WO2023008313A1 - Ball bearing - Google Patents

Ball bearing Download PDF

Info

Publication number
WO2023008313A1
WO2023008313A1 PCT/JP2022/028375 JP2022028375W WO2023008313A1 WO 2023008313 A1 WO2023008313 A1 WO 2023008313A1 JP 2022028375 W JP2022028375 W JP 2022028375W WO 2023008313 A1 WO2023008313 A1 WO 2023008313A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ball
ball bearing
lubricating oil
balls
Prior art date
Application number
PCT/JP2022/028375
Other languages
French (fr)
Japanese (ja)
Inventor
武仁 櫻井
翔平 深間
悠介 鈴木
吉稀 竹田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280052208.0A priority Critical patent/CN117751250A/en
Priority to KR1020247005425A priority patent/KR20240038746A/en
Publication of WO2023008313A1 publication Critical patent/WO2023008313A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/41Ball cages comb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/44Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip

Definitions

  • This invention relates to ball bearings.
  • Ball bearings which are superior in low-torque properties, are employed as bearings for supporting the rotating shafts of the drive motors or transmissions.
  • the balls and the inner and outer races, which are the constituent elements of the ball bearing are generally made of steel, and are subjected to various heat treatments and surface modification treatments for damage prevention as necessary.
  • caps such as seals and shields are applied to the ball bearings. Installation of components is being carried out.
  • a typical contact seal has a ring-shaped seal lip made of an elastic material such as rubber.
  • a mating part such as a bearing ring or a slinger that rotates relative to the seal in the circumferential direction as the bearing rotates is formed with a seal sliding surface that slides in the circumferential direction on the seal lip.
  • the seal lip and the seal sliding surface are in sliding contact all around, microscopically accompanied by a solid contact area.
  • the drag resistance (seal torque) of the seal lip contributes to the temperature rise of the bearing torque and ball bearings.
  • a non-contact seal or shield is used as the cap member, it is possible to eliminate the seal torque, but the size of the non-contact gap between the seal member and the mating part must be adjusted to prevent the intrusion of foreign matter of a specified particle size. Error management is difficult.
  • the sealed ball bearing disclosed in Patent Document 1 has a plurality of protrusions in which the seal lips are arranged in the circumferential direction, and the plurality of protrusions are located between adjacent protrusions in the circumferential direction.
  • the seal lip and the seal sliding surface are lubricated by a lubricating oil film that is dragged through the gap between the protrusion and the seal sliding surface as the bearing rotates. It is designed to
  • the sealed ball bearing disclosed in Patent Document 1 can cope with high-speed operation while preventing the intrusion of foreign matter of a predetermined particle size that may cause early damage to the bearing. Torque can be significantly reduced.
  • the ball bearing is provided with a cap member such as a seal or shield that suppresses the inflow of lubricating oil into the bearing, it is effective in reducing stirring resistance. concerns will increase.
  • the problem to be solved by the present invention is to improve the low torque property of a ball bearing that supports a rotating shaft included in a vehicle driving motor or a transmission connected to a vehicle driving motor and prevent damage to the ball bearing. It is to make prevention compatible.
  • the present invention provides a ball bearing for supporting a rotating shaft included in a vehicle driving motor or a transmission connected to the vehicle driving motor, and includes an inner bearing ring and an outer bearing ring. a bearing ring, a plurality of balls interposed between the inner and outer bearing rings, a retainer that holds the plurality of balls, and a cap member that suppresses the inflow of lubricating oil from the outside of the bearing into the inside of the bearing;
  • the ball is made of a material different from steel, and the internal bearing clearance during operation is set to a value greater than 0 ⁇ m at 80°C or higher, and the kinematic viscosity of the lubricating oil supplied to the bearing at 100°C is 7. 0 mm 2 /s or less was adopted.
  • the vehicle drive motor in the present invention refers to an electrical device that converts electrical energy and outputs rotation that serves as a vehicle drive source, and an electrical device that converts input rotation into electrical energy during regenerative braking of the vehicle. It means what corresponds to at least one.
  • the transmission in the present invention means a device that converts the input rotational speed and transmits it to the output side, and a continuously variable transmission that can continuously change the speed conversion ratio (reduction ratio, gear ratio),
  • the concept includes a fixed-ratio transmission in which the speed conversion ratio is fixed, and the fixed-ratio transmission includes what is called a speed reducer or a speed increaser that has only one type of speed conversion ratio. included.
  • kinematic viscosity in this invention is the value in the measurement in accordance with the "kinematic viscosity test method" specified in JIS K 2283: 2000 "Crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method”. means.
  • the ball is made of ceramics. Since the ceramic ball is an insulator, electrolytic corrosion does not occur in the elastic contact area. Furthermore, the use of ceramic balls reduces the loss (elastic hysteresis, differential slip) in the elastic contact area between the ball and raceway compared to steel balls. can be reduced.
  • the cross-sectional shape of the raceway grooves of the inner and outer races is arcuate with a diameter not greater than 1.1 times the diameter of the ball.
  • Such an arc shape is suitable for reducing the bearing torque while suppressing the surface pressure in the elastic contact area between the ball and the bearing ring.
  • the cap member is attached to one of the inner and outer races, and the cap member is a seal that slides in the circumferential direction on a seal sliding surface provided on the other of the inner and outer races.
  • the sealing lip has a plurality of protrusions arranged in the circumferential direction, and the plurality of protrusions communicate between the protrusions adjacent in the circumferential direction to the inside and the outside of the bearing. A gap is formed, and the seal lip and the seal sliding surface are brought into a fluid lubrication state by an oil film of lubricating oil that is dragged from the gap between the protrusion and the seal sliding surface as the bearing rotates.
  • the retainer may be a crown-shaped retainer made of synthetic resin.
  • Such a retainer is lighter and more self-lubricating than a corrugated retainer made of steel plate, and is therefore suitable for reducing bearing torque.
  • synthetic resin is a concept that includes fiber reinforced resin.
  • the synthetic resin comprises a fiber-reinforced polyamide resin or a fiber-reinforced polyphenylene sulfide resin.
  • the crown retainer has good deformation resistance against centrifugal force, and is suitable for high-speed rotation.
  • grease is enclosed as an initial lubricant inside the bearing, and the amount of the grease enclosed is preferably 5 to 20% by volume of the total space volume of the bearing. By doing so, it is possible to suppress the agitation resistance of the grease while suppressing insufficient lubrication in the initial stage of operation of the ball bearing.
  • At least one of nitrile rubber, acrylic rubber, fluororubber, cold-rolled steel plate, and stainless steel plate may be used as the material of the cap member.
  • the cap member can be manufactured from a material commonly used as a material for seals and shields.
  • the balls are preferably made of nitride ceramics.
  • Nitride-based ceramics are suitable because they are generally excellent in mechanical properties such as light weight, high strength, and high toughness.
  • FIGS. 1 to 6 of the accompanying drawings A sealed bearing according to a first embodiment as an example of the present invention will be described with reference to FIGS. 1 to 6 of the accompanying drawings.
  • This ball bearing 1 shown in FIG. a retainer 5 for holding the plurality of balls 4, and cap members 6 attached to both sides of one of the inner and outer bearing rings 3. As shown in FIG.
  • This ball bearing 1 is a double-sealed deep groove ball bearing.
  • the direction along the bearing center axis (not shown, hereinafter the same) of the ball bearing 1 will be referred to as the "axial direction”.
  • a direction orthogonal to the axial direction is called a “radial direction”.
  • the direction along the circumference around the center axis of the bearing is referred to as the "circumferential direction”.
  • the bearing center axis is the center axis of the inner bearing ring 2 which is the rotating ring.
  • FIG. 1 shows a cross section of an imaginary plane containing the bearing central axis.
  • the axial direction corresponds to the horizontal direction in FIG. 1
  • the radial direction corresponds to the vertical direction in FIGS.
  • the inner bearing ring 2 is made of a steel annular member having a raceway groove 2a that contacts the balls 4 on the outer peripheral side.
  • the inner bearing ring 2 is fitted to the rotating shaft S at its inner circumference.
  • the outer bearing ring 3 consists of a steel annular member having a raceway groove 3a in contact with the balls on the inner peripheral side.
  • the outer bearing ring 3 is attached to a member such as a housing, a gear, or the like that bears the load from the rotating shaft.
  • the rotating shaft S is included in a vehicle driving motor or a transmission connected to the vehicle driving motor. They are the input shaft for input, the output shaft for rotational output, and the intermediate transmission shaft.
  • a vehicle driving motor 20, a transmission 30 connected to the vehicle driving motor 20 , and rotation shafts S20, S31 , S32 included in the vehicle driving motor 20 or the transmission 30 are supported.
  • An example of a rotation transmission device including a ball bearing 1 is shown.
  • the illustrated rotation transmission device is incorporated in a vehicle drive system.
  • the transmission 30 includes a plurality of rotating shafts S 31 to S 33 , gears G1 to G3 provided on each of these rotating shafts S 31 to S 33 , and a plurality of ball bearings 1 supporting the rotating shafts S 31 to S 32 .
  • the rotating shaft S31 and the rotating shaft S20 of the vehicle drive motor 20 rotate together.
  • the rotating shaft S33 is supported by a plurality of tapered roller bearings.
  • the transmission 30 serves as a gear reducer that reduces the rotation input from the rotation shaft S20 to the rotation shaft S31 and outputs the rotation from the rotation shaft S33 .
  • the transmission 30 serves as a gear speed increaser that speeds up the rotation input to the rotating shaft S33 from the traveling wheel side and outputs it from the rotating shaft S31 .
  • the bearing internal clearance during operation of the ball bearing 1 shown in FIG. 2 is set to a value greater than 0 ⁇ m at 80° C. or higher.
  • the bearing internal clearance refers to the amount of movement when one of the inner and outer bearing rings is fixed and the other is moved. When the other is moved in the radial direction, it is called the radial internal clearance, and when it is moved in the axial direction, it is called the axial internal clearance.
  • the temperature of all the ball bearings 1 is 80° C. or higher, both the radial internal clearance and the axial internal clearance of the ball bearing 1 continue to exceed 0 ⁇ m.
  • the ball 4 shown in FIG. 1 consists of a spherical rolling element that revolves while rotating between the inner and outer raceway grooves 2a and 3a.
  • the ball 4 is made of a material different from steel.
  • Nitride-based ceramics Si 3 N 4
  • each of the inner and outer raceway grooves 2a, 3a corresponds to the generatrix shape of each of the raceway grooves 2a, 3a on the imaginary plane shown in FIG.
  • the cross-sectional shape of the raceway groove 2a is arcuate with a diameter not greater than 1.1 times the diameter of the ball 4 .
  • the cross-sectional shape of the raceway groove 3a is also arcuate with a diameter not greater than 1.1 times the diameter of the ball 4 .
  • the retainer 5 consists of an annular bearing component that keeps a plurality of balls 4 interposed between the inner and outer raceway grooves 2a, 3a at a predetermined circumferential interval.
  • the cage 5 in the illustrated example is a corrugated cage formed by coupling a pair of steel plate corrugated press parts.
  • the cap member 6 separates the outside of the ball bearing 1 and the inside 7 of the bearing.
  • the bearing interior 7 is an annular space formed over the entire circumference between the inner and outer races 2 and 3 .
  • Lubricating oil (not shown) is supplied to the ball bearing 1 from the outside of the bearing.
  • the lubricating method include a splashing method in which lubricating oil is applied to the ball bearing 1 and an oil bath method in which the lower portion of the ball bearing 1 is immersed in lubricating oil.
  • Grease G (indicated by a dot pattern in FIG. 1) is enclosed in the bearing interior 7 as an initial lubricant.
  • the cap member 6 prevents foreign matter from entering the bearing interior 7 from the outside of the bearing, lubricating oil supplied to the ball bearing 1 from the outside of the bearing flowing into the bearing interior 7, and grease G from leaking to the outside of the bearing. Suppress.
  • the cap member 6 does not liquid-tightly seal the bearing interior 7 from the bearing exterior.
  • a seal groove 3b for holding the cap member 6 is formed in one of the inner and outer races 3.
  • the cap member 6 is attached to the bearing ring 3 by press-fitting the peripheral portion on the bearing ring 3 side into the seal groove 3b.
  • the illustrated cap member 6 has a metal core 8 made of a metal plate and a seal lip 9 made of an elastic material.
  • the cored bar 8 is made of a pressed part.
  • the elastic material include a vulcanized rubber material, an elastomer equivalent to a rubber material, and the like.
  • rubber materials include nitrile rubber (NBR), acrylic rubber (ACM), and fluororubber (FKM).
  • NBR nitrile rubber
  • ACM acrylic rubber
  • FKM fluororubber
  • a cold-rolled steel plate and a stainless steel plate are mentioned, for example.
  • a seal sliding surface 2 b that slides on the seal lip 9 in the circumferential direction is formed on the inner and outer bearing rings 2 opposite to the inner and outer bearing rings 3 .
  • the seal sliding surface 2b has a cylindrical surface along the circumferential direction.
  • the seal lip 9 has a plurality of protrusions 9a arranged in the circumferential direction. These plurality of protrusions 9a create gaps 10 between adjacent protrusions 9a in the circumferential direction that communicate with the inside 7 of the bearing and the outside.
  • the seal lip 9 and the seal sliding surface 2b are provided so as to be fluidly lubricated by an oil film of lubricating oil (indicated by dots in FIG. 3) drawn between the seal lip 9 and the seal sliding surface 2b.
  • the cap member 6 allows lubricating oil to flow between the inside 7 of the bearing and the outside through a gap 10 that can prevent foreign matter of a predetermined particle size from entering. Therefore, a thick oil film is formed due to the wedge effect when lubricating oil is dragged between the protrusion 9a and the seal sliding surface 2b as the bearing rotates.
  • the peripheral speed of the relative rotation between the seal lip 9 and the seal sliding surface 2b (the direction of the arrow A in FIG. 3 is assumed) reaches a predetermined value, each projection 9a and the seal sliding surface 2b form an oil film.
  • the seal lip 9 and the seal sliding surface 2b are completely separated to form a fluid lubricating state, and this fluid lubricating state continues even at a higher peripheral speed. For this reason, the seal torque in the ball bearing 1 is reduced to the same level as when a non-contact seal is employed at a predetermined circumferential speed or higher, for example, 0.2 m/s or higher.
  • the protrusions 9a may be arranged at uniform intervals over the entire circumferential direction.
  • a groove extending in the circumferential direction may be formed in at least one portion of the protrusion 9a.
  • the projecting portion 9a may be shaped to form a wedge-shaped gap with the seal sliding surface 2b, which becomes smaller on the projecting portion 9a side.
  • the protrusion 9a may extend in a direction perpendicular to the circumferential direction, and may have an R shape that gradually approaches the seal sliding surface 2b toward the center of the width of the protrusion 9a in the circumferential direction.
  • the height and pitch of the protrusions 9a may be set so as to have the effect of preventing the entry of foreign matter having a particle size exceeding 0.05 mm, which may cause early damage to the ball bearing 1.
  • the height of the protrusions 9a may be set to zero. It may be set to 0.05 mm or more, or may be set to 0.05 mm or less.
  • the lubricating oil supplied to the inside of the bearing 7 has a kinematic viscosity of 7.0 mm 2 /s or less at 100°C.
  • the amount of grease G enclosed is set to 5 to 20% by volume of the total space volume of the bearing.
  • the total space volume of the bearing means that the bearing interior 7 (sealed space) surrounded by the cap members 6 provided at both axial ends of the inner and outer bearing rings 2 and 3, respectively, includes the balls 4 and the cage 5. is the space volume in which the ball bearing 1 is stopped.
  • the ball bearing 1 is as described above, and the bearing torque can be reduced by making the balls 4 made of nitride ceramics (Si 3 N 4 ). That is, the density of nitride ceramics (Si 3 N 4 ) is 3.304 g/cm 3 while the density of bearing steel (SUJ2) is 7.8 g/cm 3 .
  • the longitudinal elastic modulus of the nitride ceramics is 315 GPa, while the longitudinal elastic modulus of the bearing steel is 210 GPa.
  • the Poisson's ratio of the nitride ceramics is 0.25, while the Poisson's ratio of the bearing steel is 0.3.
  • the thermal expansion coefficient of the nitride ceramics is 3.2 ( ⁇ 10 ⁇ 6 /° C.), while the thermal expansion coefficient of the bearing steel is 12.5 ( ⁇ 10 ⁇ 6 /° C.). is.
  • the thermal conductivity of the nitride ceramics is 0.07 Cal/cm ⁇ s ⁇ °C, while the thermal conductivity of the bearing steel is 0.1 to 0.12 Cal/cm ⁇ s ⁇ °C. is.
  • ceramic balls generally have a larger longitudinal elastic modulus and higher rigidity than steel balls. Elastic hysteresis and differential slip are reduced, resulting in reduced bearing torque.
  • the ceramic ball 4 shown in FIG. 1 does not conduct electricity as compared to the steel ball. Therefore, electrolytic corrosion of the ball bearing 1 can also be prevented.
  • the ceramic balls 4 and the steel bearing rings 2 and 3 are made of different materials, so they do not weld. Therefore, the seizure resistance in the elastic contact area between the ball 4 and the bearing rings 2, 3 is superior to steel balls.
  • the ceramic ball 4 has higher rigidity than the steel ball.
  • the cap member 6 by providing the cap member 6, the amount of lubricating oil flowing into the bearing interior 7 is reduced, the stirring resistance is also reduced, and damage to the bearing due to foreign matter can be prevented and the bearing torque can be reduced.
  • the bearing torque was clearly smaller in the ball bearing provided with the non-contact seal as the cap member than in the open bearing. This result is considered to be because the amount of lubricating oil flowing into the bearing is suppressed by the cap member, and torque loss due to agitation of the lubricating oil inside the bearing works advantageously.
  • the cap member 6 of the ball bearing 1 shown in FIG. 1 exhibits low torque performance comparable to that of non-contact type seals and shields, so it prevents the entry of foreign matter with a predetermined particle diameter that causes early damage. , it is suitable for suppressing the inflow of lubricating oil.
  • Table 1 summarizes the advantages and disadvantages of open bearings with steel balls, bearings with contact seals with steel balls, and ball bearing 1 shown in FIG.
  • a lubricating oil having a kinematic viscosity of 7.0 mm 2 /s or less at 100° C. is suitable for suppressing the shear resistance of the lubricating oil and reducing the bearing torque.
  • the shear resistance is approximately determined by the following formula 1.
  • Formula 1: F ⁇ ⁇ (u / h) ⁇ s
  • F shear resistance
  • oil viscosity coefficient
  • u fluid velocity
  • h oil film thickness
  • s sliding area.
  • the cross-sectional shape of the inner and outer raceway grooves 2a, 3a is circular with a diameter not more than 1.1 times the diameter of the ball 4, the elastic contact area between the ball 4 and the bearing rings 2, 3 It is possible to reduce the bearing torque while suppressing the surface pressure of the bearing.
  • the bearing torque was calculated with various groove diameters of the inner and outer raceway grooves.
  • the calculation result is shown in FIG. This calculation was performed for the model number of the ball bearing: 6006.
  • the calculation conditions were bearing rotation speed: 5000 min ⁇ 1 , radial load Fr: 730 N, axial load Fa: 0 N, lubricating oil: ISO viscosity VG10 (JIS K2001:1993).
  • the diameter of the ball is constant.
  • the load applied to the bearings in vehicle transmissions is about 35% of the dynamic load rating for both radial load and axial load.
  • the groove diameter of the inner and outer raceway grooves exceeds 1.1 times the ball diameter, the surface pressure in the elastic contact area will exceed 4200 MPa, which is the standard for static load rating.
  • the radial load is about 50% of the rated dynamic load, and the axial load is about 30%.
  • the groove diameter of the inner and outer raceway grooves exceeds 1.08 times the ball diameter, the surface pressure in the elastic contact area will exceed 4200 MPa, which is the standard for static load rating.
  • the ball bearing 1 shown in FIGS. 1 to 3 supports the rotation shafts S 20 , S 31 , S 32 included in the vehicle drive motor 20 or the transmission 30 connected to the vehicle drive motor 20.
  • the balls 4 made of a material different from steel, which is the material of the inner and outer bearing rings 2, 3
  • oil film breakage occurs in the elastic contact area between the balls 4 and the bearing rings 2, 3 during high-speed operation. Even if seizure occurs, the ball 4 and bearing rings 2 and 3, which are made of different materials, will not be welded together, improving seizure resistance.
  • the ball bearing 1 is set to have a bearing internal clearance larger than 0 ⁇ m during operation at 80° C. or higher, early damage due to negative operating clearance during high-speed rotation can be avoided.
  • the ball bearing 1 can prevent damage to the balls 4 and the bearing rings 2 and 3 even if a low-viscosity lubricating oil is used or the lubricating oil is diluted.
  • the ball bearing 1 is supplied with a low-viscosity lubricating oil having a kinematic viscosity of 7.0 mm 2 /s or less at 100° C. under the condition that the inflow of the lubricating oil is suppressed by the cap member 6.
  • the bearing torque can be reduced by satisfactorily reducing the resistance. In this way, the ball bearing 1 that supports the rotating shaft S 20 of the vehicle driving motor 20 and the like can both improve the low torque property and prevent damage.
  • the balls 4 since the balls 4 are made of ceramics, the balls 4 become insulators, and electrolytic corrosion does not occur in the elastic contact areas between the balls 4 and the bearing rings 2 and 3. Furthermore, when the ball 4 made of ceramics is used, the loss (elastic hysteresis, differential slip) in the elastic contact area between the ball 4 and the bearing rings 2, 3 is reduced compared to when the ball made of steel is used. Also from this, the ball bearing 1 can reduce the bearing torque.
  • the cross-sectional shape of the raceway grooves 2a, 3a of the inner and outer bearing rings 2, 3, respectively, is arcuate with a diameter not greater than 1.1 times the diameter of the ball 4. It is possible to reduce the bearing torque while suppressing the surface pressure in the elastic contact areas between the balls 4 and the bearing rings 2 and 3 to avoid adverse effects on the life of the bearing.
  • the ball bearing 1 is provided with the cap member 6 that realizes fluid lubrication of the seal lip 9 with respect to the seal sliding surface 2b. While the inflow is suppressed by the cap member 6, high-speed operation and low seal torque comparable to those of the non-contact seal can be realized.
  • the ball bearing 1 is filled with grease G as an initial lubricant in the bearing interior 7, and the amount of the grease G filled is 5 to 20% by volume of the total space volume of the bearing. It is possible to suppress the stirring resistance of the grease G while suppressing insufficient lubrication of the grease G.
  • At least one of nitrile rubber, acrylic rubber, fluororubber, cold-rolled steel plate, and stainless steel plate is used as the material of the cap member 6, so that the ball bearing 1 is generally used as a material for seals and shields.
  • the cap member 6 can be manufactured from a material suitable for the purpose.
  • the ball 4 is made of nitride-based ceramics, the ball 4 has comprehensively excellent mechanical properties such as light weight, high strength, and high toughness, so it is suitable for high-speed rotation.
  • the retainer 5 is a corrugated retainer, but the retainer may be of another type.
  • FIG. 7 shows a ball bearing 40 according to the second embodiment. It should be noted that only the points of difference from the first embodiment will be described here.
  • the inner and outer bearing rings 41 and the inner and outer bearing rings 42 of the ball bearing 40 are shielded.
  • the retainer 43 is a crown-shaped retainer made of synthetic resin.
  • the synthetic resin consists of fiber-reinforced polyamide resin or fiber-reinforced polyphenylene sulfide resin.
  • a shield groove 41a is formed in one bearing ring 41, and a cap member 44 is attached thereto.
  • a full circumference groove 42 a is formed in the other inner and outer races 42 to form a labyrinth clearance with the cap member 44 .
  • the cap member 44 is a non-contact shield made of cold-rolled steel plate or stainless steel plate.
  • Lubricating oil is splashed onto the ball bearing 40 from the right side of the drawing. This inflow of lubricating oil can be effectively suppressed only by providing a cap member 44 on the right side of the ball bearing 40 in the drawing.
  • the ball bearing 40 is provided with a crown-shaped retainer 43 made of synthetic resin, the retainer 43 is lighter and more self-lubricating than a corrugated retainer made of steel plate, which is suitable for reducing bearing torque. is.
  • the retainer 43 Since the synthetic resin of the ball bearing 40 is fiber-reinforced polyamide resin or fiber-reinforced polyphenylene sulfide resin, the retainer 43 has excellent deformation resistance against centrifugal force and is suitable for high-speed rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Sealing Of Bearings (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

