WO2014049945A1 - スイッチング電源回路 - Google Patents

スイッチング電源回路 Download PDF

Info

Publication number
WO2014049945A1
WO2014049945A1 PCT/JP2013/004945 JP2013004945W WO2014049945A1 WO 2014049945 A1 WO2014049945 A1 WO 2014049945A1 JP 2013004945 W JP2013004945 W JP 2013004945W WO 2014049945 A1 WO2014049945 A1 WO 2014049945A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output
supply circuit
switching power
Prior art date
Application number
PCT/JP2013/004945
Other languages
English (en)
French (fr)
Inventor
寿男 杉山
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to JP2013547430A priority Critical patent/JP5651250B2/ja
Priority to EP13818181.3A priority patent/EP2903145A4/en
Priority to US14/130,340 priority patent/US9219415B2/en
Publication of WO2014049945A1 publication Critical patent/WO2014049945A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation

Definitions

  • the present invention relates to a switching power supply circuit that supplies a power supply voltage to a load via a transmission line, and more particularly to a switching power supply circuit that supplies a power supply voltage in consideration of a voltage that drops in the transmission line.
  • a switching power supply circuit such as a DC-DC converter is known as a circuit that supplies a stable voltage to an electronic device from a power supply whose voltage fluctuates.
  • An AC adapter is known as an example of a switching power supply circuit. The AC adapter receives a commercial power supply and supplies a power supply voltage to a load via a transmission line (transmission cable).
  • a switching power supply circuit that is built in a personal computer or the like and charges a battery built in the digital camera via the transmission line by connecting a transmission line such as a USB cable to the personal computer and the digital camera.
  • a transmission line such as a USB cable
  • car accessories such as car navigation systems and car audio systems.
  • in-vehicle transmission lines such as cables of several meters to multi-function mobile phones such as smartphones and information terminals
  • this transmission line can be used.
  • Switching power supply circuits that charge batteries built in multi-function mobile phones and information terminals are also known.
  • a current of several amperes flows through the transmission line, and the voltage drop in the transmission line is on the order of several hundred millivolts. It is important to output a voltage that is higher than the power supply voltage to be supplied by a voltage that drops in the transmission line.
  • a switching power supply circuit that generates a voltage that drops in the transmission line, adds the generated voltage to a power supply voltage desired by the load, and outputs the added voltage to the transmission line, for example, It is described in Patent Document 1.
  • the conventional switching power supply circuit has a problem that it takes a long time to stabilize after a load change occurs. Therefore, there has been a demand for a switching power supply circuit that has a low response speed and can increase the response speed to load fluctuations. Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems, and an object of the present invention is to provide a switching power supply circuit capable of further improving the response speed with respect to load fluctuations.
  • One embodiment of the present invention is a switching power supply circuit (for example, the switching circuit in FIG. 1) that supplies a power supply voltage to a load (for example, the load resistance R L in FIG. 1) via a transmission line (for example, the transmission line PL in FIG. 1).
  • 1 is a power supply circuit 1) that receives an input voltage, converts the input voltage into an output voltage having a magnitude corresponding to a control signal, and outputs the output voltage to the transmission line (for example, the voltage converter in FIG. 1).
  • a signal generation unit for example, the signal generation unit 12 in FIG.
  • a switching power supply circuit comprising: a low-pass filter (for example, the low-pass filter 13 in FIG. 1) that inputs a signal, smoothes, and outputs the control signal to the voltage conversion unit.
  • the signal generation unit (for example, the signal generation unit 12 in FIG. 1) includes a sense resistor (for example, the sense resistor R LDS in FIG. 1) electrically connected in series to the transmission line, and a voltage across the sense resistor.
  • a level shift circuit (for example, the level shift circuit LS2 in FIG. 1) for level shifting to a voltage based on the reference voltage corresponding to the power supply voltage may be provided.
  • the low-pass filter (for example, the low-pass filter 13 in FIG. 1) has one end connected to the output end of the level shift circuit (for example, the resistance R LPF in FIG. 1), and one end is the other end of the resistance element.
  • a capacitor element (for example, a capacitor C LPF in FIG. 1) connected to a reference voltage terminal (for example, the reference voltage terminal Tref2 in FIG. 1) having the other end.
  • the signal generation unit (for example, the signal generation unit 12b in FIG. 8) amplifies a sense resistor (for example, the sense resistor Rs in FIG. 8) electrically connected in series to the transmission line and a voltage across the sense resistor. And a transconductance amplifier (for example, the transconductance amplifier gmLD in FIG. 8) that outputs a current corresponding to the voltage across the both ends.
  • the low-pass filter (for example, the low-pass filter 13a in FIG. 8) has a reference voltage terminal (for example, FIG. 8) having a reference voltage corresponding to the output terminal of the transconductance amplifier (for example, the transconductance amplifier GMLD in FIG. 8) and the power supply voltage. 8 may be provided with a resistance element (for example, a resistance R LD in FIG. 8) and a capacitance element (for example, a capacity C LD in FIG. 8) connected in parallel to each other.
  • a resistance element for example, a resistance R LD in FIG.
  • the voltage conversion unit (for example, the voltage conversion unit 11 in FIG. 1) is an output capacitor (for example, FIG. 1) connected between the output terminal (for example, the output terminal To in FIG. 1) of the voltage conversion unit and the ground.
  • the time constant of the low-pass filter (for example, the low-pass filter 13 in FIG. 1) is the capacitance value of the output capacitor and the sense resistor (for example, the sense resistor R LDS in FIG. 1).
  • the resistance value may be larger than the product of the amplification factor of the level shift circuit (for example, the level shift circuit LS2 in FIG. 1).
  • the voltage converter (for example, the voltage converter 11 in FIG. 8) is an output capacitor (for example, FIG. 8) connected between the output terminal (for example, the output terminal To in FIG. 8) of the voltage converter and the ground.
  • the time constant of the low-pass filter (for example, the low-pass filter 13a in FIG. 8) is the capacitance value of the output capacitor and the resistance of the sense resistor (for example, the sense resistor Rs in FIG. 8). It may be larger than the product of the value and the amplification factor of the transconductance amplifier (for example, the transconductance amplifier gmLD in FIG. 8).
  • the voltage converter (for example, the voltage converter 11 in FIG. 7) includes an input terminal (for example, the input terminal Tin in FIG. 7) to which the input voltage is input and an output terminal (for example, the output terminal To in FIG. 7). And an inductor (for example, inductor Lo in FIG. 7) connected between the output terminal and an output capacitor (for example, output capacitor Co in FIG. 7) connected between the output terminal and the ground.
  • a resistor (for example, the sense resistor Rs in FIG. 7) may be connected between the inductor and the output capacitor to monitor a current flowing through the inductor.
  • the voltage converter (for example, the voltage converter 11 in FIG. 7) includes an input terminal (for example, the input terminal Tin in FIG. 7) to which the input voltage is input and an output terminal (for example, the output terminal To in FIG. 7). And the output capacitor (for example, the output capacitor Co in FIG. 7) connected to each other, and the sense resistor (for example, the sense resistor Rs in FIG. 7). May be connected between the inductor and the output capacitor and monitor a current flowing through the inductor.
  • the present invention by providing a low-pass filter on the output side of the signal generation unit, it is possible to easily secure a phase margin even if the bandwidth of the amplitude characteristic of the feedback loop is widened. Therefore, it is possible to improve the response speed with respect to the load fluctuation.
  • FIG. 3 is an explanatory diagram for explaining a transfer function of the switching power supply circuit shown in FIG. 2.
  • FIG. 3 is a Bode diagram showing characteristics of the switching power supply circuit shown in FIG. 2. It is a Bode diagram for demonstrating the characteristic of the switching power supply circuit shown in FIG. It is a Bode diagram for demonstrating the characteristic of the switching power supply circuit shown in FIG. It is a schematic block diagram which shows an example of the switching power supply circuit to which this invention in 2nd Embodiment is applied. It is a schematic block diagram which shows an example of the switching power supply circuit to which this invention in 3rd Embodiment is applied.
  • FIG. 1 is a schematic configuration diagram showing an example of a switching power supply circuit to which the present invention is applied in the first embodiment.
  • the switching power supply circuit 1 in the first embodiment is a current mode type DC-DC converter, and an output terminal To of the switching power supply circuit 1 is connected to one end of the transmission line PL, and a load is connected to the other end of the transmission line PL.
  • One end of RL is connected.
  • the other end of load RL is connected to a ground line in transmission line PL.
  • the switching power supply circuit 1 includes a voltage conversion unit 11 that outputs an output voltage Vo corresponding to the input voltage VIN to the transmission line PL, a signal generation unit 12 that generates a signal corresponding to a voltage dropped on the transmission line PL, and a signal generation And a low-pass filter 13 that generates a control signal Vc corresponding to the voltage drop generated by the unit 12.
  • the voltage conversion unit 11 includes a resistance dividing circuit 21 that divides the output voltage Vo to generate a feedback voltage VFB , an error amplifier (EA) 22, a phase compensation impedance unit 23, and an output voltage generation unit 24. .
