WO2024058105A1 - Ball bearing - Google Patents

Ball bearing Download PDF

Info

Publication number
WO2024058105A1
WO2024058105A1 PCT/JP2023/033002 JP2023033002W WO2024058105A1 WO 2024058105 A1 WO2024058105 A1 WO 2024058105A1 JP 2023033002 W JP2023033002 W JP 2023033002W WO 2024058105 A1 WO2024058105 A1 WO 2024058105A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball bearing
balls
bearing
groove
raceway groove
Prior art date
Application number
PCT/JP2023/033002
Other languages
French (fr)
Japanese (ja)
Inventor
貴裕 和久田
正樹 宗吉
紘平 酒井
暦 秦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023081923A external-priority patent/JP2024040109A/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024058105A1 publication Critical patent/WO2024058105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/324Arrangements for lubrication or cooling of the sealing itself

Definitions

  • the present invention relates to a ball bearing, and particularly to a deep groove ball bearing for an e-Axle, which is an electric vehicle drive system mounted on an electric vehicle.
  • An example of the development of a high-efficiency motor system is the reduction in electricity costs of electric vehicle drive systems as electric vehicles such as electric vehicles become more widespread.
  • e-Axle As an electric vehicle drive system, e-Axle is known, for example, which integrates the motor, inverter, gear box (reducer), etc. required for driving electric vehicles, which were previously arranged separately.
  • electricity cost means the distance traveled per unit capacity of the electric energy source.
  • a rolling bearing such as a ball bearing, which is one of the components (reduce rotational torque).
  • Patent Document 1 discloses a ball bearing equipped with a retainer in which the distance between balls held in adjacent pockets is set to 2 times or more and 5 times or less than the ball diameter to improve ball insertion performance for the purpose of reducing torque. is listed.
  • the cage of this ball bearing is a crown-shaped cage in which a plurality of pairs of claws forming the opening end of the pocket are formed in the circumferential direction. A height protrusion is formed.
  • Patent Document 1 discloses that when rotating at high speed, the flat surface of the convex portion is continuous in the circumferential direction at the same height as the tip of the claw piece, so that no special stirring resistance is generated only in the claw piece. It is stated that the flow of lubricating oil can be adjusted and torque loss can be significantly reduced.
  • Patent Document 2 discloses a holding system that reduces the contact area and reduces the shear torque of lubricating oil by forming a recess in the pocket surface of the cage to provide a non-contact part with the balls for the purpose of reducing torque.
  • the equipment is listed.
  • Patent No. 5348271 Patent No. 5602345
  • Patent Document 1 for the purpose of reducing torque, the distance between the balls held in adjacent pockets is set to 2 times or more and 5 times or less of the ball diameter, and the cage has improved ease of ball insertion. Since the thickness of the convex portion between the pair of claw pieces becomes thicker and the weight of the retainer increases, deformation due to centrifugal force is likely to increase. Furthermore, in recent years, T/M (transmissions) and reduction gears for EVs have become mainstream in lean lubrication environments for the purpose of preventing environmental pollution and reducing torque. In a dilute lubrication environment, the retainer claws are not immersed in lubricating oil, so agitation by the retainer claws is unlikely to occur.
  • Patent Document 2 improves the pocket shape of the iron corrugated retainer, but due to the change in the pocket shape, stable holding of the balls decreases during high-speed rotation, etc., and deformation may occur.
  • the present invention was made to address such problems, and aims to provide a ball bearing with excellent low torque performance.
  • the ball bearing of the present invention includes an inner ring having an inner ring raceway groove on the outer periphery, an outer ring having an outer ring raceway groove on the inner periphery, balls interposed between the inner ring raceway groove and the outer ring raceway groove, and holding the balls.
  • the ball bearing is characterized in that the number Z of the balls satisfies the condition of the following formula (1).
  • Dp and Da are both numerical values in "mm" units. Z ⁇ (( ⁇ Dp)/2Da)...(1)
  • Z Number of balls mentioned above (Z is an integer of 3 or more)
  • Dp pitch diameter of the above ball [unit: mm]
  • Da Diameter of the above ball [unit: mm]
  • the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
  • the number Z of the balls satisfies the condition of the following formula (2), and the groove curvature diameter Xi [unit: mm] of the inner ring raceway groove and the groove curvature diameter Xo [unit: mm] of the outer ring raceway groove are set.
  • the following formulas (3) and (4) are satisfied, and the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
  • the ball bearing is characterized in that it includes seal members provided at openings at both axial ends of the inner ring and outer ring, and a lubricant supplied or sealed in the bearing internal space.
  • the seal member has a seal lip at an end, the inner ring or the outer ring has a seal sliding surface that slides in the circumferential direction with respect to the seal lip, and the seal lip is arranged in the bearing inner space. and a protrusion that creates a passage for the lubricant between the seal sliding surface and the seal lip that communicates with the outside, and the protrusion maintains a state of fluid lubrication between the seal lip and the seal sliding surface. It is characterized by being formed so as to.
  • a bearing for a drive system that integrates a motor, an inverter that controls the motor, and a reducer that receives the rotation of the motor and transmits it to the drive shaft.
  • a bearing rotatably supports at least one of the rotating shaft of the motor and the input shaft of the speed reducer.
  • the number Z of balls satisfies the condition of formula (1) above, and the number of balls is reduced compared to the number N of balls in a conventional ball bearing, so the contact area between the balls and the bearing ring is.
  • the number of times the lubricant is sheared is also reduced, leading to a reduction in rotational torque (torque loss) during rotation.
  • the ball bearing of the present invention has excellent low torque performance without using a special cage.
  • the load can be supported by more than the predetermined number of balls, and although the rated load is reduced, the seal can prevent foreign matter from entering, resulting in low torque performance. It also has excellent bearing life.
  • the ratio of the groove curvature diameter of the inner and outer rings to the diameter of the balls used for this purpose reduces torque loss due to slippage. be able to.
  • the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove. Therefore, the difference in surface pressure between the inner and outer rings can be suppressed.
  • the lubricant Since it has a sealing member provided at the openings at both axial ends of the inner ring and outer ring, and a lubricant supplied or sealed into the bearing inner space, it is possible to suppress the entry of foreign matter into the bearing inner space, and the lubricant is equivalent to clean oil. It can be used in the following conditions. This suppresses peeling, indentation, and rolling fatigue that occur when foreign objects are caught in the bearing, and allows the bearing to have a life comparable to that of conventional bearings (when the number of balls is large).
  • the seal lip has a protrusion that creates a lubricant passage between the seal sliding surface and the seal lip that communicates between the internal space and the outside of the bearing, and the protrusion provides fluid lubrication between the seal lip and the seal sliding surface. Since the seal lip is formed so as to be in the bearing state, the friction coefficient of the sliding motion between the seal lip and the seal sliding surface can be significantly reduced, and the intrusion of foreign matter into the bearing inner space can be further suppressed. This results in particularly excellent low torque performance and long bearing life.
  • the ball bearing of the present invention is a bearing for a drive system (e-Axle) that integrates a motor, an inverter that controls the motor, and a reducer that receives the rotation of the motor and transmits it to the drive shaft.
  • e-Axle a drive system
  • the bearing rotatably supports at least one of the rotating shaft of the motor and the input shaft of the speed reducer, a relatively large load is not applied to the bearing. This makes it possible to reduce torque without changing bearing dimensions, and is expected to extend the cruising range of electric vehicles by reducing electricity consumption.
  • FIG. 1 is a plan view showing a first embodiment of the ball bearing of the present invention.
  • FIG. 2 is a developed view of the periphery of adjacent pockets in the retainer of FIG. 1;
  • FIG. 1 is a partial cross-sectional view of a ball bearing of the present invention. It is a partial sectional view showing a second embodiment of the ball bearing of the present invention.
  • 5 is an enlarged view of the vicinity of the seal lip in FIG. 4.
  • FIG. FIG. 3 is a partial front view of the seal lip viewed from the axial direction.
  • FIG. 1 is a schematic diagram of an electric vehicle drive system.
  • one way to reduce the torque without using a special cage is to reduce the number of balls.
  • reducing the number of balls leads to a decrease in bearing rigidity, resulting in a decrease in the rated load.
  • the present inventor has proposed that, for example, in a bearing used for a specific application (for example, an e-Axle bearing), by making the number Z of balls satisfy a predetermined condition, the negative effects caused by a decrease in the rated load can be avoided.
  • a bearing used for a specific application for example, an e-Axle bearing
  • the ball bearing of the present invention is particularly suitable for applications that do not require high loads and require low torque performance.
  • it can be used as a bearing for an electric vehicle drive system, and more specifically, it can be used as a bearing for an e-Axle. Note that details of the e-Axle will be explained with reference to FIG.
  • FIG. 1 is a plan view of a deep groove ball bearing as a ball bearing viewed from the axial direction.
  • a deep groove ball bearing (ball bearing) 1 includes an inner ring 2, an outer ring 3, balls 4 interposed between the inner ring 2 and the outer ring 3, and a crown-shaped retainer 5 that holds the balls 4.
  • the cage 5 holds five balls 4 in five pockets so as to be able to roll freely at regular intervals in the circumferential direction.
  • the number of balls 4 in FIG. 1 is set to satisfy the following formula (1).
  • the deep groove ball bearing 1 does not have a seal member for suppressing foreign matter from entering the bearing inner space, and both ends of the inner ring 2 and the outer ring 3 in the axial direction are open.
  • the retainer 5 has a plurality of opposing retaining claws 5b formed at a constant pitch in the circumferential direction on the circumferential upper surface of an annular resin main body 5a, and each of the opposing retaining claws 5b.
  • the claws 5b are bent in a direction toward each other, and a pocket portion 5c for holding the ball is formed between the holding claws 5b.
  • a flat portion 5d which serves as a reference surface for rising up the holding claws 5b, is formed between the back surfaces of mutually adjacent holding claws 5b formed on the edges of the adjacent pocket portions 5c.
  • a general shape can be adopted except for the relationship with the number of pocket portions 5c.
  • the height of the holding claw and the height of the flat portion are not the same height.
  • the number of balls in the ball bearing is set as follows. (1) Setting of the bearing inner diameter, bearing outer diameter, and bearing width of the ball bearing (based on the JIS B 1512 dimensional standard), (2) Setting of the ball diameter Da, (3) Setting of the number of balls Z
  • D pitch diameter
  • B bearing width
  • B ball diameter
  • Da 3 mm to 150 mm
  • the number of balls Z is usually 7 to 9. .
  • the number Z of balls satisfies the condition of formula (1) below.
  • the number of balls in the ball bearing of the present invention is one or more fewer than the number of balls in the conventional ball bearing.
  • the number of components of the ball bearing can be reduced, and rotational torque can be reduced while ensuring a certain degree of bearing rigidity.
  • the weight of the bearings is reduced, leading to lower electricity costs and lower fuel consumption.
  • by reducing the stress generated when the balls fit between the raceway rings defects in the roundness of the inner and outer rings are less likely to occur, and since the load per ball increases, the load on the bearing is reduced. Slippage can be suppressed even under low loads.
  • the creep phenomenon inchworm phenomenon
  • the number of balls Z is preferably 5 to 8.
  • the number is more preferably 5 to 7, and even more preferably 5 to 6.
  • the number Z of balls satisfies the condition of the following formula (2). 4 ⁇ Z ⁇ (( ⁇ Dp)/2Da)...(2)
  • the number Z of balls satisfying the above formula (2) is 5 or 6. , 7, or 8.
  • the maximum number of these can be adopted.
  • the load per rolling element increases due to the decrease in the number of rolling elements, and at low rotations, torque loss due to slipping increases.
  • an inner ring raceway groove 2a having an arcuate cross section is formed along the circumferential direction on the outer periphery of the inner ring 2, and an outer ring raceway groove 3a having an arcuate cross section is formed on the inner periphery of the outer ring 3. It is formed along the direction. It is preferable that the groove curvature diameter Xi of the inner ring raceway groove 2a satisfies the condition of the following formula (3). 0.515( ⁇ Dp)/Z ⁇ Xi ⁇ 0.54( ⁇ Dp)/Z...(3) Moreover, it is preferable that the groove curvature diameter Xo of the outer ring raceway groove 3a satisfies the condition of the following formula (4).
  • a ball bearing 1' shown in FIG. 3 is a bearing that has a seal member 6 that seals the inner space of the bearing and is lubricated with a lubricant 7 such as lubricating oil or grease.
  • each of the groove curvature diameters Xi and Xo of the inner ring and outer ring raceway grooves the larger the numerical value, the smaller the contact area between the raceway ring and the balls, which is advantageous for torque reduction.
  • the surface pressure against the load increases and rattling tends to increase, it is preferable to satisfy the conditions of the above formulas (3) and (4) especially in high-speed rotation applications. For example, when formulas (3) and (4) are satisfied, loss torque due to slipping can be reduced by about 10% while suppressing rattling (based on experimental values).
  • the balls are not limited to steel balls, and the same effect can be obtained even when ceramic balls are used.
  • the groove curvature diameter Xi of the inner ring raceway groove satisfies the condition of the following formula (5)
  • the groove curvature diameter Xo of the outer ring raceway groove satisfies the condition of the following formula (6).
  • the groove curvature diameter Xi of the inner ring raceway groove is 1.07 times the ball diameter Da
  • the groove curvature diameter Xo of the outer ring raceway groove is the ball diameter.
  • An example is 1.10 times Da. 0.53( ⁇ Dp)/Z ⁇ Xi ⁇ 0.54( ⁇ Dp)/Z...(5) 0.54( ⁇ Dp)/Z ⁇ Xo ⁇ 0.55( ⁇ Dp)/Z...(6)
  • the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
  • the surface pressure difference can be reduced to 15% or less, for example.
  • the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.03 times the groove curvature diameter Xi of the inner ring raceway groove.
  • the shape of the cage is not limited to a crown shape, but may be a wave shape as described in the second embodiment.
  • FIG. 4 is an axial cross-sectional view of a deep groove ball bearing having a seal member as a ball bearing according to a second embodiment.
  • the deep groove ball bearing 11 has a pair of seal members 6', 6' at openings at both axial ends of the inner ring 2 and outer ring 3.
  • the seal member 6' has one end fixed to the outer ring 3.
  • the seal member 6' may have one end fixed to the inner ring 2.
  • the deep groove ball bearing 11 has a lubricant 7 in the bearing inner space.
  • the lubricant 7 lubricating oil or grease can be used.
  • the lubricant 7 is supplied or sealed within the bearing space, and lubricates the raceway surface and the like.
  • both ends of the inner ring 2 and outer ring 3 in the axial direction are closed by seal members 6', 6', thereby suppressing foreign matter from entering the bearing internal space. be done.
  • the effect of suppressing peeling, indentation, and rolling fatigue that occurs when foreign objects are caught in the ball 4 is reduced compared to the conventional number of balls.
  • FIG. 5 is an enlarged view of the vicinity of the seal lip in FIG. 4.
  • the sealing member 6' has a sealing lip 61 at the end.
  • the inner ring 2 has a seal sliding surface 2b that slides in the circumferential direction with respect to the seal lip 61.
  • the outer ring may have a seal sliding surface that slides in the circumferential direction with respect to the seal lip 61.
  • the seal lip 61 has, for example, a protrusion 62 that creates a lubricant passage (hereinafter also referred to as an "oil passage") between the seal sliding surface 2b and the seal lip 61 that communicates between the bearing internal space and the outside. are doing.
  • the protrusion 62 is formed so as to maintain fluid lubrication between the seal lip 61 and the seal sliding surface 2b.
  • the protrusion 62 has a shape and height that prevents foreign matter from passing through that may affect the life of the bearing. Thereby, it is possible to have sealing performance equivalent to that of a conventional contact seal.
  • the seal lip 61 is not limited to the protrusion 62, but may have a groove or a recess as long as it is formed so as to maintain fluid lubrication between the seal lip 61 and the seal sliding surface 2b.
  • the lubricant in the passage is quickly dragged between the seal sliding surface and the seal lip due to the wedge effect as the bearing rotates, promoting the formation of an oil film of the lubricant therebetween. For this reason, a very thin oil film is formed between the seal lip and the seal sliding surface, and the bearing is completely separated by the lubricant and can be operated without direct contact (i.e. fluid lubrication), making it possible to operate the bearing without contact.
  • the rotational torque can be reduced to almost the same as that of a seal.
  • FIG. 6 is a partial front view of the seal lip portion shown in FIG. 5 when viewed in the axial direction from the bearing inner space side in an independent and natural state.
  • the natural state refers to a state in which no external force is acting on the seal member in its independent state, that is, a state in which the seal member is not deformed by external force (hereinafter, this state is simply referred to as “natural state”). (referred to as “state”).
  • the seal lip 61 has a tip 63 that defines the inner diameter of the seal lip 61 in its natural state.
  • the protrusion 62 extends in a direction perpendicular to the circumferential direction.
  • the protrusion 62 extends to the tip 63 of the seal lip 61 and is formed over the entire range with a radial interference between the protrusion 62 and the seal sliding surface 2b.
  • the protrusions 62 are arranged at regular intervals d in the circumferential direction.
  • a plurality of protrusions 62 appear radially arranged in the circumferential direction at a constant pitch angle ⁇ corresponding to the interval d.
  • the radiation center is located on the central axis (coinciding with the bearing central axis) of the seal member 6' (not shown).
  • the lip 61 can come into sliding contact with the seal sliding surface 2b only on each projection 62, and an oil passage Co (see FIG. 5) is always created between each projection 62.
  • the height h of the protrusion 62 is set to 0.05 mm. In terms of design, this height h is the value at the highest position within the range where it can come into sliding contact with the seal sliding surface 2b. This position is also where the interference set between each protrusion 62 and the seal sliding surface 2b is maximum. Since the amount of deformation of the protrusion 62 during bearing operation can be ignored, the gap between the seal lip 61 and the seal sliding surface 2b in the direction perpendicular to the seal sliding surface 2b (including the oil passage Co) is The width at the narrowest point in the direction orthogonal to the surface 2b is equivalent to the height h of the protrusion 62, and does not substantially exceed 0.05 mm. For this reason, even if foreign matter with a particle size exceeding 50 ⁇ m is contained in the external lubricating oil, it is considered that the foreign matter will almost never pass through the oil passage Co. As a result, further extension of bearing life is expected.
  • the protrusion 62 has an R shape (approximately semicylindrical shape when viewed in the axial direction) that gradually approaches the seal sliding surface 2b from both ends of the circumferential width W toward the center of the circumferential width.
  • This rounded shape is provided over the entire length of the protrusion 62 in the radial direction. Therefore, a region where the protrusion 62 and the seal sliding surface 2b can come into sliding contact exists in a linear manner on the virtual axial plane Pax passing through the center of the circumferential width of the protrusion 62.
  • the center of curvature of the R shape of the protrusion 62 is on the virtual axial plane Pax.
  • the shape of the seal member 6' is not limited to the shape described above.
  • the structure of an e-Axle will be described as an example of an electric vehicle drive system using FIG. 7.
  • the e-Axle is a drive unit that integrates a motor, an inverter, and a speed reducer.
  • the electric vehicle drive system 8 includes a motor 81 and a deceleration system that transmits the power of the motor 81 from a first shaft (input shaft) S1 to a third shaft S3 , which is a drive shaft, while reducing the speed. It is equipped with a machine 82.
  • the inside of the housing 83 of the reduction gear 82 is filled with lubricating oil.
  • the electric vehicle drive system 8 also includes an inverter that controls the motor 81 (not shown).
  • the first shaft S1 may be a shaft of a separate member connected to the motor support shaft Sm , or a single shaft may serve as both shafts.
  • the reducer 82 includes a first shaft S 1 , a second shaft (counter shaft) S 2 , a third shaft (output shaft) S 3 , an input gear G 0 , a first counter gear G 1 , a second counter gear G 2 , It has a drive gear G3 .
  • An input gear G0 is provided on the first shaft S1 .
  • the second shaft S2 is provided with a first counter gear G1 and a second counter gear G2 .
  • a drive gear G3 is provided on the third shaft S3 .
  • the power of the motor 81 is directly transmitted to the first shaft S1, and the first shaft S1 rotates.
  • Input gear G0 meshes with first counter gear G1 .
  • the second counter gear G2 meshes with the drive gear G3 .
  • the driving force of the first counter gear G1 is decelerated (accelerated) by a combination of the second counter gear G2 of the second shaft S2 and the drive gear G3 of the third shaft S3 , and is transferred from the third shaft S3.
  • the electric vehicle drive system 8 further includes rolling bearings 12, 13, 14, 15, 16, 17, 18, and 19.
  • the ball bearing of the present invention can be employed as at least one of the rolling bearings 12, 13, 14, 15, 16, and 17.
  • the rolling bearings 18 and 19 are tapered roller bearings.
  • One end and the other end of the motor support shaft S m are rotatably supported by rolling bearings 12 and 13, respectively.
  • One end of the first shaft S 1 on the motor 81 side is rotatably supported by a rolling bearing 14
  • the other end is rotatably supported by a rolling bearing 15 .
  • the end of the second shaft S2 on the side of the first counter gear G1 is rotatably supported by a rolling bearing 16
  • the end of the second shaft S2 on the side of the second counter gear G2 is rotatably supported by a rolling bearing 17. has been done.
  • one end and the other end of the third shaft S3 are rotatably supported by rolling bearings 18 and 19, respectively.
  • the ball bearing of the present invention When used as a bearing for an e-Axle, it is preferably used as a bearing for a shaft other than the drive shaft (tapered shaft), which is the final shaft to which the largest load is applied. Since the decelerated second shaft S2 is also subjected to a relatively large load, it is particularly preferable that the ball bearing of the present invention is applied to the motor support shaft Sm and the first shaft S1 . Note that in the case of a relatively low load, it can also be applied to the second axis S2 .
  • Reduction gears are generally lubricated using an oil bath method in which the housing is filled with lubricating oil, and hard foreign substances such as gear wear particles are likely to get mixed into the lubricating oil.
  • a bearing without a seal member is used as a bearing in a motor or a speed reducer, hard foreign matter easily enters the space inside the bearing. In that case, there is a risk that the steel balls will step on the hard foreign matter that has entered the bearing internal space, leaving impressions on the raceway surface and leading to early failures. Therefore, if a bearing without a seal member is used in the reduction gear of an e-Axle, the life of the bearing may be significantly reduced.
  • the ball bearing of the present invention has a seal member provided at openings at both axial ends of an inner ring and an outer ring, and a lubricant supplied or sealed in the bearing inner space, and can be used as an e-Axle bearing. Particularly preferred. This makes it difficult for hard foreign objects to get mixed into the lubricating oil, contributing to longer bearing life. In addition, since it is difficult to apply excessively large loads to the e-Axle, a decrease in bearing rigidity due to a reduction in the number of balls in the bearing compared to the conventional one is less likely to be a problem, making it possible to maximize the benefits of lower torque. can. Note that when the ball bearing of the present invention is used as a bearing for an e-axle, in which hard foreign matter such as gear wear powder is difficult to mix into lubricating oil, it can also be used in a form without a seal member.
  • the ball bearing of the present invention has excellent low torque properties, it can be suitably used in various applications requiring low fuel consumption and low electricity consumption.
  • it can be suitably used as a bearing for an e-Axle, which requires low electricity consumption and requires a relatively small load on the bearing.

Abstract

Provided is a ball bearing that has excellent low torque performance without using a holder with a special shape. This ball bearing comprises an inner race 2 having an inner race track groove on the outer circumference thereof, an outer race 3 having an outer race track groove on the inner circumference thereof, balls 4 interposed between the inner race track groove and the outer race track groove, and a holder 5 that holds the balls 4. The number Z of the balls 4 satisfies the condition of formula (1) below. (1): Z ≤ ((π × Dp)/2Da) where Z is the number of the balls 4 (Z is an integer of three or more), Dp is the pitch diameter of the balls 4 [unit: mm], and Da is the diameter of the balls 4 [unit: mm].

Description

玉軸受ball bearing
 本発明は、玉軸受に関し、特に電動車に搭載される電動車駆動システムであるe-Axle用深溝玉軸受に関する。 The present invention relates to a ball bearing, and particularly to a deep groove ball bearing for an e-Axle, which is an electric vehicle drive system mounted on an electric vehicle.
 近年、地球温暖化などの環境問題の観点から、自動車や産業機械はさらなる省エネルギー化が求められている。このような背景から、世界各国においてモータシステムの高効率化の検討が進んでいる。高効率モータシステム開発のためには、構成要素ごとに効率化することが不可欠である。 In recent years, from the perspective of environmental issues such as global warming, automobiles and industrial machinery are required to be even more energy efficient. Against this background, studies on improving the efficiency of motor systems are progressing in countries around the world. In order to develop a highly efficient motor system, it is essential to improve the efficiency of each component.
 高効率モータシステム開発の一例として、電気自動車などの電動車の普及に伴う電動車駆動システムの低電費化が挙げられる。電動車駆動システムとして、例えば、電動車の駆動で必要とされるモータ、インバータ、ギヤボックス(減速機)など、従来個別に配置されていたものを一体化した、e-Axleが知られている。ここで、電費とは、電力エネルギー源の単位容量あたりの走行距離を意味する。電動車駆動システムの低電費化のためには、例えば、構成要素の一つである玉軸受などの転がり軸受を低トルク化(回転トルクを低減)する必要がある。 An example of the development of a high-efficiency motor system is the reduction in electricity costs of electric vehicle drive systems as electric vehicles such as electric vehicles become more widespread. As an electric vehicle drive system, e-Axle is known, for example, which integrates the motor, inverter, gear box (reducer), etc. required for driving electric vehicles, which were previously arranged separately. . Here, electricity cost means the distance traveled per unit capacity of the electric energy source. In order to reduce the electricity consumption of an electric vehicle drive system, for example, it is necessary to reduce the torque of a rolling bearing such as a ball bearing, which is one of the components (reduce rotational torque).
 特許文献1には、低トルク化を目的に、隣接するポケットに保持された玉間距離を玉径の2倍以上5倍以下とし、玉の挿入性を向上させた保持器を備えた玉軸受が記載されている。この玉軸受の保持器は、ポケットの開口端を構成する一対の爪片が周方向に複数形成された冠形の保持器であり、隣接する一対の爪片間には爪片の先端と同じ高さの凸部が形成されている。特許文献1には、高速回転したとき、凸部の平坦面が爪片の先端と同じ高さで円周方向に連続することによって、爪片だけに特別に撹拌抵抗が発生することがなく、潤滑油の流れを整えることができ、損失トルクを大幅に少なくすることができることが記載されている。 Patent Document 1 discloses a ball bearing equipped with a retainer in which the distance between balls held in adjacent pockets is set to 2 times or more and 5 times or less than the ball diameter to improve ball insertion performance for the purpose of reducing torque. is listed. The cage of this ball bearing is a crown-shaped cage in which a plurality of pairs of claws forming the opening end of the pocket are formed in the circumferential direction. A height protrusion is formed. Patent Document 1 discloses that when rotating at high speed, the flat surface of the convex portion is continuous in the circumferential direction at the same height as the tip of the claw piece, so that no special stirring resistance is generated only in the claw piece. It is stated that the flow of lubricating oil can be adjusted and torque loss can be significantly reduced.
 特許文献2には、低トルク化を目的として、保持器のポケット面に凹部を形成して玉との非接触部を設けることで、接触面積を減らし、潤滑油のせん断トルクを低減させた保持器が記載されている。 Patent Document 2 discloses a holding system that reduces the contact area and reduces the shear torque of lubricating oil by forming a recess in the pocket surface of the cage to provide a non-contact part with the balls for the purpose of reducing torque. The equipment is listed.
特許第5348271号公報Patent No. 5348271 特許第5602345号公報Patent No. 5602345
 特許文献1は、低トルク化を目的に、隣接するポケットに保持された玉間距離を玉径の2倍以上5倍以下とし、玉の挿入性を向上させた保持器としているが、隣接する一対の爪片間の凸部における肉厚が厚くなり、保持器の重量が増加するため、遠心力による変形が増加しやすい。また、近年のT/M(トランスミッション)やEV用減速機は、環境汚染防止および低トルク化を目的に希薄潤滑環境が主流になっている。希薄潤滑環境では、保持器の爪片が潤滑油に浸かっている状態ではないことから、保持器の爪片による撹拌は起こりにくい。 In Patent Document 1, for the purpose of reducing torque, the distance between the balls held in adjacent pockets is set to 2 times or more and 5 times or less of the ball diameter, and the cage has improved ease of ball insertion. Since the thickness of the convex portion between the pair of claw pieces becomes thicker and the weight of the retainer increases, deformation due to centrifugal force is likely to increase. Furthermore, in recent years, T/M (transmissions) and reduction gears for EVs have become mainstream in lean lubrication environments for the purpose of preventing environmental pollution and reducing torque. In a dilute lubrication environment, the retainer claws are not immersed in lubricating oil, so agitation by the retainer claws is unlikely to occur.
 特許文献2は、鉄製の波形保持器のポケット形状を改良したものであるが、ポケット形状の変更により、高速回転時などにおいて安定的な玉の保持が低下し、変形などが生じるおそれがある。 Patent Document 2 improves the pocket shape of the iron corrugated retainer, but due to the change in the pocket shape, stable holding of the balls decreases during high-speed rotation, etc., and deformation may occur.
 このように保持器の形状を変更して低トルク化を図ることは種々の問題が生じやすく、特殊な形状の保持器を用いることなく簡易に低トルク化することが望ましい。 Attempting to reduce torque by changing the shape of the cage in this way tends to cause various problems, and it is desirable to easily reduce the torque without using a cage with a special shape.
 本発明はこのような問題に対処するためになされたものであり、低トルク性に優れる玉軸受の提供を目的とする。 The present invention was made to address such problems, and aims to provide a ball bearing with excellent low torque performance.
 本発明の玉軸受は、外周に内輪軌道溝を有する内輪と、内周に外輪軌道溝を有する外輪と、上記内輪軌道溝と上記外輪軌道溝との間に介在する玉と、上記玉を保持する保持器とを備える玉軸受であって、上記玉の個数Zが、下記式(1)の条件を満たすことを特徴とする。ここで、Dp、Daは、ともに「mm」単位での数値とする。
 Z≦((π×Dp)/2Da)・・・(1)
 Z:上記玉の個数(Zは3以上の整数)
 Dp:上記玉のピッチ径[単位:mm]
 Da:上記玉の直径[単位:mm]
The ball bearing of the present invention includes an inner ring having an inner ring raceway groove on the outer periphery, an outer ring having an outer ring raceway groove on the inner periphery, balls interposed between the inner ring raceway groove and the outer ring raceway groove, and holding the balls. The ball bearing is characterized in that the number Z of the balls satisfies the condition of the following formula (1). Here, Dp and Da are both numerical values in "mm" units.
Z≦((π×Dp)/2Da)...(1)
Z: Number of balls mentioned above (Z is an integer of 3 or more)
Dp: pitch diameter of the above ball [unit: mm]
Da: Diameter of the above ball [unit: mm]
 上記玉の個数Zが、下記式(2)の条件を満たすことを特徴とする。
 4≦Z≦((π×Dp)/2Da)・・・(2)
It is characterized in that the number Z of the balls satisfies the condition of formula (2) below.
4≦Z≦((π×Dp)/2Da)...(2)
 上記内輪軌道溝の溝曲率径Xi[単位:mm]、上記外輪軌道溝の溝曲率径Xo[単位:mm]とした場合、下記式(3)および式(4)の条件を満たすことを特徴とする。
 0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(3)
 0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(4)
When the groove curvature diameter of the inner ring raceway groove is Xi [unit: mm] and the groove curvature diameter of the outer ring raceway groove is Xo [unit: mm], the following conditions of formula (3) and formula (4) are satisfied. shall be.
0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(3)
0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(4)
 上記外輪軌道溝の溝曲率径Xoが上記内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であることを特徴とする。 The groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
 上記玉の個数Zが、下記式(2)の条件を満たし、かつ、前記内輪軌道溝の溝曲率径Xi[単位:mm]、上記外輪軌道溝の溝曲率径Xo[単位:mm]とした場合、下記式(3)および式(4)の条件を満たし、上記外輪軌道溝の溝曲率径Xoが上記内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であることを特徴とする。
 4≦Z≦((π×Dp)/2Da)・・・(2)
 0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(3)
 0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(4)
The number Z of the balls satisfies the condition of the following formula (2), and the groove curvature diameter Xi [unit: mm] of the inner ring raceway groove and the groove curvature diameter Xo [unit: mm] of the outer ring raceway groove are set. In this case, the following formulas (3) and (4) are satisfied, and the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove. Features.
4≦Z≦((π×Dp)/2Da)...(2)
0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(3)
0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(4)
 上記玉軸受は、上記内輪および外輪の軸方向両端開口部に設けられるシール部材と、軸受内空間に供給または封入される潤滑剤とを備えることを特徴とする。 The ball bearing is characterized in that it includes seal members provided at openings at both axial ends of the inner ring and outer ring, and a lubricant supplied or sealed in the bearing internal space.
 上記シール部材は、端部にシールリップを有し、上記内輪または上記外輪は、上記シールリップに対して周方向にしゅう動するシールしゅう動面を有し、上記シールリップは、上記軸受内空間および外部間に亘って連通する上記潤滑剤の通路を上記シールしゅう動面および上記シールリップ間に生じさせる突起を有し、上記突起は、上記シールリップおよび上記シールしゅう動面間を流体潤滑状態にするように形成されていることを特徴とする。 The seal member has a seal lip at an end, the inner ring or the outer ring has a seal sliding surface that slides in the circumferential direction with respect to the seal lip, and the seal lip is arranged in the bearing inner space. and a protrusion that creates a passage for the lubricant between the seal sliding surface and the seal lip that communicates with the outside, and the protrusion maintains a state of fluid lubrication between the seal lip and the seal sliding surface. It is characterized by being formed so as to.
 モータと、該モータを制御するインバータと、該モータの回転が入力され、駆動軸へと伝達する減速機とが一体化された駆動システム(e-Axle)用の軸受であることを特徴とする。 A bearing for a drive system (e-Axle) that integrates a motor, an inverter that controls the motor, and a reducer that receives the rotation of the motor and transmits it to the drive shaft. .
 上記モータの回転軸および上記減速機の入力軸の少なくともいずれかを回転可能に支持する軸受であることを特徴とする。 A bearing rotatably supports at least one of the rotating shaft of the motor and the input shaft of the speed reducer.
 本発明の玉軸受は、玉の個数Zが上記式(1)の条件を満たし、従来の玉軸受における玉の個数Nに比べて玉数が減っているので、玉と軌道輪との接触面積が低減するとともに、潤滑剤を有する場合は潤滑剤のせん断回数も減り、回転時の回転トルク(損失トルク)の低減につながる。これにより、本発明の玉軸受は、特殊な保持器を用いることなく、低トルク性に優れる。 In the ball bearing of the present invention, the number Z of balls satisfies the condition of formula (1) above, and the number of balls is reduced compared to the number N of balls in a conventional ball bearing, so the contact area between the balls and the bearing ring is In addition, when a lubricant is included, the number of times the lubricant is sheared is also reduced, leading to a reduction in rotational torque (torque loss) during rotation. As a result, the ball bearing of the present invention has excellent low torque performance without using a special cage.
 玉の個数Zが上記式(2)の条件を満たすので、所定の数以上の玉で荷重を支持でき、定格荷重が低下するものの、シールにより異物の侵入を防ぐことができるため、低トルク性とともに軸受寿命にも優れる。 Since the number of balls Z satisfies the condition of formula (2) above, the load can be supported by more than the predetermined number of balls, and although the rated load is reduced, the seal can prevent foreign matter from entering, resulting in low torque performance. It also has excellent bearing life.
 低トルク化のため、玉の個数Zが従来よりも少ない場合(例えば、Z=(従来の個数N)-1)、転動体数が減ることで、転動体一つ当たりの負荷が大きくなり、低回転の場合、滑りによる損失トルクが大きくなりやすい。これに対して、上記玉軸受は、上記内輪軌道溝の溝曲率径Xiが上記式(3)を満たし、かつ、上記外輪軌道溝の溝曲率径Xoが上記式(4)を満たすので、一般的に使用される玉の直径に対する内外輪の溝曲率径の比率(内輪の溝曲率径:1.02倍、外輪の溝曲率径:1.06倍)に対し、滑りによる損失トルクを低減させることができる。 In order to reduce torque, if the number of balls Z is smaller than before (for example, Z = (conventional number N) - 1), the load per rolling element will increase due to the decrease in the number of rolling elements. At low rotation speeds, torque loss due to slipping tends to be large. On the other hand, in the ball bearing, the groove curvature diameter Xi of the inner ring raceway groove satisfies the above formula (3), and the groove curvature diameter Xo of the outer ring raceway groove satisfies the above formula (4). The ratio of the groove curvature diameter of the inner and outer rings to the diameter of the balls used for this purpose (inner ring groove curvature diameter: 1.02 times, outer ring groove curvature diameter: 1.06 times) reduces torque loss due to slippage. be able to.
 また、内輪曲率と外輪曲率の差が大きくなった場合、内外輪の面圧差が発生し、面圧の高い側の軌道輪が早期に剥離するおそれがある。軸受として、内外輪どちらかにフレーキングが発生した時点で著しく性能が低下することから、外輪軌道溝の溝曲率径Xoが内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であるので、内外輪の面圧差を抑えることができる。 Furthermore, if the difference between the inner ring curvature and the outer ring curvature becomes large, a difference in surface pressure between the inner and outer rings will occur, and there is a risk that the raceway ring on the side with higher surface pressure will peel off early. As a bearing, performance deteriorates significantly when flaking occurs on either the inner or outer ring, so the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove. Therefore, the difference in surface pressure between the inner and outer rings can be suppressed.
 内輪および外輪の軸方向両端開口部に設けられるシール部材と、軸受内空間に供給または封入される潤滑剤とを有するので、軸受内空間への異物の侵入を抑制でき、潤滑剤が清浄油同等の状態で使用できる。これにより、異物を噛みこんだ際に発生する剥離や、圧痕、転動疲労を抑制し、従来(玉の個数が多い場合)と同等程度の軸受寿命を有することができる。 Since it has a sealing member provided at the openings at both axial ends of the inner ring and outer ring, and a lubricant supplied or sealed into the bearing inner space, it is possible to suppress the entry of foreign matter into the bearing inner space, and the lubricant is equivalent to clean oil. It can be used in the following conditions. This suppresses peeling, indentation, and rolling fatigue that occur when foreign objects are caught in the bearing, and allows the bearing to have a life comparable to that of conventional bearings (when the number of balls is large).
 シールリップは、軸受内空間および外部間に亘って連通する潤滑剤の通路をシールしゅう動面およびシールリップ間に生じさせる突起を有し、突起は、シールリップおよびシールしゅう動面間を流体潤滑状態にするように形成されているので、シールリップおよびシールしゅう動面間のしゅう動の摩擦係数を顕著に低減できるとともに、軸受内空間への異物の侵入をさらに抑制できる。これにより、低トルク性と軸受寿命に特に優れる。 The seal lip has a protrusion that creates a lubricant passage between the seal sliding surface and the seal lip that communicates between the internal space and the outside of the bearing, and the protrusion provides fluid lubrication between the seal lip and the seal sliding surface. Since the seal lip is formed so as to be in the bearing state, the friction coefficient of the sliding motion between the seal lip and the seal sliding surface can be significantly reduced, and the intrusion of foreign matter into the bearing inner space can be further suppressed. This results in particularly excellent low torque performance and long bearing life.
 本発明の玉軸受は、モータと、該モータを制御するインバータと、該モータの回転が入力され、駆動軸へと伝達する減速機とが一体化された駆動システム(e-Axle)用の軸受であり、特に、上記モータの回転軸および上記減速機の入力軸の少なくともいずれかを回転可能に支持する軸受であるので、比較的大きな荷重はかからない。これにより、軸受寸法を変更することなく低トルク化でき、低電費化されることで電動車の航続距離延長などが期待される。 The ball bearing of the present invention is a bearing for a drive system (e-Axle) that integrates a motor, an inverter that controls the motor, and a reducer that receives the rotation of the motor and transmits it to the drive shaft. In particular, since the bearing rotatably supports at least one of the rotating shaft of the motor and the input shaft of the speed reducer, a relatively large load is not applied to the bearing. This makes it possible to reduce torque without changing bearing dimensions, and is expected to extend the cruising range of electric vehicles by reducing electricity consumption.
本発明の玉軸受の第1実施形態を示す平面図である。FIG. 1 is a plan view showing a first embodiment of the ball bearing of the present invention. 図1の保持器における隣接するポケット周辺の展開図である。FIG. 2 is a developed view of the periphery of adjacent pockets in the retainer of FIG. 1; 本発明の玉軸受の一部断面図である。FIG. 1 is a partial cross-sectional view of a ball bearing of the present invention. 本発明の玉軸受の第2実施形態を示す一部断面図である。It is a partial sectional view showing a second embodiment of the ball bearing of the present invention. 図4におけるシールリップ付近の拡大図である。5 is an enlarged view of the vicinity of the seal lip in FIG. 4. FIG. 軸方向から見たシールリップの部分正面図である。FIG. 3 is a partial front view of the seal lip viewed from the axial direction. 電動車駆動システムの概略図である。FIG. 1 is a schematic diagram of an electric vehicle drive system.
 玉軸受において、特殊な保持器を用いることなく低トルク化を図ろうとした場合、玉の個数を減らすことが一つの方法として考えられる。しかし、玉の個数を減らすと軸受剛性の低下に繋がり、その結果、定格荷重が低下してしまう。これに対し、本発明者は、例えば特定の用途で使用される軸受(例えばe-Axle用軸受)において、玉の個数Zが所定の条件を満たすようにすることで、定格荷重の低下による悪影響を回避しつつ、低トルク化が図れることを見出した。 In ball bearings, one way to reduce the torque without using a special cage is to reduce the number of balls. However, reducing the number of balls leads to a decrease in bearing rigidity, resulting in a decrease in the rated load. On the other hand, the present inventor has proposed that, for example, in a bearing used for a specific application (for example, an e-Axle bearing), by making the number Z of balls satisfy a predetermined condition, the negative effects caused by a decrease in the rated load can be avoided. We have discovered that it is possible to achieve low torque while avoiding this problem.
 本発明の玉軸受は、高い荷重はかからず、低トルク性が要求される用途に特に適している。例えば、電動車駆動システム用の軸受などに用いることができ、より具体的には、e-Axle用軸受として用いることができる。なお、e-Axleの詳細については、図7で説明する。 The ball bearing of the present invention is particularly suitable for applications that do not require high loads and require low torque performance. For example, it can be used as a bearing for an electric vehicle drive system, and more specifically, it can be used as a bearing for an e-Axle. Note that details of the e-Axle will be explained with reference to FIG.
(第1実施形態)
 本発明の玉軸受の第1実施形態を図1に基づいて説明する。図1は、玉軸受としての深溝玉軸受を軸方向から見た平面図である。図1に示すように、深溝玉軸受(玉軸受)1は、内輪2および外輪3と、この内輪2および外輪3の間に介在する玉4と、玉4を保持する冠形の保持器5とを備えている。図1において、保持器5は、5個の玉4を5個のポケット部で周方向一定間隔で転動自在に保持している。なお、図1の玉4の個数は、下記の式(1)を満たすものとして設定されている。また、深溝玉軸受1は、軸受内空間への異物の侵入を抑制するシール部材を有しておらず、内輪2および外輪3の軸方向両端が開口している。
(First embodiment)
A first embodiment of the ball bearing of the present invention will be described based on FIG. 1. FIG. 1 is a plan view of a deep groove ball bearing as a ball bearing viewed from the axial direction. As shown in FIG. 1, a deep groove ball bearing (ball bearing) 1 includes an inner ring 2, an outer ring 3, balls 4 interposed between the inner ring 2 and the outer ring 3, and a crown-shaped retainer 5 that holds the balls 4. It is equipped with In FIG. 1, the cage 5 holds five balls 4 in five pockets so as to be able to roll freely at regular intervals in the circumferential direction. Note that the number of balls 4 in FIG. 1 is set to satisfy the following formula (1). Moreover, the deep groove ball bearing 1 does not have a seal member for suppressing foreign matter from entering the bearing inner space, and both ends of the inner ring 2 and the outer ring 3 in the axial direction are open.
 図2に示すように、保持器5は、円環状の樹脂製本体5aの円周方向上面に周方向に一定ピッチをおいて対向一対の保持爪5bを複数個形成し、その対向する各保持爪5bを相互に接近する方向にわん曲させるとともに、その保持爪5b間に玉を保持するポケット部5cを形成している。隣接するポケット部5cの縁に形成された相互に隣接する保持爪5bの背面相互間に、保持爪5bの立ち上がり基準面となる平坦部5dが形成される。保持器5の形状としては、ポケット部5cの数との関係を除き、一般的な形状を採用できる。例えば、特許文献1のように、保持爪の高さと平坦部の高さが同一の高さになっていない。 As shown in FIG. 2, the retainer 5 has a plurality of opposing retaining claws 5b formed at a constant pitch in the circumferential direction on the circumferential upper surface of an annular resin main body 5a, and each of the opposing retaining claws 5b. The claws 5b are bent in a direction toward each other, and a pocket portion 5c for holding the ball is formed between the holding claws 5b. A flat portion 5d, which serves as a reference surface for rising up the holding claws 5b, is formed between the back surfaces of mutually adjacent holding claws 5b formed on the edges of the adjacent pocket portions 5c. As for the shape of the retainer 5, a general shape can be adopted except for the relationship with the number of pocket portions 5c. For example, as in Patent Document 1, the height of the holding claw and the height of the flat portion are not the same height.
 ここで、玉軸受における玉の個数は、以下のようにして設定される。
(1)玉軸受の軸受内径、軸受外径、軸受幅の設定(JIS B 1512の寸法規格に基づく)、(2)玉の直径Daの設定、(3)玉の個数Zの設定
Here, the number of balls in the ball bearing is set as follows.
(1) Setting of the bearing inner diameter, bearing outer diameter, and bearing width of the ball bearing (based on the JIS B 1512 dimensional standard), (2) Setting of the ball diameter Da, (3) Setting of the number of balls Z
 例えば、e-Axle用軸受として使用される深溝玉軸受のP.C.D(いわゆるピッチ径Dp)は45mm~65mmで、軸受幅Bは5mm~25mmで、玉の直径Daは3mm~150mmで設計されるとすると、玉の個数Zは、通常7~9個となる。 For example, the P. of deep groove ball bearings used as e-Axle bearings. C. Assuming that D (so-called pitch diameter Dp) is designed to be 45 mm to 65 mm, bearing width B is 5 mm to 25 mm, and ball diameter Da is 3 mm to 150 mm, the number of balls Z is usually 7 to 9. .
 本発明の玉軸受は、玉の個数Zが下記式(1)の条件を満たす。
 Z≦((π×Dp)/2Da)・・・(1)
 Z:玉の個数(Zは3以上の整数)
In the ball bearing of the present invention, the number Z of balls satisfies the condition of formula (1) below.
Z≦((π×Dp)/2Da)...(1)
Z: Number of balls (Z is an integer of 3 or more)
 すなわち、本発明の玉軸受における玉の個数は、従来の玉軸受における玉の個数に比べて、1個以上少なくなっている。これにより、玉軸受の部材点数を削減できるとともに、ある程度の軸受剛性を確保しつつ、回転トルクを低減できる。また、軸受が軽量化されるため、低電費化や低燃費化にもつながる。さらに、玉の軌道輪間への嵌入により発生する応力が低減されることで、内外輪の真円度の不良が起こりにくくなるとともに、玉1個当たりの荷重が上がるため、軸受にかかる荷重が低荷重でも滑りの発生を抑制できる。また、玉の通過回数が減ることで、クリープ現象(尺取り虫現象)の軽減も期待される。なお、本発明の玉軸受は、他部品との関係上、潤滑剤の粘度を下げられない(高粘度の潤滑剤を使用せざるを得ない)場合でも、玉の個数の設定により低トルク化できる。 That is, the number of balls in the ball bearing of the present invention is one or more fewer than the number of balls in the conventional ball bearing. Thereby, the number of components of the ball bearing can be reduced, and rotational torque can be reduced while ensuring a certain degree of bearing rigidity. Additionally, the weight of the bearings is reduced, leading to lower electricity costs and lower fuel consumption. Furthermore, by reducing the stress generated when the balls fit between the raceway rings, defects in the roundness of the inner and outer rings are less likely to occur, and since the load per ball increases, the load on the bearing is reduced. Slippage can be suppressed even under low loads. In addition, by reducing the number of times the ball passes through the ball, it is expected that the creep phenomenon (inchworm phenomenon) will be reduced. Furthermore, even if the ball bearing of the present invention cannot reduce the viscosity of the lubricant due to its relationship with other parts (high viscosity lubricant must be used), it is possible to reduce torque by setting the number of balls. can.
 例えば、本発明の玉軸受が、ピッチ径Dp=45mm~65mm、軸受幅B=5mm~25mm、玉の直径Da=0.6Bの場合、玉の個数Zは、好ましくは5個~8個であり、より好ましくは5個~7個であり、さらに好ましくは5個~6個である。 For example, when the ball bearing of the present invention has a pitch diameter Dp of 45 mm to 65 mm, a bearing width B of 5 mm to 25 mm, and a ball diameter Da of 0.6 B, the number of balls Z is preferably 5 to 8. The number is more preferably 5 to 7, and even more preferably 5 to 6.
 また、本発明の玉軸受において、玉の個数Zは、下記式(2)の条件を満たすことが好ましい。
 4≦Z≦((π×Dp)/2Da)・・・(2)
Moreover, in the ball bearing of the present invention, it is preferable that the number Z of balls satisfies the condition of the following formula (2).
4≦Z≦((π×Dp)/2Da)...(2)
 例えば、本発明の玉軸受が、ピッチ径Dp=60mm、軸受幅B=18mm、玉の直径Da=0.6Bの場合、上記式(2)を満たす玉の個数Zは、5個、6個、7個、または8個である。例えば、これらの中で最大の個数(この場合は8個)を採用できる。また、ピッチ径Dp=45mm、軸受幅B=25mm、玉の直径Da=0.6Bの場合、上記式(2)を満たす玉の個数Zは、5個である。 For example, when the ball bearing of the present invention has pitch diameter Dp = 60 mm, bearing width B = 18 mm, and ball diameter Da = 0.6 B, the number Z of balls satisfying the above formula (2) is 5 or 6. , 7, or 8. For example, the maximum number of these (eight in this case) can be adopted. Further, when the pitch diameter Dp=45 mm, the bearing width B=25 mm, and the ball diameter Da=0.6B, the number Z of balls satisfying the above formula (2) is five.
 上記式(1)または式(2)を満たしつつ、個数Zとして最大の個数を採用することで、定格荷重の低下が最低限に抑制され、低トルク化が図れるとともに、軸受寿命にも優れる。 By adopting the maximum number of pieces as the number Z while satisfying the above formula (1) or formula (2), the decrease in the rated load is suppressed to the minimum, low torque can be achieved, and the bearing life is also excellent.
 ここで、玉の個数を減らした場合、転動体数が減ることで転動体一つ当たりの負荷が大きくなり、低回転の場合、滑りによる損失トルクが大きくなる。この滑りによる損失トルクを低減するため、玉の直径に対して内輪・外輪軌道溝の溝曲率径の比率を設定することが好ましい。 Here, when the number of balls is reduced, the load per rolling element increases due to the decrease in the number of rolling elements, and at low rotations, torque loss due to slipping increases. In order to reduce torque loss due to this slippage, it is preferable to set the ratio of the groove curvature diameter of the inner ring and outer ring raceway grooves to the diameter of the balls.
 図3に示す玉軸受1’において、内輪2の外周には断面円弧状の内輪軌道溝2aが周方向に沿って形成され、外輪3の内周には断面円弧状の外輪軌道溝3aが周方向に沿って形成されている。内輪軌道溝2aの溝曲率径Xiは、下記式(3)の条件を満たすことが好ましい。
 0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(3)
 また、外輪軌道溝3aの溝曲率径Xoは、下記式(4)の条件を満たすことが好ましい。
 0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(4)
 なお、内輪軌道溝2aおよび外輪軌道溝3aはそれぞれ単一の曲率で構成されている。図3に示す玉軸受1’は、軸受内空間を密封するシール部材6を有し、潤滑油またはグリースなどの潤滑剤7で潤滑される軸受である。
In the ball bearing 1' shown in FIG. 3, an inner ring raceway groove 2a having an arcuate cross section is formed along the circumferential direction on the outer periphery of the inner ring 2, and an outer ring raceway groove 3a having an arcuate cross section is formed on the inner periphery of the outer ring 3. It is formed along the direction. It is preferable that the groove curvature diameter Xi of the inner ring raceway groove 2a satisfies the condition of the following formula (3).
0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(3)
Moreover, it is preferable that the groove curvature diameter Xo of the outer ring raceway groove 3a satisfies the condition of the following formula (4).
0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(4)
Note that the inner ring raceway groove 2a and the outer ring raceway groove 3a each have a single curvature. A ball bearing 1' shown in FIG. 3 is a bearing that has a seal member 6 that seals the inner space of the bearing and is lubricated with a lubricant 7 such as lubricating oil or grease.
 内輪・外輪軌道溝の溝曲率径Xi、Xoの各々については、数値が大きいほど軌道輪と玉との接触面積が小さくなるため、トルク低減には有利である。一方で、荷重に対する面圧が大きくなり、がたつきが大きくなりやすいことから、特に高速回転用途においては上記式(3)および式(4)の条件を満たすことが好ましい。例えば、式(3)および式(4)を満たす場合、がたつきを抑えつつ、滑りによる損失トルクを10%程度低減させることができる(実験値の結果より)。なお、玉は鋼球に限らず、セラミックボールの場合でも同等の効果が得られる。 Regarding each of the groove curvature diameters Xi and Xo of the inner ring and outer ring raceway grooves, the larger the numerical value, the smaller the contact area between the raceway ring and the balls, which is advantageous for torque reduction. On the other hand, since the surface pressure against the load increases and rattling tends to increase, it is preferable to satisfy the conditions of the above formulas (3) and (4) especially in high-speed rotation applications. For example, when formulas (3) and (4) are satisfied, loss torque due to slipping can be reduced by about 10% while suppressing rattling (based on experimental values). Note that the balls are not limited to steel balls, and the same effect can be obtained even when ceramic balls are used.
 さらに、内輪軌道溝の溝曲率径Xiは下記式(5)の条件を満たすことが好ましく、外輪軌道溝の溝曲率径Xoは下記式(6)の条件を満たすことが好ましい。下記式(5)および式(6)を満たす形態として、例えば、内輪軌道溝の溝曲率径Xiが玉の直径Daに対して1.07倍、外輪軌道溝の溝曲率径Xoが玉の直径Daに対して1.10倍の例が挙げられる。
 0.53(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(5)
 0.54(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(6)
Furthermore, it is preferable that the groove curvature diameter Xi of the inner ring raceway groove satisfies the condition of the following formula (5), and it is preferable that the groove curvature diameter Xo of the outer ring raceway groove satisfies the condition of the following formula (6). As a form that satisfies the following formulas (5) and (6), for example, the groove curvature diameter Xi of the inner ring raceway groove is 1.07 times the ball diameter Da, and the groove curvature diameter Xo of the outer ring raceway groove is the ball diameter. An example is 1.10 times Da.
0.53(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(5)
0.54(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(6)
 内輪曲率と外輪曲率の差が大きくなった場合、内外輪の面圧差が発生し、面圧の高い側の軌道輪が早期に剥離するおそれがある。これを考慮して、外輪軌道溝の溝曲率径Xoが内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であることが好ましい。これにより、面圧差を例えば15%以下にすることができる。より好ましくは、外輪軌道溝の溝曲率径Xoが内輪軌道溝の溝曲率径Xiの1.02倍~1.03倍である。 If the difference between the inner ring curvature and the outer ring curvature becomes large, a difference in surface pressure will occur between the inner and outer rings, and there is a risk that the raceway ring on the side with higher surface pressure will peel off early. Considering this, it is preferable that the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove. Thereby, the surface pressure difference can be reduced to 15% or less, for example. More preferably, the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.03 times the groove curvature diameter Xi of the inner ring raceway groove.
 図1や図3の深溝玉軸受1において、保持器の形状は、冠形に限定されず、第2実施形態で述べるような波形形状でもよい。 In the deep groove ball bearing 1 shown in FIGS. 1 and 3, the shape of the cage is not limited to a crown shape, but may be a wave shape as described in the second embodiment.
(第2実施形態)
 本発明の玉軸受の第2実施形態を図4に基づいて説明する。なお、第1実施形態と同一の構成は同一の符号を付して、詳細な説明を省略する。図4は、第2実施形態の玉軸受としてシール部材を有する深溝玉軸受の軸方向断面図である。図4に示すように、深溝玉軸受11は、内輪2および外輪3の軸方向両端開口部に一対のシール部材6’、6’を有している。シール部材6’は、外輪3に一端部を固定されている。なお、シール部材6’は、内輪2に一端部を固定されていてもよい。深溝玉軸受11は、軸受内空間に潤滑剤7を有している。潤滑剤7としては、潤滑油またはグリースを用いることができる。潤滑剤7は、軸受空間内に供給または封入され、転走面などに介在して潤滑がなされる。
(Second embodiment)
A second embodiment of the ball bearing of the present invention will be described based on FIG. 4. Note that the same configurations as in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. FIG. 4 is an axial cross-sectional view of a deep groove ball bearing having a seal member as a ball bearing according to a second embodiment. As shown in FIG. 4, the deep groove ball bearing 11 has a pair of seal members 6', 6' at openings at both axial ends of the inner ring 2 and outer ring 3. The seal member 6' has one end fixed to the outer ring 3. Note that the seal member 6' may have one end fixed to the inner ring 2. The deep groove ball bearing 11 has a lubricant 7 in the bearing inner space. As the lubricant 7, lubricating oil or grease can be used. The lubricant 7 is supplied or sealed within the bearing space, and lubricates the raceway surface and the like.
 ここで、玉の個数を、従来の玉軸受における玉の個数Zよりも例えば1個減らすと、軸受寿命の低下が懸念される。これに対して、第2実施形態の深溝玉軸受11では、内輪2および外輪3の軸方向両端がシール部材6’、6’により塞がれることで、軸受内空間への異物の侵入が抑制される。これにより、玉4の個数を減らすことによる軸受寿命の低下よりも、異物を噛みこんだ際に発生する剥離や、圧痕、転動疲労を抑制することによる効果によって、従来の玉の個数の場合と同等程度の軸受寿命を確保できる。また、軸受1回転当りで潤滑剤にせん断力がかかる回数が従来の軸受よりも減るため、潤滑剤が昇温しにくく、潤滑剤の長寿命化にも寄与するとともに、潤滑剤の漏れも起こりにくい。 Here, if the number of balls is reduced by one, for example, from the number Z of balls in a conventional ball bearing, there is a concern that the life of the bearing will be reduced. In contrast, in the deep groove ball bearing 11 of the second embodiment, both ends of the inner ring 2 and outer ring 3 in the axial direction are closed by seal members 6', 6', thereby suppressing foreign matter from entering the bearing internal space. be done. As a result, rather than reducing the bearing life due to a reduction in the number of balls 4, the effect of suppressing peeling, indentation, and rolling fatigue that occurs when foreign objects are caught in the ball 4 is reduced compared to the conventional number of balls. It is possible to secure a bearing life equivalent to that of In addition, the number of times that shear force is applied to the lubricant per bearing rotation is reduced compared to conventional bearings, which makes it difficult for the lubricant to heat up, contributing to a longer life of the lubricant and preventing lubricant leakage. Hateful.
 第2実施形態の玉軸受におけるシール部材について図5に基づいて説明する。図5は、図4におけるシールリップ付近の拡大図である。図5に示すように、シール部材6’は、端部にシールリップ61を有している。内輪2は、シールリップ61に対して周方向にしゅう動するシールしゅう動面2bを有している。なお、シール部材6’が内輪2に一端部を固定されている場合、外輪が、シールリップ61に対して周方向にしゅう動するシールしゅう動面を有していてもよい。 The seal member in the ball bearing of the second embodiment will be explained based on FIG. 5. FIG. 5 is an enlarged view of the vicinity of the seal lip in FIG. 4. As shown in FIG. 5, the sealing member 6' has a sealing lip 61 at the end. The inner ring 2 has a seal sliding surface 2b that slides in the circumferential direction with respect to the seal lip 61. Note that when the seal member 6' has one end fixed to the inner ring 2, the outer ring may have a seal sliding surface that slides in the circumferential direction with respect to the seal lip 61.
 シールリップ61は、例えば、軸受内空間および外部間に亘って連通する潤滑剤の通路(以下、「油通路」ともいう)をシールしゅう動面2bおよびシールリップ61間に生じさせる突起62を有している。突起62は、シールリップ61およびシールしゅう動面2bの間を流体潤滑状態にするように形成されていることが好ましい。また、突起62は、軸受寿命に影響を与える異物を通さない形状や高さであることが好ましい。これにより、従来接触シール同等のシール性能を有することができる。なお、シールリップ61は、シールリップ61およびシールしゅう動面2bの間を流体潤滑状態にするように形成されていれば、突起62に限らず、溝部や凹部が形成されていてもよい。 The seal lip 61 has, for example, a protrusion 62 that creates a lubricant passage (hereinafter also referred to as an "oil passage") between the seal sliding surface 2b and the seal lip 61 that communicates between the bearing internal space and the outside. are doing. Preferably, the protrusion 62 is formed so as to maintain fluid lubrication between the seal lip 61 and the seal sliding surface 2b. Further, it is preferable that the protrusion 62 has a shape and height that prevents foreign matter from passing through that may affect the life of the bearing. Thereby, it is possible to have sealing performance equivalent to that of a conventional contact seal. Note that the seal lip 61 is not limited to the protrusion 62, but may have a groove or a recess as long as it is formed so as to maintain fluid lubrication between the seal lip 61 and the seal sliding surface 2b.
 上記構成であることにより、通路内の潤滑剤が軸受回転に伴ってシールしゅう動面およびシールリップ間にくさび効果で速やかに引きずり込まれ、この間での潤滑剤の油膜形成を促進する。このため、シールリップとシールしゅう動面との間には非常に薄い油膜が形成され、潤滑剤によって完全に分離されて直接接触しない状態(すなわち流体潤滑状態)で軸受運転を行えるので、非接触シールとほぼ同等の回転トルクへと低減できる。 With the above configuration, the lubricant in the passage is quickly dragged between the seal sliding surface and the seal lip due to the wedge effect as the bearing rotates, promoting the formation of an oil film of the lubricant therebetween. For this reason, a very thin oil film is formed between the seal lip and the seal sliding surface, and the bearing is completely separated by the lubricant and can be operated without direct contact (i.e. fluid lubrication), making it possible to operate the bearing without contact. The rotational torque can be reduced to almost the same as that of a seal.
 なお、シール部材として非接触シールを採用した場合、油の撹拌抵抗を減少させることができるが、一般的な非接触シールでは、内輪とシール部材との隙間が異物に対して大きいため、異物の侵入を十分に抑制できない。これに対し、上述のシール部材を採用することで、低トルク化と異物の侵入抑制を両立し理想的な環境となる。 Note that if a non-contact seal is used as the seal member, it is possible to reduce the oil agitation resistance, but with a general non-contact seal, the gap between the inner ring and the seal member is large relative to foreign objects, so foreign objects Invasion cannot be adequately suppressed. On the other hand, by employing the above-mentioned sealing member, an ideal environment is created that achieves both low torque and suppression of foreign matter intrusion.
 図5のシール部材の詳細について図6に基づいて説明する。図6は、図5に示したシールリップ部分を単独かつ自然な状態で軸受内空間側から軸方向に見た部分正面図である。ここで、自然な状態は、単独の状態にあるシール部材に外力が作用していない、すなわち当該シール部材が外力によって変形していない状態のことをいう(以下、この状態のことを単に「自然状態」という)。 Details of the seal member shown in FIG. 5 will be explained based on FIG. 6. FIG. 6 is a partial front view of the seal lip portion shown in FIG. 5 when viewed in the axial direction from the bearing inner space side in an independent and natural state. Here, the natural state refers to a state in which no external force is acting on the seal member in its independent state, that is, a state in which the seal member is not deformed by external force (hereinafter, this state is simply referred to as "natural state"). (referred to as “state”).
 図6に示すように、シールリップ61は、自然状態においてシールリップ61の内径を規定する先端63を有する。図5、図6に示すように、突起62は、周方向と直交する向きに延びている。突起62は、シールリップ61の先端63まで及んでおり、シールしゅう動面2bとの間に径方向の締め代をもった範囲の全域に亘って形成されている。 As shown in FIG. 6, the seal lip 61 has a tip 63 that defines the inner diameter of the seal lip 61 in its natural state. As shown in FIGS. 5 and 6, the protrusion 62 extends in a direction perpendicular to the circumferential direction. The protrusion 62 extends to the tip 63 of the seal lip 61 and is formed over the entire range with a radial interference between the protrusion 62 and the seal sliding surface 2b.
 突起62は、周方向に一定の間隔dで並んでいる。シールリップ61を軸方向から見た外観で考えると、複数の突起62が、間隔dに対応の一定のピッチ角度θで周方向に配置された放射状となって現れている。なお、放射中心は、図外のシール部材6’の中心軸(軸受中心軸に一致)上にある。 The protrusions 62 are arranged at regular intervals d in the circumferential direction. When the appearance of the seal lip 61 is viewed from the axial direction, a plurality of protrusions 62 appear radially arranged in the circumferential direction at a constant pitch angle θ corresponding to the interval d. Note that the radiation center is located on the central axis (coinciding with the bearing central axis) of the seal member 6' (not shown).
 周方向に隣り合う突起62間の間隔dおよび突起62の周方向幅Wは、放射状に配置された各突起62がシールリップ61の先端63付近に存在していることと相俟って、シールリップ61が各突起62上でのみシールしゅう動面2bとしゅう動接触し得るものとなり、各突起62間に油通路Co(図5参照)が常に生じさせられる。 The distance d between the protrusions 62 adjacent to each other in the circumferential direction and the circumferential width W of the protrusions 62, together with the fact that the radially arranged protrusions 62 are located near the tip 63 of the seal lip 61, make the seal The lip 61 can come into sliding contact with the seal sliding surface 2b only on each projection 62, and an oil passage Co (see FIG. 5) is always created between each projection 62.
 突起62の高さhは、0.05mmに設定されていることが好ましい。この高さhは、設計上、シールしゅう動面2bとしゅう動接触し得る範囲内において最も高い位置での値である。この位置は、各突起62とシールしゅう動面2bとの間に設定された締め代が最大となるところでもある。軸受運転中の突起62の変形量は無視できるから、シールリップ61とシールしゅう動面2bとの間におけるシールしゅう動面2bとの直交方向の隙間(油通路Coを含む)は、シールしゅう動面2bとの直交方向に最も狭いところで突起62の高さhに相当の広さとなり、実質的に0.05mmを超えない。このため、粒径50μmを超える異物が外部の潤滑油に含まれていたとしても、その異物が油通路Coを通過することは略起こらない、と考えられる。その結果、軸受寿命のさらなる長寿命化が期待される。 It is preferable that the height h of the protrusion 62 is set to 0.05 mm. In terms of design, this height h is the value at the highest position within the range where it can come into sliding contact with the seal sliding surface 2b. This position is also where the interference set between each protrusion 62 and the seal sliding surface 2b is maximum. Since the amount of deformation of the protrusion 62 during bearing operation can be ignored, the gap between the seal lip 61 and the seal sliding surface 2b in the direction perpendicular to the seal sliding surface 2b (including the oil passage Co) is The width at the narrowest point in the direction orthogonal to the surface 2b is equivalent to the height h of the protrusion 62, and does not substantially exceed 0.05 mm. For this reason, even if foreign matter with a particle size exceeding 50 μm is contained in the external lubricating oil, it is considered that the foreign matter will almost never pass through the oil passage Co. As a result, further extension of bearing life is expected.
 突起62は、周方向幅Wの両端から周方向幅の中央に向かって次第にシールしゅう動面2bに接近するR形状(軸方向に見た場合、略かまぼこ形状)になっていることが好ましい。このR形状は、突起62の放射方向の全長に亘って与えられている。このため、突起62とシールしゅう動面2bとがしゅう動接触し得る領域は、突起62の周方向幅の中央を通る仮想アキシアル平面Pax上に線状で存在する。突起62のR形状の曲率中心は、仮想アキシアル平面Pax上にある。これにより、潤滑剤の存在下において、シールリップがシールしゅう動面に近付くと、くさび効果によって、瞬時に内輪のシールしゅう動面とシールリップとの間に油膜がより形成されやすい。 It is preferable that the protrusion 62 has an R shape (approximately semicylindrical shape when viewed in the axial direction) that gradually approaches the seal sliding surface 2b from both ends of the circumferential width W toward the center of the circumferential width. This rounded shape is provided over the entire length of the protrusion 62 in the radial direction. Therefore, a region where the protrusion 62 and the seal sliding surface 2b can come into sliding contact exists in a linear manner on the virtual axial plane Pax passing through the center of the circumferential width of the protrusion 62. The center of curvature of the R shape of the protrusion 62 is on the virtual axial plane Pax. As a result, when the seal lip approaches the seal sliding surface in the presence of lubricant, an oil film is more likely to be instantaneously formed between the seal sliding surface of the inner ring and the seal lip due to the wedge effect.
 なお、図4の深溝玉軸受11において、シール部材6’の形状は上述した形状に限定されない。 Note that in the deep groove ball bearing 11 of FIG. 4, the shape of the seal member 6' is not limited to the shape described above.
 図7を用いて電動車駆動システムの一例としてe-Axleの構造について説明する。e-Axleは、モータと、インバータと、減速機が一体化された駆動ユニットである。図7に示すように、電動車駆動システム8は、 モータ81と、モータ81の動力を第1軸(インプットシャフト)Sから駆動軸である第3軸Sへと減速しながら伝達する減速機82とを備えている。減速機82のハウジング83の内部には潤滑油が充填されている。電動車駆動システム8は、モータ81を制御するインバータも備えている(図示省略)。なお、第1軸Sは、モータ支持軸Sと連結される別部材の軸でもよいし、1本の軸で両方の軸を兼ねてもよい。 The structure of an e-Axle will be described as an example of an electric vehicle drive system using FIG. 7. The e-Axle is a drive unit that integrates a motor, an inverter, and a speed reducer. As shown in FIG. 7, the electric vehicle drive system 8 includes a motor 81 and a deceleration system that transmits the power of the motor 81 from a first shaft (input shaft) S1 to a third shaft S3 , which is a drive shaft, while reducing the speed. It is equipped with a machine 82. The inside of the housing 83 of the reduction gear 82 is filled with lubricating oil. The electric vehicle drive system 8 also includes an inverter that controls the motor 81 (not shown). Note that the first shaft S1 may be a shaft of a separate member connected to the motor support shaft Sm , or a single shaft may serve as both shafts.
 減速機82は、第1軸S、第2軸(カウンターシャフト)S、第3軸(アウトプットシャフト)S、インプットギヤG、第1カウンターギヤG、第2カウンターギヤG、駆動ギヤGを有している。第1軸SにはインプットギヤGが設けられている。第2軸Sには、第1カウンターギヤGおよび第2カウンターギヤGが設けられている。第3軸Sには、駆動ギヤGが設けられている。 The reducer 82 includes a first shaft S 1 , a second shaft (counter shaft) S 2 , a third shaft (output shaft) S 3 , an input gear G 0 , a first counter gear G 1 , a second counter gear G 2 , It has a drive gear G3 . An input gear G0 is provided on the first shaft S1 . The second shaft S2 is provided with a first counter gear G1 and a second counter gear G2 . A drive gear G3 is provided on the third shaft S3 .
 第1軸Sは、モータ81の動力が直接伝わり回転する。インプットギヤGは、第1カウンターギヤGと噛み合う。また、第2カウンターギヤGは、駆動ギヤGと噛み合う。第1カウンターギヤGの駆動力は、第2軸Sの第2カウンターギヤGと第3軸Sの駆動ギヤGの組み合わせにより減速(加速)されて、第3軸Sから出力される。 The power of the motor 81 is directly transmitted to the first shaft S1, and the first shaft S1 rotates. Input gear G0 meshes with first counter gear G1 . Further, the second counter gear G2 meshes with the drive gear G3 . The driving force of the first counter gear G1 is decelerated (accelerated) by a combination of the second counter gear G2 of the second shaft S2 and the drive gear G3 of the third shaft S3 , and is transferred from the third shaft S3. Output.
 電動車駆動システム8は、さらに、転がり軸受12、13、14、15、16、17、18、19を有している。転がり軸受12、13、14、15、16、17の少なくともいずれかに本発明の玉軸受を採用できる。転がり軸受18、19は、円すいころ軸受である。 The electric vehicle drive system 8 further includes rolling bearings 12, 13, 14, 15, 16, 17, 18, and 19. The ball bearing of the present invention can be employed as at least one of the rolling bearings 12, 13, 14, 15, 16, and 17. The rolling bearings 18 and 19 are tapered roller bearings.
 モータ支持軸Sの一方端および他方端は、それぞれ、転がり軸受12、13によって回転可能に軸支されている。第1軸Sの一方端であるモータ81の側の端部は転がり軸受14によって回転可能に軸支され、他方端は転がり軸受15によって回転可能に軸支されている。第2軸Sの第1カウンターギヤGの側の端部は転がり軸受16によって回転可能に軸支され、第2カウンターギヤGの側の端部は転がり軸受17によって回転可能に軸支されている。また、第3軸Sの一方端および他方端は、それぞれ、転がり軸受18、19によって回転可能に軸支されている。 One end and the other end of the motor support shaft S m are rotatably supported by rolling bearings 12 and 13, respectively. One end of the first shaft S 1 on the motor 81 side is rotatably supported by a rolling bearing 14 , and the other end is rotatably supported by a rolling bearing 15 . The end of the second shaft S2 on the side of the first counter gear G1 is rotatably supported by a rolling bearing 16, and the end of the second shaft S2 on the side of the second counter gear G2 is rotatably supported by a rolling bearing 17. has been done. Further, one end and the other end of the third shaft S3 are rotatably supported by rolling bearings 18 and 19, respectively.
 本発明の玉軸受は、e-Axle用の軸受として用いられる場合、最も大きな荷重がかかる最終軸である駆動軸(テーパ軸)以外の軸の軸受として用いることが好ましい。減速された第2軸Sも比較的大きな荷重がかかるため、本発明の玉軸受は、モータ支持軸Sや第1軸Sに適用されることが、特に好ましい。なお、比較的低荷重の場合には、第2軸Sへ適用することもできる。 When the ball bearing of the present invention is used as a bearing for an e-Axle, it is preferably used as a bearing for a shaft other than the drive shaft (tapered shaft), which is the final shaft to which the largest load is applied. Since the decelerated second shaft S2 is also subjected to a relatively large load, it is particularly preferable that the ball bearing of the present invention is applied to the motor support shaft Sm and the first shaft S1 . Note that in the case of a relatively low load, it can also be applied to the second axis S2 .
 減速機は一般的に、ハウジング内に潤滑油が満たされたオイルバス方式での潤滑が行われ、潤滑油中にはギヤの摩耗粉などの硬質異物が混入しやすい。モータや、減速機内の軸受としてシール部材が装着されていない軸受が用いられた場合、軸受内空間に硬質異物が容易に侵入する。その場合、軸受内空間に侵入した硬質異物を玉である鋼球が踏み、転走面に圧痕が付いて早期不具合に繋がるおそれがある。そのため、e-Axleの減速機内でシール部材が装着されていない軸受を使用した場合、軸受寿命は大幅に低下するおそれがある。 Reduction gears are generally lubricated using an oil bath method in which the housing is filled with lubricating oil, and hard foreign substances such as gear wear particles are likely to get mixed into the lubricating oil. When a bearing without a seal member is used as a bearing in a motor or a speed reducer, hard foreign matter easily enters the space inside the bearing. In that case, there is a risk that the steel balls will step on the hard foreign matter that has entered the bearing internal space, leaving impressions on the raceway surface and leading to early failures. Therefore, if a bearing without a seal member is used in the reduction gear of an e-Axle, the life of the bearing may be significantly reduced.
 本発明の玉軸受は、内輪および外輪の軸方向両端開口部に設けられるシール部材と、軸受内空間に供給または封入される潤滑剤とを有し、e-Axle用の軸受として用いられることが特に好ましい。これにより、潤滑油中に硬質異物が混入しにくくなり、軸受寿命の長期化に寄与する。また、e-Axleにおいては、過度に大きな荷重はかかりにくいため、軸受の玉の個数を従来よりも減らすことによる軸受剛性の低下は問題となりにくく、低トルク化の恩恵を最大限に受けることができる。なお、本発明の玉軸受は、潤滑油中にギヤの摩耗粉などの硬質異物が混入しにくいe-Axle用の軸受として用いられる場合、シール部材を有しない形態で用いることもできる。 The ball bearing of the present invention has a seal member provided at openings at both axial ends of an inner ring and an outer ring, and a lubricant supplied or sealed in the bearing inner space, and can be used as an e-Axle bearing. Particularly preferred. This makes it difficult for hard foreign objects to get mixed into the lubricating oil, contributing to longer bearing life. In addition, since it is difficult to apply excessively large loads to the e-Axle, a decrease in bearing rigidity due to a reduction in the number of balls in the bearing compared to the conventional one is less likely to be a problem, making it possible to maximize the benefits of lower torque. can. Note that when the ball bearing of the present invention is used as a bearing for an e-axle, in which hard foreign matter such as gear wear powder is difficult to mix into lubricating oil, it can also be used in a form without a seal member.
 図1~図7では、玉軸受として深溝玉軸受を示したが、これ以外の玉軸受として、例えば、アンギュラ玉軸受などにも適用できる。 Although deep groove ball bearings are shown as ball bearings in FIGS. 1 to 7, other ball bearings such as angular contact ball bearings can also be used.
 本発明の玉軸受は、低トルク性に優れるので、低燃費・低電費化の求められる種々の用途に好適に用いることができる。特に、低電費化が求められ、軸受にかかる荷重が比較的小さいe-Axle用の軸受として、好適に用いることができる。 Since the ball bearing of the present invention has excellent low torque properties, it can be suitably used in various applications requiring low fuel consumption and low electricity consumption. In particular, it can be suitably used as a bearing for an e-Axle, which requires low electricity consumption and requires a relatively small load on the bearing.
 1、1’、11 玉軸受(深溝玉軸受)
 12、13、14、15、16、17、18、19 転がり軸受
 2  内輪
 2a 内輪軌道溝
 2b シールしゅう動面
 3  外輪
 3a 内輪軌道溝
 4  玉
 5  保持器
 6、6’ シール部材
 61 シールリップ
 62 突起
 63 先端
 7  潤滑剤
 Co 油通路
 8  電動車駆動システム
 81 モータ
 82 減速機
 83 ハウジング
1, 1', 11 Ball bearing (deep groove ball bearing)
12, 13, 14, 15, 16, 17, 18, 19 Rolling bearing 2 Inner ring 2a Inner ring raceway groove 2b Seal sliding surface 3 Outer ring 3a Inner ring raceway groove 4 Ball 5 Cage 6, 6' Seal member 61 Seal lip 62 Projection 63 Tip 7 Lubricant Co Oil passage 8 Electric vehicle drive system 81 Motor 82 Reducer 83 Housing

Claims (9)

  1.  外周に内輪軌道溝を有する内輪と、内周に外輪軌道溝を有する外輪と、前記内輪軌道溝と前記外輪軌道溝との間に介在する玉と、前記玉を保持する保持器とを備える玉軸受であって、
     前記玉の個数Zが、下記式(1)の条件を満たすことを特徴とする玉軸受。
     Z≦((π×Dp)/2Da)・・・(1)
     Z:前記玉の個数(Zは3以上の整数)
     Dp:前記玉のピッチ径[単位:mm]
     Da:前記玉の直径[単位:mm]
    A ball comprising an inner ring having an inner ring raceway groove on the outer periphery, an outer ring having an outer ring raceway groove on the inner periphery, balls interposed between the inner ring raceway groove and the outer ring raceway groove, and a retainer that holds the balls. A bearing,
    A ball bearing characterized in that the number Z of the balls satisfies the condition of the following formula (1).
    Z≦((π×Dp)/2Da)...(1)
    Z: Number of balls (Z is an integer of 3 or more)
    Dp: pitch diameter of the ball [unit: mm]
    Da: diameter of the ball [unit: mm]
  2.  前記玉の個数Zが、下記式(2)の条件を満たすことを特徴とする請求項1記載の玉軸受。
     4≦Z≦((π×Dp)/2Da)・・・(2)
    The ball bearing according to claim 1, wherein the number Z of the balls satisfies the following formula (2).
    4≦Z≦((π×Dp)/2Da)...(2)
  3.  前記内輪軌道溝の溝曲率径Xi[単位:mm]、前記外輪軌道溝の溝曲率径Xo[単位:mm]とした場合、下記式(3)および式(4)の条件を満たすことを特徴とする請求項1記載の玉軸受。
     0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(3)
     0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(4)
    When the groove curvature diameter Xi [unit: mm] of the inner ring raceway groove and the groove curvature diameter Xo [unit: mm] of the outer ring raceway groove are set, the following conditions of formula (3) and formula (4) are satisfied. The ball bearing according to claim 1.
    0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(3)
    0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(4)
  4.  前記外輪軌道溝の溝曲率径Xoが前記内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であることを特徴とする請求項3記載の玉軸受。 The ball bearing according to claim 3, wherein the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
  5.  前記玉の個数Zが、下記式(2)の条件を満たし、かつ、前記内輪軌道溝の溝曲率径Xi[単位:mm]、前記外輪軌道溝の溝曲率径Xo[単位:mm]とした場合、下記式(3)および式(4)の条件を満たし、
     前記外輪軌道溝の溝曲率径Xoが前記内輪軌道溝の溝曲率径Xiの1.02倍~1.07倍であることを特徴とする請求項1記載の玉軸受。
     4≦Z≦((π×Dp)/2Da)・・・(2)
     0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z・・・(3)
     0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z・・・(4)
    The number Z of the balls satisfies the condition of the following formula (2), and the groove curvature diameter Xi [unit: mm] of the inner ring raceway groove is set as the groove curvature diameter Xo [unit: mm] of the outer ring raceway groove. In this case, the conditions of formula (3) and formula (4) below are satisfied,
    The ball bearing according to claim 1, wherein the groove curvature diameter Xo of the outer ring raceway groove is 1.02 to 1.07 times the groove curvature diameter Xi of the inner ring raceway groove.
    4≦Z≦((π×Dp)/2Da)...(2)
    0.515(π×Dp)/Z<Xi<0.54(π×Dp)/Z...(3)
    0.535(π×Dp)/Z<Xo<0.55(π×Dp)/Z...(4)
  6.  前記玉軸受は、前記内輪および外輪の軸方向両端開口部に設けられるシール部材と、軸受内空間に供給または封入される潤滑剤とを備えることを特徴とする請求項1記載の玉軸受。 The ball bearing according to claim 1, wherein the ball bearing includes a seal member provided at openings at both axial ends of the inner ring and the outer ring, and a lubricant supplied or sealed in the bearing internal space.
  7.  前記シール部材は、端部にシールリップを有し、
     前記内輪または前記外輪は、前記シールリップに対して周方向にしゅう動するシールしゅう動面を有し、
     前記シールリップは、前記軸受内空間および外部間に亘って連通する前記潤滑剤の通路を前記シールしゅう動面および前記シールリップ間に生じさせる突起を有し、
     前記突起は、前記シールリップおよび前記シールしゅう動面間を流体潤滑状態にするように形成されていることを特徴とする請求項6記載の玉軸受。
    The sealing member has a sealing lip at an end,
    The inner ring or the outer ring has a seal sliding surface that slides in a circumferential direction with respect to the seal lip,
    The seal lip has a protrusion that creates a passage for the lubricant between the seal sliding surface and the seal lip that communicates between the inner space of the bearing and the outside,
    7. The ball bearing according to claim 6, wherein the protrusion is formed so as to maintain fluid lubrication between the seal lip and the seal sliding surface.
  8.  モータと、該モータを制御するインバータと、該モータの回転が入力され、駆動軸へと伝達する減速機とが一体化された駆動システム用の軸受であることを特徴とする請求項1記載の玉軸受。 2. The bearing according to claim 1, wherein the bearing is for a drive system in which a motor, an inverter that controls the motor, and a reduction gear that inputs the rotation of the motor and transmits it to the drive shaft are integrated. ball bearings.
  9.  前記モータの回転軸および前記減速機の入力軸の少なくともいずれかを回転可能に支持する軸受であることを特徴とする請求項8記載の玉軸受。 The ball bearing according to claim 8, wherein the ball bearing rotatably supports at least one of the rotating shaft of the motor and the input shaft of the speed reducer.
PCT/JP2023/033002 2022-09-12 2023-09-11 Ball bearing WO2024058105A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022144894 2022-09-12
JP2022-144894 2022-09-12
JP2023081923A JP2024040109A (en) 2022-09-12 2023-05-17 ball bearing
JP2023-081923 2023-05-17

Publications (1)

Publication Number Publication Date
WO2024058105A1 true WO2024058105A1 (en) 2024-03-21

Family

ID=90274982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033002 WO2024058105A1 (en) 2022-09-12 2023-09-11 Ball bearing

Country Status (1)

Country Link
WO (1) WO2024058105A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238938A (en) * 1994-02-28 1995-09-12 Koyo Seiko Co Ltd Full type ball bearing
JP2000145794A (en) * 1998-11-06 2000-05-26 Mitsubishi Heavy Ind Ltd Ultra-high speed, high rigidity rolling bearing
JP2002339958A (en) * 2001-05-11 2002-11-27 Nsk Ltd Pulley rotation supporting device
JP2012163209A (en) * 2012-03-30 2012-08-30 Nsk Ltd Rolling bearing, and automobile transmission, motor and generator using the same
JP2013015180A (en) * 2011-07-04 2013-01-24 Nsk Ltd Single-row deep-groove type radial ball bearing
WO2014045707A1 (en) * 2012-09-21 2014-03-27 日立オートモティブシステムズ株式会社 Vehicular drive device
WO2014097927A1 (en) * 2012-12-21 2014-06-26 Ntn株式会社 In-wheel motor drive device
JP2017161069A (en) * 2016-03-01 2017-09-14 Ntn株式会社 Bearing with seal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238938A (en) * 1994-02-28 1995-09-12 Koyo Seiko Co Ltd Full type ball bearing
JP2000145794A (en) * 1998-11-06 2000-05-26 Mitsubishi Heavy Ind Ltd Ultra-high speed, high rigidity rolling bearing
JP2002339958A (en) * 2001-05-11 2002-11-27 Nsk Ltd Pulley rotation supporting device
JP2013015180A (en) * 2011-07-04 2013-01-24 Nsk Ltd Single-row deep-groove type radial ball bearing
JP2012163209A (en) * 2012-03-30 2012-08-30 Nsk Ltd Rolling bearing, and automobile transmission, motor and generator using the same
WO2014045707A1 (en) * 2012-09-21 2014-03-27 日立オートモティブシステムズ株式会社 Vehicular drive device
WO2014097927A1 (en) * 2012-12-21 2014-06-26 Ntn株式会社 In-wheel motor drive device
JP2017161069A (en) * 2016-03-01 2017-09-14 Ntn株式会社 Bearing with seal

Similar Documents

Publication Publication Date Title
JP6523994B2 (en) Sealed bearing
EP2447557B1 (en) Retainer made of synthetic resin for use in a deep groove ball bearing; deep groove ball bearing; and gear support device
US7540665B2 (en) Tapered roller bearing
CN107575469B (en) Tapered roller bearing
EP3511588B1 (en) Sealed bearing
WO2014119631A1 (en) Multipoint contact ball bearing
US9249833B2 (en) Tapered roller bearing and power transmission device
WO2024058105A1 (en) Ball bearing
JP2019074196A (en) Ball bearing with seal
JP2024040109A (en) ball bearing
JP2009275719A (en) Deep groove ball bearing
WO2023008313A1 (en) Ball bearing
JP2005172113A (en) Tapered roller bearing
WO2022179135A1 (en) Rotor assembly, compressor, and air conditioner
JP2005054909A (en) Sealed anti-friction bearing
JP2005003198A (en) Rolling bearing and transmission for hybrid car or fuel cell car using the same
EP2017487A2 (en) Tapered roller bearing with lubricant grooves on the cage
JP2005188679A (en) Ball bearing
CN207145596U (en) A kind of new planetary reducer
WO2018159809A1 (en) Oil seal and seal attached bearing
JPH1082424A (en) Holder for rolling bearing
JP2009041589A (en) Bearing device and differential
JP2006071076A (en) Mounting structure of thrust needle roller bearing
CN112728017B (en) Speed reducer
WO2023042815A1 (en) Bearing with seal