WO2014049844A1 - 板状体の研磨方法及び板状体の研磨装置 - Google Patents

板状体の研磨方法及び板状体の研磨装置 Download PDF

Info

Publication number
WO2014049844A1
WO2014049844A1 PCT/JP2012/075136 JP2012075136W WO2014049844A1 WO 2014049844 A1 WO2014049844 A1 WO 2014049844A1 JP 2012075136 W JP2012075136 W JP 2012075136W WO 2014049844 A1 WO2014049844 A1 WO 2014049844A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
flatness
plate
polished
glass plate
Prior art date
Application number
PCT/JP2012/075136
Other languages
English (en)
French (fr)
Inventor
隆史 竹尾
晋一 廣江
裕介 濱田
友紀 木村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to PCT/JP2012/075136 priority Critical patent/WO2014049844A1/ja
Priority to CN201280007243.7A priority patent/CN103842130A/zh
Priority to CN201610833057.9A priority patent/CN106965076B/zh
Priority to KR1020137020310A priority patent/KR102160516B1/ko
Priority to JP2013507483A priority patent/JPWO2014049844A1/ja
Priority to TW102110123A priority patent/TW201412456A/zh
Publication of WO2014049844A1 publication Critical patent/WO2014049844A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • B24B37/345Feeding, loading or unloading work specially adapted to lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation

Definitions

  • the present invention relates to a plate-like body polishing method and a plate-like body polishing apparatus.
  • a float manufacturing method using a forming method called a float method includes a forming step of supplying molten glass to a surface of a molten metal stored in a float bath to form a strip-shaped glass plate, cutting the strip-shaped glass plate into a rectangular glass plate of a predetermined size, and cutting the rectangular The cutting and chamfering process for grinding the peripheral edge of the shaped glass plate, the polishing process for polishing and removing minute irregularities and undulations on the polished surface of the rectangular glass plate with a polishing apparatus, and the polishing were completed.
  • the rectangular glass plate is cleaned, and the flatness of the surface to be polished (the surface height distortion due to minute irregularities and waviness existing on the surface of the surface to be polished, and the ratio of the waviness height to the waviness pitch ( (Waviness height / Waviness pitch) defined) is provided.
  • a rectangular glass plate is manufactured into a glass plate having a thickness of 0.2 to 1.5 mm suitable for an FPD glass plate and high flatness.
  • Patent Document 1 discloses a batch-type polishing apparatus for an FPD glass plate.
  • the polishing apparatus of Patent Document 1 includes a film body including an adsorption sheet that adsorbs and holds a glass plate, and a film frame on which the adsorption sheet is stretched.
  • a pressurized fluid is supplied between the film body and the carrier to which the film body is attached, and the surface to be polished of the glass plate adsorbed and held by the adsorption sheet is polished by the pressure of the pressurized fluid. While pressing against (polishing tool), the surface to be polished is polished by relatively rotating (spinning and / or revolving) the glass plate and the polishing pad.
  • the inspection step it is inspected whether the flatness of the polished surface of the polished glass plate is within the standard value suitable for the glass plate for FPD.
  • This flatness inspection is performed using, for example, a known flatness measuring device disclosed in Patent Document 2.
  • the flatness measuring apparatus of Patent Document 2 is directed to a light source that irradiates a glass plate with a pattern having periodic brightness and darkness, a light receiving means that receives a pattern transmitted through or reflected from the glass plate, and a light / dark cycle in the light source pattern.
  • Flatness measuring means for calculating the flatness of the surface to be polished of the glass plate based on the shift of the light-dark cycle in the received light image.
  • the flatness measuring means uses an averaging means for averaging the brightness of the region in the received light image having a size corresponding to the light / dark cycle in the pattern irradiated on the glass plate, and an average signal output by the averaging means.
  • processing means for outputting a signal for specifying the deformation location and deformation amount of the surface shape of the glass plate.
  • a pattern having periodic brightness and darkness is irradiated onto a glass plate, a pattern transmitted through the glass plate or a reflected pattern is received, and a shift in the brightness cycle in the received light image (glass plate)
  • the light and dark of the area in the received light image having a size corresponding to the light and dark period in the pattern irradiated to the glass plate is averaged, and the glass is based on the averaged signal.
  • the flatness of the polished surface of the plate is calculated.
  • the actual polishing amount is more than the optimum polishing amount that satisfies the standard value flatness for the following reasons. Polishing was performed with a large amount of polishing. In other words, since the flatness of the polished surface of the glass plate before polishing is not uniform for each glass plate, when the glass plate is polished under the same polishing conditions, the flatness of the polished surfaces of all the glass plates is a standard value. This is because there is a fear that it cannot be contained within.
  • the flatness of the polished surfaces of all the glass plates is within the standard value. I try to keep it. In other words, when a glass plate having a low flatness is polished under a polishing condition that realizes an optimum polishing amount for a glass plate having a high flatness, the flatness is outside the standard value because the polishing amount is small. Therefore, by polishing not only glass plates with low flatness but also glass plates with high flatness under the polishing conditions that realize the optimum polishing amount for glass plates with low flatness, the polished surfaces of all glass plates The flatness is kept within the standard value.
  • the above polishing method has a problem that a glass plate having a high flatness is polished with an amount of polishing more than necessary, so that the polishing time becomes long and the production efficiency of the glass plate is lowered.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a plate-like polishing method and a plate-like polishing apparatus capable of increasing the production efficiency of the plate-like body.
  • the present invention includes a flatness measuring step for measuring the flatness of a surface to be polished of a plate-like body, and a polishing step for polishing the surface to be polished of the plate-like body having a measured flatness.
  • a polishing step of relatively pressing and rotating the surface to be polished of the plate-like body and the polishing tool to polish the surface to be polished by the polishing tool, and in the flatness measuring step, Provided is a method for polishing a plate-like body, wherein the polishing conditions in the polishing step are changed based on the measured flatness of the surface to be polished of the plate-like body.
  • the present invention comprises a flatness measuring means for measuring the flatness of a surface to be polished of a plate-like body, and a polishing means for polishing the surface to be polished of the plate-like body having a measured flatness.
  • a polishing means for pressing the polishing surface of the plate-like body and the polishing tool relative to each other and rotating them relatively to polish the polishing surface with the polishing tool, and the flatness measurement means.
  • a plate-like body polishing apparatus comprising: control means for changing polishing conditions by the polishing means based on flatness of a surface to be polished of the plate-like body.
  • the present invention is directed to a polishing method and a polishing apparatus in which a surface to be polished of a plate-shaped body and a polishing tool are relatively pressed and relatively rotated to polish the surface to be polished of the plate-shaped body with a polishing tool. That is, the present invention is directed to a batch-type polishing method and polishing apparatus for polishing a single plate-like body as disclosed in Patent Document 1 with a single polishing tool. That is, the polishing method and the polishing apparatus of the present invention are, for example, a continuous polishing method and a polishing apparatus disclosed in Japanese Patent Application Laid-Open No. 2007-190657 and International Publication No. 2011 / 0774616A1, etc.
  • a plurality of polishing tools are arranged along the conveying direction of the sheet, and the surface to be polished of the plate is gradually polished by the plurality of polishing tools while continuously conveying the plurality of plates at a constant speed.
  • the control means calculates an optimum polishing amount corresponding to the flatness for each plate, calculates an optimum polishing condition corresponding to the optimum polishing amount, and sets the polishing condition in the polishing means. Change to the optimum polishing conditions. Therefore, the surface to be polished of the plate-like body is polished under optimum polishing conditions corresponding to the flatness.
  • the optimum polishing amount is not only the polishing amount for keeping the flatness within the standard value, but also the peak value (average value) of the flatness distribution of the polished surface after polishing is the conventional polishing amount.
  • the polishing amount is set to be closer to the standard value than the peak value of the flatness distribution by the polishing method.
  • the polishing conditions in the present invention are typical polishing conditions when the polishing pressure is constant. Since the present invention is a batch type, the polishing time for a plurality of plate-like bodies having different flatnesses can be changed for each plate-like body (feed forward control). On the other hand, in the continuous polishing apparatus, it is difficult to control the polishing time for each of a plurality of plate-like bodies having different flatnesses. That is, the continuous polishing apparatus is an apparatus that conveys a plate-like body at a constant speed, in other words, an apparatus that maintains a constant polishing time.
  • the polishing conditions include not only the polishing time but also other polishing conditions such as the polishing pressure of the polishing tool with respect to the surface to be polished of the plate-like body and the relative rotational speed of the polishing tool and the plate-like body. Is preferably changed for each flatness. This is because it is possible to change only the polishing time while keeping the polishing pressure and the rotation speed constant rather than changing the polishing pressure and the rotation speed for each plate-like body, and to construct a control system. This is because it is easy from the viewpoint.
  • the polishing time of at least one of the rough polishing tool and the finishing polishing tool may be controlled. For example, when the measured flatness is significantly different from the standard flatness, the polishing time by the rough polishing tool is changed to be longer. In addition, if the measured flatness is extremely small compared to the standard flatness, the polishing time with the rough polishing tool is changed to an extremely short time, and the polishing time with the finish polishing tool is also changed to a short time. To do. That is, based on the measured flatness, it is preferable to change so that the total polishing time by the rough polishing tool and the finishing polishing tool becomes the shortest polishing time.
  • One aspect of the polishing method of the present invention includes a flatness re-measurement step of re-measuring flatness of a surface to be polished of the plate-like body polished in the polishing step, after the polishing step. It is preferable to further change the polishing conditions in the polishing step based on the flatness of the polished surface of the plate-like body measured in the degree re-measurement step.
  • One aspect of the polishing apparatus of the present invention includes flatness re-measurement means for re-measuring the flatness of the polished surface of the plate-like body polished by the polishing means, and the control means remeasures the flatness It is preferable to further change the polishing conditions by the polishing means based on the flatness of the surface to be polished of the plate-like body measured by the means.
  • the polishing conditions such as the polishing time are further changed (feedback control) based on the flatness of the polished surface measured by the flatness re-measurement means. That is, according to one embodiment of the present invention, the polishing time changed based on the flatness of the surface to be polished before polishing is finely adjusted based on the flatness of the surface to be polished after polishing. A small uniform quality plate can be produced.
  • the plate-like body in which the flatness of the polished surface after polishing deviates from the standard value, but the frequency of the plate-like body deviating from the standard value is It is preferable to set an optimum polishing amount so as to be within 0.5% or less, preferably 0.3% or less of the entire lot (population).
  • the plate-like body that deviates from the standard value is detected by the flatness re-measuring means, but is preferably re-polished by a polishing means whose polishing time is finely adjusted thereafter. Thereby, a plate-like body deviating from the standard value can be contained within the standard value.
  • another polishing means is provided after the flatness re-measurement means, and the plate-like body deviated from the standard value by the other polishing means is re-polished,
  • the flatness may fall within the standard value. That is, the polishing time by the another polishing means is set by the control means based on the flatness measured by the flatness re-measurement means.
  • the polishing step in the polishing step, a plurality of the polishing tools are arranged, and the plate-like body whose flatness is measured in the flatness measuring step is obtained by the plate-like body supplying means. It is preferable to distribute and supply to one of the plurality of polishing tools.
  • a plurality of the polishing tools of the polishing means are arranged, and the plate-like body whose flatness is measured by the flatness measuring means is selected from the plurality of polishing tools. It is preferable to provide a plate-like body supply means that distributes and supplies the powder to one polishing tool.
  • the operation rate in the polishing process can be increased, and the production efficiency of the plate-like body can be further increased.
  • different polishing times are set for each polishing tool in a plurality of polishing tools, and the polishing tool corresponding to the polishing time is set according to the polishing time based on the flatness measured in the flatness measurement step. You may sort a plate-shaped object.
  • the plate-like body polishing method and plate-like body polishing apparatus according to the present invention can increase the production efficiency of the plate-like body.
  • FIG. 1 is a perspective view showing a main configuration of a plate-like polishing apparatus according to a first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the polishing apparatus shown in FIG.
  • FIG. 3 is a flowchart showing a manufacturing process of a glass plate for FPD.
  • FIG. 4 is a histogram of the flatness of the surface to be polished before polishing a plurality of glass plates in one lot.
  • FIG. 5 is a histogram of the flatness of the polished surface after polishing by the conventional polishing method.
  • FIG. 6 is a histogram of the flatness of the polished surface after polishing by the polishing method of the embodiment.
  • FIG. 7 is a block diagram showing a configuration of a polishing apparatus according to the second embodiment.
  • FIG. 1 is a perspective view showing a configuration of a main part of a plate-like polishing apparatus 10 according to a first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the polishing apparatus 10 shown in FIG.
  • the polishing apparatus 10 of the embodiment has a basic configuration of a batch type polishing apparatus disclosed in Patent Document 1. 1 and FIG. 2 show only the main configuration, and the other configuration of the apparatus is the same as that of the polishing apparatus disclosed in Patent Document 1, and the description thereof is omitted.
  • the polishing apparatus 10 polishes, for example, a glass plate (plate-like body) G having a side of 600 mm or more to a thickness necessary for an FPD glass plate, for example, 0.2 mm to 1.5 mm. This is a polishing apparatus for polishing the surface to be polished to the flatness required for the glass plate for FPD.
  • the polishing apparatus 10 cuts a strip glass plate (not shown) conveyed from a slow cooling furnace (not shown) of a float forming apparatus (not shown) into a predetermined rectangular glass plate G (see FIG. 1). Then, a cutting / beveling device 12 for grinding the peripheral portion thereof, a flatness measuring device (flatness measuring means: flatness measuring step) 14 for measuring the flatness of the polished surface of the glass plate G, and the glass whose flatness has been measured.
  • Glass plate supply device 18 for supplying plate G to polishing unit (polishing means: polishing step) 16, polishing unit 16 for polishing the polished surface of supplied glass plate G, and glass plate G with the polished surface polished
  • a flatness re-measuring device (flatness re-measuring means, flatness re-measuring step) 20 for cleaning and re-measuring the flatness of the polished surface, and a controller (control means) 22 are provided.
  • the controller 22 has a function of changing the polishing time (polishing conditions) in the polishing unit 16 based on the flatness of the surface to be polished of the glass plate G measured by the flatness measuring device 14, and is measured by the flatness re-measurement device 20. A function of further changing the polishing time (polishing conditions) by the polishing unit 16 based on the flatness of the polished surface of the glass plate G is provided. Note that the control for changing the polishing time of the polishing unit 16 by the controller 22 is essential based on the flatness of the surface to be polished before the polishing performed by the flatness measuring device 14, but the flatness remeasurement is performed. It is not essential to perform based on the flatness of the surface to be polished after polishing performed by the apparatus 20.
  • the controller 22 it is preferable for the controller 22 to control the polishing time based on the flatness of the polished surface after polishing because the polishing amount by the polishing unit 16 can be finely adjusted toward the standard value. Since the flatness measuring device 14 and the flatness re-measuring device 20 are the same device and are known devices disclosed in Patent Document 2, the description thereof is omitted here.
  • the polishing unit 16 includes a first polishing unit 24 for rough polishing and a second polishing unit 26 for finish polishing.
  • polishing is adsorb
  • polishing head 28 of the polishing unit 16 Since the polishing head 28 of the first polishing unit 24 and the polishing head 28 of the second polishing unit 26 have the same structure, the same reference numerals are used for description. .
  • the polishing head 28 includes a housing-like carrier 30 and a spindle 32 that is vertically connected to the upper surface of the carrier 30.
  • the spindle 32 is connected to an output shaft of a motor (not shown) via a speed reduction mechanism, and the carrier 30 is rotated about the axis C1 of the spindle 32 by transmitting the driving force of the motor.
  • a revolving mechanism (not shown) is connected to the spindle 32, and revolves around the vertical axis C2 by the driving force of the revolving mechanism.
  • a lifting mechanism (not shown) is connected to the spindle 32, and the spindle 32 is lifted and lowered by the driving force of the lifting mechanism.
  • the carrier 30 is moved forward and backward relative to the polishing pad (polishing tool) 34 of the first polishing unit 24 and the polishing pad (polishing tool) 36 of the second polishing unit 26.
  • the film frame is attached to the lower surface of the carrier 30. Therefore, when the carrier 30 moves forward, the surface to be polished of the glass plate G whose upper surface is sucked and held is brought into contact with the polishing pads 34 and 36 on the lower surface of the suction sheet of the film frame.
  • the polishing pad 34 is attached to the upper surface of the polishing surface plate 38, and a rotating shaft of a motor (not shown) is connected to the lower portion of the polishing surface plate 38.
  • the polishing pad 36 is attached to the upper surface of the polishing surface plate 40, and a rotating shaft of a motor (not shown) is connected to the lower portion of the polishing surface plate 40. Therefore, by driving the motor, the polishing surface plates 38 and 40 are rotated (rotated and / or revolved) around the axis of the rotating shaft.
  • the lower surface of the carrier 30 is provided with a recess (not shown) for forming an air chamber (not shown) with the suction sheet of the film body, and a fluid supply for supplying compressed air to the recess A device (not shown) is connected to the carrier 30 via a rotary joint (not shown).
  • a rotary joint (not shown).
  • FIG. 3 is a flowchart showing an example of the manufacturing process of the glass plate G for FPD.
  • a molten glass is supplied to the surface of the molten metal in the float bath and formed into a band-shaped glass plate (S1), and the band-shaped glass plate is cut into a glass plate G of a predetermined size by the cutting / chamfering device 12.
  • the flatness of the surface to be polished of the glass plate G is measured for each glass plate G by the flatness measuring device 14 (S3).
  • the controller 22 calculates an optimal polishing amount corresponding to the flatness for each glass plate G, calculates an optimal polishing time corresponding to the optimal polishing amount (S4), and the polishing unit 16 The polishing time is changed to the optimum polishing time (S5).
  • the surface to be polished of the glass plate G is polished with an optimal polishing time corresponding to the flatness (S6).
  • the controller 22 controls the polishing time of at least one of the first polishing unit 24 and the second polishing unit 26.
  • the polishing time by the first polishing unit 24 is changed to be longer.
  • the polishing time by the first polishing unit 24 is changed to an extremely short time and the polishing by the second polishing unit 26 is performed. Change the time to a short time. That is, it is preferable to change the total polishing time by the first polishing unit 24 and the second polishing unit 26 based on the measured flatness so as to be the shortest polishing time.
  • the production efficiency of the glass sheet G for FPD is increased as compared with the conventional polishing apparatus in which a longer polishing time is set in anticipation of safety.
  • the optimum polishing amount is not only the polishing amount for keeping the flatness within the standard value, but also the peak value (average value) of the flatness distribution of the polished surface after polishing is the conventional polishing amount.
  • the polishing amount is set to be closer to the standard value than the peak value of the flatness distribution by the polishing method.
  • FIG. 4 shows a histogram of the flatness of the surface to be polished before polishing a plurality of glass plates G of one lot measured by the flatness measuring device 14.
  • FIG. 5 shows a histogram of the flatness of the polished surface after polishing by the conventional polishing method
  • FIG. 6 shows a histogram of the flatness of the polished surface after polishing by the polishing method of the embodiment.
  • the horizontal axis indicates flatness ( ⁇ m)
  • the vertical axis indicates frequency (%).
  • the standard value of the flatness of the polished surface after polishing is 1.0
  • the left side shows the frequency within the standard value around the standard value
  • the right side around the standard value is The frequency outside the standard value is shown.
  • the polishing time becomes longer toward the left side around the standard value, and that the polishing time becomes shorter toward the right side around the standard value.
  • the peak value (0.92) of the flatness distribution of the polished surface after polishing is the peak value (0. 0) of the flatness distribution by the conventional polishing method of FIG.
  • the optimum polishing amount is set so as to be closer to the standard value than 56).
  • the conventional polishing method can improve the flatness to 0.46 to 1.10.
  • the conventional polishing method is a method of polishing with a constant polishing time regardless of the level of flatness, the flatness of the polished surface after polishing is as wide as the histogram before polishing shown in FIG. Distributed in range.
  • the polishing method of the embodiment calculates the polishing amount and polishing time close to the standard values based on the flatness of the surface to be polished for each glass plate G, and the glass plate G is determined by the polishing time.
  • the peak value (0.92) of the flatness distribution of the polished surface as shown in FIG. 6 is close to the standard value (1.0) and distributed in a narrow range. Therefore, according to the polishing method of the embodiment, a uniform quality glass plate G with a small variation in flatness can be manufactured, and the polishing time can be shortened as compared with the conventional polishing method when viewed in units of one lot.
  • the polishing time is shortened.
  • the flatness of the polished surface of the glass plate before polishing varies.
  • the flatness should be kept within the standard value and the flatness should be within the standard value. That is, a glass plate with good flatness is set to be within the limit of the standard value with a small amount of polishing, and a glass plate with poor flatness is set to be within the limit of the standard value with a large amount of polishing. As a result of keeping the flatness of the polished surfaces of all the glass plates within the standard value, variation in flatness is reduced (see FIG. 6).
  • the performance of the FPD can be stabilized if the variation in flatness is reduced.
  • the FPD is manufactured under a constant manufacturing condition using a glass plate having a small flatness variation, that is, having a certain surface property, the performance of the manufactured FPD is also stabilized.
  • polishing time can be shortened compared with the conventional polishing method, and the productivity can be improved.
  • the controller 22 in FIG. 2 further changes the polishing time of the polishing unit 16 based on the flatness of the polished surface measured by the flatness re-measurement device 20. (Feedback control). That is, since the polishing time (agreement with the polishing amount) changed based on the flatness of the surface to be polished before polishing by the flatness measuring device 14 is finely adjusted based on the flatness of the surface to be polished after polishing, A uniform quality glass plate G with even smaller variations in flatness can be produced.
  • the flatness after polishing of the glass plate G having a certain pre-polishing flatness is slightly different from the standard value
  • the flatness is the standard value.
  • the another glass plate is polished with a polishing time finely adjusted so that
  • a glass plate G whose flatness deviates from the standard value is generated, but the frequency of the glass plate G deviating from the standard value is 0. 0 of the entire lot (population). It is preferable to set an optimum polishing amount so as to be 5% or less, preferably 0.3% or less. In addition, it is possible to effectively shorten the polishing time by setting the polishing time so that the peak value of the flatness distribution is within the range of ⁇ 0.15 to ⁇ 0.05 with respect to the standard value. preferable.
  • the glass plate G whose flatness is out of the standard value is detected by the flatness re-measurement device 20, but is preferably then re-polished by the second polishing section 26 whose polishing time is finely adjusted. Thereby, the glass plate G in which the flatness deviates from the standard value can be contained within the standard value.
  • the controller 22 sets the polishing time by the another polishing unit based on the flatness measured by the flatness re-measurement device 20.
  • FIG. 7 is a block diagram showing the configuration of the polishing apparatus 50 according to the second embodiment.
  • the polishing apparatus 50 includes a plurality of (six in FIG. 7) polishing units 52, a polishing unit 54, a polishing unit 56, a polishing unit 58, a polishing unit 60, and a polishing unit 62 in the polishing unit 16. Further, a distribution supply device (plate-shaped body supply means) 64 is installed between the polishing unit 16 and the measurement stage of the flatness measurement device 14. Further, between the polishing unit 16 and the measurement stage of the flatness re-measurement device 20, a transport unit that transports the glass plate G polished by each of the polishing units 52 to 62 to the measurement stage of the flatness re-measurement device 20. 66.
  • the polishing apparatus 50 uses the sorting and supplying apparatus 64 to convert the glass plate G whose flatness is measured by the flatness measuring apparatus 14 into one of the six polishing sections 52 to 62, or to polish the glass plate G. It distributes and supplies to one grinding
  • the polishing time of the polishing units 52 to 62 is controlled by the controller 22 based on the flatness measured by the flatness measuring device 14. According to the polishing apparatus 50, the operation rate in the polishing unit 16 can be increased, and the production efficiency of the glass sheet G can be further increased.
  • the controller 22 simply controls only the polishing time of the polishing units 52 to 62, there may be a plurality of glass plates G that have been polished by the polishing units 52 to 62 at the same time.
  • the transport unit 66 transports the polished glass plates G one by one to the measurement stage of the flatness re-measurement device 20, the polishing units 52 to 62 must wait for the polished glass plates G.
  • the operating rate of the polishing unit 16 is lowered. Therefore, in the polishing apparatus 50 including a plurality of polishing units 52 to 62, it is necessary to polish so that a plurality of glass plates G that have been polished do not exist at the same time. An example of the polishing method will be described.
  • the polishing conditions for keeping the flatness of the polished surface of the glass plate G within the standard value include the polishing pressure of the polishing pad with respect to the polished surface of the glass plate G, the relative relationship between the polishing pad and the glass plate G, in addition to the polishing time.
  • the controller 22 determines the polishing pressure, the polishing pressure, so that the polishing end time in the polishing units 52 to 62 is not the same time based on the flatness of the polished surface of each glass plate G measured by the flatness measuring device 14.
  • the number of rotations is controlled for each of the polishing units 52 to 62.
  • the controller 22 controls the transport unit 66 so that one of the polishing units 52 to 62 that has finished polishing waits for the transport unit 66 in advance.
  • a different polishing time is set for each of the polishing units 52 to 62, and the polishing time corresponding to the polishing time based on the flatness measured by the flatness measuring device 14 is handled.
  • the glass plate G may be distributed to the polishing parts 52 to 62 to be performed.
  • polishing unit 16 including the first polishing unit 24 and the second polishing unit 26 is illustrated, but the polishing unit is composed of one or three or more polishing units. 16 may be used.
  • the glass plate for FPD is exemplified as the plate-like body to be polished.
  • the present invention is not limited to this, and any glass plate that requires surface polishing may be used. Instead, it may be a metal or resin plate that requires surface polishing.
  • G Glass plate, 10 ... Polishing device, 12 ... Cutting and chamfering device, 14 ... Flatness measuring device, 16 ... Polishing unit, 18 ... Glass plate supply device, 20 ... Flatness re-measuring device, 22 ... Controller, 24 ... First polishing section, 26 ... second polishing section, 28 ... polishing head, 30 ... carrier, 32 ... spindle, 34 ... polishing pad, 36 ... polishing pad, 38 ... polishing surface plate, 40 ... polishing surface plate, 50 ... Polishing device, 52, 54, 56, 58, 60, 62 ... Polishing unit, 64 ... Sorting and feeding device, 66 ... Conveying unit

Abstract

 本発明は、板状体の被研磨面の平坦度を測定する平坦度測定工程と、平坦度が測定された前記板状体の被研磨面を研磨する研磨工程であって、前記板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて、前記研磨具によって前記板状体の被研磨面を研磨する研磨工程と、を備え、前記平坦度測定工程において測定された前記板状体の被研磨面の平坦度に基づいて前記研磨工程による研磨条件を変更する板状体の研磨方法に関する。

Description

板状体の研磨方法及び板状体の研磨装置
 本発明は、板状体の研磨方法及び板状体の研磨装置に関する。
 液晶ディスプレイ等のFPD(FLAT PANEL DISPLAY)用ガラス板の製造方法の一例として、フロート法と称される成形法を用いたフロート製造方法が知られている。この製造方法は、フロートバスに溜められた溶融金属の表面に溶融ガラスを供給して帯状ガラス板に成形する成形工程、前記帯状ガラス板を所定サイズの矩形状ガラス板に切断し、切断した矩形状ガラス板の周縁部を研削する切断・面取り工程、前記矩形状ガラス板の被研磨面を研磨装置によってその被研磨面の微小な凹凸やうねりを研磨して除去する研磨工程、及び研磨終了した矩形状ガラス板を洗浄し、被研磨面の平坦度(被研磨面の表面に存在する微小な凸凹やうねり等による面高さの歪みの大きさであり、うねりピッチに対するうねり高さの比率(うねり高さ/うねりピッチ)と定義する)を測定する検査工程を備える。これらの工程を経ることによって、矩形状ガラス板が、FPD用ガラス板に適した厚さ0.2~1.5mmであって平坦度の高いガラス板に製造される。
 特許文献1には、FPD用ガラス板を対象とするバッチ式の研磨装置が開示されている。特許文献1の研磨装置は、ガラス板を吸着して保持する吸着シートと、この吸着シートが張設された膜枠とからなる膜体を備えている。この研磨装置によれば、前記膜体と膜体が取り付けられるキャリアとの間に加圧流体を供給し、吸着シートに吸着保持されたガラス板の被研磨面を加圧流体の圧力によって研磨パッド(研磨具)に押し付けるとともに、ガラス板と研磨パッドとを相対的に回転(自転及び/又は公転)させて前記被研磨面を研磨する。
 ところで、前記検査工程では、研磨後のガラス板の被研磨面の平坦度がFPD用ガラス板に適した規格値内に収まっているか否かが検査される。この平坦度の検査は、例えば特許文献2に開示された既知の平坦度測定装置を用いて行われる。
 特許文献2の平坦度測定装置は、周期的な明暗を有するパターンをガラス板に照射する光源と、ガラス板を透過したパターン又は反射したパターンを受光する受光手段と、光源のパターンにおける明暗周期に対する受光画像における明暗周期のずれに基づいてガラス板の被研磨面の平坦度を算出する平坦度測定手段とを備えている。また、平坦度測定手段は、ガラス板に照射されたパターンにおける明暗周期に対応したサイズの受光画像における領域の明暗を平均化する平均化手段と、平均化手段が出力する平均化信号を用いてガラス板における表面形状の変形箇所と変形量とを特定するための信号を出力する処理手段とを備えている。
 特許文献2の平坦度測定装置によれば、周期的な明暗を有するパターンをガラス板に照射し、ガラス板を透過したパターン又は反射したパターンを受光し、受光画像における明暗周期のずれ(ガラス板に照射されたパターンにおける明暗周期に対するずれ)を検出するためにガラス板に照射されたパターンにおける明暗周期に対応したサイズの受光画像における領域の明暗を平均化し、平均化された信号にもとづいてガラス板の被研磨面の平坦度を算出する。
日本国特開2004-122351号公報 日本国特許第3411829号公報
 従来のバッチ式の研磨装置では、平坦度を規格値内に収めるために、研磨工程において、規格値の平坦度を満足する最適な研磨量と想定される研磨量よりも、以下の理由により実際の研磨量を多目に設定して研磨していた。
 つまり、研磨前のガラス板は、ガラス板毎に被研磨面の平坦度が一様でないため、同じ研磨条件でガラス板を研磨した場合、全てのガラス板の被研磨面の平坦度を規格値内に収めることができない恐れがあるからである。そのため、想定される研磨量よりも実際の研磨量を多めに設定して、ガラス板毎に平坦度が一様でなくても、全てのガラス板の被研磨面の平坦度を規格値内に収めるようにしている。
 換言すれば、平坦度が高いガラス板に最適な研磨量を実現する研磨条件で、平坦度が低いガラス板を研磨した場合、研磨量が少ないため、平坦度は規格値外となる。したがって、平坦度が低いガラス板に最適な研磨量を実現する研磨条件で、平坦度が低いガラス板だけではなく、平坦度が高いガラス板も研磨することで、全てのガラス板の被研磨面の平坦度を規格値内に収めるようにしている。
 しかし、上記研磨方法は、平坦度が高いガラス板を必要以上の研磨量で研磨するため、研磨時間が長くなり、ガラス板の生産効率が低くなるという問題があった。
 本発明は、このような問題に鑑みてなされたものであり、板状体の生産効率を高めることができる板状体の研磨方法及び板状体の研磨装置を提供することを目的とする。
 前記目的を達成するために本発明は、板状体の被研磨面の平坦度を測定する平坦度測定工程と、平坦度が測定された前記板状体の被研磨面を研磨する研磨工程であって、前記板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて前記研磨具によって被研磨面を研磨する研磨工程と、を備え、前記平坦度測定工程において測定された前記板状体の被研磨面の平坦度に基づいて前記研磨工程による研磨条件を変更する板状体の研磨方法を提供する。
 前記目的を達成するために本発明は、板状体の被研磨面の平坦度を測定する平坦度測定手段と、平坦度が測定された前記板状体の被研磨面を研磨する研磨手段であって、前記板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて被研磨面を前記研磨具によって研磨する研磨手段と、前記平坦度測定手段によって測定された前記板状体の被研磨面の平坦度に基づいて前記研磨手段による研磨条件を変更する制御手段と、を備えた板状体の研磨装置を提供する。
 本発明は、板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて研磨具によって板状体の被研磨面を研磨する研磨方法及び研磨装置を対象とする。すなわち、本発明は、特許文献1に開示されたような1枚の板状体を1台の研磨具によって研磨するバッチ式の研磨方法及び研磨装置を対象とする。つまり、本発明の研磨方法及び研磨装置は、例えば、日本国特開2007-190657号公報、及び国際公開第2011/074616A1号公報等に開示された連続式の研磨方法及び研磨装置、すなわち、板状体の搬送方向に沿って複数台の研磨具を配置し、複数枚の板状体を一定速度で連続搬送しながら複数台の研磨具によって板状体の被研磨面を徐々に研磨していく連続式の研磨方法及び研磨装置は対象外である。なお、1枚の板状体を1台目の粗研磨具によって粗研磨した後、2台目の仕上げ研磨具によって仕上げ研磨する研磨方法及び研磨装置は、バッチ式なので本発明が対象とするものである。
 本発明によれば、まず、板状体の研磨前に板状体の被研磨面の平坦度を、平坦度測定手段によって板状体毎に測定する。次に、制御手段は、前記平坦度に対応する最適な研磨量を板状体毎に算出して、その最適な研磨量に対応した最適な研磨条件を算出し、研磨手段での研磨条件を前記最適な研磨条件に変更する。したがって、板状体の被研磨面は、平坦度に応じた最適な研磨条件で研磨される。これにより、本発明によれば、従来の研磨装置と比較して板状体の生産効率が高まる。
 前記最適な研磨量とは、平坦度を規格値内に納めるための研磨量であることはもちろんのこと、研磨後の被研磨面の平坦度の分布のピーク値(平均値)が、従来の研磨方法による平坦度の分布のピーク値よりも規格値に近づくように設定された研磨量である。これにより、本発明は、従来と比較して研磨条件の一つである研磨時間が短縮するので、板状体の生産効率が高まる。
 また、本発明でいう研磨条件とは、研磨圧力を一定とした場合、研磨時間が代表的な研磨条件となる。本発明ではバッチ式なので、平坦度がそれぞれ異なる複数の板状体の研磨時間を板状体毎に変更(フィードフォーワード制御)できる。これに対して、前記連続式の研磨装置では、平坦度がそれぞれ異なる複数の板状体毎に研磨時間を制御することは困難である。つまり、前記連続式の研磨装置は、板状体を一定速度で搬送する装置であり、換言すれば研磨時間を一定とした装置であるからである。
 なお、研磨条件は研磨時間だけではなく、板状体の被研磨面に対する研磨具の研磨圧力、研磨具と板状体との相対的な回転数等の他の研磨条件もあるが、研磨時間を平坦度毎に変更することが好ましい。何故ならば、前記研磨圧力、前記回転数を板状体毎に変更するよりも、前記研磨圧力、前記回転数を一定として研磨時間のみを変更することが装置構成の観点、及び制御系構築の観点から容易であるからである。
 また、前述した粗研磨具と仕上げ研磨具とを備えた研磨方法及び研磨装置においては、粗研磨具及び仕上げ研磨具のうち少なくともいずれか一方の研磨時間を制御すればよい。例えば、測定された平坦度が規格の平坦度に対して大きく外れていた場合には、粗研磨具による研磨時間を長めに変更する。また、測定された平坦度が規格の平坦度に対して極小さく外れていた場合には、粗研磨具による研磨時間を極短時間に変更するとともに、仕上げ研磨具による研磨時間も短時間に変更する。すなわち、測定された平坦度に基づいて、粗研磨具と仕上げ研磨具とによる合算した研磨時間が最短の研磨時間となるように変更することが好ましい。
 本発明の研磨方法の一態様は、前記研磨工程の後工程に、前記研磨工程で研磨された前記板状体の被研磨面の平坦度を再測定する平坦度再測定工程を備え、前記平坦度再測定工程において測定された前記板状体の被研磨面の平坦度に基づいて前記研磨工程による研磨条件を更に変更することが好ましい。
 本発明の研磨装置の一態様は、前記研磨手段によって研磨された前記板状体の被研磨面の平坦度を再測定する平坦度再測定手段を備え、前記制御手段は、前記平坦度再測定手段によって測定された前記板状体の被研磨面の平坦度に基づいて前記研磨手段による研磨条件を更に変更することが好ましい。
 本発明の一態様によれば、平坦度再測定手段によって測定された、研磨後の被研磨面の平坦度に基づいて研磨時間等の研磨条件を更に変更(フィードバック制御)する。すなわち、本発明の一態様は、研磨前の被研磨面の平坦度に基づいて変更された研磨時間を、研磨後の被研磨面の平坦度に基づいて微調整するので、平坦度のばらつきが小さい均一品質の板状体を製造できる。
 なお、本発明では、研磨前の板状体の面状態によって、研磨後の被研磨面の平坦度が規格値から外れる板状体もありうるが、その規格値から外れる板状体の頻度は、そのロット(母集団)全体の0.5%以下、好ましくは0.3%以下に納まるように最適な研磨量を設定することが好ましい。規格値から外れた板状体は、平坦度再測定手段によって検出されるが、その後、研磨時間が微調整された研磨手段によって再研磨することが好ましい。これによって、規格値から外れた板状体を規格値内に収めることができる。また、板状体の生産効率を上げるために、前記平坦度再測定手段の後に別の研磨手段を設けておき、その別の研磨手段によって規格値から外れた板状体を再研磨して、平坦度を規格値内に収めるようにしてもよい。すなわち、前記別の研磨手段による研磨時間が、前記平坦度再測定手段によって測定された平坦度に基づき、前記制御手段によって設定されている。
 本発明の研磨方法の一態様は、前記研磨工程において、前記研磨具を複数台配置し、前記平坦度測定工程において平坦度が測定された前記板状体を、板状体供給手段によって、前記複数台の研磨具のうちの1台の研磨具に振り分けして供給することが好ましい。
 本発明の研磨装置の一態様は、前記研磨手段の前記研磨具は複数台配置され、前記平坦度測定手段によって平坦度が測定された前記板状体を、前記複数台の研磨具のうちの1台の研磨具に振り分けして供給する板状体供給手段を備えることが好ましい。
 本発明の一態様によれば、研磨工程における稼働率を高めることができ、板状体の生産効率を更に高めることができる。また、複数台の研磨具において研磨具毎に異なる研磨時間をそれぞれ設定しておき、平坦度測定工程において測定された平坦度に基づく研磨時間に応じて、その研磨時間に対応する研磨具にその板状体を振り分けてもよい。
 本発明に係る板状体の研磨方法及び板状体の研磨装置によれば、板状体の生産効率を高めることができる。
図1は、第1の実施の形態の板状体の研磨装置の要部構成を示した斜視図である。 図2は、図1に示した研磨装置の構成を示したブロック図である。 図3は、FPD用ガラス板の製造工程を示したフローチャートである。 図4は、1ロットの複数枚のガラス板の研磨前の被研磨面の平坦度のヒストグラムである。 図5は、従来の研磨方法による研磨後の被研磨面の平坦度のヒストグラムである。 図6は、実施の形態の研磨方法による研磨後の被研磨面の平坦度のヒストグラムである。 図7は、第2の実施の形態の研磨装置の構成を示したブロック図である。
 以下、添付図面に従って本発明に係る板状体の研磨方法及び板状体の研磨装置の好ましい実施の形態について詳説する。
 図1は、第1の実施の形態の板状体の研磨装置10の要部構成を示した斜視図である。図2は、図1に示した研磨装置10の構成を示したブロック図である。実施の形態の研磨装置10は、特許文献1に開示されたバッチ式の研磨装置を基本構成としている。よって、図1、図2においては要部構成のみを示し、その他の装置構成は特許文献1の研磨装置と同様なのでその説明は省略する。
 研磨装置10は、例えば一辺が600mm以上のガラス板(板状体)Gを、FPD用ガラス板に必要な厚さである、例えば0.2mm~1.5mmに研磨するとともに、ガラス板Gの被研磨面をFPD用ガラス板に必要な平坦度に研磨する研磨装置である。
 図2の如く研磨装置10は、フロート成形装置(不図示)の徐冷炉(不図示)から搬送されてきた帯状ガラス板(不図示)を所定の矩形状のガラス板G(図1参照)に切断しその周縁部を研削する切断・面取り装置12、ガラス板Gの被研磨面の平坦度を測定する平坦度測定装置(平坦度測定手段:平坦度測定工程)14、平坦度が測定されたガラス板Gを研磨部(研磨手段:研磨工程)16に供給するガラス板供給装置18、供給されたガラス板Gの被研磨面を研磨する研磨部16、被研磨面が研磨されたガラス板Gを洗浄して被研磨面の平坦度を再測定する平坦度再測定装置(平坦度再測定手段、平坦度再測定工程)20、及びコントローラ(制御手段)22を備えている。
 コントローラ22は、平坦度測定装置14において測定されたガラス板Gの被研磨面の平坦度に基づいて研磨部16における研磨時間(研磨条件)を変更する機能、及び平坦度再測定装置20において測定されたガラス板Gの被研磨面の平坦度に基づいて研磨部16による研磨時間(研磨条件)を更に変更する機能を備える。なお、コントローラ22による研磨部16の研磨時間を変更する制御は、平坦度測定装置14で実施される研磨前の被研磨面の平坦度に基づいて行うことは必須であるが、平坦度再測定装置20で実施される研磨後の被研磨面の平坦度に基づいて行うことは必須ではない。しかしながら、研磨後の被研磨面の平坦度に基づいて研磨時間をコントローラ22が制御することは、研磨部16による研磨量を規格値に向けて微調整できるため好ましい。なお、平坦度測定装置14及び平坦度再測定装置20は、同一装置であって特許文献2に開示された既知の装置なので、ここではその説明を省略する。
 研磨部16は図1の如く、粗研磨用の第1の研磨部24と仕上げ研磨用の第2の研磨部26とを備えている。なお、研磨前のガラス板Gは、被研磨面の反対側面が、膜枠(不図示)に張設された吸着シート(不図示)に吸着されている。
 次に、研磨部16の研磨ヘッド28について説明するが、第1の研磨部24の研磨ヘッド28及び第2の研磨部26の研磨ヘッド28は同一構造なので、同一の符号を付して説明する。
 研磨ヘッド28は、筐体状のキャリア30、及びキャリア30の上面に垂直に連結されたスピンドル32を備えている。スピンドル32は、不図示のモータの出力軸に減速機構を介して連結され、前記モータの駆動力が伝達されることにより、キャリア30がスピンドル32の軸心C1を中心に自転される。また、スピンドル32には、不図示の公転機構が連結されており、この公転機構の駆動力によって垂直軸芯C2を中心に公転される。更に、スピンドル32には、不図示の昇降機構が連結されており、この昇降機構の駆動力によって昇降される。これによって、キャリア30が第1の研磨部24の研磨パッド(研磨具)34、及び第2の研磨部26の研磨パッド(研磨具)36に対して進退移動される。キャリア30の下面には、前記膜枠が取り付けられている。したがって、キャリア30が進出移動されると、前記膜枠の前記吸着シートの下面に、その上面が吸着保持されたガラス板Gの被研磨面が研磨パッド34、36に当接される。
 研磨パッド34は、研磨定盤38の上面に取り付けられ、研磨定盤38の下部には、不図示のモータの回転軸が連結される。また、研磨パッド36は、研磨定盤40の上面に取り付けられ、研磨定盤40の下部には、不図示のモータの回転軸が連結される。したがって、前記モータを駆動することにより、研磨定盤38、40が前記回転軸の軸心を中心に回転(自転及び/又は公転)される。
 また、キャリア30の下面には、前記膜体の前記吸着シートとの間で空気室(不図示)を形成する凹部(不図示)が備えられており、この凹部に圧縮エアを供給する流体供給装置(不図示)がキャリア30にロータリージョイント(不図示)を介して連結されている。前記圧縮エアが前記空気室に供給されると、圧縮エアの圧力が前記吸着シートを介してガラス板Gに伝達され、この圧力によってガラス板Gの被研磨面が研磨パッド34、36に押し付けられて研磨される。このような研磨部16の研磨動作によって、ガラス板Gの被研磨面が研磨され、被研磨面の表面に存在する微小な凹凸やうねりが除去される。
 図3は、FPD用ガラス板Gの製造工程の一例を示したフローチャートである。
 図3によれば、溶融ガラスをフロートバスの溶融金属の表面に供給して帯状ガラス板に成形する成形工程(S1)、切断・面取り装置12によって帯状ガラス板を所定サイズのガラス板Gに切断し、ガラス板Gの周縁部を研削する切断・面取り工程(S2)、ガラス板Gの被研磨面の平坦度を平坦度測定装置14によって測定する平坦度測定工程(S3)、平坦度の測定結果に基づいた研磨時間を算出する工程(S4)、算出した研磨時間に研磨部16の研磨時間を変更する工程(S5)、変更した研磨時間でガラス板Gの被研磨面を研磨部16で研磨する研磨工程(S6)、及び研磨後のガラス板Gを洗浄し、被研磨面の平坦度を平坦度再測定装置20によって再測定する平坦度再測定工程(S7)からなる。S1~S7の工程を経ることにより、溶融ガラスからFPD用ガラス板Gに適したガラス板Gが製造される。
 次に、前記の如く構成された研磨装置10によるガラス板Gの研磨方法を図1~図3を参照しながら説明する。
 まず、ガラス板Gの研磨前にガラス板Gの被研磨面の平坦度を、平坦度測定装置14によってガラス板G毎に測定する(S3)。
 次に、コントローラ22は、前記平坦度に対応する最適な研磨量をガラス板G毎に算出して、その最適な研磨量に対応した最適な研磨時間を算出し(S4)、研磨部16での研磨時間を前記最適な研磨時間に変更する(S5)。
 次いで、研磨部16では、ガラス板Gの被研磨面を、平坦度に応じた最適な研磨時間で研磨する(S6)。
 このとき、コントローラ22は、第1の研磨部24及び第2の研磨部26のうち少なくともいずれか一方の研磨時間を制御する。例えば、測定された平坦度が規格の平坦度に対して大きく外れていた場合には、第1の研磨部24による研磨時間を長めに変更する。また、測定された平坦度が規格の平坦度に対して極小さく外れていた場合には、第1の研磨部24による研磨時間を極短時間に変更するとともに、第2の研磨部26による研磨時間も短時間に変更する。すなわち、測定された平坦度に基づいて、第1の研磨部24と第2の研磨部26とによる合算した研磨時間が最短の研磨時間となるように変更することが好ましい。
 これにより、実施の形態の研磨装置10によれば、安全を見越して長めの研磨時間に設定していた従来の研磨装置と比較してFPD用ガラス板Gの生産効率が高まる。
 前記最適な研磨量とは、平坦度を規格値内に納めるための研磨量であることはもちろんのこと、研磨後の被研磨面の平坦度の分布のピーク値(平均値)が、従来の研磨方法による平坦度の分布のピーク値よりも規格値に近づくように設定された研磨量である。
 図4は、平坦度測定装置14によって測定された1ロットの複数枚のガラス板Gの研磨前の被研磨面の平坦度のヒストグラムが示されている。また、図5は、従来の研磨方法による研磨後の被研磨面の平坦度のヒストグラムが示され、図6は、実施の形態の研磨方法による研磨後の被研磨面の平坦度のヒストグラムが示されている。それぞれの図において、横軸は平坦度(μm)を示し、縦軸は頻度(%)を示している。また、図5、図6において、研磨後の被研磨面の平坦度の規格値は1.0であり、規格値を中心として左側が規格値内の頻度を示し、規格値を中心として右側が規格値外の頻度を示している。つまり、規格値を中心として左側に向うにしたがって研磨時間が長くなることを示すとともに、規格値を中心として右側に向うにしたがって研磨時間が短くなることを示している。図6の実施の形態の研磨方法では、研磨後の被研磨面の平坦度の分布のピーク値(0.92)が、図5の従来の研磨方法による平坦度の分布のピーク値(0.56)よりも規格値に近づくように、前記最適な研磨量が設定されている。これにより、本発明は、従来と比較して研磨時間が短縮するので、ガラス板Gの生産効率が高まる。
 ここで、実施の形態の研磨装置10の研磨方法と従来の研磨装置の研磨方法とを比較する。
 図4に示すように、ガラス板Gの研磨前の被研磨面の平坦度は、1.99~2.63の広い範囲において不規則にばらついていることが分かる。このようなガラス板Gにおいて、従来の研磨方法では、図5の如く平坦度を0.46~1.10に改善できる。しかしながら、従来の研磨方法は、平坦度の大小に関わりなく研磨時間を一定にして研磨する方法なので、研磨後の被研磨面の平坦度は、図4に示した研磨前のヒストグラムと同様に広い範囲に分布する。
 これに対して、実施の形態の研磨方法は、ガラス板G毎の被研磨面の平坦度に基づき、規格値に近くなる研磨量、及び研磨時間を算出し、その研磨時間でガラス板Gを研磨するため、図6の如く研磨後の被研磨面の平坦度の分布のピーク値(0.92)は、規格値(1.0)の近くであって狭い範囲に分布する。よって、実施の形態の研磨方法によれば、平坦度のばらつきが小さい均一品質のガラス板Gを製造できるとともに、1ロット単位でみれば、従来の研磨方法よりも研磨時間を短縮できる。
 研磨時間が短縮する理由について説明する。まず、図4の如く、研磨前のガラス板の被研磨面の平坦度はバラつきがある。従来の研磨方法では、全てのガラス板を規格値内に収めるため、一様で多めの研磨量でガラス板を研磨している。したがって、「総研磨時間=研磨枚数×長めの研磨時間」であり、その結果研磨時間は長くなり、さらに研磨後のガラス板の被研磨面の平坦度もバラつきがある(図5参照)。
 そこで、生産性を高めるためには、平坦度を規格値内に収め、且つ、平坦度を規格値ギリギリに収めればよい。すなわち、平坦度がよいガラス板は、少ない研磨量で規格値内ギリギリに収まるようにして、平坦度が悪いガラス板は、多めの研磨量で規格値内ギリギリに収まるようにする。全てのガラス板の被研磨面の平坦度を規格値内ギリギリに収めた結果、平坦度のバラつきは少なくなる(図6参照)。
 更に、平坦度のバラつきが少なくなれば、FPDの性能を安定させることができると思われる。その理由は、平坦度のバラつきが少ない、つまり一定の表面性状を有するガラス板を、一定の製造条件でFPDを製造すれば、製造されたFPDの性能も安定するからである。
 したがって、実施の形態の研磨方法は、各ガラス板Gの被研磨面の平坦度に応じて、規格値内ギリギリで収まる研磨量でガラス板Gを研磨する、つまり最適な研磨量(=研磨時間)でガラス板を研磨するため、従来の研磨方法よりも研磨時間を短縮でき、生産性を向上できる。
 また、実施の形態の研磨方法によれば、平坦度再測定装置20によって測定された研磨後の被研磨面の平坦度に基づいて、図2のコントローラ22が研磨部16の研磨時間を更に変更(フィードバック制御)している。すなわち、平坦度測定装置14による研磨前の被研磨面の平坦度に基づいて変更された研磨時間(研磨量と同意)を、研磨後の被研磨面の平坦度に基づいて微調整するので、平坦度のばらつきがより一層小さい均一品質のガラス板Gを製造できる。
 つまり、ある研磨前平坦度を有するガラス板Gの研磨後の平坦度が規格値から僅かに外れた場合、同じ研磨前平坦度を有する別のガラス板を研磨するときは、平坦度が規格値になるように微調整された研磨時間で前記別のガラス板を研磨する。
 なお、実施の形態の研磨方法であっても、平坦度が規格値から外れるガラス板Gが発生するが、その規格値から外れるガラス板Gの頻度は、そのロット(母集団)全体の0.5%以下、好ましくは0.3%以下に納まるように最適な研磨量を設定することが好ましい。また、平坦度の分布のピーク値が規格値に対して-0.15~-0.05の範囲内に存在するように研磨時間を設定することが、研磨時間を効果的に短縮できる点で好ましい。
 平坦度が規格値から外れたガラス板Gは、平坦度再測定装置20によって検出されるが、その後、研磨時間が微調整された第2の研磨部26によって再研磨することが好ましい。これによって、平坦度が規格値から外れたガラス板Gを規格値内に収めることができる。
 また、ガラス板Gの生産効率を上げるために、平坦度再測定装置20の後に別の研磨部を設けておき、その別の研磨部によって規格値から外れたガラス板Gを再研磨して、平坦度を規格値内に収めるようにしてもよい。すなわち、前記別の研磨部による研磨時間を、平坦度再測定装置20によって測定された平坦度に基づき、コントローラ22によって設定することが好ましい。
 図7は、第2の実施の形態の研磨装置50の構成を示したブロック図であり、図1、図2に示した第1の実施の形態の研磨装置10と同一又は類似の部材については同一の符号を付してその説明は省略する。
 研磨装置50は、研磨部16に複数台(図7では6台)の研磨部52、研磨部54、研磨部56、研磨部58、研磨部60、及び研磨部62を備える。また、研磨部16と平坦度測定装置14の測定ステージとの間には、振り分け供給装置(板状体供給手段)64が設置されている。更に、研磨部16と平坦度再測定装置20の測定ステージとの間には、各研磨部52~62によって研磨されたガラス板Gを、平坦度再測定装置20の測定ステージに搬送する搬送部66を備えている。
 研磨装置50は、平坦度測定装置14において平坦度が測定されたガラス板Gを、振り分け供給装置64によって、6台の研磨部52~62のうちの空いている1台の研磨部、又は研磨終了時間に到達しようとしている1台の研磨部に振り分けして供給する。研磨部52~62の研磨時間は、平坦度測定装置14によって測定された平坦度に基づき、コントローラ22によって制御されている。
 研磨装置50によれば、研磨部16における稼働率を高めることができ、ガラス板Gの生産効率を更に高めることができる。
 ところで、コントローラ22が研磨部52~62の研磨時間のみを単純に制御した場合には、研磨部52~62で研磨終了したガラス板Gが同時刻に複数枚存在する場合がある。この場合、搬送部66は、研磨終了したガラス板Gを平坦度再測定装置20の測定ステージに1枚ずつ搬送するため、研磨部52~62では研磨終了したガラス板Gを待機させなければならず、研磨部16の稼働率が低下するという問題がある。
 そこで、複数台の研磨部52~62を備えた研磨装置50では、研磨終了したガラス板Gが同時刻に複数枚存在しないように研磨する必要がある。
 その研磨方法の一例を説明する。
 ガラス板Gの被研磨面の平坦度を規格値に収めるための研磨条件は、研磨時間の他に、ガラス板Gの被研磨面に対する研磨パッドの研磨圧力、研磨パッドとガラス板Gとの相対的な回転数がある。そこで、コントローラ22は、平坦度測定装置14によって測定された各ガラス板Gの被研磨面の平坦度に基づき、研磨部52~62における研磨終了時間が同時刻とならないように、前記研磨圧力、前記回転数を研磨部52~62毎に制御する。そして、研磨終了する研磨部52~62のうちの一台の研磨部に搬送部66を予め待機させるように搬送部66をコントローラ22が制御する。
 この研磨方法によって、研磨終了したガラス板Gを研磨部52~62で待機させるという問題を解消でき、研磨部16の稼働率が向上する。
 また、別の研磨方法として、各研磨部52~62毎に異なる研磨時間をそれぞれ設定しておき、平坦度測定装置14において測定された平坦度に基づく研磨時間に応じて、その研磨時間に対応する研磨部52~62にそのガラス板Gを振り分けてもよい。
 なお、図1、図2の研磨装置10では、第1の研磨部24と第2の研磨部26とを備えた研磨部16を例示したが、一台又は三台以上の研磨部で研磨部16を構成した研磨装置でもよい。
 また、実施の形態では、研磨対象の板状体としてFPD用ガラス板を例示したが、これに限定されるものではなく、表面研磨が必要なガラス板であればよく、また、ガラス板に限定されず、表面研磨が必要な金属製及び樹脂製の板状体であってもよい。
 G…ガラス板、10…研磨装置、12…切断・面取り装置、14…平坦度測定装置、16…研磨部、18…ガラス板供給装置、20…平坦度再測定装置、22…コントローラ、24…第1の研磨部、26…第2の研磨部、28…研磨ヘッド、30…キャリア、32…スピンドル、34…研磨パッド、36…研磨パッド、38…研磨定盤、40…研磨定盤、50…研磨装置、52、54、56、58、60、62…研磨部、64…振り分け供給装置、66…搬送部

Claims (6)

  1.  板状体の被研磨面の平坦度を測定する平坦度測定工程と、
     平坦度が測定された前記板状体の被研磨面を研磨する研磨工程であって、前記板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて、前記研磨具によって前記板状体の被研磨面を研磨する研磨工程と、
     を備え、
     前記平坦度測定工程において測定された前記板状体の被研磨面の平坦度に基づいて前記研磨工程による研磨条件を変更する板状体の研磨方法。
  2.  前記研磨工程の後工程に、前記研磨工程で研磨された前記板状体の被研磨面の平坦度を再測定する平坦度再測定工程を備え、
     前記平坦度再測定工程において測定された前記板状体の被研磨面の平坦度に基づいて前記研磨工程による研磨条件を更に変更する請求項1に記載の板状体の研磨方法。
  3.  前記研磨工程において、前記研磨具を複数台配置し、
     前記平坦度測定工程において平坦度が測定された前記板状体を、板状体供給手段によって、前記複数台の研磨具のうちの1台の研磨具に振り分けして供給する請求項1又は2に記載の板状体の研磨方法。
  4.  板状体の被研磨面の平坦度を測定する平坦度測定手段と、
     平坦度が測定された前記板状体の被研磨面を研磨する研磨手段であって、前記板状体の被研磨面と研磨具とを相対的に押し付けるとともに相対的に回転させて、前記研磨具によって前記板状体の被研磨面を研磨する研磨手段と、
     前記平坦度測定手段によって測定された前記板状体の被研磨面の平坦度に基づいて前記研磨手段による研磨条件を変更する制御手段と、
     を備えた板状体の研磨装置。
  5.  前記研磨手段によって研磨された前記板状体の被研磨面の平坦度を再測定する平坦度再測定手段を備え、
     前記制御手段は、前記平坦度再測定手段によって測定された前記板状体の被研磨面の平坦度に基づいて前記研磨手段による研磨条件を更に変更する請求項4に記載の板状体の研磨装置。
  6.  前記研磨手段の前記研磨具は複数台配置され、
     前記平坦度測定手段によって平坦度が測定された前記板状体を、前記複数台の研磨具のうちの1台の研磨具に振り分けして供給する板状体供給手段を備える請求項4又は5に記載の板状体の研磨装置。
PCT/JP2012/075136 2012-09-28 2012-09-28 板状体の研磨方法及び板状体の研磨装置 WO2014049844A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2012/075136 WO2014049844A1 (ja) 2012-09-28 2012-09-28 板状体の研磨方法及び板状体の研磨装置
CN201280007243.7A CN103842130A (zh) 2012-09-28 2012-09-28 板状体的研磨方法及板状体的研磨装置
CN201610833057.9A CN106965076B (zh) 2012-09-28 2012-09-28 板状体的研磨方法及板状体的研磨装置
KR1020137020310A KR102160516B1 (ko) 2012-09-28 2012-09-28 판상체의 연마 방법 및 판상체의 연마 장치
JP2013507483A JPWO2014049844A1 (ja) 2012-09-28 2012-09-28 板状体の研磨方法及び板状体の研磨装置
TW102110123A TW201412456A (zh) 2012-09-28 2013-03-21 板狀體之研磨方法及板狀體之研磨裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075136 WO2014049844A1 (ja) 2012-09-28 2012-09-28 板状体の研磨方法及び板状体の研磨装置

Publications (1)

Publication Number Publication Date
WO2014049844A1 true WO2014049844A1 (ja) 2014-04-03

Family

ID=50387305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075136 WO2014049844A1 (ja) 2012-09-28 2012-09-28 板状体の研磨方法及び板状体の研磨装置

Country Status (5)

Country Link
JP (1) JPWO2014049844A1 (ja)
KR (1) KR102160516B1 (ja)
CN (2) CN103842130A (ja)
TW (1) TW201412456A (ja)
WO (1) WO2014049844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161807A (ja) * 2016-03-11 2017-09-14 Hoya株式会社 基板の製造方法、マスクブランクの製造方法、および転写用マスクの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052280B2 (ja) * 2016-11-29 2022-04-12 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
TWI821887B (zh) * 2016-11-29 2023-11-11 日商東京威力科創股份有限公司 基板處理裝置、基板處理方法及記錄媒體
CN110757324B (zh) * 2019-11-12 2020-12-01 福建金箬笠贸易有限公司 一种石材柔性抛光设备
CN113814648A (zh) * 2021-08-03 2021-12-21 东莞市翔通光电技术有限公司 一种法兰修复方法以及系统
CN114290156B (zh) * 2021-11-30 2023-05-09 浙江晶盛机电股份有限公司 硅片抛光过程中的测厚方法、系统及抛光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011434A (ja) * 2002-03-29 2006-01-12 Hoya Corp マスクブランク用基板、マスクブランクおよび転写用マスクの製造方法
JP2006119624A (ja) * 2004-09-22 2006-05-11 Hoya Corp マスクブランクス用基板,マスクブランクス,露光用マスク及び半導体装置,並びにそれらの製造方法
JP2008142802A (ja) * 2006-12-06 2008-06-26 Ohara Inc 基板の製造方法および基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039988A (zh) * 1988-07-29 1990-02-28 谭景春 高精度平面度平板的制造
JP3074376B2 (ja) * 1997-02-27 2000-08-07 セイコーインスツルメンツ株式会社 端面研磨装置
JP3411829B2 (ja) 1997-07-02 2003-06-03 旭硝子株式会社 表面形状の評価方法および評価装置
US6451700B1 (en) * 2001-04-25 2002-09-17 Advanced Micro Devices, Inc. Method and apparatus for measuring planarity of a polished layer
DE10314212B4 (de) * 2002-03-29 2010-06-02 Hoya Corp. Verfahren zur Herstellung eines Maskenrohlings, Verfahren zur Herstellung einer Transfermaske
JP4207153B2 (ja) * 2002-07-31 2009-01-14 旭硝子株式会社 基板の研磨方法及びその装置
JP2004358638A (ja) * 2003-06-06 2004-12-24 Sumitomo Mitsubishi Silicon Corp 半導体ウェーハの研磨方法および半導体ウェーハの研磨装置
CN1740106A (zh) * 2004-08-27 2006-03-01 上海申菲激光光学系统有限公司 高精度超薄基片的制备方法
CN101456668A (zh) * 2008-12-30 2009-06-17 上海申菲激光光学系统有限公司 高精度超薄玻璃基片制备工艺
JP5526895B2 (ja) * 2009-04-01 2014-06-18 信越化学工業株式会社 大型合成石英ガラス基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011434A (ja) * 2002-03-29 2006-01-12 Hoya Corp マスクブランク用基板、マスクブランクおよび転写用マスクの製造方法
JP2006119624A (ja) * 2004-09-22 2006-05-11 Hoya Corp マスクブランクス用基板,マスクブランクス,露光用マスク及び半導体装置,並びにそれらの製造方法
JP2008142802A (ja) * 2006-12-06 2008-06-26 Ohara Inc 基板の製造方法および基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161807A (ja) * 2016-03-11 2017-09-14 Hoya株式会社 基板の製造方法、マスクブランクの製造方法、および転写用マスクの製造方法

Also Published As

Publication number Publication date
CN106965076B (zh) 2021-01-19
CN106965076A (zh) 2017-07-21
KR102160516B1 (ko) 2020-09-28
TW201412456A (zh) 2014-04-01
CN103842130A (zh) 2014-06-04
KR20150064641A (ko) 2015-06-11
JPWO2014049844A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2014049844A1 (ja) 板状体の研磨方法及び板状体の研磨装置
US8454852B2 (en) Chamfering apparatus for silicon wafer, method for producing silicon wafer, and etched silicon wafer
US10646976B2 (en) Method for producing substrate
JP2011062776A (ja) ガラス基板の製造方法、研磨方法及び研磨装置、並びにガラス基板
KR101143290B1 (ko) 판상체의 연마 방법 및 그 장치
CN103962939A (zh) 研磨装置及研磨方法
KR101374341B1 (ko) 파이프 연마장치
JP2014172131A (ja) 研削装置
WO2011074615A1 (ja) 板状物の研磨方法及び研磨装置
JP2018012166A (ja) 研磨装置
JP2013198974A (ja) ガラス基板の端面研削装置、ガラス基板の端面研削方法、及びガラス基板の製造方法
JP5028354B2 (ja) ウェーハの研磨方法
US8460061B2 (en) Method for producing large-size synthetic quartz glass substrate
WO2010131610A1 (ja) ガラス端面研削用砥石の加工位置設定方法
KR20150007277A (ko) 유리 기판의 연마 방법
JPWO2016098824A1 (ja) ガラス板の面取り装置、ガラス板の面取り方法、及びガラス板の製造方法
JP4751115B2 (ja) 角形状基板の両面研削装置および両面研削方法
KR20140123038A (ko) 유리 기판의 단부면 연삭용 지석의 드레싱 방법 및 상기 드레싱 방법을 사용한 유리 기판의 제조 방법
KR20160068625A (ko) 유리판의 제조 방법 및, 유리판의 제조 장치
JP2010238310A (ja) 磁気ディスク用基板の製造方法
JP2002059346A (ja) 板状物の面取り加工方法及び装置
KR20190112055A (ko) 유리 시트들의 엣지들을 마무리하기 위한 방법들 및 장치
TWI794104B (zh) 玻璃板加工裝置
JP2015098075A (ja) 板状体の研磨装置、板状体の研磨方法、及び板状体の製造方法
CN115592529A (zh) 一种大尺寸曲面玻璃加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013507483

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137020310

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885672

Country of ref document: EP

Kind code of ref document: A1