WO2014045707A1 - Vehicular drive device - Google Patents

Vehicular drive device Download PDF

Info

Publication number
WO2014045707A1
WO2014045707A1 PCT/JP2013/070031 JP2013070031W WO2014045707A1 WO 2014045707 A1 WO2014045707 A1 WO 2014045707A1 JP 2013070031 W JP2013070031 W JP 2013070031W WO 2014045707 A1 WO2014045707 A1 WO 2014045707A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
drive device
vehicle drive
speed reducer
auxiliary
Prior art date
Application number
PCT/JP2013/070031
Other languages
French (fr)
Japanese (ja)
Inventor
山本 立行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2014536653A priority Critical patent/JPWO2014045707A1/en
Publication of WO2014045707A1 publication Critical patent/WO2014045707A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02026Connection of auxiliaries with a gear case; Mounting of auxiliaries on the gearbox
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02043Gearboxes for particular applications for vehicle transmissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle drive device that constitutes a power train or drive train of an electric vehicle.
  • Patent Document 1 proposes a driving electric motor that simultaneously drives an auxiliary machine.
  • Typical auxiliary machines include, for example, a water pump for cooling water circulation for forcibly cooling the motor itself and various control devices, an oil pump, an air conditioner compressor, and the like. And according to this structure, it is supposed that the auxiliary machine drive motor which had to be provided independently until then can be abolished.
  • the present invention has been made by paying attention to such problems, and is based on the assumption that the electric motor is used as a driving source to drive even auxiliary equipment, and the electric power train is reduced in size and weight, which leads to space saving of on-vehicle equipment. Accordingly, the present invention provides a vehicle drive device that can eliminate not only the accessory drive motor but also the accessory drive speed reducer.
  • the present invention provides an electric motor, a reduction device that drives the drive shaft for the drive wheels at a reduced speed using the motor as a drive source, and a supplement driven by the driving force of the reduction device. And a structure equipped with a machine.
  • the auxiliary machine includes a water pump for circulating cooling water for forcibly cooling the motor itself and various control devices, as well as various oil pumps and compressors for air conditioners.
  • a motor for driving an auxiliary machine but also a speed reducer for driving the auxiliary machine can be eliminated, and an electric power train (electric drive train) including the auxiliary machine and its drive system is also included. ) Can be reduced in size and weight.
  • FIG. 4 The perspective view which shows schematic structure of the motor power unit used as the main element of what is called an electric power train of an electric vehicle as a more concrete form for implementing the vehicle drive device which concerns on this invention.
  • Cross-sectional explanatory drawing of the motor power unit shown in FIG. The typical explanatory view which simplified the internal structure of the motor power unit shown in FIG. FIG. 4 is an enlarged sectional explanatory view of a pump as an auxiliary machine shown in FIGS.
  • FIG. Explanatory drawing which shows the flow of the lubricating oil in the motor power unit shown in FIG.
  • the typical explanatory view showing the 2nd form for carrying out the drive device for vehicles concerning the present invention.
  • FIG. 4 is an explanatory diagram showing another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS.
  • FIG. 4 is an explanatory diagram showing another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS.
  • FIG. 4 is an explanatory diagram showing still another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS.
  • FIG. 1 shows a motor as a main element of a so-called electric power train (electric drive train) of an electric vehicle.
  • the schematic structure of the power unit 1 is shown.
  • 2 is a cross-sectional view of the motor power unit 1 shown in FIG. 1, and
  • FIG. 3 is a simplified diagram schematically showing FIG.
  • the motor power unit 1 is composed of an electric motor 2 as a prime mover and a reduction gear (final reduction gear) 3 as a reduction gear as a final drive unit. Both are integrated into a unit.
  • the output side of the speed reducer 3 is connected to one end of drive shafts 4a and 4b as left and right drive shafts across the speed reducer 3, and the other ends of the drive shafts 4a and 4b are well known. Are connected to wheels which are drive wheels (not shown).
  • the motor 2 is, for example, a three-phase synchronous motor embedded with permanent magnets. As is well known, the motor 2 is not shown as a rotor having a rotating shaft 6 in addition to a stator not shown as a stator in the motor case 5. A rotor is inserted, and the rotary shaft 6 is supported by a plurality of bearings 7 so as to be rotatable at both ends as shown in FIGS. The rotating shaft 6 protrudes from one end surface on the reduction gear 3 side in the axial direction of the motor case 5 and is connected to the input shaft 9 on the reduction gear 3 side as will be described later.
  • the speed reducer 3 is supported on both ends so that the shaft centers are parallel to each other in the housing 8, in addition to the housing 8 functioning as a speed reducer case.
  • An input shaft 9, an intermediate shaft 10, a differential case 11, and reduction gear trains 12 to 15 attached to the input shaft 9, the intermediate shaft 10 and the like are configured.
  • One end surface of the housing 8 on the motor 2 side is an opening opened toward the motor 2 side, and the motor case 5 on the motor 2 side is abutted against the opening, and both are illustrated. Fastened with external bolts.
  • the input shaft 9 of the speed reducer 3 is rotatably supported by the housing 8 via a pair of bearings 16, and the intermediate shaft 10 is similarly supported by a pair of bearings 17.
  • a rotary shaft 6 of the motor 2 is connected to one end of the shaft 9, and a reduction gear 12 on the input shaft 9 side and a reduction gear 13 on the intermediate shaft 10 side are engaged with each other.
  • the differential case 11 is supported on both ends of the housing 8 via a pair of bearings 18 so as to be rotatable.
  • a differential gear 15 as a final gear is integrally fixed to the outer periphery of the differential case 11, and the differential gear 15 meshes with the reduction gear 14 on the intermediate shaft 10 side.
  • the differential case 11 houses a pair of side gears 19a and 19b and a pair of pinion mate gears 20a and 20b that mesh with the side gears 19a and 19b, as is well known. Since the left and right drive shafts 4a and 4b are connected to the pair of side gears 19a and 19b, the rotational output of the side gears 19a and 19b is used as the rotational driving force of the drive shafts 4a and 4b. 4b is transmitted.
  • the first-stage deceleration is performed in accordance with the gear ratio so that the rotational speed of the intermediate shaft 10 is smaller than the rotational speed of the input shaft 9. Further, because of the gear ratio (tooth ratio or speed ratio) between the reduction gear 14 on the intermediate shaft 10 side and the differential gear 15 on the differential case 11 side having a larger diameter than that, the differential gear is more than the rotational speed of the intermediate shaft 10.
  • the second-stage deceleration according to the gear ratio is performed so that the rotation speed of the case 11 is smaller.
  • the differential case 11 is decelerated in two stages by the deceleration due to the power transmission from the input shaft 9 to the intermediate shaft 10 side and the deceleration due to the power transmission from the intermediate shaft 10 to the differential case 11.
  • the reduction gear 13 and the intermediate shaft 10 correspond to this.
  • a rotational position detector represented by a resolver having the rotating shaft 6 of the motor 2 as a rotating portion is provided on the end surface on the side of the anti-reduction gear 3 in the axial direction of the motor case 5.
  • 1 to 3 on the outer surface of the speed reducer 3 on the side opposite to the motor 2 and on the same axis as the auxiliary shaft of the motor power unit 1.
  • the pump 22 is fixedly arranged.
  • the pump 22 circulates lubricating oil for lubricating the reduction gears 12 to 15 and the like in the speed reducer 3, and at the same time, a cooling medium for forcibly cooling the motor 2 with the lubricating oil as will be described later.
  • the lubricating oil is attached to the motor 2 side for supply and circulation.
  • This pump 22 is characterized in that it is rotationally driven by the deceleration output of the speed reducer 3 in the motor power unit 1 without using a dedicated independent motor or speed reducer.
  • FIG. 4 shows details of the above-described pon 22.
  • the rotational driving force of the intermediate shaft 10 in FIGS. 2 and 3, that is, the reduction gear in the reduction gear 3, the first reduction gear and the shaft coaxial with it is shown.
  • An example of a centrifugal pump (spiral pump) that uses a certain reduction gear 13 and intermediate shaft 10 and is driven through a magnet coupling 36 of FIG. 5 is shown.
  • the pump 22 has a housing 23 and a pump case 24 forming a pump chamber 24a coupled in series so as to be located on the same axis line. It fixes to the outer surface of the housing 8 by the side of the reduction gear 3 shown in FIG. Also, the housing 23 is integrally formed with a boss portion 25 located on the same axis as the intermediate shaft 10 on the speed reducer 3 side, and the boss portion 25 is extended at the center of the boss portion 25. A fixed shaft 26 as a shaft body is inserted and fixed. Further, a rotor 27 having a substantially bottomed cylindrical shape is accommodated in the housing 23 of the pump 22, and this rotor 27 is connected to the extension shaft end of the intermediate shaft 10 on the reduction gear 3 side. A plurality of outer magnets 28 are fixed to the inner peripheral surface of the rotor 27 at equal pitches as drive side rotating magnets as shown in FIG.
  • a predetermined sealing property is ensured by interposing a sealing material (not shown) at the joint so that the pumping medium does not leak from the joint between the housing 23 and the pump case 24.
  • a suction port 29 and a discharge port 30 are formed in the pump case 24, and a pump impeller 31 is accommodated in a pump chamber 24a of the pump case 24.
  • the pump impeller 31 is rotatably supported by a fixed shaft 26 on the boss portion 25 side through a bearing 32 and a thrust receiver 33.
  • a partition 34 made of a substantially cup-shaped non-magnetic material is externally fixed to a portion of the pump impeller 31 on the boss portion 25 side and fixed integrally therewith.
  • the inner periphery of the partition 34 is shown in FIG.
  • a plurality of inner magnets 35 are fixed at equal pitches as driven-side rotating magnets.
  • the outer magnet 28 on the rotor 27 side and the inner magnet 35 on the pump impeller 31 side constitute a magnet coupling 36 while not in contact with each other, and the rotor 27 is rotated together with the intermediate shaft 10 on the speed reducer 3 side.
  • the pump impeller 31 is rotationally driven by the magnetic attractive action of the outer magnet 28 on the rotor 27 side and the inner magnet 35 on the pump impeller 31 side. Then, due to the pumping action by the rotation of the pump impeller 31, the pumping medium sucked from the suction port 29 side is discharged from the discharge port 30 side at a predetermined pressure.
  • the magnet coupling 36 composed of the outer magnet 28 and the inner magnet 35 is a non-contact power transmission mechanism using a magnet, and therefore, an auxiliary machine drive that restricts the drive state of the pump 22 that is an auxiliary machine. It also has a function as a limiting means, that is, a function as a simple torque limiter. When a load exceeding an allowable level is applied, the magnet coupling 36 itself slips to protect the pump 22 and the like from damage. it can. In other words, by adopting the magnet coupling 36, it becomes possible to positively control the driving state of the pump 22 as an auxiliary machine as needed, and also to ensure quietness.
  • the housing 23 of the pump 22 is provided with a pickup portion 37 as pickup means so as to face the outer magnet 28 on the rotor 27 side.
  • a rotation sensor 38 serving as a rotor (rotating unit) is configured.
  • the rotation sensor 38 can also detect the number of rotations of the motor 2, and the output of the rotation sensor 38 is effectively used for, for example, traction control or extremely low speed vibration suppression control.
  • an oil pan 39 with a heat radiating fin is attached to the bottom of the housing 8 that functions as a speed reducer case in the speed reducer 3. And a predetermined lubricating oil that circulates in the motor power unit 1 including the motor 2 is stored.
  • An oil cooler 40 is attached to the upper portion of the housing 8 as a heat exchanger (heat radiator), and the lubricating oil circulating in the motor power unit 1 passes through the oil cooler 40.
  • the shaft center of the motor 2 is oriented in the vehicle width direction, and the shaft center of the motor 2 is ahead of the vehicle than the left and right drive shafts 4a and 4b. It shall be arranged to be located on the side.
  • both the oil pan 39 with the radiating fin and the oil cooler 40 can directly receive the traveling wind W, and the lubricating oil inside the oil pan 39 can be actively cooled with air.
  • the rotation driving force of the motor 2 is transmitted to the input shaft 9 of the speed reducer 3 by the activation of the motor 2,
  • the first stage of deceleration is performed in the process of transmitting power from the input shaft 9 to the intermediate shaft 10
  • the second stage of deceleration is performed in the process of transmitting power from the intermediate shaft 10 to the differential case 11.
  • the left and right drive shafts 4a, 4b are rotationally driven by the rotational driving force of the differential case 11 thus made.
  • the pump 22 of FIG. As the pump 22 is driven to rotate, the lubricating oil stored in the oil pan 39 below the housing 8 in the speed reducer 3 is supplied to each part of the speed reducer 3 and the motor 2 as shown in FIG. It will act or cool down. As is apparent from FIGS. 2 and 3, the pump 22 is driven to rotate by the intermediate shaft 10 decelerated from the input shaft 9 of the speed reducer 3. Will be driven.
  • FIG. 6 shows the flow of lubricating oil in the motor power unit 1 shown in FIG.
  • the lubricating oil stored in the oil pan 39 is sucked by the pump 22 as indicated by the symbol a and then supplied to the oil cooler 40 as indicated by the symbol b.
  • Lubricating oil that has passed through the oil cooler 40 is supplied to the reduction gears 12 to 15 and the like of the reduction gear 3 as indicated by reference symbol c, and to the portion of the motor 2 on the side opposite to the reduction gear 3 as indicated by reference symbols d and e. And pumped.
  • the lubricating oil after cooling each part of the speed reducer 3 and each part of the motor 2 is returned to the oil pan 39 and reused for circulation as indicated by reference numeral f.
  • the input shaft 9 (see FIGS. 2 and 3) of the speed reducer 3 is hollow, for example.
  • the input shaft 9 is utilized as a lubricating oil supply passage from the oil cooler 40 to lubricate the input shaft 9, the reduction gears 12 to 15, and the like.
  • a splash-up method that has been used for a long time as a lubrication method of the reducer 3 itself is adopted, and the lubricating oil temporarily accumulated in the housing 8 is used as the reduction gears 12 to 14, the differential gear 15 and the like. It is assumed that the intermediate shaft 10, the reduction gears 12 to 14 attached thereto, the differential gear 15 and the like are lubricated.
  • the rotation shaft 6 of the motor 2 in addition to the input shaft 9 of the speed reducer 3 is also hollow, and the hollow input shaft 9 and the rotation shaft 6 are connected to the oil cooler 40.
  • the coil on the stator side and the magnet on the rotor side are cooled.
  • the motor power unit 1 of the present embodiment not only the motor 2 and the speed reducer 3 but also the pump 22 for circulating the lubricating oil is unitized, and the pump 22 is independent.
  • the motor is directly driven by the reduction driving force of the reduction gear 3 itself without the need for a motor or reduction gear. Therefore, the motor power unit 1 including the pump 22 as an auxiliary machine and its drive system is significantly advantageous in reducing the size and weight and saving space.
  • the motor 2 is made into an oil cooling system, and is independent as the motor power unit 1 while substantially reducing the number of externally exposed pipes. Since the cooling system is constructed, this can also contribute to further reduction in size and weight of the motor power unit 1 and space saving.
  • the pump 22 is accompanied by a rotation sensor 38 using the outer magnet 28 of the magnet coupling 36 as a sensor rotor (rotating portion), and is independent of the control system of the motor 2 and has a small signal processing delay.
  • the actual drive system rotation speed in the motor power unit 1 can be detected over a wide range.
  • the output of the rotation sensor 38 is utilized, which is advantageous, for example, when performing accurate traction control or extremely low speed vibration suppression control.
  • the speed reducer 3 is disposed between the motor 2 and the pump 22 as an auxiliary machine, a general-purpose motor can be used as the motor 2 as necessary. Improves.
  • FIG. 7 is a view showing a second embodiment of the vehicle drive device according to the present invention, and the same reference numerals are given to the portions common to FIG.
  • a pump 22 as an auxiliary machine is arranged coaxially with the input shaft 9 of the speed reducer 3, and the pump 22 is rotationally driven by this input shaft 9. It is.
  • the pump 22 is rotationally driven at the same rotational speed as that of the motor 2, so that the rotational speed of the pump 22 is higher than that of FIG. Will be.
  • FIG. 8 is a diagram showing a third embodiment of the vehicle drive device according to the present invention, and the same reference numerals are given to the parts common to FIG.
  • the reduction gear 12 is directly attached to the shaft end of the rotating shaft 6 of the motor 2, thereby eliminating the input shaft 9 and the bearing 16 of FIG. It is a thing. Also in this case, an effect almost equivalent to that of FIG. 3 is obtained.
  • FIG. 9 shows a cooling system for an electric vehicle on the assumption that the motor power unit 1 shown in FIGS. 1 to 3 is adopted.
  • the motor power unit 1 including the motor 2 and the speed reducer 3 is lubricated as described above.
  • a so-called oil-cooled independent cooling system using oil as a cooling medium is constructed.
  • the separate inverter 41 to be attached to the motor power unit 1 itself constitutes a so-called water-cooled independent cooling system.
  • the cooling system of the inverter 41 includes a radiator (radiator) 42 and electric water pumps 43 and 44 in two stages in series.
  • the radiator 42 and the water pumps 43 and 44 are connected in series by an external pipe to form a cooling water circulation loop for cooling the inverter 41.
  • a series of two-stage electric water pumps 43 and 44 whose flow rates are individually controlled are provided in a cooling water circulation loop for cooling the inverter 41, for example, either one of the pumps.
  • the required flow rate of the cooling water can be ensured by increasing the speed of the other pump.
  • FIG. 10 shows another example of the cooling system of the motor power unit 1 and the inverter 41.
  • the motor power unit 1 including the motor 2 and the speed reducer 3 has a pump 22 as an auxiliary device, and the inverter 41 It is common with the system of FIG.
  • a cooling method of the speed reducer 3 in the motor power unit 1 a so-called lubricating oil splashing type that has been known for a long time has been adopted, while a water cooling type has been adopted as a cooling method for the motor 2 and the inverter 3, 9 is different from the system of FIG. 9 in that the cooling water for the motor 2 and the inverter 3 is circulated by the pump 22.
  • the cooling system of the motor 2 and the inverter 41 includes a radiator 22 and an electric water pump in addition to a pump 22 attached as an accessory to the speed reducer 3. 45 is prepared, and cooling for cooling the motor 2 and the inverter 41 is achieved by connecting the pump 22, the motor 2, the inverter 41, the radiator 42, and the water pump 45 in series by external piping. A water circulation loop is formed.
  • the pump 22 as an auxiliary device attached to the speed reducer 3 is rotationally driven by the driving force of the speed reducer 3, whereas the water pump 45 is independent of the illustration. It is rotated by an electric motor.
  • the cooling water discharged from the pump 22 is first introduced into the inverter 41 to cool the inverter 41, and then the cooling water that has passed through the inverter 41 is introduced into the motor 2. 2 will be cooled. Then, the cooling water that has cooled the motor 2 is introduced into the radiator 42 by the water pump 45, and after heat exchange is performed by the radiator 42, the cooling water is returned to the pump 22 side and reused. become.
  • FIG. 11 shows still another example of the cooling system for the motor power unit 1 and the inverter 41.
  • the motor power unit 1 including the motor 2 and the speed reducer 3 includes a pump 22 as an auxiliary device, and the motor power unit.
  • the so-called lubricating oil splashing type that has been known for a long time has been adopted as the cooling method of the speed reducer 3
  • the water cooling type has been adopted as the cooling method of the motor 2 and the inverter 41.
  • 10 is common to the system of FIG. 10 in that the cooling water for 41 is circulated by an auxiliary pump 22 and an electric water pump 45.
  • the motor 2 and the inverter 41 are arranged close to each other and both are connected by an internal cooling water passage.
  • FIG. 12 shows still another example of the cooling system for the motor power unit 1 and the inverter 41 in the same manner.
  • the anti-reduction gear of the motor 2 out of the motor power unit 1 including the motor 2 and the reduction gear 3 is assumed on the assumption that the motor power unit 1 shown in FIG.
  • the inverter 41 is connected to the third side, and at least three of the reduction gear 3, the motor 2, and the inverter 41 are connected by an internal lubricating oil passage.
  • both the motor 2 and the inverter 41 are oil-cooled, and there is an advantage that the number of externally exposed pipes can be further reduced.
  • a water-cooling type can be adopted for cooling the motor 2 and the inverter 41.
  • the cooling of the speed reducer 3 in the motor power unit 1 is performed as in the systems of FIGS.
  • a so-called lubricating oil splashing type that has been known for a long time is adopted as a method, and cooling water for cooling the motor 2 and the inverter 41 is circulated by a pump 22 attached as an accessory to the motor power unit 1. It will be good.
  • the lubricating oil or cooling water circulation pump 22 has been described as an example of an auxiliary device attached to the motor power unit 1, but this is merely an example, and the auxiliary device is not necessarily limited to the pump 22. Is not to be done.
  • auxiliary machines other than the pump 22 to which the present invention can be applied include a generator (alternator), a compressor for an air conditioner, a negative pressure pump for braking, a hydraulic pump for power steering, and the like.
  • the speed reducer includes a housing that accommodates the speed reducing element, and the auxiliary machine is fixedly disposed in the housing, so that the layout can be improved as described above. There is an advantage to improve.
  • the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears.
  • the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor.
  • a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor.
  • the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears.
  • the auxiliary machine is driven by the driving force of the speed reducer via an auxiliary machine drive limiting means capable of limiting the drive state of the auxiliary machine.
  • the accessory drive limiting means includes a driving side rotating magnet connected to the rotating shaft of the speed reducer and a driven side that is rotationally driven by the magnetic force of the driving side rotating magnet.
  • the magnet coupling is substantially employed as the accessory driving limiting means, thereby reducing silence.
  • the speed reducer includes a housing that accommodates a plurality of stages of reduction gears, and an auxiliary machine is fixedly disposed in the housing, thereby improving layout.
  • the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor, whereby a motor control system and Can detect the rotational speed of the actual drive system in the motor in a wide range in an independent manner and with little signal processing delay. Therefore, it is advantageous in performing accurate traction control and extremely low speed vibration suppression control by utilizing the output of the rotation sensor, for example.
  • the accessory is driven by the driving force of the speed reducer via an accessory drive restricting means capable of restricting the drive state of the accessory.
  • the accessory drive limiting means is a drive-side rotating magnet connected to the rotating shaft of the speed reducer, and the accessory is rotated by the magnetic force of the driving-side rotating magnet.
  • the driven side rotating magnet for driving the motor has the advantage that the quietness can be ensured by substantially adopting the magnet coupling as the accessory drive limiting means.
  • the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears.
  • the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor, whereby a motor control system and Can detect the rotational speed of the actual drive system in the motor in a wide range in an independent manner and with little signal processing delay. Therefore, it is advantageous in performing accurate traction control and extremely low speed vibration suppression control by utilizing the output of the rotation sensor, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Gear Transmission (AREA)
  • Transmission Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

A motor power unit (1) comprises a motor (2) and a speed reducer (3). The speed reducer (3) is provided with an input shaft (9), an intermediate shaft (10), a differential case (11), speed reduction gears (12)-(14), and a differential gear (15). A pump (22) is mounted as an auxiliary device on the outside surface, on the side opposite the motor (2), of the housing (8) of the speed reducer (3). The pump (22) is disposed coaxially with respect to the intermediate shaft (10) of the speed reducer (3), and the pump (22) is driven by the intermediate shaft (10). Lubricating oil for the speed reducer (3) is also used to cool the motor (2), and the lubricating oil is circulated using the pump (22) in the interior of the motor (2) and the speed reducer (3). This configuration makes it possible to eliminate the motor for driving the auxiliary device or the speed reducer for driving the auxiliary device.

Description

車両用駆動装置Vehicle drive device
 本発明は、電気自動車のパワートレーンあるいはドライブトレーンを構成することになる車両用駆動装置に関する。 The present invention relates to a vehicle drive device that constitutes a power train or drive train of an electric vehicle.
 電気自動車における省スペース化と低コスト化を図るにあたって、走行用の電動モータにより補機までも同時に駆動するようにしたものが特許文献1にて提案されている。補機の代表的なものとしては、例えばモータそのものや各種制御機器を強制冷却するための冷却水循環用のウォータポンプのほか、オイルポンプあるいは空調装置のコンプレッサ等を挙げることができる。そして、この構造によれば、それまでは独立して設けざるを得なかった補機駆動用モータを廃止することができるとされている。 In order to save space and reduce costs in an electric vehicle, Patent Document 1 proposes a driving electric motor that simultaneously drives an auxiliary machine. Typical auxiliary machines include, for example, a water pump for cooling water circulation for forcibly cooling the motor itself and various control devices, an oil pump, an air conditioner compressor, and the like. And according to this structure, it is supposed that the auxiliary machine drive motor which had to be provided independently until then can be abolished.
 しかしながら、特許文献1に記載された技術では、走行用の電動モータにより補機までも同時に駆動するが故に、補機に必要とされる回転数が必ずしもモータそのものの回転数とはならず、補機駆動用モータは廃止することができたとしても、代わって補機の前段に減速機を介装させる必要がある。そのため、省スペース化と低コスト化を図るにもおのずと限界があり、なおも改善の余地を残している。 However, in the technology described in Patent Document 1, since the traveling electric motor drives the auxiliary machine at the same time, the rotational speed required for the auxiliary machine is not necessarily the rotational speed of the motor itself. Even if the machine drive motor can be abolished, it is necessary to install a reduction gear in front of the auxiliary machine instead. For this reason, there is a limit to space saving and cost reduction, and there is still room for improvement.
特開2008-206213号公報JP 2008-206213 A
 本発明はこのような課題に着目してなされたものであり、電動モータを駆動源として補機までも駆動することを前提としながら、車両搭載機器の省スペース化につながる電動パワートレーンの小型軽量化を図り、補機駆動用モータだけでなく補機駆動用の減速機までも廃止できるようにした車両用駆動装置を提供するものである。 The present invention has been made by paying attention to such problems, and is based on the assumption that the electric motor is used as a driving source to drive even auxiliary equipment, and the electric power train is reduced in size and weight, which leads to space saving of on-vehicle equipment. Accordingly, the present invention provides a vehicle drive device that can eliminate not only the accessory drive motor but also the accessory drive speed reducer.
 本発明は、上記課題を解決するため、電動式のモータのほか、当該モータを駆動源として駆動輪のための駆動軸を減速駆動する減速装置と、当該減速装置の駆動力により駆動される補機と、を備えている構造とした。 In order to solve the above-described problems, the present invention provides an electric motor, a reduction device that drives the drive shaft for the drive wheels at a reduced speed using the motor as a drive source, and a supplement driven by the driving force of the reduction device. And a structure equipped with a machine.
 なお、補機としては、先に述べたように、モータそのものや各種制御機器を強制冷却するための冷却水循環用のウォータポンプのほか、各種オイルポンプあるいは空調装置のコンプレッサ等を挙げることができる。 As described above, the auxiliary machine includes a water pump for circulating cooling water for forcibly cooling the motor itself and various control devices, as well as various oil pumps and compressors for air conditioners.
 本発明によれば、補機駆動のためのモータだけでなく、補機駆動のための減速装置までも廃止することができ、補機およびその駆動系までも含んだ電動パワートレーン(電動ドライブトレーン)としての車両用駆動装置の小型軽量化を図ることができる。 According to the present invention, not only a motor for driving an auxiliary machine but also a speed reducer for driving the auxiliary machine can be eliminated, and an electric power train (electric drive train) including the auxiliary machine and its drive system is also included. ) Can be reduced in size and weight.
本発明に係る車両用駆動装置を実施するためのより具体的な形態として、電気自動車のいわゆる電動パワートレーンの主要素となるモータパワーユニットの概略構造を示す斜視図。The perspective view which shows schematic structure of the motor power unit used as the main element of what is called an electric power train of an electric vehicle as a more concrete form for implementing the vehicle drive device which concerns on this invention. 図1に示したモータパワーユニットの断面説明図。Cross-sectional explanatory drawing of the motor power unit shown in FIG. 図2に示したモータパワーユニットの内部構造を簡略化した模式的説明図。The typical explanatory view which simplified the internal structure of the motor power unit shown in FIG. 図1~3に示した補機としてのポンプの拡大断面説明図。FIG. 4 is an enlarged sectional explanatory view of a pump as an auxiliary machine shown in FIGS. 図4の要部斜視図。The principal part perspective view of FIG. 図1に示したモータパワーユニットにおける潤滑油の流れを示す説明図。Explanatory drawing which shows the flow of the lubricating oil in the motor power unit shown in FIG. 本発明に係る車両用駆動装置を実施するための第2の形態を示す模式的説明図。The typical explanatory view showing the 2nd form for carrying out the drive device for vehicles concerning the present invention. 本発明に係る車両用駆動装置を実施するための第3の形態を示す模式的説明図。The typical explanatory view showing the 3rd form for carrying out the drive device for vehicles concerning the present invention. 図1~3のモータパワーユニットにインバータを加えた全体の冷却システムの説明図。Explanatory drawing of the whole cooling system which added the inverter to the motor power unit of FIGS. 図1~3のモータパワーユニットにインバータを加えた全体の冷却システムの別の例を示す説明図。FIG. 4 is an explanatory diagram showing another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS. 図1~3のモータパワーユニットにインバータを加えた全体の冷却システムの別の例を示す説明図。FIG. 4 is an explanatory diagram showing another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS. 図1~3のモータパワーユニットにインバータを加えた全体の冷却システムのさらに別の例を示す説明図。FIG. 4 is an explanatory diagram showing still another example of the entire cooling system in which an inverter is added to the motor power unit of FIGS.
 図1~6は本発明に係る車両用駆動装置を実施するためのより具体的な形態を示していて、特に図1は電気自動車のいわゆる電動パワートレーン(電動ドライブトレーン)の主要素となるモータパワーユニット1の概略構造を示している。また、図2は図1に示したモータパワーユニット1の断面図を、図3は図2を模式化した簡略図をそれぞれ示している。 1 to 6 show a more specific form for carrying out the vehicle drive device according to the present invention. In particular, FIG. 1 shows a motor as a main element of a so-called electric power train (electric drive train) of an electric vehicle. The schematic structure of the power unit 1 is shown. 2 is a cross-sectional view of the motor power unit 1 shown in FIG. 1, and FIG. 3 is a simplified diagram schematically showing FIG.
 図1~3に示すように、モータパワーユニット1は、原動機である電動式のモータ2と、ファイナルドライブユニットである減速装置としての減速機(終減速機)3とを集約して、実質的にこれら両者を一体化してユニット化したものである。そして、減速機3の出力側には当該減速機3をはさんで左右の駆動軸としてのドライブシャフト4a,4bの一端が接続されていて、各ドライブシャフト4a,4bの他端は周知のように図示外の駆動輪である車輪に接続される。 As shown in FIGS. 1 to 3, the motor power unit 1 is composed of an electric motor 2 as a prime mover and a reduction gear (final reduction gear) 3 as a reduction gear as a final drive unit. Both are integrated into a unit. The output side of the speed reducer 3 is connected to one end of drive shafts 4a and 4b as left and right drive shafts across the speed reducer 3, and the other ends of the drive shafts 4a and 4b are well known. Are connected to wheels which are drive wheels (not shown).
 モータ2は、例えば永久磁石埋め込み型の3相同期モータであって、周知のように、モータケース5に固定子である図示外のステータのほか、回転軸6を有する回転子としての図示外のロータを挿入してあり、図2,3に示すように回転軸6を複数のベアリング7にて回転可能に両持ち支持することで構成してある。回転軸6はモータケース5の軸心方向において減速機3側の一端面から突出していて、後述するように減速機3側の入力軸9と接続される。 The motor 2 is, for example, a three-phase synchronous motor embedded with permanent magnets. As is well known, the motor 2 is not shown as a rotor having a rotating shaft 6 in addition to a stator not shown as a stator in the motor case 5. A rotor is inserted, and the rotary shaft 6 is supported by a plurality of bearings 7 so as to be rotatable at both ends as shown in FIGS. The rotating shaft 6 protrudes from one end surface on the reduction gear 3 side in the axial direction of the motor case 5 and is connected to the input shaft 9 on the reduction gear 3 side as will be described later.
 その一方、減速機3は、図2,3に示すように、減速機ケースとして機能するハウジング8のほか、そのハウジング8内において軸心が互いに平行となるようにそれぞれに両持ち支持されている入力軸9、中間軸10およびディファレンシャルケース11と、それらの入力軸9や中間軸10等に付帯する減速ギヤ列12~15にて構成されている。ハウジング8のうちモータ2側の一端面は当該モータ2側に向けて開放された開口部となっていて、この開口部に対してモータ2側のモータケース5を突き合わせた上で、両者を図示外のボルトにて締結結合してある。 On the other hand, as shown in FIGS. 2 and 3, the speed reducer 3 is supported on both ends so that the shaft centers are parallel to each other in the housing 8, in addition to the housing 8 functioning as a speed reducer case. An input shaft 9, an intermediate shaft 10, a differential case 11, and reduction gear trains 12 to 15 attached to the input shaft 9, the intermediate shaft 10 and the like are configured. One end surface of the housing 8 on the motor 2 side is an opening opened toward the motor 2 side, and the motor case 5 on the motor 2 side is abutted against the opening, and both are illustrated. Fastened with external bolts.
 より詳しくは、減速機3の入力軸9は一対のベアリング16を介して、中間軸10は同様に一対のベアリング17を介して、それぞれにハウジング8に回転可能に両持ち支持されていて、入力軸9の一端にはモータ2の回転軸6が接続されるとともに、入力軸9側の減速ギヤ12と中間軸10側の減速ギヤ13とが噛み合っている。 More specifically, the input shaft 9 of the speed reducer 3 is rotatably supported by the housing 8 via a pair of bearings 16, and the intermediate shaft 10 is similarly supported by a pair of bearings 17. A rotary shaft 6 of the motor 2 is connected to one end of the shaft 9, and a reduction gear 12 on the input shaft 9 side and a reduction gear 13 on the intermediate shaft 10 side are engaged with each other.
 また、ディファレンシャルケース11は同様に一対のベアリング18を介してハウジング8に回転可能に両持ち支持されている。このディファレンシャルケース11の外周にはファイナルギヤとしてのディファレンシャルギヤ15が一体的に固定されていて、ディファレンシャルギヤ15は中間軸10側の減速ギヤ14と噛み合っている。さらに、ディファレンシャルケース11には、周知のように一対のサイドギヤ19a,19bとこれらのサイドギヤ19a,19bに噛み合う同じく一対のピニオンメートギヤ20a,20bが収容されている。そして、一対のサイドギヤ19a,19bに左右のドライブシャフト4a,4bが接続されていることで、これらのサイドギヤ19a,19bの回転出力が各ドライブシャフト4a,4bの回転駆動力として当該ドライブシャフト4a,4bに伝達されることになる。 Similarly, the differential case 11 is supported on both ends of the housing 8 via a pair of bearings 18 so as to be rotatable. A differential gear 15 as a final gear is integrally fixed to the outer periphery of the differential case 11, and the differential gear 15 meshes with the reduction gear 14 on the intermediate shaft 10 side. Further, the differential case 11 houses a pair of side gears 19a and 19b and a pair of pinion mate gears 20a and 20b that mesh with the side gears 19a and 19b, as is well known. Since the left and right drive shafts 4a and 4b are connected to the pair of side gears 19a and 19b, the rotational output of the side gears 19a and 19b is used as the rotational driving force of the drive shafts 4a and 4b. 4b is transmitted.
 そして、図2,3から明らかなように、入力軸9側の減速ギヤ12とそれよりも大径の中間軸10側の減速ギヤ13とのギヤ比(歯数比または速比)のために、入力軸9の回転数よりも中間軸10の回転数の方が小さくなるように、上記ギヤ比に応じた一段目の減速がなされることになる。さらに、中間軸10側の減速ギヤ14とそれよりも大径のディファレンシャルケース11側のディファレンシャルギヤ15とのギヤ比(歯数比または速比)のために、中間軸10の回転数よりもディファレンシャルケース11の回転数の方が小さくなるように、上記ギヤ比に応じた二段目の減速がなされることになる。このように、入力軸9から中間軸10側への動力伝達による減速と、中間軸10からディファレンシャルケース11への動力伝達による減速とにより、ディファレンシャルケース11は二段階にて減速されるようになっており、減速機3における減速要素のうち一段目の減速ギヤとそれと同軸上の軸という場合には、減速ギヤ13と中間軸10がこれに該当することになる。 2 and 3, because of the gear ratio (tooth ratio or speed ratio) between the reduction gear 12 on the input shaft 9 side and the reduction gear 13 on the intermediate shaft 10 side having a larger diameter than that of the reduction gear 12 on the input shaft 9 side. The first-stage deceleration is performed in accordance with the gear ratio so that the rotational speed of the intermediate shaft 10 is smaller than the rotational speed of the input shaft 9. Further, because of the gear ratio (tooth ratio or speed ratio) between the reduction gear 14 on the intermediate shaft 10 side and the differential gear 15 on the differential case 11 side having a larger diameter than that, the differential gear is more than the rotational speed of the intermediate shaft 10. The second-stage deceleration according to the gear ratio is performed so that the rotation speed of the case 11 is smaller. As described above, the differential case 11 is decelerated in two stages by the deceleration due to the power transmission from the input shaft 9 to the intermediate shaft 10 side and the deceleration due to the power transmission from the intermediate shaft 10 to the differential case 11. In the case of the first reduction gear among the reduction elements in the reduction gear 3 and the shaft coaxial therewith, the reduction gear 13 and the intermediate shaft 10 correspond to this.
 ここで、図3に示すように、モータケース5の軸心方向において反減速機3側の端面には、モータ2の回転軸6を回転部とするレゾルバに代表されるような回転位置検出器21を設けてあるとともに、図1~3に示すように、減速機3のハウジング8のうち反モータ2側の外側面であって且つ中間軸10と同軸線上にはモータパワーユニット1の補機としてのポンプ22を固定配置してある。このポンプ22は、減速機3内の減速ギヤ12~15等を潤滑するための潤滑油を循環させるものであると同時に、後述するようにその潤滑油をモータ2を強制冷却するための冷却媒体として用いて当該潤滑油をモータ2側にも供給・循環させるために付帯させてある。このポンプ22は専用の独立したモータや減速機を用いることなく、モータパワーユニット1における減速機3の減速出力にて回転駆動されるところに特徴がある。 Here, as shown in FIG. 3, a rotational position detector represented by a resolver having the rotating shaft 6 of the motor 2 as a rotating portion is provided on the end surface on the side of the anti-reduction gear 3 in the axial direction of the motor case 5. 1 to 3, as shown in FIGS. 1 to 3, on the outer surface of the speed reducer 3 on the side opposite to the motor 2 and on the same axis as the auxiliary shaft of the motor power unit 1. The pump 22 is fixedly arranged. The pump 22 circulates lubricating oil for lubricating the reduction gears 12 to 15 and the like in the speed reducer 3, and at the same time, a cooling medium for forcibly cooling the motor 2 with the lubricating oil as will be described later. The lubricating oil is attached to the motor 2 side for supply and circulation. This pump 22 is characterized in that it is rotationally driven by the deceleration output of the speed reducer 3 in the motor power unit 1 without using a dedicated independent motor or speed reducer.
 図4は上記ポン22の詳細を示していて、ここでは図2,3の中間軸10の回転駆動力、すなわち減速機3における減速要素のうち、一段目の減速ギヤとそれと同軸上の軸であるところの減速ギヤ13と中間軸10とを用い、図5のマグネットカップリング36を介して駆動される遠心ポンプ(渦巻きポンプ)の例を示している。 FIG. 4 shows details of the above-described pon 22. Here, the rotational driving force of the intermediate shaft 10 in FIGS. 2 and 3, that is, the reduction gear in the reduction gear 3, the first reduction gear and the shaft coaxial with it. An example of a centrifugal pump (spiral pump) that uses a certain reduction gear 13 and intermediate shaft 10 and is driven through a magnet coupling 36 of FIG. 5 is shown.
 図4に示すように、ポンプ22は、ハウジング23と、ポンプ室24aを形成するポンプケース24とを、互いに同一軸線上に位置するように直列に結合してあり、ハウジング23は図1~3に示す減速機3側のハウジング8の外側面に固定される。また、ハウジング23には、減速機3側の中間軸10と同一軸線上に位置するボス部25を一体に形成してあるとともに、ボス部25の中心には当該ボス部25を延長するようにして軸体としての固定軸26を挿入固定してある。さらに、ポンプ22のハウジング23内には略有底円筒状をなすロータ27が収容配置されており、このロータ27は減速機3側の中間軸10の延長軸端に連結される。そして、ロータ27の内周面には、図5に示すように駆動側回転磁石として複数のアウタマグネット28を等ピッチで固定してある。 As shown in FIG. 4, the pump 22 has a housing 23 and a pump case 24 forming a pump chamber 24a coupled in series so as to be located on the same axis line. It fixes to the outer surface of the housing 8 by the side of the reduction gear 3 shown in FIG. Also, the housing 23 is integrally formed with a boss portion 25 located on the same axis as the intermediate shaft 10 on the speed reducer 3 side, and the boss portion 25 is extended at the center of the boss portion 25. A fixed shaft 26 as a shaft body is inserted and fixed. Further, a rotor 27 having a substantially bottomed cylindrical shape is accommodated in the housing 23 of the pump 22, and this rotor 27 is connected to the extension shaft end of the intermediate shaft 10 on the reduction gear 3 side. A plurality of outer magnets 28 are fixed to the inner peripheral surface of the rotor 27 at equal pitches as drive side rotating magnets as shown in FIG.
 なお、当然のことながら、ハウジング23とポンプケース24の接合部から圧送媒体の漏れ出しがないように、当該接合部では図示しないシール材の介装により所定のシール性が確保されている。 Note that, as a matter of course, a predetermined sealing property is ensured by interposing a sealing material (not shown) at the joint so that the pumping medium does not leak from the joint between the housing 23 and the pump case 24.
 他方、ポンプケース24には吸入ポート29と吐出ポート30とを形成してあるとともに、ポンプケース24のポンプ室24a内にはポンプインペラ31を収容してある。ポンプインペラ31はベアリング32とスラスト受け33とを介してボス部25側の固定軸26に回転可能に支持させてある。このポンプインペラ31のうちボス部25側の部分には略カップ状の非磁性体からなる隔壁34を外挿して一体的に固定してあるとともに、その隔壁34の内周には、図5に示すように従動側回転磁石として複数のインナマグネット35を等ピッチで固定してある。 On the other hand, a suction port 29 and a discharge port 30 are formed in the pump case 24, and a pump impeller 31 is accommodated in a pump chamber 24a of the pump case 24. The pump impeller 31 is rotatably supported by a fixed shaft 26 on the boss portion 25 side through a bearing 32 and a thrust receiver 33. A partition 34 made of a substantially cup-shaped non-magnetic material is externally fixed to a portion of the pump impeller 31 on the boss portion 25 side and fixed integrally therewith. The inner periphery of the partition 34 is shown in FIG. As shown, a plurality of inner magnets 35 are fixed at equal pitches as driven-side rotating magnets.
 これらのロータ27側のアウタマグネット28とポンプインペラ31側のインナマグネット35は、互いに非接触でありながらマグネットカップリング36を構成していて、減速機3側の中間軸10とともにロータ27が回転すれば、そのロータ27側のアウタマグネット28とポンプインペラ31側のインナマグネット35との磁気吸引作用により、ポンプインペラ31が回転駆動されることになる。そして、ポンプインペラ31の回転によるポンプ作用のために、吸入ポート29側から吸入された圧送媒体が所定の圧力で吐出ポート30側から吐出されることになる。 The outer magnet 28 on the rotor 27 side and the inner magnet 35 on the pump impeller 31 side constitute a magnet coupling 36 while not in contact with each other, and the rotor 27 is rotated together with the intermediate shaft 10 on the speed reducer 3 side. For example, the pump impeller 31 is rotationally driven by the magnetic attractive action of the outer magnet 28 on the rotor 27 side and the inner magnet 35 on the pump impeller 31 side. Then, due to the pumping action by the rotation of the pump impeller 31, the pumping medium sucked from the suction port 29 side is discharged from the discharge port 30 side at a predetermined pressure.
 このように、アウタマグネット28とインナマグネット35とからなるマグネットカップリング36は、磁石を用いた非接触式動力伝達機構であるが故に、補機であるポンプ22の駆動状態を制限する補機駆動制限手段としての機能、すなわち簡易的なトルクリミッターとしての機能を併せ持っていて、許容レベル以上の負荷がかかった場合にはマグネットカップリング36自体がスリップしてポンプ22等を破損から保護することができる。言い換えるならば、マグネットカップリング36の採用によって、必要に応じて補機としてのポンプ22の駆動状態を積極的にコントロールすることが可能となるほか、静粛性も併せて確保することができる。 As described above, the magnet coupling 36 composed of the outer magnet 28 and the inner magnet 35 is a non-contact power transmission mechanism using a magnet, and therefore, an auxiliary machine drive that restricts the drive state of the pump 22 that is an auxiliary machine. It also has a function as a limiting means, that is, a function as a simple torque limiter. When a load exceeding an allowable level is applied, the magnet coupling 36 itself slips to protect the pump 22 and the like from damage. it can. In other words, by adopting the magnet coupling 36, it becomes possible to positively control the driving state of the pump 22 as an auxiliary machine as needed, and also to ensure quietness.
 また、図4に示すように、ポンプ22のハウジング23にはロータ27側のアウタマグネット28と対峙するようにピックアップ手段たるピックアップ部37を設けてあり、これによりロータ27側のアウタマグネット28をセンサロータ(回転部)とする回転センサ38を構成してある。この回転センサ38によってもまたモータ2の回転数を検知することが可能であり、この回転センサ38の出力は例えばトラクション制御や極低速振動抑制制御等に有効活用される。 Further, as shown in FIG. 4, the housing 23 of the pump 22 is provided with a pickup portion 37 as pickup means so as to face the outer magnet 28 on the rotor 27 side. A rotation sensor 38 serving as a rotor (rotating unit) is configured. The rotation sensor 38 can also detect the number of rotations of the motor 2, and the output of the rotation sensor 38 is effectively used for, for example, traction control or extremely low speed vibration suppression control.
 ここで、図1から明らかなように、減速機3における減速機ケースとして機能するハウジング8の底部には放熱フィン付きのオイルパン39を付帯させてあり、このオイルパン39には、減速機3およびモータ2を含むモータパワーユニット1内を循環することになる所定の潤滑油が貯留される。また、上記ハウジング8の上部には熱交換器(放熱器)としてオイルクーラ40を付帯させてあり、上記モータパワーユニット1内を循環する潤滑油がこのオイルクーラ40を通過することになる。 Here, as is apparent from FIG. 1, an oil pan 39 with a heat radiating fin is attached to the bottom of the housing 8 that functions as a speed reducer case in the speed reducer 3. And a predetermined lubricating oil that circulates in the motor power unit 1 including the motor 2 is stored. An oil cooler 40 is attached to the upper portion of the housing 8 as a heat exchanger (heat radiator), and the lubricating oil circulating in the motor power unit 1 passes through the oil cooler 40.
 そして、図1に示したモータパワーユニット1を車両に搭載する際には、モータ2の軸心が車幅方向を指向し且つそのモータ2の軸心が左右のドライブシャフト4a,4bよりも車両前方側に位置するように配置するものとする。こうすることにより、図1に示すように、放熱フィン付きのオイルパン39およびオイルクーラ40共に走行風Wを直接受けることが可能となり、オイルパン39の内部の潤滑油を積極的に空冷することが可能となるとともに、その潤滑油が通過することになるオイルクーラ40の空冷による熱交換作用を一段と促進することが可能となる。 When the motor power unit 1 shown in FIG. 1 is mounted on a vehicle, the shaft center of the motor 2 is oriented in the vehicle width direction, and the shaft center of the motor 2 is ahead of the vehicle than the left and right drive shafts 4a and 4b. It shall be arranged to be located on the side. By doing so, as shown in FIG. 1, both the oil pan 39 with the radiating fin and the oil cooler 40 can directly receive the traveling wind W, and the lubricating oil inside the oil pan 39 can be actively cooled with air. In addition, it is possible to further promote the heat exchange action by air cooling of the oil cooler 40 through which the lubricating oil passes.
 したがって、このように構成されたモータパワーユニット1によれば、図2,3に示したように、モータ2の起動により当該モータ2の回転駆動力が減速機3の入力軸9に伝達され、その入力軸9から中間軸10へと動力が伝達される過程で一段目の減速がなされ、さらに中間軸10からディファレンシャルケース11へと動力が伝達される過程で二段目の減速がなされ、その減速されたディファレンシャルケース11の回転駆動力をもって左右のドライブシャフト4a,4bが回転駆動されることになる。 Therefore, according to the motor power unit 1 configured as described above, as shown in FIGS. 2 and 3, the rotation driving force of the motor 2 is transmitted to the input shaft 9 of the speed reducer 3 by the activation of the motor 2, The first stage of deceleration is performed in the process of transmitting power from the input shaft 9 to the intermediate shaft 10, and the second stage of deceleration is performed in the process of transmitting power from the intermediate shaft 10 to the differential case 11. The left and right drive shafts 4a, 4b are rotationally driven by the rotational driving force of the differential case 11 thus made.
 同時に、中間軸10の回転駆動力を受けてそれと同軸上の図4のポンプ22が回転駆動される。このポンプ22の回転駆動に伴い、図1に示したように減速機3におけるハウジング8の下部のオイルパン39に貯留されている潤滑油が減速機3およびモータ2の各部に供給されて、潤滑作用または冷却作用をなすことになる。なお、図2,3から明らかなように、ポンプ22は減速機3の入力軸9よりも減速された中間軸10にて回転駆動されるようになっているので、ほど良い回転数にて回転駆動されることになる。 At the same time, upon receiving the rotational driving force of the intermediate shaft 10, the pump 22 of FIG. As the pump 22 is driven to rotate, the lubricating oil stored in the oil pan 39 below the housing 8 in the speed reducer 3 is supplied to each part of the speed reducer 3 and the motor 2 as shown in FIG. It will act or cool down. As is apparent from FIGS. 2 and 3, the pump 22 is driven to rotate by the intermediate shaft 10 decelerated from the input shaft 9 of the speed reducer 3. Will be driven.
 図1に示したモータパワーユニット1における潤滑油の流れを図6に示す。図6から明らかなように、オイルパン39に貯留されている潤滑油は符号aで示すようにポンプ22により吸引された上で、符号bで示すようにオイルクーラ40に供給される。オイルクーラ40を通過した潤滑油は符号cで示すように減速機3の減速ギヤ12~15等に供給されるとともに、符号dおよびeで示すようにモータ2の反減速機3側の部位へと圧送される。そして、減速機3の各部やモータ2の各部を冷却した後の潤滑油は符号fで示すように再びオイルパン39に戻されて循環再使用されることになる。 FIG. 6 shows the flow of lubricating oil in the motor power unit 1 shown in FIG. As is apparent from FIG. 6, the lubricating oil stored in the oil pan 39 is sucked by the pump 22 as indicated by the symbol a and then supplied to the oil cooler 40 as indicated by the symbol b. Lubricating oil that has passed through the oil cooler 40 is supplied to the reduction gears 12 to 15 and the like of the reduction gear 3 as indicated by reference symbol c, and to the portion of the motor 2 on the side opposite to the reduction gear 3 as indicated by reference symbols d and e. And pumped. Then, the lubricating oil after cooling each part of the speed reducer 3 and each part of the motor 2 is returned to the oil pan 39 and reused for circulation as indicated by reference numeral f.
 ここで、先に述べたオイルクーラ40から減速機3の内部への潤滑油の供給に際しては、例えば減速機3の入力軸9(図2,3参照)の中空状のものとし、この中空状の入力軸9をオイルクーラ40からの潤滑油供給通路として活用して、入力軸9や減速ギヤ12~15等を潤滑するものとする。また、減速機3の内部では減速機3そのもの潤滑方式として古くから採用されている跳ね上げ式を採用し、ハウジング8内に一時的に溜まった潤滑油を減速ギヤ12~14やディファレンシャルギヤ15等の回転によって跳ね上げて、中間軸10やそれに付帯する減速ギヤ12~14やディファレンシャルギヤ15等を潤滑するものとする。 Here, when the lubricating oil is supplied from the oil cooler 40 to the inside of the speed reducer 3, the input shaft 9 (see FIGS. 2 and 3) of the speed reducer 3 is hollow, for example. The input shaft 9 is utilized as a lubricating oil supply passage from the oil cooler 40 to lubricate the input shaft 9, the reduction gears 12 to 15, and the like. In addition, in the reducer 3, a splash-up method that has been used for a long time as a lubrication method of the reducer 3 itself is adopted, and the lubricating oil temporarily accumulated in the housing 8 is used as the reduction gears 12 to 14, the differential gear 15 and the like. It is assumed that the intermediate shaft 10, the reduction gears 12 to 14 attached thereto, the differential gear 15 and the like are lubricated.
 その一方、モータ2の各部の冷却に際しては、例えば減速機3の入力軸9のほかモータ2の回転軸6も中空状のものとし、この中空状の入力軸9や回転軸6をオイルクーラ40からの潤滑油供給通路として活用して、回転軸6の反減速機3側まで圧送した上で、図6の符号eで示すようにロータの遠心力を利用して潤滑油をミスト状にして、ステータ側のコイルやロータ側の磁石を冷却するものとする。 On the other hand, when each part of the motor 2 is cooled, for example, the rotation shaft 6 of the motor 2 in addition to the input shaft 9 of the speed reducer 3 is also hollow, and the hollow input shaft 9 and the rotation shaft 6 are connected to the oil cooler 40. Is used as a lubricating oil supply passage from the rotary shaft 6 and pumped to the anti-reduction gear 3 side of the rotary shaft 6, and then the lubricating oil is made into a mist using the centrifugal force of the rotor as shown by a symbol e in FIG. 6. The coil on the stator side and the magnet on the rotor side are cooled.
 このように本実施の形態のモータパワーユニット1によれば、モータ2および減速機3だけでなく潤滑油の循環のためのポンプ22までも付帯するかたちでユニット化されていて、しかもポンプ22は独立したモータや減速機を必要とすることなく、減速機3そのものの減速駆動力にて直接的に駆動される。そのため、補機としてのポンプ22およびその駆動系までも含んだモータパワーユニット1の小型軽量化および省スペース化を図る上で著しく有利となる。 As described above, according to the motor power unit 1 of the present embodiment, not only the motor 2 and the speed reducer 3 but also the pump 22 for circulating the lubricating oil is unitized, and the pump 22 is independent. The motor is directly driven by the reduction driving force of the reduction gear 3 itself without the need for a motor or reduction gear. Therefore, the motor power unit 1 including the pump 22 as an auxiliary machine and its drive system is significantly advantageous in reducing the size and weight and saving space.
 また、減速機3の潤滑のための潤滑油をモータ2の冷却媒体としても活用することでモータ2を油冷方式とし、実質的に外部露出配管を限りなく少なくしつつモータパワーユニット1として独立した冷却システムが構築されているので、これによってもまたモータパワーユニット1の一層の小型軽量化および省スペース化に寄与することができる。 Further, by utilizing the lubricating oil for lubricating the speed reducer 3 as a cooling medium for the motor 2, the motor 2 is made into an oil cooling system, and is independent as the motor power unit 1 while substantially reducing the number of externally exposed pipes. Since the cooling system is constructed, this can also contribute to further reduction in size and weight of the motor power unit 1 and space saving.
 さらに、ポンプ22にはマグネットカップリング36のアウタマグネット28をセンサロータ(回転部)とする回転センサ38が付帯していて、モータ2の制御系とは独立したかたちで且つ信号の処理遅れが少ない状態で、モータパワーユニット1における実駆動系回転数を広範囲で検知することができる。そのため、回転センサ38の出力を活用して、例えば正確なトラクション制御や極低速振動抑制制御を行う上で有利となる。 Further, the pump 22 is accompanied by a rotation sensor 38 using the outer magnet 28 of the magnet coupling 36 as a sensor rotor (rotating portion), and is independent of the control system of the motor 2 and has a small signal processing delay. In this state, the actual drive system rotation speed in the motor power unit 1 can be detected over a wide range. For this reason, the output of the rotation sensor 38 is utilized, which is advantageous, for example, when performing accurate traction control or extremely low speed vibration suppression control.
 加えて、上記実施の形態によれば、モータ2と補機としてのポンプ22との間に減速機3が配置されているため、必要に応じてモータ2として汎用モータを用いることができ、レイアウト性が向上する。 In addition, according to the above-described embodiment, since the speed reducer 3 is disposed between the motor 2 and the pump 22 as an auxiliary machine, a general-purpose motor can be used as the motor 2 as necessary. Improves.
 図7は本発明に係る車両用駆動装置の第2の実施の形態を示す図で、先の図3と共通する部分には同一符号を付してある。 FIG. 7 is a view showing a second embodiment of the vehicle drive device according to the present invention, and the same reference numerals are given to the portions common to FIG.
 図7に示す第2の実施の形態では、補機としてのポンプ22を減速機3の入力軸9と同軸上に配置して、この入力軸9にてポンプ22を回転駆動するようにしたものである。この方式では、モータ2と同回転数でポンプ22が回転駆動されることになるので、ポンプ22の回転数としては図3のものより高くなるものの、図3のものとほぼ同等の効果が得られることになる。 In the second embodiment shown in FIG. 7, a pump 22 as an auxiliary machine is arranged coaxially with the input shaft 9 of the speed reducer 3, and the pump 22 is rotationally driven by this input shaft 9. It is. In this system, the pump 22 is rotationally driven at the same rotational speed as that of the motor 2, so that the rotational speed of the pump 22 is higher than that of FIG. Will be.
 図8は本発明に係る車両用駆動装置の第3の実施の形態を示す図で、先の図3と共通する部分には同一符号を付してある。 FIG. 8 is a diagram showing a third embodiment of the vehicle drive device according to the present invention, and the same reference numerals are given to the parts common to FIG.
 図8に示す第3の実施の形態では、モータ2の回転軸6の軸端に減速ギヤ12を直接的に取り付けることで、図3の入力軸9およびベアリング16を廃止して簡略化を図ったものである。この場合にも、図3のものとほぼ同等の効果が得られることになる。 In the third embodiment shown in FIG. 8, the reduction gear 12 is directly attached to the shaft end of the rotating shaft 6 of the motor 2, thereby eliminating the input shaft 9 and the bearing 16 of FIG. It is a thing. Also in this case, an effect almost equivalent to that of FIG. 3 is obtained.
 図9は、図1~3に示したモータパワーユニット1の採用を前提とした電気自動車の冷却システムを示していて、モータ2および減速機3を含むモータパワーユニット1は、先に述べたように潤滑油を冷却媒体とするいわゆる油冷式の独立した冷却システムを構築している。その一方、モータパワーユニット1に付帯することになる別置きのインバータ41は、それ自体でいわゆる水冷式の独立した冷却システムを構築している。 FIG. 9 shows a cooling system for an electric vehicle on the assumption that the motor power unit 1 shown in FIGS. 1 to 3 is adopted. The motor power unit 1 including the motor 2 and the speed reducer 3 is lubricated as described above. A so-called oil-cooled independent cooling system using oil as a cooling medium is constructed. On the other hand, the separate inverter 41 to be attached to the motor power unit 1 itself constitutes a so-called water-cooled independent cooling system.
 より詳細には、図9に示すように、インバータ41の冷却系には、放熱器(ラジエータ)42のほか直列二段の電動式のウォータポンプ43,44が用意されていて、これらのインバータ41と放熱器42およびウォータポンプ43,44の三者を外部配管により直列に接続することで、インバータ41の冷却のための冷却水の循環ループが形成されている。 More specifically, as shown in FIG. 9, the cooling system of the inverter 41 includes a radiator (radiator) 42 and electric water pumps 43 and 44 in two stages in series. The radiator 42 and the water pumps 43 and 44 are connected in series by an external pipe to form a cooling water circulation loop for cooling the inverter 41.
 この冷却システムでは、インバータ41の冷却のための冷却水の循環ループに個別に流量制御される直列二段の電動式のウォータポンプ43,44介装されていることで、例えばいずれか一方のポンプ43または44が故障した場合に、他方のポンプを増速させることで必要な冷却水の流量を確保することができる。 In this cooling system, a series of two-stage electric water pumps 43 and 44 whose flow rates are individually controlled are provided in a cooling water circulation loop for cooling the inverter 41, for example, either one of the pumps. When 43 or 44 breaks down, the required flow rate of the cooling water can be ensured by increasing the speed of the other pump.
 図10は、モータパワーユニット1およびインバータ41の冷却システムの別の例を示していて、モータ2および減速機3を含むモータパワーユニット1に補機としてポンプ22が付帯している点、およびインバータ41が別置きのものである点、では図9のシステムと共通している。その一方、モータパワーユニット1における減速機3の冷却方式としては、古くから公知のいわゆる潤滑油跳ね上げ式のものが採用されている一方、モータ2およびインバータ3の冷却方式として水冷式を採用し、それらのモータ2およびインバータ3のための冷却水をポンプ22にて循環させるようにしている点で図9のシステムと相違している。 FIG. 10 shows another example of the cooling system of the motor power unit 1 and the inverter 41. The motor power unit 1 including the motor 2 and the speed reducer 3 has a pump 22 as an auxiliary device, and the inverter 41 It is common with the system of FIG. On the other hand, as a cooling method of the speed reducer 3 in the motor power unit 1, a so-called lubricating oil splashing type that has been known for a long time has been adopted, while a water cooling type has been adopted as a cooling method for the motor 2 and the inverter 3, 9 is different from the system of FIG. 9 in that the cooling water for the motor 2 and the inverter 3 is circulated by the pump 22.
 より詳細にには、図10に示すように、モータ2およびインバータ41の冷却系には、減速機3に補機として付帯するポンプ22のほか、放熱器(ラジエータ)42と電動式のウォータポンプ45が用意されていて、これらのポンプ22と、モータ2、インバータ41、放熱器42およびウォータポンプ45のそれぞれを外部配管により直列に接続することで、モータ2およびインバータ41の冷却のための冷却水の循環ループが形成されている。なお、先に述べたように、減速機3に付帯している補機としてのポンプ22は減速機3の駆動力にて回転駆動されるのに対して、ウォータポンプ45は独立した図示外の電動モータにて回転駆動される。 More specifically, as shown in FIG. 10, the cooling system of the motor 2 and the inverter 41 includes a radiator 22 and an electric water pump in addition to a pump 22 attached as an accessory to the speed reducer 3. 45 is prepared, and cooling for cooling the motor 2 and the inverter 41 is achieved by connecting the pump 22, the motor 2, the inverter 41, the radiator 42, and the water pump 45 in series by external piping. A water circulation loop is formed. As described above, the pump 22 as an auxiliary device attached to the speed reducer 3 is rotationally driven by the driving force of the speed reducer 3, whereas the water pump 45 is independent of the illustration. It is rotated by an electric motor.
 この図10のシステムでは、ポンプ22から吐出された冷却水は最初にインバータ41に導入されて当該インバータ41を冷却し、次いでインバータ41を通過した冷却水がモータ2に導入されることで当該モータ2を冷却することになる。そして、モータ2を冷却した冷却水はウォータポンプ45にて放熱器42へと導入され、当該放熱器42にて熱交換が行われた後にポンプ22側に戻されて、循環再使用されることになる。 In the system of FIG. 10, the cooling water discharged from the pump 22 is first introduced into the inverter 41 to cool the inverter 41, and then the cooling water that has passed through the inverter 41 is introduced into the motor 2. 2 will be cooled. Then, the cooling water that has cooled the motor 2 is introduced into the radiator 42 by the water pump 45, and after heat exchange is performed by the radiator 42, the cooling water is returned to the pump 22 side and reused. become.
 図11は、モータパワーユニット1およびインバータ41の冷却システムのさらに別の例を示していて、モータ2および減速機3を含むモータパワーユニット1に補機としてポンプ22が付帯している点、およびモータパワーユニット1における減速機3の冷却方式として古くから公知のいわゆる潤滑油跳ね上げ式のものが採用されている点、およびモータ2およびインバータ41の冷却方式として水冷式を採用し、それらのモータ2およびインバータ41のための冷却水を補機であるポンプ22および電動式のウォータポンプ45にて循環させるようにしている点、では図10のシステムと共通している。その一方、モータ2とインバータ41を近接配置し、両者を内部の冷却水通路にて接続している点で図10のシステムと相違している。 FIG. 11 shows still another example of the cooling system for the motor power unit 1 and the inverter 41. The motor power unit 1 including the motor 2 and the speed reducer 3 includes a pump 22 as an auxiliary device, and the motor power unit. 1, the so-called lubricating oil splashing type that has been known for a long time has been adopted as the cooling method of the speed reducer 3, and the water cooling type has been adopted as the cooling method of the motor 2 and the inverter 41. 10 is common to the system of FIG. 10 in that the cooling water for 41 is circulated by an auxiliary pump 22 and an electric water pump 45. On the other hand, it differs from the system of FIG. 10 in that the motor 2 and the inverter 41 are arranged close to each other and both are connected by an internal cooling water passage.
 この図11のシステムでは、モータ2とインバータ41とを接続する冷却水通路が外部に露出しないことで、いわゆる外部露出配管を図10のものよりも少なくできる利点がある。 In the system of FIG. 11, the cooling water passage connecting the motor 2 and the inverter 41 is not exposed to the outside, so that there is an advantage that so-called externally exposed piping can be reduced as compared with that of FIG.
 図12は、同様にモータパワーユニット1およびインバータ41の冷却システムのさらに別の例を示している。 FIG. 12 shows still another example of the cooling system for the motor power unit 1 and the inverter 41 in the same manner.
 この図12のシステムでは、モータ2の冷却に油冷式を採用した図9のモータパワーユニット1の採用を前提として、モータ2および減速機3からなるモータパワーユニット1のうち、モータ2の反減速機3側にインバータ41を結合し、少なくともそれらの減速機3とモータ2およびインバータ41の三者を内部潤滑油通路にて接続したものである。このシステムでは、減速機3の潤滑油を利用することで、モータ2およびインバータ41共に油冷式のものとなり、外部露出配管を一段と少なくすることができる利点がある。 In the system shown in FIG. 12, the anti-reduction gear of the motor 2 out of the motor power unit 1 including the motor 2 and the reduction gear 3 is assumed on the assumption that the motor power unit 1 shown in FIG. The inverter 41 is connected to the third side, and at least three of the reduction gear 3, the motor 2, and the inverter 41 are connected by an internal lubricating oil passage. In this system, by using the lubricating oil of the speed reducer 3, both the motor 2 and the inverter 41 are oil-cooled, and there is an advantage that the number of externally exposed pipes can be further reduced.
 ただし、図12のシステムにおいても、モータ2およびインバータ41の冷却に水冷式を採用することもでき、その場合には、図10,11のシステムと同様に、モータパワーユニット1における減速機3の冷却方式として古くから公知のいわゆる潤滑油跳ね上げ式のものを採用し、モータパワーユニット1に補機として付帯するポンプ22にて、モータ2およびインバータ41の冷却のための冷却水を循環させるようにすれば良いことになる。 However, also in the system of FIG. 12, a water-cooling type can be adopted for cooling the motor 2 and the inverter 41. In this case, the cooling of the speed reducer 3 in the motor power unit 1 is performed as in the systems of FIGS. A so-called lubricating oil splashing type that has been known for a long time is adopted as a method, and cooling water for cooling the motor 2 and the inverter 41 is circulated by a pump 22 attached as an accessory to the motor power unit 1. It will be good.
 なお、上記各実施の形態では、モータパワーユニット1に付帯する補機として潤滑油または冷却水循環用のポンプ22を例にとって説明したが、これは一例にすぎず、補機としては必ずしもポンプ22に限定されるものではない。本発明が適用可能なポンプ22以外の補機としては、例えば発電機(オルタネータ)、空調装置のコンプレッサ、ブレーキ用の負圧ポンプ、パワーステアリング用の油圧ポンプ等を挙げることができる。 In each of the above embodiments, the lubricating oil or cooling water circulation pump 22 has been described as an example of an auxiliary device attached to the motor power unit 1, but this is merely an example, and the auxiliary device is not necessarily limited to the pump 22. Is not to be done. Examples of auxiliary machines other than the pump 22 to which the present invention can be applied include a generator (alternator), a compressor for an air conditioner, a negative pressure pump for braking, a hydraulic pump for power steering, and the like.
 ここで、上記各実施の形態から把握できる主たる発明特定事項をその効果と共に列挙すれば、下記(1)~(15)のとおりのものとなる。 Here, if the main invention specific matters that can be grasped from each of the above embodiments are listed together with their effects, the following (1) to (15) are obtained.
 (1)請求項4に記載されているように、モータと補機との間に減速装置が配置されていることことにより、必要に応じてモータ2として汎用モータを用いることができ、レイアウト性が向上する。 (1) Since the reduction gear is disposed between the motor and the auxiliary machine as described in claim 4, a general-purpose motor can be used as the motor 2 as required, and layout characteristics Will improve.
 (2)請求項5に記載記載されているように、減速装置は減速要素を収容するハウジングを備えていて、このハウジングに補機が固定配置されていることにより、上記と同様にレイアウト性が向上する利点がある。 (2) As described in claim 5, the speed reducer includes a housing that accommodates the speed reducing element, and the auxiliary machine is fixedly disposed in the housing, so that the layout can be improved as described above. There is an advantage to improve.
 (3)請求項6に記載されているように、減速装置は減速要素として複数段の減速ギヤを備えていて、補機は、複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものであることにより、補機の駆動回転数としてほど良い回転数が得られ、補機の耐久性が向上する。 (3) As described in claim 6, the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears. As a result of being driven through the shaft, an appropriate rotational speed can be obtained as the driving speed of the auxiliary machine, and the durability of the auxiliary machine is improved.
 (4)請求項7に記載されているように、補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯していることにより、モータの制御系とは独立したかたちで且つ信号の処理遅れが少ない状態で、モータにおける実駆動系回転数を広範囲で検知することができる。そのため、上記回転センサの出力を活用して、例えば正確なトラクション制御や極低速振動抑制制御を行う上で有利となる。 (4) As described in claim 7, the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor. Can detect the rotational speed of the actual drive system in the motor in a wide range in an independent manner and with little signal processing delay. Therefore, it is advantageous in performing accurate traction control and extremely low speed vibration suppression control by utilizing the output of the rotation sensor, for example.
 (5)請求項9に記載されているように、補機は減速装置に設けられていることにより、補機に独立した減速装置を付帯させる必要がない。 (5) Since the auxiliary machine is provided in the speed reducer as described in claim 9, it is not necessary to attach an independent speed reducer to the auxiliary machine.
 (6)請求項10に記載されているように、減速装置は減速要素として複数段の減速ギヤを備えていて、補機は、複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものであることにより、補機の駆動回転数としてほど良い回転数が得られ、補機の耐久性が向上する。 (6) As described in claim 10, the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears. As a result of being driven through the shaft, an appropriate rotational speed can be obtained as the driving speed of the auxiliary machine, and the durability of the auxiliary machine is improved.
 (7)請求項11に記載されているように、補機は、当該補機の駆動状態を制限することが可能な補機駆動制限手段を介して減速装置の駆動力により駆動されるものであることにより、補機の駆動状態を積極的にコントロールすることができる利点がある。 (7) As described in claim 11, the auxiliary machine is driven by the driving force of the speed reducer via an auxiliary machine drive limiting means capable of limiting the drive state of the auxiliary machine. There exists an advantage which can control the drive state of an auxiliary machine positively.
 (8)請求項12に記載されているように、補機駆動制限手段は、減速装置の回転軸に接続された駆動側回転磁石と、当該駆動側回転磁石の磁力により回転駆動される従動側回転磁石と、当該従動側回転磁石の回転により補機を駆動する中間軸と、を備えていることにより、補機駆動制限手段として実質的にマグネットカップリングを採用していることで、静粛性を確保することができる利点がある。 (8) According to a twelfth aspect of the present invention, the accessory drive limiting means includes a driving side rotating magnet connected to the rotating shaft of the speed reducer and a driven side that is rotationally driven by the magnetic force of the driving side rotating magnet. By including a rotating magnet and an intermediate shaft that drives the accessory by the rotation of the driven side rotating magnet, the magnet coupling is substantially employed as the accessory driving limiting means, thereby reducing silence. There is an advantage that can be ensured.
 (9)請求項13に記載されているように、減速装置は複数段の減ギヤを収容するハウジングを備えていて、このハウジングに補機が固定配置されていることにより、レイアウト性が向上する利点がある。 (9) As described in claim 13, the speed reducer includes a housing that accommodates a plurality of stages of reduction gears, and an auxiliary machine is fixedly disposed in the housing, thereby improving layout. There are advantages.
 (10)請求項14に記載されているように、補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯していることにより、モータの制御系とは独立したかたちで且つ信号の処理遅れが少ない状態で、モータにおける実駆動系回転数を広範囲で検知することができる。そのため、上記回転センサの出力を活用して、例えば正確なトラクション制御や極低速振動抑制制御を行う上で有利となる。 (10) According to the fourteenth aspect of the present invention, the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor, whereby a motor control system and Can detect the rotational speed of the actual drive system in the motor in a wide range in an independent manner and with little signal processing delay. Therefore, it is advantageous in performing accurate traction control and extremely low speed vibration suppression control by utilizing the output of the rotation sensor, for example.
 (11)請求項15に記載されているように、モータと補機との間に減速装置が配置されていることにより、レイアウト性が向上する利点がある。 (11) As described in the fifteenth aspect, since the speed reducer is arranged between the motor and the auxiliary machine, there is an advantage that layout is improved.
 (12)請求項17に記載されているように、補機は、当該補機の駆動状態を制限することが可能な補機駆動制限手段を介して減速装置の駆動力により駆動されるものであることにより、補機の駆動状態を積極的にコントロールすることができる利点がある。 (12) As described in claim 17, the accessory is driven by the driving force of the speed reducer via an accessory drive restricting means capable of restricting the drive state of the accessory. There exists an advantage which can control the drive state of an auxiliary machine positively.
 (13)請求項18に記載されているように、補機駆動制限手段は、減速装置の回転軸に接続された駆動側回転磁石と、当該駆動側回転磁石の磁力により回転駆動されて補機を駆動する従動側回転磁石と、を備えていることにより、補機駆動制限手段として実質的にマグネットカップリングを採用していることで、静粛性を確保することができる利点がある。 (13) As described in claim 18, the accessory drive limiting means is a drive-side rotating magnet connected to the rotating shaft of the speed reducer, and the accessory is rotated by the magnetic force of the driving-side rotating magnet. And the driven side rotating magnet for driving the motor has the advantage that the quietness can be ensured by substantially adopting the magnet coupling as the accessory drive limiting means.
 (14)請求項19に記載されているように、減速装置は減速要素として複数段の減速ギヤを備えていて、補機は、複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものであることにより、補機の駆動回転数としてほど良い回転数が得られ、補機の耐久性が向上する。 (14) As described in claim 19, the reduction gear includes a plurality of reduction gears as a reduction element, and the auxiliary device is coaxial with the first reduction gear of the plurality of reduction gears. As a result of being driven through the shaft, an appropriate rotational speed can be obtained as the driving speed of the auxiliary machine, and the durability of the auxiliary machine is improved.
 (15)請求項20に記載されているように、補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯していることにより、モータの制御系とは独立したかたちで且つ信号の処理遅れが少ない状態で、モータにおける実駆動系回転数を広範囲で検知することができる。そのため、上記回転センサの出力を活用して、例えば正確なトラクション制御や極低速振動抑制制御を行う上で有利となる。 (15) As described in claim 20, the auxiliary machine is provided with a rotation sensor comprising a sensor rotor and a pickup means for detecting the rotation of the sensor rotor, whereby a motor control system and Can detect the rotational speed of the actual drive system in the motor in a wide range in an independent manner and with little signal processing delay. Therefore, it is advantageous in performing accurate traction control and extremely low speed vibration suppression control by utilizing the output of the rotation sensor, for example.

Claims (20)

  1.  電動式のモータと、
     入力側に前記モータの回転軸が接続されるとともに出力側に駆動輪のための駆動軸が接続され、前記モータの回転トルクを受けて前記駆動軸を減速駆動する減速装置と、
     前記減速装置に接続されて当該減速装置の駆動力により駆動される補機と、
     を備えている車両用駆動装置。
    An electric motor,
    A speed reduction device connected to the input side of the rotating shaft of the motor and connected to the output side of the driving shaft for driving wheels, and receiving the rotational torque of the motor to drive the driving shaft at a reduced speed;
    An auxiliary machine connected to the speed reducer and driven by the driving force of the speed reducer;
    A vehicle drive device comprising:
  2.  請求項1に記載の車両用駆動装置において、
     前記補機は、当該補機の駆動状態を制限することが可能な補機駆動制限手段を介して前記減速装置の駆動力により駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 1,
    The vehicle drive device, wherein the auxiliary device is driven by the driving force of the speed reducer via an auxiliary device drive limiting means capable of limiting the drive state of the auxiliary device.
  3.  請求項2に記載の車両用駆動装置において、
     前記補機駆動制限手段は、前記減速装置の回転軸に接続された駆動側回転磁石と、当該駆動側回転磁石の磁力により回転駆動されて前記補機を駆動する従動側回転磁石と、を備えている車両用駆動装置。
    The vehicle drive device according to claim 2,
    The auxiliary machine drive restricting means includes a drive-side rotary magnet connected to the rotary shaft of the reduction gear, and a driven-side rotary magnet that is driven to rotate by the magnetic force of the drive-side rotary magnet and drives the auxiliary machine. The vehicle drive device.
  4.  請求項1に記載の車両用駆動装置において、
     前記モータと前記補機との間に前記減速装置が配置されている車両用駆動装置。
    The vehicle drive device according to claim 1,
    A vehicle drive device in which the speed reducer is disposed between the motor and the auxiliary machine.
  5.  請求項4に記載の車両用駆動装置において、
     前記減速装置は減速要素を収容するハウジングを備えていて、このハウジングに前記補機が固定配置されている車両用駆動装置。
    The vehicle drive device according to claim 4,
    The speed reducer includes a housing that houses a speed reducing element, and the auxiliary device is fixedly disposed in the housing.
  6.  請求項2に記載の車両用駆動装置において、
     前記減速装置は前記減速要素として複数段の減速ギヤを備えていて、前記補機は、前記複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 2,
    The reduction device includes a plurality of reduction gears as the reduction element, and the auxiliary device is driven through a first reduction gear of the plurality of reduction gears and a shaft coaxial with the first reduction gear. A vehicle drive device.
  7.  請求項6に記載の車両用駆動装置において、
     前記補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯している車両用駆動装置。
    The vehicle drive device according to claim 6,
    The auxiliary device is provided with a vehicle drive device that includes a rotation sensor including a sensor rotor and pickup means for detecting rotation of the sensor rotor.
  8.  ケーシングの軸心方向の一端面から回転軸が突出する電動式のモータと、
     前記モータのうち前記回転軸の突出端側に配置されるとともに、入力側に前記モータの回転軸が、出力側に駆動輪のための駆動軸がそれぞれ接続され、前記モータの回転トルクを受けて前記駆動軸を減速駆動する減速装置と、
     前記モータのうち前記回転軸の突出端側に配置され、前記減速装置の駆動力により駆動される補機と、
     を備えている車両用駆動装置。
    An electric motor with a rotating shaft protruding from one end surface in the axial direction of the casing;
    The motor is disposed on the protruding end side of the rotating shaft, the rotating shaft of the motor is connected to the input side, and the driving shaft for driving wheels is connected to the output side, and receives the rotational torque of the motor. A speed reducer that drives the drive shaft to decelerate;
    An auxiliary machine that is disposed on the protruding end side of the rotating shaft of the motor and is driven by the driving force of the speed reducer;
    A vehicle drive device comprising:
  9.  請求項8に記載の車両用駆動装置において、
     前記補機は前記減速装置に設けられている車両用駆動装置。
    The vehicle drive device according to claim 8,
    The auxiliary machine is a vehicle drive device provided in the reduction gear.
  10.  請求項8に記載の車両用駆動装置において、
     前記減速装置は前記減速要素として複数段の減速ギヤを備えていて、前記補機は、前記複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 8,
    The reduction device includes a plurality of reduction gears as the reduction element, and the auxiliary device is driven through a first reduction gear of the plurality of reduction gears and a shaft coaxial with the first reduction gear. A vehicle drive device.
  11.  請求項10に記載の車両用駆動装置において、
     前記補機は、当該補機の駆動状態を制限することが可能な補機駆動制限手段を介して前記減速装置の駆動力により駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 10,
    The vehicle drive device, wherein the auxiliary device is driven by the driving force of the speed reducer via an auxiliary device drive limiting means capable of limiting the drive state of the auxiliary device.
  12.  請求項11に記載の車両用駆動装置において、
     前記補機駆動制限手段は、前記減速装置の回転軸に接続された駆動側回転磁石と、当該駆動側回転磁石の磁力により回転駆動される従動側回転磁石と、当該従動側回転磁石の回転により前記補機を駆動する中間軸と、を備えている車両用駆動装置。
    The vehicle drive device according to claim 11,
    The auxiliary machine drive restricting means includes a driving side rotating magnet connected to a rotating shaft of the speed reducer, a driven side rotating magnet driven to rotate by the magnetic force of the driving side rotating magnet, and rotation of the driven side rotating magnet. A vehicle drive device comprising: an intermediate shaft that drives the auxiliary machine.
  13.  請求項12に記載の車両用駆動装置において、
     前記減速装置は複数段の減ギヤを収容するハウジングを備えていて、このハウジングに前記補機が固定配置されている車両用駆動装置。
    The vehicle drive device according to claim 12, wherein
    The speed reducer includes a housing that houses a plurality of stages of reduction gears, and the auxiliary device is fixedly disposed in the housing.
  14.  請求項12に記載の車両用駆動装置において、
     前記補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯している車両用駆動装置。
    The vehicle drive device according to claim 12, wherein
    The auxiliary device is provided with a drive device for a vehicle attached with a rotation sensor comprising a sensor rotor and pickup means for detecting the rotation of the sensor rotor.
  15.  請求項8に記載の車両用駆動装置において、
     前記モータと前記補機との間に前記減速装置が配置されている車両用駆動装置。
    The vehicle drive device according to claim 8,
    A vehicle drive device in which the speed reducer is disposed between the motor and the auxiliary machine.
  16.  ケーシングの軸心方向の一端面から回転軸が突出する電動式のモータと、
     前記モータのうち前記回転軸の突出端側に配置されるとともに、入力側に前記モータの回転軸が、出力側に駆動輪のための駆動軸がそれぞれ接続され、前記モータの回転トルクを受けて前記駆動軸を減速駆動する減速装置と、
     前記減速装置の駆動力により駆動される補機と、
     を備えていて、
     前記減速装置のハウジングの一側面側に前記モータが装着され、前記減速装置のハウジングの他側面側に前記補機が装着されている車両用駆動装置。
    An electric motor with a rotating shaft protruding from one end surface in the axial direction of the casing;
    The motor is disposed on the protruding end side of the rotating shaft, the rotating shaft of the motor is connected to the input side, and the driving shaft for driving wheels is connected to the output side, and receives the rotational torque of the motor. A speed reducer that drives the drive shaft to decelerate;
    An auxiliary machine driven by the driving force of the speed reducer;
    With
    The vehicle drive device in which the motor is mounted on one side surface of the housing of the speed reducer and the auxiliary device is mounted on the other side surface of the housing of the speed reducer.
  17.  請求項16に記載の車両用駆動装置において、
     前記補機は、当該補機の駆動状態を制限することが可能な補機駆動制限手段を介して前記減速装置の駆動力により駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 16, wherein
    The vehicle drive device, wherein the auxiliary device is driven by the driving force of the speed reducer via an auxiliary device drive limiting means capable of limiting the drive state of the auxiliary device.
  18.  請求項17に記載の車両用駆動装置において、
     前記補機駆動制限手段は、前記減速装置の回転軸に接続された駆動側回転磁石と、当該駆動側回転磁石の磁力により回転駆動されて前記補機を駆動する従動側回転磁石と、を備えている車両用駆動装置。
    The vehicle drive device according to claim 17,
    The auxiliary machine drive restricting means includes a drive-side rotary magnet connected to the rotary shaft of the reduction gear, and a driven-side rotary magnet that is driven to rotate by the magnetic force of the drive-side rotary magnet and drives the auxiliary machine. The vehicle drive device.
  19.  請求項18に記載の車両用駆動装置において、
     前記減速装置は前記減速要素として複数段の減速ギヤを備えていて、前記補機は、前記複数段の減速ギヤのうち一段目の減速ギヤとそれと同軸上の軸を介して駆動されるものである車両用駆動装置。
    The vehicle drive device according to claim 18, wherein
    The reduction device includes a plurality of reduction gears as the reduction element, and the auxiliary device is driven through a first reduction gear of the plurality of reduction gears and a shaft coaxial with the first reduction gear. A vehicle drive device.
  20.  請求項19に記載の車両用駆動装置において、
     前記補機には、センサロータと当該センサロータの回転を検出するピックアップ手段とからなる回転センサが付帯している車両用駆動装置。
    The vehicle drive device according to claim 19,
    The auxiliary device is provided with a drive device for a vehicle attached with a rotation sensor comprising a sensor rotor and pickup means for detecting the rotation of the sensor rotor.
PCT/JP2013/070031 2012-09-21 2013-07-24 Vehicular drive device WO2014045707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536653A JPWO2014045707A1 (en) 2012-09-21 2013-07-24 Vehicle drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207873 2012-09-21
JP2012-207873 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045707A1 true WO2014045707A1 (en) 2014-03-27

Family

ID=50341033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070031 WO2014045707A1 (en) 2012-09-21 2013-07-24 Vehicular drive device

Country Status (2)

Country Link
JP (1) JPWO2014045707A1 (en)
WO (1) WO2014045707A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435555A (en) * 2018-06-20 2018-08-24 陈浩 A method of improving Vibration Screen component efficiency
CN108757837A (en) * 2018-06-20 2018-11-06 陈浩 A kind of retarder
CN109398060A (en) * 2018-12-11 2019-03-01 北京宏瑞汽车科技股份有限公司 A kind of integrated electric drive system
EP3357727A4 (en) * 2015-09-28 2019-03-27 NIO Nextev Limited Electric drive system for motor vehicle and motor vehicle using same
WO2019216043A1 (en) * 2018-05-11 2019-11-14 日本電産株式会社 Drive apparatus
WO2019219676A1 (en) * 2018-05-15 2019-11-21 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
KR20210044727A (en) * 2019-10-15 2021-04-23 드라이브텍 주식회사 Transaxle-integrated cooling circulation system
CN114520563A (en) * 2020-11-19 2022-05-20 日本电产株式会社 Drive device and vehicle
KR102630126B1 (en) * 2023-02-27 2024-01-29 주식회사 넥스트앤코 Differential module system applied to cultivators
WO2024058105A1 (en) * 2022-09-12 2024-03-21 Ntn株式会社 Ball bearing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155883A (en) * 2000-11-22 2002-05-31 Ebara Corp Magnetic pump and motor
JP2004190491A (en) * 2002-12-06 2004-07-08 Hitachi Unisia Automotive Ltd Fuel feeding device
WO2005080799A1 (en) * 2004-02-23 2005-09-01 Bosch Corporation Fuel pump, fuel feed device
JP2006311784A (en) * 2005-03-29 2006-11-09 Nissan Motor Co Ltd Vehicle power transmission mechanism for electric vehicles
JP2007068301A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Control device for electric vehicle
WO2012132094A1 (en) * 2011-03-31 2012-10-04 アイシン・エィ・ダブリュ株式会社 Drive device for electric vehicle
JP2012228144A (en) * 2011-04-22 2012-11-15 Aisin Aw Co Ltd Electric vehicle driving device
JP2012257363A (en) * 2011-06-08 2012-12-27 Toyota Motor Corp Electric vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028144A (en) * 2010-07-22 2012-02-09 Hitachi Displays Ltd Electroluminescent display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155883A (en) * 2000-11-22 2002-05-31 Ebara Corp Magnetic pump and motor
JP2004190491A (en) * 2002-12-06 2004-07-08 Hitachi Unisia Automotive Ltd Fuel feeding device
WO2005080799A1 (en) * 2004-02-23 2005-09-01 Bosch Corporation Fuel pump, fuel feed device
JP2006311784A (en) * 2005-03-29 2006-11-09 Nissan Motor Co Ltd Vehicle power transmission mechanism for electric vehicles
JP2007068301A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Control device for electric vehicle
WO2012132094A1 (en) * 2011-03-31 2012-10-04 アイシン・エィ・ダブリュ株式会社 Drive device for electric vehicle
JP2012228144A (en) * 2011-04-22 2012-11-15 Aisin Aw Co Ltd Electric vehicle driving device
JP2012257363A (en) * 2011-06-08 2012-12-27 Toyota Motor Corp Electric vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357727A4 (en) * 2015-09-28 2019-03-27 NIO Nextev Limited Electric drive system for motor vehicle and motor vehicle using same
WO2019216043A1 (en) * 2018-05-11 2019-11-14 日本電産株式会社 Drive apparatus
CN112074674B (en) * 2018-05-11 2024-05-17 日本电产株式会社 Driving device
CN112074674A (en) * 2018-05-11 2020-12-11 日本电产株式会社 Drive device
CN112166544A (en) * 2018-05-15 2021-01-01 法雷奥西门子新能源汽车德国有限公司 Integrated drive system
WO2019219676A1 (en) * 2018-05-15 2019-11-21 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
US11938806B2 (en) 2018-05-15 2024-03-26 Valeo Siemens Eautomotive Germany Gmbh Integrated drive system
JP2021523666A (en) * 2018-05-15 2021-09-02 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Integrated drive system
CN108435555B (en) * 2018-06-20 2020-01-24 内蒙古万晨化工有限公司 Method for improving screening efficiency of vibrating screen
CN108757837B (en) * 2018-06-20 2020-05-15 浙江邦飞利传动设备有限公司 Speed reducer
CN108435555A (en) * 2018-06-20 2018-08-24 陈浩 A method of improving Vibration Screen component efficiency
CN108757837A (en) * 2018-06-20 2018-11-06 陈浩 A kind of retarder
CN109398060A (en) * 2018-12-11 2019-03-01 北京宏瑞汽车科技股份有限公司 A kind of integrated electric drive system
KR20210044727A (en) * 2019-10-15 2021-04-23 드라이브텍 주식회사 Transaxle-integrated cooling circulation system
US11772480B2 (en) 2019-10-15 2023-10-03 Drivetech Co., Ltd. Transaxle-integrated cooling circulation system
KR102458432B1 (en) * 2019-10-15 2022-10-26 드라이브텍 주식회사 Transaxle-integrated cooling circulation system
CN114520563B (en) * 2020-11-19 2024-04-23 日本电产株式会社 Driving device and vehicle
CN114520563A (en) * 2020-11-19 2022-05-20 日本电产株式会社 Drive device and vehicle
WO2024058105A1 (en) * 2022-09-12 2024-03-21 Ntn株式会社 Ball bearing
KR102630126B1 (en) * 2023-02-27 2024-01-29 주식회사 넥스트앤코 Differential module system applied to cultivators

Also Published As

Publication number Publication date
JPWO2014045707A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2014045707A1 (en) Vehicular drive device
CN102007302B (en) Coolant pump
JP5956203B2 (en) Electric motor
US9421854B2 (en) Vehicle drive device
JP2017521293A (en) Torque vectoring device
JP5471199B2 (en) Drive unit
JP2001190047A (en) Rotor cooling device for electric motor
JP2016181954A (en) In-wheel motor drive unit
WO2019208083A1 (en) Motor unit
WO2019208081A1 (en) Motor unit and vehicle drive device
JP2017063542A (en) In-wheel motor drive drive
JP5092919B2 (en) Cooling mechanism
JP3980087B2 (en) Drive unit with internal combustion engine and hydrodynamic retarder
JP2021118628A (en) Cooling device of vehicle rotary electric machine
WO2019208084A1 (en) Motor unit and method for controlling motor unit
WO2020032026A1 (en) Motor unit
JP5157604B2 (en) In-wheel motor
JP2013189992A (en) Vehicle
JPH05122903A (en) Electric automobile driving apparatus
JP4625597B2 (en) Vehicle cooling system
KR101494886B1 (en) powertrain for electric vehicle
WO2017119240A1 (en) In-wheel motor drive device
WO2016174984A1 (en) In-wheel motor drive device
WO2019208082A1 (en) Motor unit
KR102036201B1 (en) Turbo Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839062

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839062

Country of ref document: EP

Kind code of ref document: A1