A ball bearing (1) comprises inner and outer bearing rings (2, 3), a plurality of ceramic balls (4) which are interposed therebetween, and a cap member (6) which suppresses inflow of lubricating oil from the outside of the bearing to the inside (7) of the bearing. A gap in the inside of the bearing during operation of the ball bearing (1) is set to a value greater than 0 μm at 80°C and higher. The kinetic viscosity at 100°C of the lubricating oil supplied to the inside (7) of the bearing is not more than 7.0 mm2/s. Thus, it is possible to both improve low torque properties of and prevent damage to a ball bearing which supports a rotation shaft included in a vehicle driving motor or in a transmission that is connected to a vehicle driving motor.

Description

玉軸受ball bearing
 この発明は、玉軸受に関する。 This invention relates to ball bearings.
 一般に、電気自動車(EV)、電動ハイブリッド車(HV)等の自動車、産機用車両は、駆動用モータと変速機とを含む駆動系を備えている。その駆動用モータ又は変速機の回転軸を支持する軸受として、低トルク性に優れた玉軸受が採用されている。その玉軸受の構成要素である玉及び内外の軌道輪は、一般に鋼製であり、必要に応じて損傷防止のための各種熱処理や表面改質処理が行われている。また、ギア摩耗粉等の異物が軸受内部へ侵入して軸受が早期破損することを防ぐため、或いは、初期潤滑剤として軸受内部にグリースを封入するため、その玉軸受にシール、シールド等のキャップ部材を取り付けることが行われている。 In general, automobiles such as electric vehicles (EV) and electric hybrid vehicles (HV) and vehicles for industrial machinery are equipped with a drive system including a drive motor and a transmission. Ball bearings, which are superior in low-torque properties, are employed as bearings for supporting the rotating shafts of the drive motors or transmissions. The balls and the inner and outer races, which are the constituent elements of the ball bearing, are generally made of steel, and are subjected to various heat treatments and surface modification treatments for damage prevention as necessary. In addition, in order to prevent early damage to the bearing caused by foreign matter such as gear wear powder entering the bearing, or to enclose grease inside the bearing as an initial lubricant, caps such as seals and shields are applied to the ball bearings. Installation of components is being carried out.
 一般的な接触シールは、ゴム等の弾性材で環状に形成されたシールリップを有する。軸受回転に伴ってシールに対して周方向に相対回転する軌道輪、スリンガ等の相手部品には、シールリップに対して周方向にしゅう動するシールしゅう動面が形成されている。シールリップとシールしゅう動面が全周で滑り接触し、微視的には固体接触領域を伴っている。シールリップの引き摺り抵抗(シールトルク)は、軸受トルク及び玉軸受の温度上昇の一因となる。また、軸受内部が外部に対してシールで閉塞されるので、軸受内部と外部間の圧力差によってシールリップがシールしゅう動面に押し付けられる吸着作用が生じてシールトルクが増大することがある。これらのことから、一般的な接触シールでは、玉軸受の高速運転に限界がある。 A typical contact seal has a ring-shaped seal lip made of an elastic material such as rubber. A mating part such as a bearing ring or a slinger that rotates relative to the seal in the circumferential direction as the bearing rotates is formed with a seal sliding surface that slides in the circumferential direction on the seal lip. The seal lip and the seal sliding surface are in sliding contact all around, microscopically accompanied by a solid contact area. The drag resistance (seal torque) of the seal lip contributes to the temperature rise of the bearing torque and ball bearings. In addition, since the inside of the bearing is closed off from the outside by the seal, the pressure difference between the inside and the outside of the bearing causes the seal lip to press against the seal sliding surface, causing an adsorption effect, which may increase the seal torque. For these reasons, general contact seals have limitations in high-speed operation of ball bearings.
 一方、キャップ部材として非接触シールやシールドを採用する場合、シールトルクを無くすことは可能だが、シール部材及び相手部品間の非接触隙間の大きさについて所定粒径の異物侵入を防止できるような各種誤差の管理が難しい。 On the other hand, if a non-contact seal or shield is used as the cap member, it is possible to eliminate the seal torque, but the size of the non-contact gap between the seal member and the mating part must be adjusted to prevent the intrusion of foreign matter of a specified particle size. Error management is difficult.
 これに対し、特許文献1に開示されたシール付玉軸受は、シールリップが周方向に並んだ複数の突部を有し、これら複数の突部が、周方向に隣り合う突部同士の間を通じて軸受内部と外部に連通する隙間を生じさせ、かつ軸受回転に伴って隙間から突部とシールしゅう動面間に引き摺り込まれる潤滑油の油膜によってシールリップ及びシールしゅう動面間を流体潤滑状態にするように設けられている。特許文献1のシール付玉軸受は、軸受の早期破損を招くような所定粒径の異物侵入を防ぎつつ高速運転に対応可能でありながら、シールリップとシールしゅう動面間を流体潤滑状態としてシールトルクを著しく低減することができる。 On the other hand, the sealed ball bearing disclosed in Patent Document 1 has a plurality of protrusions in which the seal lips are arranged in the circumferential direction, and the plurality of protrusions are located between adjacent protrusions in the circumferential direction. The seal lip and the seal sliding surface are lubricated by a lubricating oil film that is dragged through the gap between the protrusion and the seal sliding surface as the bearing rotates. It is designed to The sealed ball bearing disclosed in Patent Document 1 can cope with high-speed operation while preventing the intrusion of foreign matter of a predetermined particle size that may cause early damage to the bearing. Torque can be significantly reduced.
国際公開第2016/143786号WO2016/143786
 しかしながら、COの排出抑制要求は今後も厳しくなり、車両の電動駆動化が一層進むことは勿論、その省エネ運転性能を向上させることが指向されている。このため、駆動用モータや変速機においては、トルク損失を抑えるために低粘度の潤滑油を採用する傾向がある。近年では、40℃時の動粘度が27mm/s以下で、100℃時の動粘度が7.0mm/s以下である潤滑油を採用されることも増えている。このような低粘度の潤滑油を駆動用モータ、変速機に備わる玉軸受に供給すると、軸受内部での攪拌抵抗の低減に有効である一方、高速回転時、玉と軌道輪の弾性接触域において油膜切れが生じて焼付く懸念が高まる。 However, the demand for reducing CO 2 emissions will continue to increase in the future, and there is a need to improve the energy-saving driving performance of vehicles, as well as to further advance the use of electric vehicles. For this reason, drive motors and transmissions tend to employ low-viscosity lubricating oil in order to suppress torque loss. In recent years, the use of lubricating oils with a kinematic viscosity of 27 mm 2 /s or less at 40° C. and 7.0 mm 2 /s or less at 100° C. is increasing. Supplying such low-viscosity lubricating oil to ball bearings in drive motors and transmissions is effective in reducing agitation resistance inside the bearings. There is a growing concern that the oil film will run out and seizure will occur.
 また、軸受内部への潤滑油の流入を抑制するシール、シールド等のキャップ部材を玉軸受に備えると、攪拌抵抗の低減に有効である一方、近年の低粘度潤滑油の場合、前述の焼付きの懸念がより高まることになる。 In addition, if the ball bearing is provided with a cap member such as a seal or shield that suppresses the inflow of lubricating oil into the bearing, it is effective in reducing stirring resistance. concerns will increase.
 また、駆動用モータや、これに接続された変速機に玉軸受を組み込む場合、その玉軸受が介在する軸とハウジング間に電位差が生じ、鋼製の玉と軌道輪の弾性接触域において電食が起こるような使用環境となる可能性もある。 Also, when a ball bearing is incorporated into a drive motor or a transmission connected thereto, a potential difference is generated between the shaft and the housing where the ball bearing intervenes, causing electrolytic corrosion in the elastic contact area between the steel ball and bearing ring. There is also a possibility that the usage environment will be such that
 上述の背景に鑑み、この発明が解決しようとする課題は、車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれた回転軸を支持する玉軸受の低トルク性の向上と損傷防止を両立させることにある。 In view of the background described above, the problem to be solved by the present invention is to improve the low torque property of a ball bearing that supports a rotating shaft included in a vehicle driving motor or a transmission connected to a vehicle driving motor and prevent damage to the ball bearing. It is to make prevention compatible.
 上記の課題を達成するため、この発明は、車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれた回転軸を支持する玉軸受において、内方の軌道輪と、外方の軌道輪と、これら内外の軌道輪間に介在する複数の玉と、これら複数の玉を保持する保持器と、軸受外部から軸受内部への潤滑油の流入を抑制するキャップ部材とを備え、前記玉は、鋼と異なる材質からなり、運転時の軸受内部すきまは、80℃以上で0μmよりも大きい値に設定されており、軸受内部に供給される潤滑油の100℃時の動粘度が7.0mm/s以下である構成を採用した。 In order to achieve the above object, the present invention provides a ball bearing for supporting a rotating shaft included in a vehicle driving motor or a transmission connected to the vehicle driving motor, and includes an inner bearing ring and an outer bearing ring. a bearing ring, a plurality of balls interposed between the inner and outer bearing rings, a retainer that holds the plurality of balls, and a cap member that suppresses the inflow of lubricating oil from the outside of the bearing into the inside of the bearing; The ball is made of a material different from steel, and the internal bearing clearance during operation is set to a value greater than 0 μm at 80°C or higher, and the kinematic viscosity of the lubricating oil supplied to the bearing at 100°C is 7. 0 mm 2 /s or less was adopted.
 上記構成のように、車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれた回転軸を支持する玉軸受において、鋼と異なる材質からなる玉を採用すると、高速運転時に玉と軌道輪の弾性接触域で油膜切れが生じたとしても、材質が相違する玉と軌道輪が溶着せず、鋼製の玉に比して耐焼付き性が向上する。また、80℃以上で運転時の軸受内部すきまを0μmよりも大きい値に設定しておけば、高速回転時、運転すきまが負になって早期損傷に至ることが避けられる。これらのことから、低粘度潤滑油の採用や潤滑油の希薄化を行っても、玉と軌道輪の損傷防止を図ることができる。その上で、キャップ部材によって潤滑油の流入を抑制する条件下で、100℃時の動粘度が7.0mm/s以下の低粘度潤滑油を供給することにより、攪拌抵抗を良好に低減して軸受トルクの低減を図ることができる。このようにして、車両駆動用モータ等の回転軸を支持する玉軸受の低トルク性の向上と損傷防止を両立させることができる。 As described above, in a ball bearing that supports a rotating shaft included in a vehicle driving motor or a transmission connected to a vehicle driving motor, if balls made of a material other than steel are used, the balls will not be able to function during high-speed operation. Even if the oil film runs out in the elastic contact area of the bearing ring, the balls and the bearing ring, which are made of different materials, do not adhere to each other, and the seizure resistance is improved compared to steel balls. Further, if the bearing internal clearance during operation at 80° C. or higher is set to a value larger than 0 μm, it is possible to avoid early damage due to negative operating clearance during high-speed rotation. For these reasons, it is possible to prevent damage to the balls and bearing rings even when using a low-viscosity lubricating oil or diluting the lubricating oil. On top of that, by supplying a low-viscosity lubricating oil having a kinematic viscosity of 7.0 mm 2 /s or less at 100° C. under the condition that the inflow of the lubricating oil is suppressed by the cap member, the stirring resistance can be satisfactorily reduced. can reduce the bearing torque. In this way, it is possible to achieve both improvement in low-torque property and damage prevention of the ball bearing that supports the rotating shaft of a vehicle driving motor or the like.