  • the resistor divider circuit 21 includes resistors R FB1 and R FB2 connected in series between the output terminal To and the ground, and divides the output voltage Vo that is a terminal voltage of the output terminal To to generate a feedback voltage V FB . To do.
  • the feedback voltage VFB from the resistance dividing circuit 21 is input to the inverting terminal, and a control signal Vc described later is input to the non-inverting input terminal, and an error between the feedback voltage VFB and the control signal Vc.
  • An error current proportional to is output.
  • the phase compensation impedance unit 23 includes resistors R 1 and R 2 connected in series and a capacitor C 1 connected in parallel to the resistor R 1 , and an end on the resistor R 2 side is an output end of the error amplifier 22. End of the connected resistor R 1 side is connected to ground.
  • the phase compensation impedance unit 23 integrates the error current output from the error amplifier 22 to generate a level error voltage V EA and performs phase compensation.
  • the output voltage generation unit 24 has a sense resistor Rs that converts the output current Iout that is a triangular wave by converting the input voltage VIN to generate a triangular wave voltage Vs, an amplification factor ASW , and a level error voltage V
  • the level shift circuit LS1 that amplifies the triangular wave voltage Vs ASW times so that it can be compared with EA and level shifts it, and the level error voltage V EA and the output voltage V LS1 of the level shift circuit LS1 are compared to compare the level error voltage V
  • a comparator CMP that generates a PWM signal having a duty proportional to the magnitude of EA
  • a control driver CTRL & DRV that buffers the PWM signal output from the comparator CMP are provided.
  • the switches M1 and M2 made of MOS transistors connected in series between the input terminal Tin and the ground, the inductor Lo connected between the common connection portion of the switches M1 and M2 and the sense resistor Rs, and the output And an output capacitor Co that is connected between the terminal To and the ground and forms a filter together with the inductor Lo.
  • a resistor RCESR connected between the output terminal To and the output capacitor Co is an equivalent series resistance (internal resistance) of the output capacitor Co.
  • the transmission line PL has an internal resistance R LINE .
  • the input voltage VIN input to the input terminal Tin is intermittently output from the common connection of the switches M1 and M2, smoothed by a filter formed by the inductor Lo and the output capacitor Co, and output from the output terminal To. Output as Vo.
  • the signal generation unit 12 is connected between the transmission line PL and the ground, monitors the load current I LOAD flowing in the load RL connected to the transmission line PL, and performs current-to-voltage conversion, and a sense resistor RLDS A level shift circuit LS2 that amplifies a voltage V LDS corresponding to the load current I LOAD converted by the resistor R LDS with an amplification factor A and outputs a voltage V LS2 that is level-shifted to a voltage with the reference voltage Vref as a reference; .
  • the level shift circuit LS2 has an amplification factor A, and the voltage VLDS corresponding to the load current ILOAD as a differential input signal is multiplied by A and added to the reference voltage Vref for output.
  • the level shift circuit LS2 is configured by a known level shift circuit such as a common drain amplifier circuit.
  • the level shift circuit LS1 has the same configuration as the level shift circuit LS2, and is configured by a known level shift circuit such as a common drain amplifier circuit.
  • Low pass filter 13 is connected between the resistor R LPF having one end connected to the output terminal of the output voltage V LS2 of the level shift circuit LS2, a reference voltage terminal Tref2 that one end and the reference voltage Vref of the resistor R LPF is input Capacitance C LPF .
  • a control signal Vc obtained by smoothing the output voltage V LS2 of the level shift circuit LS2 is output from a common connection between the resistor R LPF and the capacitor C LPF . That is, the output voltage VLS2 of the level shift circuit LS2 is output to the error amplifier 22 via the low-pass filter 13.
  • the reference voltage terminal Tref2 is connected to the ground via a power supply that supplies the reference voltage Vref. Note that the reference voltage terminal Tref1 and the reference voltage terminal Tref2 may be shared, and the power source that supplies the reference voltage Vref may be shared.
  • An error amplifier 22, a phase compensation impedance unit 23, a comparator CMP, a control driver CTRL & DRV, level shift circuits LS1 and LS2, and a low-pass filter 13 are DC-DC converters that convert an input voltage VIN into an output voltage Vo, that is, a switching power supply circuit.
  • a control circuit CTRL is configured. Since the switches M1 and M2 are complementarily turned on and off by the control circuit CTRL, a current corresponding to the difference between the output voltage Vo and a desired voltage to be supplied to the load RL is generated. Therefore, the output terminal To As a result, the output voltage Vo is kept constant.
  • the voltage at the non-inverting input terminal of the error amplifier 22 is such that a voltage that is large enough to correspond to the voltage drop of the internal resistance R LINE of the transmission line PL is output as the output voltage Vo.
  • the voltage VLDS proportional to the load current I LOAD is converted to a level based on the reference voltage Vref by the level shift circuit LS2, and the low-pass filter 13 (resistor R LPF And a control signal Vc having a voltage equivalent to the load current I LOAD filtered by the capacitor C LPF ) is input to the error amplifier 22, and the error amplifier 22 receives the feedback voltage V FB and the reference voltage Vref corresponding to the load current I LOAD. An error current proportional to the difference from the reference voltage is output.
  • Error current level error voltage V EA is accumulated in the capacitor C 1 is generated. Since the current flowing through the inductor Lo by the switching operation of the switches M1 and M2 is a triangular wave current, the voltage Vs across the sense resistor Rs is also a triangular wave voltage, and the output voltage VLS1 of the level shift circuit LS1 is also a triangular wave. Since the comparator CMP compares the level error voltage V EA and the output voltage V LS1 , a PWM signal having a duty proportional to the difference between the desired output voltage Vo corresponding to the load current I LOAD and the actual output voltage Vo is output. Is done.
  • a constant power supply voltage VLOAD desired by the load can be supplied. That is, the larger the load current I LOAD is by increasing proportionally the voltage at the non-inverting input terminal of the error amplifier 22 to the load current I LOAD can increase the output voltage Vo, the load current I LOAD is the smaller Thus, the output voltage Vo can be reduced. Therefore, the power supply voltage V LOAD supplied to the load RL can be kept at a predetermined voltage.
  • the voltage V LS2 obtained by adding the voltage V LDS proportional to the load current I LOAD to the reference voltage Vref is smoothed by the low-pass filter 13 to obtain the control signal Vc, and the voltage conversion unit 11 performs the load current based on the control signal Vc.
  • a level error voltage V EA corresponding to I LOAD is generated, a duty PWM signal corresponding to the load current I LOAD is generated, and the switches M1 and M2 are turned on and off by this PWM control signal.
  • the constant power supply voltage VLOAD desired by the load RL can be supplied to the load RL .
  • FIG. 2 is a schematic configuration diagram showing a switching power supply circuit for explaining the effect of the present invention.
  • the switching power supply circuit 1 ′ shown in FIG. 2 has the same functional configuration as the switching power supply circuit 1 in the first embodiment shown in FIG. 1 except that the configuration of the control circuit CTRL is different. 2, the same reference numerals are given to the same parts as those of the switching power supply circuit 1 shown in FIG.
  • the level shift circuit LS2 the sense resistor R LDS type the voltage across V LDS of the voltage across V LDS level-shifted by A times, the voltage obtained by adding the reference voltage Vref Is a control signal Vc.
  • the control signal Vc is input to the non-inverting terminal of the error amplifier 22.
  • the switching power supply circuit 1 ′ is a feedback circuit.
  • the comparator CMP, the control driver CTRL & DRV, the switches M1 and M2, the inductor Lo, the sense resistor Rs, and the level shift circuit LS1 can be regarded as a circuit that outputs an output current corresponding to the level error voltage V EA as a whole. Therefore, the voltage control current source SW is used.
  • the switching power supply circuit 1 ' can be expressed as a configuration as shown in FIG.
  • the voltage-current amplification factor of the voltage-controlled current source SW is gm SW
  • the gain of the level shift circuit LS2 is A
  • the voltage / current amplification factor of the error amplifier 22 is gm EA
  • the difference between the reference voltage Vref and the feedback voltage (divided voltage) V FB is Vi.
  • G 0 in the formula (1) can be expressed by the following equation is the DC gain (2).
  • the transfer function of the switching power supply circuit 1 ' has a zero on the Laplace right half plane.
  • the zero on the Laplace right half plane has the property that the gain increases as the frequency increases, but the phase is delayed.
  • the phase characteristic of the zero on the Laplace right half plane is the same as that of the pole on the Laplace left half plane.
  • the phase rotates with a delay even though the gain is high.
  • 4 and 5 are Bode diagrams of the transfer function represented by the expression (1) of the switching power supply circuit 1 ′. 4 and 5, (a) represents gain [dB], (b) represents phase [deg], the horizontal axis represents frequency, and the vertical axis represents gain or phase.
  • the first product term of the denominator corresponds to the first pole f p1 , and the gain displacement is ⁇ 20 dB / dec with respect to the original displacement. And the phase is delayed by 90 degrees.
  • the second product term of the denominator corresponds to the second pole f p2 and the second product term of the numerator corresponds to the first zero f z1 and is formed at substantially the same position on the Laplace plane, the amplitude characteristic and the phase characteristic Has almost been cancelled.
  • the first product term of the numerator is the second zero f z2 and the gain displacement is +20 dB / dec with respect to the original displacement. As a result, the amount of gain attenuation is reduced, and the phase is not returned, but is delayed by 90 degrees, so that the phase margin is reduced.
  • the first pole f p1 is arranged near the DC (low frequency side) and is lower than the second zero f z2 , that is, the frequency of the zero point on the Laplace right half plane.
  • the band of the amplitude characteristic is narrowed.
  • the band of the amplitude characteristic becomes narrow, it becomes impossible to immediately respond to a sudden load change. That is, when the load current I LOAD fluctuates, it takes time until the output voltage Vo becomes a desired output voltage corresponding to the load current I LOAD . That is, the switching power supply circuit 1 ′ needs to narrow the band in order to ensure stability. If the band is narrowed, the response speed with respect to load fluctuations becomes slow.
  • a low-pass filter 13 is cascade-connected to the output side of the signal generation unit 12 for correcting a voltage drop caused by the transmission line PL in the switching power supply circuit 1 ′.
  • the transfer function of the switching power supply circuit 1 is obtained by multiplying the voltage drop correction amount R LDS A by the transfer function of the low-pass filter 13 in the first product term of the numerator of Expression (1). That is, it can be expressed by the following formula (3).
  • the zero point on the Laplace right half plane can be brought closer to the Laplace left half plane by adding the low pass filter 13. That is, the switching power supply circuit 1 provided with the low-pass filter 13 on the output side of the level shift circuit LS2 can bring the zero point on the Laplace right half plane closer to the Laplace left half plane. Therefore, it is possible to suppress the phase from rotating at a frequency where the gain of the transfer function of the feedback loop is high. Therefore, as compared with the switching power supply circuit 1 ′ not having the low-pass filter 13 shown in FIG. 2, phase compensation of the feedback loop can be easily performed, that is, stable operation can be performed. As a result, since the frequency band can be widened, the response speed to the load fluctuation can be increased.
  • the switching power supply circuit 1 shown in FIG. 1 has a time constant R LPF C LPF of the low-pass filter 13 that is sufficiently larger than the product of the capacitance value Co of the output capacitance Co, the resistance value R LDS of the sense resistor R LDS , and the gain A.
  • R LPF C LPF of the low-pass filter 13 that is sufficiently larger than the product of the capacitance value Co of the output capacitance Co, the resistance value R LDS of the sense resistor R LDS , and the gain A.
  • FIG. 6 is a Bode diagram of the transfer function represented by Expression (5). From equation (5) and FIG. 6, it can be seen that the maximum phase lag is about 90 degrees. As a result, when R LPF C LPF >> CoR LDS A, the phase margin can always be secured, that is, stable operation can be performed, so that the frequency band can be further widened, and the response speed to load fluctuation can be increased. It can be accelerated. In particular, as typified by multifunctional mobile phones such as smartphones and digital cameras that perform power transmission and data transmission via USB cables, in recent years, electronic devices that become loads on power supplies have become more multifunctional, and load fluctuations have increased. The speed is getting faster. Therefore, the switching power supply circuit 1 that responds quickly to load fluctuations in this way is suitable.
  • FIG. 7 is a schematic configuration diagram showing an example of a switching power supply circuit to which the present invention is applied in the second embodiment. Since the second embodiment is the same as the switching power supply circuit 1 in the first embodiment except that the configuration of the signal generation unit 12 is different, the same parts are denoted by the same reference numerals, and detailed description thereof will be given. Omitted.
  • the switching power supply circuit 1 in FIG. 1 has a configuration in which a signal corresponding to a voltage drop is generated by the sense resistor RLDS provided between the load RL and the ground, and the level shift circuit LS2.
  • the signal generator 12a in the switching power supply circuit 2 in the second embodiment includes a sense resistor Rs and a level shift circuit LS3 provided between the inductor Lo and the output terminal To.
  • the signal generation unit 12a inputs the voltage Vs across the sense resistor Rs to the level shift circuit LS3, amplifies it with the amplification factor A, and adds it to the reference voltage Vref, thereby generating a voltage corresponding to the output current Iout. Generate.
  • the low-pass filter 13 is connected to the output side of the level shift circuit LS3.
  • the output current Iout is to include the load current I LOAD is the DC component, it is possible to monitor the load current I LOAD flowing through the transmission line PL by this arrangement. Since the output current Iout is a triangular wave, the voltage Vs across the sense resistor Rs is also a triangular wave.
  • the output current Iout is smoothed by the low-pass filter 13 cascaded (cascade connection) to the level shift circuit LS3 and output as the control signal Vc.
  • the This smoothed control signal Vc corresponds to the DC component of the output current Iout and becomes a voltage proportional to the load current ILOAD . That is, the reference voltage Vref corresponding to the power supply voltage V LOAD of the load R L, the voltage added voltage V LS3 smoothed is input as the control signal Vc to the voltage converter 11.
  • the low-pass filter 13 has a role of extracting a component corresponding to the load current I LOAD from the output current Iout that is a triangular wave.
  • the sense resistor Rs can be shared between the voltage conversion unit 11 and the signal generation unit 12a.
  • the transfer function of the switching power supply circuit 2 shown in FIG. 7 is expressed by the following equation (6). That is, in equation (4), and that the sense resistor R LDS is replaced by a sense resistor Rs.
  • the transfer function and the Bode diagram when R LPF C LPF >> CoRsA are obtained by replacing the sense resistor R LDS with the sense resistor Rs. This is the same as when LPF C LPF >> CoR LDS A. Therefore, also in the second embodiment, the same operational effect as the first embodiment can be obtained, and the sense resistor Rs can be shared by the voltage conversion unit 11 and the signal generation unit 12a. Therefore, the number of parts can be reduced and the scale can be reduced.
  • FIG. 8 is a schematic configuration diagram showing an example of a switching power supply circuit to which the present invention is applied in the third embodiment.
  • the switching power supply circuit 3 of the third embodiment is the same as the switching power supply circuit 2 of the second embodiment except that the configurations of the signal generator 12a and the low-pass filter 13 are different. And detailed description thereof is omitted.
  • the signal generator 12b of the switching power supply circuit 3 according to the third embodiment includes a sense resistor Rs provided between the inductor Lo and the output terminal To and a transconductance amplifier gmLD.
  • the low-pass filter 13a includes a resistor R LD and a capacitor C LD connected in parallel to each other between the non-inverting input terminal of the error amplifier 22 and the reference voltage terminal Tref having the reference voltage Vref.
  • the signal generator 12b shares the sense resistor Rs with the voltage converter 11 in the same manner as the signal generator 12a of the switching power supply circuit 2 in the second embodiment.
  • the voltage Vs across the sense resistor Rs is amplified by the transconductance amplifier GMLD at an amplification factor GMLD and converted from voltage to current.
  • the transconductance amplifier gmLD outputs a triangular wave current corresponding to the output current Iout. Since the output current Iout including the load current I LOAD, it is possible to monitor the load current I LOAD This configuration.
  • the low-pass filter 13a smoothes the triangular wave current output from the transconductance amplifier GMLD and performs current-voltage conversion to generate a control signal Vc to the voltage converter 11. Similar to the low-pass filter 13 of the switching power supply circuit 2 in the second embodiment, the low-pass filter 13a has a component corresponding to the load current I LOAD from the output current Iout which is a triangular wave, in addition to the role of widening the frequency band of the feedback loop. Has the role of extracting With this configuration, the sense resistor can be shared by the voltage conversion unit 11 and the signal generation unit 12b.
  • the transfer function of the switching power supply circuit 3 in the third embodiment is as follows.
  • the resistance R LPF of the low-pass filter is R LD
  • the capacitance C LPF of the low-pass filter is C LD
  • the switching power supply circuit 3 in the third embodiment can obtain the same operation and effect as the switching power supply circuit 1 in the first embodiment, as well as the voltage conversion, like the switching power supply circuit 2 in the second embodiment. Since the sense resistor Rs can be shared in the unit 11 and the signal generation unit 12b, the number of components can be reduced and the scale can be reduced. Also in this case, by making the time constant of the low-pass filter 13a sufficiently larger than the product of the capacitance value Co of the output capacitance Co, the resistance value of the sense resistor Rs, and the voltage-current amplification factor gm LD of the transconductance amplifier gmLD, The switching power supply circuit 3 can be further stabilized.
  • the switching power supply circuit 2 in the second embodiment uses the transconductance amplifier GMLD instead of the level shift circuit LS3.
  • the switching power supply circuit 1 in the first embodiment has been described.
  • a transconductance amplifier GMLD can be used instead of the level shift circuit LS2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 伝送線PLを介して負荷に電源電圧を供給するスイッチング電源回路(1)であって、入力電圧VINと制御信号Vcとを入力し、入力電圧VINを制御信号Vcに応じた大きさの出力電圧Voに変換して伝送線PLに出力する電圧変換部(11)と、伝送線PLに流れる負荷電流ILOADを監視し、伝送線PLで降下する電圧に応じた信号を生成する信号生成部(12)と、信号生成部(12)で生成した信号を制御信号Vcとして電圧変換部(11)に出力するローパスフィルタ(13)と、を備える。

Description

スイッチング電源回路
 本発明は、伝送線を介して負荷に電源電圧を供給するスイッチング電源回路に関し、特に、伝送線で降下する電圧を考慮して電源電圧を供給するようにしたスイッチング電源回路に関する。
 バッテリなどの電源は、その電圧がエネルギーの残量、周囲の温度、駆動する電子機器の負荷の重さに応じて変動するが、電子機器に対しては安定した電圧を供給することが望まれる。電圧が変動する電源から電子機器に安定した電圧を供給する回路として、DC-DCコンバータなどのスイッチング電源回路が知られている。
 スイッチング電源回路の例としてACアダプタが知られている。ACアダプタは、商用電源を入力とし、伝送線(伝送ケーブル)を介して電源電圧を負荷に供給する。
 また、パソコン等に内蔵され、USBケーブル等の伝送線をパソコンとデジタルカメラに接続することで、この伝送線を介してデジタルカメラに内蔵された電池を充電するスイッチング電源回路も知られている。
 また、車載用途として、カーナビやカーオーディオ等のカーアクセサリに内蔵され、数mのケーブル等の車内の伝送線をスマートフォン等の多機能携帯電話や情報端末に接続することで、この伝送線を介して多重機能携帯電話や情報端末に内蔵された電池を充電するスイッチング電源回路も知られている。
 このように伝送線を介して負荷に電源電圧を供給するスイッチング電源回路は、伝送線の抵抗により電圧降下が起こり、負荷に供給される電源電圧が本来供給されるべき電源電圧よりも低い電源電圧となる。そのため、負荷に供給されるべき電源電圧よりも伝送線で降下する電圧だけ高くした電圧を出力することが求められる。
 特に、伝送線を介して電池等の充電を行う充電システムにおいては、数アンペアオーダーの電流が伝送線に流れ、伝送線における電圧降下が数百ミリボルトオーダーとなるため、スイッチング電源回路が、負荷に供給されるべき電源電圧よりも伝送線で降下する電圧だけ高くした電圧を出力することは重要となる。
 このように、伝送線で降下する電圧を生成し、この生成した電圧を負荷が所望とする電源電圧に加算し、この加算した電圧を伝送線に出力するようにしたスイッチング電源回路は、例えば、特許文献1に記載されている。
特開平1-312468号公報
 しかしながら、従来のスイッチング電源回路は、負荷変動が起こってから安定するまでの時間が長いという問題がある。そのため、応答速度が遅く、負荷変動に対する応答速度をより速くすることのできるスイッチング電源回路が望まれていた。
 そこで、本発明は上記未解決の問題に着目してなされたものであり、負荷変動に対する応答速度をより向上させることの可能なスイッチング電源回路を提供することを目的としている。
 本発明の一態様は、伝送線(例えば、図1の伝送線PL)を介して負荷(例えば、図1の負荷抵抗R)に電源電圧を供給するスイッチング電源回路(例えば、図1のスイッチング電源回路1)であって、入力電圧を入力し、前記入力電圧を制御信号に応じた大きさの出力電圧に変換して前記伝送線に出力する電圧変換部(例えば、図1の電圧変換部11)と、前記伝送線に流れる電流に基づき、前記伝送線で降下する電圧に応じた信号を生成する信号生成部(例えば、図1の信号生成部12)と、前記信号生成部で生成した信号を入力し、平滑化して前記制御信号を前記電圧変換部に出力するローパスフィルタ(例えば、図1のローパスフィルタ13)と、を備えたことを特徴とするスイッチング電源回路、である。
 前記信号生成部(例えば、図1の信号生成部12)は、前記伝送線に電気的に直列接続されたセンス抵抗(例えば、図1のセンス抵抗RLDS)と、前記センス抵抗の両端電圧を、前記電源電圧相当の基準電圧を基準とする電圧にレベルシフトするレベルシフト回路(例えば、図1のレベルシフト回路LS2)と、を備えていてよい。
 前記ローパスフィルタ(例えば、図1のローパスフィルタ13)は、一端が前記レベルシフト回路の出力端に接続された抵抗素子(例えば、図1の抵抗RLPF)と、一端が前記抵抗素子の他端に接続され、他端が前記基準電圧を有する基準電圧端子(例えば、図1の基準電圧端子Tref2)に接続された容量素子(例えば、図1の容量CLPF)と、を含んでいてよい。
 前記信号生成部(例えば、図8の信号生成部12b)は、前記伝送線に電気的に直列接続されたセンス抵抗(例えば、図8のセンス抵抗Rs)と、前記センス抵抗の両端電圧を増幅し、前記両端電圧に応じた電流を出力するトランスコンダクタンスアンプ(例えば、図8のトランスコンダクタンスアンプgmLD)と、を備えていてよい。
 前記ローパスフィルタ(例えば、図8のローパスフィルタ13a)は、前記トランスコンダクタンスアンプ(例えば、図8のトランスコンダクタンスアンプgmLD)の出力端と前記電源電圧相当の基準電圧を有する基準電圧端子(例えば、図8の基準電圧端子Tref)との間に、互いに並列に接続された抵抗素子(例えば、図8の抵抗RLD)および容量素子(例えば、図8の容量CLD)、を備えていてよい。
 前記電圧変換部(例えば、図1の電圧変換部11)は、当該電圧変換部の出力端子(例えば、図1の出力端子To)とグラウンドとの間に接続された出力容量(例えば、図1の出力容量Co)を有し、前記ローパスフィルタ(例えば、図1のローパスフィルタ13)の時定数は、前記出力容量の容量値と、前記センス抵抗(例えば、図1のセンス抵抗RLDS)の抵抗値と、前記レベルシフト回路(例えば、図1のレベルシフト回路LS2)の増幅率との積よりも大きくてもよい。
 前記電圧変換部(例えば、図8の電圧変換部11)は、当該電圧変換部の出力端子(例えば、図8の出力端子To)とグラウンドとの間に接続された出力容量(例えば、図8の出力容量Co)を有し、前記ローパスフィルタ(例えば、図8のローパスフィルタ13a)の時定数は、前記出力容量の容量値と、前記センス抵抗(例えば、図8のセンス抵抗Rs)の抵抗値と、前記トランスコンダクタンスアンプ(例えば、図8のトランスコンダクタンスアンプgmLD)の増幅率との積よりも大きくてよい。
 前記電圧変換部(例えば、図7の電圧変換部11)は、前記入力電圧が入力される入力端子(例えば、図7の入力端子Tin)と出力端子(例えば、図7の出力端子To)との間に接続されるインダクタ(例えば、図7のインダクタLo)と、前記出力端子とグラウンドとの間に接続された出力容量(例えば、図7の出力容量Co)と、を有し、前記センス抵抗(例えば、図7のセンス抵抗Rs)は、前記インダクタと前記出力容量との間に接続され、前記インダクタに流れる電流を監視するものであってよい。
 前記電圧変換部(例えば、図7の電圧変換部11)は、前記入力電圧が入力される入力端子(例えば、図7の入力端子Tin)と出力端子(例えば、図7の出力端子To)との間に接続されるインダクタ(例えば、図7のインダクタLo)と、前記出力容量(例えば、図7の出力容量Co)と、を有し、前記センス抵抗(例えば、図7のセンス抵抗Rs)は、前記インダクタと前記出力容量との間に接続され、前記インダクタに流れる電流を監視するものであってよい。
 本発明の一態様によれば、信号生成部の出力側にローパスフィルタを設けることにより、フィードバックループの振幅特性の帯域を広げても位相余裕を確保し易くすることができる。そのため、負荷変動に対する応答速度の向上を図ることができる。
第1実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。 本発明による効果を説明するためのスイッチング電源回路を示す概略構成図である。 図2に示すスイッチング電源回路の伝達関数を説明するための説明図である。 図2に示すスイッチング電源回路の特性を示すボード線図である。 図1に示すスイッチング電源回路の特性を説明するためのボード線図である。 図1に示すスイッチング電源回路の特性を説明するためのボード線図である。 第2実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。 第3実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。
 以下、図面を参照して本発明の実施の形態を説明する。
(第1実施形態)
 まず、第1実施形態を説明する。
 図1は、第1実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。
 第1実施形態におけるスイッチング電源回路1は、電流モード型のDC-DCコンバータであって、スイッチング電源回路1の出力端子Toが伝送線PLの一端に接続され、伝送線PLの他端には負荷Rの一端が接続される。負荷Rの他端は伝送線PL内のグラウンド線に接続される。
 スイッチング電源回路1は、入力電圧VINに応じた出力電圧Voを伝送線PLに出力する電圧変換部11と、伝送線PLで降下する電圧に応じた信号を生成する信号生成部12と、信号生成部12で生成した降下電圧に応じた制御信号Vcを生成するローパスフィルタ13と、を備える。
 電圧変換部11は、出力電圧Voを分圧してフィードバック電圧VFBを生成する抵抗分割回路21と、エラーアンプ(EA)22と、位相補償インピーダンス部23と、出力電圧生成部24と、を備える。
 抵抗分割回路21は、出力端子Toとグラウンドとの間に直列に接続された抵抗RFB1およびRFB2を備え、出力端子Toの端子電圧である出力電圧Voを分圧してフィードバック電圧VFBを生成する。
 エラーアンプ22は、その反転端子には抵抗分割回路21からのフィードバック電圧VFBが入力され、非反転入力端子には後述の制御信号Vcが入力され、フィードバック電圧VFBと制御信号Vcとの誤差に比例した誤差電流を出力する。
 位相補償インピーダンス部23は、直列に接続された抵抗RおよびRと、抵抗Rに並列接続された容量Cとを備え、抵抗R側の端部がエラーアンプ22の出力端に接続され抵抗R側の端部がグラウンドに接続されている。この位相補償インピーダンス部23は、エラーアンプ22が出力する誤差電流を積分してレベル誤差電圧VEAを生成するとともに位相補償を行う。
 出力電圧生成部24は、入力電圧VINを変換してなる、三角波からなる出力電流Ioutを電圧変換して三角波電圧Vsを生成するセンス抵抗Rsと、増幅率ASWを有し、レベル誤差電圧VEAと比較できるように三角波電圧VsをASW倍に増幅してレベルシフトするレベルシフト回路LS1と、レベル誤差電圧VEAとレベルシフト回路LS1の出力電圧VLS1とを比較してレベル誤差電圧VEAの大きさに比例したデューティのPWM信号を生成するコンパレータCMPと、コンパレータCMPから出力されるPWM信号をバッファリングする制御ドライバCTRL&DRVと、を備える。さらに、入力端子Tinとグラウンドとの間に直列に接続されたMOSトランジスタからなるスイッチM1およびM2と、スイッチM1およびM2の共通接続部とセンス抵抗Rsとの間に接続されるインダクタLoと、出力端子Toとグラウンドとの間に接続されてインダクタLoとともにフィルタを形成する出力容量Coと、を備える。なお出力端子Toと出力容量Coとの間に接続される抵抗RCESRは、出力容量Coの等価直列抵抗(内部抵抗)である。また、伝送線PLは、内部抵抗RLINEを有する。
 入力端子Tinに入力された入力電圧VINは、スイッチM1およびM2の共通接続部から間欠的に出力され、インダクタLoと出力容量Coとで形成されるフィルタにより平滑化されて出力端子Toから出力電圧Voとして出力される。
 信号生成部12は、伝送線PLとグラウンドとの間に接続され、伝送線PLに接続された負荷Rに流れる負荷電流ILOADを監視して電流電圧変換をするセンス抵抗RLDSと、センス抵抗RLDSが電圧変換した負荷電流ILOADに応じた電圧VLDSを、増幅率Aで増幅するとともに、基準電圧Vrefを基準とする電圧にレベルシフトした電圧VLS2を出力するレベルシフト回路LS2と、を備える。
 つまり、レベルシフト回路LS2は増幅率Aを有し、差動入力信号である負荷電流ILOADに応じた電圧VLDSをA倍して基準電圧Vrefに加えて出力する。
 ここで、レベルシフト回路LS2は、例えばドレイン接地増幅回路などの周知のレベルシフト回路で構成される。なお、レベルシフト回路LS1は、レベルシフト回路LS2と同一構成を有し、例えばドレイン接地増幅回路などの周知のレベルシフト回路で構成される。
 レベルシフト回路LS2でレベルシフトを行う際の基準となる基準電圧端子Tref1の基準電圧Vrefは、負荷電流ILOADが零であるときに、負荷Rに供給されるべき所望の電圧相当の電圧である。つまり、基準電圧Vrefは、負荷Rに供給されるべき電源電圧VLOAD相当の電圧である。
 ローパスフィルタ13は、レベルシフト回路LS2の出力電圧VLS2の出力端に一端が接続された抵抗RLPFと、抵抗RLPFの一端と基準電圧Vrefが入力される基準電圧端子Tref2との間に接続される容量CLPFと、を備える。抵抗RLPFと容量CLPFとの共通接続部から、レベルシフト回路LS2の出力電圧VLS2を平滑化した制御信号Vcが出力される。すなわち、レベルシフト回路LS2の出力電圧VLS2は、ローパスフィルタ13を介して、エラーアンプ22に出力される。
 基準電圧端子Tref2は、基準電圧Vrefを供給する電源を介してグラウンドに接続される。
 なお、基準電圧端子Tref1と基準電圧端子Tref2を共通化し、基準電圧Vrefを供給する電源を共通化してもよい。
 エラーアンプ22、位相補償インピーダンス部23、コンパレータCMP、制御ドライバCTRL&DRV、レベルシフト回路LS1およびLS2、およびローパスフィルタ13が、入力電圧VINを出力電圧Voに変換するDC-DCコンバータ、すなわちスイッチング電源回路の制御回路CTRLを構成している。そして、制御回路CTRLによりスイッチM1およびM2を相補的にオンオフ制御することにより、出力電圧Voと負荷Rに供給されるべき所望の電圧との差相当の電流が生成されるため、出力端子Toの端子電圧が上昇し、その結果、出力電圧Voを一定に維持するようになっている。
 以上の構成とすることにより、エラーアンプ22の非反転入力端子の電圧は、伝送線PLの内部抵抗RLINEの電圧降下相当だけ大きな電圧が出力電圧Voとして出力されるような電圧となる。つまり、エラーアンプ22の非反転入力端子の電圧は、出力電圧Voが、負荷電流ILOADが零であるときの所望の出力電圧に、「伝送線PLで降下する電圧」(=負荷電流ILOAD×内部抵抗RLINE)を加算した値となる。
 そして、負荷電流ILOADがある電流値であるときに、負荷電流ILOADに比例した電圧VLDSをレベルシフト回路LS2で基準電圧Vrefを基準とするレベルに変換し、ローパスフィルタ13(抵抗RLPFおよび容量CLPF)でフィルタ処理した負荷電流ILOAD相当の電圧からなる制御信号Vcがエラーアンプ22に入力され、エラーアンプ22がフィードバック電圧VFBとその負荷電流ILOADに対応した基準電圧Vrefを基準とする電圧との差に比例した誤差電流を出力する。
 誤差電流は容量Cに蓄積されてレベル誤差電圧VEAが生成される。スイッチM1およびM2のスイッチング動作によりインダクタLoに流れる電流は三角波電流となるため、センス抵抗Rsの両端電圧Vsも三角波電圧となり、レベルシフト回路LS1の出力電圧VLS1も三角波となる。コンパレータCMPは、レベル誤差電圧VEAと出力電圧VLS1とを比較するため、負荷電流ILOADに応じた所望の出力電圧Voと実際の出力電圧Voとの差に比例したデューティのPWM信号が出力される。
 これにより、負荷が所望とする一定の電源電圧VLOADを供給することができる。つまり、エラーアンプ22の非反転入力端子の電圧を負荷電流ILOADに比例して大きくすることで負荷電流ILOADが大きくなれば出力電圧Voを大きくすることができ、負荷電流ILOADが小さくなれば出力電圧Voを小さくすることができる。そのため、負荷Rに供給する電源電圧VLOADを所定の電圧に保つことができる。
 このように、負荷電流ILOADに比例した電圧VLDSを基準電圧Vrefに加えた電圧VLS2をローパスフィルタ13で平滑化して制御信号Vcとし、電圧変換部11が、制御信号Vcに基づき負荷電流ILOADに応じたレベル誤差電圧VEAを生成し、負荷電流ILOADに応じたデューティのPWM信号を生成し、このPWM制御信号によりスイッチM1、M2をオンオフする。これにより、負荷Rに、負荷Rが所望とする一定の電源電圧VLOADを供給することができる。
(伝達関数)
 次に、図1に示す第1実施形態におけるスイッチング電源回路1について伝達関数を考える。
 まず、比較例として、図2に示すスイッチング電源回路1′について伝達関数を考える。
 図2は、本発明による効果を説明するためのスイッチング電源回路を示す概略構成図である。
 図2に示すスイッチング電源回路1′は、制御回路CTRLの構成が異なること以外は図1に示す第1実施形態におけるスイッチング電源回路1と同一の機能構成を有する。図2において、図1に示すスイッチング電源回路1と同一部には同一符号を付与している。
 スイッチング電源回路1′の制御回路CTRLにおいて、レベルシフト回路LS2は、センス抵抗RLDSの両端電圧VLDSを入力し、両端電圧VLDSをA倍してレベルシフトし、基準電圧Vrefを加算した電圧を制御信号Vcとする。そして、この制御信号Vcをエラーアンプ22の非反転端子に入力している。
 スイッチング電源回路1′は帰還回路であり、エラーアンプ(EA)22の入力端子から、位相補償インピーダンス部23、コンパレータCMP、制御ドライバCTRL&DRV、スイッチM1およびM2、インダクタLo、センス抵抗Rs、出力容量Coを通じて、抵抗RFB1およびRFB2との共通接続部までの一巡した伝達関数は、次式(1)で表すことができる。
 ただし、コンパレータCMP、制御ドライバCTRL&DRV、スイッチM1およびM2、インダクタLo、センス抵抗Rs、レベルシフト回路LS1は、これら全体で、レベル誤差電圧VEAに応じた出力電流を出力する回路とみなすことができるため、電圧制御電流源SWとする。その結果、スイッチング電源回路1′は図3に示すような構成として表すことができる。また、この電圧制御電流源SWの電圧電流増幅率をgmSW、伝送線PLの内部抵抗RLINE、負荷抵抗R、およびセンス抵抗RLDSの合成抵抗を、R=RLINE+R+RLDS、レベルシフト回路LS2の利得をA、エラーアンプ22の電圧電流増幅率をgmEA、基準電圧Vrefとフィードバック電圧(分圧電圧)VFBとの差をViとする。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)中のGは、DCゲインであり次式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)の分子における第1積項から、スイッチング電源回路1′の伝達関数には正の零点が存在することがわかる。すなわち、スイッチング電源回路1′の伝達関数は、ラプラス右半平面上に零点が存在する。
 ラプラス右半平面上の零点は、周波数が増加すると利得が増加するが、位相は遅れるという性質がある。つまり、ラプラス右半平面上の零点の位相特性は、ラプラス左半平面上の極と同じ特性となる。伝達関数において、ラプラス右半平面上の零点が存在すると、利得が高いにも関わらず位相は遅れて回っていくため、位相余裕がなくなり不安定になりやすい。
 図4および図5は、スイッチング電源回路1′の式(1)で表される伝達関数のボード線図である。図4および図5において、(a)は利得〔dB〕、(b)は位相〔deg〕を表し、横軸は周波数、縦軸は利得または位相を表す。
 図4に示すように、式(1)で表される伝達関数において、分母の第1積項がファーストポールfp1に対応し、利得の変位量が元の変位量に対して-20dB/decとなると共に位相が90度遅れる。分母の第2積項がセカンドポールfp2に対応し、分子の第2積項がファーストゼロfz1に対応し、ラプラス平面上で略同一の位置に形成されているため、振幅特性および位相特性がほぼキャンセルされている。そして、分子の第1積項がセカンドゼロfz2で、利得の変位量が元の変位量に対して+20dB/decとなる。これにより、利得の減衰量は少なくなる上、位相は戻るのではなく、さらに90度遅れるようになるため、位相余裕が小さくなる。
 そのため、スイッチング電源回路1′では、図5のように、ファーストポールfp1をDC付近(低周波側)に配置し、上記セカンドゼロfz2、すなわちラプラス右半平面上の零点の周波数よりも低い周波数において、ループ利得を零未満にすることで、位相余裕を確保して安定化する必要がある。
 このため、振幅特性の帯域が狭くなる。振幅特性の帯域が狭くなると、急激な負荷変動に対して直ちに応答することができなくなる。すなわち、負荷電流ILOADが変動したときに、出力電圧Voがその負荷電流ILOADに対応した所望の出力電圧となるまでに時間がかかることになる。
 つまり、スイッチング電源回路1′は、安定性を確保するために帯域を狭くする必要があり、帯域を狭くすると、負荷変動に対する応答速度が遅くなってしまう。
 次に、図1に示すスイッチング電源回路1の伝達関数を考える。
 エラーアンプ22の入力端子から、位相補償インピーダンス部23、コンパレータCMP、制御ドライバCTRL&DRV、スイッチM1およびM2、インダクタLo、センス抵抗Rs、容量Coを通じて、抵抗RFB1およびRFB2の共通制御部までの一巡した伝達関数を求める。このスイッチング電源回路1は、スイッチング電源回路1′においてさらに、伝送線PLによる電圧降下を補正するための信号生成部12の出力側にローパスフィルタ13がカスケード接続されている。
 したがって、スイッチング電源回路1の伝達関数は、式(1)の分子の第1積項内において、電圧降下補正量RLDSAに、ローパスフィルタ13の伝達関数の積をとったものとなる。すなわち、次式(3)で表すことができる。
 そして、式(3)を整理すると、次式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 ここで、式(4)の第1積項から、ローパスフィルタ13を加えることにより、ラプラス右半平面上の零点をラプラス左半平面に近づけることができることがわかる。
 つまり、レベルシフト回路LS2の出力側にローパスフィルタ13を設けたスイッチング電源回路1は、ラプラス右半平面上の零点をラプラス左半平面に近づけることができる。そのため、フィードバックループの伝達関数の利得が高い周波数において、位相が回ることを抑制することができる。そのため、図2に示すローパスフィルタ13をもたないスイッチング電源回路1′に比較して、フィードバックループの位相補償を取りやすく、すなわち安定動作することができる。
 その結果、周波数帯域を広くすることができるため、負荷変動に対する応答速度を速くすることができる。
 また、図1に示すスイッチング電源回路1は、ローパスフィルタ13の時定数RLPFLPFを出力容量Coの容量値Coとセンス抵抗RLDSの抵抗値RLDSと利得Aとの積よりも十分大きくすることで、ラプラス右半平面上の零点を、ラプラス左半平面に移動させることができる。零点が左半平面にあれば位相は遅れる方向には回らず、進む方向に回るため、スイッチング電源回路1をより安定化することができる。
 スイッチング電源回路1において、RLPFLPF>>CoRLDSAであるときの伝達関数は、次式(5)で表される。なお、記号「>>」は左辺が右辺よりも十分大きいことを表す。
Figure JPOXMLDOC01-appb-M000005
 図6は、式(5)で表される伝達関数のボード線図を示した図である。
 式(5)および図6から、位相遅れは最大で約90度であることがわかる。その結果、RLPFLPF>>CoRLDSAのときに、常に位相余裕を確保することができすなわち安定動作することができるため、周波数帯域をより広くすることができ、負荷変動に対する応答速度をより早めることができる。
 特に、スマートフォン等の多機能携帯電話、USBケーブルを介して電力伝送やデータ伝送を行うデジタルカメラに代表されるように、近年、電源にとって負荷となる電子機器の多機能化が進み、負荷変動の速度が早くなってきている。そのため、このように負荷変動に対して速やかに応答するスイッチング電源回路1は好適である。
(第2実施形態)
 次に、本発明の第2実施形態を説明する。
 図7は、第2実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。
 この第2実施形態は、上記第1実施形態におけるスイッチング電源回路1において、信号生成部12の構成が異なること以外は同様であるので、同一部には同一符号を付与し、その詳細な説明は省略する。
 図1のスイッチング電源回路1では、負荷Rとグラウンドとの間に設けたセンス抵抗RLDSと、レベルシフト回路LS2とで電圧降下分の信号の生成を行う構成であったのに対し、図7に示すように、第2実施形態におけるスイッチング電源回路2における信号生成部12aは、インダクタLoと出力端子Toとの間に設けたセンス抵抗Rsとレベルシフト回路LS3とを備える。
 すなわち、信号生成部12aは、センス抵抗Rsの両端電圧Vsをレベルシフト回路LS3に入力し、これを増幅率Aで増幅して基準電圧Vrefに加算することで、出力電流Ioutに応じた電圧を生成する。
 そして、レベルシフト回路LS3の出力側にローパスフィルタ13が接続される。
 ここで、出力電流IoutはDC成分である負荷電流ILOADを含むため、この構成により伝送線PLに流れる負荷電流ILOADを監視することができる。また、出力電流Ioutは三角波であるためセンス抵抗Rsの両端電圧Vsも三角波となるが、レベルシフト回路LS3にカスケード接続(縦列接続)されたローパスフィルタ13により平滑化され、制御信号Vcとして出力される。この平滑化された制御信号Vcは出力電流IoutのDC成分に対応しており、負荷電流ILOADに比例した電圧となる。つまり、負荷Rの電源電圧VLOADに相当する基準電圧Vrefに、平滑化された電圧VLS3を加えた電圧が、電圧変換部11に制御信号Vcとして入力される。
 ここで、ローパスフィルタ13は、フィードバックループの周波数帯域を広くする役割に加えて、三角波である出力電流Ioutから負荷電流ILOADに対応した成分を抽出する役割を持つ。この構成により、電圧変換部11と信号生成部12aとにおいて、センス抵抗Rsを共有化することができる。
 図7に示す、スイッチング電源回路2の伝達関数は、次式(6)で表される。すなわち、式(4)において、センス抵抗RLDSがセンス抵抗Rsに置き換わったものとなる。
Figure JPOXMLDOC01-appb-M000006
 そして、スイッチング電源回路2において、RLPFLPF>>CoRsAとしたときの伝達関数およびボード線図は、センス抵抗RLDSがセンス抵抗Rsに置き換わったものであるため、スイッチング電源回路1において、RLPFLPF>>CoRLDSAとした場合と同様である。
 したがって、この第2実施形態においても、上記第1実施形態と同等の作用効果を得ることができるとともに、電圧変換部11と信号生成部12aとで、センス抵抗Rsを共有化することができるため、部品点数を削減することができ小規模化を図ることができる。
(第3実施形態)
 次に、本発明の第3実施形態を説明する。
 図8は、第3実施形態における本発明を適用したスイッチング電源回路の一例を示す概略構成図である。
 この第3実施形態のスイッチング電源回路3は、上記第2実施形態におけるスイッチング電源回路2において、信号生成部12aおよびローパスフィルタ13の構成が異なること以外は同様であるので、同一部には同一符号を付与し、その詳細な説明は省略する。
 第3実施形態のスイッチング電源回路3の信号生成部12bは、インダクタLoと出力端子Toとの間に設けたセンス抵抗Rsと、トランスコンダクタンスアンプgmLDと、を備える。また、ローパスフィルタ13aは、エラーアンプ22の非反転入力端子と基準電圧Vrefを有する基準電圧端子Trefとの間に互いに並列接続された抵抗RLDおよび容量CLDを備える。
 信号生成部12bは、第2実施形態におけるスイッチング電源回路2の信号生成部12aと同様に、センス抵抗Rsを電圧変換部11と共有化している。センス抵抗Rsの両端電圧Vsは、トランスコンダクタンスアンプgmLDにより増幅率gmLDで増幅されて電圧から電流に変換される。トランスコンダクタンスアンプgmLDは、出力電流Ioutに応じた三角波電流を出力する。出力電流Ioutは負荷電流ILOADを含むため、この構成により負荷電流ILOADを監視することができる。
 そして、ローパスフィルタ13aは、トランスコンダクタンスアンプgmLDが出力する三角波電流を平滑化するとともに、電流電圧変換をして、電圧変換部11への制御信号Vcを生成する。第2実施形態におけるスイッチング電源回路2のローパスフィルタ13と同様に、ローパスフィルタ13aは、フィードバックループの周波数帯域を広くする役割に加えて、三角波である出力電流Ioutから負荷電流ILOADに対応した成分を抽出する役割を持つ。この構成により、電圧変換部11と信号生成部12bとにおいて、センス抵抗を共有化することができる。
 この第3実施形態におけるスイッチング電源回路3の伝達関数は、式(6)において、ローパスフィルタの抵抗RLPFがRLDに、ローパスフィルタの容量CLPFがCLDに、レベルシフト回路LS3の増幅率Aが電圧電流増幅率gmLDに置き換わったものとなるため、次式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 そして、RLDLD>>CoRsgmLDであるときの伝達関数およびボード線図は、ローパスフィルタの抵抗RLPFがRLDに、ローパスフィルタの容量CLPFがCLDに、また、レベルシフト回路LS3の増幅率AがトランスコンダクタンスアンプgmLDの増幅率gmLDに変わっただけであるため、第2実施形態におけるスイッチング電源回路2の伝達関数およびボード線図と同様となる。
 以上から、第3実施形態におけるスイッチング電源回路3は、第2実施形態におけるスイッチング電源回路2と同様に、第1実施形態におけるスイッチング電源回路1と同様の作用効果を得ることができるとともに、電圧変換部11および信号生成部12bにおいて、センス抵抗Rsを共有化することができるため、部品数を削減し、小規模化を図ることができる。また、この場合も、ローパスフィルタ13aの時定数を出力容量Coの容量値Coとセンス抵抗Rsの抵抗値とトランスコンダクタンスアンプgmLDの電圧電流増幅率gmLDとの積よりも十分大きくすることで、スイッチング電源回路3を、より安定化することができる。
 なお、上記第3実施形態においては、第2実施形態におけるスイッチング電源回路2において、レベルシフト回路LS3に替えてトランスコンダクタンスアンプgmLDを用いた場合について説明したが、第1実施形態におけるスイッチング電源回路1において、レベルシフト回路LS2に替えてトランスコンダクタンスアンプgmLDを用いることも可能である。
 また、上記各実施形態においては、図1に示す回路構成を有するスイッチング電源回路1を基本として、その一部を変形させた場合について説明したが、これに限るものではなく、他の構成要素をさらに備えたスイッチング電源回路や、構成要素が異なるスイッチング電源回路であっても適用することができる。
 なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
 1、2、3 スイッチング電源回路
11 電圧変換部
12、12a、12b 信号生成部
13、13a ローパスフィルタ
21 抵抗分割回路
22 エラーアンプ
23 位相補償インピーダンス部
24 出力電圧生成部
gmLD トランスコンダクタンスアンプ
LS1、LS2、LS3 レベルシフト回路
M1、M2 スイッチ
PL 伝送線
 負荷抵抗
Rs センス抵抗
LDS センス抵抗 

Claims (9)

  1.  伝送線を介して負荷に電源電圧を供給するスイッチング電源回路であって、
     入力電圧を入力し、前記入力電圧を制御信号に応じた大きさの出力電圧に変換して前記伝送線に出力する電圧変換部と、
     前記伝送線に流れる電流に基づき、前記伝送線で降下する電圧に応じた信号を生成する信号生成部と、
     前記信号生成部で生成した信号を入力し、平滑化して前記制御信号を前記電圧変換部に出力するローパスフィルタと、
     を備えたことを特徴とするスイッチング電源回路。
  2.  前記信号生成部は、
     前記伝送線に電気的に直列接続されたセンス抵抗と、
     前記センス抵抗の両端電圧を、前記電源電圧相当の基準電圧を基準とする電圧にレベルシフトするレベルシフト回路と、
     を備えることを特徴とする請求項1記載のスイッチング電源回路。
  3.  前記ローパスフィルタは、
     一端が前記レベルシフト回路の出力端に接続された抵抗素子と、
     一端が前記抵抗素子の他端に接続され、他端が前記基準電圧を有する基準電圧端子に接続された容量素子と、
     を含むことを特徴とする請求項2記載のスイッチング電源回路。
  4.  前記信号生成部は、
     前記伝送線に電気的に直列接続されたセンス抵抗と、
     前記センス抵抗の両端電圧を増幅し、前記両端電圧に応じた電流を出力するトランスコンダクタンスアンプと、
     を備えることを特徴とする請求項1記載のスイッチング電源回路。
  5.  前記ローパスフィルタは、
     前記トランスコンダクタンスアンプの出力端と前記電源電圧相当の基準電圧を有する基準電圧端子との間に、互いに並列に接続された抵抗素子および容量素子、を備えることを特徴とする請求項4記載のスイッチング電源回路。
  6.  前記電圧変換部は、当該電圧変換部の出力端子とグラウンドとの間に接続された出力容量を有し、
     前記ローパスフィルタの時定数は、前記出力容量の容量値と、前記センス抵抗の抵抗値と、前記レベルシフト回路の増幅率との積よりも大きいことを特徴とする請求項2または請求項3記載のスイッチング電源回路。
  7.  前記電圧変換部は、当該電圧変換部の出力端子とグラウンドとの間に接続された出力容量を有し、
     前記ローパスフィルタの時定数は、前記出力容量の容量値と、前記センス抵抗の抵抗値と、前記トランスコンダクタンスアンプの増幅率との積よりも大きいことを特徴とする請求項4または請求項5記載のスイッチング電源回路。
  8.  前記電圧変換部は、
     前記入力電圧が入力される入力端子と出力端子との間に接続されるインダクタと、
     前記出力端子とグラウンドとの間に接続された出力容量と、
     を有し、
     前記センス抵抗は、前記インダクタと前記出力容量との間に接続され、前記インダクタに流れる電流を監視することを特徴とする請求項2から請求項5のいずれか1項に記載のスイッチング電源回路。
  9.  前記電圧変換部は、
     前記入力電圧が入力される入力端子と出力端子との間に接続されるインダクタと、
     前記出力容量と、
     を有し、
     前記センス抵抗は、前記インダクタと前記出力容量との間に接続され、前記インダクタに流れる電流を監視することを特徴とする請求項6または請求項7に記載のスイッチング電源回路。
PCT/JP2013/004945 2012-09-27 2013-08-21 スイッチング電源回路 WO2014049945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013547430A JP5651250B2 (ja) 2012-09-27 2013-08-21 スイッチング電源回路
EP13818181.3A EP2903145A4 (en) 2012-09-27 2013-08-21 Switching power supply circuit
US14/130,340 US9219415B2 (en) 2012-09-27 2013-08-21 Switching power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-214665 2012-09-27
JP2012214665 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014049945A1 true WO2014049945A1 (ja) 2014-04-03

Family

ID=50387395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004945 WO2014049945A1 (ja) 2012-09-27 2013-08-21 スイッチング電源回路

Country Status (4)

Country Link
US (1) US9219415B2 (ja)
EP (1) EP2903145A4 (ja)
JP (1) JP5651250B2 (ja)
WO (1) WO2014049945A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6307401B2 (ja) 2014-09-24 2018-04-04 ローム株式会社 電流モード制御型スイッチング電源装置
CN105490537B (zh) * 2015-12-29 2017-11-24 无锡中感微电子股份有限公司 一种电源管理电路
FR3047815B1 (fr) * 2016-02-11 2018-03-09 STMicroelectronics (Alps) SAS Dispositif de commande d'un courant dans une charge de caracteristique courant-tension inconnue
CN105656291B (zh) * 2016-03-15 2018-07-31 宜确半导体(苏州)有限公司 一种电源调节器及射频前端模块
CN105790584B (zh) * 2016-03-15 2018-08-21 西安紫光国芯半导体有限公司 一种低功耗的电源供电系统及方法
CN109861530B (zh) * 2019-02-12 2024-06-14 深圳可立克科技股份有限公司 一种快速能量转移电路及电源
US10924014B2 (en) * 2019-03-04 2021-02-16 Alpha And Omega Semiconductor (Cayman) Ltd. Switching regulator controller dynamic output voltage adjustment
JP7491688B2 (ja) * 2019-12-27 2024-05-28 株式会社三社電機製作所 並列運転電源装置
US11233454B2 (en) * 2020-04-28 2022-01-25 Alpha And Omega Semiconductor International Lp Power stages and current monitor output signal (IMON) generation circuit
CN111934546B (zh) * 2020-08-10 2024-06-14 昂宝电子(上海)有限公司 开关稳压器控制系统和开关稳压器
US11922890B2 (en) * 2020-10-07 2024-03-05 Sony Semiconductor Solutions Corporation Signal line drive circuit
TWI786762B (zh) * 2021-08-09 2022-12-11 逢達科技有限公司 電源降噪電路及使用此電源降噪電路的機台設備
US11764678B2 (en) * 2022-01-21 2023-09-19 Elite Semiconductor Microelectronics Technology Inc. Constant on time converter control circuit and constant on time converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312468A (ja) * 1988-06-10 1989-12-18 Nec Corp 直流電源装置
JP2012125107A (ja) * 2010-12-10 2012-06-28 Rohm Co Ltd スイッチングレギュレータの制御回路およびそれを利用したスイッチングレギュレータ、電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000028826A (ko) * 1998-10-08 2000-05-25 아끼구사 나오유끼 Dc-dc 컨버터의 제어 방법, dc-dc 컨버터의 제어회로 및 dc-dc 컨버터
EP1367703A1 (en) * 2002-05-31 2003-12-03 STMicroelectronics S.r.l. Method of regulation of the supply voltage of a load and relative voltage regulator
JP3944605B2 (ja) * 2002-09-30 2007-07-11 ローム株式会社 スイッチング電源装置
US7642762B2 (en) * 2007-01-29 2010-01-05 Linear Technology Corporation Current source with indirect load current signal extraction
US8129972B2 (en) * 2007-12-05 2012-03-06 Analog Devices, Inc Single integrator sensorless current mode control for a switching power converter
US8754622B2 (en) * 2009-10-30 2014-06-17 Linear Technology Corporation Voltage regulator compensating for voltage drop along conductors between regulator output and load
TWI451224B (zh) * 2011-12-21 2014-09-01 Anpec Electronics Corp 動態電壓調整裝置及相關輸電系統

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312468A (ja) * 1988-06-10 1989-12-18 Nec Corp 直流電源装置
JP2012125107A (ja) * 2010-12-10 2012-06-28 Rohm Co Ltd スイッチングレギュレータの制御回路およびそれを利用したスイッチングレギュレータ、電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2903145A4 *

Also Published As

Publication number Publication date
US9219415B2 (en) 2015-12-22
JPWO2014049945A1 (ja) 2016-08-22
US20140300330A1 (en) 2014-10-09
EP2903145A1 (en) 2015-08-05
EP2903145A4 (en) 2017-03-01
JP5651250B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5651250B2 (ja) スイッチング電源回路
US9811101B2 (en) Power converter and method for regulating line transient response of the power converter
US10184961B2 (en) Current balancing, current sensor, and phase balancing apparatus and method for a voltage regulator
JP5749483B2 (ja) ヒステリシス制御型スイッチングレギュレータの制御回路およびそれを利用したヒステリシス制御型スイッチングレギュレータ、電子機器
TWI451224B (zh) 動態電壓調整裝置及相關輸電系統
US20090102444A1 (en) Dc-dc converter
US8502516B2 (en) Voltage adjustment module and power supply device
US20150028830A1 (en) Current-mode buck converter and electronic system using the same
JP5812777B2 (ja) Dc/dcコンバータの制御回路及びdc−dcコンバータ
CN104977966A (zh) 自适应电压定位直流稳压器及其控制器和控制方法
US20210286390A1 (en) Digitally programmable, fully differential error amplifier
TWI457741B (zh) 直流對直流控制器
KR101073595B1 (ko) 전원 회로, 전원 제어 회로 및 전원 제어 방법
KR20180136472A (ko) 견고한 안정 피드백 기능의 전력 컨버터
WO2011048796A1 (ja) Dc-dcコンバータ
JP2015119550A (ja) スロープ補償回路及びスイッチング電源装置
CN108183596B (zh) 直流变换器及其方法
US10191502B2 (en) Power supply device
US20190252982A1 (en) Dc-dc converting controller
KR20210152936A (ko) 용량성 소자를 포함하는 감지 회로를 포함하는 전력 관리 집적 회로
TWI406486B (zh) 用於反激式電源變換器的初級側感測和調整的系統和方法
TWM258493U (en) DC-to-DC converter with improved transient response
CN104201996A (zh) 一种用于d类功率放大器的反馈电路及电子设备
JP2011205873A (ja) Dc−dc変換器
JP5673165B2 (ja) 誤差増幅器及び誤差増幅器を用いたdc−dcコンバータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130340

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013818181

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE