dimethylacetamide NMP: N-methyl-2-pyrrolidone D-2000: polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: p-phenylenediamine SD4587L: silicone adhesive manufactured by Toray Dow Corning (addition curing type)
SRX-212: Platinum catalyst separator manufactured by Toray Dow Corning Co., Ltd. (long polyester film treated on one side with a silicone-based release agent: thickness 38 μm)
Long polyester film (thickness 25μm)
実施例1~5、比較例1について説明する。 Examples 1 to 5 and Comparative Example 1 will be described.
以下の方法により接着シートを作製した。 An adhesive sheet was produced by the following method.
実施例1、5
<第1接着剤層用溶液、第2の層用溶液の作製>
窒素気流下の雰囲気において、929.05gのDMAc中に、D-4000 258.25g、DDE 78.95g、及び、PMDA 100gを70℃で混合して反応させ、第1接着剤層用溶液(ポリアミド酸溶液A)を得た。得られた第1接着剤層用溶液が室温(23℃)になるまで冷却した。
表4の配合に従った点以外は第1接着剤層用溶液と同様の方法で第2の層用溶液(ポリアミド酸溶液B)を得た。得られた第2の層用溶液が室温(23℃)になるまで冷却した。
<円形シートの作製>
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。
得られたシートの第2の層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、打ち抜いた部分(トムソン金型で打ち抜いた内側)を残して、外側を除去し、円形シートを得た。なお、上記のハーフカットとは、ポリエステルフィルム及び第2の層を完全にカットし、且つ、セパレータを完全にはカットしない(セパレータの途中までカットする)態様でのカットをいう。
<接着シートの作製>
円形シートのポリエステルフィルムを剥離し、第1接着剤層用溶液を、直径200mm以上となるように円形シートの第2の層上に塗布し、90℃で3分間乾燥させた。乾燥させた第1接着剤層上に長尺ポリエステルフィルムを積層し、図24、25に示す形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは100μmであった。第2の層の直径は198mm、第2の層の厚さは2μmであった。接着シートの中央部における第1接着剤層の厚さは98μmであった。
Examples 1 and 5
<Preparation of First Adhesive Layer Solution and Second Layer Solution>
In an atmosphere under a nitrogen stream, 929.05 g of DMAc was mixed with D-4000 258.25 g, DDE 78.95 g, and PMDA 100 g at 70 ° C., and reacted to obtain a first adhesive layer solution (polyamide). An acid solution A) was obtained. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
A second layer solution (polyamic acid solution B) was obtained in the same manner as the first adhesive layer solution except that the composition according to Table 4 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.).
<Production of circular sheet>
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer.
A long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal gave a circular sheet. In addition, said half cut means the cut in the aspect which cuts a polyester film and a 2nd layer completely, and does not cut a separator completely (cut to the middle of a separator).
<Preparation of adhesive sheet>
The polyester film of the circular sheet was peeled off, and the first adhesive layer solution was applied on the second layer of the circular sheet so as to have a diameter of 200 mm or more, and dried at 90 ° C. for 3 minutes. A long polyester film was laminated on the dried first adhesive layer to obtain an adhesive sheet having the shape shown in FIGS.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 100 μm. The diameter of the second layer was 198 mm, and the thickness of the second layer was 2 μm. The thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 98 micrometers.
実施例2
<第1接着剤層用溶液の作製>
表4の配合に従った点以外は実施例1と同様の方法で、第1接着剤層用溶液を得た。
<接着シートの作製>
SUS箔(東洋製箔(株)製、SUS 304H-TA)上に、Cu膜厚が0.5μmとなるよう、硫酸銅めっき浴によるCuめっきを行い、Cuめっき付きSUS箔を得た。得られたCuめっき付きSUS箔が室温(23℃)になるまで冷却した。
表4の配合の第1接着剤層用溶液をCuめっき付きSUS箔に塗布し、90℃で2分間乾燥させた。次いで、SUS箔を剥離してCuめっき付きポリアミド酸層を得た。得られたCuめっき付きポリアミド酸層に対して、Cuエッチングを行った。これにより、円形(直径195mm)のCuめっき部分(第2の層)を残し、他を取り除いた。以上より、図24、25に示す形状の接着シートを得た。
接着シート全体の直径200mm、厚さ120μmであった。第2の層の直径は195mm、第2の層の厚さは0.5μmであった。接着シートの中央部における第1接着剤層の厚さは119.5μmであった。
なお、実施例2では、接着シートの形成時には、第1接着剤層上に、第2の層が形成された形状(第2の層の側面側には第1接着剤層が存在しない形状)となるが、第2の層が0.5μmと薄い一方、第1接着剤層が120μmと厚く、また、第1接着剤層が比較的柔らかい(低弾性率である)ため、使用時には、圧力により、第2の層が第1接着剤層に埋め込まれることになる。従って、実施例2の接着シートは、図24に示す断面形状を有することとなる。
Example 2
<Preparation of first adhesive layer solution>
A first adhesive layer solution was obtained in the same manner as in Example 1 except that the composition according to Table 4 was followed.
<Preparation of adhesive sheet>
On a SUS foil (manufactured by Toyo Seikan Co., Ltd., SUS 304H-TA), Cu plating with a copper sulfate plating bath was performed so that the Cu film thickness was 0.5 μm to obtain a SUS foil with Cu plating. The obtained Cu-plated SUS foil was cooled to room temperature (23 ° C.).
The first adhesive layer solution having the composition shown in Table 4 was applied to a Cu-plated SUS foil and dried at 90 ° C. for 2 minutes. Next, the SUS foil was peeled to obtain a polyamic acid layer with Cu plating. Cu etching was performed on the obtained polyamic acid layer with Cu plating. As a result, a circular (195 mm diameter) Cu plated portion (second layer) was left, and the others were removed. From the above, an adhesive sheet having the shape shown in FIGS. 24 and 25 was obtained.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 120 μm. The diameter of the second layer was 195 mm, and the thickness of the second layer was 0.5 μm. The thickness of the 1st adhesive bond layer in the center part of an adhesive sheet was 119.5 micrometers.
In Example 2, when the adhesive sheet is formed, a shape in which the second layer is formed on the first adhesive layer (a shape in which the first adhesive layer does not exist on the side surface side of the second layer). However, since the second layer is as thin as 0.5 μm, the first adhesive layer is as thick as 120 μm, and the first adhesive layer is relatively soft (low elastic modulus). Thus, the second layer is embedded in the first adhesive layer. Therefore, the adhesive sheet of Example 2 has the cross-sectional shape shown in FIG.
実施例3
表4の配合に従った点以外は実施例1と同様の方法で、接着シートを得た。
Example 3
An adhesive sheet was obtained in the same manner as in Example 1 except that the composition according to Table 4 was followed.
実施例4
<円形シートの作製>
実施例1にて作成した第2の層用溶液をセパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。
得られたシートの第2の層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、打ち抜いた部分(トムソン金型で打ち抜いた内側)を残して、外側を除去し、円形シートを得た(厚さ:200μm)。
<接着シートの作製>
実施例1にて作成した第1接着剤層用溶液をセパレータに塗布し、90℃で3分間乾燥させ、第1接着剤層を有するシートを得た。
得られたシートの第1接着剤層上に長尺ポリエステルフィルムを積層し、トムソン金型にて、直径198mmにハーフカットし、外側を残して、打ち抜いた部分(トムソン金型で打ち抜いた内側)を除去し、中抜けのシートを得た(厚さ:200μm)。
円形シート、及び中抜けのシートのセパレータを剥離し、中抜けのシートの第1接着剤層が存在しない部分に、円形シートの第2の層が嵌まり込むように貼り合わせ、図29、30に示す形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは200μmであった。第2の層の直径は198mm、第2の層の厚さは200μmであった。
Example 4
<Production of circular sheet>
The second layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer.
A long polyester film is laminated on the second layer of the obtained sheet, half-cut with a Thomson mold to a diameter of 198 mm, and the outer part is left, leaving the punched part (the inner part punched with the Thomson mold). Removal was performed to obtain a circular sheet (thickness: 200 μm).
<Preparation of adhesive sheet>
The first adhesive layer solution prepared in Example 1 was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer.
A long polyester film is laminated on the first adhesive layer of the obtained sheet, half-cut to 198 mm in diameter with a Thomson die, and the punched portion leaving the outside (inside punched with the Thomson die) Was removed to obtain a hollow sheet (thickness: 200 μm).
29 and 30, the separator of the circular sheet and the hollow sheet is peeled off and bonded so that the second layer of the circular sheet fits into the part where the first adhesive layer of the hollow sheet does not exist. An adhesive sheet having the shape shown in FIG.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 200 μm. The diameter of the second layer was 198 mm, and the thickness of the second layer was 200 μm.
比較例1
実施例1と同様の第1接着剤層からなる単層の接着シートを得た。接着シートは円形であり、直径200mm、厚さ150μmであった。
Comparative Example 1
A single-layer adhesive sheet composed of the same first adhesive layer as in Example 1 was obtained. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 μm.
[第1接着剤層の接着力の測定]
第1接着剤層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第1接着剤層を有するシートを得た。
得られたシートの第1接着剤層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第1接着剤層を得た。
シリコンウェハ付き第1接着剤層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表4に示す。
[Measurement of adhesive strength of first adhesive layer]
The first adhesive layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a first adhesive layer having a thickness of 20 μm.
The first adhesive layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a first adhesive layer with a silicon wafer.
The first adhesive layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H). went. The results are shown in Table 4.
[第2の層の接着力の測定]
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmの第2の層を有するシートを得た。
得られたシートの第2の層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第2の層を得た。
シリコンウェハ付き第2の層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表4に示す。
なお、実施例2の第2の層の接着力については、8インチシリコンウェハに第2の層を貼り合せたものを用いて、90°ピール評価を行った。
[Measurement of adhesive strength of second layer]
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having a second layer having a thickness of 20 μm.
The second layer of the obtained sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
A second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was. The results are shown in Table 4.
In addition, about the adhesive force of the 2nd layer of Example 2, 90 degree peel evaluation was performed using what bonded the 2nd layer to the 8-inch silicon wafer.
[プロセス耐性評価(1)]
実施例1~4
実施例1~4の接着シートの第1接着剤層及び第2の層が表出している面を台座(直径200mm、厚さ726μmのシリコンウエハ)に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaのロールラミネートにより行った。
次に、台座付き接着シートの接着シート面を、直径200mm、厚さ725μmのシリコンウエハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃で1.5時間、窒素雰囲気下で接着シートをイミド化した。これにより、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
実施例5
第1接着剤層のみが表出している面を台座に貼り付けた以外は、実施例1~4と同様の方法でプロセス耐性を評価した。
比較例1
実施例1~4と同様の方法により積層体を得て、プロセス耐性を評価した。
結果を表4に示す。
[Process resistance evaluation (1)]
Examples 1 to 4
The surfaces on which the first adhesive layer and the second layer of the adhesive sheets of Examples 1 to 4 were exposed were attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa.
Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. As a result, a laminated body in which the pedestal, the adhesive sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Example 5
Process resistance was evaluated in the same manner as in Examples 1 to 4, except that the surface exposed only by the first adhesive layer was attached to the pedestal.
Comparative Example 1
A laminate was obtained by the same method as in Examples 1 to 4, and the process resistance was evaluated.
The results are shown in Table 4.
[剥離性評価(1)]
実施例1~5、比較例1
前記プロセス耐性評価と同様の方法により、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
トムソン刃を用いて、接着シート層の側面から内側向かって切り込みを入れた。切り込みは、第2の層に達するまで行った。切り込みの後、積層体の上側(シリコンウェハ側)に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着できた場合を○、吸着できなかった場合を×として評価した。結果を表4に示す。
[Peelability evaluation (1)]
Examples 1 to 5, Comparative Example 1
A laminated body in which a pedestal, an adhesive sheet, and a silicon wafer were sequentially laminated was obtained by the same method as in the process resistance evaluation.
Using a Thomson blade, a cut was made inward from the side surface of the adhesive sheet layer. The cut was made until the second layer was reached. After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the upper side (silicon wafer side) of the laminate. The case where it was able to adsorb | suck was evaluated as (circle) and the case where it was not able to adsorb was evaluated as x. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
実施例6~8、比較例2について説明する。 Examples 6 to 8 and Comparative Example 2 will be described.
実施例6
窒素気流下の雰囲気において、1912.0gのDMAc中に、D-4000 239.8g、DDE 79.9g、及び、PMDA 100.0gを70℃で混合して反応させ、第1接着剤層用溶液を得た。得られた第1接着剤層用溶液が室温(23℃)になるまで冷却した。
表5の配合に従った点以外は第1接着剤層用溶液と同様の方法で第2の層用溶液を得た。得られた第2の層用溶液が室温(23℃)になるまで冷却した。
第2の層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第2の層を有するシートを得た。得られたシートに上に、第1接着剤層用溶液を塗布し、90℃で3分間乾燥させ、第1接着剤層を形成した。これにより、第1接着剤層と第2の層とが積層された接着シート(図33に示す形状の接着シート)を得た。
接着シートの全体の直径は200mm、厚さは100μmであった。
第1接着剤層の直径は200mm、厚さは90μmであった。
第2の層の直径は200mm、厚さは10μmであった。
Example 6
In an atmosphere under a nitrogen stream, D-4000 239.8 g, DDE 79.9 g, and PMDA 100.0 g were mixed and reacted at 1912.0 g of DMAc at 70 ° C. to obtain a first adhesive layer solution Got. The resulting first adhesive layer solution was cooled to room temperature (23 ° C.).
A second layer solution was obtained in the same manner as the first adhesive layer solution except that the composition in Table 5 was followed. The resulting second layer solution was cooled to room temperature (23 ° C.).
The second layer solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet having the second layer. On the obtained sheet, the first adhesive layer solution was applied and dried at 90 ° C. for 3 minutes to form a first adhesive layer. This obtained the adhesive sheet (adhesive sheet of the shape shown in FIG. 33) by which the 1st adhesive bond layer and the 2nd layer were laminated | stacked.
The entire diameter of the adhesive sheet was 200 mm, and the thickness was 100 μm.
The diameter of the first adhesive layer was 200 mm, and the thickness was 90 μm.
The diameter of the second layer was 200 mm and the thickness was 10 μm.
実施例7~8
表5の配合に従った点以外は実施例6と同様の方法で、接着シートを得た。
Examples 7-8
An adhesive sheet was obtained in the same manner as in Example 6 except that the composition according to Table 5 was followed.
比較例2
実施例6の第1接着剤層用溶液を用いて、第1接着剤層からなる接着シート(単層)を得た。接着シートは円形であり、直径200mm、厚さ150μmであった。
Comparative Example 2
Using the first adhesive layer solution of Example 6, an adhesive sheet (single layer) composed of the first adhesive layer was obtained. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 μm.
[第1接着剤層の接着力の測定]
前述の方法で測定した。結果を表5に示す。
[第2の層の接着力の測定]
前述の方法で測定した。結果を表5に示す。
[Measurement of adhesive strength of first adhesive layer]
Measurement was performed by the method described above. The results are shown in Table 5.
[Measurement of adhesive strength of second layer]
Measurement was performed by the method described above. The results are shown in Table 5.
[プロセス耐性評価(2)]
実施例6~8、比較例2
実施例6~8の接着シートの第2の層を台座(直径200mm、厚さ726μmのシリコンウエハ)に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaのロールラミネートにより行った。
次に、台座付き接着シートの接着シート面を、直径200mm、厚さ725μmのシリコンウエハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃で1.5時間、窒素雰囲気下で接着シートをイミド化した。これにより、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
比較例2についても、同様の方法により積層体を得て、プロセス耐性を評価した。
結果を表5に示す。
[Process resistance evaluation (2)]
Examples 6-8, Comparative Example 2
The second layer of the adhesive sheets of Examples 6 to 8 was attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa.
Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. As a result, a laminated body in which the pedestal, the adhesive sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
For Comparative Example 2, a laminate was obtained by the same method, and the process resistance was evaluated.
The results are shown in Table 5.
[剥離性評価(2)]
実施例6~8、比較例2
前記プロセス耐性評価と同様の方法により、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
第1接着剤層と第2の層との境界にトムソン刃を用いて切り込み(シリコンウェハ端部から1mmの切り込み)を入れた。切り込みの後、積層体のシリコンウェハ側に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着によりシリコンウェハ付き第1接着剤層を積層体から剥離できた場合を○、剥離できなかった場合を×として評価した。結果を表5に示す。
[Peelability evaluation (2)]
Examples 6-8, Comparative Example 2
A laminated body in which a pedestal, an adhesive sheet, and a silicon wafer were sequentially laminated was obtained by the same method as in the process resistance evaluation.
A cut was made at the boundary between the first adhesive layer and the second layer using a Thomson blade (1 mm cut from the edge of the silicon wafer). After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the silicon wafer side of the laminate. The case where the first adhesive layer with a silicon wafer was peeled from the laminate by adsorption was evaluated as ◯, and the case where the first adhesive layer was not peeled was evaluated as x. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
実施例9~11、比較例3について説明する。 Examples 9 to 11 and Comparative Example 3 will be described.
[シート及び接着剤層用溶液の作製]
実施例9
窒素気流下の雰囲気において、2528.0gのDMAc中に、D-4000 29.5g、DDE 90.3g、及び、PMDA 100.0gを70℃で混合して反応させ、シート用溶液を得た。得られたシート用溶液が室温(23℃)になるまで冷却した。シート用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、シートを得た。
得られたシートの直径は200mm、厚さは100μmであった。
表6の配合に従った点以外はシート用溶液と同様の方法で接着剤層用溶液を得た。得られた接着剤層用溶液が室温(23℃)になるまで冷却した。
[Preparation of solution for sheet and adhesive layer]
Example 9
In an atmosphere under a nitrogen stream, D-4000 29.5 g, DDE 90.3 g, and PMDA 100.0 g were mixed and reacted at 2528.0 g of DMAc at 70 ° C. to obtain a sheet solution. The obtained sheet solution was cooled to room temperature (23 ° C.). The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sheet.
The obtained sheet had a diameter of 200 mm and a thickness of 100 μm.
An adhesive layer solution was obtained in the same manner as the sheet solution except that the composition in Table 6 was followed. The obtained adhesive layer solution was cooled to room temperature (23 ° C.).
実施例10~11、比較例3
表6の配合に従った点以外は実施例9と同様の方法で、シート及び接着剤層用溶液を得た。
Examples 10-11, Comparative Example 3
A sheet and an adhesive layer solution were obtained in the same manner as in Example 9 except that the composition according to Table 6 was followed.
[シートの接着力の測定]
シート用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmのサンプルシート1を得た。得られたサンプルシート1を8インチシリコンウェハに貼り合せ、300℃、1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付きサンプルシート1を得た。シリコンウェハ付きサンプルシート1を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表6に示す。
[Measurement of adhesive strength of sheet]
The sheet solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a sample sheet 1 having a thickness of 20 μm. The obtained sample sheet 1 was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a sample sheet 1 with a silicon wafer. Sample sheet 1 with a silicon wafer was processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. . The results are shown in Table 6.
[接着剤層の接着力の測定]
接着剤層用溶液を、セパレータに塗布し、90℃で3分間乾燥させ、厚さ20μmのサンプルシート2を得た。得られたサンプルシート2を8インチシリコンウェハに貼り合せた後、イミド化(実施例9、比較例3)又は熱硬化(実施例10、11)させた。
イミド化は、300℃、1.5時間、窒素雰囲気中で行った。
熱硬化は、150℃、1時間、大気雰囲気下で行った。
これにより得られたシリコンウェハ付きサンプルシート2を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表6に示す。
[Measurement of adhesive strength of adhesive layer]
The adhesive layer solution was applied to a separator and dried at 90 ° C. for 3 minutes to obtain a sample sheet 2 having a thickness of 20 μm. The obtained sample sheet 2 was bonded to an 8-inch silicon wafer, and then imidized (Example 9, Comparative Example 3) or thermally cured (Examples 10 and 11).
The imidization was performed in a nitrogen atmosphere at 300 ° C. for 1.5 hours.
Thermosetting was performed at 150 ° C. for 1 hour in an air atmosphere.
The sample sheet 2 with silicon wafer thus obtained was processed into a width of 20 mm and a length of 100 mm, and 90 ° at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corp., Autograph AGS-H). Peel evaluation was performed. The results are shown in Table 6.
[プロセス耐性評価(3)]
実施例9
シートを直径200mm、厚さ725μmのベベル部を有するシリコンウェハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaでロールラミネートにより行った。貼り付け後、300℃、1.5時間、窒素雰囲気下でシートをイミド化した。
シリコンウェハが貼り付けられたシート面の裏面に、ベベル部を有する台座(直径200mm、厚さ726μmのシリコンウエハ)を貼り付けた。貼り付けは、温度120℃、圧力0.3MPaで行った。
次いで、シートと台座のベベル部との間に、接着剤層用溶液を塗布し、乾燥させ、仮止め用接着剤層を形成した。これにより、シートを台座に固定した。
以上により、台座、シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
実施例10~11
イミド化に代えて、150℃、1時間、大気雰囲気下で接着剤層の熱硬化を行った点以外は実施例9と同様の方法で、積層体を得た。得られた積層体を用いて、実施例9と同様の方法で評価した。
比較例3
接着剤層用溶液を塗布しなかった点以外は、実施例9と同様の方法で、積層体を得た。得られた積層体を用いて、実施例9と同様の方法で評価した。
結果を表6に示す。
[Process resistance evaluation (3)]
Example 9
The sheet was attached to a circuit forming surface of a silicon wafer having a bevel portion having a diameter of 200 mm and a thickness of 725 μm. The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours.
A pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm) having a bevel portion was attached to the back surface of the sheet surface to which the silicon wafer was attached. Pasting was performed at a temperature of 120 ° C. and a pressure of 0.3 MPa.
Next, an adhesive layer solution was applied between the sheet and the pedestal bevel and dried to form a temporary adhesive layer. Thereby, the sheet was fixed to the pedestal.
As described above, a laminate in which the pedestal, the sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Examples 10-11
Instead of imidization, a laminate was obtained in the same manner as in Example 9 except that the adhesive layer was thermally cured at 150 ° C. for 1 hour in an air atmosphere. Evaluation was performed in the same manner as in Example 9 using the obtained laminate.
Comparative Example 3
A laminate was obtained in the same manner as in Example 9 except that the adhesive layer solution was not applied. Evaluation was performed in the same manner as in Example 9 using the obtained laminate.
The results are shown in Table 6.
[剥離性評価(3)]
前記プロセス耐性評価と同様の方法により、積層体を得た。
図49に示すように、シート側面から台座35のベベル部に達するまでシートに切り込みを入れた(切り込み深さ0.5mm)。
切り込みの後、積層体のシリコンウェハ側に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着によりシリコンウェハ付きシートを積層体から剥離できた場合を○、剥離できなかった場合を×として評価した。結果を表6に示す。
[Peelability evaluation (3)]
A laminate was obtained by the same method as in the process resistance evaluation.
As shown in FIG. 49, the sheet was cut from the side of the sheet until it reached the bevel portion of the pedestal 35 (cut depth: 0.5 mm).
After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the silicon wafer side of the laminate. The case where the sheet with the silicon wafer could be peeled from the laminate by adsorption was evaluated as ◯, and the case where the sheet was not peeled was evaluated as x. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
<<第5の本発明の実施例>>
実施例で使用した成分について説明する。
PMDA:ピロメリット酸二無水物(分子量:218.1)
DDE:4,4‘-ジアミノジフェニルエーテル(分子量:200.2)
D-4000:ハインツマン製のポリエーテルジアミン(分子量:4023.5)
DMAc:N,N-ジメチルアセトアミド
NMP:N-メチル-2-ピロリドン
D-2000:ハインツマン製のポリエーテルジアミン(分子量:1990.8)
BPDA:3,3´,4,4´-ビフェニルテトラカルボン酸ニ無水物
PPD:p-フェニレンジアミン
セパレータ(片面がシリコーン系剥離剤にて処理された長尺ポリエステルフィルム)
<< Example of Fifth Invention >>
The components used in the examples will be described.
PMDA: pyromellitic dianhydride (molecular weight: 218.1)
DDE: 4,4′-diaminodiphenyl ether (molecular weight: 200.2)
D-4000: Polyether diamine manufactured by Heinzmann (molecular weight: 4023.5)
DMAc: N, N-dimethylacetamide NMP: N-methyl-2-pyrrolidone D-2000: polyether diamine manufactured by Heinzmann (molecular weight: 1990.8)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PPD: p-phenylenediamine separator (long polyester film treated on one side with a silicone release agent)
実施例1
窒素気流下の雰囲気において、1257gのDMAc中に、D-4000 365g、DDE 74g、及び、PMDA 100gを70℃で混合して反応させた後、室温(23℃)になるまで冷却し、第1接着剤溶液を得た。
表7の配合に従った点以外は第1接着剤溶液と同様の方法で第2接着剤溶液を得た。第2接着剤溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第2接着剤溶液の塗布層を有するシートを作製した後、シート厚さ方向の貫通孔を多数形成し、孔あきシートを得た。孔あきシートを平面視したときの貫通孔の形状が円形であり、孔あきシートを平面視したときの各貫通孔の面積は、78.5μmであった。各貫通孔の直径は10μmであった。開口率は50%であった。
孔あきシート及びその周囲(孔あきシートの周囲の領域)に第1接着剤溶液を塗布し、貫通孔を第1接着剤溶液で充填するとともに、第1接着剤溶液の塗布層を形成した。その後、90℃で3分間乾燥させ、図51、52に示す実施形態1の形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは100μmであった。
第2の層の直径は196mm、第2の層の厚さは1μmであった。
接着シートの中央部における第1接着剤層の厚さは99μmであった。
Example 1
In an atmosphere under a nitrogen stream, D-4000 365 g, DDE 74 g, and PMDA 100 g were mixed and reacted at 70 ° C. in 1257 g of DMAc, and then cooled to room temperature (23 ° C.). An adhesive solution was obtained.
A second adhesive solution was obtained in the same manner as the first adhesive solution except that the composition according to Table 7 was followed. The second adhesive solution is applied to the separator and dried at 90 ° C. for 3 minutes to produce a sheet having a coating layer of the second adhesive solution. A sheet was obtained. The shape of the through hole when the perforated sheet was viewed in plan was circular, and the area of each through hole when the perforated sheet was viewed in plan was 78.5 μm 2 . The diameter of each through hole was 10 μm. The aperture ratio was 50%.
The first adhesive solution was applied to the perforated sheet and its periphery (region around the perforated sheet), the through holes were filled with the first adhesive solution, and an application layer of the first adhesive solution was formed. Then, it was made to dry for 3 minutes at 90 degreeC, and the adhesive sheet of the shape of Embodiment 1 shown to FIG.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 100 μm.
The diameter of the second layer was 196 mm, and the thickness of the second layer was 1 μm.
The thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 99 micrometers.
実施例2
表7の配合に従った点以外は実施例1と同様の方法で、第1接着剤溶液を得た。
孔あきシートに代えて、開孔率80%のアルミメッシュを使用した点以外は実施例1と同様の方法で、図51、52に示す実施形態1の形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは120.5μmであった。
第2の層の直径は198mm、第2の層の厚さは0.5μmであった。
接着シートの中央部における第1接着剤層の厚さは120μmであった。
Example 2
A first adhesive solution was obtained in the same manner as in Example 1 except that the composition according to Table 7 was followed.
An adhesive sheet having the shape of Embodiment 1 shown in FIGS. 51 and 52 was obtained in the same manner as in Example 1 except that an aluminum mesh having an aperture ratio of 80% was used instead of the perforated sheet.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 120.5 μm.
The diameter of the second layer was 198 mm, and the thickness of the second layer was 0.5 μm.
The thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 120 micrometers.
実施例3
表7の配合に従い第1接着剤溶液及び第2接着剤溶液を得た点、孔あきシートを平面視したときの貫通孔の形状が三角形である点、各貫通孔の面積が7.0mmである点、及び開口率が10%である点以外は、実施例1と同様の方法で、図51、52に示す実施形態1の形状の接着シートを得た。
接着シート全体の直径は200mm、厚さは100μmであった。
第2の層の直径は197mm、第2の層の厚さは1μmであった。
接着シートの中央部における第1接着剤層の厚さは99μmであった。
Example 3
The point which obtained the 1st adhesive solution and the 2nd adhesive solution according to the composition of Table 7, the shape of the through hole when the perforated sheet is viewed in plan, and the area of each through hole are 7.0 mm 2 The adhesive sheet having the shape of Embodiment 1 shown in FIGS. 51 and 52 was obtained in the same manner as in Example 1 except that the opening ratio was 10%.
The entire adhesive sheet had a diameter of 200 mm and a thickness of 100 μm.
The diameter of the second layer was 197 mm, and the thickness of the second layer was 1 μm.
The thickness of the 1st adhesive bond layer in the center part of the adhesive sheet was 99 micrometers.
比較例1
表7の配合に従った点以外は実施例1と同様の方法で、第1接着剤溶液を得た。
第1接着剤溶液を、セパレータに塗布し、90℃で3分間乾燥させ、第1接着剤からなる単層の接着シートを得た。接着シートは円形であり、直径200mm、厚さ150μmであった。
Comparative Example 1
A first adhesive solution was obtained in the same manner as in Example 1 except that the composition according to Table 7 was followed.
The first adhesive solution was applied to the separator and dried at 90 ° C. for 3 minutes to obtain a single-layer adhesive sheet made of the first adhesive. The adhesive sheet was circular and had a diameter of 200 mm and a thickness of 150 μm.
[第1接着剤層の接着力の測定]
接着シートの第1接着剤層(第1接着剤溶液の塗布層)のみからなる面を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き接着シートを得た。
シリコンウェハ付き接着シートを20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表7に示す。
[Measurement of adhesive strength of first adhesive layer]
The surface consisting only of the first adhesive layer (the first adhesive solution coating layer) of the adhesive sheet was bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to form silicon. An adhesive sheet with a wafer was obtained.
The adhesive sheet with a silicon wafer was processed into a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. The results are shown in Table 7.
[孔あきシート及びアルミメッシュ(多数の貫通孔を有する構造体)の接着力の測定]
実施例1、3
実施例1、3の孔あきシートを8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き孔あきシートを得た。
シリコンウェハ付き孔あきシートを20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表7に示す。
実施例2
アルミメッシュを8インチシリコンウェハに貼り合せてシリコンウェハ付きアルミメッシュを得た。得られたシリコンウェハ付きアルミメッシュを20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表7に示す。
[Measurement of adhesive strength of perforated sheet and aluminum mesh (structure with many through holes)]
Examples 1 and 3
The perforated sheets of Examples 1 and 3 were bonded to an 8-inch silicon wafer and imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a perforated sheet with a silicon wafer.
A perforated sheet with a silicon wafer was processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. . The results are shown in Table 7.
Example 2
The aluminum mesh was bonded to an 8-inch silicon wafer to obtain an aluminum mesh with a silicon wafer. The obtained aluminum mesh with a silicon wafer was processed into a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation was performed at a temperature of 23 ° C. and 300 mm / min using a tensile tester (manufactured by Shimadzu Corp., Autograph AGS-H). went. The results are shown in Table 7.
[第2の層の接着力の測定]
接着シートから第2の層(孔あきシート又はアルミメッシュと、それらの貫通孔に充填された第1接着剤とからなる第2の層)を切り出し、切り出した第2の層を8インチシリコンウェハに貼り合せ、300℃で1.5時間の条件で窒素雰囲気中でイミド化させ、シリコンウェハ付き第2の層を得た。
シリコンウェハ付き第2の層を20mm幅、100mm長さに加工し、引張試験機(島津製作所製、オートグラフAGS-H)を用い、温度23℃、300mm/分にて90°ピール評価を行った。結果を表7に示す。
[Measurement of adhesive strength of second layer]
A second layer (a second layer comprising a perforated sheet or an aluminum mesh and a first adhesive filled in the through holes) is cut out from the adhesive sheet, and the cut second layer is cut into an 8-inch silicon wafer. And imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours to obtain a second layer with a silicon wafer.
A second layer with a silicon wafer is processed to a width of 20 mm and a length of 100 mm, and a 90 ° peel evaluation is performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-H) at a temperature of 23 ° C. and 300 mm / min. It was. The results are shown in Table 7.
[プロセス耐性評価]
実施例1~3
実施例1~3の接着シートの第1接着剤層及び第2の層が表出している面を台座(直径200mm、厚さ726μmのシリコンウエハ)に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaのロールラミネートにより行った。
次に、台座付き接着シートの接着シート面を、直径200mm、厚さ725μmのシリコンウエハの回路形成面に貼り付けた。貼り付けは、温度90℃、圧力0.1MPaで行った。貼り付け後、300℃で1.5時間、窒素雰囲気下で接着シートをイミド化した。これにより、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
得られた積層体を用いてバックグラインドを行い、バックグラインド中にシリコンウェハを充分に固定でき良好にバックグラインドできた場合を○、シリコンウェハを充分に固定できずバックグラインドできなかった場合を×として評価した。
比較例1
実施例1~3と同様の方法により積層体を得て、プロセス耐性を評価した。
結果を表7に示す。
[Process resistance evaluation]
Examples 1 to 3
The surfaces on which the first adhesive layer and the second layer of the adhesive sheets of Examples 1 to 3 were exposed were attached to a pedestal (a silicon wafer having a diameter of 200 mm and a thickness of 726 μm). The pasting was performed by roll lamination at a temperature of 90 ° C. and a pressure of 0.1 MPa.
Next, the adhesive sheet surface of the adhesive sheet with a pedestal was attached to the circuit forming surface of a silicon wafer having a diameter of 200 mm and a thickness of 725 μm. Pasting was performed at a temperature of 90 ° C. and a pressure of 0.1 MPa. After pasting, the adhesive sheet was imidized in a nitrogen atmosphere at 300 ° C. for 1.5 hours. As a result, a laminated body in which the pedestal, the adhesive sheet, and the silicon wafer were sequentially laminated was obtained.
Backgrinding was performed using the obtained laminate, and the case where the silicon wafer could be sufficiently fixed in the backgrind and satisfactorily background could be obtained. As evaluated.
Comparative Example 1
A laminate was obtained by the same method as in Examples 1 to 3, and the process resistance was evaluated.
The results are shown in Table 7.
[剥離性評価]
前記プロセス耐性評価と同様の方法により、台座、接着シート及びシリコンウェハが順次積層された積層体を得た。
トムソン刃を用いて、接着シート層の側面から内側向かって切り込みを入れた。切り込みは、第2の層に達するまで行った。切り込みの後、積層体の上側(シリコンウェハ側)に配置した真空ピンセットを用いて、シリコンウェハを上方向に吸着した。吸着できた場合を○、吸着できなかった場合を×として評価した。結果を表7に示す。
[Peelability evaluation]
A laminated body in which a pedestal, an adhesive sheet, and a silicon wafer were sequentially laminated was obtained by the same method as in the process resistance evaluation.
Using a Thomson blade, a cut was made inward from the side surface of the adhesive sheet layer. The cut was made until the second layer was reached. After cutting, the silicon wafer was adsorbed upward using vacuum tweezers arranged on the upper side (silicon wafer side) of the laminate. The case where it was able to adsorb | suck was evaluated as (circle) and the case where it was not able to adsorb was evaluated as x. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 
 
Figure JPOXMLDOC01-appb-T000007
 
 

Claims (6)

  1. 半導体ウェハを台座に固定するために用いられる半導体装置製造用接着シートであって、
    第1接着剤層と、接着力が前記第1接着剤層より低い第2の層とを有し、
    少なくとも前記半導体装置製造用接着シートの周辺部が前記第1接着剤層により形成されていることを特徴とする半導体装置製造用接着シート。
    An adhesive sheet for manufacturing a semiconductor device used for fixing a semiconductor wafer to a pedestal,
    A first adhesive layer and a second layer having an adhesive strength lower than that of the first adhesive layer;
    An adhesive sheet for manufacturing a semiconductor device, wherein at least a peripheral portion of the adhesive sheet for manufacturing a semiconductor device is formed by the first adhesive layer.
  2. 前記周辺部よりも内側の中央部が、前記第1接着剤層と前記第2の層との積層により形成されていることを特徴とする請求項1に記載の半導体装置製造用接着シート。 2. The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein a central part inside the peripheral part is formed by stacking the first adhesive layer and the second layer.
  3. 前記周辺部よりも内側の中央部が、前記第2の層により形成されていることを特徴とする請求項1に記載の半導体装置製造用接着シート。 2. The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein a central portion inside the peripheral portion is formed by the second layer.
  4. 前記周辺部及び前記中央部にわたって、前記第1接着剤層よりも接着力の低い第3の層が形成されていることを特徴とする請求項1~3のいずれか1に記載の半導体装置製造用接着シート。 The semiconductor device manufacturing according to any one of claims 1 to 3, wherein a third layer having an adhesive force lower than that of the first adhesive layer is formed over the peripheral portion and the central portion. Adhesive sheet.
  5. 請求項1~4のいずれか1に記載の半導体装置製造用接着シートを用いて得られる半導体装置。 A semiconductor device obtained by using the adhesive sheet for manufacturing a semiconductor device according to any one of claims 1 to 4.
  6. 請求項1~4のいずれか1に記載の半導体装置製造用接着シートを用いて半導体ウェハを台座に固定する工程と、
    前記半導体ウェハから前記台座を分離する工程とを含むことを特徴とする半導体装置の製造方法。
    Fixing the semiconductor wafer to the pedestal using the adhesive sheet for manufacturing a semiconductor device according to any one of claims 1 to 4,
    And a step of separating the pedestal from the semiconductor wafer.
PCT/JP2013/075174 2012-09-28 2013-09-18 Adhesive sheet for semiconductor device production, semiconductor device, and method for producing semiconductor device WO2014050663A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012218418A JP2014072444A (en) 2012-09-28 2012-09-28 Semiconductor device manufacturing method
JP2012-218418 2012-09-28
JP2012-218420 2012-09-28
JP2012218410A JP2014070182A (en) 2012-09-28 2012-09-28 Adhesive sheet for manufacturing semiconductor device, semiconductor device and method for manufacturing semiconductor device
JP2012218414A JP2014070183A (en) 2012-09-28 2012-09-28 Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP2012218420A JP2014072445A (en) 2012-09-28 2012-09-28 Semiconductor device manufacturing method
JP2012-218414 2012-09-28
JP2012-218410 2012-09-28
JP2012240292A JP2014088523A (en) 2012-10-31 2012-10-31 Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP2012-240292 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014050663A1 true WO2014050663A1 (en) 2014-04-03

Family

ID=50388068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075174 WO2014050663A1 (en) 2012-09-28 2013-09-18 Adhesive sheet for semiconductor device production, semiconductor device, and method for producing semiconductor device

Country Status (2)

Country Link
TW (1) TW201417161A (en)
WO (1) WO2014050663A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562950A (en) * 1991-08-29 1993-03-12 Nitto Denko Corp Application of protective tape to semiconductor wafer and method of exfolitating
JP2003243347A (en) * 2002-02-19 2003-08-29 Nitto Denko Corp Surface protective sheet used in process of polishing rear surface of semiconductor wafer and method thereof
JP2004253612A (en) * 2003-02-20 2004-09-09 Nitto Denko Corp Tentative fixing method of semiconductor wafer, electronic component, and circuit board
JP2005268434A (en) * 2004-03-17 2005-09-29 Nitto Denko Corp Dicing die bond film
JP2010245191A (en) * 2009-04-02 2010-10-28 Hitachi Chem Co Ltd Film-like adhesive
JP2011137057A (en) * 2009-12-25 2011-07-14 Nitto Denko Corp Tape for holding chip, method of holding chip-shaped workpiece, method of manufacturing semiconductor device using tape for holding chip, and method of manufacturing tape for holding chip
JP2013211438A (en) * 2012-03-30 2013-10-10 Lintec Corp Surface protection sheet
JP2013214720A (en) * 2012-03-07 2013-10-17 Furukawa Electric Co Ltd:The Adhesive tape

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562950A (en) * 1991-08-29 1993-03-12 Nitto Denko Corp Application of protective tape to semiconductor wafer and method of exfolitating
JP2003243347A (en) * 2002-02-19 2003-08-29 Nitto Denko Corp Surface protective sheet used in process of polishing rear surface of semiconductor wafer and method thereof
JP2004253612A (en) * 2003-02-20 2004-09-09 Nitto Denko Corp Tentative fixing method of semiconductor wafer, electronic component, and circuit board
JP2005268434A (en) * 2004-03-17 2005-09-29 Nitto Denko Corp Dicing die bond film
JP2010245191A (en) * 2009-04-02 2010-10-28 Hitachi Chem Co Ltd Film-like adhesive
JP2011137057A (en) * 2009-12-25 2011-07-14 Nitto Denko Corp Tape for holding chip, method of holding chip-shaped workpiece, method of manufacturing semiconductor device using tape for holding chip, and method of manufacturing tape for holding chip
JP2013214720A (en) * 2012-03-07 2013-10-17 Furukawa Electric Co Ltd:The Adhesive tape
JP2013211438A (en) * 2012-03-30 2013-10-10 Lintec Corp Surface protection sheet

Also Published As

Publication number Publication date
TW201417161A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
JP5804084B2 (en) Method for producing adhesive sheet having separated adhesive layer, method for producing wiring board using adhesive sheet, and method for producing semiconductor device
JP2015168261A (en) Metal substrate and method for manufacturing the same
JP6928852B2 (en) Semiconductor processing tape
TW201110219A (en) Film for semiconductor and method for manufacturing semiconductor device
WO2018101090A1 (en) Double-sided adhesive sheet and production method for semiconductor device
KR102112789B1 (en) Semiconductor processing tape
JP2014072445A (en) Semiconductor device manufacturing method
US20140249269A1 (en) Thermally-detachable sheet
WO2014181659A1 (en) Transparent-circuit-board manufacturing method
WO2014083973A1 (en) Semiconductor-device manufacturing method
JP2014088523A (en) Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP2014070183A (en) Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device
WO2014050663A1 (en) Adhesive sheet for semiconductor device production, semiconductor device, and method for producing semiconductor device
WO2014181658A1 (en) Transparent-circuit-board manufacturing method
JP2014072440A (en) Semiconductor device manufacturing method and adhesive sheet
JP2014090123A (en) Method for manufacturing semiconductor device and adhesive sheet
JP2014070182A (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device and method for manufacturing semiconductor device
WO2014050662A1 (en) Method for manufacturing semiconductor device and bonding sheet
WO2018194133A1 (en) Semiconductor substrate manufacturing method, semiconductor device, and method for manufacturing same
JP2014072438A (en) Semiconductor device manufacturing method and adhesive sheet
JP2013153122A (en) Method for manufacturing semiconductor device
JP2014072444A (en) Semiconductor device manufacturing method
JP2013100467A (en) Thermally-detachable sheet
KR102112771B1 (en) Semiconductor processing tape
US20140004683A1 (en) Method of manufacturing semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13841323

Country of ref document: EP

Kind code of ref document: A1