 ここで、この発明における車両駆動用モータとは、電気エネルギを変換して車両の駆動源となる回転を出力する電気機器と、車両の回生ブレーキ時に入力回転を電気エネルギに変換する電気機器との少なくとも一方に該当するものを意味する。 Here, the vehicle drive motor in the present invention refers to an electrical device that converts electrical energy and outputs rotation that serves as a vehicle drive source, and an electrical device that converts input rotation into electrical energy during regenerative braking of the vehicle. It means what corresponds to at least one.
 また、この発明における変速機とは、入力回転速度を変換して出力側に伝える装置を意味し、その速度変換の比率(減速比、変速比)が連続的に変えられる無段変速装置と、その速度変換の比率が固定されている固定比変速装置とを包含する概念であり、その固定比変速装置には、その速度変換の比率が1種類しかない減速機又は増速機と呼ばれるものが含まれる。 In addition, the transmission in the present invention means a device that converts the input rotational speed and transmits it to the output side, and a continuously variable transmission that can continuously change the speed conversion ratio (reduction ratio, gear ratio), The concept includes a fixed-ratio transmission in which the speed conversion ratio is fixed, and the fixed-ratio transmission includes what is called a speed reducer or a speed increaser that has only one type of speed conversion ratio. included.
 また、この発明における動粘度の値は、JIS K 2283:2000「原油及び石油製品-動粘度試験方法 及び粘度指数算出方法」に規定された「動粘度試験方法」に準拠する測定での値を意味する。 In addition, the value of kinematic viscosity in this invention is the value in the measurement in accordance with the "kinematic viscosity test method" specified in JIS K 2283: 2000 "Crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method". means.
 前記玉はセラミックスからなることが好ましい。セラミックス製の玉は絶縁体であるから、弾性接触域で電食が起こることもない。さらに、セラミックス製の玉を採用すると、鋼製の玉に比して、玉と軌道輪の弾性接触域における損失(弾性ヒステリシス、差動すべり)が減少するので、このことからも、軸受トルクを低減することができる。 It is preferable that the ball is made of ceramics. Since the ceramic ball is an insulator, electrolytic corrosion does not occur in the elastic contact area. Furthermore, the use of ceramic balls reduces the loss (elastic hysteresis, differential slip) in the elastic contact area between the ball and raceway compared to steel balls. can be reduced.
 前記内外の軌道輪が夫々有する軌道溝の横断面形状は、夫々前記玉の直径の1.1倍以下の直径で規定された円弧状であるとよい。このような円弧状は、玉と軌道輪の弾性接触域での面圧を抑制しつつ、軸受トルクの低減を図るのに好適である。 It is preferable that the cross-sectional shape of the raceway grooves of the inner and outer races is arcuate with a diameter not greater than 1.1 times the diameter of the ball. Such an arc shape is suitable for reducing the bearing torque while suppressing the surface pressure in the elastic contact area between the ball and the bearing ring.
 また、前記キャップ部材は、前記内外の軌道輪の一方に取り付けられており、前記キャップ部材は、前記内外の軌道輪の他方に設けられたシールしゅう動面に対して周方向にしゅう動するシールリップを有し、前記シールリップは、周方向に並んだ複数の突部を有し、これら複数の突部は、周方向に隣り合う前記突部同士の間に前記軸受内部と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突部と前記シールしゅう動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シールしゅう動面間を流体潤滑状態にするように設けられているとよい。このようにすると、玉軸受の早期破損を招くような所定粒径の異物侵入及び潤滑油の流入をキャップ部材で抑制しつつ、非接触シールと遜色のない高速運転と低シールトルクを実現することができる。 The cap member is attached to one of the inner and outer races, and the cap member is a seal that slides in the circumferential direction on a seal sliding surface provided on the other of the inner and outer races. The sealing lip has a plurality of protrusions arranged in the circumferential direction, and the plurality of protrusions communicate between the protrusions adjacent in the circumferential direction to the inside and the outside of the bearing. A gap is formed, and the seal lip and the seal sliding surface are brought into a fluid lubrication state by an oil film of lubricating oil that is dragged from the gap between the protrusion and the seal sliding surface as the bearing rotates. should be provided in By doing so, it is possible to achieve high-speed operation and low seal torque comparable to non-contact seals while suppressing the intrusion of foreign matter of a predetermined particle size and the inflow of lubricating oil, which may lead to early failure of the ball bearing, by the cap member. can be done.
 また、前記保持器は、合成樹脂によって形成された冠形保持器からなるとよい。このような保持器は、鋼板製の波形保持器に比して軽量、自己潤滑性に優れるので、軸受トルクの低減を図るのに好適である。 Also, the retainer may be a crown-shaped retainer made of synthetic resin. Such a retainer is lighter and more self-lubricating than a corrugated retainer made of steel plate, and is therefore suitable for reducing bearing torque.
 この発明において、合成樹脂とは、繊維強化樹脂を包含する概念である。好ましくは、前記合成樹脂は、繊維強化ポリアミド樹脂又は繊維強化ポリフェニレンサルファイド樹脂からなるとよい。このようにすると、遠心力に対する冠形保持器の耐変形性が良好になるので、高速回転に好適なものとなる。 In this invention, synthetic resin is a concept that includes fiber reinforced resin. Preferably, the synthetic resin comprises a fiber-reinforced polyamide resin or a fiber-reinforced polyphenylene sulfide resin. By doing so, the crown retainer has good deformation resistance against centrifugal force, and is suitable for high-speed rotation.
 また、前記軸受内部に初期潤滑剤としてグリースが封入されており、前記グリースの封入量は、軸受全空間容積の5~20体積%であるとよい。このようにすると、玉軸受の運転初期の潤滑不足を抑制しつつ、グリースの攪拌抵抗を抑制することができる。 Also, grease is enclosed as an initial lubricant inside the bearing, and the amount of the grease enclosed is preferably 5 to 20% by volume of the total space volume of the bearing. By doing so, it is possible to suppress the agitation resistance of the grease while suppressing insufficient lubrication in the initial stage of operation of the ball bearing.
 前記キャップ部材の材料として、ニトリルゴム、アクリルゴム、フッ素ゴム、冷間圧延鋼板及びステンレス鋼板の中の少なくとも一種が用いられているとよい。このようにすると、シールやシールドの材料として一般的な材料でキャップ部材を製造することができる。 At least one of nitrile rubber, acrylic rubber, fluororubber, cold-rolled steel plate, and stainless steel plate may be used as the material of the cap member. By doing so, the cap member can be manufactured from a material commonly used as a material for seals and shields.
 前記玉は、窒化物系セラミックスからなるとよい。窒化物系セラミックスは、軽量、高強度、高靭性など機械的性質が総合的に優れるので、好適である。 The balls are preferably made of nitride ceramics. Nitride-based ceramics are suitable because they are generally excellent in mechanical properties such as light weight, high strength, and high toughness.
 この発明は、上記構成の採用により、車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれた回転軸を支持する玉軸受の低トルク性の向上と損傷防止を両立させることができる。 According to the present invention, by adopting the above configuration, it is possible to achieve both improvement in low torque and prevention of damage to a ball bearing that supports a rotary shaft included in a vehicle drive motor or a transmission connected to a vehicle drive motor. can.
この発明の第一実施形態に係る玉軸受を示す断面図BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the ball bearing which concerns on 1st embodiment of this invention 図1の玉軸受の使用例を示す模式図Schematic diagram showing an example of use of the ball bearing in Fig. 1 図1のIII―III線の部分拡大断面図Partially enlarged cross-sectional view taken along line III-III in FIG. 軸受トルクの計算結果を示す棒グラフBar graph showing calculated results of bearing torque 軸受トルクの試験結果を示す棒グラフBar graph showing bearing torque test results 軸受トルクの別の計算結果を示す棒グラフBar graph showing different calculation results for bearing torque この発明の第二実施形態に係る玉軸受を示す断面図Sectional drawing which shows the ball bearing which concerns on 2nd embodiment of this invention
 この発明の一例としての第一実施形態に係るシール付軸受を添付図面の図1~図6に基づいて説明する。 A sealed bearing according to a first embodiment as an example of the present invention will be described with reference to FIGS. 1 to 6 of the accompanying drawings.
 図1に示すこの玉軸受1は、内方の軌道輪2と、外方の軌道輪3と、内方の軌道輪2と外方の軌道輪3との間に介在する複数の玉4と、これら複数の玉4を保持する保持器5と、内外一方の軌道輪3の両側に取り付けられたキャップ部材6とからなる。 This ball bearing 1 shown in FIG. , a retainer 5 for holding the plurality of balls 4, and cap members 6 attached to both sides of one of the inner and outer bearing rings 3. As shown in FIG.
 この玉軸受1は、両シール付深溝玉軸受になっている。 This ball bearing 1 is a double-sealed deep groove ball bearing.
 なお、以下では、この玉軸受1の軸受中心軸(図示省略、以下、同じ。)に沿った方向を「軸方向」という。また、軸方向に直交する方向を「径方向」という。また、軸受中心軸回りの円周に沿った方向を「周方向」という。図1において、軸受中心軸は、回転輪とする内方の軌道輪2の中心軸である。図1は、軸受中心軸を含む仮想平面の断面を示す。軸方向は、図1において左右方向に相当し、径方向は、図1、3において上下方向に相当する。 In the following description, the direction along the bearing center axis (not shown, hereinafter the same) of the ball bearing 1 will be referred to as the "axial direction". A direction orthogonal to the axial direction is called a “radial direction”. Also, the direction along the circumference around the center axis of the bearing is referred to as the "circumferential direction". In FIG. 1, the bearing center axis is the center axis of the inner bearing ring 2 which is the rotating ring. FIG. 1 shows a cross section of an imaginary plane containing the bearing central axis. The axial direction corresponds to the horizontal direction in FIG. 1, and the radial direction corresponds to the vertical direction in FIGS.
 内方の軌道輪2は、玉4と接触する軌道溝2aを外周側に有する鋼製の環状部材からなる。内方の軌道輪2は、その内周において回転軸Sに嵌合される。外方の軌道輪3は、玉と接触する軌道溝3aを内周側に有する鋼製の環状部材からなる。外方の軌道輪3は、ハウジング、ギア等、回転軸からの荷重を負荷させる部材に取り付けられる。 The inner bearing ring 2 is made of a steel annular member having a raceway groove 2a that contacts the balls 4 on the outer peripheral side. The inner bearing ring 2 is fitted to the rotating shaft S at its inner circumference. The outer bearing ring 3 consists of a steel annular member having a raceway groove 3a in contact with the balls on the inner peripheral side. The outer bearing ring 3 is attached to a member such as a housing, a gear, or the like that bears the load from the rotating shaft.
 回転軸Sは、車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれたものであり、例えば、車両駆動用モータに備わるロータの回転中心となるモータシャフト、変速機に備わる回転入力用のインプットシャフト、回転出力用のアウトプットシャフト、中間伝達シャフトである。 The rotating shaft S is included in a vehicle driving motor or a transmission connected to the vehicle driving motor. They are the input shaft for input, the output shaft for rotational output, and the intermediate transmission shaft.
 図2に、車両駆動用モータ20と、車両駆動用モータ20に接続された変速機30と、車両駆動用モータ20又は変速機30に含まれた回転軸S20,S31,S32を支持する玉軸受1とを備える回転伝達装置の一例を示す。図示例の回転伝達装置は、車両の駆動系に組み込まれる。変速機30は、複数の回転軸S31~S33と、これら各回転軸S31~S33に設けられた歯車G1~G3と、回転軸S31~S32を支持する複数の玉軸受1とを備える。回転軸S31と車両駆動用モータ20の回転軸S20は、一体に回転する。回転軸S33は、複数の円すいころ軸受によって支持されている。 2, a vehicle driving motor 20, a transmission 30 connected to the vehicle driving motor 20 , and rotation shafts S20, S31 , S32 included in the vehicle driving motor 20 or the transmission 30 are supported. An example of a rotation transmission device including a ball bearing 1 is shown. The illustrated rotation transmission device is incorporated in a vehicle drive system. The transmission 30 includes a plurality of rotating shafts S 31 to S 33 , gears G1 to G3 provided on each of these rotating shafts S 31 to S 33 , and a plurality of ball bearings 1 supporting the rotating shafts S 31 to S 32 . and The rotating shaft S31 and the rotating shaft S20 of the vehicle drive motor 20 rotate together. The rotating shaft S33 is supported by a plurality of tapered roller bearings.
 車両駆動用モータ20が駆動源となる場合、変速機30は、回転軸S20から回転軸S31に入力された回転を減速して回転軸S33から出力する歯車減速機となる。車両駆動用モータ20が回生ブレーキとなる場合、変速機30は、走行車輪側から回転軸S33に入力された回転を増速して回転軸S31から出力する歯車増速機となる。 When the vehicle driving motor 20 serves as a drive source, the transmission 30 serves as a gear reducer that reduces the rotation input from the rotation shaft S20 to the rotation shaft S31 and outputs the rotation from the rotation shaft S33 . When the vehicle drive motor 20 serves as a regenerative brake, the transmission 30 serves as a gear speed increaser that speeds up the rotation input to the rotating shaft S33 from the traveling wheel side and outputs it from the rotating shaft S31 .
 図2に示す玉軸受1の運転時の軸受内部すきまは、80℃以上で0μmよりも大きい値に設定されている。ここで、軸受内部すきまとは、内外の軌道輪の一方が固定された状態で、他方が動かされた場合の移動量をいう。他方が径方向に動かされた場合をラジアル内部すきまといい、軸方向に動かされた場合をアキシアル内部すきまという。回転伝達装置の運転時、玉軸受1の全部が80℃以上である場合、玉軸受1のラジアル内部すきま及びアキシアル内部すきまのいずれも0μmを超える状態が継続する。 The bearing internal clearance during operation of the ball bearing 1 shown in FIG. 2 is set to a value greater than 0 μm at 80° C. or higher. Here, the bearing internal clearance refers to the amount of movement when one of the inner and outer bearing rings is fixed and the other is moved. When the other is moved in the radial direction, it is called the radial internal clearance, and when it is moved in the axial direction, it is called the axial internal clearance. During operation of the rotation transmission device, if the temperature of all the ball bearings 1 is 80° C. or higher, both the radial internal clearance and the axial internal clearance of the ball bearing 1 continue to exceed 0 μm.
 図1に示す玉4は、内外の軌道溝2a,3a間を自転しながら公転する球形の転動体からなる。玉4は、鋼と異なる材質からなる。その材質として、窒化物系セラミックス(Si)が採用されている。玉4を構成する材質としては、窒化物系以外のセラミックスを採用することも可能である。 The ball 4 shown in FIG. 1 consists of a spherical rolling element that revolves while rotating between the inner and outer raceway grooves 2a and 3a. The ball 4 is made of a material different from steel. Nitride-based ceramics (Si 3 N 4 ) is used as the material. As a material for forming the balls 4, it is possible to employ ceramics other than nitrides.
 内外の軌道溝2a,3aの夫々の横断面形状は、図1に示す仮想平面上における軌道溝2a,3aの夫々の母線形状に相当する。軌道溝2aの横断面形状は、玉4の直径の1.1倍以下の直径で規定された円弧状である。軌道溝3aの横断面形状も、玉4の直径の1.1倍以下の直径で規定された円弧状である。 The cross-sectional shape of each of the inner and outer raceway grooves 2a, 3a corresponds to the generatrix shape of each of the raceway grooves 2a, 3a on the imaginary plane shown in FIG. The cross-sectional shape of the raceway groove 2a is arcuate with a diameter not greater than 1.1 times the diameter of the ball 4 . The cross-sectional shape of the raceway groove 3a is also arcuate with a diameter not greater than 1.1 times the diameter of the ball 4 .
 保持器5は、内外の軌道溝2a,3a間に介在する複数の玉4を所定の周方向間隔に保つ環状の軸受部品からなる。図示例の保持器5は、一対の鋼板製波形プレス部品を結合した波形保持器になっている。 The retainer 5 consists of an annular bearing component that keeps a plurality of balls 4 interposed between the inner and outer raceway grooves 2a, 3a at a predetermined circumferential interval. The cage 5 in the illustrated example is a corrugated cage formed by coupling a pair of steel plate corrugated press parts.
 キャップ部材6は、玉軸受1の周囲である軸受外部と軸受内部7とを区切る。軸受内部7は、内外の軌道輪2,3間に全周に亘って形成された環状空間である。 The cap member 6 separates the outside of the ball bearing 1 and the inside 7 of the bearing. The bearing interior 7 is an annular space formed over the entire circumference between the inner and outer races 2 and 3 .
 軸受外部から玉軸受1に潤滑油(図示省略)が供給される。その潤滑方式としては、例えば、潤滑油を玉軸受1に掛けるはね掛け方式、又は玉軸受1の下部を潤滑油に漬ける油浴方式が挙げられる。  Lubricating oil (not shown) is supplied to the ball bearing 1 from the outside of the bearing. Examples of the lubricating method include a splashing method in which lubricating oil is applied to the ball bearing 1 and an oil bath method in which the lower portion of the ball bearing 1 is immersed in lubricating oil.
 軸受内部7には、初期潤滑剤としてグリースG(図1中にドット模様で示す。)が封入されている。 Grease G (indicated by a dot pattern in FIG. 1) is enclosed in the bearing interior 7 as an initial lubricant.
 キャップ部材6は、軸受外部から異物が軸受内部7に侵入すること、軸受外部から玉軸受1に供給される潤滑油が軸受内部7に流入すること、及びグリースGが軸受外部に漏洩することを抑制する。キャップ部材6は、軸受内部7を軸受外部に対して液密に密封するものではない。 The cap member 6 prevents foreign matter from entering the bearing interior 7 from the outside of the bearing, lubricating oil supplied to the ball bearing 1 from the outside of the bearing flowing into the bearing interior 7, and grease G from leaking to the outside of the bearing. Suppress. The cap member 6 does not liquid-tightly seal the bearing interior 7 from the bearing exterior.
 内外一方の軌道輪3には、キャップ部材6を保持するシール溝3bが形成されている。キャップ部材6は、軌道輪3側の周縁部をシール溝3bに圧入することにより、軌道輪3に取り付けられる。 A seal groove 3b for holding the cap member 6 is formed in one of the inner and outer races 3. The cap member 6 is attached to the bearing ring 3 by press-fitting the peripheral portion on the bearing ring 3 side into the seal groove 3b.
 図示例のキャップ部材6は、金属板によって形成された芯金8と、弾性材によって形成されたシールリップ9とを有する。芯金8は、プレス部品からなる。前記弾性材としては、例えば、加硫成形されたゴム材、ゴム材相当のエラストマ等が挙げられる。ゴム材として、例えば、ニトリルゴム(NBR)、アクリルゴム(ACM)、フッ素ゴム(FKM)等が挙げられる。また、前記金属板としては、例えば、冷間圧延鋼板、ステンレス鋼板が挙げられる。 The illustrated cap member 6 has a metal core 8 made of a metal plate and a seal lip 9 made of an elastic material. The cored bar 8 is made of a pressed part. Examples of the elastic material include a vulcanized rubber material, an elastomer equivalent to a rubber material, and the like. Examples of rubber materials include nitrile rubber (NBR), acrylic rubber (ACM), and fluororubber (FKM). Moreover, as said metal plate, a cold-rolled steel plate and a stainless steel plate are mentioned, for example.
 内外一方の軌道輪3と反対の内外他方の軌道輪2には、シールリップ9に対して周方向にしゅう動するシールしゅう動面2bが形成されている。シールしゅう動面2bは、周方向に沿った円筒面状になっている。 A seal sliding surface 2 b that slides on the seal lip 9 in the circumferential direction is formed on the inner and outer bearing rings 2 opposite to the inner and outer bearing rings 3 . The seal sliding surface 2b has a cylindrical surface along the circumferential direction.
 シールリップ9は、図1、図3に示すように、周方向に並んだ複数の突部9aを有する。これら複数の突部9aは、周方向に隣り合う突部9a同士の間に軸受内部7と外部に連通する隙間10を生じさせ、かつ玉軸受1の軸受回転に伴って隙間10から突部9aとシールしゅう動面2b間に引き摺り込まれる潤滑油(図3中にドット模様で示す。)の油膜によってシールリップ9及びシールしゅう動面2b間を流体潤滑状態にするように設けられている。 As shown in FIGS. 1 and 3, the seal lip 9 has a plurality of protrusions 9a arranged in the circumferential direction. These plurality of protrusions 9a create gaps 10 between adjacent protrusions 9a in the circumferential direction that communicate with the inside 7 of the bearing and the outside. The seal lip 9 and the seal sliding surface 2b are provided so as to be fluidly lubricated by an oil film of lubricating oil (indicated by dots in FIG. 3) drawn between the seal lip 9 and the seal sliding surface 2b.
 キャップ部材6は、所定粒径の異物侵入を防ぐことが可能な隙間10を通じて軸受内部7と外部間での潤滑油の流通を許す。このため、軸受回転に伴って潤滑油が突部9aとシールしゅう動面2b間に引き摺り込まれる際のくさび効果により、油膜が厚く形成される。シールリップ9とシールしゅう動面2b間の相対回転(図3においては矢線A方向を想定している。)の周速が所定に達すると、各突部9aとシールしゅう動面2bが油膜で完全に分離させられることにより、シールリップ9とシールしゅう動面2bが完全に分離させられた流体潤滑状態になり、この流体潤滑状態は、それ以上の周速においても継続する。このため、所定の周速以上、例えば、0.2m/s以上において、玉軸受1におけるシールトルクは、非接触シールを採用した場合と同等まで低減される。 The cap member 6 allows lubricating oil to flow between the inside 7 of the bearing and the outside through a gap 10 that can prevent foreign matter of a predetermined particle size from entering. Therefore, a thick oil film is formed due to the wedge effect when lubricating oil is dragged between the protrusion 9a and the seal sliding surface 2b as the bearing rotates. When the peripheral speed of the relative rotation between the seal lip 9 and the seal sliding surface 2b (the direction of the arrow A in FIG. 3 is assumed) reaches a predetermined value, each projection 9a and the seal sliding surface 2b form an oil film. are completely separated from each other, the seal lip 9 and the seal sliding surface 2b are completely separated to form a fluid lubricating state, and this fluid lubricating state continues even at a higher peripheral speed. For this reason, the seal torque in the ball bearing 1 is reduced to the same level as when a non-contact seal is employed at a predetermined circumferential speed or higher, for example, 0.2 m/s or higher.
 キャップ部材6は、特許文献1に開示されたものなので、その詳細説明を省略する。突部9aを周方向全体に亘って均一間隔で配置してもよい。突部9aの少なくとも一箇所に周方向へ延びる溝を形成してもよい。突部9aは、シールしゅう動面2bとの間に当該突部9a側で小となるくさび状隙間を成す形状にしてもよい。突部9aを、周方向と直交する向きに延び、該当突部9aの周方向幅の中央に向かって次第にシールしゅう動面2bに近接するR形状にしてもよい。突部9aの高さやピッチは、玉軸受1の早期破損原因となる粒径0.05mmを超える異物の侵入を防ぐ効果を奏するように設定すればよく、例えば、突部9aの高さを0.05mm以上に設定してもよいし、0.05mm以下に設定してもよい。 Since the cap member 6 is disclosed in Patent Document 1, detailed description thereof will be omitted. The protrusions 9a may be arranged at uniform intervals over the entire circumferential direction. A groove extending in the circumferential direction may be formed in at least one portion of the protrusion 9a. The projecting portion 9a may be shaped to form a wedge-shaped gap with the seal sliding surface 2b, which becomes smaller on the projecting portion 9a side. The protrusion 9a may extend in a direction perpendicular to the circumferential direction, and may have an R shape that gradually approaches the seal sliding surface 2b toward the center of the width of the protrusion 9a in the circumferential direction. The height and pitch of the protrusions 9a may be set so as to have the effect of preventing the entry of foreign matter having a particle size exceeding 0.05 mm, which may cause early damage to the ball bearing 1. For example, the height of the protrusions 9a may be set to zero. It may be set to 0.05 mm or more, or may be set to 0.05 mm or less.
 軸受内部7に供給される潤滑油は、その100℃時の動粘度が7.0mm/s以下である。 The lubricating oil supplied to the inside of the bearing 7 has a kinematic viscosity of 7.0 mm 2 /s or less at 100°C.
 玉軸受1の運転開始後、軸受外部から供給された潤滑油は、比較的早期にキャップ部材6とシールしゅう動面2bとの間の隙間10から軸受内部7に流入する。このため、初期潤滑に必要な量が確保されておれば、グリースGの封入量は、少ないほど軸受トルクの低減に効果的である。初期潤滑目的の達成と軸受トルクの抑制の両立を図るため、グリースGの封入量は、軸受全空間容積の5~20体積%とされている。ここで、軸受全空間容積とは、内外の軌道輪2,3の軸方向両端部にそれぞれ設けられたキャップ部材6により囲まれた軸受内部7(密封空間)のうち、玉4と保持器5が公転する空間の容積を差し引いたもので、玉軸受1が停止している状態での空間容積のことをいう。 After the operation of the ball bearing 1 is started, lubricating oil supplied from the outside of the bearing relatively early flows into the bearing interior 7 through the gap 10 between the cap member 6 and the seal sliding surface 2b. Therefore, if the amount necessary for initial lubrication is ensured, the smaller the amount of grease G enclosed, the more effective it is in reducing the bearing torque. In order to achieve both the purpose of initial lubrication and the suppression of bearing torque, the amount of grease G enclosed is set to 5 to 20% by volume of the total space volume of the bearing. Here, the total space volume of the bearing means that the bearing interior 7 (sealed space) surrounded by the cap members 6 provided at both axial ends of the inner and outer bearing rings 2 and 3, respectively, includes the balls 4 and the cage 5. is the space volume in which the ball bearing 1 is stopped.
 玉軸受1は、上述のようなものであり、玉4を窒化物系セラミックス(Si)製とすることにより、軸受トルクの低減を図ることができる。すなわち、窒化物系セラミックス(Si)の密度は、3.304g/cmであるのに対し、軸受鋼(SUJ2)の密度は、7.8g/cmである。また、その窒化物系セラミックスの縦弾性係数は、315GPaであるのに対し、その軸受鋼の縦弾性係数は、210GPaである。また、その窒化物系セラミックスのポアソン比は、0.25であるのに対し、その軸受鋼のポアソン比は、0.3である。また、その窒化物系セラミックスの熱膨張係数は、3.2(×10-6/℃)であるのに対し、その軸受鋼の熱膨張係数は、12.5(×10-6/℃)である。また、その窒化物系セラミックスの熱伝導率は、0.07Cal/cm・s・℃であるのに対し、その軸受鋼の熱伝導率は、0.1~0.12Cal/cm・s・℃である。これらの数値比較から明らかなように、一般に、セラミックス製の玉は、鋼製の玉に比して、縦弾性係数が大きく剛性が高いため、玉4と軌道輪2,3の弾性接触域における弾性ヒステリシスと差動すべりが減少し、軸受トルクの低減となる。 The ball bearing 1 is as described above, and the bearing torque can be reduced by making the balls 4 made of nitride ceramics (Si 3 N 4 ). That is, the density of nitride ceramics (Si 3 N 4 ) is 3.304 g/cm 3 while the density of bearing steel (SUJ2) is 7.8 g/cm 3 . The longitudinal elastic modulus of the nitride ceramics is 315 GPa, while the longitudinal elastic modulus of the bearing steel is 210 GPa. The Poisson's ratio of the nitride ceramics is 0.25, while the Poisson's ratio of the bearing steel is 0.3. The thermal expansion coefficient of the nitride ceramics is 3.2 (×10 −6 /° C.), while the thermal expansion coefficient of the bearing steel is 12.5 (×10 −6 /° C.). is. The thermal conductivity of the nitride ceramics is 0.07 Cal/cm·s·°C, while the thermal conductivity of the bearing steel is 0.1 to 0.12 Cal/cm·s·°C. is. As is clear from these numerical comparisons, ceramic balls generally have a larger longitudinal elastic modulus and higher rigidity than steel balls. Elastic hysteresis and differential slip are reduced, resulting in reduced bearing torque.
 また、図1に示すセラミックス製の玉4は、鋼製の玉に比して、電気を通さない。このため、玉軸受1の電食を防止することもできる。 Also, the ceramic ball 4 shown in FIG. 1 does not conduct electricity as compared to the steel ball. Therefore, electrolytic corrosion of the ball bearing 1 can also be prevented.
 また、セラミックス製の玉4と、鋼製の軌道輪2,3とは互いの材質が異なるため、溶着しない。このため、鋼製の玉に比して、玉4と軌道輪2,3の弾性接触域での耐焼付き性に優れる。 Also, the ceramic balls 4 and the steel bearing rings 2 and 3 are made of different materials, so they do not weld. Therefore, the seizure resistance in the elastic contact area between the ball 4 and the bearing rings 2, 3 is superior to steel balls.
 また、セラミックス製の玉4は、鋼製の玉に比して、高剛性である。 Also, the ceramic ball 4 has higher rigidity than the steel ball.
 窒化物系セラミックス(Si)製の玉4の場合と、比較例としての鋼(SUJ2に標準的な熱処理を行ったもの)製の玉の場合とで軸受トルクを求めた計算結果を図4に示す。この計算は、玉軸受の型番:6806、6006、6306において夫々行った。この計算条件は、軸受回転速度:5000min-1、ラジアル荷重Fr:730N(型番6806の静定格荷重Corの20%)、アキシアル荷重Fa:0N、潤滑油:ISO粘度 VG10とした。 Calculation results of the bearing torque for the ball 4 made of nitride ceramics (Si 3 N 4 ) and the ball made of steel (SUJ2 subjected to standard heat treatment) as a comparative example are shown below. It is shown in FIG. This calculation was performed for ball bearing model numbers: 6806, 6006, and 6306, respectively. The conditions for this calculation were bearing rotation speed: 5000 min −1 , radial load Fr: 730 N (20% of static load rating Cor of type 6806), axial load Fa: 0 N, lubricating oil: ISO viscosity VG10.
 図4から明らかなように、いずれの型番の計算結果においても、軸受トルクは、セラミックス製の玉を採用した方が小さくなった。この結果は、セラミックス製の玉は、鋼製の玉に比して、比重が軽いため、軸受回転時の遠心力の影響が少なくなり、また、縦弾性係数が大きく、ポアソン比が小さいため、差動すべり、スピン、転がり粘性抵抗、弾性ヒステリシス損失が小さくなることが有利に働くためと考えられる。 As is clear from Fig. 4, in the calculation results for any model number, the bearing torque was smaller when ceramic balls were used. As a result, ceramic balls have a lighter specific gravity than steel balls, so they are less affected by centrifugal force when the bearing rotates. It is believed that this is because differential slip, spin, rolling viscous resistance, and elastic hysteresis loss are reduced, which works advantageously.
 また、キャップ部材6を備えることにより、軸受内部7への潤滑油の流入量が減少し、攪拌抵抗も減少となり、異物による軸受損傷の防止及び軸受トルクの低減を図ることができる。 In addition, by providing the cap member 6, the amount of lubricating oil flowing into the bearing interior 7 is reduced, the stirring resistance is also reduced, and damage to the bearing due to foreign matter can be prevented and the bearing torque can be reduced.
 ここで、図1に示す玉軸受1に備わるキャップ部材6は、所定の周速以上で非接触シールと同等のシールトルクになるものであるから、キャップ部材として非接触シールを備える玉軸受1(シール有)の場合と、比較例としての開放軸受(シール無)の場合とで軸受トルクを測定する試験を行った。その試験結果を図5に示す。この試験は、玉軸受の型番6308において夫々行った。試験条件は、軸受回転速度:754min-1、ラジアル荷重Fr:754N、アキシアル荷重Fa:0N、潤滑油:CVTフルード、潤滑方法:油浴(油面は最下の玉と交差する高さ)とした。 Here, since the cap member 6 provided in the ball bearing 1 shown in FIG. A test was conducted to measure the bearing torque in the case of an open bearing (with no seal) as a comparative example. The test results are shown in FIG. This test was carried out on ball bearing model number 6308, respectively. The test conditions were as follows: bearing rotational speed: 754 min −1 , radial load Fr: 754 N, axial load Fa: 0 N, lubricating oil: CVT fluid, lubrication method: oil bath (oil level intersects the lowest ball) and bottom.
 図5から明らかなように、軸受トルクは、キャップ部材として非接触シールを備える玉軸受の方が、開放軸受よりも明らかに小さくなった。この結果は、キャップ部材により、軸受内部への潤滑油の流入量が抑制されて、軸受内部での潤滑油の攪拌によるトルク損失が低減することが有利に働くためと考えられる。 As is clear from FIG. 5, the bearing torque was clearly smaller in the ball bearing provided with the non-contact seal as the cap member than in the open bearing. This result is considered to be because the amount of lubricating oil flowing into the bearing is suppressed by the cap member, and torque loss due to agitation of the lubricating oil inside the bearing works advantageously.
 特に、図1に示す玉軸受1のキャップ部材6は、非接触形のシール及びシールドと遜色のない低トルク性能を発揮するので、早期損傷原因となる所定粒径の異物の侵入を防止しつつ、潤滑油の流入抑制を図るのに好適である。 In particular, the cap member 6 of the ball bearing 1 shown in FIG. 1 exhibits low torque performance comparable to that of non-contact type seals and shields, so it prevents the entry of foreign matter with a predetermined particle diameter that causes early damage. , it is suitable for suppressing the inflow of lubricating oil.
 鋼製の玉を備える開放軸受と、鋼製の玉を備える接触シール付軸受と、図1に示す玉軸受1の優劣について星取表にまとめると、表1のようになる。 Table 1 summarizes the advantages and disadvantages of open bearings with steel balls, bearings with contact seals with steel balls, and ball bearing 1 shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、100℃時の動粘度が7.0mm/s以下である潤滑油は、潤滑油のせん断抵抗を抑制して、軸受トルクの低減を図るのに好適である。そのせん断抵抗は、凡そ、以下の式1により求められる。
 式1:F=η・(u/h)・s
 ここで、F:せん断抵抗、η:油粘性係数、u:流体速度、h:油膜厚さ、s:すべり面積とする。潤滑油の動粘度が小さくなる場合、油粘性係数ηと油膜厚さhが小さくなるため、せん断抵抗Fが小さくなる。
A lubricating oil having a kinematic viscosity of 7.0 mm 2 /s or less at 100° C. is suitable for suppressing the shear resistance of the lubricating oil and reducing the bearing torque. The shear resistance is approximately determined by the following formula 1.
Formula 1: F = η · (u / h) · s
Here, F: shear resistance, η: oil viscosity coefficient, u: fluid velocity, h: oil film thickness, s: sliding area. When the kinematic viscosity of the lubricating oil decreases, the oil viscosity coefficient η and the oil film thickness h decrease, so the shear resistance F decreases.
 また、内外の軌道溝2a,3aの横断面形状が玉4の直径の1.1倍以下の直径で規定された円弧状であることにより、玉4と軌道輪2,3の弾性接触域での面圧を抑制しつつ、軸受トルクの低減を図ることができる。 In addition, since the cross-sectional shape of the inner and outer raceway grooves 2a, 3a is circular with a diameter not more than 1.1 times the diameter of the ball 4, the elastic contact area between the ball 4 and the bearing rings 2, 3 It is possible to reduce the bearing torque while suppressing the surface pressure of the bearing.
 内外の軌道溝の溝直径を様々に変更して軸受トルクを計算した。その計算結果を図6に示す。この計算は、玉軸受の型番:6006において夫々行った。この計算条件は、軸受回転速度:5000min-1、ラジアル荷重Fr:730N、アキシアル荷重Fa:0N、潤滑油:ISO粘度 VG10(JIS K2001:1993)とした。玉の直径は一定である。 The bearing torque was calculated with various groove diameters of the inner and outer raceway grooves. The calculation result is shown in FIG. This calculation was performed for the model number of the ball bearing: 6006. The calculation conditions were bearing rotation speed: 5000 min −1 , radial load Fr: 730 N, axial load Fa: 0 N, lubricating oil: ISO viscosity VG10 (JIS K2001:1993). The diameter of the ball is constant.
 図6から明らかなように、軸受トルクは、内外の軌道溝の溝直径を大きくする程、軸受トルクが低減する傾向になることが明らかである。これは、玉と軌道溝の曲率差が大きくなる程、弾性接触域の面積が小さくなることが、ここでの損失抑制に有利に働くためと考えられる。 As is clear from FIG. 6, it is clear that the bearing torque tends to decrease as the groove diameters of the inner and outer raceway grooves are increased. This is thought to be because the area of the elastic contact area becomes smaller as the difference in curvature between the ball and the raceway groove becomes larger, which is advantageous in suppressing the loss here.
 ただし、車両の変速機に備わる軸受に負荷される荷重は、過去実績等によると、ラジアル荷重、アキシアル荷重ともに動定格荷重の35%程度である。この場合、内外の軌道溝の溝直径が玉の直径の1.1倍を超えると、弾性接触域での面圧が静定格荷重の基準である4200MPaを超えることになる。また、車両の回生ブレーキ系統となる増減速機に備わる軸受に負荷される荷重は、過去実績等よると、ラジアル荷重が動定格荷重の50%程度、アキシアル荷重が30%程度である。この場合、内外の軌道溝の溝直径が玉の直径の1.08倍を超えると、弾性接触域での面圧が静定格荷重の基準である4200MPaを超えることになる。これらのことを考慮すると、損傷防止と低トルク化を両立するため、内外の軌道溝の溝直径を玉の直径の1.1倍以下にすることが好ましいと考えられる。 However, according to past records, the load applied to the bearings in vehicle transmissions is about 35% of the dynamic load rating for both radial load and axial load. In this case, if the groove diameter of the inner and outer raceway grooves exceeds 1.1 times the ball diameter, the surface pressure in the elastic contact area will exceed 4200 MPa, which is the standard for static load rating. According to past records, the radial load is about 50% of the rated dynamic load, and the axial load is about 30%. In this case, if the groove diameter of the inner and outer raceway grooves exceeds 1.08 times the ball diameter, the surface pressure in the elastic contact area will exceed 4200 MPa, which is the standard for static load rating. Considering these facts, it is considered preferable to set the groove diameter of the inner and outer raceway grooves to 1.1 times or less the diameter of the ball in order to achieve both damage prevention and low torque.
 このように、図1~図3に示す玉軸受1は、車両駆動用モータ20又は車両駆動用モータ20に接続された変速機30に含まれた回転軸S20,S31,S32を支持するものであって、内外の軌道輪2,3の材質である鋼とは異なる材質からなる玉4を備えることにより、高速運転時に玉4と軌道輪2,3の弾性接触域で油膜切れが生じたとしても、材質が相違する玉4と軌道輪2,3が溶着せず、耐焼付き性が向上する。また、玉軸受1は、80℃以上で運転時の軸受内部すきまが0μmよりも大きい値に設定されているので、高速回転時、運転すきまが負になって早期損傷に至ることが避けられる。これらのことから、玉軸受1は、低粘度潤滑油の採用や潤滑油の希薄化を行っても、玉4と軌道輪2,3の損傷防止を図ることができる。その上で、玉軸受1は、キャップ部材6によって潤滑油の流入を抑制する条件下で、100℃時の動粘度が7.0mm/s以下の低粘度潤滑油を供給することにより、攪拌抵抗を良好に低減して軸受トルクの低減を図ることができる。このように、車両駆動用モータ20等の回転軸S20等を支持する玉軸受1は、低トルク性の向上と損傷防止を両立させることができる。 Thus, the ball bearing 1 shown in FIGS. 1 to 3 supports the rotation shafts S 20 , S 31 , S 32 included in the vehicle drive motor 20 or the transmission 30 connected to the vehicle drive motor 20. By providing the balls 4 made of a material different from steel, which is the material of the inner and outer bearing rings 2, 3, oil film breakage occurs in the elastic contact area between the balls 4 and the bearing rings 2, 3 during high-speed operation. Even if seizure occurs, the ball 4 and bearing rings 2 and 3, which are made of different materials, will not be welded together, improving seizure resistance. In addition, since the ball bearing 1 is set to have a bearing internal clearance larger than 0 μm during operation at 80° C. or higher, early damage due to negative operating clearance during high-speed rotation can be avoided. For these reasons, the ball bearing 1 can prevent damage to the balls 4 and the bearing rings 2 and 3 even if a low-viscosity lubricating oil is used or the lubricating oil is diluted. In addition, the ball bearing 1 is supplied with a low-viscosity lubricating oil having a kinematic viscosity of 7.0 mm 2 /s or less at 100° C. under the condition that the inflow of the lubricating oil is suppressed by the cap member 6. The bearing torque can be reduced by satisfactorily reducing the resistance. In this way, the ball bearing 1 that supports the rotating shaft S 20 of the vehicle driving motor 20 and the like can both improve the low torque property and prevent damage.
 また、玉軸受1は、玉4がセラミックスからなることにより、玉4が絶縁体となり、玉4と軌道輪2,3の弾性接触域で電食が起こることもない。さらに、セラミックスからなる玉4を採用すると、鋼からなる玉を採用した場合に比して、玉4と軌道輪2,3の弾性接触域における損失(弾性ヒステリシス、差動すべり)が減少するので、このことからも、玉軸受1は軸受トルクを低減することができる。 Also, in the ball bearing 1, since the balls 4 are made of ceramics, the balls 4 become insulators, and electrolytic corrosion does not occur in the elastic contact areas between the balls 4 and the bearing rings 2 and 3. Furthermore, when the ball 4 made of ceramics is used, the loss (elastic hysteresis, differential slip) in the elastic contact area between the ball 4 and the bearing rings 2, 3 is reduced compared to when the ball made of steel is used. Also from this, the ball bearing 1 can reduce the bearing torque.
 また、玉軸受1は、内外の軌道輪2,3の夫々有する軌道溝2a,3aの横断面形状が夫々玉4の直径の1.1倍以下の直径で規定された円弧状であるので、玉4と軌道輪2,3の弾性接触域での面圧を抑制して軸受寿命への悪影響を避けつつ、軸受トルクの低減を図ることができる。 Further, in the ball bearing 1, the cross-sectional shape of the raceway grooves 2a, 3a of the inner and outer bearing rings 2, 3, respectively, is arcuate with a diameter not greater than 1.1 times the diameter of the ball 4. It is possible to reduce the bearing torque while suppressing the surface pressure in the elastic contact areas between the balls 4 and the bearing rings 2 and 3 to avoid adverse effects on the life of the bearing.
 また、玉軸受1は、シールしゅう動面2bに対するシールリップ9の流体潤滑を実現するキャップ部材6を備えることにより、玉軸受1の早期破損を招くような所定粒径の異物侵入及び潤滑油の流入をキャップ部材6で抑制しつつ、非接触シールと遜色のない高速運転と低シールトルクを実現することができる。 Further, the ball bearing 1 is provided with the cap member 6 that realizes fluid lubrication of the seal lip 9 with respect to the seal sliding surface 2b. While the inflow is suppressed by the cap member 6, high-speed operation and low seal torque comparable to those of the non-contact seal can be realized.
 また、玉軸受1は、軸受内部7に初期潤滑剤としてグリースGが封入されており、グリースGの封入量が軸受全空間容積の5~20体積%であることにより、玉軸受1の運転初期の潤滑不足を抑制しつつ、グリースGの攪拌抵抗を抑制することができる。 Further, the ball bearing 1 is filled with grease G as an initial lubricant in the bearing interior 7, and the amount of the grease G filled is 5 to 20% by volume of the total space volume of the bearing. It is possible to suppress the stirring resistance of the grease G while suppressing insufficient lubrication of the grease G.
 また、玉軸受1は、キャップ部材6の材料として、ニトリルゴム、アクリルゴム、フッ素ゴム、冷間圧延鋼板及びステンレス鋼板の中の少なくとも一種が用いられていることにより、シールやシールドの材料として一般的な材料でキャップ部材6を製造することができる。 At least one of nitrile rubber, acrylic rubber, fluororubber, cold-rolled steel plate, and stainless steel plate is used as the material of the cap member 6, so that the ball bearing 1 is generally used as a material for seals and shields. The cap member 6 can be manufactured from a material suitable for the purpose.
 また、玉4は、窒化物系セラミックスからなることにより、軽量、高強度、高靭性など機械的性質が総合的に優れた玉4となるので、高速回転に好適である。 In addition, since the ball 4 is made of nitride-based ceramics, the ball 4 has comprehensively excellent mechanical properties such as light weight, high strength, and high toughness, so it is suitable for high-speed rotation.
 第一実施形態では、保持器5を波形保持器としたが、保持器は、他の形式のものでもよい。その一例として、図7に、第二実施形態に係る玉軸受40を示す。なお、ここでは、第一実施形態との相違点を述べるに留める。 In the first embodiment, the retainer 5 is a corrugated retainer, but the retainer may be of another type. As an example, FIG. 7 shows a ball bearing 40 according to the second embodiment. It should be noted that only the points of difference from the first embodiment will be described here.
 玉軸受40の内外一方の軌道輪41、内外他方の軌道輪42は、シールド付きに対応のものである。保持器43は、合成樹脂によって形成された冠形保持器からなる。合成樹脂は、繊維強化ポリアミド樹脂又は繊維強化ポリフェニレンサルファイド樹脂からなる。 The inner and outer bearing rings 41 and the inner and outer bearing rings 42 of the ball bearing 40 are shielded. The retainer 43 is a crown-shaped retainer made of synthetic resin. The synthetic resin consists of fiber-reinforced polyamide resin or fiber-reinforced polyphenylene sulfide resin.
 一方の軌道輪41には、シールド溝41aが形成されており、ここにキャップ部材44が取り付けられている。内外他方の軌道輪42には、キャップ部材44との間にラビリンスすきまを形成する全周溝42aが形成されている。 A shield groove 41a is formed in one bearing ring 41, and a cap member 44 is attached thereto. A full circumference groove 42 a is formed in the other inner and outer races 42 to form a labyrinth clearance with the cap member 44 .
 キャップ部材44は、冷間圧延鋼板又はステンレス鋼板によって形成された非接触形のシールドからなる。 The cap member 44 is a non-contact shield made of cold-rolled steel plate or stainless steel plate.
 玉軸受40に対しては、図中右側から潤滑油が跳ねかけられる。この潤滑油の流入抑制は、玉軸受40の図中右側にキャップ部材44を備えるだけでも効果的に行うことが可能である。 Lubricating oil is splashed onto the ball bearing 40 from the right side of the drawing. This inflow of lubricating oil can be effectively suppressed only by providing a cap member 44 on the right side of the ball bearing 40 in the drawing.
 玉軸受40は、合成樹脂製の冠形保持器43を備えるので、鋼板製の波形保持器に比して軽量、自己潤滑性に優れた保持器43となり、軸受トルクの低減を図るのに好適である。 Since the ball bearing 40 is provided with a crown-shaped retainer 43 made of synthetic resin, the retainer 43 is lighter and more self-lubricating than a corrugated retainer made of steel plate, which is suitable for reducing bearing torque. is.
 玉軸受40は、前記合成樹脂が繊維強化ポリアミド樹脂又は繊維強化ポリフェニレンサルファイド樹脂からなるため、遠心力に対する保持器43の耐変形性に優れ、高速回転に好適なものとなる。 Since the synthetic resin of the ball bearing 40 is fiber-reinforced polyamide resin or fiber-reinforced polyphenylene sulfide resin, the retainer 43 has excellent deformation resistance against centrifugal force and is suitable for high-speed rotation.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. Therefore, the scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all modifications within the meaning and scope of equivalents of the scope of the claims.
1,40 玉軸受
2,3,41,42 軌道輪
2a,3a 軌道溝
2b シールしゅう動面
4 玉
5,43 保持器
6,44 キャップ部材
7 軸受内部
8 芯金
9 シールリップ
9a 突部
10 隙間
20 車両駆動用モータ
30 変速機
S,S20,S31,S32 回転軸
1, 40 Ball bearings 2, 3, 41, 42 Raceway rings 2a, 3a Raceway groove 2b Seal sliding surface 4 Balls 5, 43 Cage 6, 44 Cap member 7 Bearing interior 8 Core metal 9 Seal lip 9a Projection 10 Gap 20 vehicle drive motor 30 transmissions S, S20, S31 , S32 rotating shaft

Claims (9)

  1.  車両駆動用モータ又は車両駆動用モータに接続された変速機に含まれた回転軸を支持する玉軸受において、
     内方の軌道輪と、外方の軌道輪と、これら内外の軌道輪間に介在する複数の玉と、これら複数の玉を保持する保持器と、軸受外部から軸受内部への潤滑油の流入を抑制するキャップ部材とを備え、
     前記玉は、鋼と異なる材質からなり、
     運転時の軸受内部すきまは、80℃以上で0μmよりも大きい値に設定されており、
     軸受内部に供給される潤滑油の100℃時の動粘度が7.0mm/s以下であることを特徴とする玉軸受。
    A ball bearing that supports a rotating shaft included in a vehicle drive motor or a transmission connected to a vehicle drive motor,
    An inner bearing ring, an outer bearing ring, a plurality of balls interposed between the inner and outer bearing rings, a retainer that retains the plurality of balls, and an inflow of lubricating oil from the outside of the bearing into the inside of the bearing. and a cap member that suppresses
    The ball is made of a material different from steel,
    The bearing internal clearance during operation is set to a value greater than 0 μm at 80°C or higher.
    A ball bearing, wherein the kinematic viscosity of lubricating oil supplied to the inside of the bearing at 100°C is 7.0 mm 2 /s or less.
  2.  前記玉はセラミックスからなる請求項1に記載の玉軸受。 The ball bearing according to claim 1, wherein the balls are made of ceramics.
  3.  前記内外の軌道輪が夫々有する軌道溝の横断面形状は、夫々前記玉の直径の1.1倍以下の直径で規定された円弧状である請求項1又は2に記載の玉軸受。  The ball bearing according to claim 1 or 2, wherein the raceway grooves of the inner and outer races each have an arcuate cross-sectional shape defined by a diameter equal to or less than 1.1 times the diameter of the ball.
  4.  前記キャップ部材は、前記内外の軌道輪の一方に取り付けられており、
     前記キャップ部材は、前記内外の軌道輪の他方に設けられたシールしゅう動面に対して周方向にしゅう動するシールリップを有し、
     前記シールリップは、周方向に並んだ複数の突部を有し、これら複数の突部は、周方向に隣り合う前記突部同士の間に前記軸受内部と外部に連通する隙間を生じさせ、かつ軸受回転に伴って前記隙間から前記突部と前記シールしゅう動面間に引き摺り込まれる潤滑油の油膜によって前記シールリップ及び前記シールしゅう動面間を流体潤滑状態にするように設けられている請求項1から3のいずれか1項に記載の玉軸受。
    The cap member is attached to one of the inner and outer bearing rings,
    the cap member has a seal lip that slides in the circumferential direction against a seal sliding surface provided on the other of the inner and outer bearing rings;
    The seal lip has a plurality of protrusions arranged in a circumferential direction, and the plurality of protrusions create a gap communicating between the inside and the outside of the bearing between adjacent protrusions in the circumferential direction, Further, the seal lip and the seal sliding surface are provided in a state of fluid lubrication by an oil film of lubricating oil that is dragged between the protrusion and the seal sliding surface through the gap as the bearing rotates. A ball bearing according to any one of claims 1 to 3.
  5.  前記保持器は、合成樹脂によって形成された冠形保持器からなる請求項1から4のいずれか1項に記載の玉軸受。 The ball bearing according to any one of claims 1 to 4, wherein the retainer is a crown-shaped retainer made of synthetic resin.
  6.  前記合成樹脂は、繊維強化ポリアミド樹脂又は繊維強化ポリフェニレンサルファイド樹脂からなる請求項5に記載の玉軸受。 The ball bearing according to claim 5, wherein the synthetic resin is fiber-reinforced polyamide resin or fiber-reinforced polyphenylene sulfide resin.
  7.  前記軸受内部に初期潤滑剤としてグリースが封入されており、前記グリースの封入量は、軸受全空間容積の5~20体積%である請求項1から6のいずれか1項に記載の玉軸受。 The ball bearing according to any one of claims 1 to 6, wherein grease is enclosed as an initial lubricant inside the bearing, and the amount of the grease enclosed is 5 to 20% by volume of the total space volume of the bearing.
  8.  前記キャップ部材の材料として、ニトリルゴム、アクリルゴム、フッ素ゴム、冷間圧延鋼板及びステンレス鋼板の中の少なくとも一種が用いられている請求項1から7のいずれか1項に記載の玉軸受。 The ball bearing according to any one of claims 1 to 7, wherein at least one of nitrile rubber, acrylic rubber, fluororubber, cold-rolled steel plate and stainless steel plate is used as the material of the cap member.
  9.  前記玉は、窒化物系セラミックスからなる請求項2に記載の玉軸受。 The ball bearing according to claim 2, wherein the balls are made of nitride ceramics.
PCT/JP2022/028375 2021-07-27 2022-07-21 Ball bearing WO2023008313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280052208.0A CN117751250A (en) 2021-07-27 2022-07-21 Ball bearing
KR1020247005425A KR20240038746A (en) 2021-07-27 2022-07-21 ball bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122252A JP2023018262A (en) 2021-07-27 2021-07-27 ball bearing
JP2021-122252 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023008313A1 true WO2023008313A1 (en) 2023-02-02

Family

ID=85086848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028375 WO2023008313A1 (en) 2021-07-27 2022-07-21 Ball bearing

Country Status (4)

Country Link
JP (1) JP2023018262A (en)
KR (1) KR20240038746A (en)
CN (1) CN117751250A (en)
WO (1) WO2023008313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116379062A (en) * 2023-04-07 2023-07-04 临高化的接科技有限公司 Ball bearing with bidirectional thrust

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335369A (en) * 2000-05-23 2001-12-04 Toshiba Corp Silicon nitride ceramic sintered compact and wear resistant member using the same
JP2012219850A (en) * 2011-04-05 2012-11-12 Ntn Corp Vehicle motor drive, and automobile
JP2013015180A (en) * 2011-07-04 2013-01-24 Nsk Ltd Single-row deep-groove type radial ball bearing
JP2013160314A (en) * 2012-02-06 2013-08-19 Nsk Ltd Rolling bearing
JP2014084913A (en) * 2012-10-22 2014-05-12 Nsk Ltd Rolling bearing
JP2017161082A (en) * 2017-06-15 2017-09-14 Ntn株式会社 Deep groove ball bearing for differential device or transmission
JP2019074196A (en) * 2017-10-19 2019-05-16 Ntn株式会社 Ball bearing with seal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143786A (en) 2015-02-03 2016-08-08 株式会社東芝 Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335369A (en) * 2000-05-23 2001-12-04 Toshiba Corp Silicon nitride ceramic sintered compact and wear resistant member using the same
JP2012219850A (en) * 2011-04-05 2012-11-12 Ntn Corp Vehicle motor drive, and automobile
JP2013015180A (en) * 2011-07-04 2013-01-24 Nsk Ltd Single-row deep-groove type radial ball bearing
JP2013160314A (en) * 2012-02-06 2013-08-19 Nsk Ltd Rolling bearing
JP2014084913A (en) * 2012-10-22 2014-05-12 Nsk Ltd Rolling bearing
JP2017161082A (en) * 2017-06-15 2017-09-14 Ntn株式会社 Deep groove ball bearing for differential device or transmission
JP2019074196A (en) * 2017-10-19 2019-05-16 Ntn株式会社 Ball bearing with seal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116379062A (en) * 2023-04-07 2023-07-04 临高化的接科技有限公司 Ball bearing with bidirectional thrust
CN116379062B (en) * 2023-04-07 2024-06-04 南京金崎新能源动力研究院有限公司 Ball bearing

Also Published As

Publication number Publication date
KR20240038746A (en) 2024-03-25
JP2023018262A (en) 2023-02-08
CN117751250A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
US10570962B2 (en) Sealed bearing
JP2017155929A (en) Seal-provided bearing
WO2016143786A1 (en) Sealed bearing
WO2023008313A1 (en) Ball bearing
JP5178105B2 (en) Railway vehicle gear system
JP6786265B2 (en) Bearing with seal
JP7201752B2 (en) Sealed bearing
JP7369511B2 (en) sealed ball bearings
JP6745609B2 (en) Bearing with seal
JP5005207B2 (en) Tapered roller bearing
WO2018159809A1 (en) Oil seal and seal attached bearing
WO2022202545A1 (en) Bearing with seal
WO2023042815A1 (en) Bearing with seal
WO2022264910A1 (en) Sealed bearing
JP6887046B2 (en) Tapered roller bearing
WO2022181437A1 (en) Seal-attached bearing
WO2024058105A1 (en) Ball bearing
WO2023189431A1 (en) Ball bearing
WO2023248750A1 (en) Ball bearing
JP6725264B2 (en) Tapered roller bearing
JP6745608B2 (en) Ball bearing
JP6833414B2 (en) Bearing with seal
JP2022139574A (en) Bearing with seal
JP2024040109A (en) ball bearing
JP2023144204A (en) ball bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052208.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247005425

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005425

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE