WO2014050103A1 - 二元冷凍装置 - Google Patents

二元冷凍装置 Download PDF

Info

Publication number
WO2014050103A1
WO2014050103A1 PCT/JP2013/005706 JP2013005706W WO2014050103A1 WO 2014050103 A1 WO2014050103 A1 WO 2014050103A1 JP 2013005706 W JP2013005706 W JP 2013005706W WO 2014050103 A1 WO2014050103 A1 WO 2014050103A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
oil
refrigeration cycle
temperature side
low temperature
Prior art date
Application number
PCT/JP2013/005706
Other languages
English (en)
French (fr)
Other versions
WO2014050103A9 (ja
Inventor
小林 晋
宏之 佐藤
Original Assignee
パナソニックヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックヘルスケア株式会社 filed Critical パナソニックヘルスケア株式会社
Priority to JP2014538185A priority Critical patent/JP5941990B2/ja
Priority to EP13842612.7A priority patent/EP2902725B1/en
Publication of WO2014050103A1 publication Critical patent/WO2014050103A1/ja
Publication of WO2014050103A9 publication Critical patent/WO2014050103A9/ja
Priority to US14/668,974 priority patent/US10704807B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Definitions

  • the present invention relates to a binary refrigeration apparatus, and more specifically, an ultra-low temperature binary refrigeration apparatus used in the bio field for storing cells, microorganisms, and the like by cooling the interior to an extremely low temperature of ⁇ 80 ° C. or less. It is about.
  • a binary refrigeration apparatus having a refrigerant circuit diagram shown in FIG. 2 has been used as such a binary refrigeration apparatus (see Patent Documents 1 and 2).
  • S1 indicates a high temperature side refrigeration cycle
  • S2 indicates a low temperature side refrigeration cycle.
  • the discharge side pipe 2 of the compressor 1 constituting the high temperature side refrigeration cycle S1 is connected to the auxiliary condenser 3, and the auxiliary condenser 3 constitutes the oil cooler 4, the auxiliary condenser 5 and the low temperature side refrigeration cycle S2 of the compressor 1.
  • the oil cooler 7 of the compressor 6, the condenser 8, the dryer 9, and the capillary tube 10 in the heat exchanger 30 are sequentially connected to the cascade condenser 11, the liquid receiver 12, and the heat exchanger 30.
  • the suction side pipe 13 is connected to the compressor 1.
  • the cooling fan 14 is for cooling the condensers 3, 5 and 8.
  • the discharge side pipe 15 of the compressor 6 in the low temperature side refrigeration cycle S2 is connected to the oil separator 16, and the separated compressor oil is returned to the compressor 6 through the return pipe 17.
  • the refrigerant flows into the pipe 18 and exchanges heat with the suction side heat exchanger 19, passes through the pipe 20 in the cascade condenser 11, condenses, and evaporates from the inlet pipe 23 through the dryer 21 and the capillary tube 22. It is configured to flow into the compressor 24, exit from the outlet pipe 25, pass through the suction side heat exchanger 19, and return to the compressor 6 from the suction side pipe 26 of the compressor 6.
  • the expansion tank 27 is connected to the suction side pipe 26 via a capillary tube 28.
  • CFC chlorofluorocarbon
  • HCFC hydrochlorofluorocarbon
  • the HFC refrigerant (R-407D, R404A) and the refrigerating machine oil are added to the high temperature side refrigeration cycle S1.
  • a binary refrigeration system filled with an HFC refrigerant (R-508A, B) and an alkylbenzene oil or ester oil as a refrigerating machine oil is used.
  • Table 1 shows the refrigerant temperature at the point AD in the high temperature side refrigeration cycle S1 and the refrigerant temperature at the point ad in the low temperature side refrigeration cycle S2 when the outside air temperature is 30 ° C and when the outside air temperature is 5 ° C. .
  • HFC refrigerants are becoming subject to regulations because they have a problem of high global warming potential (GWP) although they have zero ozone depletion potential (ODP). Therefore, there is an urgent need to develop refrigerants that can replace these HFCs.
  • GWP global warming potential
  • ODP ozone depletion potential
  • the refrigeration oil that lubricates the refrigerant compressor normally circulates in the cycle together with the refrigerant, the refrigeration oil is required to have compatibility with the refrigerant.
  • using mineral oil, hydrocarbon oils such as alkylbenzene, and ester oils that are conventionally used for HFC refrigerants, alkylbenzene and the like cannot obtain sufficient compatibility between the refrigerant and the refrigerating machine oil and are discharged from the refrigerant compressor.
  • the amount of refrigerating machine oil in the refrigerant compressor decreases, causing problems such as poor lubrication and clogging of expansion mechanisms such as capillaries.
  • the compatibility with the HFC refrigerant is good, but there is a problem that the performance deteriorates due to hydrolysis during use.
  • the operation of the binary refrigeration apparatus is stopped, and the compressor 1 constituting the high temperature side refrigeration cycle S1 is started and operated on the next day, for example. If the compressor 6 of the low temperature side refrigeration cycle S2 is started when the temperature reaches -34 ° C.), the compressor 6 cannot be started because the pressure in the low temperature side refrigeration cycle S2 is high. Or since it exceeded the safety standard pressure of the compressor 6 immediately after starting, there existed a problem that a safety device act
  • a part of the refrigerant is introduced into the expansion tank 27 from the suction side pipe 26 via the capillary tube 28, and the compressor 6 is started by reducing the pressure in the low temperature side refrigeration cycle S2. .
  • the refrigerant introduced into the expansion tank 27 passes through the capillary tube 28 so that the compressor 6 returns to the low temperature side refrigeration cycle S2 little by little from the start of operation.
  • An object of the present invention is an ultra-low temperature dual refrigeration apparatus used in the bio field of cooling a chamber to an ultra-low temperature of ⁇ 80 ° C. or less and storing, for example, cells and microorganisms, and has an ozone depletion potential (ODP) and No concern about global warming potential (GWP), excellent stability, and very good compatibility between refrigerant and refrigerating machine oil, so no oil separator is required and COP is higher than HFC, so the amount of refrigerant It is to provide a binary refrigeration apparatus that can reduce the output of the compressor or the output of the compressor.
  • ODP ozone depletion potential
  • GWP global warming potential
  • the invention according to claim 1 of the present invention for solving the above problem is a dual refrigeration apparatus in which a high temperature side refrigeration cycle and a low temperature side refrigeration cycle are connected by a cascade condenser.
  • the binary refrigeration apparatus is filled with propane and refrigerating machine oil
  • the low temperature side refrigerating cycle is filled with hydrocarbon having a boiling point of ⁇ 80 ° C. or lower, refrigerating machine oil, and oil return agent.
  • the invention according to claim 2 of the present invention is characterized in that, in the binary refrigeration apparatus according to claim 1, the hydrocarbon having a boiling point of ⁇ 80 ° C. or less is only ethane, and the refrigerator oil is an alkylbenzene oil. To do.
  • the invention according to claim 3 of the present invention is characterized in that, in the binary refrigeration apparatus according to claim 2, the oil return agent is normal pentane.
  • the oil return agent is 0.1 to 14% by mass with respect to the refrigerant of the low temperature side refrigeration cycle.
  • the invention according to claim 5 of the present invention is the binary refrigeration apparatus according to claim 4, wherein the low temperature side refrigeration cycle is not provided with an oil separator.
  • the invention according to claim 1 of the present invention is a dual refrigeration system in which a high-temperature side refrigeration cycle and a low-temperature side refrigeration cycle are connected by a cascade condenser.
  • a high-temperature side refrigeration cycle propane and refrigerant oil are used as refrigerants.
  • the low temperature side refrigeration cycle is filled with a hydrocarbon having a boiling point of ⁇ 80 ° C. or lower, a refrigerating machine oil, and an oil return agent as a refrigerant. Used hydrocarbons of ⁇ 80 ° C. or lower, so that a low temperature of about ⁇ 40 ° C.
  • the cascade condenser 11 of the high temperature side refrigerating cycle S1 is obtained by the cascade condenser 11 of the high temperature side refrigerating cycle S1, and the evaporator 24 of the low temperature side refrigerating cycle S2 has an ultra low temperature of ⁇ 80 ° C. or lower. And there is no concern about the ozone depletion potential (ODP) and global warming potential (GWP), and the low temperature side refrigeration cycle has a boiling point of ⁇ 8 as a refrigerant.
  • ODP ozone depletion potential
  • GWP global warming potential
  • the compatibility of refrigerant and refrigerating machine oil becomes very good, and refrigerating machine oil discharged from the refrigerant compressor does not stay in the cycle, and the inside of the refrigerant compressor As a result, there is no need to use oil separators and hydrolyzes during use like ester oil.
  • the COP is higher than that of the HFC, so that the refrigerant amount can be reduced and the output of the compressor can be reduced.
  • the hydrocarbon having a boiling point of ⁇ 80 ° C. or lower is only ethane as the refrigerant
  • the refrigerating machine oil is an alkylbenzene oil. Since only ethane having a boiling point of ⁇ 89 ° C. is used as the hydrocarbon, an ultra-low temperature of ⁇ 80 ° C. or lower can be reliably obtained by the evaporator 24 of the low temperature side refrigeration cycle S2, and ethane and alkylbenzene oil Thus, it has excellent stability without causing hydrolysis during use like ester oil, and has further remarkable effects that the compatibility between the refrigerant and the refrigerating machine oil is further improved.
  • the invention according to claim 3 of the present invention is the binary refrigeration apparatus according to claim 2, wherein the oil return agent is normal pentane, and the normal pentane as the oil return agent is on the low temperature side. Since it exists as a liquid in the refrigeration cycle and has a very good compatibility with the refrigerant, the refrigeration oil can be stably dissolved and transported in the low temperature side refrigeration cycle. There is a further remarkable effect that it can be obtained.
  • the oil return agent is 0.1 to 14% by mass with respect to the refrigerant of the low temperature side refrigeration cycle.
  • the low temperature side refrigeration cycle is not provided with an oil separator, and the apparatus is reduced in size and energy saving. Further, there is a further remarkable effect that the operation for separating the oil can be omitted.
  • FIG. 1 is an explanatory view illustrating an example of a refrigerant circuit diagram of a binary refrigeration apparatus of the present invention.
  • FIG. 2 is an explanatory view illustrating an example of a refrigerant circuit diagram of a conventional binary refrigeration apparatus.
  • FIG. 3 is an explanatory view for explaining an example of a refrigerant circuit diagram of the binary refrigeration apparatus of the present invention which does not require an expansion tank.
  • FIG. 4 is a schematic flow diagram illustrating a method for starting the binary refrigeration apparatus of the present invention that does not require the expansion tank shown in FIG.
  • FIG. 1 is an explanatory view illustrating an example of a refrigerant circuit diagram of a binary refrigeration apparatus of the present invention.
  • the high temperature side refrigeration cycle S1 is filled with propane (refrigerant) containing refrigeration oil composed of alkylbenzene oil
  • the low temperature refrigeration cycle S2 is composed of refrigeration oil composed of alkylbenzene oil and ethane containing an oil return agent composed of normal pentane ( Refrigerant).
  • the discharge side pipe 2 of the compressor 1 constituting the high temperature side refrigeration cycle S1 is connected to the auxiliary condenser 3, and the auxiliary condenser 3 constitutes the oil cooler 4, the auxiliary condenser 5 and the low temperature side refrigeration cycle S2 of the compressor 1.
  • the oil cooler 7 of the compressor 6, the condenser 8, the dryer 9, and the capillary tube 10 in the heat exchanger 30 are sequentially connected to the cascade condenser 11, the liquid receiver 12, and the heat exchanger 30.
  • the suction side pipe 13 is connected to the compressor 1.
  • a low temperature of about ⁇ 40 ° C. is obtained by the cascade condenser 11 of the high temperature side refrigeration cycle S1.
  • the discharge side piping 15 of the compressor 6 of the low temperature side refrigeration cycle S2 is connected to the suction side heat exchanger 19, and after exchanging heat there, it passes through the piping 20 in the cascade condenser 11 and condenses, and the dryer. 21, it flows into the evaporator 24 through the inlet tube 23 through the capillary tube 22, and ethane is mostly vaporized in the evaporator 24 to generate cold, and an ultra-low temperature of ⁇ 80 ° C. or lower is obtained.
  • the vaporized ethane exits from the outlet pipe 25 and returns to the compressor 6 through the suction side pipe 26 of the compressor 6 through the suction side heat exchanger 19.
  • the normal pentane as the oil return agent remains in the liquid state in the low temperature side refrigeration cycle S2, and stably dissolves the refrigeration oil composed of alkylbenzene oil at a low temperature. Since the refrigerant can be transported in the side refrigeration cycle S2, the refrigeration oil stays in the cycle S2, the amount of the refrigeration oil in the refrigerant compressor 6 decreases to cause poor lubrication, and the expansion mechanism such as the capillary is blocked. Does not cause problems. Therefore, the oil separator 16 that is indispensable in the conventional binary refrigeration apparatus shown in FIG. 1 is not necessarily installed.
  • hydrocarbons having a boiling point of ⁇ 80 ° C. or lower as refrigerants used in the present invention not only ethane (boiling point: ⁇ 89 ° C.) but also saturated hydrocarbons such as methane (boiling point: ⁇ 162 ° C.) as well as ethylene-based carbon Mention may be made of hydrogen or mixtures thereof.
  • oil return agent for refrigerating machine oil used in the present invention examples include, for example, normal butane (boiling point: ⁇ 5.6 ° C.), isobutane (boiling point: ⁇ 11.7 ° C.), normal pentane (boiling point: 36 0.1 ° C), normal hexane (boiling point: 68.7 ° C), isohexane (boiling point: 60.3 ° C), 3-methylpentane (boiling point: 63.3 ° C), neohexane (boiling point: 49.7 ° C), Examples thereof include 2,3-dimethylbutane (boiling point: 57.9 ° C.) or a mixture of two or more thereof.
  • the blending amount of the oil return agent with respect to the refrigerant is not particularly limited, but is preferably 0.1 to 14% by mass. If the blending amount of the oil return agent is less than 0.1% by mass, the effect of returning the oil may not be obtained, and if it exceeds 14% by mass, the flammability increases, which is not preferable.
  • hydrocarbons such as normal pentane By blending hydrocarbons such as normal pentane with the refrigerant as an oil return agent, the compatibility with the refrigeration oil can be improved and the oil discharged from the compressor can be returned to the compressor. Even if oil such as mineral oil having poor solubility or alkylbenzene oil such as HAB oil (hard alkylbenzene oil) is used, there is no problem such as poor lubrication of the compressor due to deterioration of the return of oil to the compressor.
  • HAB oil hard alkylbenzene oil
  • the mineral oil-based oil for example, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and reduced pressure distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, Oils such as paraffinic and naphthenic oils, normal paraffins, etc., which are refined by appropriately combining hydrorefining, sulfuric acid washing, refining treatment such as clay treatment, etc. can be used.
  • Mineral oils and alkylbenzene oils are refrigerating machine oils that have been conventionally used as refrigerating machine oils in refrigerant circuits because they are chemically and physically stable and have excellent lubricating properties, and are easy to handle and inexpensive. These refrigerating machine oils may be further added with known additives such as antioxidants, rust inhibitors, corrosion inhibitors, pour point depressants, antifoaming agents alone, or the like, for the purpose of further enhancing various performances. It can also be used in a combination of several types.
  • a cooling temperature of ⁇ 80 ° C. or less can be obtained by full operation of the high temperature side refrigeration cycle S1 and the low temperature side refrigeration cycle S2, but for example, ⁇ 18 ° C. can be achieved by shortening the ON / OFF time.
  • the cooling temperature can also be obtained.
  • the binary refrigeration apparatus of the present invention shown in FIG. 3 is configured in the same manner as the binary refrigeration apparatus of the present invention shown in FIG. 1 except that the capillary tube 28 and the expansion tank 27 are not installed. Description is omitted.
  • FIG. 4 is a schematic flow diagram illustrating a method of starting the binary refrigeration apparatus of the present invention that does not require an expansion tank shown in FIG.
  • A First, the compressor A of the high temperature side refrigeration cycle S1 of the two-stage refrigeration apparatus that has been stopped is started.
  • the compressor B of the low temperature side refrigeration cycle S2 is not started until the refrigerant temperature at the outlet of the cascade condenser 11 reaches a predetermined temperature (for example, ⁇ 34 ° C.).
  • a predetermined temperature for example, ⁇ 34 ° C.
  • the compressor B After starting the compressor B of the low temperature side refrigeration cycle S2, the compressor B is operated for a predetermined time (for example, 40 seconds) within a range not exceeding the safety standard pressure C (for example, 4 MPa).
  • the compressor B When the compressor B is operated for a predetermined time (for example, 40 seconds), the refrigerant in the low temperature side refrigeration cycle S2 is cooled in the cascade condenser 11 by exchanging heat with the refrigerant in the high temperature side refrigeration cycle S1, and the evaporator 24 cools the heat. Generates low temperature and pressure decreases.
  • the operation is stopped for a predetermined time (for example, 3 minutes).
  • the compressor B When the compressor B is operated for a predetermined time (for example, 40 seconds) and stopped for a predetermined time (for example, 3 minutes), the refrigerant in the low temperature side refrigeration cycle S2 exchanges heat with the refrigerant in the high temperature side refrigeration cycle S1. Then, the evaporator 24 generates cold heat to lower the temperature, and the pressure decreases. However, even if it is continuously operated, the safety standard pressure C may be exceeded, which is still insufficient. Therefore, after the operation (40 seconds) as described above, the operation is stopped (3 minutes) a plurality of times (for example, 2 to 3 times). (F) After the compressor B is operated, the operation is stopped a plurality of times to confirm that the safety standard pressure C is not exceeded. (G) After confirming that the safety standard pressure C is not exceeded, continuous operation is performed.
  • a predetermined time for example, 40 seconds
  • a predetermined time for example, 3 minutes
  • Data obtained by performing a preliminary test in advance is input to the control device, the signal from the control device is sent to each device, and automatically controlled while starting the compressor A, at the outlet of the cascade capacitor
  • the compressor B of the low temperature side refrigeration cycle is started and operated for a predetermined time, and then the operation is stopped for a predetermined time, and the safety standard pressure C is not exceeded. If it is made to operate continuously after confirming this, it can be started while being automatically controlled, so that the effect of the present invention can be obtained with certainty.
  • the activation method of the present invention can be performed manually or in combination of manual and automatic.
  • the binary refrigeration apparatus of the present invention is a binary refrigeration apparatus in which a high temperature side refrigeration cycle and a low temperature side refrigeration cycle are connected by a cascade condenser, and the high temperature side refrigeration cycle is filled with propane and refrigerant oil as refrigerant.
  • the low temperature side refrigeration cycle is filled with a hydrocarbon having a boiling point of ⁇ 80 ° C. or lower as a refrigerant, refrigeration oil, and an oil return agent, and propane and a boiling point of ⁇ 80 ° C. or lower as the refrigerant. Is used, the low temperature of about ⁇ 40 ° C. can be obtained by the cascade condenser 11 of the high temperature side refrigeration cycle S1, and the ultra low temperature of ⁇ 80 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubricants (AREA)

Abstract

庫内を-80℃以下という超低温に冷却して、例えば細胞や微生物などを保管するのに用いられる超低温二元冷凍装置であって、オゾン破壊係数(ODP)および地球温暖化係数(GWP)に係る懸念がなく、安定性に優れ、オイルセパレータが不要であり、また冷媒量を低減したり、コンプレッサの出力を低減したりできる二元冷凍装置を提供する。カスケードコンデンサにて高温側冷凍サイクルと低温側冷凍サイクルとを連結して成る二元冷凍装置において、前記高温側冷凍サイクルには冷媒としてのプロパンと冷凍機油を充填するとともに、前記低温側冷凍サイクルには冷媒として沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したことを特徴とする二元冷凍装置により課題を解決できる。

Description

二元冷凍装置
 本発明は、二元冷凍装置に関するものであり、さらに詳しくは、庫内を-80℃以下という超低温に冷却して、例えば細胞や微生物などを保管するというバイオ分野において用いられる超低温二元冷凍装置に関するものである。
 このような二元冷凍装置として、従来、例えば、図2に示す冷媒回路図を備えた二元冷凍装置が使用されていた(特許文献1、2参照)。
 同図で、S1は高温側冷凍サイクルを、また、S2は低温側冷凍サイクルを示している。高温側冷凍サイクルS1を構成する圧縮機1の吐出側配管2は補助凝縮器3に接続され、補助凝縮器3は圧縮機1のオイルクーラー4、補助凝縮器5、低温側冷凍サイクルS2を構成する圧縮機6のオイルクーラー7、凝縮器8、乾燥器9、熱交換器30中のキャピラリーチューブ10を順次経て、カスケードコンデンサ11に接続されて受液器12を経て、熱交換器30を経て、吸込側配管13にて圧縮機1に接続されている。冷却用ファン14は各凝縮器3、5及び8の冷却用である。
 低温側冷凍サイクルS2の圧縮機6の吐出側配管15はオイル分離器16に接続され、そこで分離された圧縮機オイルは、リターン配管17にて圧縮機6に帰還せられる。一方冷媒は配管18に流入して吸込側熱交換器19と熱交換した後、カスケードコンデンサ11内の配管20内を通過して凝縮し、乾燥器21、キャピラリーチューブ22を経て入口管23より蒸発器24に流入し、出口管25より出て吸込側熱交換器19内を経て圧縮機6の吸込側配管26より圧縮機6に帰還する構成である。
 膨脹タンク27はキャピラリーチューブ28を介して吸込側配管26に接続されている。
 近年のオゾン層破壊の問題から、従来冷凍機器の冷媒として使用されてきたCFC(クロロフルオロカーボン)およびHCFC(ハイドロクロロフルオロカーボン)が規制の対象となり、これらに代わってHFC(ハイドロフルオロカーボン)が冷媒として使用されつつある。
 CFCやHCFCを冷媒とする場合は、冷凍機油として鉱油やアルキルベンゼンなどの炭化水素油が好適に使用されてきたが、冷媒が替わると共存下で使用される冷凍機油は、冷媒との相溶性、潤滑性、冷媒との溶解粘度、熱・化学的安定性など予想し得ない挙動を示すため、冷媒ごとに冷凍機油の開発が必要となる。そこで、HFC冷媒用冷凍機油として、例えば、エステル(特許文献3を参照)、炭酸エステル(特許文献4を参照)などが開発されている。これらの冷凍機油の中でも、エステルは冷蔵庫やエアコン用などとして広く使用されている。
 そこで前記カスケードコンデンサ11にて高温側冷凍サイクルS1と低温側冷凍サイクルS2とを連結して成る二元冷凍装置において、高温側冷凍サイクルS1に、HFC系冷媒(R-407D、R404A)と冷凍機油としてアルキルベンゼン油あるいはエステル油を充填するとともに、低温側冷凍サイクルS2にはHFC系冷媒(R-508A、B)と冷凍機油としてアルキルベンゼン油あるいはエステル油を充填した二元冷凍装置が使用されている。
 高温側冷凍サイクルS1中のA-D点の冷媒温度、および低温側冷凍サイクルS2中のa-d点の冷媒温度を、外気室温30℃の場合と外気室温5℃の場合について表1に示す。
Figure JPOXMLDOC01-appb-T000001
 しかし、これらのHFC冷媒は、オゾン破壊係数(ODP)がゼロであるものの地球温暖化係数(GWP)が高いという問題があるため、規制の対象となりつつある。そこで、これらHFCに替わる冷媒の開発が急務となっている。
 ところで、冷凍機器の冷媒循環サイクルにおいては、通常、冷媒圧縮機を潤滑する冷凍機油が冷媒とともにサイクル内を循環するため、冷凍機油には冷媒との相溶性が要求される。しかしながら、HFC冷媒用として従来使用されている鉱油やアルキルベンゼンなどの炭化水素油やエステル油を用いると、アルキルベンゼンなどは冷媒と冷凍機油との十分な相溶性が得られず、冷媒圧縮機から吐出された冷凍機油がサイクル内に滞留しやすくなり、その結果、冷媒圧縮機内の冷凍機油量が低下して潤滑不良を起こしたり、キャピラリ等の膨張機構を閉塞したりするといった問題を生じ、エステル油を用いるとHFC冷媒との相溶性はいいが、使用中に加水分解を起こして性能が低下する問題があった。
 一方、この二元冷凍装置の運転を停止し、例えば翌日、高温側冷凍サイクルS1を構成する圧縮機1を起動して運転を行い、カスケードコンデンサ11の出口における冷媒の温度が所定の温度(例えば、-34℃)になった際に、低温側冷凍サイクルS2の圧縮機6を起動しようとすると、運転を停止した低温側冷凍サイクルS2内の圧力が高いので、圧縮機6を起動できないか、あるいは起動して直ぐに圧縮機6の安全規格圧力を超えてしまうので、安全装置が作動して、停止してしまうという問題があった。
 そのため、吸込側配管26からキャピラリーチューブ28を介して冷媒の一部を膨脹タンク27に導入して、低温側冷凍サイクルS2内の圧力を低下させて圧縮機6を起動することが行なわれていた。膨脹タンク27に導入した冷媒はキャピラリーチューブ28を介することで、圧縮機6が運転開始から少量づつ低温側冷凍サイクルS2内に戻して使用するようになっている。
特開平3-260557号公報 特開2000-105047号公報 特開平03-200895号公報 特開平03-217495号公報
 本発明の目的は、庫内を-80℃以下という超低温に冷却して、例えば細胞や微生物などを保管するというバイオ分野において用いられる超低温二元冷凍装置であって、オゾン破壊係数(ODP)および地球温暖化係数(GWP)に係る懸念がなく、安定性に優れ、そして冷媒と冷凍機油の相溶性が非常によいので、オイルセパレータが不要であり、またHFCに比べてCOPが高いので冷媒量を低減したり、コンプレッサの出力を低減したりすることができる二元冷凍装置を提供することである。
 上記課題を解消するための本発明の請求項1記載の発明は、カスケードコンデンサにて高温側冷凍サイクルと低温側冷凍サイクルとを連結して成る二元冷凍装置において、前記高温側冷凍サイクルにはプロパンと冷凍機油を充填するとともに、前記低温側冷凍サイクルには沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したことを特徴とする二元冷凍装置である。
 本発明の請求項2記載の発明は、請求項1記載の二元冷凍装置において、沸点が-80℃以下の前記炭化水素がエタンのみであり、前記冷凍機油がアルキルベンゼン油であることを特徴とする。
 本発明の請求項3記載の発明は、請求項2記載の二元冷凍装置において、前記オイル戻り剤がノルマルペンタンであることを特徴とする。
 本発明の請求項4記載の発明は、請求項3記載の二元冷凍装置において、前記オイル戻り剤が、前記低温側冷凍サイクルの冷媒に対して0.1~14質量%であることを特徴とする。
 本発明の請求項5記載の発明は、請求項4記載の二元冷凍装置において、前記低温側冷凍サイクルは、オイルセパレータを備えていないことを特徴とする。
 本発明の請求項1記載の発明は、カスケードコンデンサにて高温側冷凍サイクルと低温側冷凍サイクルとを連結して成る二元冷凍装置において、前記高温側冷凍サイクルには冷媒としてのプロパンと冷凍機油を充填するとともに、前記低温側冷凍サイクルには冷媒として沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したことを特徴とする二元冷凍装置であり、冷媒としてプロパンと沸点が-80℃以下の炭化水素を用いたので、高温側冷凍サイクルS1のカスケードコンデンサ11で-40℃程度の低温が得られ、低温側冷凍サイクルS2の蒸発器24では-80℃以下の超低温が得られ、オゾン破壊係数(ODP)および地球温暖化係数(GWP)に係る懸念がなく、前記低温側冷凍サイクルに冷媒として沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したので、冷媒と冷凍機油の相溶性が非常によくなり、冷媒圧縮機から吐出された冷凍機油がサイクル内に滞留せず、冷媒圧縮機内の冷凍機油量が低下して潤滑不良を起こしたり、キャピラリ等の膨張機構を閉塞したりするといった問題がなくなるので、その結果、オイルセパレータが不要となり、またエステル油のように使用中に加水分解を起こさず安定性に優れるとともに、HFCに比べてCOPが高いので冷媒量を低減したり、コンプレッサの出力を低減したりすることができるという、顕著な効果を奏する。
 本発明の請求項2記載の発明は、請求項1記載の二元冷凍装置において、冷媒として沸点が-80℃以下の前記炭化水素がエタンのみであり、前記冷凍機油がアルキルベンゼン油であることを特徴とするものであり、前記炭化水素として沸点が-89℃のエタンのみを用いたので、低温側冷凍サイクルS2の蒸発器24で-80℃以下の超低温が確実に得られ、エタンとアルキルベンゼン油を充填したので、エステル油のように使用中に加水分解を起こさず安定性に優れるとともに、冷媒と冷凍機油の相溶性がさらによくなるという、さらなる顕著な効果を奏する。
 本発明の請求項3記載の発明は、請求項2記載の二元冷凍装置において、前記オイル戻り剤がノルマルペンタンであることを特徴とするものであり、オイル戻り剤としてのノルマルペンタンは低温側冷凍サイクル内で液体のままで存在し、冷媒との相溶性が非常に良好であるため安定して冷凍機油を溶け込ませて低温側冷凍サイクル内を搬送することができるので、前記効果を確実に得ることができる、というさらなる顕著な効果を奏する。
 本発明の請求項4記載の発明は、請求項3記載の二元冷凍装置において、前記オイル戻り剤が、前記低温側冷凍サイクルの冷媒に対して0.1~14質量%であることを特徴とするものであり、オイル戻り剤としてのノルマルペンタンの前記効果を確実に得ることができる、というさらなる顕著な効果を奏する。
 本発明の請求項5記載の発明は、請求項4記載の二元冷凍装置において、前記低温側冷凍サイクルは、オイルセパレータを備えていないことを特徴とするものであり、装置の小型化、省エネ、オイルをセパレートするための操作の省略などができる、というさらなる顕著な効果を奏する。
図1は本発明の二元冷凍装置の冷媒回路図の1例を説明する説明図である。 図2は従来の二元冷凍装置の冷媒回路図の例を説明する説明図である。 図3は膨張タンクを不要とした本発明の二元冷凍装置の冷媒回路図の例を説明する説明図である。 図4は、図3に示した膨張タンクを不要とした本発明の二元冷凍装置の起動方法を説明するフロー概略図である。
 以下、図面により本発明の実施の形態を詳細に説明する。
 図1は本発明の二元冷凍装置の冷媒回路図の1例を説明する説明図である。
 図1において、図2に示した構成部分と同じ構成部分には同一参照符号を付した。
 高温側冷凍サイクルS1にはアルキルベンゼン油からなる冷凍機油を含むプロパン(冷媒)が充填されており、低温側冷凍サイクルS2にはアルキルベンゼン油からなる冷凍機油とノルマルペンタンからなるオイル戻り剤を含むエタン(冷媒)が充填されている。
 高温側冷凍サイクルS1を構成する圧縮機1の吐出側配管2は補助凝縮器3に接続され、補助凝縮器3は圧縮機1のオイルクーラー4、補助凝縮器5、低温側冷凍サイクルS2を構成する圧縮機6のオイルクーラー7、凝縮器8、乾燥器9、熱交換器30中のキャピラリーチューブ10を順次経て、カスケードコンデンサ11に接続されて受液器12を経て、熱交換器30を経て、吸込側配管13にて圧縮機1に接続されている。高温側冷凍サイクルS1のカスケードコンデンサ11で-40℃程度の低温が得られる。
 一方、低温側冷凍サイクルS2の圧縮機6の吐出側配管15は吸込側熱交換器19に接続され、そこで熱交換した後、カスケードコンデンサ11内の配管20内を通過して凝縮し、乾燥器21、キャピラリーチューブ22を経て入口管23より蒸発器24に流入し、蒸発器24でエタンは大部分気化して冷熱を発生し-80℃以下の超低温が得られる。気化したエタンは出口管25より出て吸込側熱交換器19内を経て圧縮機6の吸込側配管26より圧縮機6に帰還する。
 一般に、株細胞、DNA、血液、骨髄細胞などの生体試料の化学的・物理的変化を抑えて長期にわたって保存するためには、氷結晶の成長速度が著しく衰え、酵素活性が完全に停止するといわれている約-80℃以下の温度領域に置くことが必要といわれており、細胞を氷結晶をつくらずガラス質化して再結晶しないで長期保存するためには約-135℃以下の温度領域に置くことが必要といわれている。
 例え全てのエタンが蒸発器24において気化しても、オイル戻り剤としてのノルマルペンタンは低温側冷凍サイクルS2内で液体のままで存在し、安定してアルキルベンゼン油からなる冷凍機油を溶け込ませて低温側冷凍サイクルS2内を搬送することができるので、冷凍機油がサイクルS2内に滞留したり、冷媒圧縮機6内の冷凍機油量が低下して潤滑不良を起こしたり、キャピラリなどの膨張機構を閉塞したりするといった問題を生じない。
そのため図1に示した従来の二元冷凍装置には欠かすことができないオイル分離器16を必ずしも設置しなくてもよくなった。
 本発明で使用する冷媒としての沸点が-80℃以下の炭化水素としては、エタン(沸点:-89℃)の他、メタン(沸点:-162℃)等の飽和炭化水素だけでなくエチレン系炭化水素、あるいはこれらの混合物を挙げることができる。
 本発明で使用する冷凍機油のオイル戻り剤としては、具体的には、例えば、ノルマルブタン(沸点:-5.6℃)、イソブタン(沸点:-11.7℃)、ノルマルペンタン(沸点:36.1℃)、ノルマルヘキサン(沸点:68.7℃)、イソヘキサン(沸点:60.3℃)、3-メチルペンタン(沸点:63.3℃)、ネオヘキサン(沸点:49.7℃)、2、3-ジメチルブタン(沸点:57.9℃)あるいはこれらの2種以上の混合物を挙げることができる。
 冷媒に対してオイル戻り剤の配合量は特に限定されないが、0.1~14質量%であることが好ましい。オイル戻り剤の配合量が0.1質量%未満ではオイル戻りの効果が得られない場合があり、14質量%を超えると可燃性が大となるので好ましくない。
 ノルマルペンタン等の炭化水素をオイル戻り剤として前記冷媒に配合することにより冷凍機油との相溶性を改善して、圧縮機から吐出されたオイルを圧縮機に戻すことができるので、冷媒との相溶性の悪い鉱物油、HAB油(ハードアルキルベンゼン油)などのアルキルベンゼン油などのオイルを使用しても、圧縮機への油の戻りの悪化による圧縮機の潤滑不良となるなどの問題がない。
 鉱油系油としては、具体的には例えば、原油を常圧蒸留および減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処埋などを適宜組み合わせて精製したパラフィン系、ナフテン系などの油やノルマルパラフィンなどが使用できる。
 鉱物油、アルキルベンゼン油は化学的・物理的に安定で潤滑特性に優れるため従来から冷媒回路の冷凍機油として使用されてきた冷凍機油であり、取り扱い性に優れ安価である。
 これらの冷凍機油には、その各種性能をさらに高める目的で、さらに公知の添加剤、例えば、酸化防止剤、さび止め剤、腐食防止剤、流動点降下剤、消泡剤などを単独で、または数種類組み合わせた形で使用することもできる。
 本発明においては、高温側冷凍サイクルS1と低温側冷凍サイクルS2のフル運転により-80℃以下の冷却温度を得ることができるが、ON/OFFのONの時間を短くした運転により例えば-18℃の冷却温度を得ることもできる。
 本発明においては、冷媒の超臨界圧力下、超臨界温度下の条件で運転し、冷媒を凝縮液化することなく、超臨界状態にある冷媒を断熱膨張させて冷熱を発生させることも可能である。
(IECの規制およびその対策について)
 炭化水素を冷媒として使用した場合、例えば炭化水素冷媒が外部に漏洩した場合の危険性を考慮して、IEC(国際エレクトロテクニカルコミッション)は、1つの冷媒回路中の冷媒量を150g以下とする規制を出してきた。
 炭化水素を冷媒として使用した前記構成の二元冷凍装置において、前記IEC規制に従って、1つの冷媒回路中の冷媒量を150g以下とすると、起動することは可能であるが、起動して直ぐに前記低温側冷凍サイクルの圧縮機が安全規格圧力を超えてしまうという問題が残っていた。
 そのため膨脹タンクを不要とすることができ、かつ前記IECの規制に適合させることができる二元冷凍装置の起動方法が求められた。
 次に、図3、4を用いて、膨張タンクを不要とした本発明の二元冷凍装置の起動方法について説明する。
 図3に示した、本発明の二元冷凍装置は、キャピラリーチューブ28、膨張タンク27を設置していない以外は図1に示した本発明の二元冷凍装置と同様に構成されているので、説明を省略する。
 図4は、図3に示した、膨張タンクを不要とした本発明の二元冷凍装置の起動方法を説明するフロー概略図である。
(a)先ず、運転停止された二元冷凍装置の高温側冷凍サイクルS1の圧縮機Aを起動する。
(b)カスケードコンデンサ11の出口における冷媒温度が所定の温度(例えば、-34℃)になるまでは、低温側冷凍サイクルS2の圧縮機Bを起動しない。
(c)カスケードコンデンサ11の出口における冷媒温度が前記所定の温度になったら、低温側冷凍サイクルS2の圧縮機Bを起動する。
(d)低温側冷凍サイクルS2の圧縮機Bを起動した後、圧縮機Bの安全規格圧力C(例えば、4MPa)を超えない範囲で所定時間(例えば、40秒)運転する。圧縮機Bを所定時間(例えば、40秒)運転するとカスケードコンデンサ11において低温側冷凍サイクルS2内の冷媒は、高温側冷凍サイクルS1内の冷媒と熱交換して冷却され、蒸発器24で冷熱を発生して低温になり、圧力は低下する。
(e)そして、所定時間(例えば、40秒)運転した後、所定時間(例えば、3分)運転停止する。圧縮機Bを所定時間(例えば、40秒)運転し所定時間(例えば、3分)運転停止するとカスケードコンデンサ11において低温側冷凍サイクルS2内の冷媒は、高温側冷凍サイクルS1内の冷媒と熱交換して冷却され、蒸発器24で冷熱を発生して低温になり、圧力は低下する。しかし連続運転しても安全規格圧力Cを超える可能性があり、まだ不十分である。そこで前記のように運転(40秒)した後、運転停止(3分)することを複数回(例えば、2から3回)行なう。
(f)圧縮機Bを運転後、運転停止することを複数回行なって、安全規格圧力Cを超えないことを確認する。
(g)安全規格圧力Cを超えないことを確認した後、連続運転する。
 このような起動方法を行なうことにより、前記のように低温側冷凍サイクルS2内の圧力を低下させるために冷媒の一部を膨脹タンクに導入してから圧縮機を起動させ、その後に膨脹タンク27に導入した冷媒を低温側冷凍サイクルS2内に戻すという起動方法をとる必要がなくなり、すなわち膨脹タンクを不要とすることができるようになった。
 予め予備試験を行って得られたデータを制御装置に入力し、前記制御装置からの信号を各機器に送って、自動的に制御しながら、圧縮機Aを起動し、前記カスケードコンデンサの出口における冷媒温度が所定の温度になったら、前記低温側冷凍サイクルの圧縮機Bを起動して、所定時間運転した後、所定時間運転停止することを複数回、行なって、安全規格圧力Cを超えないことを確認した後、連続運転するようにすれば、自動的に制御しながら起動できるので、本発明の前記効果を確実に得ることができる。
 勿論、本発明の起動方法は、手動で行なうこともでき、手動と自動とを組み合わせて行なうこともできる。
 なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
 本発明の二元冷凍装置は、カスケードコンデンサにて高温側冷凍サイクルと低温側冷凍サイクルとを連結して成る二元冷凍装置において、前記高温側冷凍サイクルには冷媒としてのプロパンと冷凍機油を充填するとともに、前記低温側冷凍サイクルには冷媒として沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したことを特徴とするものであり、冷媒としてプロパンと沸点が-80℃以下の炭化水素を用いたので、高温側冷凍サイクルS1のカスケードコンデンサ11で-40℃程度の低温が得られ、低温側冷凍サイクルS2の蒸発器24では-80℃以下の超低温が得られ、オゾン破壊係数(ODP)および地球温暖化係数(GWP)に係る懸念がなく、前記低温側冷凍サイクルに冷媒として沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したので、冷媒と冷凍機油の相溶性が非常によくなり、冷媒圧縮機から吐出された冷凍機油がサイクル内に滞留せず、冷媒圧縮機内の冷凍機油量が低下して潤滑不良を起こしたり、キャピラリ等の膨張機構を閉塞したりするといった問題がなくなるので、その結果、オイルセパレータが不要となり、またエステル油のように使用中に加水分解を起こさず安定性に優れるとともに、HFCに比べてCOPが高いので冷媒量を半減したり、コンプレッサの出力を半減したりすることができるという、顕著な効果を奏するので、産業上の利用価値が高い。
  S1 高温側冷凍サイクル
  S2 低温側冷凍サイクル
  1、6、A、B 圧縮機
  2、15 吐出側配管
  3、5 補助凝縮器
  4、7 オイルクーラー
  8 凝縮器
  9、21 乾燥器
  10、22、28 キャピラリーチューブ
  11 カスケードコンデンサ
  12 受液器
  13、26 吸込側配管
  14 冷却用ファン
  16 オイル分離器
  17 リターン配管
  18 配管
  19 吸込側熱交換器
  20 配管
  23 入口管
  24 蒸発器
  25 出口管
  27 膨脹タンク
  30 熱交換器

Claims (5)

  1. カスケードコンデンサにて高温側冷凍サイクルと低温側冷凍サイクルとを連結して成る二元冷凍装置において、前記高温側冷凍サイクルにはプロパンと冷凍機油を充填するとともに、前記低温側冷凍サイクルには沸点が-80℃以下の炭化水素と冷凍機油とオイル戻り剤を充填したことを特徴とする二元冷凍装置。
  2. 沸点が-80℃以下の前記炭化水素がエタンのみであり、前記冷凍機油がアルキルベンゼン油であることを特徴とする請求項1記載の二元冷凍装置。
  3.  前記オイル戻り剤がノルマルペンタンであることを特徴とする請求項2に記載の二元冷凍装置。
  4.  前記オイル戻り剤が、前記低温側冷凍サイクルの冷媒に対して0.1~14質量%であることを特徴とする請求項3に記載の二元冷凍装置。
  5.  前記低温側冷凍サイクルは、オイルセパレータを備えていないことを特徴とする請求項4記載の二元冷凍装置。
PCT/JP2013/005706 2012-09-28 2013-09-26 二元冷凍装置 WO2014050103A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014538185A JP5941990B2 (ja) 2012-09-28 2013-09-26 二元冷凍装置
EP13842612.7A EP2902725B1 (en) 2012-09-28 2013-09-26 Binary refrigeration device
US14/668,974 US10704807B2 (en) 2012-09-28 2015-03-25 Binary refrigeration apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218272 2012-09-28
JP2012-218277 2012-09-28
JP2012218277 2012-09-28
JP2012218272 2012-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/668,974 Continuation US10704807B2 (en) 2012-09-28 2015-03-25 Binary refrigeration apparatus

Publications (2)

Publication Number Publication Date
WO2014050103A1 true WO2014050103A1 (ja) 2014-04-03
WO2014050103A9 WO2014050103A9 (ja) 2015-02-05

Family

ID=50387540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005706 WO2014050103A1 (ja) 2012-09-28 2013-09-26 二元冷凍装置

Country Status (4)

Country Link
US (1) US10704807B2 (ja)
EP (1) EP2902725B1 (ja)
JP (1) JP5941990B2 (ja)
WO (1) WO2014050103A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807231A (zh) * 2015-05-12 2015-07-29 上海海洋大学 一种可切换双级和复叠的船用节能超低温制冷系统
JP6885308B2 (ja) * 2017-11-20 2021-06-09 トヨタ自動車株式会社 車両用温調システム
WO2020247387A1 (en) * 2019-06-07 2020-12-10 Exxonmobil Chemical Patents Inc. Refrigeration fouling reduction
US11435121B2 (en) * 2020-05-07 2022-09-06 Daikin Industries, Ltd. Oil management system for multiple compressors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200895A (ja) 1989-12-28 1991-09-02 Nippon Oil Co Ltd 非塩素系フロン冷媒用冷凍機油
JPH03217495A (ja) 1990-01-23 1991-09-25 Idemitsu Kosan Co Ltd ポリカ―ボネート系合成潤滑油
JPH03260557A (ja) 1990-03-09 1991-11-20 Sanyo Electric Co Ltd 二元冷凍装置
JP2000105047A (ja) 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 冷凍庫
JP2004177045A (ja) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd 二元冷凍装置
JP2008239784A (ja) * 2007-03-27 2008-10-09 Japan Energy Corp 炭化水素冷媒用冷凍機油及びそれを用いた冷凍機システム
JP2012172890A (ja) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp 冷凍装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028079A (en) * 1976-02-23 1977-06-07 Suntech, Inc. Cascade refrigeration system
SE8107601L (sv) * 1981-12-18 1983-06-19 Stal Refrigeration Ab Forfarande for aterforing av olja i kylanleggning
JP3244296B2 (ja) * 1992-04-10 2002-01-07 三洋電機株式会社 冷媒組成物及びこれを使用した二元冷凍装置
JP2005539194A (ja) 2002-09-18 2005-12-22 ヘリックス ポリコールド システムズ インコーポレイテッド 液インジェクション付のスクロール圧縮機を有する極低温冷凍システム
JP3863831B2 (ja) * 2002-09-27 2006-12-27 三洋電機株式会社 冷媒組成物およびこの冷媒組成物を用いた冷凍回路
JP2004125199A (ja) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd 冷媒回路
US6986262B2 (en) * 2002-11-28 2006-01-17 Sanyo Electric Co., Ltd. Binary refrigeration unit
DK1498667T3 (da) * 2003-07-18 2010-08-16 Star Refrigeration Forbedret transkritisk kølingscyklus
JP4420807B2 (ja) * 2004-12-14 2010-02-24 三洋電機株式会社 冷凍装置
US20080184735A1 (en) * 2007-02-01 2008-08-07 Van Wijngaarden Wim Refrigerant storage in lng production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200895A (ja) 1989-12-28 1991-09-02 Nippon Oil Co Ltd 非塩素系フロン冷媒用冷凍機油
JPH03217495A (ja) 1990-01-23 1991-09-25 Idemitsu Kosan Co Ltd ポリカ―ボネート系合成潤滑油
JPH03260557A (ja) 1990-03-09 1991-11-20 Sanyo Electric Co Ltd 二元冷凍装置
JP2000105047A (ja) 1998-09-29 2000-04-11 Sanyo Electric Co Ltd 冷凍庫
JP2004177045A (ja) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd 二元冷凍装置
JP2008239784A (ja) * 2007-03-27 2008-10-09 Japan Energy Corp 炭化水素冷媒用冷凍機油及びそれを用いた冷凍機システム
JP2012172890A (ja) * 2011-02-21 2012-09-10 Mitsubishi Electric Corp 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902725A4

Also Published As

Publication number Publication date
US20150198357A1 (en) 2015-07-16
WO2014050103A9 (ja) 2015-02-05
US10704807B2 (en) 2020-07-07
EP2902725A1 (en) 2015-08-05
EP2902725A4 (en) 2015-11-11
EP2902725B1 (en) 2017-07-19
JP5941990B2 (ja) 2016-06-29
JPWO2014050103A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
US9890312B2 (en) Method of selecting refrigerant-lubricant combinations
US10077388B2 (en) Use of R-1233 in liquid chillers
CN106133110A (zh) 热循环用工作介质、热循环系统用组合物以及热循环系统
CN107353973B9 (zh) 减少制冷剂溶解度的润滑剂共混物
NO309390B1 (no) Fluidblanding for anvendelse ved kompresjonsavkjöling samt anvendelse av en smörekomponent i fluidblandingen
JP5941990B2 (ja) 二元冷凍装置
WO2018207709A1 (ja) 冷凍機油組成物及び冷凍機用作動流体
CN110418828A (zh) 热循环系统用组合物以及热循环系统
JP2014070832A (ja) 冷凍装置
KR20230097172A (ko) 작동 유체, 냉동기 및 냉동기유
WO2024009684A1 (ja) 冷凍機油及び作動流体組成物
JP2004125199A (ja) 冷媒回路
JP2004190039A (ja) 冷凍機用潤滑油組成物及び該組成物を用いた潤滑方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842612

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013842612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013842612

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014538185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE