WO2014048261A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2014048261A1
WO2014048261A1 PCT/CN2013/083579 CN2013083579W WO2014048261A1 WO 2014048261 A1 WO2014048261 A1 WO 2014048261A1 CN 2013083579 W CN2013083579 W CN 2013083579W WO 2014048261 A1 WO2014048261 A1 WO 2014048261A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
subframe
bandwidth
domain resource
preset
Prior art date
Application number
PCT/CN2013/083579
Other languages
English (en)
French (fr)
Inventor
李新彩
戴博
石靖
夏树强
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13841357.0A priority Critical patent/EP2903334B1/en
Priority to US14/432,297 priority patent/US20150256403A1/en
Publication of WO2014048261A1 publication Critical patent/WO2014048261A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to the field of communications, and in particular to an information transmission method and apparatus.
  • M2M technology has been supported by internationally renowned manufacturers such as NEC, HP, CA, InteK IBM, AT&T, and mobile operators in various countries.
  • the M2M devices currently deployed on the market are mainly based on the Global System of Mobile communication (GSM) system.
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • M2M multi-class data services based on LTE will also be more attractive.
  • the cost of the MTC UE mainly includes the cost of the baseband processing and the radio frequency, and reducing the downlink receiving bandwidth of the UE is a very effective way to reduce the cost of the MTC UE. Further analysis, reducing the RF bandwidth has little impact on cost, so reducing the UE baseband processing bandwidth can effectively reduce the cost.
  • the receiving bandwidth of the MTC UE can be set to a small bandwidth supported by an LTE system such as 1.4 MHz or 3 MHz, that is, the maximum supported downlink system bandwidth of the MTC UE is usually smaller than that of a conventional legacy LTE terminal (Ordinary Legacy R8/9/10 UE, referred to as OL UE).
  • the maximum received bandwidth required for a single carrier is 20 MHz.
  • the radio frame (Radio Frame, abbreviated as RF) in the LTE system includes a frequency division duplex (FDD) mode and a time division duplex (TDD) mode frame structure.
  • FDD frequency division duplex
  • TDD time division duplex
  • 1 is a schematic diagram of a frame structure of an FDD mode in an LTE technology according to the related art.
  • a 10 millisecond (ms) radio frame consists of twenty slots of length 0.5 ms and numbers 0 to 19 (slot).
  • Composition, time slots 2i and 2i+l form a sub-frame of length 1 ms iggi 2 is a schematic diagram of a frame structure of a TDD mode in an LTE technology according to the related art.
  • FIG. 1 is a schematic diagram of a frame structure of a TDD mode in an LTE technology according to the related art.
  • a 10 ms radio frame is composed of two half frames of 5 ms length, and one field includes 5 lengths.
  • the subframe of lms, subframe i is defined as two slots 2i and 2i, which are 0.5 ms long.
  • a time slot contains a symbol of length 66.7 microseconds (us), where the CP length of the first symbol is 5.21us, the CP length of the remaining 6 symbols is 4.69m; for Extended Cyclic Prefix (Extended Cyclic Prefix), the time slot contains 6 symbols, and the CP length of all symbols can be 16.67us.
  • FIG. 3 is a schematic diagram of a time-frequency structure of each physical channel of a normal downlink subframe in LTE according to the related art.
  • the following downlink physical channels are defined in LTE: Physical Control Format Indicator Channel (Physical Control Format Indicator) Channel, referred to as PCFICH), Physical Hybrid Automatic Retransmission Request Indicator Channel (Physical Hybrid Automatic Retransmission Request Indicator Channel), Physical Downlink Control Channel (PDCCH), and physical downlink sharing Channel (Physical Downlink Shared Channel, abbreviated as PDSCH).
  • the PCFICH is located in the first symbol of the subframe, and is used to indicate that the PDCCH control signaling occupies the number of symbols in one subframe.
  • the Control Format Indication may take 1, 2 or 3.
  • the PHICH is located in the first symbol or the first three symbols of the subframe, and is used to carry ACK/NACK feedback information for the uplink PUSCH.
  • the PDCCH is used to carry downlink control information (Downlink Control Information, DCI for short), and includes: uplink and downlink scheduling information, and uplink power control information.
  • DCI Downlink Control Information
  • the number of symbols specifically occupied by the time domain is indicated by the PCFICH, and the frequency domain location is mapped to the full system bandwidth.
  • the CRC scrambling of the PDCCH is participated by the RNTI to distinguish between different applicable occasions.
  • the R TIs related to the uplink are: C-RNTI, SPS C-R TI, Temporary C-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI.
  • the downlink related RNTIs are SI-R TI, RA-RNTK P-R TK C-R TK SPS C-NTK Temporary C-RNTI.
  • the roles of various RNTIs are classified as follows:
  • SI-RNTI system message
  • RA-RNTI indicates the resource block used by the user to send the random access preamble
  • C-RNTI user service
  • Temp-C-RNTI used when random access
  • TPC-PUCCH-R TI PUCCH uplink power control information
  • TPC-PUSCH-RNTI PUSCH uplink power control information
  • SPS C-RNTI PUSCH uplink power control information
  • the PDSCH is used to transmit system common messages, paging messages, and downlink data services.
  • the specific frequency domain location of the PDSCH in the subframe is indicated by the PDCCH, and the time domain location starts from the next OFDM symbol of the control region.
  • the content of the control information transmitted by the enhanced PDCCH (ePDCCH, hereinafter referred to as ePDCCH), enhanced PCFICH (ePCFICH), and enhanced PHICH (ePHICH for short) is the same as the original PDCCH, PCFICH, and PHICH, but Located in the original PDSCH area and occupying less than 1.4MHz of frequency domain resources.
  • the MTC UE cannot receive the original broadband control information completely due to bandwidth limitation, but can receive enhanced narrowband control information.
  • LTE-A carrier aggregation technology a new type of component carrier (New Carrier Type, NCT for short) is proposed in LTE R11.
  • NCT New Carrier Type
  • This type of carrier uses ePDCCH to transmit control information.
  • the base station must design two UEs to ensure that both the OL UE and the MTC UE can receive related information.
  • the coexisting channel structure ensures that the relevant information of the small bandwidth MTC UE can be in the appropriate time-frequency domain location of the large bandwidth.
  • the present invention provides an information transmission scheme to solve at least the above problems in the related art for how to correctly receive downlink information in the case of downlink small bandwidth.
  • an information transmission method including: determining, by a base station, that a reception bandwidth of a first UE is smaller than a system bandwidth or a component carrier that is accessed by the first UE is an NCT;
  • the frame, subframe, time domain, and frequency domain resources transmit downlink data to the first UE within a receive bandwidth of the first UE.
  • the base station before the base station transmits the downlink data to the first UE in the receiving bandwidth of the first UE according to the preset radio frame, the subframe, the time domain, and the frequency domain resource, the base station further includes: the base station Determining the radio frame, the subframe, the time domain, and the frequency domain resource according to the preset setting; or, the base station sends the indication information to the first UE, where the indication information is used to indicate the radio frame, the sub a frame, a time domain, and a frequency domain resource; or, the base station determines one or more of the radio frame, the subframe, the time domain, and the frequency domain resource according to a preset setting, where the remaining information is sent to the first according to the base station The indication information sent by the UE is determined.
  • the starting position of the preset time domain resource location comprises: an nth OFDM symbol of a downlink subframe, where 0 n 5.
  • the preset time domain resource location comprises: an OFDM symbol other than the SSS, the PSS, and the PBCH.
  • the indication information is sent by at least one of: carrying on the PBCH; carrying on the public channel of the first UE; jointly coding with the control information of the first UE, and carrying the first On the control channel area of the UE; separately encoded and carried on the ePCFICH; carried on the RRC signaling.
  • the bearer carried on the public channel of the first UE includes: a paging message carried in an SIB carried by the public channel or a message 2 and a message 4 in random access.
  • the ePCFICH is located in one of the following positions in the subframe: on the first OFDM symbol of the second slot; on the k+1th OFDM symbol of the first slot, where k is the reception bandwidth The maximum number of control information symbols corresponding to the second UE equal to the system bandwidth; on the symbol occupied by the DMRS.
  • the preset frequency domain resource location includes one of: a central frequency domain location of the system bandwidth in a subframe; a central frequency domain location of the system bandwidth in at least one subframe of subframes 0 and 5.
  • the preset frequency domain resource location is fixed, or in the subframe 1 and the subframe 6 of the TDD, the preset frequency domain resource location is fixed.
  • the downlink data includes at least one of the following: PDCCH data of the first UE, PCFICH data of the first UE, PHICH data of the first UE, data carried by the PDSCH of the first UE. The data carried by the ePDCCH, the data carried by the ePCFICH, and the data carried by the ePHICH.
  • the PDCCH, the PCFICH, and the PHICH of the first UE are the same as the channel structure of the second UE whose receiving bandwidth is equal to the system bandwidth, and are located in the receiving bandwidth of the first UE in the system bandwidth.
  • the start position of the time domain resource of the PDSCH of the first UE is the same as the ePDCCH, or is indicated by the ePCFICH.
  • the frequency domain resource location of the PDSCH of the first UE is indicated by a PDCCH or an ePDCCH of the first UE.
  • the PDCCH and the PDSCH of the first UE are transmitted in different subframes, and the PDCCH uses the cross-subframe to schedule the PDSCH.
  • the downlink data is data carried by the physical downlink shared channel (PDSCH) of the first UE, when the first UE is in an ACH process or initial access, the downlink data is in the preset frequency.
  • PDSCH physical downlink shared channel
  • the downlink data is selected to be sent in the frequency domain resource location corresponding to the indication information; or, when the first UE is in the RACH process or initial access, The downlink data is selected and sent in the preset frequency domain resource, and then the downlink data of the first UE is selected to be sent in a frequency domain resource location corresponding to the system bandwidth.
  • the downlink data is selected to be sent in the preset frequency domain resource in all downlink subframes.
  • the PDCCH is repeatedly transmitted, or the PDSCH continuously repeats the UE.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by at least one of the SI-RNTI, the RA-RNTI, the P-RNTI, and the Tenip-C-RNTI is selected for transmission in the preset frequency domain resource.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by the C-RNTI is selected for transmission in the frequency domain resource indicated by the signaling, or the frequency of the PDSCH scheduled by the C-RNTI scrambled PDCCH/ePDCCH is corresponding to the system bandwidth.
  • Select to send within the domain resource Preferably, the selected frequency domain resources are discrete within a fixed bandwidth.
  • the first UE includes an MTC UE whose cost is lower than a preset value and whose bandwidth is limited, or a bandwidth limited.
  • an information transmission method including: the UE determines its own reception. The bandwidth is smaller than the system bandwidth or the component carrier accessed by the terminal is an NCT; the terminal receives downlink data in the receiving bandwidth according to preset radio frames, subframes, time domains, and frequency domain resources.
  • the method further includes: determining, by the terminal, the radio frame according to a preset setting, a sub-frame, a preset time domain, and a frequency domain resource location; or, the terminal receives the indication information from the base station, where the indication information is used to indicate the preset subframe, the time domain, and the frequency domain resource location Or the terminal determines one or more of the radio frame, the subframe, the time domain, and the frequency domain resource according to the preset setting, and the remaining information is determined according to the received indication information from the base station.
  • the starting position of the preset time domain resource location includes one of the following: an nth OFDM symbol of the downlink subframe, where 0sSnsS5; the first of the UE independently detected by the UE OFDM symbols.
  • the preset time domain resource location comprises: an OFDM symbol other than the SSS, the PSS, and the PBCH.
  • the preset frequency domain resource location includes one of: a central frequency domain location of the system bandwidth in a subframe; a central frequency domain location of the system bandwidth in at least one subframe of subframes 0 and 5. And a predetermined location of the other subframes in the subframe position, where the predetermined location is determined by the indication information or determined by a preset hopping pattern.
  • the preset frequency domain resource location is fixed, or in the subframe 1 and the subframe 6 of the TDD, the preset frequency domain resource location is fixed.
  • the downlink data includes at least one of the following: PDCCH data of the UE, PCFICH data of the UE, PHICH data of the UE, data carried by the PDSCH of the UE, data carried by the ePDCCH, ePCFICH bearer
  • the data, ePHICH carries the data.
  • the PDCCH, the PCFICH, and the PHICH of the UE are located in the system bandwidth.
  • the start position of the time domain resource of the PDSCH of the UE is the same as the ePDCCH, or is indicated by the ePCFICH.
  • the frequency domain resource location of the PDSCH of the UE is indicated by a PDCCH or an ePDCCH of the UE.
  • the PDCCH and the PDSCH of the UE are transmitted in different subframes, and the PDCCH uses the cross-subframe to schedule the PDSCH.
  • the downlink data is the data carried by the physical downlink shared channel (PDSCH) of the UE
  • the downlink data is selected in the preset frequency domain resource.
  • the downlink data of the UE is selected to be sent in a frequency domain resource location corresponding to the indication information; or, when the UE is in the RACH process or initial access, the downlink data is in the pre-
  • the selected frequency domain resource is selected for transmission, and then the downlink data of the UE is selected to be sent in a frequency domain resource location corresponding to the system bandwidth.
  • the preset frequency domain resources are discrete within a fixed bandwidth of the UE.
  • the downlink data is selected to be sent in the preset frequency domain resource in all downlink subframes.
  • the PDCCH is repeatedly transmitted, or the PDSCH continuously repeats the UE.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by at least one of the SI-RNTI, the RA-R TI, the P-NTI, and the Temp-C-RNTI is selected for transmission in the preset frequency domain resource.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by the C-RNTI is selected to be transmitted in the frequency domain resource indicated by the signaling, or the frequency of the PDSCH scheduled by the C-RNTI scrambled PDCCH/ePDCCH is in the system bandwidth. Select to send within the domain resource.
  • the frequency domain resources selected for transmission are discrete.
  • the UE includes an MTC UE or a bandwidth limited UE whose cost is lower than a preset value and bandwidth is limited.
  • an information transmission apparatus is provided, which is located in a base station, and includes: a first determining module, configured to determine that a receiving bandwidth of the terminal is smaller than a system bandwidth, or a component carrier that is accessed by the terminal is And a transmission module, configured to transmit downlink data to the terminal within a receiving bandwidth of the terminal according to a preset radio frame, a subframe, a time domain, and a frequency domain resource location.
  • an information transmission apparatus which is located in a terminal, and includes: a second determining module, configured to determine that a receiving bandwidth of the system is smaller than a system bandwidth or an accessed component carrier is an NCT; The downlink data is received within the receiving bandwidth according to preset radio frame, subframe, time domain, and frequency domain resource locations.
  • the base station determines that the receiving bandwidth of the terminal is smaller than the system bandwidth or the component carrier accessed by the terminal is a new type of component carrier, the base station receives the preset radio frame, subframe, time domain, and frequency domain resources.
  • the downlink data is transmitted to the terminal in the bandwidth, and the problem of how to correctly receive the downlink information in the case of the downlink small bandwidth is solved in the related art, so that different types of terminals can exist at the same time in the system, thereby improving the applicable range of the system.
  • FIG. 2 is a schematic diagram of a frame structure of a TDD mode in an LTE technology according to the related art
  • FIG. 3 is a general downlink in LTE according to the related art.
  • FIG. 4 is a flowchart of an information transmission method according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing the structure of an information transmission apparatus according to an embodiment of the present invention
  • FIG. 6 is a block diagram of an information transmission apparatus according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing another structure of an information transmission apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a base station side downlink information transmission flow according to an embodiment of the present invention
  • 9 is a schematic diagram of a receiving flow of downlink information of an MTC terminal according to Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram of a time-frequency structure of a downlink subframe according to Application Example 1 of the present invention
  • 11 is a schematic diagram of a downlink subframe time-frequency structure according to an application example 2 of the present invention
  • FIG. 12 is a schematic diagram of a downlink subframe time-frequency structure according to an application example 3 of the present invention
  • FIG. 13 is a downlink subframe when the application example 4 is applied according to the present invention.
  • FIG. 10 is a schematic diagram of a time-frequency structure of a downlink subframe according to Application Example 1 of the present invention
  • 11 is a schematic diagram of a downlink subframe time-frequency structure according to an application example 2 of the present invention
  • FIG. 12 is a schematic diagram of a down
  • FIG. 14 is a schematic diagram of a downlink subframe time-frequency structure according to an application example 5 of the present invention
  • FIG. 15 is a schematic diagram of a downlink subframe time-frequency structure according to an application example 6 of the present invention
  • FIG. 16 is a schematic diagram of an application example 7 according to the present invention
  • FIG. 17 is a schematic diagram of a downlink subframe hopping structure according to an application example 8 of the present invention
  • FIG. 18 is a schematic diagram of a downlink subframe hopping structure according to an application example 9 of the present invention.
  • FIG. 4 is a flowchart of an information transmission method according to an embodiment of the present invention. As shown in FIG. 4, the method includes the following steps: Step S402: The base station determines a receiving bandwidth of the terminal. The component carrier that is smaller than the system bandwidth or accessed by the terminal is a new type of component carrier. Step S404: The base station transmits the downlink data to the terminal within the receiving bandwidth of the terminal according to the preset radio frame, the subframe, the time domain, and the frequency domain resource.
  • the base station determines, according to the preset radio frame, subframe, time domain, and frequency domain resources, that the base station determines that the receiving bandwidth of the terminal is smaller than the system bandwidth or the component carrier accessed by the terminal is an NCT.
  • the downlink transmission is performed in the receiving bandwidth corresponding to the terminal, which provides a technical basis for the terminal to receive downlink data when the system bandwidth is greater than its own receiving bandwidth, and solves the problem of how to correctly receive downlink information in the related art for the downlink small bandwidth.
  • the problem is that different types of terminals can exist in the system at the same time, which improves the scope of application of the system.
  • the foregoing UE may include an MTC UE or a bandwidth limited UE with low cost bandwidth limitation (for example, cost lower than a preset value and bandwidth limited).
  • the base station may determine a radio frame, a subframe, a preset time domain, and a frequency domain resource location by using a preset (ie, predefined) manner, or the base station may also send the indication information to the terminal.
  • Determining a subframe position, a preset time domain, and a frequency domain resource location where the indication information is used to indicate a preset subframe position, a time domain, and a frequency domain resource location, or the base station may further determine a radio frame according to a preset setting.
  • One or more of a subframe, a time domain, and a frequency domain resource, and the remaining information may be determined according to the indication information sent by the base station to the terminal. In this way, the flexibility of the solution is improved.
  • the starting position of the time domain resource may be set on the nth Orthogonal Frequency Division Multiplexing (OFDM) symbol of the downlink subframe, where 0 niS 5 . In this way, the control information area in the legacy LTE system is avoided.
  • the preset time domain resource location may also remove the secondary synchronization signal (Secondary)
  • the Synchronization Signal (SSS), the Primary Synchronization Signal (PSS), and the Physical Broadcast Channel (PBCH) are OFDM symbols.
  • the foregoing indication information may be sent by using at least one of the following manners: being carried on the PBCH; being carried on the public channel of the UE; being jointly encoded with the control information of the UE and being carried on the control channel region of the UE; After being separately encoded, it is carried on an enhanced PCFICH (referred to as ePCFICH); and is carried on a Radio Resource Control (RRC) signaling.
  • ePCFICH enhanced PCFICH
  • RRC Radio Resource Control
  • the paging message in the System Information Block (SIB) carried by the public channel or the message 2 (message 2) and the message in the random access may be carried. 4 (message 4).
  • the ePCFICH may be located in one of the following positions in the subframe: on the first OFDM symbol of the second slot; on the k+1th OFDM symbol of the first slot, where k is the receiving bandwidth The maximum number of control information symbols corresponding to the legacy UE of the system bandwidth; the symbol occupied by the Demodulation Reference Signal (DMRS).
  • SIB System Information Block
  • the ePCFICH may be located in one of the following positions in the subframe: on the first OFDM symbol of the second slot; on the k+1th OFDM symbol of the first slot, where k is the receiving bandwidth The maximum number of control information symbols corresponding to the legacy UE of the system bandwidth; the symbol occupied by the Demodulation Reference Signal (DMRS).
  • DMRS Demodulation Reference Signal
  • the preset frequency domain resource location may be a central frequency domain location of the system bandwidth in the subframe; or may be subframes 0 and 5 of the FDD, and a child of the TDD. a central frequency domain position of the system bandwidth in at least one of the frames 0 and 5, and a predetermined position in the other subframes in the preset subframe position, wherein the predetermined position may be determined by the indication information, or It can be determined by a predefined hopping pattern.
  • the preset frequency domain resource location is fixed, or in the subframe 1 and the subframe 6 of the TDD, the preset frequency domain resource location is fixed.
  • the downlink data transmitted by the time-frequency resource in the downlink subframe may include at least one of the following: data carried by the PDCCH of the UE, data carried by the PCFICH of the UE, data carried by the PHICH of the UE, and data carried by the PDSCH of the UE.
  • the data carried by the enhanced PDCCH (referred to as ePDCCH), the data carried by the ePCFICH, and the data carried by the PHICH (referred to as ePHICH) are enhanced.
  • the PDCCH, the PCFICH, and the PHICH of the UE are the same as the channel structure of the legacy UE whose receiving bandwidth is equal to the system bandwidth, and are located in the receiving bandwidth of the UE in the foregoing step S402 in the system bandwidth.
  • the starting position of the time domain resource of the PDSCH of the UE may be the same as the ePDCCH, or may also be indicated by the ePCFICH.
  • the frequency domain resource location of the PDSCH of the UE may be indicated by the PDCCH or ePDCCH of the UE.
  • the PDCCH and the PDSCH of the first UE are transmitted in different subframes, and the PDCCH uses the cross-subframe to schedule the PDSCH.
  • the downlink data is data carried by the physical downlink shared channel (PDSCH) of the first UE, when the first UE is in the RACH process or initial access, the downlink data is in the preset frequency.
  • PDSCH physical downlink shared channel
  • the downlink data is selected to be sent in the frequency domain resource location corresponding to the indication information; or, when the first UE is in the RACH process or initial access, The downlink data is selected and sent in the preset frequency domain resource, and then the downlink data of the first UE is selected to be sent in a frequency domain resource location corresponding to the system bandwidth.
  • the downlink data is selected to be sent in the preset frequency domain resource in all downlink subframes.
  • the PDCCH is repeatedly transmitted, or the PDSCH continuously repeats the UE.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by at least one of the SI-RNTI, the RA-RNTI, the P-RNTI, and the Temp-C-RNTI is selected for transmission in the preset frequency domain resource.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by the C-RNTI is selected for transmission in the frequency domain resource indicated by the signaling, or the frequency of the PDSCH scheduled by the C-RNTI scrambled PDCCH/ePDCCH is corresponding to the system bandwidth. Select to send within the domain resource.
  • the frequency domain resources selected for transmission are discrete.
  • the first UE includes an MTC UE whose cost is lower than a preset value and the bandwidth is limited, or the bandwidth is limited, and the information transmission method is further provided in the embodiment.
  • the device is used to implement the above embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 5 is a structural block diagram of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG.
  • the apparatus includes: a first determining module 52 and a transmission module 54, and each module will be described in detail below.
  • the first determining module 52 is configured to determine that the receiving bandwidth of the terminal is smaller than the system bandwidth or the component carrier accessed by the terminal is a new type of component carrier;
  • the transmitting module 54 is coupled to the first determining module 52, and is configured to follow the preset wireless
  • the frame, subframe, time domain, and frequency domain resources transmit downlink data to the terminal within the receiving bandwidth of the terminal.
  • the first determining module 52 of the base station determines that the receiving bandwidth of the terminal is smaller than the system bandwidth or the component carrier accessed by the terminal is NCT, and the transmitting module 54 follows the preset radio frame and subframe.
  • FIG. 6 is a flowchart of another information transmission method according to an embodiment of the present invention. As shown in FIG.
  • the method includes the following steps: Step S602, the terminal Determining that the receiving bandwidth of the terminal is smaller than the system bandwidth or the component carrier accessed by the terminal is a new type of component carrier; Step S604: The terminal receives the downlink data in the receiving bandwidth according to the preset radio frame, the subframe, the time domain, and the frequency domain resource.
  • the terminal performs the receiving bandwidth according to the preset radio frame, subframe, time domain, and frequency domain resources.
  • the terminal receives the downlink data when the system bandwidth is greater than its own receiving bandwidth, and solves the problem of how to correctly receive the downlink information in the downlink technology in the case of the downlink small bandwidth, so that the system can At the same time, different types of terminals exist, which improves the scope of application of the system.
  • the foregoing UE may include a low cost bandwidth limited MTC UE. In this way, technical support is provided for the transfer of M2M services to large bandwidth systems (eg, LTE systems).
  • the terminal may determine a radio frame, a subframe, a preset time domain, and a frequency domain resource by using a preset (ie, predefined) manner, or the terminal may also receive the indication information from the base station. Determining a radio frame, a sub-frame, a preset time domain, and a frequency domain resource, where the indication information is used to indicate a preset subframe, a time domain, and a frequency domain resource location, or the terminal may further determine a radio frame according to a preset setting. One or more of the subframe, the time domain, and the frequency domain resource, and the remaining information may be determined according to the received indication information from the base station. In this way, the flexibility of the solution is improved.
  • the start position of the time domain resource may be set on the nth orthogonal frequency division multiplexing OFDM symbol of the downlink subframe, where 0 n3 ⁇ 4S5; or the terminal may also detect itself by blind detection. Control the area, and use the first OFDM symbol outside the control area as the starting position of the time domain resource.
  • the preset time domain resource location may also remove OFDM symbols other than SSS, PSS, and PBCH.
  • the preset frequency domain resource location may be a central frequency domain location of the system bandwidth in the subframe; or may be subframes 0 and 5 of the FDD, and a child of the TDD.
  • the preset frequency domain resource location is fixed.
  • the downlink data transmitted by the time-frequency resource in the downlink subframe may include at least one of the following: data carried by the PDCCH of the UE, data carried by the PCFICH of the UE, data carried by the PHICH of the UE, UE The data carried by the PDSCH, the data carried by the UE's enhanced PDCCH (abbreviated as ePDCCH), the data carried by the UE's ePCFICH, and the data carried by the UE's enhanced PHICH (abbreviated as ePHICH).
  • ePDCCH enhanced PDCCH
  • ePHICH enhanced PHICH
  • the PDCCH, the PCFICH, and the PHICH of the UE are the same as the channel structure of the legacy UE whose receiving bandwidth is equal to the system bandwidth, and are located in the receiving bandwidth of the UE in the foregoing step S402 in the system bandwidth.
  • the starting position of the time domain resource of the PDSCH of the UE may be the same as the ePDCCH, or may also be indicated by the ePCFICH.
  • the frequency domain resource location of the PDSCH of the UE may be indicated by the PDCCH or ePDCCH of the UE.
  • the PDCCH and the PDSCH of the UE are transmitted in different subframes, and the PDCCH uses the cross-subframe to schedule the PDSCH.
  • the downlink data is data carried by the physical downlink shared channel (PDSCH) of the UE
  • the downlink data is selected to be sent in the preset frequency domain resource
  • the downlink data of the UE is selected.
  • the transmission is selected in the frequency domain resource location corresponding to the indication information; or, when the UE is in the RACH process or the initial access, the downlink data is selected to be sent in the preset frequency domain resource, and then the downlink data of the UE is corresponding to the system bandwidth.
  • Select to send within the frequency domain resource location Preferably, for the UE with limited coverage, the downlink data is selected to be sent in all the downlink subframes in the preset frequency domain resources.
  • the PDCCH is repeatedly transmitted, or the PDSCH continuously repeats the UE.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by at least one of SI-RNTI, RA-R TI, P-RNTI and Temp-C-RNTI is selected for transmission in a preset frequency domain resource.
  • the PDCCH/ePDCCH-scheduled PDSCH that is scrambled by the C-NTI is selected for transmission in the frequency domain resource indicated by the signaling, or the C-RNTI-scrambled PDCCH/ePDCCH-scheduled PDSCH is in the frequency domain corresponding to the system bandwidth. Select to send within.
  • the frequency domain resources selected for transmission are discrete.
  • another information transmission device is provided in the embodiment, which is located in the terminal, and is used to implement the foregoing embodiments and preferred embodiments.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 7 is a structural block diagram of another information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes: a second determination module 72 and a reception module 74. Each module will be described in detail below.
  • the second determining module 72 is configured to determine that the receiving bandwidth of the system is smaller than the system bandwidth or the component carrier that is accessed is a new type of component carrier.
  • the receiving module 74 is coupled to the second determining module 72 and configured to follow the preset radio frame. Subframe, time domain, and frequency domain resources receive downlink data within the receive bandwidth. In this embodiment, when the second determining module 72 of the terminal determines that the receiving bandwidth is smaller than the system bandwidth or the accessed component carrier is the NCT, the receiving module 74 follows the preset radio frame, subframe, and time domain.
  • the frequency domain resource receives the downlink data sent by the base station in the receiving bandwidth, and implements the terminal to receive the downlink data when the system bandwidth is greater than the receiving bandwidth of the system, and solves the problem of how to correctly receive the downlink in the related technology for the downlink small bandwidth.
  • the problem of information makes it possible to have different types of terminals in the system at the same time, which improves the scope of application of the system.
  • a corresponding design scheme is provided for the time-frequency domain position of the small bandwidth in the coexisting large-bandwidth downlink subframe, which ensures that the small-bandwidth MTC UE can successfully receive the downlink data and seamlessly access the LTE network system.
  • a downlink information transmission method is proposed, that is, a method for determining a downlink time-frequency resource location of a small bandwidth terminal in a large bandwidth system, to solve the problem that the UE can be correct.
  • the downlink information transmission method may include: when the system bandwidth is greater than the terminal predefined bandwidth, the terminal determines, according to the predefined or the signaling indication sent by the base station, the radio frame number where the terminal downlink information is located, the subframe number in the radio frame, and corresponding The time-frequency domain resource location of the subframe, and receiving downlink data within a predefined bandwidth of the terminal of the corresponding subframe.
  • the terminal may receive downlink data within the system bandwidth;
  • the time-frequency resource of the downlink subframe transmits the PDCCH, PCFICH, PHICH and PDSCH or ePDCCH, ePCFICH, ePHICH and PDSCH of the UE; preferably, the terminal may indicate all subframes and only some according to predefined or signaling requirements.
  • the time-frequency resources of the partial subframes receive downlink data within a predefined bandwidth.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the UE is carried by the UE's proprietary public channel; or, preferably, the base station carries the signaling in the control channel region of the UE by means of joint coding with the UE control information; or, the signaling is separately encoded and carried on the ePCFICH;
  • the ePCFICH is located on the first OFDM symbol of the second slot of the subframe or the k+1th OFDM symbol of the first slot, where k is the number of symbols of the legacy UE control information; or, the ePCFICH is located in the DMRS (demodulation reference signal) is occupied by the symbol; mode 3, the UE determines the start position of the time domain resource of its corresponding subframe by blindly detecting its own control region; at this time, the control region of the UE The domain is located in the second time slot of the subframe; preferably, the time domain resource removes the control region of the legacy UE for the subframe, and the SSS (secondary signal), the PSS (primary synchronization signal),
  • the frequency domain resource location of the UE downlink corresponding subframe is determined by one of the following manners: In the first manner, the UE determines, by using a predefined manner, that the frequency domain location of the subframe is the central frequency domain location of the system bandwidth; Manner 2: The frequency domain location of the UE is fixed in the center frequency domain of the system bandwidth in subframe 0 and subframe 5 of the FDD and subframe 0, 5 of the TDD, and the positions of other downlink subframes are indicated according to signaling or pre- Defining the pattern hopping determination; Preferably, the signaling indication is carried by the PBCH, or by the UE-specific public channel bearer; preferably, the frequency position of the UE in the TDD special subframe DwPTS is fixed, or the subframe in the TDD
  • the preset frequency domain resource location is fixed.
  • the PDSCH frequency domain location of the UE is indicated by the PDCCH or the ePDCCH of the UE.
  • the frequency domain location of the ePDCCH is predefined as two edges of the small bandwidth.
  • Each m PRBs are carried, or consecutive k PRBs in a small bandwidth; preferably, the PDCCH and the PDSCH of the UE are transmitted in different subframes, and the PDCCH uses the cross-subframe to schedule the PDSCH.
  • the downlink data is the data carried by the PDSCH of the UE
  • the downlink information is in the frequency domain position of the subframe, and different frequency domain location determining manners are adopted according to different time periods of the UE accessing the network.
  • the downlink data is selected and sent in the preset frequency domain resource, and then the downlink data of the UE is selected to be sent in the frequency domain resource location corresponding to the indication information; or, the UE is in the RACH process or
  • the downlink data is selected and sent in the preset frequency domain resource, and then the downlink data of the UE is selected to be sent in the frequency domain resource location corresponding to the system bandwidth.
  • the downlink data is selected to be sent in all the downlink subframes in the preset frequency domain resources.
  • the PDCCH is repeatedly transmitted, or the PDSCH continuously repeats the UE.
  • the PDSCH scheduled by the PDCCH/ePDCCH scrambled by at least one of the SI-RNTI, the RA-RNTI, the P-RNTI, and the Tenip-C-RNTI is selected for transmission in the preset frequency domain resource.
  • the PDCCH/ePDCCH scheduled PDSCH scrambled by the C-RNTI is selected for transmission in the frequency domain resource indicated by the signaling, or the C-RNTI scrambled PDCCH/ePDCCH scheduled PDSCH is in the frequency domain corresponding to the system bandwidth. Select to send within.
  • the frequency domain resources selected for transmission are discrete.
  • the UE may detect downlink information such as downlink control and service only on the time-frequency resource of the corresponding subframe that carries the downlink information of the UE.
  • the foregoing UE includes a low cost bandwidth limited MTC UE or a bandwidth limited UE.
  • the above method can be applied to an LTE UE, and is particularly suitable for an MTC UE. By using the method proposed in the following preferred embodiments, the LTE-based terminal equipment cost can be greatly reduced without affecting the performance of the LTE system.
  • Embodiment 1 This embodiment describes a method for transmitting downlink information of a small-bandwidth UE on a base station side.
  • FIG. 8 is a schematic flowchart of a downlink information transmission process of a base station according to Embodiment 1 of the present invention. As shown in FIG.
  • the process includes the following steps: S802.
  • the base station for example, the eNodeB
  • the UE when transmitting the downlink physical channel of the UE, mapping the downlink information of the UE to a corresponding time-frequency domain location within a predefined bandwidth of the UE configuration subframe.
  • the UE may include the MTC UE.
  • it may be a low cost bandwidth limited MTC UE or a bandwidth limited UE.
  • the UE pre-defined supported system bandwidth is 1.4 MHz, 3 MHz or 5 MHz; preferably, when transmitting the downlink physical channel of the UE, the eNodeB first determines whether the system bandwidth is greater than the predefined bandwidth of the UE, and if so, The downlink physical channel of the UE is mapped to the time-frequency domain location of the UE predefined bandwidth of the configuration subframe; if not (less than or equal to), the downlink physical channel of the UE is sent according to the related art.
  • the downlink physical channel includes a PDCCH, a PCFICH, a PHICH, and a PDSCH of the UE, or an ePDCCH, an ePCFICH, an ePHICH, and a PDSCH, or at least one of a PDCCH, a PCFICH, a PHICH, an ePDCCH, and a PDSCH; the base station may send the subframe on all the subframes.
  • the downlink information of the UE may also be sent only on certain subframes, and the specific configuration may be notified to the UE by means of a predefined manner or signaling.
  • the signaling indicates that the subframe configuration information of the frame can be carried by the PBCH on the subframe 0.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station implicitly indicates the starting position of the time domain resource of the UE by using the configured location of the control area of the UE in the subframe.
  • the starting symbols of the UE of the small bandwidth are controlled by the legacy UE. Regional, this will not waste resources.
  • the number of symbols occupied by the legacy UE control region is implicitly mapped by the offset of the control region of the UE relative to the second slot or by the number of symbols occupied by the UE control information.
  • the time domain location is a configuration subframe in which the control region of the legacy UE is removed, and the remaining OFDM symbols of the SSS (Secondary Synchronization Signal), PSS (Primary Synchronization Signal), and PBCH (Physical Broadcast Channel).
  • SSS Secondary Synchronization Signal
  • PSS Primary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the method for determining the frequency domain resource location of the downlink subframe of the UE may include one of the following manners: In the first manner, the base station pre-defines the frequency domain resource of the UE in the central frequency domain of the system bandwidth of the configuration subframe; The domain location is at least one of subframe 0 and subframe 5 of the FDD and the subframes 0, 5 of the TDD are fixed to the central frequency domain location of the system bandwidth, and the frequency domain locations of the other configured downlink subframes are in accordance with signaling indications or predefined patterns.
  • the base station notifies the UE of the signaling through the PBCH bearer; preferably, the frequency position in the TDD special subframe DwPTS is fixed, or in the subframe 1 and the subframe 6 of the TDD, the preset The frequency domain resource is fixed in position; in step S804, the eNodeB carries the downlink information of the UE and sends the downlink information on the downlink physical channel of the configuration subframe.
  • Embodiment 2 This embodiment describes a specific process of receiving a downlink information of a small bandwidth from the UE side.
  • FIG. 9 is a schematic diagram of a process of receiving downlink information of an MTC terminal according to Embodiment 2 of the present invention, as shown in FIG.
  • Step S902 The UE determines whether the system bandwidth is greater than its own predefined bandwidth. If yes, step S904 is performed. Otherwise, step S906 is performed. Preferably, the UE determines by receiving system bandwidth information carried by the PBCH on subframe 0. Step S904, the UE receives the downlink physical channel in the entire system bandwidth according to the related technology.
  • the predefined bandwidth of the UE is smaller than the system bandwidth; preferably, the UE may include an MTC UE, and the UE pre-defined supported system bandwidth is 1.4 MHz,
  • Step S906 The UE detects, in a time-frequency domain location on a subframe that includes the UE downlink information, a downlink physical channel in the received bandwidth.
  • the downlink physical channel includes a PDCCH, a PCFICH, a PHICH, and a PDSCH of the UE, or an ePDCCH, an ePCFICH, an ePHICH, and a PDSCH, or at least one of a PDCCH, a PCFICH, a PHICH, an ePDCCH, and a PDSCH;
  • the method for determining includes the following - mode 1, the time domain resource of the UE is predefined from the nth orthogonal frequency division multiplexing (OFDM, of the configuration subframe)
  • the UE determines a specific time domain location by receiving a signaling indication sent by the base station; preferably,
  • the UE obtains its own time domain location configuration information by receiving the PBCH; or learns by decoding its own control information; or decodes the ePCFICH to learn; Preferably, the UE first blindly checks its own control information on the allocated subframe, and then decodes and obtains the CFI information of the legacy UE, thereby knowing the number of OFDM symbols occupied by the legacy UE control region, and then receiving its own downlink from the next symbol. information.
  • the time domain resource of the UE is determined by blindly detecting the area occupied by the control information of the UE.
  • the UE blindly checks its DCI information from the second time slot of the configuration subframe, and the obtained control area is compared with The number of offset symbols at the initial position of the second slot or the number of symbols occupied by the DCI implicitly obtains the number of symbols occupied by the legacy UE control region.
  • the time domain position on the configuration subframe where the UE is located is a control area excluding the legacy UE, and an SSS (Secondary Synchronization Signal), a PSS (Primary Synchronization Signal), and a PBCH (Physical Broadcast Channel) residual OFDM symbol.
  • the UE downlink subframe frequency domain resource location determining manner includes one of the following modes: Mode 1, predefined in a central frequency domain location of the system bandwidth; Mode 2, in subframe 0 and subframe 5 of FDD and subframe 0 of TDD, 5 is fixed to the central frequency domain location of the system bandwidth, and the location of the other downlink subframes is determined according to the signaling indication or the predefined pattern frequency hopping; preferably, the UE learns the configuration subframe frequency domain resource signaling of the base station by reading the PBCH; Preferably, the frequency position in the TDD special subframe DwPTS is fixed, or in the subframe 1 and the subframe 6 of the TDD, the preset frequency domain resource location is fixed; preferably, the PDSCH frequency domain location of the UE is determined by the PDCCH.
  • Mode 1 predefined in a central frequency domain location of the system bandwidth
  • Mode 2 in subframe 0 and subframe 5 of FDD and subframe 0 of TDD, 5 is fixed to the central frequency domain location of the system bandwidth
  • the bandwidth-limited MTC UE is taken as an example.
  • the receiving and transmitting bandwidth of the MTC UE can be preset to a small bandwidth supported by an LTE system such as 1.4 MHz or 3 MHz or 5 MHz.
  • the channel identifiers associated with the MTC UE are M-PDCCH, M-PCFICH, M-PHICH, and M-PDSCH.
  • Application Example 1 This application example describes the case of subframe 0 of the FDD system, which may or may not include the downlink control and service information of the MTC UE.
  • the configuration information is predefined or signaled.
  • the method informs the UE.
  • FIG. 10 is a schematic diagram of a time-frequency structure of a downlink subframe according to an application example 1 of the present invention.
  • the channel structure of the subframe 0 is as shown in FIG. 10, and the system bandwidth is assumed to be 10 MHz:
  • the M-PDSCH channel frequency domain resource of the MTC UE is the middle 6 PRB of the system bandwidth, and the time domain resource starts from the fourth OFDM symbol, and removes the remaining OFDM symbols of the PBCH, SSS, and PSS.
  • the region may be scheduled across the subframe by using the PDCCH of the MTC UE of the other subframe or the ePDCCH.
  • the MTC UE directly checks its own M-PDSCH data.
  • This application example describes the case of the FDD system subframe 5. This subframe may or may not include the downlink control and service information of the MTC UE. The related configuration information is notified to the UE by means of pre-defined or signaling.
  • the control and services of the MTC UE are all included as an example for description.
  • the channel of the UE at this time includes M-PDCCH, M-PCFICH, M-PHICH, and M-PDSCH. And the frequency domain location of the M-PDSCH of each UE is indicated by the M-PDCCH on the subframe.
  • 11 is a schematic diagram of a time-frequency structure of a downlink subframe according to an application example 2 of the present invention. For a subframe 5, the channel structure is as shown in FIG. 11, and the system bandwidth is still 10 MHz:
  • the frequency domain of the MTC UE is the middle 6 PRB of the system bandwidth, and the time domain resource is from the third OFDM symbol, except for the SSS, the remaining OFDM symbols of the PSS.
  • the UE may obtain the channel information by using a predefined manner or a signaling indication sent by the base station, and then receiving downlink data at a corresponding time-frequency location of the subframe.
  • Application Example 3 This application example describes a case where the downlink system bandwidth is 10 MHz, and the maximum reception bandwidth of the MTC UE is 1.4 MHz, and 6 PRBs are used.
  • the downlink subframes configured for the MTC UE, and the time-frequency domain locations on the subframes are all determined in a predefined manner. For example, the downlink information of the MTC UE is transmitted only on the even subframe or the odd subframe.
  • FIG. 12 is a schematic diagram of the time-frequency structure of the downlink subframe according to the application example 3 of the present invention.
  • the specific location of the resource is as shown in FIG. 12, and the channel structure of the UE includes M-PDCCH, M-PCFICH, M-PHICH and M-PDSCH.
  • the base station first compares the system bandwidth with the predefined bandwidth of the MTC UE, where is greater than, and then performs the special small bandwidth time-frequency domain resource mapping of the downlink information of the MTC UE according to the foregoing predefined manner, and downlinks The signal is sent out.
  • the MTC UE After reading the system bandwidth in the PBCH, the MTC UE first compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this. Then, the MTC UE sequentially receives the M-PCFICH, the M-PHICH, and the M-PDCCH of its own in the middle of the fourth PRB of the fourth OFDM symbol of the system bandwidth of the predefined downlink subframe according to the foregoing predefined manner, and then according to the M-PDCCH, and then according to the M-PDCCH, The blindly detected DCI (downlink control information) decodes and receives the corresponding M-PDSCH to complete the correct reception of the small bandwidth downlink channel.
  • DCI downlink control information
  • Application Example 4 This application example describes a case where the system bandwidth is 5 MHz, the transmission and reception bandwidth of the MTC UE is 1.4 MHz, and 6 PRBs are used.
  • the specific location of the time-frequency resource of the downlink subframe of the MTC UE is carried on the reserved bit in the PBCH of the subframe 0.
  • the example downlink subframe is a non-subframe 0 and a subframe 5 configured for transmitting MTC UE proprietary downlink information.
  • the channel structure of the UE still includes M-PDCCH, M-PCFICH, M-PHICH, and M-PDSCH.
  • 13 is a schematic diagram of a time-frequency structure of a downlink subframe according to an application example 4 of the present invention.
  • the base station When transmitting a subframe, the base station first compares the system bandwidth with a predefined bandwidth of the MTC UE, where it is obviously greater, and then the MTC UE The downlink information is mapped to the time-frequency domain resource as shown in FIG. 13.
  • the time domain configuration of the MTC UE can start from the first OFDM symbol, and the frequency domain is configured in the system bandwidth.
  • the edge is 6 consecutive PRBs.
  • the base station carries the location information to the PBCH, and notifies the UE in subframe 0.
  • the base station may notify the terminal of the frequency shift of the center frequency of the MTC UE bandwidth to the upward or downward frequency of the system bandwidth center frequency.
  • the MTC UE first decodes the PBCH from the fixed center position of the subframe 0, and reads the system bandwidth in the PBCH and which subframes have their own downlink information, and the above-mentioned subframe time-frequency resource configuration information, and then according to The given frequency domain offset finds its own frequency point, 6 PRBs at the edge of the system bandwidth of the corresponding configuration subframe
  • the downlink physical channel is detected, and the information in the pre-defined bandwidth is filtered out, and the interception of the small bandwidth of the MTC UE and the reception of the downlink information are completed.
  • Application Example 5 This application example describes a case where the downlink system bandwidth is 10 MHz, and the reception maximum bandwidth of the MTC UE is 1.4 MHz, and 6 PRBs are described.
  • the subframe is a corresponding subframe configured by the base station for transmitting downlink proprietary information of the MTC UE.
  • the initial location of the downlink time domain resource of the MTC UE is a location close to the traditional UE control symbol, and the frequency domain resource is a predefined middle 6 PRBs.
  • 14 is a schematic diagram of a time-frequency structure of a downlink subframe according to an application example 5 of the present invention.
  • a small bandwidth time-frequency domain subframe position of an MTC UE configured by a base station is as shown in FIG.
  • a CFI of a legacy UE is 1, That is, the control region occupies only one OFDM symbol, and the base station maps the downlink information of the MTC UE to the middle 6 PRBs of the remaining symbols starting from the second symbol. And the CFI information of the legacy UE and the control information of the UE are carried in the small bandwidth by using the joint coding manner; or, the base station may separately encode the CFI information of the legacy UE on the ePCFICH located in the PDSCH area of the legacy UE.
  • the ePCFICH time domain is located on the first OFDM symbol of the second slot of the subframe or on the second OFDM symbol of the first slot, or the ePCFICH is located on the symbol occupied by the DMRS (demodulation reference signal).
  • DMRS demodulation reference signal
  • Each PRB corresponds to 8 REs, wherein 4 REs correspond to one port, and the other 4 REs correspond to another port; when the ePDCFICH is demodulated according to CRS, the frequency domain mapping manner of the existing PCFICH is adopted. The frequency domain is within the small bandwidth reception range.
  • the MTC UE After reading the system bandwidth in the PBCH, the MTC UE first compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this. Then, the interception of the 1.4 MHz system bandwidth and the detection and reception process of the downlink physical channel of each subframe configured by the MTC UE are as follows: The MTC UE blindly checks its own control region by configuring 6 subframes in the middle of the subframe system bandwidth, and then decodes the control information.
  • the MTC UE determines the time domain start position of the small bandwidth by detecting the offset of the MTC UE control region relative to the second time slot.
  • the downlink information transmission process of the small-bandwidth MTC UE is: at the transmitting end, the base station first compares the system bandwidth with the predefined bandwidth of the MTC UE, where it is obviously greater than, and then maps the downlink information of the MTC UE to the time shown in FIG. At the frequency position, the MTC UE is informed of its frequency domain location by signaling carried on the PBCH.
  • the MTC UE After the MTC UE reads the system bandwidth and signaling in the PBCH in subframe 0, it first compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this. Then, the interception of the 1.4 MHz small bandwidth on the subsequent MTC UE configuration subframe and the detection and reception process of the downlink physical channel are as follows: First, the MTC UE blindly checks its own control in the corresponding frequency domain position of the downlink system bandwidth according to the signaling indication in the PBCH. The area, then the MTC UE implicitly values the CFI of the OL UE according to the start location of the second time slot of the blind detected control region, thereby determining the M-PDSCH time domain location of the MTC UE.
  • the MTC UE completes the correct reception of the small-bandwidth downlink physical channel in the case of large bandwidth.
  • Application Example 7 This application example describes a case where the downlink system bandwidth is 20 MHz, and the maximum reception bandwidth of the MTC UE is 1.4 MHz, and 6 PRBs are described.
  • the subframe is a corresponding subframe configured by the base station for transmitting downlink proprietary information of the MTC UE.
  • the initial position of the downlink bandwidth time domain resource of the small bandwidth MTC UE is the location of the control symbol of the legacy UE, and the frequency domain resource is notified by the signaling of the PBCH bearer.
  • the MTC UE determines the time domain start position of the small bandwidth by the mapping relationship between the number of OFDM symbols occupied by the UE control region and the CFI information of the legacy UE.
  • the channel of the UE includes M-PDCCH, M-PCFICH, M-PHICH, and M-PDSCH.
  • the control area is located on the second time slot of the configuration subframe.
  • the frequency domain location of the M-PDSCH of each UE is indicated by the M-PDCCH on the subframe.
  • Table 1 is a mapping relationship between the number of control region symbols and the CFI value according to the application example 7 of the present invention.
  • the mapping relationship between the number of symbols occupied by the predefined MTC UE control information and the CFI information of the legacy UE is as follows:
  • the downlink information transmission process of the small bandwidth MTC UE is - the transmitting end, the base station first compares the system bandwidth with the predefined bandwidth of the MTC UE, where it is obviously greater, and then maps the downlink information of the MTC UE to the time shown in FIG. At the frequency position, and by the signaling carried on the PBCH, the MTC UE is notified of the corresponding frequency domain position on the configuration subframe.
  • the MTC UE At the receiving end, after reading the system bandwidth and frequency domain indication signaling in the PBCH, the MTC UE first compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this. Then, the interception of the 1.4 MHz small bandwidth of the MTC UE and the detection and reception process of the downlink physical channel are as follows: First, the MTC UE starts from the second time slot in the subsequent corresponding configuration subframe time domain, and the frequency domain according to the signaling indication in the PBCH The corresponding frequency domain location of the downlink system bandwidth is blinded to its own control area.
  • the number of OFDM symbols occupied by the control region obtained by the blind detection of the MTC UE is 3, which is known from the mapping relationship in the predefined table 1.
  • the MTC UE downlink physical channel includes an ePDCCH, an ePCFICH, an ePHICH, and an M-PDSCH.
  • the frequency domain of the ePDCCH in the small bandwidth is two PRBs in the sideband, and the middle four PRBs are in the M-PDSCH region.
  • the frequency domain locations of the entire small bandwidth, subframe 0 and subframe 5, are fixed intermediate 6 PRBs, and the frequency domain resources of each of the other subframes are determined according to a predefined frequency hopping pattern.
  • 17 is a schematic diagram of a downlink subframe hopping structure according to an application example 8 of the present invention. The hopping pattern of the first ten subframes is as shown in FIG. 17.
  • the 10M bandwidth can multiplex N MTC UEs, and each consecutive 6 PRB resources have a number index, and the number used by the UE is notified by higher layer signaling, thereby determining a specific frequency hopping pattern for each subframe.
  • the base station needs to reserve the frequency domain resource to the MTC UE.
  • the OL small bandwidth UE downlink information transmission and reception process may also be scheduled on the frequency domain resource as follows: The transmitting end, the base station firstly sets the system bandwidth. Compared with the predefined bandwidth of the MTC UE, it is obviously greater than this.
  • the subframes 0 and 5 are the intermediate 6 PRBs of the fixed system bandwidth, and the downlink information mapping of the MTC UEs of other subframes is as shown in FIG. 17.
  • the illustrated hopping pattern is mapped to the corresponding time-frequency location, and the hopping layer number used by the MTC UE is signaled by the ⁇ layer signal carried on the PBCH.
  • the MTC UE reads the system bandwidth and the subframe number in the PBCH, and then compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this, and determines whether the subframe is subframe 0 and subframe 5 If yes, the downlink channel is received by 6 PRBs in the middle of the system bandwidth.
  • the sub-frame 0 and the sub-frame 5 configured by the base station of the entire small-bandwidth frequency-domain location are the fixed intermediate 6 PRBs of the system bandwidth, and the frequency domain resources configured by the other base stations for transmitting the corresponding subframes of the downlink proprietary information of the MTC UE are pre-defined.
  • the frequency hopping pattern is determined.
  • the time domain can be determined from a predefined symbol or as indicated by a signaling indication.
  • the frequency domain positions of the MTC UE are located on both sidebands of the system bandwidth, and each subframe is placed in the upper sideband or the lower sideband according to the order of rotation.
  • the downlink information of the MTC UE is included in each subframe as an example.
  • the process of transmitting and receiving the downlink information of the small-bandwidth UE is as follows: On the transmitting end, the base station first compares the system bandwidth with the predefined bandwidth of the MTC UE, where it is obviously greater, and then each subframe is mapped according to subframes 0 and 5. For the middle 6 PRBs of the fixed system bandwidth, the downlink information mapping of the MTC UEs of other subframes is mapped to the time-frequency position of the corresponding subframe configured by the base station according to the hopping pattern shown in FIG. 18.
  • the MTC UE At the receiving end, the MTC UE first reads the system bandwidth and the subframe configuration information in the PBCH of the subframe 0, and then compares the system bandwidth with its own predefined bandwidth, which is obviously greater than this, and determines whether the subframe is Subframe 0 and subframe 5, if so, receive the downlink channel in the middle of the system bandwidth of 6 PRBs. If not, the predefined small bandwidth is intercepted in the upper and lower edge positions of the system bandwidth of the configuration subframe according to the predefined hopping pattern, and the correct reception of the small bandwidth downlink physical channel is completed.
  • Application Example 10 This application example describes a case where the base station configures whether the subframe is information of the MTC UE.
  • the relevant downlink information of the MTC UE is included only on some predefined subframes.
  • the predefined downlink control and service information of the MTC UE are only included in the 1, 3, 5, and 7 odd-numbered subframes, or the 2, 4, 6, and 8 even-numbered subframes or the partial subframes in the 0-9. , other sub-frames are not included.
  • the relevant information of the MTC UE is placed on the predefined subframes.
  • the UE only blindly checks its own control information on the predefined subframe and receives the downlink control and service data.
  • the application example can solve the problem of MTC UE data and some special subframes, such as PSS and SSS resource conflicts on subframes 0 and 5.
  • the application example is as follows.
  • the application example pin illustrates the case where the base station is configured to include only the relevant downlink information of the MTC UE on some subframes. Preferably, the base station may default to each downlink subframe before transmitting the indication information.
  • the downlink data of the MTC UE can be transmitted. If the base station transmits the data of the MTC UE only on some subframes, the UE can notify the UE of the downlink information of the MTC UE in a specific frame.
  • the base station may indicate, in a bitmap manner, whether 10 subframes in each frame transmit information of the MTC UE, and the information may be carried on the PBCH of the subframe 0.
  • the UE can directly receive the downlink data in the corresponding subframe according to the indication.
  • the subframe 0 includes the control and service information of the MTC UE
  • the information may also be carried on the M-PDCCH or the ePDCCH of the subframe 0, so that the original DCI format needs to be modified, and the bit information is newly added.
  • Embodiment 3 describes a process of determining a frequency domain position of a PDSCH according to the method provided by the present invention when the downlink data channel is bandwidth-limited.
  • the terminal determines the frequency domain location of the small bandwidth of the PDSCH according to the time period of the access network and the different processes corresponding to the transmission data.
  • the terminal accesses the network, that is, establishes a link with the network, and completes the synchronization, that is, when the RACH process or the terminal initially accesses the network, the terminal receives the PDSCH in the preset frequency domain position of the downlink subframe, and the frequency domain Locations can be discretely distributed over a fixed bandwidth.
  • the preset frequency domain resource location here may be the central frequency domain location of the system bandwidth in the subframe, and is discrete within the fixed bandwidth; or may be subframes 0 and 5 of the FDD, and the subframe 0 of the TDD and a central frequency domain location of the system bandwidth in at least one of the subframes, and a predetermined location in the other subframes in the preset subframe position, wherein the predetermined location may be determined by the indication information, or may also be pre- The defined hopping pattern is determined. And, in the special frame of the TDD: DwPTS subframe and in subframes 1 and 6, the preset frequency domain resource location is fixed.
  • the terminal determines the frequency domain position of each subframe PDSCH dynamically or semi-statically according to the received signaling.
  • the signaling may be high-level signaling, or carried on the PBCH, or carried in a paging message in the system information block, or carried in the message 2 and the message 4 in the random access.
  • the frequency domain location of each subframe PDSCH is dynamically indicated by a PDCCH or ePDCCH across subframes.
  • the downlink data is selected to be transmitted in all the downlink subframes in the preset frequency domain resources.
  • Embodiment 4 This embodiment describes the size of the downlink control channel DCI overhead of the terminal in different frequency domain location determining modes.
  • the frequency domain location of the PDSCH is the central frequency domain location of the fixed system bandwidth, the DCI corresponding to the terminal can be compressed, and the original resource allocation bit domain is saved.
  • the frequency domain position of the PDSCH may be in a certain frequency domain position in a predefined or fixed manner, and the terminal corresponds to
  • the resource allocation bits in the DCI can also be omitted.
  • the frequency domain location of each subframe PDSCH is determined by predefining a plurality of frequency domain locations
  • the resource allocation domain in the DCI may use a bitmap to indicate to each subframe which specific frequency domain location.
  • the PDSCH of each subframe is dynamically indicated by PDCCH or ePDCCH, the DCI bit field is set in the original manner. In this way, DCI resource representation signaling can be reduced, saving overhead.
  • Embodiment 5 This embodiment describes the frequency domain position of the PDSCH according to the RNTI used for PDCCH scrambling. Specifically, when the downlink data is a PDSCH, and the corresponding PDCCH is scrambled by the SI-RNTI/RAR-RNTI, the PDSCH is selected to be sent in the preset frequency domain resource, and the frequency domain location may be in a fixed bandwidth. Internal discrete distribution.
  • the discrete bandwidth is a discrete bandwidth corresponding to the DVRB represented by the type2 resource, such as: a discrete bandwidth corresponding to the fixed DVRB#0 to DVRB#5.
  • the preset frequency domain resource location herein may be the central frequency domain location of the system bandwidth in the subframe; or may be the subframes 0 and 5 of the FDD, and the system bandwidth in at least one of the subframes 0 and 5 of the TDD.
  • the central frequency domain location, and the predetermined location in the other subframes in the preset subframe position, wherein the predetermined location may be determined by the indication information, or may also be determined by a predefined frequency hopping pattern.
  • the PDSCH selects to transmit in the frequency domain resource corresponding to the system bandwidth.
  • the frequency domain location can be dynamically determined according to the resource representation of the DCI.
  • the PDCCH and the PDSCH of the same UE are not normally transmitted in the same subframe, that is, the method of scheduling across subframes is adopted.
  • the MTC UE data can be flexibly configured and the resource utilization rate can be improved.
  • the foregoing application example is described by using the MTC UE as an example.
  • the method for transmitting the downlink physical channel, the method for transmitting and receiving can also be applied to other scenarios, and is applied to other types of UEs, including ordinary UEs with limited bandwidth, and is not limited to the MTC UE.
  • the downlink physical channel includes one or more of a PDCCH, a PCFICH, a PHICH, an ePDCCH, and a PDSCH.
  • the foregoing preferred embodiment proposes a method for determining a time-frequency resource of a low-cost bandwidth-limited MTC UE downlink system bandwidth, and according to such a method, can ensure that a small-bandwidth MTC UE successfully receives downlink control and services.
  • Information seamlessly integrated into the LTE network, facilitates the rapid evolution of M2M services from GSM systems to LTE systems.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is also provided, the software being stored, including but not limited to an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated into a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息传输方法及装置,其中,该方法包括:基站确定终端的接收带宽小于系统带宽或者该终端接入的分量载波为新类型分量载波;基站按照预设的无线帧、子帧、时域和频域资源在终端的接收带宽内将下行数据传输给终端。通过本发明,解决了相关技术中对于下行小带宽情况下如何正确接收下行信息的问题,使得系统中可以同时存在不同类型的终端,提升了系统的适用范围。

Description

信息传输方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种信息传输方法及装置。 背景技术 机器类通信(Machine Type Communication,简称 MTC)用户设备(User Equipment, 简称为 UE, 又称终端), 又称 M2M (Machine To Machine)用户通信设备, 是现阶段 物联网的主要应用形式。低功耗低成本是其可大规模应用的重要保障。 目前, M2M技 术已经得到了 NEC、 HP、 CA、 InteK IBM, AT&T等国际知名厂商的支持以及各国移 动运营商的认可。 目前市场上部署的 M2M设备主要基于全球移动通信(Global System of Mobile communication, 简称为 GSM) 系统。 近年来, 由于长期演进 (Long Term Evolution, 简称为 LTE) 的频谱效率高, 越来越多的移动运营商选择 LTE作为未来宽 带无线通信系统的演进方向。 基于 LTE的 M2M多种类数据业务也将更具吸引力。 但 是, 只有 LTE-M2M设备的成本能做到比 GSM系统的 MTC终端低, M2M业务才能 真正从 GSM转到 LTE系统上。 MTC UE的成本主要包括基带处理和射频这两方面的成本, 而减小 UE的下行接 收带宽是降低 MTC UE成本的一种非常有效的方式。 进一步分析, 降低射频带宽对成 本影响很小, 因此降低 UE基带处理带宽才能有效降低成本。 MTC UE的接收带宽可 以设置为 1.4MHz或 3MHz等 LTE系统所支持的小带宽,即 MTC UE的最大支持下行 系统带宽通常小于常规传统 LTE终端(Ordinary Legacy R8/9/10 UE,简称 OL UE)在单 个载波下所要求的最大接收带宽 20MHz。
LTE系统中的无线帧(Radio Frame,简称为 RF)包括频分双工(Frequency Division Duplex , 简称为 FDD) 模式和时分双工 (Time Division Duplex, 简称为 TDD) 模式 的帧结构。 图 1是根据相关技术的 LTE技术中 FDD模式的帧结构示意图, 如图 1所示, 一 个 10毫秒 (ms) 的无线帧由二十个长度为 0.5ms、 编号 0~19的时隙 (slot) 组成, 时 隙 2i和 2i+l组成长度为 1ms的子帧 (subframe) i„ 图 2是根据相关技术的 LTE技术中 TDD模式的帧结构示意图, 如图 2所示, 一 个 10ms的无线帧由两个长为 5ms的半帧 (half frame) 组成, 一个半帧包括 5长度为 lms的子帧, 子帧 i定义为两个长为 0.5ms的时隙 2i和 2i十 1。 在上述两种帧结构里, 对于标准循环前缀 (Normal Cyclic Prefix, 简称为 Normal CP), 一个时隙包含 Ί个长度为 66.7微秒 (us) 的符号, 其中, 第一个符号的 CP长度 为 5.21us,其余 6个符号的 CP长度为 4.69m;对于扩展循环前缀(Extended Cyclic Prefix, 简称为 Extended CP) ,—个时隙包含 6个符号,所有符号的 CP长度可以均为 16.67us。 图 3是根据相关技术的 LTE中普通下行子帧各物理信道的时频结构示意图, 如图 3所示, LTE中定义了如下几种下行物理信道: 物理下行控制格式指示信道 (Physical Control Format Indicator Channel, 简称为 PCFICH)、 物理混合自动重传请求指示信道 (Physical Hybrid Automatic Retransmission Request Indicator Channel,简禾尔为 PHICH)、 物理下行控制信道 (Physical Downlink Control Channel, 简称为 PDCCH), 以及物理 下行共享信道 (Physical Downlink Shared Channel, 简称为 PDSCH)。 其中, PCFICH位于子帧的第一个符号,用来指示 PDCCH控制信令在一个子帧中 占据符号的数目。对于下行带宽 >画的情况,控制格式指示(CFI) 可取 1、 2 或 3。 对于^^≤10¾8, 可取 234, 即 CFI+1
PHICH 位于子帧的第一个符号或者前三个符号, 用于携带对上行 PUSCH 的 ACK/NACK反馈信息。
PDCCH用于承载下行控制信息(Downlink Control Information, 简称为 DCI), 包 括: 上、下行调度信息, 以及上行功率控制信息。时域具体占据的符号数目由 PCFICH 指示, 频域位置映射到全部的系统带宽。
PDCCH的 CRC加扰由 RNTI参与, 以此来区分不同的适用场合。 与上行相关的 R TI 有: C-RNTI、 SPS C-R TI、 Temporary C-RNTI、 TPC-PUCCH-RNTI、 TPC-PUSCH-RNTI。 与下行相关的 RNTI有 SI-R TI、 RA-RNTK P-R TK C-R TK SPS C- NTK Temporary C-RNTI。 各种 RNTI的作用分类如下:
( 1 ) SI-RNTI: 系统消息;
(2 ) P-RNTI: 寻呼;
(3 ) RA-RNTI: 标示用户发随机接入前导所使用的资源块; (4) C-RNTI: 用户业务;
(5 ) Temp-C-RNTI: 随机接入时使用;
(6) TPC-PUCCH-R TI: PUCCH上行功控信息;
(7) TPC-PUSCH-RNTI: PUSCH上行功控信息; (8 ) SPS C-RNTI的用法和 C-RNTI是一样的, 只是使用半静态调度的时候才用。
PDSCH用来传输系统共有消息, 寻呼消息以及下行数据业务, PDSCH在子帧中 的具体频域位置由 PDCCH指示, 时域位置从控制区域的下一个 OFDM符号开始。 增强 PDCCH (enhanced PDCCH, 简称为 ePDCCH)、 增强 PCFICH (enhanced PCFICH, 简称为 ePCFICH) 以及增强 PHICH (enhanced PHICH, 简称为 ePHICH) 所传输控制信息的内容和原有 PDCCH, PCFICH,以及 PHICH相同,但位于原有 PDSCH 区域内,且占据的频域资源小于 1.4MHz。 MTC UE因带宽受限不能完全接收原有宽带 控制信息, 但能接收增强的窄带控制信息。 另外, 随着 LTE-A载波聚合技术的发展, LTE R11中提出了一种新类型的分量载波 (New Carrier Type, 简称为 NCT), 这种载 波的详细特性还在讨论中。 该类型载波利用 ePDCCH进行控制信息的传输。 低成本带宽受限的 MTC UE接入 LTE系统,首先要解决的就是小带宽的时频域位 置确定问题, 因此, 基站为确保 OL UE和 MTC UE都能接收到相关信息, 必须设计 两种 UE共存的信道结构, 特别要确保小带宽 MTC UE的相关信息能在大带宽合适的 时频域位置上。 这样, MTC UE才能正确接收到自己的下行信息。 针对相关技术中对于下行小带宽情况下如何正确接收下行信息的问题, 目前尚未 提出有效的解决方案。 发明内容 针对相关技术中对于下行小带宽情况下如何正确接收下行信息的问题, 本发明提 供了一种信息传输方案, 以至少解决上述问题。 根据本发明的一个方面, 提供了一种信息传输方法, 包括: 基站确定第一 UE的 接收带宽小于系统带宽或者所述第一 UE接入的分量载波为 NCT; 所述基站按照预设 的无线帧、 子帧、 时域和频域资源在所述第一 UE的接收带宽内将下行数据传输给所 述第一 UE。 优选地, 所述基站按照预设的无线帧、 子帧、 时域和频域资源在所述第一 UE的 接收带宽内将下行数据传输给所述第一 UE之前, 还包括: 所述基站根据预先的设置 确定所述无线帧、 子帧、 时域和频域资源; 或者, 所述基站向所述第一 UE发送指示 信息, 其中, 所述指示信息用于指示所述无线帧、 子帧、 时域和频域资源; 或者, 所 述基站根据预先的设置确定所述无线帧、 子帧、 时域和频域资源中一个或多个, 剩余 信息根据所述基站向所述第一 UE发送的所述指示信息确定。 优选地, 所述预设的时域资源位置的起始位置包括: 下行子帧的第 n个 OFDM符 号, 其中, 0 n 5。 优选地, 所述预设的时域资源位置包括: 除 SSS、 PSS以及 PBCH之外的 OFDM 符号。 优选地, 所述指示信息通过以下方式至少之一发送: 承载在 PBCH上; 承载在所 述第一 UE的公有信道上; 与所述第一 UE的控制信息联合编码后承载在所述第一 UE 的控制信道区域上; 单独编码后承载在 ePCFICH上; 承载在 RRC信令上。 优选地,承载在所述第一 UE的公有信道上包括:承载在所述公有信道承载的 SIB 中的寻呼消息或者随机接入中的 message 2以及 message 4中。 优选地,所述 ePCFICH位于子帧中的以下位置之一:第二个时隙的第一个 OFDM 符号上; 第一个时隙的第 k+1个 OFDM符号上, 其中, k为接收带宽等于所述系统带 宽的第二 UE对应的控制信息符号最大数目; DMRS所占据的符号上。 优选地, 所述预设的频域资源位置包括以下之一: 子帧中所述系统带宽的中心频 域位置; 子帧 0和 5中至少一个子帧中所述系统带宽的中心频域位置, 以及所述子帧 位置中其他子帧的预定位置, 其中, 所述预定位置通过所述指示信息确定或者预设跳 频图样确定。 优选地,在 TDD的 DwPTS子帧中,所述预设的频域资源位置固定,或者,在 TDD 的子帧 1和子帧 6中, 所述预设的频域资源位置固定。 优选地, 所述下行数据包括以下至少之一: 所述第一 UE的 PDCCH数据, 所述 第一 UE的 PCFICH数据, 所述第一 UE的 PHICH数据, 所述第一 UE的 PDSCH承 载的数据, ePDCCH承载的数据, ePCFICH承载的数据, ePHICH承载的数据。 优选地, 所述第一 UE的 PDCCH、 PCFICH以及 PHICH与接收带宽等于所述系 统带宽的第二 UE的信道结构相同, 且位于所述系统带宽中的所述第一 UE的接收带 宽内。 优选地, 所述第一 UE的 PDSCH的时域资源的起始位置与 ePDCCH相同, 或者 通过 ePCFICH指示。 优选地, 所述第一 UE的 PDSCH的频域资源位置通过所述第一 UE的 PDCCH或 者 ePDCCH指示。 优选地, 所述 ePDCCH的频域资源位置为所述第一 UE接收带宽内的连续 p个 PRB, p为正整数, 或者所述第一 UE的接收带宽的两个边带上各 m个 PRB, 其中, m=p/2, p为偶数。 优选地, 所述第一 UE的 PDCCH和 PDSCH在不同的子帧上传输, PDCCH采用 跨子帧调度 PDSCH。 优选地,所述下行数据为所述第一 UE的物理下行共享信道 PDSCH承载的数据时, 所述第一 UE在 ACH过程或初始接入的时候, 所述下行数据在所述预设的频域资源 内选择发送, 之后, 所述第一 UE的所述下行数据在所述指示信息对应的频域资源位 置内选择发送; 或者, 所述第一 UE在 RACH过程或初始接入的时候, 所述下行数据 在所述预设的频域资源内选择发送, 之后, 所述第一 UE的所述下行数据在系统带宽 对应的频域资源位置内选择发送。 优选地,对于覆盖受限的第一 UE,所述下行数据在所有下行子帧均在所述预设的 频域资源内选择发送。 优选地, 对于覆盖受限的 UE为: PDCCH重复传输, 或者, PDSCH连续重复传 输的 UE。 优选地, 以 SI-RNTI , RA-RNTI , P-RNTI , Tenip-C-RNTI 中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设的频域资源内选择发送。 优选地,以 C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在所述信令指示的频 域资源内选择发送, 或者, C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带 宽对应的频域资源内选择发送。 优选地, 所述选择发送的频域资源在固定带宽内是离散的。 优选地, 所述第一 UE包括成本低于预设值且带宽受限的 MTC UE或带宽受限的 根据本发明的另一方面, 提供了一种信息传输方法, 包括: UE确定自身的接收带 宽小于系统带宽或者所述终端接入的分量载波为 NCT; 所述终端按照预设的无线帧、 子帧、 时域和频域资源在所述接收带宽内接收下行数据。 优选地, 所述终端按照预设的无线帧、 子帧、 时域和频域资源位置在所述接收带 宽内接收下行数据之前, 还包括: 所述终端根据预先的设置确定所述无线帧、 子帧、 预设的时域和频域资源位置; 或者, 所述终端接收来自基站的指示信息, 其中, 所述 指示信息用于指示所述预设的子帧、 时域和频域资源位置; 或者, 所述终端根据预先 的设置确定所述无线帧、 子帧、 时域和频域资源中一个或多个, 剩余信息根据接收到 的来自所述基站的所述指示信息确定。 优选地, 所述预设的时域资源位置的起始位置包括以下之一: 下行子帧的第 n个 OFDM符号, 其中, 0sSnsS5; 所述 UE盲检测出的自身控制区域之外的第一个 OFDM 符号。 优选地, 所述预设的时域资源位置包括: 除 SSS、 PSS以及 PBCH之外的 OFDM 符号。 优选地, 所述预设的频域资源位置包括以下之一: 子帧中所述系统带宽的中心频 域位置; 子帧 0和 5中至少一个子帧中所述系统带宽的中心频域位置, 以及所述子帧 位置中其他子帧的预定位置, 其中, 所述预定位置通过所述指示信息确定或者预设跳 频图样确定。 优选地,在 TDD的 DwPTS子帧中,所述预设的频域资源位置固定,或者,在 TDD 的子帧 1和子帧 6中, 所述预设的频域资源位置固定。 优选地, 所述下行数据包括以下至少之一: 所述 UE的 PDCCH数据, 所述 UE的 PCFICH数据, 所述 UE的 PHICH数据, 所述 UE的 PDSCH承载的数据, ePDCCH 承载的数据, ePCFICH承载的数据, ePHICH承载的数据。 优选地, 所述 UE的 PDCCH、 PCFICH以及 PHICH位于所述系统带宽中的所述
UE的接收带宽内。 优选地, 所述 UE的 PDSCH的时域资源的起始位置与 ePDCCH相同, 或者通过 ePCFICH指示。 优选地,所述 UE的 PDSCH的频域资源位置通过所述 UE的 PDCCH或者 ePDCCH 指示。 优选地, 所述 ePDCCH的频域资源位置为所述接收带宽内的连续 p个 PRB, p为 正整数, 或者所述 UE的接收带宽的两个边带上各 m个 PRB, 其中, m=p/2, p为偶 数。 优选地, 所述 UE的 PDCCH和 PDSCH在不同的子帧上传输, PDCCH采用跨子 帧调度 PDSCH。 优选的,所述下行数据为所述 UE的物理下行共享信道 PDSCH承载的数据时,所 述 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设的频域资源内选择 发送, 之后, 所述 UE的所述下行数据在所述指示信息对应的频域资源位置内选择发 送; 或者, 所述 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设的频 域资源内选择发送, 之后, 所述 UE的所述下行数据在系统带宽对应的频域资源位置 内选择发送在。 优选地, 所述预设的频域资源在所述 UE的固定带宽内是离散的。 优选地,对于覆盖受限的 UE,所述下行数据在所有下行子帧均在所述预设的频域 资源内选择发送。 优选地, 对于覆盖受限的 UE为: PDCCH重复传输, 或者, PDSCH连续重复传 输的 UE。 优选的, 以 SI-RNTI, RA -R TI, P- NTI, Temp-C-RNTI 中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设的频域资源内选择发送。 优选的,以 C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在所述信令指示的频 域资源内选择发送, 或者, C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带 宽对应的频域资源内选择发送。 优选的, 选择发送的频域资源是离散的。 优选地, 所述 UE包括成本低于预设值且带宽受限的 MTC UE或带宽受限的 UE。 根据本发明的再一方面, 还提供了一种信息传输装置, 位于基站中, 包括: 第一 确定模块, 用于确定终端的接收带宽小于系统带宽或者所述终端接入的分量载波为 NCT; 传输模块, 用于按照预设的无线帧、 子帧、 时域和频域资源位置在所述终端的 接收带宽内将下行数据传输给所述终端。 根据本发明的还一方面, 提供了一种信息传输装置, 位于终端中, 包括: 第二确 定模块, 用于确定自身的接收带宽小于系统带宽或者接入的分量载波为 NCT; 接收模 块, 用于按照预设的无线帧、 子帧、 时域和频域资源位置在所述接收带宽内接收下行 数据。 通过本发明, 基站确定终端的接收带宽小于系统带宽或者该终端接入的分量载波 为新类型分量载波的情况下, 按照预设的无线帧、 子帧、 时域和频域资源在终端的接 收带宽内将下行数据传输给终端, 解决了相关技术中对于下行小带宽情况下如何正确 接收下行信息的问题, 使得系统中可以同时存在不同类型的终端, 提升了系统的适用 范围。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 LTE技术中 FDD模式的帧结构示意图; 图 2是根据相关技术的 LTE技术中 TDD模式的帧结构示意图; 图 3是根据相关技术的 LTE中普通下行子帧各物理信道的时频结构示意图; 图 4是根据本发明实施例的信息传输方法的流程图; 图 5是根据本发明实施例的信息传输装置的结构框图; 图 6是根据本发明实施例的另一种信息传输方法的流程图; 图 7是根据本发明实施例的另一种信息传输装置的结构框图; 图 8是根据本发明实施例一的基站侧下行信息发送流程示意图; 图 9是根据本发明实施例二的 MTC终端侧下行信息的接收流程示意图; 图 10是根据本发明应用示例一的下行子帧时频结构示意图; 图 11是根据本发明应用示例二的下行子帧时频结构示意图; 图 12是根据本发明应用示例三的下行子帧时频结构示意图; 图 13是根据本发明应用示例四的下行子帧时频结构示意图: 图 14是根据本发明应用示例五的下行子帧时频结构示意图; 图 15是根据本发明应用示例六的下行子帧时频结构示意图; 图 16是根据本发明应用示例七的下行子帧时频结构示意图: 图 17是根据本发明应用示例八的下行子帧跳频结构示意图; 图 18是根据本发明应用示例九的下行子帧跳频结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在本实施例中提供了一种信息传输方法, 图 4是根据本发明实施例的信息传输方 法的流程图, 如图 4所示, 该方法包括如下步骤- 步骤 S402,基站确定终端的接收带宽小于系统带宽或者该终端接入的分量载波为 新类型分量载波; 步骤 S404, 基站按照预设的无线帧、 子帧、 时域和频域资源在终端的接收带宽内 将下行数据传输给终端。 本实施例通过上述步骤, 基站在确定终端的接收带宽是小于系统带宽或者该终端 接入的分量载波为 NCT的情况下, 按照预设的无线帧、 子帧、 时域和频域资源在该终 端对应的接收带宽内进行下行传输, 为实现终端在系统带宽大于其自身接收带宽的情 况下接收下行数据提供了技术上的基础, 解决了相关技术中对于下行小带宽情况下如 何正确接收下行信息的问题, 使得系统中可以同时存在不同类型的终端, 提升了系统 的适用范围。 优选地, 上述 UE可以包括低成本带宽受限 (例如, 成本低于预设值且带宽受限) 的 MTC UE或带宽受限的 UE。 通过这种方式, 为实现将 M2M业务转移至大带宽系 统 (例如, LTE系统) 上提供了技术上的支持。 作为一种优选实施方式, 基站可以通过预先设置(即预定义)的方式确定无线帧、 子帧、 预设的时域和频域资源位置, 或者, 基站也可以通过向终端发送指示信息的方 式确定子帧位置、预设的时域和频域资源位置, 该指示信息用于指示预设的子帧位置、 时域和频域资源位置, 或者, 基站还可以根据预先的设置确定无线帧、 子帧、 时域和 频域资源之中的一个或多个, 而剩余信息则可以根据上述基站向终端发送的指示信息 确定。 通过这种方式, 提升了方案的灵活性。 优选地, 对于时域资源的起始位置, 可以设置在下行子帧的第 n个正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM )符号上, 其中, 0 niS 5。 通过这种方式, 避开了传统 LTE系统中的控制信息区域。 优选地,对于子帧 0和 5,预设的时域资源位置还可以除去辅同步信号(Secondary
Synchronization Signal, 简禾尔为 SSS )、 主同步信号 (Primary Synchronization Signal, 简称为 PSS ) 以及物理广播信道 (Physical Broadcast Channel, 简称为 PBCH ) 之外的 OFDM符号。 作为一种优选实施方式, 上述指示信息可以通过以下方式至少之一进行发送: 承 载在 PBCH上; 承载在 UE的公有信道上; 与 UE的控制信息联合编码后承载在 UE 的控制信道区域上; 单独编码后承载在增强 PCFICH (简称为 ePCFICH) 上; 以及承 载在无线资源控制 (Radio Resource Control, 简称为 RRC ) 信令上。 通过这种方式, 提高了通过指示信息确定预设的无线帧、 子帧、 时域和频域资源方式的灵活性。 优选地, 对于上述公有信道的承载方式, 可以承载在该公有信道承载的系统信息 块 (System Information Block, 简称为 SIB ) 中的寻呼消息或者随机接入中的消息 2 (message 2 ) 以及消息 4 ( message 4) 中。 优选地, 上述 ePCFICH可以位于子帧中的以下位置之一: 第二个时隙的第一个 OFDM符号上; 第一个时隙的第 k+1个 OFDM符号上, 其中, k为接收带宽为系统带 宽的传统 UE所对应的控制信息符号最大数目;解调参考信号(Demodulation Reference Signal, 简称为 DMRS ) 所占据的符号上。 作为一种优选实施方式, 对于频域资源位置, 预设的频域资源位置可以是子帧中 系统带宽的中心频域位置; 或者, 也可以是 FDD的子帧 0和 5, 以及 TDD的子帧 0 和 5中至少一个子帧中系统带宽的中心频域位置, 以及上述预设的子帧位置中其他子 帧中的预定位置, 其中, 该预定位置可以是通过指示信息确定的, 或者也可以通过预 定义的跳频图样确定。 优选地, 对于在 TDD的特殊帧: DwPTS子帧中, 预设的频域资源位置固定, 或 者, 在 TDD的子帧 1和子帧 6中, 所述预设的频域资源位置固定。 优选地, 在下行子帧的上述时频资源传输的下行数据可以包括以下至少之一: UE 的 PDCCH承载的数据, UE的 PCFICH承载的数据, UE的 PHICH承载的数据, UE 的 PDSCH承载的数据, 增强 PDCCH (简称为 ePDCCH)承载的数据, ePCFICH承载 的数据, 增强 PHICH (简称为 ePHICH) 承载的数据。 优选地, 该 UE的 PDCCH、 PCFICH以及 PHICH, 与接收带宽等于系统带宽的传 统 UE的信道结构相同, 且位于系统带宽中的上述步骤 S402中的 UE的接收带宽内。 优选地, 该 UE的 PDSCH的时域资源的起始位置, 可以与 ePDCCH相同, 或者 也可以通过 ePCFICH指示。 优选地, UE的 PDSCH的频域资源位置可以通过该 UE的 PDCCH或者 ePDCCH 指示。 优选地, 对于 ePDCCH, 其频域资源位置可以为接收带宽内的连续 p个 PRB, p 为正整数, 或者接收带宽的两个边带上各 m个物理资源块 (Physical Resource Block, 简称为 PRB), 其中, m=p/2, p为偶数。 优选地, 所述第一 UE的 PDCCH和 PDSCH在不同的子帧上传输, PDCCH釆用 跨子帧调度 PDSCH。 优选地,所述下行数据为所述第一 UE的物理下行共享信道 PDSCH承载的数据时, 所述第一 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设的频域资源 内选择发送, 之后, 所述第一 UE的所述下行数据在所述指示信息对应的频域资源位 置内选择发送; 或者, 所述第一 UE在 RACH过程或初始接入的时候, 所述下行数据 在所述预设的频域资源内选择发送, 之后, 所述第一 UE的所述下行数据在系统带宽 对应的频域资源位置内选择发送。 优选地,对于覆盖受限的第一 UE,所述下行数据在所有下行子帧均在所述预设的 频域资源内选择发送。 优选地, 对于覆盖受限的 UE为: PDCCH重复传输, 或者, PDSCH连续重复传 输的 UE。 优选地, 以 SI-RNTI , RA-RNTI , P-RNTI , Temp-C-RNTI 中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设的频域资源内选择发送。 优选地,以 C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在所述信令指示的频 域资源内选择发送, 或者, C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带 宽对应的频域资源内选择发送。 优选地, 选择发送的频域资源是离散的。 优选地, 所述第一 UE包括成本低于预设值且带宽受限的 MTC UE或带宽受限的 对应于上述信息传输方法, 在本实施例中还提供了一种信息传输装置, 位于基站 中, 该装置用于实现上述实施例及优选实施方式, 已经进行过说明的不再赘述。 如以 下所使用的, 术语 "模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施 例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是 可能并被构想的。 图 5是根据本发明实施例的信息传输装置的结构框图, 如图 5所示, 该装置包括: 第一确定模块 52和传输模块 54, 下面对各个模块进行详细说明。 第一确定模块 52, 设置为确定终端的接收带宽小于系统带宽或者该终端接入的分 量载波为新类型分量载波; 传输模块 54, 与第一确定模块 52相耦合, 设置为按照预 设的无线帧、 子帧、 时域和频域资源在终端的接收带宽内将下行数据传输给终端。 本实施例通过上述模块,基站的第一确定模块 52在确定终端的接收带宽是小于系 统带宽或者该终端接入的分量载波为 NCT的情况下,传输模块 54按照预设的无线帧、 子帧、 时域和频域资源在该终端对应的接收带宽内进行下行传输, 为实现终端在系统 带宽大于其自身接收带宽的情况下接收下行数据提供了技术上的基础, 解决了相关技 术中对于下行小带宽情况下如何正确接收下行信息的问题, 使得系统中可以同时存在 不同类型的终端, 提升了系统的适用范围。 在本实施例中还提供了另一种信息传输方法, 图 6是根据本发明实施例的另一种 信息传输方法的流程图, 如图 6所示, 该方法包括如下步骤: 步骤 S602, 终端确定自身的接收带宽小于系统带宽或者该终端接入的分量载波为 新类型分量载波; 步骤 S604, 终端按照预设的无线帧、 子帧、 时域和频域资源在接收带宽内接收下 行数据。 本实施例通过上述歩骤, 终端在确定其接收带宽是小于系统带宽或者接入的分量 载波为 NCT的情况下, 按照预设的无线帧、 子帧、 时域和频域资源在该接收带宽内接 收基站发来的下行数据, 实现了终端在系统带宽大于其自身接收带宽的情况下接收下 行数据, 解决了相关技术中对于下行小带宽情况下如何正确接收下行信息的问题, 使 得系统中可以同时存在不同类型的终端, 提升了系统的适用范围。 优选地, 上述 UE可以包括低成本带宽受限的 MTC UE。 通过这种方式, 为实现 将 M2M业务转移至大带宽系统 (例如, LTE系统) 上提供了技术上的支持。 作为一种优选实施方式, 终端可以通过预先设置(即预定义)的方式确定无线帧、 子帧、 预设的时域和频域资源, 或者, 终端也可以通过接收来自基站的指示信息的方 式确定无线帧、 子帧、 预设的时域和频域资源, 该指示信息用于指示预设的子帧、 时 域和频域资源位置, 或者, 终端还可以根据预先的设置确定无线帧、 子帧、 时域和频 域资源其中的一个或多个, 而剩余信息则可以根据接收到的上述来自基站的指示信息 确定。 通过这种方式, 提升了方案的灵活性。 优选地, 对于时域资源的起始位置, 可以设置在下行子帧的第 n个正交频分复用 OFDM符号上, 其中, 0 n¾S5 ; 或者, 终端也可以通过盲检测, 检测出自身的控制 区域, 并将控制区域之外的第一个 OFDM符号作为时域资源的起始位置。 优选地, 对于子帧 0和 5, 预设的时域资源位置还可以去除 SSS、 PSS以及 PBCH 之外的 OFDM符号。 作为一种优选实施方式, 对于频域资源位置, 预设的频域资源位置可以是子帧中 系统带宽的中心频域位置; 或者, 也可以是 FDD的子帧 0和 5, 以及 TDD的子帧 0 和 5中至少一个子帧中系统带宽的中心频域位置, 以及上述预设的子帧位置中其他子 帧中的预定位置, 其中, 该预定位置可以是通过指示信息确定的, 或者也可以通过预 定义的跳频图样确定。 优选地, 对于在 TDD的特殊帧: DwPTS子帧中, 预设的频域资源位置固定。 优选地, 在下行子帧的上述时频资源传输的下行数据可以包括以下至少之一: UE 的 PDCCH承载的数据, UE的 PCFICH承载的数据, UE的 PHICH承载的数据, UE 的 PDSCH承载的数据, UE的增强 PDCCH (简称为 ePDCCH) 承载的数据, UE的 ePCFICH承载的数据, UE的增强 PHICH (简称为 ePHICH) 承载的数据。 优选地, 该 UE的 PDCCH、 PCFICH以及 PHICH, 与接收带宽等于系统带宽的传 统 UE的信道结构相同, 且位于系统带宽中的上述步骤 S402中的 UE的接收带宽内。 优选地, 该 UE的 PDSCH的时域资源的起始位置, 可以与 ePDCCH相同, 或者 也可以通过 ePCFICH指示。 优选地, UE的 PDSCH的频域资源位置可以通过该 UE的 PDCCH或者 ePDCCH 指示。 优选地, 对于 ePDCCH, 其频域资源位置可以为接收带宽内的连续 p个 PRB, p 为正整数, 或者接收带宽的两个边带上各 m个物理资源块 (Physical Resource Block, 简称为 PRB), 其中, m=p/2, p为偶数。 优选地, 所述 UE的 PDCCH和 PDSCH在不同的子帧上传输, PDCCH采用跨子 帧调度 PDSCH。 优选地, 对于下行数据为 UE的物理下行共享信道 PDSCH承载的数据时, UE在 RACH过程或初始接入的时候, 并且下行数据在预设的频域资源内选择发送, 之后, UE的下行数据在指示信息对应的频域资源位置内选择发送; 或者, UE在 RACH过程 或初始接入的时候, 下行数据在预设的频域资源内选择发送, 之后, UE的下行数据在 系统带宽对应的频域资源位置内选择发送。 优选地,对于覆盖受限的 UE,下行数据在所有下行子帧均在预设的频域资源内选 择发送。 优选地, 对于覆盖受限的 UE为: PDCCH重复传输, 或者, PDSCH连续重复传 输的 UE。 优选地, 以 SI-RNTI , RA-R TI , P-RNTI , Temp-C-RNTI 中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在预设的频域资源内选择发送。 优选地,以 C- NTI加扰的 PDCCH/ePDCCH调度的 PDSCH在信令指示的频域资 源内选择发送, 或者, C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带宽对 应的频域资源内选择发送。 优选地, 选择发送的频域资源是离散的。 对应于上述另一种信息传输方法, 在本实施例中还提供了另一种信息传输装置, 位于终端中, 该装置用于实现上述实施例及优选实施方式, 已经进行过说明的不再赘 述。 如以下所使用的, 术语 "模块"可以实现预定功能的软件和 /或硬件的组合。 尽管 以下实施例所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的 实现也是可能并被构想的。 图 7是根据本发明实施例的另一种信息传输装置的结构框图, 如图 7所示, 该装 置包括: 第二确定模块 72和接收模块 74, 下面对各个模块进行详细说明。 第二确定模块 72, 设置为确定自身的接收带宽小于系统带宽或者接入的分量载波 为新类型分量载波; 接收模块 74, 与第二确定模块 72相耦合, 设置为按照预设的无 线帧、 子帧、 时域和频域资源在接收带宽内接收下行数据。 本实施例通过上述模块,在终端的第二确定模块 72确定其接收带宽是小于系统带 宽或者接入的分量载波为 NCT的情况下, 接收模块 74按照预设的无线帧、 子帧、 时 域和频域资源在该接收带宽内接收基站发来的下行数据, 实现了终端在系统带宽大于 其自身接收带宽的情况下接收下行数据, 解决了相关技术中对于下行小带宽情况下如 何正确接收下行信息的问题, 使得系统中可以同时存在不同类型的终端, 提升了系统 的适用范围。 下面结合优选实施例进行说明, 以下优选实施例结合了上述实施例及其优选实施 方式。 在以下优选实施例中, 对小带宽在共存大带宽下行子帧中的时频域位置给出相应 的设计方案, 确保了小带宽 MTC UE能成功接收下行数据, 无缝接入 LTE网络系统。 在以下优选实施例中, 为促进 M2M 业务从 GSM系统向 LTE系统演进, 提出一 种下行信息传输方法,即大带宽系统下针对小带宽终端下行时频资源位置的确定方法, 以解决 UE能正确接收下行数据的技术问题。 该下行信息传输方法可以包括: 当系统带宽大于终端预定义带宽时, 终端按照预 定义或基站发送的信令指示来确定终端下行信息所在的无线帧号,无线帧中的子帧号, 以及相应子帧的时频域资源位置, 并在相应子帧的终端预定义带宽内接收下行数据。 优选地, 当系统带宽小于等于 UE 自身预定义带宽时, 终端可以在系统带宽内接 收下行数据; 优选地, 下行子帧的时频资源传输 UE的 PDCCH, PCFICH, PHICH和 PDSCH 或者 ePDCCH, ePCFICH, ePHICH和 PDSCH; 优选地, 终端可以按照预定义或者信令指示在全部子帧以及仅在某些部分子帧的 时频资源上面接收预定义带宽内的下行数据。 UE下行子帧时域资源的位置确定方式可以包括以下方式之一: 方式一, UE预定义从子帧的第 n个正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM) 符号开始来确定子帧时域起始位置, 其中 1<=η<=4; 方式二, UE通过接收基站发送的信令指示来确定时域资源的起始位置; 优选地, 该信令通过 PBCH承载, 或者通过 UE专有的公有信道承载; 或者, 优选地, 基站将该信令通过和 UE控制信息联合编码的方式承载在 UE的 控制信道区域; 或者, 将该信令单独编码承载在 ePCFICH上; 优选地, 该 ePCFICH位于子帧第二个时隙的第一个 OFDM符号上或者第一个时 隙的第 k+1个 OFDM符号上, k为传统 UE控制信息符号数目; 或者, ePCFICH位于 DMRS (解调参考信号)所占据的符号上; 方式三, UE 通过盲检测自己的控制区域来确定自身相应子帧的时域资源起始位 置; 此时, UE的控制区域位于子帧的第二个时隙; 优选地, 时域资源为子帧除去传统 UE的控制区域, 以及 SSS (辅同歩信号), PSS (主同步信号) 以及 PBCH (物理广播信道) 的剩余 OFDM符号;
UE下行相应子帧的频域资源位置通过以下方式之一确定- 方式一, UE 通过预定义的方式确定在子帧的频域位置为系统带宽的中心频域位 置; 方式二, UE的频域位置在 FDD的子帧 0和子帧 5以及 TDD的子帧 0, 5至少一 个子帧固定为系统带宽的中心频域, 其它下行子帧的位置按照信令指示或者预定义图 样跳频确定; 优选地, 该信令指示通过 PBCH承载, 或者通过 UE专有的公有信道承载; 优选地, UE在 TDD特殊子帧 DwPTS中的频率位置固定, 或者, 在 TDD的子帧
1和子帧 6中, 所述预设的频域资源位置固定; 优选地, UE的 PDSCH频域位置由 UE的 PDCCH或者 ePDCCH指示; 优选地, ePDCCH的频域位置预定义为小带宽两个边带上各 m个 PRB, 或者小带 宽内的连续 k个 PRB; 优选地, UE的 PDCCH和 PDSCH在不同的子帧上传输, PDCCH采用跨子帧调 度 PDSCH。 并且,对于下行数据为 UE的 PDSCH承载的数据时,下行信息在子帧的频域位置 根据 UE接入网络的时间段不同, 采用不同的频域位置确定方式。
UE在 RACH过程或初始接入的时候, 下行数据在预设的频域资源内选择发送, 之后, UE的下行数据在指示信息对应的频域资源位置内选择发送;或者, UE在 RACH 过程或初始接入的时候, 下行数据在预设的频域资源内选择发送, 之后, UE的下行数 据在系统带宽对应的频域资源位置内选择发送。 优选地,对于覆盖受限的 UE,下行数据在所有下行子帧均在预设的频域资源内选 择发送。 优选地, 对于覆盖受限的 UE为: PDCCH重复传输, 或者, PDSCH连续重复传 输的 UE。 优选的, 以 SI-RNTI , RA-RNTI , P-RNTI , Tenip-C-RNTI 中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设的频域资源内选择发送。 优选的,以 C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在信令指示的频域资 源内选择发送, 或者, C-RNTI加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带宽对 应的频域资源内选择发送。 优选的, 选择发送的频域资源是离散的。 优选地, UE可以仅在承载该 UE下行信息的相应子帧的时频资源上面检测接收下 行控制和业务等下行信息。 优选地, 上述 UE包括低成本带宽受限的 MTC UE或带宽受限的 UE。 上述方法能够适用于 LTE UE,特别适用于 MTC UE。通过使用以下优选实施例所 提出的方法, 能在不影响 LTE系统性能的基础上大大降低基于 LTE的终端设备成本。 此外还可以解决带宽受限的 MTC 终端如何与大带宽终端共存信道的问题, 确保小带 宽 MTC终端能成功接收下行数据, 促进 MTC业务从 GSM系统向 LTE系统的演进, 而且能提高原有的频谱效率。 下面结合附图和具体实施例及应用示例对下行小带宽时频资源确定方法做进一步 详细阐述。 实施例一 本实施例描述基站侧针对小带宽 UE下行信息的发送方法, 图 8是根据本发明实 施例一的基站侧下行信息发送流程示意图, 如图 8所示, 该流程包括以下步骤: 步骤 S802, 基站 (例如, eNodeB) 在发送 UE的下行物理信道时, 将该 UE的下 行信息映射到 UE配置子帧的预定义带宽内的相应时频域位置; 优选地, 该 UE可以包括 MTC UE, 例如, 可以为低成本带宽受限的 MTC UE或 带宽受限的 UE。 优选地, 该 UE预定义支持的系统带宽为 1.4MHz, 3MHz或者 5MHz; 优选地, 该 eNodeB在发送 UE的下行物理信道时, 先判断系统带宽是否大于 UE 的预定义带宽, 如果是, 则将 UE的下行物理信道映射到配置子帧的 UE预定义带宽 的时频域位置; 如果不是 (小于或等于), 则按照相关技术发送 UE的下行物理信道。 优选地, 下行物理信道包括 UE的 PDCCH, PCFICH, PHICH和 PDSCH, 或者 ePDCCH, ePCFICH, ePHICH和 PDSCH, 或者 PDCCH, PCFICH, PHICH, ePDCCH 和 PDSCH至少之一; 基站可能在全部子帧上面都发送该 UE的下行信息, 也可能仅在某些子帧上面发 送, 具体配置通过预定义的方式或者信令指示的方式通知 UE。 优选地, 该信令指示可以通过子帧 0上的 PBCH承载该帧的子帧配置信息。 基站对该 UE相应子帧具体时域资源的位置确定包括下面几种方法: 方式一, 预定义从配置给该 UE子帧的第 n个正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing) 符号开始, 其中 1<=η<=4; 方式二, 基站通过信令指示的方式通知该 UE在所配置子帧上的具体时域资源的 起始位置; 优选地, 基站可以将该信令通过 PBCH承载通知 UE; 或者将该信令和 UE的控制信息通过联合编码的方式承载在该 UE的控制区域; 或者, 将该信令单独编码承载在 ePCFICH上。 方式三, 基站通过配置的该 UE的控制区域在子帧中的位置来隐含指示该 UE的 时域资源的起始位置; 此时小带宽的 UE的起始符号都是紧挨传统 UE控制区域的, 这样不会浪费资源。 例如, 通过 UE的控制区域相对于第二个时隙的偏移量或者通过 UE控制信息所 占据的符号数目来隐含映射传统 UE控制区域所占据的符号个数。 优选地, 时域位置为配置子帧除去传统 UE 的控制区域, 以及 SSS (辅同步信 号) ,PSS (主同步信号) 以及 PBCH (物理广播信道) 的剩余 OFDM符号。
UE的下行子帧频域资源位置确定方式可以包括以下方式之一- 方式一, 基站将 UE的频域资源预定义固定在配置子帧的系统带宽的中心频域位 置; 方式二, UE的频域位置在 FDD的子帧 0和子帧 5以及 TDD的子帧 0, 5中至少 一个固定为系统带宽的中心频域位置, 其它配置的下行子帧的频域位置按照信令指示 或者预定义图样跳频确定; 优选地, 基站将该信令通过 PBCH承载通知 UE; 优选地, TDD特殊子帧 DwPTS中的频率位置固定, 或者, 在 TDD的子帧 1和子 帧 6中, 所述预设的频域资源位置固定; 步骤 S804, eNodeB在上述配置子帧的下行物理信道上承载该 UE的下行信息并 发送。 实施例二: 本实施例从 UE侧描述小带宽下行信息的接收方法的具体过程, 图 9是根据本发 明实施例二的 MTC终端侧下行信息的接收流程示意图, 如图 9所示, 该流程包括以 下步骤: 步骤 S902, UE判断系统带宽是否大于自身预定义带宽,如果是, 执行步骤 S904, 否则执行歩骤 S906; 优选地, UE通过接收子帧 0上 PBCH承载的系统带宽信息来判断。 步骤 S904, UE按照相关技术, 接收整个系统带宽内的下行物理信道。 这里, 假定 UE的预定义带宽小于系统带宽; 优选地, 该 UE可以包括 MTC UE, 且该 UE预定义支持的系统带宽为 1.4MHz,
3MHz或者 5MHz; 然后, UE根据预定义的方式或者 PBCH中的信令指示获知这个帧的哪些子帧上 面包含该 UE的下行信息。 步骤 S906, UE在包含该 UE下行信息的子帧上的时频域位置检测接收自身带宽 内的下行物理信道。 优选地, 下行物理信道包括 UE的 PDCCH, PCFICH, PHICH和 PDSCH, 或者 ePDCCH, ePCFICH, ePHICH和 PDSCH, 或者 PDCCH, PCFICH, PHICH, ePDCCH 和 PDSCH至少之一; 该 UE在配置子帧的时域资源的确定方法包括下面几种- 方式一, 该 UE的时域资源预定义从配置子帧的第 n个正交频分复用 (OFDM,
Orthogonal Frequency Division Multiplexing) 符号幵始, 其中 1<=η<=4; 方式二, 该 UE通过接收基站发送的信令指示确定具体时域位置; 优选地,
UE通过接收 PBCH获得自己的时域位置配置信息; 或者通过解码自己的控制信息获知; 或者解码 ePCFICH获知; 优选地, UE 先在分配的子帧上盲检自己的控制信息, 然后解码获得传统 UE 的 CFI信息, 从而知道传统 UE控制区域所占据 OFDM符号的数目, 然后从下一个符号 开始接收自己的下行信息。 方式三, 通过盲检测 UE的控制信息所占据区域确定 UE的时域资源; 优选地, 例如 UE从配置子帧的第二个时隙开始盲检自己的 DCI信息, 通过得到 的控制区域相对于第二个时隙初始位置的偏移符号数目或者 DCI所占据的符号数目来 隐式得到传统 UE控制区域所占据的符号数目。 优选地,该 UE所在配置子帧上的时域位置为除去传统 UE的控制区域, 以及 SSS (辅同步信号), PSS (主同步信号) 以及 PBCH (物理广播信道) 剩余 OFDM符号。 UE下行子帧频域资源位置确定方式包括以下方式之一: 方式一, 预定义固定在系统带宽的中心频域位置; 方式二,在 FDD的子帧 0和子帧 5以及 TDD的子帧 0, 5中固定为系统带宽的中 心频域位置, 其它下行子帧的位置按照信令指示或者预定义图样跳频确定; 优选地, UE通过读取 PBCH获知基站的配置子帧频域资源信令; 优选地, 在 TDD特殊子帧 DwPTS中的频率位置固定, 或者, 在 TDD的子帧 1 和子帧 6中, 所述预设的频域资源位置固定; 优选地, UE的 PDSCH频域位置由 PDCCH或者 ePDCCH指示; 下面通过若干应用示例对上述实施例方法进行说明。且以带宽受限的 MTC UE为 例进行描述,该 MTC UE的接收和发送带宽可预设为 1.4MHz或 3MHz或 5MHz等 LTE 系统所支持的小带宽。 另外, 为了和传统 UE进行区分, MTC UE相关的信道标识为 M-PDCCH, M-PCFICH, M-PHICH以及 M-PDSCH。 应用示例一: 本应用示例对 FDD系统子帧 0的情况进行说明, 此子帧可以包含 MTC UE专有 的下行控制和业务信息, 也可以不包含, 此配置信息通过预定义或信令通知的方式通 知 UE。 这里, 以仅包含 MTC UE的 M-PDSCH信道为例进行示例说明。 图 10是根据本发明应用示例一的下行子帧时频结构示意图,此时, 子帧 0的信道 结构如图 10所示, 假设系统带宽为 10MHz:
MTC UE的 M-PDSCH信道频域资源为系统带宽的中间 6PRB,时域资源为从第四 个 OFDM符号开始, 除去 PBCH,SSS,PSS剩余的 OFDM符号。 此时, 对于 M-PDSCH可以通过其他子帧的 MTC UE的 PDCCH, 或者 ePDCCH 进行跨子帧调度该区域。 或者, MTC UE直接盲检自己的 M-PDSCH数据。
MTC UE接收的时候, 先读取系统带宽的中间 6PRB上的 PBCH获得系统带宽以 及可能的子帧信息以及时频资源位置信息, 然后将自己的预定义带宽跟获得的系统带 宽信息进行比较, 这里显然是小于, 然后就按预定义的方式或者信令信息在相应子帧 的时频资源上接收下行数据。 应用示例二: 本应用示例对 FDD系统子帧 5的情况进行说明。 此子帧可以包含 MTC UE专有 的下行控制和业务信息, 也可以不包含, 此相关配置信息通过预定义或信令通知的方 式通知 UE。 这里以 MTC UE的控制和业务全部都包含为例进行说明。 即此时 UE的 信道包含 M-PDCCH, M-PCFICH, M-PHICH 以及 M-PDSCH。 且具体每个 UE 的 M-PDSCH的频域位置通过该子帧上的 M-PDCCH指示。 图 11是根据本发明应用示例二的下行子帧时频结构示意图, 对于子帧 5, 信道结 构如图 11所示, 假设系统带宽仍然为 10MHz:
MTC UE的频域为系统带宽的中间 6PRB,时域资源为从第三个 OFDM符号开始, 除去 SSS, PSS剩余的 OFDM符号。
UE可以通过预定义方式或者基站发送的信令指示获得上述信道信息,然后在该子 帧的相应时频位置接收下行数据即可。 应用示例三: 本应用示例针对下行系统带宽为 10MHz,而 MTC UE的最大接收带宽为 1.4MHz, 6个 PRB的情况进行说明。 且给 MTC UE所配置的下行子帧, 以及子帧上的时频域位 置都是通过预定义的方式确定。 例如, 预定义仅在偶数子帧上或者奇数子帧上传输 MTC UE的下行信息, 具体子 帧上的时域资源初始位置预定义从配置子帧的第四个 OFDM符号开始,频域资源预定 义在系统带宽的中心 6个 PRB, 图 12是根据本发明应用示例三的下行子帧时频结构 示意图, 资源具体位置如图 12所示, UE的信道结构包括 M-PDCCH, M-PCFICH, M-PHICH以及 M-PDSCH。 发送端,基站首先将系统带宽和 MTC UE的预定义带宽进行比较,这里是大于的, 然后按照上述预定义方式将 MTC UE 的下行信息进行专门的小带宽时频域的资源映 射, 并将下行信号发送出去。 接收端, MTC UE在读取 PBCH中的系统带宽后, 先将系统带宽和自身预定义带 宽进行判断比较, 这里很显然是大于的。 然后 MTC UE按照上述预定义方式在预定义 的下行子帧的系统带宽的第四个 OFDM符号的中间 6个 PRB依次接收 M-PCFICH, M-PHICH, 以及盲检自己的 M-PDCCH, 然后根据盲检到的 DCI (下行控制信息) 解 码接收相应的 M-PDSCH, 完成小带宽下行信道的正确接收。 应用示例四: 本应用示例针对系统带宽为 5MHz, MTC UE的收发带宽为 1.4MHz, 6个 PRB的 情况进行说明。 且 MTC UE下行子帧时频资源的具体位置承载在子帧 0的 PBCH里 的预留比特上。且该示例下行子帧为配置的用于传输 MTC UE专有下行信息的非子帧 0和子帧 5。
UE的信道结构仍然包括 M-PDCCH, M-PCFICH, M-PHICH以及 M-PDSCH。 图 13是根据本发明应用示例四的下行子帧时频结构示意图,基站在发送该子帧的 时候首先将系统带宽和 MTC UE的预定义带宽进行比较, 这里显然是大于的, 然后将 MTC UE的下行信息映射到如图 13所示的时频域资源上, 这里假设载波为新增载波 NCT的场景下, MTC UE的时域配置可以从第一个 OFDM符号开始, 频域配置在系 统带宽的边缘连续 6个 PRB。 并且, 基站将该位置信息承载到 PBCH上, 在子帧 0通 知 UE。 优选地, 对于子帧的频域位置, 基站可以将 MTC UE带宽的中心频点相对于系统 带宽中心频点向上或者向下的频移量通知终端即可。 接收端, MTC UE先从子帧 0的固定中心位置上解码 PBCH, 并读取 PBCH中的 系统带宽以及哪些子帧有自己的下行信息, 还有上述的子帧时频资源配置信息, 然后 按照给出的频域偏移量找到自己的频点, 在相应配置子帧的系统带宽的边缘 6个 PRB 进行下行物理信道的检测, 滤出自己预定义带宽内的信息, 完成 MTC UE小带宽的截 取及下行信息的接收。 应用示例五: 本应用示例针对下行系统带宽为 10MHz,而 MTC UE的接收最大带宽为 1.4MHz, 6个 PRB的情况进行说明。子帧为基站配置的用于传输 MTC UE下行专有信息的相应 子帧。 且 MTC UE下行时域资源初始位置为紧挨传统 UE控制符号的位置, 频域资源 为预定义中间 6个 PRB。 图 14是根据本发明应用示例五的下行子帧时频结构示意图,优选地,基站配置的 MTC UE的小带宽时频域子帧位置如图 14所示, 这里假设传统 UE的 CFI=1, 即控制 区域仅占一个 OFDM符号, 基站将 MTC UE的下行信息映射到从第二符号开始的剩 余符号的中间 6个 PRB上面。 并且将传统 UE的 CFI=1的信息和 UE的控制信息通过 联合编码方式承载在该小带宽内; 或者, 基站可以将传统 UE的 CFI信息单独编码在位于传统 UE PDSCH区域的 ePCFICH上。 该 ePCFICH时域位于子帧第二个时隙的第一个 OFDM符号上或者第一 个时隙的第 2个 OFDM符号上, 或者, ePCFICH位于 DMRS (解调参考信号)所占据的 符号上。 当 ePCFICH按照 DMRS解调时, 可以映射 4个 PRB上, 每个 PRB上对应 4 个 RE, 其中, 2个 RE对应一个端口, 另外 2个 RE对应另一个端口, 或者, 可以映 射 2个 PRB上, 每个 PRB上对应 8个 RE, 其中, 4个 RE对应一个端口, 另外 4个 RE对应另一个端口; 当 ePDCFICH根据 CRS解调时, 采用现有 PCFICH的频域映射 方式。 频域位于小带宽接收范围内。 接收端, MTC UE在读取 PBCH中的系统带宽后, 先将系统带宽和自身预定义带 宽进行判断比较, 这里很显然是大于的。 然后 MTC UE配置的每个子帧的 1.4MHz系 统带宽的截取以及下行物理信道的检测接收过程具体如下: MTC UE通过在配置子帧系统带宽中间 6个 PRB盲检自己的控制区域,然后解码 控制信息得到传统 UE的 CFI信息, 或者通过解码 ePCFICH直接获得传统 UE的 CFI 信息, 从而得知传统 UE控制信道所占据的 OFDM符号的个数为 1个, 然后从第二个 OFDM符号接收下行信息, 完成小带宽下行物理信道的正确接收。 应用示例六: 本应用示例针对下行系统带宽为 20MHz,而 MTC UE的最大接收带宽为 1.4MHz, 6个 PRB的情况进行说明。子帧为基站配置的用于传输 MTC UE下行专有信息的相应 子帧, 非子帧 0和子帧 5。 且小带宽 MTC UE下行时域资源初始位置为紧挨传统 UE 控制符号的位置, 这里假定传统 UE控制区域所占符号的数目为 3, 即 CFI=3, 且频域 资源通过 PBCH承载的信令通知。 图 15是根据本发明应用示例六的下行子帧时频结构示意图,具体下行子帧信道结 构如图 15 所示。 此时 UE 的信道包含 M-PDCCH, M-PCFICH , M-PHICH 以及 M-PDSCH。 控制区域位于配置子帧的第二个时隙上。 且具体每个 UE的 M-PDSCH的 频域位置通过该子帧上的 M-PDCCH指示。 MTC UE通过检测到的 MTC UE控制区域 相对于第二个时隙的偏移量来确定小带宽的时域起始位置。 小带宽 MTC UE下行信息传输过程为: 发送端, 基站首先将系统带宽和 MTC UE的预定义带宽进行比较, 这里显然是大 于的, 然后将 MTC UE的下行信息映射到如图 15所示的时频位置上, 并且通过承载 在 PBCH上的信令通知 MTC UE其频域位置。 接收端, MTC UE在子帧 0读取 PBCH中的系统带宽以及信令后, 先将系统带宽 和自身预定义带宽进行判断比较, 这里很显然是大于的。 然后后续 MTC UE配置子帧 上的 1.4MHz小带宽的截取以及下行物理信道的检测接收过程具体如下: 首先 MTC UE按照 PBCH中的信令指示在下行系统带宽的相应频域位置盲检自己 的控制区域, 然后 MTC UE 根据盲检到的控制区域在第二个时隙的起始位置来隐含 OL UE的 CFI的值, 从而确定 MTC UE的 M-PDSCH时域位置。 优选地, UE从下行子帧第二个时隙开始盲检自己的控制信息,如果盲检到控制信 息是从第二个时隙的第一个符号开始的则隐含 OL UE 的 CFI=1, 则从子帧第二个 OFDM符号的位置开始接收自己的 M-PDSCH, 以此类推, 如果盲检到控制信息从第 二个时隙的第二个符号开始的, 则隐含 OL UE的 CFI=2, 则从子帧第三个 OFDM符 号的位置开始接收自己的 M-PDSCH;这里 UE盲检到自己的控制区域是从第二个时隙 的第三个符号开始的, 则就从子帧第四个 OFDM 符号的位置开始接收自己的 M-PDSCH„ 按照上述方式, MTC UE完成大带宽情况下小带宽下行物理信道的正确接收。 应用示例七: 本应用示例针对下行系统带宽为 20MHz,而 MTC UE的最大接收带宽为 1.4MHz, 6个 PRB的情况进行说明。子帧为基站配置的用于传输 MTC UE下行专有信息的相应 子帧。 且小带宽 MTC UE下行时域资源初始位置为紧挨传统 UE控制符号的位置, 且 频域资源通过 PBCH承载的信令通知。且 MTC UE通过盲检测得到的 UE控制区域所 占 OFDM符号的数目与传统 UE的 CFI信息的映射关系来确定小带宽的时域起始位置。 此时 UE的信道包含 M-PDCCH, M-PCFICH, M-PHICH以及 M-PDSCH。控制区 域位于配置子帧的第二个时隙上。 且具体每个 UE的 M-PDSCH的频域位置通过该子 帧上的 M-PDCCH指示。 优选地,表 1是根据本发明应用示例七的控制区域符号数目与 CFI值的对应关系, 预定义 MTC UE控制信息所占符号的数目与传统 UE的 CFI信息的映射关系如下表 1 所示:
Figure imgf000028_0001
表 1
图 16是根据本发明应用示例七的下行子帧时频结构示意图,这里假定传统 UE控 制区域所占符号的数目为 3, 即 CFI=2, 具体下行子帧信道结构如图 16所示。 小带宽 MTC UE下行信息传输过程为- 发送端, 基站首先将系统带宽和 MTC UE的预定义带宽进行比较, 这里显然是大 于的, 然后将 MTC UE的下行信息映射到如图 16所示的时频位置上, 并且通过承载 在 PBCH上的信令通知 MTC UE其配置子帧上相应的频域位置。 接收端, MTC UE在读取 PBCH中的系统带宽以及频域指示信令后, 先将系统带 宽和自身预定义带宽进行判断比较, 这里很显然是大于的。 然后 MTC UE的 1.4MHz 小带宽的截取以及下行物理信道的检测接收过程具体如下: 首先, MTC UE在后续相应配置子帧时域从第二个时隙开始, 频域按照 PBCH中 的信令指示的下行系统带宽的相应频域位置盲检自己的控制区域。这里 MTC UE盲检 得到的控制区域所占据的 OFDM符号的数目为 3, 从预定义的表 1中的映射关系知道 OL UE的 CFI的值为 2,然后 MTC UE从配置子帧的第三个 OFDM符号开始接收自己 的 M-PDSCH。 按照上述方式, MTC UE完成大带宽情况下小带宽下行物理信道的正确接收。 应用示例八: 本应用示例针对下行系统带宽为 10MHz,而 MTC UE的接收最大带宽为 1.4MHz,
6个 PRB的情况进行说明。且 MTC UE下行物理信道包含 ePDCCH, ePCFICH, ePHICH 和 M-PDSCH, ePDCCH在小带宽内的频域位置为边带两个 PRB, 中间 4个 PRB为 M-PDSCH区域。整个小带宽的频域位置子帧 0和子帧 5为固定中间 6PRB, 其它每子 帧的频域资源按照预定义跳频图样进行确定。 图 17是根据本发明应用示例八的下行子帧跳频结构示意图,前十个子帧的跳频图 样如图 17所示。 这里 10M带宽可以复用 N个 MTC UE, 每连续 6个 PRB资源有一个编号索引, 通过高层信令通知 UE所使用的编号, 从而确定具体每子帧的跳频图样。 基站需要预 留该频域资源给 MTC UE, 当没有 MTC UE使用时, 也可以在该频域资源上调度 OL 小带宽 UE下行信息的发送和接收过程具体如下: 发送端, 基站首先将系统带宽和 MTC UE的预定义带宽进行比较, 这里显然是大 于的, 然后每子帧映射的时候按照子帧 0和 5为固定系统带宽的中间 6PRB, 其它子 帧的 MTC UE的下行信息映射按照图 17所示跳频图样映射到相应的时频位置上, 并 且通过承载在 PBCH上的髙层信令通知 MTC UE所使用的跳频组编号。 接收端, MTC UE在 PBCH中读取系统带宽以及子帧编号, 然后将系统带宽和自 身预定义带宽进行判断比较, 这里很显然是大于的, 并且判断该子帧是否为子帧 0和 子帧 5, 如果是, 则在系统带宽的中间 6个 PRB接收下行信道。 如果不是, 则按照预 定义跳频图样到相应频域位置接收下行数据, 完成小带宽下行信道的正确接收。 应用示例九: 本应用示例针对下行系统带宽为 3MHz, 而 MTC UE的接收最大带宽为 1.4MHz, 6个 PRB的情况进行说明。且 MTC UE系统带宽内包含物理信道 ePDCCH, ePCFICH, ePHICH和 M-PDSCH, ePDCCH在小带宽内的频域位置为小带宽内连续的 2个 PRB 或者小带宽两个边带的 PRB。 图 18是根据本发明应用示例九的下行子帧跳频结构示意图, 如图 18所示。 整个 小带宽的频域位置基站配置的子帧 0和子帧 5为系统带宽的固定中间 6个 PRB, 其它 基站配置的用于传输 MTC UE下行专有信息的相应子帧的频域资源按照预定义跳频图 样进行确定。 时域可以从预定义符号开始也可以按照信令指示确定。 优选地, MTC UE的频域位置均位于系统带宽的两边带上, 每子帧按照轮流顺序 分别放置在上边带还是下边带。这里以每个子帧都包含 MTC UE的下行信息为例进行 说明的。 小带宽 UE下行信息的发送和接收过程具体如下: 发送端, 基站首先将系统带宽和 MTC UE的预定义带宽进行比较, 这里显然是大 于的, 然后每子帧映射的时候按照子帧 0和 5为固定系统带宽的中间 6个 PRB, 其它 子帧的 MTC UE的下行信息映射按照图 18所示跳频图样映射到基站配置的相应子帧 的时频位置上。 接收端, MTC UE先在子帧 0的 PBCH中读取系统带宽以及子帧配置信息, 然后 将系统带宽和自身预定义带宽进行判断比较, 这里很显然是大于的, 并且判断该子帧 是否为子帧 0和子帧 5, 如果是, 则在系统带宽的中间 6个 PRB接收下行信道。 如果 不是, 则按照预定义跳频图样轮流在配置子帧的系统带宽的上下边缘位置截取预定义 的小带宽, 完成小带宽下行物理信道的正确接收。 应用示例十: 本应用示例针对基站对子帧是否 MTC UE的信息进行配置的情况进行说明。优选 地, 仅在预定义的某些子帧上面包含 MTC UE的相关下行信息。 例如, 预定义仅在 1,3,5,7奇数号子帧, 或者 2,4,6,8偶数号子帧或者 0-9中的部分 子帧上面包含 MTC UE的相关下行控制和业务信息, 其它子帧不包含。 这样基站在资源映射的时候, 要把 MTC UE的相关信息放到预定义的这几个子帧 上面。 UE接收的时候, 仅在预定义的子帧上面盲检自己的控制信息, 接收下行控制和 业务数据即可。 本应用场景可以解决 MTC UE 的数据与某些特殊子帧, 比如子帧 0 和 5 上的 PSS,SSS资源冲突问题。 应用示例 ^— 本应用示例针还是对基站配置仅在某些子帧上面包含 MTC UE的相关下行信息的 情况进行说明, 优选地, 基站在没有发送指示信息之前, 可以默认为每个下行子帧都 可以传输 MTC UE的下行数据, 如果基站仅在某些子帧上面传输 MTC UE的数据, 则 可以通过信令指示的方式通知 UE在一个帧内具体哪些子帧包含 MTC UE的下行信息。 优选地, 基站可以用 bitmap的方式指示每帧中 10个子帧是否传输 MTC UE的信 息, 且该信息可以承载在子帧 0的 PBCH上。 这样 UE在读取到 PBCH中的子帧配置 信息后, 按照指示, 直接到相应子帧接收下行数据即可。 另外, 如果子帧 0包含 MTC UE的控制和业务信息, 此信息也可以承载在子帧 0 的 M-PDCCH或者 ePDCCH上面, 这样需要修改原有的 DCI format, 在原来基础上新 增 bit信息。 实施例三 本实施例对下行数据信道为带宽受限时,终端根据本发明提供的方法确定 PDSCH 的频域位置的过程进行说明。 且终端根据接入网络的时间段, 以及传输数据对应的不 同过程来确定 PDSCH小带宽的频域位置。 首先, 在终端接入网络, 即跟网络建立链接, 完成同步之前, 也就是对于 RACH 过程或者终端初始接入网络时候, 终端在下行子帧预设的频域位置上接收 PDSCH, 并 且, 频域位置可以在固定带宽内离散分布。 这里预设的频域资源位置可以是子帧中系统带宽的中心频域位置, 且在固定带宽 内是离散的; 或者, 也可以是 FDD的子帧 0和 5, 以及 TDD的子帧 0和 5中至少一 个子帧中系统带宽的中心频域位置, 以及上述预设的子帧位置中其他子帧中的预定位 置, 其中, 该预定位置可以是通过指示信息确定的, 或者也可以通过预定义的跳频图 样确定。 并且, 对于在 TDD的特殊帧: DwPTS子帧中以及子帧 1和 6中, 预设的频域资 源位置固定。 然后, 等同步完成以后, 基站和终端交换动态业务数据的时候, 终端再根据接收 到的信令来动态或者半静态的确定每个子帧 PDSCH的频域位置。 当为半静态配置时, 信令可以为高层信令, 或者承载在 PBCH上, 或者承载在系 统信息块中的寻呼消息中, 或者承载在随机接入中的消息 2以及消息 4中。 当为动态配置时, 每个子帧 PDSCH的频域位置通过 PDCCH或者 ePDCCH跨子 帧动态指示。 对于覆盖受限的 UE, 下行数据在所有下行子帧均在预设的频域资源内选择发送。 这样, 通过采用联合不同的子帧频域位置确定方式, 可以保证在数据信道带宽降 低的情况下, 终端能够成功的接入网络, 并保持了最大的调度灵活性。 实施例四 本实施例对所述终端的下行控制信道 DCI开销在不同频域位置确定方式下的大小 进行说明。 当 PDSCH的频域位置为固定的系统带宽的中心频域位置时, 终端对应的 DCI可 以压缩, 将原有的资源分配比特域节省掉。 或者对于 FDD子帧 0和 5,或者 TDD的 DwPTS子帧以及子帧 1和 6,或者 MSG2 和 MSG4, PDSCH的频域位置可以通过预定义或者固定的方式在某个频域位置时, 终 端对应的 DCI里面的资源分配比特也可以省掉。 当每个子帧 PDSCH的频域位置通过预定义多个频域位置的方式进行确定时, DCI 里面的资源分配域可以采用 bitmap 的方式对每个子帧进行资源指示具体哪个频域位 置。 当每个子帧的 PDSCH都采用 PDCCH或者 ePDCCH动态指示的时候, 按照原来 的方式设置 DCI比特域。 这样, DCI资源表示信令可以减少, 节省了开销。 实施例五 本实施例对 PDSCH的频域位置根据 PDCCH加扰所用的 RNTI来确定进行说明。 具体的, 当下行数据为 PDSCH, 且对应的 PDCCH是通过 SI-RNTI/RAR-RNTI加 扰的时候, PDSCH在所述预设的频域资源内选择发送, 并且, 频域位置可以在固定带 宽内离散分布。 其中, 离散带宽为 type2资源表示的 DVRB对应的离散带宽, 如: 固定 DVRB#0 到 DVRB#5对应的离散带宽。 这里预设的频域资源位置可以是子帧中系统带宽的中心频域位置; 或者, 也可以 是 FDD的子帧 0和 5, 以及 TDD的子帧 0和 5中至少一个子帧中系统带宽的中心频 域位置, 以及上述预设的子帧位置中其他子帧中的预定位置, 其中, 该预定位置可以 是通过指示信息确定的, 或者也可以通过预定义的跳频图样确定。 另外, 当 PDSCH对应的 PDCCH是通过 C-RNTI加扰的时候, PDSCH在系统带 宽对应的频域资源内选择发送。 此时, 频域位置可以根据 DCI的资源表示进行动态确 定。 同时, 同一 UE的 PDCCH和 PDSCH通常不在同一个子帧上传输, 即采用跨子帧 调度的方式。 通过使用基站配置子帧进行 MTC UE下行数据传输的方式,可以对 MTC UE数据 进行灵活配置, 同时提高资源的利用率。 上述应用示例虽然以 MTC UE为例说明, 但该下行物理信道的传输方法, 发送接 收方法也可以应用于其它场景, 应用于其它类型 UE, 包括带宽受限的普通 UE, 并不 仅限于 MTC UE。并且,所述的下行物理信道包含 PDCCH, PCFICH, PHICH, ePDCCH 和 PDSCH中的一种或多种。 上述优选实施例在原有 LTE系统的基础上,提出了低成本带宽受限的 MTC UE 下 行系统带宽的时频资源确定方法, 并且按照此类方法, 可以确保小带宽 MTC UE成功 接收下行控制和业务信息,无缝融入 LTE网络,促进了 M2M业务从 GSM系统向 LTE 系统的快速演进。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施例中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或歩骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种信息传输方法, 包括- 基站确定第一终端 UE的接收带宽小于系统带宽或者所述第一 UE接入的 分量载波为新类型分量载波 NCT;
所述基站按照预设的无线帧、 子帧、 时域和频域资源在所述第一 UE的接 收带宽内将下行数据传输给所述第一 UE。
2. 根据权利要求 1所述的方法, 其中, 所述基站按照预设的无线帧、 子帧、 时域 和频域资源在所述第一 UE的接收带宽内将下行数据传输给所述第一 UE之前, 所述方法还包括:
所述基站根据预先的设置确定所述无线帧、子帧、 时域和频域资源; 或者, 所述基站向所述第一 UE发送指示信息, 其中, 所述指示信息用于指示所 述无线帧、 子帧、 时域和频域资源; 或者,
所述基站根据预先的设置确定所述无线帧、 子帧、 时域和频域资源中一个 或多个, 剩余信息根据所述基站向所述第一 UE发送的所述指示信息确定。
3. 根据权利要求 2所述的方法,其中,所述预设的时域资源位置的起始位置包括:
下行子帧的第 n个正交频分复用 OFDM符号, 其中, 0 ηί≤5。
4. 根据权利要求 3所述的方法, 其中, 所述预设的时域资源位置包括:
除辅同步信号 SSS、 主同步信号 PSS 以及物理广播信道 PBCH 之外的 OFDM符号。
5. 根据权利要求 2至 4中任一项所述的方法, 其中, 所述指示信息通过以下方式 至少之一发送:
承载在 PBCH上; 承载在所述第一 UE的公有信道上; 与所述第一 UE的 控制信息联合编码后承载在所述第一 UE的控制信道区域上; 单独编码后承载 在增强物理下行控制格式指示信道 ePCFICH上; 承载在无线资源控制 RRC信 令上。
6. 根据权利要求 5所述的方法, 其中, 承载在所述第一 UE的公有信道上包括: 承载在所述公有信道承载的系统信息块 SIB中的寻呼消息或者随机接入中 的消息 message 2以及 message 4中。
7. 根据权利要求 5所述的方法,其中,所述 ePCFICH位于子帧中的以下位置之一: 第二个时隙的第一个 OFDM符号上;
第一个时隙的第 k+l个 OFDM符号上, 其中, k为接收带宽等于所述系统 带宽的第二 UE对应的控制信息符号最大数目;
解调参考信号 DMRS所占据的符号上。
8. 根据权利要求 1至 7中任一项所述的方法, 其中, 所述预设的频域资源位置包 括以下之一:
子帧中所述系统带宽的中心频域位置;
子帧 0和 5中至少一个子帧中所述系统带宽的中心频域位置, 以及所述子 帧位置中其他子帧的预定位置, 其中, 所述预定位置通过所述指示信息确定或 者预设跳频图样确定。
9. 根据权利要求 S所述的方法, 其中, 在 TDD的 DwPTS子帧中, 所述预设的频 域资源位置固定, 或者, 在 TDD的子帧 1和子帧 6中, 所述预设的频域资源 位置固定。
10. 根据权利要求 1至 9中任一项所述的方法, 其中, 所述下行数据包括以下至少 之一:所述第一 UE的物理下行控制信道 PDCCH数据,所述第一 UE的物理下 行控制格式指示信道 PCFICH数据, 所述第一 UE的物理混合自动重传请求指 示信道 PHICH数据, 所述第一 UE的物理下行共享信道 PDSCH承载的数据, 增强物理下行控制信道 ePDCCH承载的数据,增强物理下行控制格式指示信道 ePCFICH承载的数据, 增强物理混合自动重传请求指示信道 ePHICH承载的数 据。
11. 根据权利要求 10所述的方法, 其中, 所述第一 UE的 PDCCH、 PCFICH以及
PHICH与接收带宽等于所述系统带宽的第二 UE的信道结构相同, 且位于所述 系统带宽中的所述第一 UE的接收带宽内。
12. 根据权利要求 10所述的方法, 其中, 所述第一 UE的 PDSCH的时域资源的起 始位置与 ePDCCH相同, 或者通过 ePCFICH指示。
13. 根据权利要求 10所述的方法, 其中, 所述第一 UE的 PDSCH的频域资源位置 通过所述第一 UE的 PDCCH或者 ePDCCH指示。
14. 根据权利要求 13所述的方法, 其中, 所述 ePDCCH的频域资源位置为所述第 一 UE接收带宽内的连续 p个物理资源块 PRB, p为正整数, 或者所述第一 UE 的接收带宽的两个边带上各 m个 PRB, 其中, m=p/2, p为偶数。
15. 根据权利要求 13所述的方法, 其中, 所述第一 UE的 PDSCH和 PDCCH在不 同的子帧上传输, PDCCH采用跨子帧调度 PDSCH。
16. 根据权利要求 2至 15 中任一项所述的方法, 其中, 所述下行数据为所述第一 UE的物理下行共享信道 PDSCH承载的数据时, 所述方法还包括:
所述第一 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设 的频域资源内选择发送, 之后, 所述第一 UE的所述下行数据在所述指示信息 对应的频域资源位置内选择发送; 或者,
所述第一 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设 的频域资源内选择发送, 之后, 所述第一 UE的所述下行数据在系统带宽对应 的频域资源位置内选择发送。
17. 根据权利要求 1所述的方法, 其中, 所述预设的频域资源在所述第一 UE的固 定带宽内是离散的。
18. 根据权利要求 13 所述的方法, 其中, 以 SI-RNTI , RAR-RNTI , P-RNTI, Temp-C-RNTI中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设 的频域资源内选择发送。
19. 根据权利要求 13所述的方法, 其中, 以 C-RNTI加扰的 PDCCH/ePDCCH调度 的 PDSCH 在所述信令指示的频域资源内选择发送, 或者, C-RNTI 加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带宽对应的频域资源内选择发送。
20. 根据权利要求 13所述的方法, 其中, 对于覆盖受限的第一 UE, 所述下行数据在 所有下行子帧均在所述预设的频域资源内选择发送。
21. 根据权利要求 1至 20中任一项所述的方法, 其中, 所述第一 UE包括成本低于 预设值且带宽受限的机器类通信 MTC UE或带宽受限的 UE。
22. 一种信息传输方法, 包括: 终端 UE确定自身的接收带宽小于系统带宽或者所述终端接入的分量载波 为新类型分量载波 NCT;
所述终端按照预设的无线帧、 子帧、 时域和频域资源在所述接收带宽内接 收下行数据。
23. 根据权利要求 22所述的方法, 其中, 所述终端按照预设的无线帧、 子帧、 时域 和频域资源位置在所述接收带宽内接收下行数据之前, 所述方法还包括: 所述终端根据预先的设置确定所述无线帧、 子帧、 预设的时域和频域资源 位置; 或者,
所述终端接收来自基站的指示信息, 其中, 所述指示信息用于指示所述预 设的子帧、 时域和频域资源位置; 或者,
所述终端根据预先的设置确定所述无线帧、 子帧、 时域和频域资源中一个 或多个, 剩余信息根据接收到的来自所述基站的所述指示信息确定。
24. 根据权利要求 23所述的方法,其中,所述预设的时域资源位置的起始位置包括 以下之一:
下行子帧的第 n个正交频分复用 OFDM符号, 其中, 0 n 5: 所述 UE盲检测出的自身控制区域之外的第一个 OFDM符号。
25. 根据权利要求 24所述的方法, 其中, 所述预设的时域资源位置包括:
除辅同歩信号 SSS、 主同歩信号 PSS 以及物理广播信道 PBCH 之外的 OFDM符号。
26. 根据权利要求 22至 25中任一项所述的方法, 其中, 所述预设的频域资源位置 包括以下之一:
子帧中所述系统带宽的中心频域位置;
子帧 0和 5中至少一个子帧中所述系统带宽的中心频域位置, 以及所述子 帧位置中其他子帧的预定位置, 其中, 所述预定位置通过所述指示信息确定或 者预设跳频图样确定。
27. 根据权利要求 26所述的方法, 其中, 在 TDD的 DwPTS子帧中, 所述预设的 频域资源位置固定, 或者, 在 TDD的子帧 1和子帧 6中, 所述预设的频域资 源位置固定。
28. 根据权利要求 22至 27中任一项所述的方法, 其中, 所述下行数据包括以下至 少之一:所述 UE的物理下行控制信道 PDCCH数据,所述 UE的物理下行控制 格式指示信道 PCFICH数据,所述 UE的物理混合自动重传请求指示信道 PHICH 数据, 所述 UE的物理下行共享信道 PDSCH承载的数据, 增强物理下行控制 信道 ePDCCH承载的数据, 增强物理下行控制格式指示信道 ePCFICH承载的 数据, 增强物理混合自动重传请求指示信道 ePHICH承载的数据。
29. 根据权利要求 28所述的方法,其中,所述 UE的 PDCCH、 PCFICH以及 PHICH 位于所述系统带宽中的所述 UE的接收带宽内。
30. 根据权利要求 28所述的方法, 其中, 所述 UE的 PDSCH的时域资源的起始位 置与 ePDCCH相同, 或者通过 ePCFICH指示。
31. 根据权利要求 28所述的方法, 其中, 所述 UE的 PDSCH的频域资源位置通过 所述 UE的 PDCCH或者 ePDCCH指示。
32. 根据权利要求 31所述的方法, 其中, 所述 ePDCCH的频域资源位置为所述接 收带宽内的连续 p个物理资源块 PRB, p为正整数, 或者所述 UE的接收带宽 的两个边带上各 m个 PRB, 其中, m=p/2, p为偶数。
33. 根据权利要求 31所述的方法, 其中, 所述 UE的 PDSCH和 PDCCH在不同的 子帧上传输, PDCCH采用跨子帧调度 PDSCH。
34. 根据权利要求 23至 33中任一项所述的方法, 其中, 所述下行数据为所述 UE 的物理下行共享信道 PDSCH承载的数据时, 所述方法还包括:
所述 UE在 ACH过程或初始接入的时候, 所述下行数据在所述预设的频 域资源内选择发送, 之后, 所述 UE的所述下行数据在所述指示信息对应的频 域资源位置内选择发送; 或者,
所述 UE在 RACH过程或初始接入的时候, 所述下行数据在所述预设的频 域资源内选择发送, 之后, 所述 UE的所述下行数据在系统带宽对应的频域资 源位置内选择发送。
35. 根据权利要求 22所述的方法, 其中, 所述预设的频域资源在所述 UE的固定带 宽内是离散的。
36. 根据权利要求 31 所述的方法, 其中, 以 SI-RNTI , RAR-RNTI , P-RNTI , Temp-C- NTI中至少之一加扰的 PDCCH/ePDCCH调度的 PDSCH在所述预设 的频域资源内选择发送。
37. 根据权利要求 31所述的方法, 其中, 以 C-R TI加扰的 PDCCH/ePDCCH调度 的 PDSCH 在所述信令指示的频域资源内选择发送, 或者, C-RNTI 加扰的 PDCCH/ePDCCH调度的 PDSCH在系统带宽对应的频域资源内选择发送。
38. 根据权利要求 31所述的方法, 其中, 对于覆盖受限的 UE, 所述下行数据在所有 下行子帧均在所述预设的频域资源内选择发送。
39. 根据权利要求 22至 38中任一项所述的方法, 其中, 所述 UE包括成本低于预 设值且带宽受限的机器类通信 MTC UE或带宽受限的 UE。
40. 一种信息传输装置, 位于基站中, 所述信息传输装置包括:
第一确定模块, 设置为确定终端的接收带宽小于系统带宽或者所述终端接 入的分量载波为新类型分量载波 NCT;
传输模块, 设置为按照预设的无线帧、 子帧、 时域和频域资源位置在所述 终端的接收带宽内将下行数据传输给所述终端。
41. 一种信息传输装置, 位于终端中, 所述信息传输装置包括:
第二确定模块, 设置为确定自身的接收带宽小于系统带宽或者接入的分量 载波为新类型分量载波 NCT;
接收模块, 设置为按照预设的无线帧、 子帧、 时域和频域资源位置在所述 接收带宽内接收下行数据。
PCT/CN2013/083579 2012-09-29 2013-09-16 信息传输方法及装置 WO2014048261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13841357.0A EP2903334B1 (en) 2012-09-29 2013-09-16 Information transmission method and device
US14/432,297 US20150256403A1 (en) 2012-09-29 2013-09-16 Information Transmission Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210379738.4 2012-09-29
CN201210379738.4A CN103716841A (zh) 2012-09-29 2012-09-29 信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2014048261A1 true WO2014048261A1 (zh) 2014-04-03

Family

ID=50386980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083579 WO2014048261A1 (zh) 2012-09-29 2013-09-16 信息传输方法及装置

Country Status (4)

Country Link
US (1) US20150256403A1 (zh)
EP (1) EP2903334B1 (zh)
CN (1) CN103716841A (zh)
WO (1) WO2014048261A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164028A1 (en) 2015-04-09 2016-10-13 Nokia Solutions And Networks Oy Frequency hopping method for machine type communication
WO2016163942A1 (en) * 2015-04-09 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Physical resource block allocation of physical downlink control and data channels
KR20170040211A (ko) * 2014-08-01 2017-04-12 퀄컴 인코포레이티드 라디오 주파수 스펙트럼 대역을 통한 발견 신호들의 송신 및 수신
EP3197060A4 (en) * 2014-08-07 2017-08-09 Huawei Technologies Co. Ltd. Data transmission method, device and system
JP2017526255A (ja) * 2014-07-30 2017-09-07 シャープ株式会社 物理チャネルにおける先頭シンボルを配置する方法、基地局およびユーザ機器
KR20180014036A (ko) * 2015-06-03 2018-02-07 후아웨이 테크놀러지 컴퍼니 리미티드 주파수 도메인 자원들의 구성을 위한 방법 및 디바이스
CN109565876A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于支持下一代通信系统中灵活的ue带宽的方法和装置
CN110178430A (zh) * 2018-01-22 2019-08-27 北京小米移动软件有限公司 信息传输方法、装置、系统和存储介质
CN111818647A (zh) * 2016-01-08 2020-10-23 华为技术有限公司 数据传输方法及装置

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602554B2 (en) * 2013-04-10 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and wireless device for managing resources for D2D communication
US10142990B2 (en) * 2014-01-31 2018-11-27 Telefonaktiebolaget Lm Ericsson (Publ) Radio node, communication devices and methods therein
KR102220377B1 (ko) * 2014-08-29 2021-02-25 삼성전자주식회사 다중 셀 다중 사용자 통신 시스템에서 적응적 빔 호핑을 위한 방법 및 장치
WO2016036182A1 (ko) * 2014-09-05 2016-03-10 엘지전자 주식회사 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치
EP3007505B1 (en) * 2014-10-06 2017-03-08 Mitsubishi Electric R&D Centre Europe B.V. Method for signalling time and frequency resources allocation in a wireless communication system
US9877323B1 (en) * 2014-10-28 2018-01-23 Newracom, Inc. OFDMA mapping for clients with various bandwidths
US10298372B2 (en) * 2014-11-05 2019-05-21 Intel IP Corporation Enhanced physical downlink control channel in machine-type communication
CN105610556B (zh) * 2014-11-07 2019-12-31 中兴通讯股份有限公司 下行信息发送、下行信息接收方法及装置
CN105813203A (zh) * 2014-12-30 2016-07-27 联想(北京)有限公司 一种信息处理方法、基站及终端设备
US10484127B2 (en) * 2015-01-30 2019-11-19 Lg Electronics Inc. Method and apparatus for tranceiving common control message in wireless access system supporting narrow band internet of things
CN107113822A (zh) * 2015-01-30 2017-08-29 华为技术有限公司 一种信息指示的方法、ue及基站
AR104950A1 (es) * 2015-01-30 2017-08-30 ERICSSON TELEFON AB L M (publ) Sistema de comunicación inalámbrica con equipo de usuario de subbanda única
WO2016129959A1 (en) * 2015-02-12 2016-08-18 Lg Electronics Inc. Method and apparatus for supporting frequency hopping for low cost user equipment in wireless communication system
US10681676B2 (en) 2015-02-25 2020-06-09 Qualcomm Incorporated Narrowband management for machine type communications
GB2537178A (en) * 2015-04-10 2016-10-12 Nec Corp Communication system
CN106162874B (zh) * 2015-04-10 2021-10-26 中兴通讯股份有限公司 下行信息接收方法、装置及用户设备
JP6276425B2 (ja) * 2015-05-08 2018-02-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて上りリンク信号を送信又は受信するための方法及びこのための装置
US11533675B2 (en) * 2015-07-27 2022-12-20 Apple Inc. System and methods for system operation for narrowband-LTE for cellular IoT
CN106470393B (zh) * 2015-08-14 2021-02-02 中兴通讯股份有限公司 一种传递信息的方法和装置
CN106535333B (zh) * 2015-09-11 2019-12-13 电信科学技术研究院 一种物理下行控制信道传输方法及装置
CN106612165B (zh) * 2015-10-23 2017-12-22 上海朗帛通信技术有限公司 一种窄带通信中的调度方法和装置
CN106658726B (zh) * 2015-11-04 2020-01-31 普天信息技术有限公司 一种数据传输方法和终端
CN106685873A (zh) * 2015-11-05 2017-05-17 夏普株式会社 物理信道的配置方法以及基站和用户设备
WO2017078608A1 (en) * 2015-11-06 2017-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Csi report for mtc operation
WO2017080510A1 (zh) * 2015-11-13 2017-05-18 中兴通讯股份有限公司 一种传递信息的方法和装置
WO2017105538A1 (en) * 2015-12-17 2017-06-22 Intel IP Corporation System and methods for mtc ues with scalable bandwidth support
CN106899395B (zh) * 2015-12-19 2019-06-28 上海朗帛通信技术有限公司 一种laa传输中的上行控制信令的传输方法和装置
EP3403342B1 (en) * 2016-01-15 2024-06-05 Apple Inc. Evolved node-b (enb), user equipment (ue) and methods for communication of a channel raster frequency offset
CN110099451B (zh) * 2016-02-01 2023-04-07 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置
JP6185096B2 (ja) * 2016-02-04 2017-08-23 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107041002B (zh) * 2016-02-04 2023-11-17 中兴通讯股份有限公司 数据信道子帧的指示方法及装置
EP3393166B1 (en) * 2016-02-05 2021-09-08 Huawei Technologies Co., Ltd. Method and apparatus for physical downlink channel transmission
CN107182130B (zh) * 2016-03-10 2019-10-01 上海朗帛通信技术有限公司 一种基于蜂窝网的窄带通信的方法和装置
CN107222826B (zh) * 2016-03-21 2020-06-26 华为技术有限公司 NB-IoT的信道传输方法、装置及系统
US10701721B2 (en) * 2016-03-25 2020-06-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for transmitting feedback information
CN107306171A (zh) 2016-04-19 2017-10-31 华为技术有限公司 数据传输的方法、设备和系统
AU2016406274B2 (en) * 2016-05-12 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, network device, and terminal device
US10462739B2 (en) * 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
CN107634924B (zh) * 2016-07-18 2020-08-11 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输系统
CN107689858A (zh) * 2016-08-05 2018-02-13 株式会社Ntt都科摩 映射和检测广播信道的方法、基站和用户设备
CN107733616A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种业务处理方法及装置
CN107889067B (zh) * 2016-09-30 2020-03-20 华为技术有限公司 信息发送和接收方法及装置
JP2019501543A (ja) * 2016-11-05 2019-01-17 アップル インコーポレイテッドApple Inc. 非対称帯域幅サポート及び動的帯域幅調節
EP3337244A1 (en) * 2016-12-19 2018-06-20 Gemalto M2M GmbH Method for data transmission in a cellular network with reconfigurable radio frame structure settings
CN110830228B (zh) * 2016-12-26 2021-03-09 Oppo广东移动通信有限公司 无线通信方法、网络设备、终端设备、系统芯片和计算机可读介质
CN108282880B (zh) * 2017-01-06 2019-11-08 电信科学技术研究院 一种确定下行数据信道的起始位置的方法及装置
WO2018126453A1 (zh) 2017-01-06 2018-07-12 广东欧珀移动通信有限公司 一种切换方法、基站及终端
BR112019019051A2 (pt) * 2017-03-20 2020-04-22 Guangdong Oppo Mobile Telecommunications Corp Ltd método de transmissão de dados, dispositivo de terminal e dispositivo de rede
CN108633034B (zh) * 2017-03-24 2021-04-09 华为技术有限公司 一种数据传输的方法、网络设备和终端设备
CN108633059B (zh) * 2017-03-25 2021-06-29 华为技术有限公司 资源配置、确定部分带宽及指示部分带宽的方法及设备
WO2018195863A1 (zh) * 2017-04-27 2018-11-01 北京小米移动软件有限公司 系统信息的传输方法、装置及计算机可读存储介质
CN108966349B (zh) * 2017-05-18 2021-11-30 华为技术有限公司 通信方法和通信设备
CN109219052B (zh) * 2017-06-30 2021-01-08 维沃移动通信有限公司 一种资源信息传输方法、相关设备和系统
CN109451851B (zh) * 2017-07-31 2022-12-09 北京小米移动软件有限公司 信息确定方法及装置、电子设备和计算机可读存储介质
CN109392122B (zh) * 2017-08-10 2023-05-12 华为技术有限公司 数据传输方法、终端和基站
CN118139191A (zh) * 2017-08-10 2024-06-04 Oppo广东移动通信有限公司 无线通信的方法、网络设备和终端设备
CN109391426B (zh) 2017-08-11 2021-11-16 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
WO2019051731A1 (zh) * 2017-09-14 2019-03-21 Oppo广东移动通信有限公司 一种确定时域资源的方法、设备、存储介质及系统
JP7066372B2 (ja) * 2017-11-02 2022-05-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
DE102017129165B4 (de) * 2017-12-07 2022-11-03 umlaut communications GmbH Verfahren zum Bestimmen einer Qualität wenigstens eines Mobilfunknetzes
JP7096916B2 (ja) 2018-03-26 2022-07-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて物理信号及び/又はチャネルの送受信方法及びそのための装置
WO2019241950A1 (zh) * 2018-06-21 2019-12-26 北京小米移动软件有限公司 传输mtc系统信息的方法、装置、基站及终端
WO2020019210A1 (zh) 2018-07-25 2020-01-30 北京小米移动软件有限公司 Mtc系统的物理信道传输方法、装置及存储介质
CN112534909B (zh) * 2018-08-09 2024-05-28 中兴通讯股份有限公司 用于发送指示信息的方法、设备和系统
CN112399591B (zh) * 2019-08-16 2022-09-09 华为技术有限公司 通信方法和装置
CN116582891B (zh) * 2023-07-13 2023-10-17 上海铂联通信技术有限公司 5g无线网络系统的负载优化方法、装置、介质及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300267A (zh) * 2011-09-28 2011-12-28 电信科学技术研究院 一种确定终端工作带宽的方法及终端
CN102316535A (zh) * 2011-09-30 2012-01-11 电信科学技术研究院 下行控制信息的传输方法和设备
US8244244B1 (en) * 2011-08-31 2012-08-14 Renesas Mobile Corporation Method for triggering a user equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9094991B2 (en) * 2009-03-26 2015-07-28 Qualcomm Incorporated Method and apparatus for supporting communication in low SNR scenario
US8897266B2 (en) * 2009-03-27 2014-11-25 Qualcomm Incorporated Method and apparatus for transmitting control information via upper layer
US8934421B2 (en) * 2010-05-12 2015-01-13 Qualcomm Incorporated Acknowledgment transmissions under cross-subframe resource allocation in LTE-A
GB2487907B (en) * 2011-02-04 2015-08-26 Sca Ipla Holdings Inc Telecommunications method and system
CN103404047B (zh) * 2011-02-10 2016-10-19 Lg电子株式会社 在载波聚合系统中调度的方法和装置
US8848638B2 (en) * 2011-06-27 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US8369280B2 (en) * 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
EP2761949B1 (en) * 2011-09-28 2020-03-11 Nokia Solutions and Networks Oy Configuring a communication with user equipments operating with a different system bandwidth
KR101973699B1 (ko) * 2011-09-30 2019-04-29 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
WO2013077235A1 (en) * 2011-11-25 2013-05-30 Nec Corporation Apparatus and method of providing machine type communication
US9078109B2 (en) * 2012-04-09 2015-07-07 Intel Corporation Frame structure design for new carrier type (NCT)
US9166718B2 (en) * 2012-05-11 2015-10-20 Intel Corporation Downlink control indication for a stand-alone new carrier type (NCT)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8244244B1 (en) * 2011-08-31 2012-08-14 Renesas Mobile Corporation Method for triggering a user equipment
CN102300267A (zh) * 2011-09-28 2011-12-28 电信科学技术研究院 一种确定终端工作带宽的方法及终端
CN102316535A (zh) * 2011-09-30 2012-01-11 电信科学技术研究院 下行控制信息的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2903334A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017526255A (ja) * 2014-07-30 2017-09-07 シャープ株式会社 物理チャネルにおける先頭シンボルを配置する方法、基地局およびユーザ機器
KR20170040211A (ko) * 2014-08-01 2017-04-12 퀄컴 인코포레이티드 라디오 주파수 스펙트럼 대역을 통한 발견 신호들의 송신 및 수신
KR102522007B1 (ko) * 2014-08-01 2023-04-13 퀄컴 인코포레이티드 라디오 주파수 스펙트럼 대역을 통한 발견 신호들의 송신 및 수신
EP3197060A4 (en) * 2014-08-07 2017-08-09 Huawei Technologies Co. Ltd. Data transmission method, device and system
US11139855B2 (en) 2015-04-09 2021-10-05 Nokia Technologies Oy Frequency hopping method for machine type communication
WO2016163942A1 (en) * 2015-04-09 2016-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Physical resource block allocation of physical downlink control and data channels
WO2016164028A1 (en) 2015-04-09 2016-10-13 Nokia Solutions And Networks Oy Frequency hopping method for machine type communication
US11316637B2 (en) 2015-04-09 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Physical resource block allocation of physical downlink control and data channels
EP3281296A4 (en) * 2015-04-09 2019-01-23 Nokia Solutions and Networks Oy FREQUENCY HOPPING METHOD FOR MACHINE TYPE COMMUNICATION
KR20180014036A (ko) * 2015-06-03 2018-02-07 후아웨이 테크놀러지 컴퍼니 리미티드 주파수 도메인 자원들의 구성을 위한 방법 및 디바이스
JP2018524867A (ja) * 2015-06-03 2018-08-30 華為技術有限公司Huawei Technologies Co.,Ltd. 周波数領域リソース構成方法及び装置
US10440714B2 (en) 2015-06-03 2019-10-08 Huawei Technologies Co., Ltd. Frequency domain resource configuration method and apparatus
KR102039957B1 (ko) * 2015-06-03 2019-11-05 후아웨이 테크놀러지 컴퍼니 리미티드 주파수 도메인 자원들의 구성을 위한 방법 및 디바이스
EP3294024A4 (en) * 2015-06-03 2018-08-15 Huawei Technologies Co., Ltd. Method and device for configuration of frequency domain resources
US10959231B2 (en) 2015-06-03 2021-03-23 Huawei Technologies Co., Ltd. Frequency domain resource configuration method and apparatus
CN111818647A (zh) * 2016-01-08 2020-10-23 华为技术有限公司 数据传输方法及装置
CN111818647B (zh) * 2016-01-08 2024-04-02 华为技术有限公司 数据传输方法及装置
US11991683B2 (en) 2016-01-08 2024-05-21 Huawei Technologies Co., Ltd. Data transmission method, and apparatus
CN109565876A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于支持下一代通信系统中灵活的ue带宽的方法和装置
CN109565876B (zh) * 2016-08-10 2024-05-14 三星电子株式会社 用于支持下一代通信系统中灵活的ue带宽的方法和装置
US11985547B2 (en) 2016-08-10 2024-05-14 Samsung Electronics Co., Ltd. Method and apparatus for supporting flexible UE bandwidth in next generation communication system
CN110178430A (zh) * 2018-01-22 2019-08-27 北京小米移动软件有限公司 信息传输方法、装置、系统和存储介质
CN110178430B (zh) * 2018-01-22 2023-11-21 北京小米移动软件有限公司 信息传输方法、装置、系统和存储介质

Also Published As

Publication number Publication date
US20150256403A1 (en) 2015-09-10
EP2903334A1 (en) 2015-08-05
EP2903334B1 (en) 2021-11-03
EP2903334A4 (en) 2015-10-14
CN103716841A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2014048261A1 (zh) 信息传输方法及装置
CN111587554B (zh) 无线通信系统的信道复用方法和复用的信道传输方法及使用该方法的设备
CN111919411B (zh) 支持ss/pbch块的大子载波间隔的方法和装置
US10749648B2 (en) Method and user equipment for receiving downlink signal, and method and base station for transmitting downlink signal
US9980254B2 (en) Control channel transmission method, transmission processing method, communication node and terminal
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
CN111133710B (zh) 在支持tdd窄带的无线通信系统中发送和接收系统信息的方法及其设备
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
CN116506937A (zh) 在无线通信系统中发送和接收信号的装置
CN115765947A (zh) 无线通信系统的数据发送方法和接收方法及其设备
WO2014173372A2 (zh) 下行信道时域位置确定方法和装置
CN113966587B (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
AU2015350436A1 (en) UL/DL waveform and numerology design for low latency communication
WO2014187260A1 (zh) 公有消息发送、接收方法、装置及系统
CN112567866A (zh) 在未授权频带中的信道接入的方法、设备以及系统
EP3427453A1 (en) Noise and interference estimation in wireless systems using multiple transmission time intervals
WO2013107252A1 (zh) 一种下行物理控制信道的发送、接收方法及相应装置
US20230247627A1 (en) Method, device, and system for transmitting physical uplink control channel in wireless communication system
EP2811675A1 (en) Method for transceiving downlink control channel in wireless communication system and apparatus therefor
TW202329742A (zh) 使用者設備及用於使用者設備之方法
CN114667796A (zh) 在无线通信系统中使用一个载波中的保护频带发送和接收信道的方法及其装置
EP3811699B1 (en) User equipments, base stations and methods for time-domain resource allocation
CN112204917A (zh) 在支持tdd窄带的无线通信系统中发送或接收系统信息的方法和设备
CN116076042A (zh) 在无线通信系统中发送物理下行链路控制信道的方法及其装置
CN113170511B (zh) 基于未授权频带的带宽部分(bwp)发送和接收物理信道和信号的方法及使用该方法的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14432297

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013841357

Country of ref document: EP