WO2014045339A1 - 糖尿病性末梢神経障害の評価装置、およびその方法 - Google Patents

糖尿病性末梢神経障害の評価装置、およびその方法 Download PDF

Info

Publication number
WO2014045339A1
WO2014045339A1 PCT/JP2012/073835 JP2012073835W WO2014045339A1 WO 2014045339 A1 WO2014045339 A1 WO 2014045339A1 JP 2012073835 W JP2012073835 W JP 2012073835W WO 2014045339 A1 WO2014045339 A1 WO 2014045339A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulus
probe
sensory threshold
sole
application state
Prior art date
Application number
PCT/JP2012/073835
Other languages
English (en)
French (fr)
Inventor
井野 秀一
佐藤 満
紀代 高橋
眞一 吉村
Original Assignee
独立行政法人産業技術総合研究所
学校法人昭和大学
学校法人大阪医科大学
株式会社飛鳥電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 学校法人昭和大学, 学校法人大阪医科大学, 株式会社飛鳥電機製作所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2014536431A priority Critical patent/JP5909748B2/ja
Priority to PCT/JP2012/073835 priority patent/WO2014045339A1/ja
Priority to US14/411,470 priority patent/US20150182158A1/en
Priority to IN10754DEN2014 priority patent/IN2014DN10754A/en
Priority to EP12884846.2A priority patent/EP2898834B1/en
Priority to RU2015100003/14A priority patent/RU2589543C1/ru
Priority to CN201280073547.3A priority patent/CN104540454B/zh
Publication of WO2014045339A1 publication Critical patent/WO2014045339A1/ja
Priority to HK15110397.1A priority patent/HK1209608A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4824Touch or pain perception evaluation
    • A61B5/4827Touch or pain perception evaluation assessing touch sensitivity, e.g. for evaluation of pain threshold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/04Force
    • F04C2270/041Controlled or regulated

Definitions

  • the present invention relates to an evaluation apparatus and a method for quantitatively evaluating peripheral neuropathy derived from type 2 diabetes (hereinafter simply referred to as diabetes), particularly sensory disturbance in the sole of the foot.
  • diabetes type 2 diabetes
  • the quantitative evaluation result obtained by the present invention can be used as an index for predicting early stage diabetes.
  • Diabetes which accounts for many lifestyle-related diseases, is difficult to detect at an early stage and appropriately treat it because the subjective symptoms are not clear at the initial stage.
  • medically identifying diabetes it is common to perform a blood test to check whether the blood glucose level exceeds an appropriate value.
  • he / she does not feel that he / she is willing to perform a blood test.
  • Diabetes mellitus with rare subjective symptoms is presumed to exist without being discovered, and according to a survey conducted in 2007 by a public institution, The survey results show that there are 22.1 million people in Japan who cannot deny this possibility.
  • Diabetes is known to have complications such as neuropathy (peripheral neuropathy), retinopathy and nephropathy depending on the degree of progression.
  • neuropathy is known to appear from the peripheral part of the limbs in the early stages of diabetes, and the sensation to the external stimuli of the soles that had been felt until then gradually weakened, eventually becoming numb Is known to be.
  • the decrease in sensation to external stimuli of a certain strength is gradual, the decrease in sensation in the sole of the foot is not clearly recognized as a subjective symptom in daily life.
  • diabetes is found only after more severe complications such as symptom and nephropathy develop.
  • the Semimes-Weinstein skin sensometer quantifies tactile sensation and pain sensation by changing 20 types of filaments with different thicknesses to the probe head and specifying the threshold according to which filament was touched by the fingertip, To do.
  • a skin sensometer for example, there is an evaluation of the degree of nerve recovery after surgery in the orthopedic field.
  • the vibration sensation threshold value measuring apparatus of Patent Literature 1 includes a support base that supports a subject's forearm, an exciter that applies vibration stimulation to the fingertip of the subject, a push button switch that is operated by the subject, and a load cell of the exciter.
  • a measuring device is configured by a control unit that calculates and evaluates a threshold based on an output signal from the accelerometer.
  • the vibration sensation threshold value measurement apparatus of Patent Document 1 is based on the measurement method defined in JIS-B-7773, and the descending method threshold value obtained by the previous descending method for the magnitude of the vibration stimulus given to the subject. On the other hand, it is characterized in that it is changed randomly within a predetermined range.
  • Patent Document 2 discloses a load measuring device for performing human skin sensation threshold measurement. There, a support base that supports the measurement site of the subject, a support fixed to the support base, a movable table that can move up and down along the support, a micro-weight transducer that is fixed to the movable table, and a micro-weight converter
  • a load measuring device is constituted by a measuring needle provided in the control unit and a control device. The control device controls the driving state of the stepping motor that drives the movable table up and down, and further processes the signal output from the minute weight converter.
  • Patent Document 3 a device for inspecting human skin sensory recognition is disclosed in Patent Document 3.
  • the inspection device consists of a strain gauge to detect.
  • Patent Document 4 discloses an inspection device for inspecting a so-called diabetic foot that is accompanied by neuropathy and has little or no sense of the sole of the foot.
  • This inspection device includes a box-shaped housing, a transparent footrest plate disposed on the upper surface of the housing, a video camera disposed within the housing, a light source, and transmission means for transmitting video data of the video camera. It consists of When conducting an examination, with the sole of the subject placed on the footrest plate in a predetermined position, the footcam is imaged with a video camera, and the doctor analyzes the transmitted image to analyze neuropathy. Diagnose the degree.
  • Japanese Patent No. 4611453 (paragraph numbers 0025 to 0027, FIG. 1) Japanese Patent Laid-Open No. 06-30904 (paragraph number 0016, FIG. 1) No. 05-503022 (Page 3, lower left column, lines 18 to 20, line 2) JP 2005-533543 A (paragraph number 0020, FIG. 1)
  • Patent Documents 1 to 3 As a measurement device for the threshold value of human skin sensation, there are measurement devices described in Patent Documents 1 to 3, and all measure the threshold value when an external stimulus is applied to the skin of a subject. There are only. For this reason, the measurement result can be used to evaluate a sensory threshold when, for example, the peripheral nerve is damaged, but it is difficult to apply it to others.
  • measurement conditions are strictly defined by the JIS standard, so measurement can only be performed by a doctor or a professional engineer. For example, the position of the probe to be brought into contact with the fingertip must not be in a thick part of the skin, but must be other than the center position of the fingerprint.
  • the measurement conditions are extremely complicated such that the depth of the dent in the skin in a stationary state when the probe is applied to the fingertip must be 1.5 ⁇ 0.8 mm.
  • the load measuring device of Patent Document 2 is configured to lower the movable table at a constant speed with a stepping motor, press the measuring needle against the skin, and measure the load of the measuring needle when the subject senses a stimulus by the measuring needle.
  • the sensory threshold is measured by the load measuring unit. Therefore, for example, when specifying the sensory threshold value of the sole, it is necessary to repeatedly apply stimulation with a measuring needle at a large number of measurement points, and it takes a lot of time to specify the presence or absence of peripheral neuropathy and the degree thereof. It will take.
  • the inspection device for inspecting a diabetic foot of Patent Document 4 diagnoses the degree of neuropathy by a doctor analyzing an image transmitted from the inspection device, but this inspection device has almost no sense of the sole of the foot. Alternatively, patients who have no sense of the sole of the foot are examined, and only the wound is inspected for the sole. Therefore, in the early stage of diabetes without subjective symptoms, it is impossible to determine the possibility of diabetes by specifying the presence or absence of neuropathy or the progress of neuropathy.
  • Diagnosis at the initial stage of diabetes mainly consists of outpatient treatment, but the evaluation (testing) method is simple and effective for quantitative evaluation of nerve disorders (sensory disorders) in the soles of the feet at the examination site. It is desirable that the time required for the inspection can be shortened, and that anyone can accurately inspect without requiring specialized knowledge and techniques.
  • the conventional measurement apparatus as described above has complicated measurement conditions and takes a lot of time for measurement.Everyone can easily set a sensory threshold, such as a measurement apparatus that can only be used by a doctor or technician with expertise. There was room for improvement in points that could not be measured.
  • the present inventor has found that the sensory threshold reference data obtained when a movement stimulus is applied to the sole obtained from a group of diabetic patients and the difference in patient age. By determining the range of change in stimulus intensity using the age correction coefficient calculated from the standard value of the sensory threshold based on the sensory threshold, it is possible to determine the sensory threshold with a smaller number of stimulations.
  • the present inventors have found that it is possible to specify the presence / absence or the progress of neuropathy, and have proposed the present invention.
  • the purpose of the present invention is to quantitatively measure the sensory threshold in the soles derived from diabetes and evaluate diabetic peripheral neuropathy that can automatically identify the presence or absence of neuropathy or the progress of neuropathy from the measurement results It is to provide an apparatus and a method thereof.
  • the object of the present invention is to automatically specify the presence or absence of neuropathy or the progress of neuropathy with a smaller number of stimulations, and thus the time required for evaluation can be shortened. It is an object of the present invention to provide an evaluation apparatus for diabetic peripheral neuropathy suitable for outpatient examination, and a method thereof, which enables anyone to perform an accurate examination without requiring a test.
  • the apparatus for evaluating diabetic peripheral neuropathy includes a measuring device A that measures a sensory threshold value of a sole, specifies a sensory threshold value from a measurement result of the measuring device A, and further determines a neurological disorder from the specified sensory threshold value. And a main control unit B that evaluates the progress of neuropathy.
  • the measuring apparatus A includes a footrest 2 that is provided on the base 1 and supports the sole of a subject in a sitting or standing position, a probe 4 that gives a movement stimulus to the sole, and a probe driving structure that moves the probe 4. 3, an input switch 5 that is operated by a subject who has recognized a moving stimulus, and a drive control unit 51 that controls the drive state of the probe drive structure 3.
  • the main control unit B includes reference data of a known sensory threshold when a movement stimulus is applied to the soles of the patient group, and an age correction coefficient calculated from a standard value of the sensory threshold based on a difference in the age of the patient. Pre-stored.
  • the drive control unit 51 controls the drive state of the probe drive structure 3 using the reference data and the age correction coefficient, and determines the primary stimulus application state, the secondary stimulus application state, and the tertiary stimulus application state.
  • the sensory threshold value is measured sequentially. In the primary stimulus application state, a rough sensory threshold value is temporarily set by increasing the change width of the movement stimulus by the probe 4.
  • the rough threshold value temporarily set is used as a reference value, and the sensory threshold value is measured by applying a movement stimulus having a small change width.
  • the sensory threshold value is applied by applying a larger movement stimulus than the mobile stimulus corresponding to the sensory threshold value temporarily set in the primary stimulus application state. Measure.
  • the main control unit B compares and evaluates the measured sensory threshold and the known reference data, and automatically determines the presence / absence of the nerve disorder on the sole and the degree of the neurological disorder.
  • the probe drive structure 3 includes a first table 11 and a second table 12 that are guided and supported so as to be slidable back and forth and back and forth, and a first drive structure 13 that is provided on the base 1 and reciprocates the first table 11.
  • the second drive structure 14 is provided on the first table 11 and reciprocates the second table 12, and the probe fixing portion 40 is provided on the second table 12.
  • the probe 4 attached to the probe fixing unit 40 is individually moved in the moving direction of the first table 11 and the moving direction of the second table 12, and the moving distance and moving speed of the probe 4 are measured as independent variables.
  • the main sensor B evaluates the measured sensory threshold and the reference data.
  • the probe driving structure 3 includes a moving table 11 that is guided and supported so as to be slidable in a reciprocating manner, a driving structure 13 that is provided on the base 1 and reciprocates the moving table 11, and a probe fixing portion 40 provided on the moving table 11.
  • the subject's posture is changed to a posture along the moving direction of the probe 4 attached to the probe fixing unit 40 and a posture orthogonal to the moving direction of the probe 4, and the back and forth direction movement stimulus and the left and right direction movement stimulus are applied to the sole of the foot.
  • the evaluation device includes display means 55 for displaying the determination result of the main control unit B regarding the presence or absence of nerve damage on the sole and the degree of nerve damage.
  • the motor 23 constituting the first drive structure 13 and the motor 33 constituting the second drive structure 14 are fixed to the brackets 27 and 37 via vibration-proof structures 28 and 38 that block vibration.
  • the rotational power of the motors 23 and 33 is converted into a reciprocating motion by the ball screw shafts 21 and 31 and the female screw bodies 22 and 32 fixed to the first table 11 and the second table 12, and the first table 11 and The second table 12 is reciprocated back and forth and left and right.
  • a probe driving structure that operates in accordance with an examination preparation process in which the sole is placed on the contact window 8 opened at a predetermined position of the footrest 2 and the control procedure of the drive control unit 51. 3, the probe 4 is moved, and when the subject feels a moving stimulus on the sole, the input switch 5 is operated to measure the sensory threshold, and the measured sensory threshold is evaluated by the main control unit B Evaluation process.
  • the main control unit B includes reference data of a known sensory threshold when a movement stimulus is applied to the soles of the patient group, and an age correction coefficient calculated from a standard value of the sensory threshold based on a difference in the age of the patient. Stored in advance.
  • the drive control unit 51 in the stimulus measurement process first controls the drive state of the probe drive structure 3 using the reference data and the age correction coefficient to increase the change range of the moving stimulus by the probe 4 and roughly sense it. Measurement is performed according to a primary stimulus application state in which a threshold value is temporarily set. Next, measurement is performed in a secondary stimulus application state in which a rough stimulus threshold obtained in the primary stimulus application state is used as a reference value and a movement stimulus with a small change width is applied to measure the sensory threshold value.
  • a tertiary stimulus that measures a sensory threshold value by applying a larger movement stimulus than the mobile stimulus corresponding to the sensory threshold value temporarily set in the primary stimulus application state
  • the sensory threshold value is measured according to the applied state. That is, the primary stimulus applying state, the secondary stimulus applying state, and the tertiary stimulus applying state are performed in the order of description.
  • the main control unit B compares and evaluates the measured sensory threshold and the known reference data, and automatically determines the presence / absence of the nerve disorder on the sole and the degree of the neurological disorder.
  • the state shifts to the quaternary stimulus application state and the maximum intensity of the mobile stimulus is applied to measure the sensory threshold.
  • the tertiary stimulus application state in which the sensory threshold is measured by applying a mobile stimulus having a small change width with the maximum movement stimulus as a reference value.
  • the probe 4 is individually moved in the front-rear direction and the left-right direction by the probe driving structure 3 to give the front and rear movement stimulus and the left-right movement stimulus to the sole, and the movement distance and movement speed of the probe 4 Are measured as independent variables.
  • a sensory threshold is measured by individually applying a movement stimulus to each of the mother heel surface E1, the mother sphere E2 and the heel surface E3 of the sole.
  • the probe 4 is moved by the probe driving structure 3 to give a moving stimulus to the subject's sole, and the sensory threshold value for the moving stimulus is set based on the output signal of the input switch 5 operated by the subject. taking measurement. Further, in the process of measuring the sensory threshold, the driving state of the probe driving structure 3 is controlled using reference data and an age correction coefficient of a known sensory threshold prepared in advance, so that each primary to tertiary stimulus is controlled. The sensory threshold value is measured through the applied state, and the sensory threshold value obtained and the reference data are compared and evaluated by the main control unit B, and the presence or absence of the nerve disorder on the sole and the degree of the neurological disorder are automatically determined. .
  • the probe 4 is connected to the probe drive structure 3 only by placing the subject's foot on a predetermined position of the footrest 2 and operating the evaluation apparatus after inputting the age data.
  • the movement stimulus as set for the subject can be given accurately by the set procedure. Therefore, it is possible to measure the sensory threshold with high reproducibility by eliminating the fluctuation of the movement stimulus for the subject, and quantitatively measure the sensory threshold on the sole derived from diabetes, and the presence or absence of neuropathy from the measurement result You can automatically identify the progress of
  • a measurer who does not have medical expertise or specialized knowledge and skills related to biometrics to measure and evaluate sensory thresholds on the soles. Even so, it is possible to easily measure sensory thresholds, eliminate variations in measurement results due to differences in measurers, and is particularly suitable for outpatient examinations where it is difficult to take a sufficient amount of time.
  • Apparatus for evaluating peripheral neuropathy is provided.
  • a movement stimulus (secondary stimulus) with a small change width is applied using the temporarily set rough sensory threshold as a reference value, and the sensory threshold is set. Since the measurement is performed in more detail, the sensory threshold value can be accurately determined with a smaller number of times of stimulation. Therefore, it is possible to measure and evaluate the sensory threshold value in a short time by greatly reducing the time required for evaluation of the sensory threshold value in an outpatient examination where it is difficult to take a sufficient time. It should be noted that the provision of the third stimulus includes any error or misperception in the measurement of the rough sensory threshold temporarily set in the first stimulus application state when there is no stimulus response in the second stimulus application state. This is because the sensory threshold value is measured again by applying a large movement stimulus again.
  • the probe drive structure 3 is configured by the first table 11 and the second table 12 and the first and second drive structures 13 and 14 that drive the tables 11 and 12, the front and rear movement stimuli and the left and right It is possible to accurately give the movement stimulus.
  • the conventional measuring apparatus that applies vibration stimulus or compression stimulus to a specific part of the skin
  • a measurement result reflecting the knowledge that the sensory characteristics of the soles differ in two directions is obtained, and the moving distance and moving speed of the probe 4 can be measured as independent variables. Therefore, by comparing the obtained measurement results with known sensory threshold values collected in advance and stored in a database, it is possible to more accurately specify the presence or absence of neuropathy derived from diabetes or the progress of neuropathy.
  • the overall structure of the evaluation apparatus can be remarkably simplified and made compact, so that the evaluation apparatus suitable for use in a narrow place such as an examination room or a waiting room. Can provide. Further, there is an advantage that the cost of introducing the evaluation device can be reduced by reducing the overall cost by the amount that can simplify the structure of the evaluation device. Furthermore, by simply changing the posture of the subject to a posture along the moving direction of the probe 4 and a posture orthogonal to the moving direction of the probe 4, it is possible to apply a moving stimulus in the front-rear direction and a moving stimulus in the left-right direction to the sole.
  • the determination result compared and evaluated by the main control unit B is clearly displayed on the display device 55, and the presence or absence of the neuropathy or the progress of the neuropathy is displayed while presenting to the subject.
  • the outpatient medical staff will clearly indicate which of the 10 levels is to be evaluated, and further, according to each level.
  • "Slight neuropathy” or “Slightly strong neuropathy” can be displayed and presented for the evaluation results for the subject.
  • the start button By simply turning on the probe 4, the probe 4 can be driven according to a preset procedure, and a movement stimulus as set in advance can be accurately given to the subject.
  • measurement of a sensory threshold value is a time-consuming task of repeatedly applying various intensity stimuli to a single site and repeating the same procedure at other sites. For this reason, it is difficult to implement it in a clinical place where time is limited.
  • the sensory threshold value of the sole and the measurement result are evaluated through the test preparation process, the stimulus measurement process, and the evaluation process.
  • the stimulus measurement process the driving state of the probe driving structure 3 is controlled using reference data of known sensory thresholds prepared in advance and the age correction coefficient, and the sensory sense is obtained through the primary to tertiary stimulus application states. The threshold was measured and determined. Further, in the evaluation process, the sensory threshold value obtained in the previous process and the reference data are compared and evaluated by the main control unit B, so that the presence or absence of the nerve disorder on the sole and the degree of the neurological disorder can be automatically determined. I did it.
  • the probe 4 is probed by placing the sole of the subject on a predetermined position of the footrest 2 and inputting the age data, and then starting the stimulus measurement process. It is possible to automatically give the moving stimulus as set to the subject by the set procedure by performing the moving operation automatically by the drive structure 3. Therefore, it is possible to measure the sensory threshold with high reproducibility by eliminating the fluctuation of the movement stimulus for the subject, and quantitatively measure the sensory threshold on the sole derived from diabetes, and the presence or absence of neuropathy from the measurement result You can automatically identify the progress of In addition, since a series of measurements and evaluations are performed automatically, a measurer who does not have medical expertise or specialized knowledge and skills related to biometrics to measure and evaluate sensory thresholds on the soles. Even so, it is possible to easily measure sensory thresholds, eliminate variations in measurement results due to differences in measurers, and is particularly suitable for outpatient examinations where it is difficult to take a sufficient amount of time. A method for evaluating peripheral neuropathy can be provided.
  • a movement stimulus (secondary stimulus) with a small change width is applied using the temporarily set rough sensory threshold as a reference value, and the sensory threshold is set. Since the measurement is performed in more detail, the sensory threshold value can be accurately determined with a smaller number of times of stimulation. Therefore, it is possible to measure and evaluate the sensory threshold value in a short time by greatly reducing the time required for evaluation of the sensory threshold value in an outpatient examination where it is difficult to take a sufficient time. It should be noted that the provision of the third stimulus includes any error or misperception in the measurement of the rough sensory threshold temporarily set in the first stimulus application state when there is no stimulus response in the second stimulus application state. This is because the sensory threshold value is measured again by applying a large movement stimulus again.
  • the transition to the quaternary stimulus application state is performed, and the sensory threshold is measured by applying the maximum intensity moving stimulus. This is because it is confirmed whether or not there is a stimulus response of the subject to the maximum intensity of the moving stimulus.
  • the tertiary stimulus is applied by measuring the sensory threshold by applying the mobile stimulus having a small change width with the maximum mobile stimulus as a reference value. This is because the state shifts to the state and the sensory threshold is reliably measured and specified.
  • the sensory threshold values of the sole surface E1, the base surface E2, and the base surface E3 of the sole are measured because of the sense in the skin that senses the mechanical movement stimulus at these measurement target portions. This is because the receptors are densely distributed and the thresholds for sensory stimuli are also different. In addition, it is easier to evaluate the presence or absence of neuropathy or the progress of neuropathy by more reliably measuring the sensory threshold value of each of the previous sites than when other sites are measured. .
  • or FIG. 8 shows the Example of the evaluation apparatus (henceforth an evaluation apparatus only) of the diabetic peripheral neuropathy based on this invention.
  • front / rear, left / right, and upper / lower follow the cross arrows shown in each figure and the front / rear, left / right, and upper / lower indications shown in the vicinity of each arrow.
  • the evaluation device specifies a sensory threshold value from the measurement result of the measurement device A that measures the sensory threshold value of the sole, and the measurement device A.
  • the measurement device A is composed of a main control unit (computer) B that evaluates the progress of neuropathy.
  • the measuring apparatus A includes a rectangular base 1, a footrest 2 that supports the sole, a probe drive structure 3 disposed between the base 1 and the footrest 2, and a movement stimulus on the sole.
  • the probe 4 is provided and the input switch 5 is operated by the subject.
  • the footrest 2 is formed of a plastic thick plate, and is fixedly supported by pillars 7 provided at the four corners of the base 1.
  • a contact window 8 that accommodates the probe 4 is opened in an L shape at the center of the footrest 2.
  • a handrail 9 is erected to support the subject standing on the footrest 2.
  • reference numeral 10 denotes an AD-DA converter
  • reference numeral 55 denotes a display (display means).
  • a fixing device 50 for fixing the measurement target foot is provided on the upper surface of the footrest 2.
  • the fixing device 50 is formed of a pair of band cloths having male and female hook-and-loop fasteners.
  • the probe drive structure 3 includes a first table 11 and a second table 12 that are guided so as to be reciprocally slidable in directions orthogonal to each other along a horizontal plane, a first drive structure 13 that reciprocates the first table 11, and a second
  • the table 12 includes a second drive structure 14 that reciprocates.
  • the rectangular first table 11 that is long to the left and right is supported by a pair of left and right guide rails 17 provided on the drive base 16 so as to be slidable back and forth through sliders 15 provided at four locations on the lower surface thereof.
  • the square second table 12 is supported by a pair of front and rear guide rails 19 provided on the first table 11 so as to be slidable left and right through sliders 18 provided at four locations on the lower surface thereof.
  • the first drive structure 13 includes a ball screw shaft 21, a nut body 22 that is fixed to the lower surface of the first table 11 and meshes with the ball screw shaft 21, and the ball screw shaft 21 is driven forward and backward.
  • the step motor (motor) 23 and the coupling 24 are configured.
  • a shaft end of the ball screw shaft 21 is rotatably supported by a pair of front and rear bearing boxes 25 via a bearing 26.
  • the bearing box 25 is fixed to the drive base 16.
  • the first table 11 can be moved forward or backward by rotating the ball screw shaft 21 forward or backward with the step motor 23.
  • the step motor 23 is fixed to a bracket 27 fixed to the drive base 16 via an anti-vibration rubber (anti-vibration structure) 28, whereby the vibration generated by the step motor 23 is blocked, and the vibration is driven to the drive base. 16 and the base 1 and the column 7 are prevented from being transmitted to the footrest 2.
  • the second drive structure 14 includes a ball screw shaft 31, a nut body 32 that is fixed to the lower surface of the second table 12 and meshes with the ball screw shaft 31, and a step motor that drives the ball screw shaft 31 forward and backward. (Motor) 33, coupling 34 and the like.
  • a shaft end of the ball screw shaft 31 is rotatably supported by a pair of left and right bearing boxes 35 via a bearing 36.
  • the bearing box 35 is fixed to the first table 11.
  • the second table 12 can be moved to the left or right by rotating the ball screw shaft 31 forward or backward by the step motor 33.
  • the step motor 33 is fixed to a bracket 37 fixed to the first table 11 via an anti-vibration rubber (anti-vibration structure) 38, thereby blocking the vibration generated by the step motor 33 and preventing the vibration from occurring. Propagation to the platform 2 is prevented.
  • a probe fixing portion 40 for attaching the probe 4 is provided in the center of the upper surface of the second table 12.
  • a mounting hole 41 having a square cross section is formed at the center of the probe fixing portion 40, and the second table 12 is moved back and forth by inserting the probe 4 into the mounting hole 41.
  • the probe 4 can be moved along with the left / right movement.
  • the rotational power of the stepping motor 23 is converted into reciprocating power by the ball screw shafts 21 and 31 and the nut bodies 22 and 32.
  • the first drive structure 13 and the second drive structure 14 may be configured by using a dynamic linear actuator as a drive source.
  • FIG. 4 shows two types of probes 4, which can be attached to the probe fixing unit 40 and the sensory threshold value can be measured.
  • the first probe 4A (4) is made of a plastic rod-shaped body having a square axis shape, and gives a moving stimulus to the sole of the foot with a flat contact portion 44 provided at the upper end thereof. In order to provide a sufficient area for the contact portion 44 to contact the sole, the front and rear dimensions and the left and right dimensions of the contact portion 44 are set to 10 mm, and the area is set to 100 mm 2 .
  • the second probe 4B (4) is formed of a plastic rod-shaped body having the same angular axis as that of the first probe 4A. A carpet is attached to the upper end of the rod-shaped body to form the contact portion 44.
  • the front and rear dimensions, the left and right dimensions, and the area of the contact portion 44 are the same as those of the contact portion 44 of the first probe 4A.
  • the contact portions 44 and 44 are flush with the upper opening surface of the contact window 8, as shown in FIG.
  • the contact window 8 is formed in an L shape by the front and rear grooves 45 and the left and right grooves 46, and the front and rear dimensions and the left and right dimensions of the grooves 45 and 46 are 28 mm, respectively.
  • the input switch 5 is a push button switch, and is turned on when the subject feels a moving stimulus in the process of measuring the sensory threshold with the measuring device A.
  • the ON signal (output signal) output from the input switch 5 is taken into the main control unit B, and the ON signal of the input switch 5 and the movement status of the probe 4 are stored in the storage unit 52. Further, the ON signal of the input switch 5 and the movement status of the probe 4 are displayed on a display (display means) 6 provided in the main controller B.
  • the main control unit B can move the probe 4 individually in the front-rear direction or the left-right direction in a predetermined procedure by controlling the drive state of the probe drive structure 3 with the drive control unit 51.
  • the moving speed of the probe 4 by the probe driving structure 3 can be set in increments of 1 mm / s, and the moving distance can be set in increments of 0.1 ⁇ m.
  • the measurement of the sensory threshold on the sole by the measuring device A having the above-described configuration is first performed using the first probe 4A on the sole of the right foot and the sole of the left foot. Further, as shown in FIG. 7 and FIG. 8, the front and rear direction movement stimuli and the left and right direction movement stimuli are given to the respective portions of the main heel surface E1, the main sphere surface E2 and the heel surface E3 for each foot. Measure.
  • the front and rear direction moving stimulus and the left and right direction moving stimulus are prepared in multiple stages from a stimulus that is relatively difficult to perceive to a stimulus that is relatively easy to perceive, for example, while increasing (or decreasing) the intensity of the stimulus.
  • the measurement is performed while the intensity of stimulation is changed randomly.
  • the strength of the moving stimulus can be changed by changing the combination of the moving speed and the moving distance of the probe 4, and what strength of the moving stimulus is given in what order is incorporated in the main controller B in advance. deep.
  • the subject's foot is placed on the footrest 2 in a bare foot state, and the subject's weight is raised while acting on the sole.
  • the subject grasps the handrail 9 to stabilize the standing posture, and further holds the input switch 5 with the hand on the dominant arm side so that the input switch 5 can be turned on at any time.
  • the whole toe surface E ⁇ b> 1 is raised while facing the contact window 8, and the measuring object is fixed by the fixing device 50 (see FIG. 2) attached to the footrest 2. .
  • the start button of the main control unit B is turned on, the probe driving structure 3 is operated, and the probe 4 is moved.
  • the storage unit 52 of the main control unit B reference data of a known sensory threshold when a movement stimulus is given to the soles of patients suffering from diabetes, and a sensory threshold standard based on the age difference of the patient
  • the age correction coefficient calculated from the value is stored in advance.
  • the drive control unit 51 controls the drive state of the probe drive structure 3 using the previous reference data and the age correction coefficient, and provides a primary stimulus application state, a secondary stimulus application state, and a tertiary stimulus application state. Are sequentially performed to measure the sensory threshold value.
  • a rough sensory threshold value is temporarily set by increasing the change width of the moving stimulus by the probe 4. For example, a moving stimulus divided into five stages is randomly given (S1), and the presence or absence of the subject's stimulus response to the moving stimulus is confirmed (S2). If the subject's stimulus response is recognized (YES in S2), the smallest sensory threshold is provisionally set as a reference value. That is, a rough sensory threshold for a moving stimulus divided into five stages is temporarily set, and the state shifts to a secondary stimulus application state.
  • the sensory threshold value is measured by applying a movement stimulus having a small change width with the rough sensory threshold value that is temporarily set as a reference value.
  • the roughly set rough sensory threshold value is a threshold value corresponding to stage 3 among the five stages of movement stimuli, this is used as a reference value, and a movement stimulus slightly smaller than the reference value is given ( S3), the presence or absence of the stimulus response of the subject is confirmed (S4). If the test subject's stimulus response is recognized (YES in S4), the previously applied mobile stimulus is used as a new reference value, and a mobile stimulus slightly smaller than the reference value is given (S5). The presence or absence of reaction is confirmed (S6).
  • a stimulus response is recognized (YES in S6)
  • a stimulus smaller than the previous moving stimulus is given (S5)
  • the presence or absence of the subject's stimulus response is confirmed (S6).
  • the sensory threshold is measured by repeating the application of a smaller moving stimulus.
  • the secondary stimulus application state can be ended by applying the movement stimulus around 5 times.
  • the obtained sensory threshold value is compared and evaluated with reference data of a known sensory threshold value measured in advance in the main control unit B, and the presence / absence of the nerve disorder of the sole and the degree of the neurological disorder are determined (S7).
  • the evaluation of the degree of neuropathy is divided into, for example, 10 levels.
  • the main control unit B identifies which stage the test subject is suffering from the neuropathy and clearly indicates on the display 55. Specifically, for the outpatient medical staff, after indicating on the display 55 which of the 10 stages of evaluation is given, “slight neuropathy” The evaluation result for the subject is displayed, such as “There is a somewhat strong neurological disorder”.
  • the measurement of the rough sensory threshold temporarily set in the primary stimulus application state includes some error or misperception. There is a possibility.
  • the state shifts to the tertiary stimulus application state the transfer stimulus is applied again (S8), and the sensory threshold is measured again to determine whether or not the subject has a stimulus response. Confirm (S9).
  • a movement stimulus larger than the movement stimulus corresponding to the sensory threshold temporarily set in the primary stimulus application state is applied and the subject's stimulus response is recognized (YES in S9), this is The sensory threshold is used.
  • the obtained sensory threshold value is compared and evaluated with reference data of a known sensory threshold value measured in advance in the main control unit B, and the presence / absence of the nerve disorder of the sole and the degree of the neurological disorder are determined (S11).
  • a stimulus larger than the previous mobile stimulus is given (S8) until the mobile stimulus reaches the maximum value.
  • the presence / absence of the stimulus reaction of the subject is repeatedly confirmed (S9). If the mobile stimulus reaches the maximum value (YES in S10), the presence or absence of the subject's stimulus response is confirmed at that time, and the measurement is terminated.
  • the movement stimulus is set to the maximum value, if there is no stimulus response of the subject, it is regarded as sensory loss.
  • the obtained sensory threshold value is compared and evaluated with reference data of a known sensory threshold value measured in advance in the main control unit B, and the presence / absence of a nerve disorder on the sole and the degree of the neurological disorder are determined (S17).
  • S17 the presence / absence of a nerve disorder on the sole and the degree of the neurological disorder are determined.
  • S14 the measurement is terminated.
  • the primary stimulus application state, the secondary stimulus application state, and the tertiary stimulus application state are sequentially performed.
  • the probe 4 In each stimulus application state, the probe 4 is moved back and forth.
  • the movement stimulus in the front-rear direction is relatively difficult to perceive.
  • the timing of the output signal of the input switch 5 is compared with the movement status of the probe 4 and there is a large difference between the timings of the two, the output signal of the input switch 5 is regarded as a misunderstanding or erroneous operation of the subject. Can be marked or disabled.
  • the main control unit B can specify the sensory threshold value for the left and right direction movement stimulus by giving the left and right direction movement stimulus to the main body E1.
  • the main surface E2 faces the contact window 8 as shown in FIG. 7, and the movement stimulus in the front-rear direction and the movement stimulus in the left-right direction are individually given in the same manner as described above.
  • the measurement of the main sphere E2 is completed, the measurement is performed in the same manner as described above while the heel surface E3 faces the contact window 8 and the movement stimulus in the front-rear direction and the movement stimulus in the left-right direction are individually given. End the measurement.
  • measurement is performed by applying a front and rear direction movement stimulus and a right and left direction movement stimulus for each portion of the main surface E1, the main surface S2 and the third surface E3.
  • the sensory threshold value for each measurement location can be specified.
  • the second probe 4B is attached to the probe fixing unit 40 in place of the first probe 4A, and in the same manner as the first probe 4A, the left and right soles E1 Then, the sensory threshold value can be measured for the main sphere E2 and the heel surface E3.
  • the sensory threshold value is measured only by the first probe 4A, and the presence or absence of the nerve disorder on the sole and the degree of the neurological disorder. May be evaluated.
  • a plurality of types of probes 4A and 4B having different physical properties of the contact portion 44 are prepared, and the plurality of types of probes 4A and 4B are alternatively used in the stimulus measurement process, so
  • a sensory threshold value is measured by applying a plurality of different kinds of mobile stimuli to the sensor
  • the mobile stimulus is determined according to the condition of the sole of the subject and the like as compared with the case where the sensory threshold value for the mobile stimulus is measured using only a single probe 4.
  • the probe 4 is moved to the probe driving structure by the command from the drive control unit 51 only by standing the subject at the correct position and turning on the start button of the main control unit B. 3 can be moved and operated to automatically and accurately measure the sensory threshold of the sole. Therefore, even a measurer who does not have medical expertise or specialized knowledge and techniques related to living body measurement can easily perform sensory threshold measurement, and the variation in measurement results due to different measurers. Can be eliminated. In this way, the sensory threshold value can be accurately measured by anyone, so the sensory threshold value can be measured according to the guidance of the nurse or nursing assistant while waiting for the examination in the waiting room.
  • It can be set as the evaluation apparatus of diabetic peripheral neuropathy suitable for the examination in the outpatient where it is difficult to perform the examination over time.
  • the probe 4 since the probe 4 is moved by the probe driving structure 3 and the moving stimulus as it is set to the subject can be accurately given, the variation in the moving stimulus is eliminated and the sensory threshold value is highly reproducible. It can be measured.
  • the measurement of the sensory threshold on the sole includes an examination preparation process, a stimulus measurement process, and an evaluation process.
  • the examination preparation process the sole is placed on the contact window 8 opened at a predetermined position of the footrest 2 and fixed by the fixing device 50.
  • the stimulus measurement process the probe 4 is moved by the probe drive structure 3 that operates according to the control procedure of the drive controller 51, and when the subject feels the movement stimulus on the sole, the input switch 5 is operated to set the sensory threshold value. taking measurement.
  • the measured sensory threshold value is evaluated by the main control unit B, and the presence or absence of a nerve disorder on the sole and the degree of the neurological disorder are determined.
  • the main control unit B includes reference data of a known sensory threshold when a movement stimulus is applied to the soles of the patient group, and an age correction coefficient calculated from a standard value of the sensory threshold based on a difference in the age of the patient. Pre-stored.
  • the drive control unit 51 in the stimulus measurement process first controls the drive state of the probe drive structure 3 using the previous reference data and the age correction coefficient to increase the change width of the movement stimulus by the probe 4 and roughly.
  • a primary stimulus application state in which a sensory threshold value is temporarily set is executed.
  • a secondary stimulus application state is performed in which a rough sensory threshold value obtained in the primary stimulus application state is used as a reference value, and a movement stimulus having a small change width is applied to measure the sensory threshold value.
  • the sensory threshold value is measured by applying a greater movement stimulus than the movement stimulus corresponding to the sensory threshold value temporarily set in the primary stimulus application state.
  • the stimulus application state is executed.
  • the main control unit B compares and evaluates the measured value obtained in the tertiary stimulus application state with a known sensory threshold value, and automatically determines whether there is a nerve disorder on the sole and the degree of the neurological disorder. Judgment.
  • the details of the measurement method in each secondary stimulus application state are as described above.
  • the limit method is used step by step in each stimulus application state, and the sensory threshold value for the moving stimulus is measured, so that the number of times of stimulus application to the sole is less than the normal limit method.
  • the sensory threshold can be measured in a shorter time.
  • the measurement error due to habituation and expectation, which is a characteristic of the limit method may be larger than the case where the measurement is performed by the limit method, because the number of times the stimulus is applied is less.
  • the third stimulus application state is executed so as to ensure a more accurate sensory threshold measurement.
  • the state shifts to the quaternary stimulus application state, and the sensory threshold is measured by applying the maximum intensity of the mobile stimulus.
  • the tertiary stimulus application state in which the sensory threshold is measured by applying a mobile stimulus having a small change width with the maximum movement stimulus as a reference value.
  • the main control unit B compares and evaluates the measured known sensory threshold and the reference data, and automatically determines the presence / absence of the nerve disorder on the sole and the degree of the neurological disorder.
  • the probe 4 is individually moved in the front-rear direction and the left-right direction by the probe driving structure 3 to give the front and rear movement stimulus and the left-right movement stimulus to the sole, and the movement distance and movement speed of the probe 4 Are measured as independent variables.
  • a sensory threshold value for a moving stimulus in a shearing direction applied to the sole can be measured unlike a conventional measuring apparatus that applies a vibration stimulus or a compression stimulus to a specific part of the skin.
  • the sensory threshold value In the stimulus measurement process, it is preferable to measure the sensory threshold value by individually applying a movement stimulus to each of the mother heel surface E1, the mother sphere E2 and the heel surface E3 of the sole. In this way, the movement stimuli are individually applied to the main heel surface E1, the main sphere surface E2, and the heel surface E3.
  • the three points on the sole of the foot are the sensory sensors in the skin that sense mechanical stimuli. This is because the container is a densely distributed part, and the thresholds for sensory stimuli are also different, and the knowledge that these three sensory thresholds have an extremely important meaning is widely recognized. .
  • this device can measure in principle anywhere on the sole of the foot except for these three points. For example, when applied to the diagnosis of neurological diseases, peripheral nerves that are expected to fail are It is possible to perform measurements on the sole of the foot other than the three points that dominate.
  • a sensory threshold is measured by applying a moving stimulus in a state where the subject's weight acts on the sole.
  • a moving stimulus is applied with the subject's body weight acting on the sole
  • a sensory threshold value under a condition in which pressure is applied uniformly to the sensory receptors distributed in the skin and the stimulus is always stimulated. It becomes measurement of.
  • the pressure applied by the body weight has an effect of masking the sensitivity of the sensory receptor in the skin, so that the sensation becomes dull and a value larger than the sensory threshold value measured under the measurement condition in which the body weight is not added is measured.
  • the sensory threshold value measured under such conditions is a value under the same conditions as in a normal standing posture, and is effective in evaluating the presence or absence of neuropathy resulting from diabetes or the progress of neuropathy. Such a measurement is impossible with all the conventional sensory function measurement methods and measuring instruments.
  • the probe drive structure 3 is configured by the first table 11 and the second table 12 and the first drive structure 13 and the second drive structure 14 that reciprocate these tables 11 and 12.
  • 40 can constitute the probe driving structure 3.
  • the probe 4 gives a movement stimulus in the front-rear direction to the subject's sole so that it is orthogonal to the movement direction of the probe 4.
  • the subject's posture can be changed to give a lateral movement stimulus to the sole.
  • the overall structure of the evaluation apparatus can be remarkably simplified and made compact, so that it can be used in a narrow place such as an examination room or a waiting room. It is possible to provide an evaluation device suitable for this. Further, there is an advantage that the cost of introducing the evaluation device can be reduced by reducing the overall cost by the amount that can simplify the structure of the evaluation device.
  • the measurement of the sensory threshold on the sole is preferably performed in a state where the subject stands on the footrest 2 and the weight of the subject acts on the sole, but it is not necessary.
  • the sensory threshold value can be measured by placing the foot of a subject sitting on a chair on the footrest 2. In that case, it is good to hold
  • the input switch 5 does not need to be a push button switch, and other switches such as a touch switch and a fall switch can be used.
  • the input switch 5 can be incorporated in the handrail 9.
  • the contact portion 44 is not limited.
  • a wood piece, metal piece, tatami mat, leather, fabric, tile, or the like can be attached to the upper end of the rod-shaped body to form the contact portion 44.
  • the probe 4 can be formed in a rod shape with plastic, metal, and wood, and the upper end surface thereof can be formed with irregularities, grooves, protrusions, or the like, or the upper end surface can be roughened to form the contact portion 44.
  • the motors 23 and 33 of the first drive structure 13 and the second drive structure 14 do not need to be step motors, and other types of synchronous motors can be used.
  • the anti-vibration rubbers 28 and 38 can also be disposed between the drive base 16 and the base 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Pain & Pain Management (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

足載台2と、足裏に移動刺激を与えるプローブ4と、基台1に設けられて、プローブ4を足裏に沿って直交方向へ個別に移動操作するプローブ駆動構造3を備えている。さらに、移動刺激を認識した被験者によって操作される入力スイッチ5と、プローブ駆動構造3の駆動状態を制御する駆動制御部51と、測定された感覚閾値を評価する主制御部Bとを備えている。主制御部Bには、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶させてある。駆動制御部51は、前記基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して1次刺激付与状態を実行する。さらに2次刺激付与状態と、3次刺激付与状態とを順次行って感覚閾値を測定する。

Description

糖尿病性末梢神経障害の評価装置、およびその方法
 本発明は、2型糖尿病(以下、単に糖尿病と言う。)に由来する末梢神経障害、とくに足裏における感覚障害を定量的に評価するための評価装置と、その方法に関する。本発明により得られる定量的な評価結果は、初期段階の糖尿病を予見する際の指標として利用することができる。
 生活習慣病の多くを占める糖尿病は、初期段階での自覚症状が明確でないため、早期に発見して適正に治療を行うことが難しい。糖尿病であることを医学的に特定する場合には、血液検査を行って血糖値が適正値を越えているか否かを確認するのが一般的である。しかし、とくに目立った自覚症状もなく、外見上、健常者と変わったところがない初期段階の糖尿病患者の場合には、自ら進んで血液検査を行う必要を感じないため、糖尿病が初期段階で発見されることは少ない。このように自覚症状が希薄な糖尿病は、多くの患者が発見されないまま存在していると推測され、公的機関が平成19年に行った調査によれば、糖尿病が強く疑われる人と、糖尿病の可能性を否定できない人の合計値が、日本国内で2210万人いるとの調査結果が出ている。
 糖尿病は、その進行度合に応じて神経障害(末梢神経障害)、網膜症、腎症などの合併症を併発することが知られている。これらの合併症のうち、神経障害は糖尿病の初期段階に手足の末梢部から現われることが知られており、それまで感じられていた足裏の外部刺激に対する感覚が徐々に弱くなり、やがて無感覚になることが判っている。しかし、一定の強さの外部刺激に対する感覚の減少は緩やかであるため、日常生活の中で足裏の感覚の減少が自覚症状として明確に認識されることはなく、重度の神経障害、あるいは網膜症、腎症などのさらに重度の合併症を発症して初めて、糖尿病であることが判明するケースが少なくない。
 本発明においては、足裏における感覚障害を定量的に計測し評価して、自覚症状がない初期段階であっても糖尿病であるかもしれないことを示唆できるが、この種の皮膚感覚の評価手法としては、Semmes-Weinstein皮膚感覚計が周知である。この皮膚感覚計は、太さが異なる20種のフィラメントをプローブヘッドに付け換えて、どのフィラメントを指先に押付けたときに触覚や痛覚を感じたかによって閾値を特定して、触覚や痛覚を定量化するものである。皮膚感覚計の応用例としては、例えば、整形外科領域における手術後の神経の回復度の評価がある。
 本発明に関して、人の皮膚感覚を測定して定量化する装置は、例えば特許文献1から3に公知である。特許文献1の振動感覚閾値測定装置は、被験者の前腕を支持する支持台と、被験者の指先に振動刺激を与える加振器と、被験者によって操作される押ボタンスイッチと、加振器のロードセルと加速度計からの出力信号に基づき閾値を算出し評価する制御部などで測定装置を構成している。なお、特許文献1の振動感覚閾値測定装置は、JIS-B-7763に規定された測定方法をベースにしており、被験者に与える振動刺激の大きさを、直前の下降法で求めた下降法閾値に対して、所定の範囲でランダムに変化させる点に特徴がある。
 特許文献2には、人の皮膚感覚閾値測定を行なうための荷重測定装置が開示してある。そこでは、被験者の測定部位を支持する支持台と、支持台に固定される支柱と、支柱に沿って上下に移動できる可動テーブルと、可動テーブルに固定した微小加重変換器と、微小加重変換器に設けられる測定針と、制御装置などで荷重測定装置を構成している。制御装置は、可動テーブルを上下に駆動するステッピングモータの駆動状態を制御し、さらに、微小加重変換器から出力される信号を処理する。
 特許文献2の荷重測定装置と同様に、人の皮膚の感覚認識を検査する装置が特許文献3に開示されている。そこでは、左右一対のスライドブロックと、各ブロックの前端に固定される撓みブロックと、各撓みブロックの前端に固定されるプローブと、スライドブロックの左右間隔を調整する構造と、撓みブロックの歪みを検出する歪みゲージなどで検査装置を構成している。皮膚の感覚認識を検査する場合には、一対のプローブの左右間隔を所定状態にセットし、プローブの突端を所定の力で皮膚に押付けた状態で引きずって、被験者に感覚認識があるか否かを検査する。
 特許文献4には、神経障害を併発して足裏の感覚が殆どない、あるいは足裏の感覚が全くない、いわゆる糖尿病足を検査するための検査機器が開示されている。この検査機器は、箱状のハウジングと、ハウジングの上面に配置される透明の足載せ板と、ハウジングの内部に配置されるビデオカメラ、および光源と、ビデオカメラの映像データを送信する送信手段などで構成してある。検査を行う場合には、足載せ板の所定の位置に被験者の足裏を載せた状態で、ビデオカメラで足裏の画像を撮像し、送信されてきた画像を医師が解析して神経障害の度合を診断する。
特許第4611453号公報(段落番号0025~0027、図1) 特開平06-30904号公報(段落番号0016、図1) 特表平05-503022号公報(第3頁左下欄18~20行、図2) 特表2005-533543号公報(段落番号0020、図1)
 人の皮膚感覚の閾値の測定装置として、特許文献1~3の測定装置があるが、いずれも、被験者の皮膚に外部刺激を与えたときの感覚閾値が、どの程度であるかを測定しているに過ぎない。そのため、測定結果は、例えば末梢神経が損傷した場合の感覚閾値を評価することに利用できるものの、他に応用することは難しい。また、特許文献1の感覚閾値測定装置の使用にあたっては、JIS規格によって測定条件が厳密に規定されているため、医師または専門の技術者でないと測定できない。例えば、指先に接触させるプローブの位置が、皮膚の厚い部分にあってはならず、指紋の中心位置以外でなければならない。また、指先にプローブを当てた時の静止状態における皮膚の凹み深さが1.5±0.8mmでなければならないなど、測定条件が極めて煩雑である。
 特許文献2の荷重測定装置は、可動テーブルをステッピングモータで一定速度で下降させて測定針を皮膚に押付け、被験者が測定針による刺激を感知したときの測定針の荷重を、微小加重変換器の荷重測定部で測定して感覚閾値としている。そのため、例えば足裏の感覚閾値を特定する場合には、多数の測定点において測定針による刺激付与を繰り返し行う必要があり、末梢神経障害の有無、およびその程度を特定するのに多くの時間がかかってしまう。
 特許文献3の感覚識別装置は、例えば医師がケース全体を片手で持った状態で、プローブの突端を所定の力で皮膚に押付け、その状態のままプローブを引きずって被験者に感覚認識があるか否かを検査する。そのため、プローブの皮膚に対する押付け力や引きずり速度を一定にすることが難しく、さらにプローブを引きずるときにノイズが含まれやすいので、大まかな感覚閾値を判定するのには適していても、感覚閾値を正確に測定する用途には適さない。
 特許文献4の糖尿病足を検査するための検査機器は、検査機器から送信されてきた画像を医師が解析して神経障害の度合を診断するが、この検査機器は、足裏の感覚が殆どない、あるいは足裏の感覚が全くない患者を検査対象にして、足裏に創傷があるかないかを検査しているに過ぎない。そのため、自覚症状がない糖尿病の初期段階において、神経障害の有無、あるいは神経障害の進行状況などを特定し、糖尿病の可能性を判定することはできない。
 糖尿病の初期段階の診療は、外来での診療が主体となるが、診察現場で足裏における神経障害(感覚障害)を定量評価することに関して、評価(検査)の手法が簡便であること、評価に要する時間が短時間で済むこと、専門的な知識や技術を要することなく誰もが正確に検査を行えることなどが望まれる。しかし、上記のような従来の測定装置は、測定条件が煩雑で測定に多くの時間がかかり、専門知識を有する医師あるいは技術者でないと測定装置を使用できないなど、誰もが手軽に感覚閾値を測定できない点に改善の余地があった。
 足裏の皮膚感覚を刺激して足裏における神経障害を定量的に評価する場合には、皮膚感覚をどのように刺激するかが評価を左右する要因となる。この種の感覚検査においては、特許文献1にも見られるように、刺激強度を知覚不能な微小刺激から、徐々に刺激強度を強めながら、被験者に対して繰り返し刺激を与え、どの時点で刺激を認識できたかによって、皮膚感覚の閾値を特定する上昇法と、逆に刺激強度を徐々に弱める下降法とがあり、さらに、この両者を併用する極限法とが知られている。さらに、刺激強度をランダムに変化させる恒常刺激法が知られている。極限法は、より少ない刺激付与数で閾値を測定できる利点を持つが、馴化や期待による測定誤差を含みやすい。その点、刺激強度をランダムに変化させる恒常刺激法の場合には、馴化や期待の影響を排除できるが、測定に多くの時間を要するため、短い診察時間で感覚障害を評価するのには適しておらず、外来での診療を実現するには極限法を採る以外にない。
 足裏の皮膚感覚を刺激して足裏における神経障害を的確に評価するには、健常者と同じ条件の刺激を被験者に与えても、適正な評価を得ることはできない。これは、糖尿病の神経障害を明確に把握するには、被験者に対する感覚刺激の提示強度の範囲が、健常者よりはるかに広い範囲になるからである。例えば、被験者に対する感覚刺激の刺激強度をプローブの移動距離で規定する場合、健常者では5μmから100μmの範囲内でプローブを移動させることで検査を行える。しかし、本発明者が行った臨床試験では、糖尿病に由来する神経障害を発症している被験者の場合には、5μmから1600μmを越える範囲の刺激強度を与えねばならないことが判っている。このことは、糖尿病に由来する神経障害の程度を満遍なく評価するには、刺激強度の変化範囲を健常者よりはるかに広く設定しなければならないことを意味している。そのため、神経障害の程度を的確に評価するには、先に述べた極限法であっても評価に要する時間が長くなり、外来での診療に適さないものとなる。
 本発明者は、上記の知見に基づいて検討を重ねた結果、糖尿病の患者群から得られた足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出される年齢補正係数を用いて刺激強度の変化幅を決定することにより、より少ない刺激付与回数で感覚閾値を決定でき、さらに、得られた感覚閾値から神経障害の有無、あるいは神経障害の進行状況などを特定できることを見出し、本発明を提案するに至ったものである。
 本発明の目的は、糖尿病に由来する足裏における感覚閾値を定量的に測定し、測定結果から神経障害の有無、あるいは神経障害の進行状況などを自動的に特定できる糖尿病性末梢神経障害の評価装置、およびその方法を提供することにある。
 本発明の目的は、より少ない刺激付与回数で神経障害の有無、あるいは神経障害の進行状況などを自動的に特定でき、従って、評価に要する時間が短時間で済み、さらに専門的な知識や技術を要することなく誰もが正確に検査を行える、外来での診察に適した糖尿病性末梢神経障害の評価装置と、その方法を提供することにある。
 本発明に係る糖尿病性末梢神経障害の評価装置は、足裏の感覚閾値を測定する測定装置Aと、測定装置Aの測定結果から感覚閾値を特定し、さらに、特定された感覚閾値から神経障害の有無、あるいは神経障害の進行状況などを評価する主制御部Bとを備えている。測定装置Aは、基台1に設けられて座位ないし立位の被験者の足裏を支持する足載台2と、足裏に移動刺激を与えるプローブ4と、プローブ4を移動操作するプローブ駆動構造3と、移動刺激を認識した被験者によって操作される入力スイッチ5と、プローブ駆動構造3の駆動状態を制御する駆動制御部51とを備えている。主制御部Bには、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶させてある。駆動制御部51は、前記基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、1次刺激付与状態と、2次刺激付与状態と、3次刺激付与状態とを順次行って感覚閾値を測定するように構成してある。1次刺激付与状態においては、プローブ4による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定する。2次刺激付与状態においては、仮設定された大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する。3次刺激付与状態においては、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して感覚閾値を測定する。主制御部Bは、測定された感覚閾値と前記既知の基準データとを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定する。
 プローブ駆動構造3は、前後および左右へ往復スライド自在に案内支持される第1テーブル11および第2テーブル12と、基台1に設けられて第1テーブル11を往復操作する第1駆動構造13と、第1テーブル11に設けられて第2テーブル12を往復操作する第2駆動構造14と、第2テーブル12に設けたプローブ固定部40とで構成する。プローブ固定部40に装着したプローブ4を第1テーブル11の移動方向と、第2テーブル12の移動方向に個別に移動させて、プローブ4の移動距離と、移動速度を独立した変数として測定する。測定された感覚閾値と前記基準データとを主制御部Bで評価する。
 プローブ駆動構造3が、往復スライド自在に案内支持される移動テーブル11と、基台1に設けられて移動テーブル11を往復操作する駆動構造13と、移動テーブル11に設けたプローブ固定部40とで構成する。プローブ固定部40に装着したプローブ4の移動方向に沿う姿勢と、プローブ4の移動方向と直交する姿勢とに被験者の姿勢を変更して、前後方向の移動刺激と左右方向の移動刺激を足裏に付与する。
 評価装置は、足裏の神経障害の有無と神経障害の程度に関する主制御部Bの判定結果を表示する表示手段55を備えている。
 第1駆動構造13を構成するモーター23と、第2駆動構造14を構成するモーター33のそれぞれを、振動を遮断する防振構造28・38を介してブラケット27・37に固定する。前記各モーター23・33の回転動力を、ボールねじ軸21・31と、第1テーブル11および第2テーブル12に固定した雌ねじ体22・32とで往復動作に変換して、第1テーブル11および第2テーブル12を前後および左右へ往復スライド操作する。
 本発明に係る糖尿病性末梢神経障害の評価方法は、足載台2の所定位置に開口した接触窓8に足裏を載せる検査準備過程と、駆動制御部51の制御手順に従って作動するプローブ駆動構造3でプローブ4を移動操作し、被験者が足裏に移動刺激を感じたときに入力スイッチ5を操作して感覚閾値を測定する刺激測定過程と、測定された感覚閾値を主制御部Bで評価する評価過程とを含む。主制御部Bには、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶されている。刺激測定過程における駆動制御部51は、まず、前記基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、プローブ4による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定する1次刺激付与状態により測定を行なう。次に、1次刺激付与状態で得られた大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する2次刺激付与状態により測定を行なう。また、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して感覚閾値を測定する3次刺激付与状態により感覚閾値の測定を行なう。つまり、1次刺激付与状態、2次刺激付与状態、3次刺激付与状態とを記載順に行う。評価過程においては、主制御部Bが、測定された感覚閾値と前記既知の基準データとを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定する。
 刺激測定過程において、1次刺激付与状態において被験者の刺激反応がなかった場合に、4次刺激付与状態に移行して最大の強度の移動刺激を付与して感覚閾値を測定する。4次刺激付与状態において被験者の刺激反応があった場合に、最大移動刺激を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する3次刺激付与状態を行う。
 刺激測定過程において、プローブ4をプローブ駆動構造3で前後方向と左右方向とに個別に移動させて、足裏に前後の移動刺激と左右の移動刺激を与え、プローブ4の移動距離と、移動速度を独立した変数として測定する。
 刺激測定過程において足裏の母趾面E1と、母趾球面E2と、踵面E3のそれぞれに、移動刺激を個別に与えて感覚閾値を測定する。
 本発明の評価装置においては、プローブ4をプローブ駆動構造3で移動操作して、被験者の足裏に移動刺激を与え、被験者が操作する入力スイッチ5の出力信号に基づき、移動刺激に対する感覚閾値を測定する。また、感覚閾値を測定する過程では、予め用意してある既知の感覚閾値の基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、1次から3次の各刺激付与状態を経て感覚閾値を測定し、得られた感覚閾値と前記基準データとを主制御部Bで比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定する。
 以上のように、本発明の評価装置によれば、足載台2の所定位置に被験者の足裏を載せ、年齢データを入力したのち評価装置を作動させるだけで、プローブ4をプローブ駆動構造3で自動的に移動操作して、被験者に対して設定されたとおりの移動刺激を、設定された手順で正確に与えることができる。従って、被験者に対する移動刺激がばらつくのを一掃して感覚閾値を高い再現性で測定でき、糖尿病に由来する足裏における感覚閾値を定量的に測定し、測定結果から神経障害の有無、あるいは神経障害の進行状況などを自動的に特定できる。また、一連の測定および評価は自動的に行なわれるので、足裏における感覚閾値を測定し評価するのに、医学的な専門知識や、生体計測に関する専門的な知識および技術を持っていない測定者であっても、感覚閾値の測定を簡便に行なえるうえ、測定者の違いによる測定結果のばらつきを排除でき、とくに充分な時間をかけて診察を行うことが難しい外来での診察に適した糖尿病性末梢神経障害の評価装置とすることができる。
 また、1次刺激付与状態において大まかな感覚閾値を仮設定したのち、仮設定された大まかな感覚閾値を基準値にして変化幅が小さな移動刺激(2次刺激)を付与して、感覚閾値をより詳細に測定するので、より少ない刺激付与回数で感覚閾値を正確に決定できる。従って、充分な時間をかけることが難しい外来診察において、感覚閾値の評価に要する時間を大幅に減少して、短時間で感覚閾値を測定し評価することが可能となる。なお、3次刺激付与を行うのは、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した大まかな感覚閾値の測定に、何らかの誤差あるいは誤認が含まれている可能性があり、再度、大きな移動刺激を付与して感覚閾値を測定し直すためである。
 第1テーブル11および第2テーブル12と、これらのテーブル11・12を駆動する第1、第2の駆動構造13・14などでプローブ駆動構造3を構成すると、足裏に前後の移動刺激と左右の移動刺激を的確に与えることができる。このように、プローブ4を2方向へ個別に移動させて、2方向の移動刺激に対する被験者の知覚の有無を測定すると、皮膚の特定部位に振動刺激や圧迫刺激などを与える従来の測定装置とは異なり、足裏に加わるせん断方向への移動刺激に対する感覚閾値を測定できる。さらに、足裏の知覚特性が2方向で異なるという知見が反映された測定結果が得られるうえ、プローブ4の移動距離と、移動速度を独立した変数として測定することができる。従って、得られた測定結果を、予め収集してデータベース化してある既知の感覚閾値と比較することにより、糖尿病に由来する神経障害の有無、あるいは神経障害の進行状況などをさらに的確に特定できる。
 1個の移動テーブル11のみを駆動するプローブ駆動構造3によれば、評価装置の全体構造を著しく簡素化してコンパクト化できるので、診察室や待合室などの狭い場所で使用するのに好適な評価装置を提供できる。また、評価装置の構造を簡素化できる分だけ全体コストを削減して、評価装置の導入費用を低コスト化できる利点もある。さらに、被験者の姿勢をプローブ4の移動方向に沿う姿勢と、プローブ4の移動方向と直交する姿勢とに変更するだけで、前後方向の移動刺激と左右方向の移動刺激を足裏に付与できるので、2個のテーブル11・12を駆動する形態のプローブ駆動構造3と同様に、足裏の知覚特性が2方向で異なるという知見が反映された測定結果が得られる。従って、得られた測定結果を、予め収集してデータベース化してある既知の感覚閾値と比較することにより、糖尿病に由来する神経障害の有無、あるいは神経障害の進行状況などをさらに的確に特定できる。
 評価装置に表示手段55が設けてあると、主制御部Bで比較し評価した判定結果を表示手段55で明示して、被験者に提示しながら神経障害の有無、あるいは神経障害の進行状況などを詳細に説明できる。例えば、判定結果が10段階に分けてある場合には、外来担当の医療者に対しては10段階の評価のうちのどの評価段階であるかを明示したうえで、さらに、各評価段階に応じて「僅かな神経障害があります」、あるいは「やや強い神経障害があります」と被験者向けの評価結果を表示して提示できる。
 第1駆動構造13および第2駆動構造14のモーター23・33を、主制御部Bのスタートボタンの操作で起動させて、一連の移動刺激を自動的に与える測定装置によれば、スタートボタンをオン操作するだけで、プローブ4を予め設定された手順に従って駆動して、被験者に対して予め設定されたとおりの移動刺激を正確に与えることができる。因みに、感覚閾値の測定は、単一の部位へさまざまな強度の刺激を何度も与え、さらに他の部位でも同じ手順を繰り返すという手間のかかる作業となる。そのため、時間に制約のある臨床現場では実施するのが困難となる。しかし、上記のように両駆動構造13・14の動作を駆動制御部51で制御して、被験者に対する移動刺激の付与、および被験者の感覚閾値の記録などを自動化すると、専門的な知識および技術を持っていない測定者であっても、感覚閾値の測定を簡便に行なえるうえ、測定者の違いによる測定結果のばらつきを排除でき、外来での診察に適した糖尿病性末梢神経障害の評価装置を提供できる。
 本発明に係る評価方法においては、検査準備過程と、刺激測定過程と、評価過程とを経て、足裏の感覚閾値の測定と、測定結果の評価を行うようにした。刺激測定過程では、予め用意してある既知の感覚閾値の基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、1次から3次の各刺激付与状態を経て感覚閾値を測定し決定できるようにした。また、評価過程においては、前段の過程で得られた感覚閾値と基準データとを主制御部Bで比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定できるようにした。
 以上のように、本発明に係る評価方法によれば、足載台2の所定位置に被験者の足裏を載せ、年齢データを入力したのち、刺激測定過程をスタートさせることで、プローブ4をプローブ駆動構造3で自動的に移動操作して、被験者に対して設定されたとおりの移動刺激を、設定された手順で正確に与えることができる。従って、被験者に対する移動刺激がばらつくのを一掃して感覚閾値を高い再現性で測定でき、糖尿病に由来する足裏における感覚閾値を定量的に測定し、測定結果から神経障害の有無、あるいは神経障害の進行状況などを自動的に特定できる。また、一連の測定および評価は自動的に行なわれるので、足裏における感覚閾値を測定し評価するのに、医学的な専門知識や、生体計測に関する専門的な知識および技術を持っていない測定者であっても、感覚閾値の測定を簡便に行なえるうえ、測定者の違いによる測定結果のばらつきを排除でき、とくに充分な時間をかけて診察を行うことが難しい外来での診察に適した糖尿病性末梢神経障害の評価方法を提供できる。
 また、1次刺激付与状態において大まかな感覚閾値を仮設定したのち、仮設定された大まかな感覚閾値を基準値にして変化幅が小さな移動刺激(2次刺激)を付与して、感覚閾値をより詳細に測定するので、より少ない刺激付与回数で感覚閾値を正確に決定できる。従って、充分な時間をかけることが難しい外来診察において、感覚閾値の評価に要する時間を大幅に減少して、短時間で感覚閾値を測定し評価することが可能となる。なお、3次刺激付与を行うのは、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した大まかな感覚閾値の測定に、何らかの誤差あるいは誤認が含まれている可能性があり、再度、大きな移動刺激を付与して感覚閾値を測定し直すためである。
 刺激測定過程において、1次刺激付与状態において被験者の刺激反応がなかった場合に、4次刺激付与状態に移行して最大の強度の移動刺激を付与して感覚閾値を測定するのは、まず、最大の強度の移動刺激に対して被験者の刺激反応があるかないかを確認するためである。また、最大の強度の移動刺激に対して被験者の刺激反応があった場合には、最大移動刺激を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する3次刺激付与状態に移行して、感覚閾値を確実に測定し特定するためである。このように、4次刺激付与状態を用意しておくことにより、最大の強度の移動刺激に対して被験者の刺激反応がない状態、すなわち感覚脱失であることと、極めて重度の感覚障害があることとを特定して、とくに感覚障害の程度が高い場合の神経障害を明確に評価できる。
 刺激測定過程において、足裏に前後の移動刺激と左右の移動刺激を与え、プローブ4の移動距離と、移動速度を独立した変数として測定すると、皮膚の特定部位に振動刺激や圧迫刺激などを与える従来の測定装置とは異なり、足裏に加わるせん断方向への移動刺激に対する感覚閾値を測定できる。さらに、足裏の知覚特性が2方向で異なるという知見が反映された測定結果と、プローブ4の移動距離と、移動速度を独立した変数として測定することができる。従って、得られた測定結果を、予め収集してデータベース化してある既知の感覚閾値と比較することにより、糖尿病に由来する神経障害の有無、あるいは神経障害の進行状況などをさらに的確に評価できる。
 刺激測定過程において足裏の母趾面E1と、母趾球面E2と、踵面E3の感覚閾値を測定するのは、これらの測定対象部位に、機械的な移動刺激を感知する皮膚内の感覚受容器が高密度に分布しているからであり、感覚刺激に対する閾値もそれぞれ異なっているからである。また、他の部位を測定対象部位とする場合に比べて、先の各部位の感覚閾値をより確実に測定して、神経障害の有無、あるいは神経障害の進行状況などを評価しやすいからである。
本発明に係る感覚閾値の測定装置を示す縦断側面図である。 感覚閾値の測定装置の斜視図である。 感覚閾値の測定装置の横断平面図である。 プローブおよびプローブ固定部の縦断面図である。 感覚閾値の測定手順を示す1次および2次刺激付与状態のフローチャートである。 感覚閾値の測定手順を示す3次および4次刺激付与状態のフローチャートである。 感覚閾値の測定例を示す平面図である。 足裏の測定対象位置を示す説明図である。
(実施例) 図1ないし図8は本発明に係る糖尿病性末梢神経障害の評価装置(以下、単に評価装置という。)の実施例を示す。本発明において前後、左右、上下とは、各図に示す交差矢印と、各矢印の近傍に表記した前後、左右、上下の表示に従う。
 図1ないし図3において、評価装置は、足裏の感覚閾値を測定する測定装置Aと、測定装置Aの測定結果から感覚閾値を特定し、さらに、特定された感覚閾値から神経障害の有無、あるいは神経障害の進行状況などを評価する主制御部(コンピュータ)Bとで構成する。測定装置Aは、四角形の基台1と、足裏を支持する足載台2と、基台1と足載台2との間に配置されるプローブ駆動構造3と、足裏に移動刺激を与えるプローブ4と、被験者によって操作される入力スイッチ5などで構成する。足載台2はプラスチック製の厚板で形成されて、基台1の四隅に設けた支柱7で固定支持してある。足載台2の中央部にはプローブ4を収容する接触窓8がL字状に開口してある。足載台2の後縁には、足載台2の上に起立した被験者を支える手摺9が立設してある。図2において符号10はAD-DAコンバータであり、符号55はディスプレイ(表示手段)である。足載台2の上面には、測定対象の足を固定するための固定器具50が設けてある。固定器具50は、雌雄の面ファスナーを備えた一対の帯布で形成してある。
 プローブ駆動構造3は、水平面に沿って互いに直交する向きへ往復スライド自在に案内される第1テーブル11および第2テーブル12と、第1テーブル11を往復操作する第1駆動構造13と、第2テーブル12を往復操作する第2駆動構造14などで構成する。左右に長い長方形状の第1テーブル11は、その下面の4個所に設けたスライダー15を介して、駆動ベース16上に設けた左右一対のガイドレール17で前後スライド自在に案内支持してある。また、正方形状の第2テーブル12は、その下面の4個所に設けたスライダー18を介して、第1テーブル11上に設けた前後一対のガイドレール19で左右スライド自在に案内支持してある。
 図1に示すように、第1駆動構造13は、ボールねじ軸21と、第1テーブル11の下面に固定されてボールねじ軸21に噛合うナット体22と、ボールねじ軸21を正逆転駆動するステップモーター(モーター)23と、カップリング24などで構成する。ボールねじ軸21の軸端は、前後一対の軸受ボックス25でベアリング26を介して回転自在に支持してある。軸受ボックス25は駆動ベース16に固定してある。ボールねじ軸21をステップモーター23で、正逆いずれかへ回転駆動することにより、第1テーブル11を前後いずれかへ移動操作することができる。ステップモーター23は、駆動ベース16に固定したブラケット27に防振ゴム(防振構造)28を介して固定してあり、これにより、ステップモーター23で発生した振動を遮断して、振動が駆動ベース16および基台1と支柱7を介して足載台2に伝わるのを防止している。
 図3において、第2駆動構造14は、ボールねじ軸31と、第2テーブル12の下面に固定されてボールねじ軸31に噛合うナット体32と、ボールねじ軸31を正逆転駆動するステップモーター(モーター)33と、カップリング34などで構成する。ボールねじ軸31の軸端は、左右一対の軸受ボックス35でベアリング36を介して回転自在に支持してある。軸受ボックス35は第1テーブル11に固定してある。ボールねじ軸31をステップモーター33で正逆いずれかへ回転駆動することにより、第2テーブル12を左右いずれかへ移動操作することができる。ステップモーター33は、第1テーブル11に固定したブラケット37に防振ゴム(防振構造)38を介して固定してあり、これにより、ステップモーター33で発生した振動を遮断して、振動が足載台2に伝わるのを防止している。
 第2テーブル12の上面の中央には、プローブ4を取付けるためのプローブ固定部40が設けてある。図4に示すように、プローブ固定部40の中央には、断面が正方形の装着穴41が形成してあり、この装着穴41にプローブ4を嵌込むことにより、第2テーブル12の前後移動、および左右移動に同行してプローブ4を移動させることができる。この実施例では、ステップモーター23の回転動力を、ボールねじ軸21・31とナット体22・32とで往復動力に変換するようにしたがその必要はなく、電動シリンダー、ロッドレスシリンダーなどの直動式のリニアアクチュエーターを駆動源にして、第1駆動構造13および第2駆動構造14を構成してもよい。
 図4は2種類のプローブ4を示しており、これらをプローブ固定部40に装着して感覚閾値を測定することができる。第1プローブ4A(4)は角軸状のプラスチック製の棒状体からなり、その上端に設けた平坦な接触部44で足裏に移動刺激を与える。接触部44が足裏と接触する面積を充分なものとするために、接触部44の前後寸法および左右寸法を10mmとし、面積が100mm2 となるようにした。第2プローブ4B(4)は、第1プローブ4Aと同じ角軸状のプラスチック製の棒状体で形成するが、棒状体の上端にカーペットを貼付けて接触部44とした。接触部44の前後寸法および左右寸法と面積は、第1プローブ4Aの接触部44と同じとした。第1プローブ4Aおよび第2プローブ4Bをプローブ固定部40に嵌込んだ状態では、図1に示すように、それぞれの接触部44・44が接触窓8の上開口面と面一になる。接触窓8は、前後溝45と左右溝46とでL字状に形成してあり、各溝45・46の前後寸法および左右寸法は、それぞれ28mmとした。
 入力スイッチ5は押ボタンスイッチからなり、感覚閾値を測定装置Aで測定する過程で被験者が移動刺激を感じたときにオン操作する。入力スイッチ5から出力されたオン信号(出力信号)は、主制御部Bに取込まれ、入力スイッチ5のオン信号とプローブ4の移動状況とが記憶部52に記憶される。また、入力スイッチ5のオン信号とプローブ4の移動状況は主制御部Bに設けたディスプレイ(表示手段)6に表示される。
 主制御部Bは、駆動制御部51でプローブ駆動構造3の駆動状態を制御することにより、プローブ4を所定の手順で前後方向、あるいは左右方向へ個別に移動させることができる。なお、プローブ駆動構造3によるプローブ4の移動速度は1mm/s刻みで設定でき、さらに移動距離は0.1μm刻みで設定することができる。
 上記構成の測定装置Aによる足裏における感覚閾値の測定は、まず、第1プローブ4Aを使用して、右足の足裏と左足の足裏とで測定を行なう。さらに、図7および図8に示すように各足ごとに母趾面E1と、母趾球面E2と、踵面E3のそれぞれの個所において、前後方向の移動刺激と左右方向の移動刺激を与えて測定を行なう。前後方向の移動刺激と左右方向の移動刺激とは、比較的知覚されにくい刺激から、比較的知覚されやすい刺激まで多段階用意しておき、例えば刺激の強度を強めながら(あるいは弱めながら)感覚閾値の測定を行ない、さらに、刺激の強さをランダムに変化させながら行う。移動刺激の強さは、プローブ4の移動速度および移動距離の組合せを変えることで変更でき、どのような強度の移動刺激を、どのような順番で与えるかは、主制御部Bに予め組み込んでおく。
 測定に際しては、被験者の足を素足の状態で足載台2の上に載せ、被験者の体重が足裏に作用する状態で起立してもらう。このとき、被験者は手摺9を掴んで起立姿勢を安定させ、さらに利き腕側の手で入力スイッチ5を握って、いつでも入力スイッチ5をオン操作できるようにする。また、図5に示すように母趾面E1の全体が接触窓8に臨む状態で起立してもらって、足載台2に取付けた固定器具50(図2参照)で測定対象の足を固定する。
 上記のように測定準備が整った状態で、主制御部Bのスタートボタンをオン操作して、プローブ駆動構造3を作動させてプローブ4を移動させる。主制御部Bの記憶部52には、糖尿病に罹患している患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶させてある。駆動制御部51は、先の基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、1次刺激付与状態と、2次刺激付与状態と、3次刺激付与状態とを順次行って感覚閾値を測定するように構成してある。
 図5に示すように、1次刺激付与状態においては、プローブ4による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定する。例えば、5段階に分かれた移動刺激をランダムに与えて(S1)、移動刺激に対する被験者の刺激反応の有無を確認する(S2)。被験者の刺激反応が認められた場合(S2においてYESの場合)には、最も小さかった感覚閾値を基準値として仮設定する。つまり、5段階に分かれた移動刺激に対する大まかな感覚閾値を仮設定して、2次刺激付与状態へと移行する。
 2次刺激付与状態においては、仮設定された大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する。例えば、仮設定された大まかな感覚閾値が、5段階の移動刺激のうち段階3に対応する閾値であった場合には、これを基準値にして、基準値より僅かに小さな移動刺激を与え(S3)、被験者の刺激反応の有無を確認する(S4)。被験者の刺激反応が認められた場合(S4においてYESの場合)には、先に与えた移動刺激を新たな基準値にして、基準値より僅かに小さな移動刺激を与え(S5)、被験者の刺激反応の有無を確認する(S6)。刺激反応が認められた場合(S6においてYESの場合)には、先の移動刺激よりさらに小さな刺激を与えて(S5)、被験者の刺激反応の有無を確認し(S6)、以後、被験者の刺激反応が認められなくなるまで(S6においてNOの場合)、より小さな移動刺激の付与を繰返えして感覚閾値を測定する。2次刺激付与状態は、移動刺激の付与を5回前後行うことで終了できる。得られた感覚閾値は、主制御部Bにおいて、予め測定された既知の感覚閾値の基準データと比較評価されて、足裏の神経障害の有無と、神経障害の程度を判定する(S7)。神経障害の程度の評価は例えば10段階に分かれており、被験者がどの段階の神経障害に陥っているかを主制御部Bで特定し、ディスプレイ55で明示する。具体的には、外来担当の医療者に対しては10段階の評価のうちのどの評価段階であるかを、ディスプレイ55に明示したうえで、さらに、各評価段階に応じて「僅かな神経障害があります」、あるいは「やや強い神経障害があります」のように、被験者向けの評価結果を表示する。
 2次刺激付与状態において被験者の刺激反応が認められなかった場合(S4においてNOの場合)には、1次刺激付与状態で仮設定した大まかな感覚閾値の測定に、何らかの誤差あるいは誤認が含まれている可能性がある。そのことを確認するために、図6に符号Aで示すように、3次刺激付与状態へ移行し、再度移動刺激を付与して(S8)感覚閾値を測定し直し被験者の刺激反応の有無を確認する(S9)。この場合には、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して、被験者の刺激反応が認められた場合(S9でYESの場合)に、これを感覚閾値とする。得られた感覚閾値は、主制御部Bにおいて、予め測定された既知の感覚閾値の基準データと比較評価されて、足裏の神経障害の有無と、神経障害の程度を判定する(S11)。3次刺激付与状態において、被験者の刺激反応が認められなかった場合(S9でNOの場合)には、前回の移動刺激より大きな刺激を与えて(S8)、移動刺激が最大の値に達するまで、被験者の刺激反応の有無を繰返し確認する(S9)。移動刺激が最大の値に達した場合(S10でYESの場合)には、その時点で被験者の刺激反応の有無を確認して、測定を終了する。なお、移動刺激を最大の値にした場合にも、被験者の刺激反応がなかった場合には、感覚脱失とみなされる。
 1次刺激付与状態において被験者の刺激反応が認められなかった場合(S2でNOの場合)には、図6に符号Bで示すように、4次刺激付与状態に移行して、最大の強度の移動刺激をプローブ4で付与し(S12)、被験者の刺激反応の有無を確認する(S13)。4次刺激付与状態において被験者の刺激反応があった場合(S13でYESの場合)には、最大移動刺激を基準値にして、最大移動刺激より小さな移動刺激を付与して(S15)、被験者の刺激反応の有無を繰返し確認し(S16)、被験者の刺激反応が認められなくなった時点(S16においてNOの場合)で、これを感覚閾値とする。得られた感覚閾値は、主制御部Bにおいて、予め測定された既知の感覚閾値の基準データと比較評価されて、足裏の神経障害の有無と、神経障害の程度を判定する(S17)。また、4次刺激付与状態において、最大移動刺激を付与したにも拘らず、験者の刺激反応がなかった場合(S13でNOの場合)には、感覚脱失とみなされて測定を終了する(S14)。
 以上のように、感覚閾値を測定する場合には、1次刺激付与状態と、2次刺激付与状態と、3次刺激付与状態とを順次行うが、各刺激付与状態においては、プローブ4を前後に一往復させて、比較的知覚されにくい前後方向の移動刺激を与える。なお、入力スイッチ5の出力信号のタイミングと、プローブ4の移動状況とを比較して、両者のタイミングに大きなずれがある場合には、被験者の勘違いあるいは誤操作であるとして、入力スイッチ5の出力信号をマークし、あるいは無効化することができる。
 上記と同様にして、母趾面E1に左右方向の移動刺激を与えることにより、左右方向の移動刺激に対する感覚閾値を主制御部Bで特定することができる。母趾面E1の測定が終了したら、図7に示すように母趾球面E2を接触窓8に臨ませ、前後方向の移動刺激と左右方向の移動刺激を個別に与えながら、上記と同様にして測定を行なう。さらに、母趾球面E2の測定が終了したら、踵面E3を接触窓8に臨ませ、前後方向の移動刺激と左右方向の移動刺激を個別に与えながら、上記と同様にして測定を行なって右足の測定を終了する。左足についても、右足と同様にして母趾面E1、母趾球面E2、および踵面E3のそれぞれの個所ごとに、前後方向の移動刺激と左右方向の移動刺激を与えて測定を行なうことにより、各測定個所の感覚閾値を特定することができる。
 第1プローブ4Aを使用した測定が終了したら、第1プローブ4Aに換えて第2プローブ4Bをプローブ固定部40に装着し、第1プローブ4Aと同様にして、左右の足裏の母趾面E1と、母趾球面E2と、踵面E3について感覚閾値を測定することができる。以上により得られた測定結果を、予め収集してデータベース化してある既知の感覚閾値と比較することにより、糖尿病に由来する足裏の神経障害の有無と、神経障害の程度を判定することができる。なお、外来診察を行う場合には、充分な時間を掛けて診察を行うことが難しいので、第1プローブ4Aのみで感覚閾値を測定して、足裏の神経障害の有無と、神経障害の程度を評価してもよい。
 上記のように接触部44の物理的な性質が異なる複数種のプローブ4A・4Bを用意しておき、刺激測定過程において、複数種のプローブ4A・4Bを択一的に使用して、足裏に複数種の異質の移動刺激を与えて感覚閾値を測定すると、単一のプローブ4のみで、移動刺激に対する感覚閾値を測定する場合に比べて、被験者の足裏の状況等に応じて移動刺激を的確に付与することができる。例えば高齢者等で足裏皮膚の角質が極度に肥厚している場合には、摩擦係数が高いプローブを使用することで、皮膚の状態に左右されない測定結果が得られる。
 以上のように、上記構成の測定装置によれば、被験者を正しい位置に起立させ、主制御部Bのスタートボタンをオン操作するだけで、駆動制御部51からの指令でプローブ4をプローブ駆動構造3で移動操作して足裏の感覚閾値を自動的にしかも的確に測定できる。従って、医学的な専門知識や、生体計測に関する専門的な知識および技術を持っていない測定者であっても、感覚閾値の測定を簡便に行なえるうえ、測定者の違いによる測定結果のばらつきを排除できる。このように、誰が行なっても感覚閾値を的確に測定できるので、待合室において診察の順番待ちをしている状態において、看護師や看護助手の指導に従って感覚閾値の測定を行なうことができ、充分な時間をかけて診察を行うことが難しい外来での診察に適した糖尿病性末梢神経障害の評価装置とすることができる。また、プローブ駆動構造3でプローブ4を移動させて、被験者に対して設定されたとおりの移動刺激を正確に与えることができるので、移動刺激がばらつくのを一掃して感覚閾値を高い再現性で測定できる。
 次に、糖尿病性末梢神経障害の評価方法(以下、単に評価方法と言う。)の詳細を説明する。足裏における感覚閾値の測定は、検査準備過程と、刺激測定過程と、評価過程とを含む。検査準備過程においては、足載台2の所定位置に開口した接触窓8に足裏を載せて、固定器具50で固定する。刺激測定過程においては、駆動制御部51の制御手順に従って作動するプローブ駆動構造3でプローブ4を移動操作し、被験者が足裏に移動刺激を感じたときに入力スイッチ5を操作して感覚閾値を測定する。評価過程においては、測定された感覚閾値を主制御部Bで評価して、足裏の神経障害の有無と、神経障害の程度を判定する。
 主制御部Bには、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶させてある。刺激測定過程における駆動制御部51は、まず、先の基準データと年齢補正係数とを用いてプローブ駆動構造3の駆動状態を制御して、プローブ4による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定する1次刺激付与状態を実行する。また、1次刺激付与状態で得られた大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する2次刺激付与状態を実行する。さらに、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して、感覚閾値を測定する3次刺激付与状態を実行する。評価過程においては、主制御部Bが、3次刺激付与状態で得られた測定値と、既知の感覚閾値とを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定する。各次刺激付与状態における、測定方法の詳細は先に説明したとおりである。
 以上のように評価法においては、極限法を各次刺激付与状態において段階的に使い分けて、移動刺激に対する感覚閾値を測定するので、足裏に対する刺激付与回数が通常の極限法よりも少なくてすみ、より短い時間で感覚閾値を測定できるものとなっている。反面、刺激付与回数が少ない分だけ、極限法の特徴である馴化や期待による測定誤差が、極限法で測定を行った場合よりも大きく表れるおそれを含むこととなるが、こうした測定誤差を排除して、測定値の妥当性を確実にするために、3次刺激付与状態を実行して、より正確な感覚閾値の測定を保障できるようにしている。
 より好ましくは、刺激測定過程において、1次刺激付与状態において被験者の刺激反応がなかった場合に、4次刺激付与状態に移行して最大の強度の移動刺激を付与して感覚閾値を測定する。4次刺激付与状態において被験者の刺激反応があった場合に、最大移動刺激を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する3次刺激付与状態を行う。この後、評価過程において主制御部Bが、測定された既知の感覚閾値と前記基準データとを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定する。なお、4次刺激付与状態において被験者の刺激反応がなかった場合には、感覚脱失とみなされて測定を終了する。
 刺激測定過程において、プローブ4をプローブ駆動構造3で前後方向と左右方向とに個別に移動させて、足裏に前後の移動刺激と左右の移動刺激を与え、プローブ4の移動距離と、移動速度を独立した変数として測定する。この評価方法によれば、皮膚の特定部位に振動刺激や圧迫刺激などを与える従来の測定装置とは異なり、足裏に加わるせん断方向への移動刺激に対する感覚閾値を測定できる。さらに、足裏の知覚特性が2方向で異なるという知見が反映された測定結果と、プローブ4の移動距離と、移動速度を独立した変数として測定することができる。従って、得られた測定結果を、予め収集してデータベース化してある既知の感覚閾値と比較することにより、糖尿病に由来する神経障害の有無、あるいは神経障害の進行状況などをさらに的確に特定できる。
 刺激測定過程において足裏の母趾面E1と、母趾球面E2と、踵面E3のそれぞれに、移動刺激を個別に与えて感覚閾値を測定することが好ましい。このように、母趾面E1と、母趾球面E2と、踵面E3のそれぞれに移動刺激を個別に与えるのは、足裏面上のこの3点は機械的刺激を感知する皮膚内の感覚受容器が高密度に分布している部位であり、感覚刺激に対する閾値もそれぞれ異なっており、これら3点の感覚閾値は極めて重要な意味を有しているという知見が広く認識されているからである。ただし、本装置は足裏面であればこの3点以外のどこであっても原理的には測定が可能であり、例えば、神経疾患の診断に応用する場合には、障害が予想される末梢神経が支配する先の3点以外の足裏面での測定を行なうことが可能である。
 刺激測定過程においては、足載台2の上に被験者を起立させ、被験者の体重が足裏に作用する状態で移動刺激を与えて感覚閾値を測定する。このように、被験者の体重が足裏に作用する状態で移動刺激を与えると、皮膚内に分布する感覚受容器に対して体重による圧力が均等に付加されて常に刺激された条件での感覚閾値の測定となる。体重による圧力付加は皮膚内の感覚受容器の感度をマスクする効果があるため、感覚が鈍くなり、体重が付加されない測定条件で計測された感覚閾値よりも大きな値が計測される。このような条件で計測された感覚閾値はまさに通常の立姿勢と同じ条件での値であり、糖尿病に由来する神経障害の有無、あるいは神経障害の進行状況などの評価に有効である。こうした測定は、これまでのあらゆる感覚機能測定手法、および測定機器では不可能である。
 上記の実施例では、第1テーブル11および第2テーブル12と、これらのテーブル11・12を往復操作する第1駆動構造13および第2駆動構造14などでプローブ駆動構造3を構成したが、その必要はなく、第1テーブル(移動テーブル)11と、基台1に設けられて第1テーブル11を往復操作する第1駆動構造(駆動構造)13と、第1テーブル11に設けたプローブ固定部40とでプローブ駆動構造3を構成することができる。その場合には、例えば第1テーブル11の駆動方向が前後方向である場合には、プローブ4で被験者の足裏に前後方向の移動刺激を与えたのち、プローブ4の移動方向と直交するように被験者の姿勢を変更して、足裏に左右方向の移動刺激を与えることができる。
 上記の様に、1個の移動テーブル11のみを駆動する構造のプローブ駆動構造3によれば、評価装置の全体構造を著しく簡素化してコンパクト化できるので、診察室や待合室などの狭い場所で使用するのに好適な評価装置を提供できる。また、評価装置の構造を簡素化できる分だけ全体コストを削減して、評価装置の導入費用を低コスト化できる利点もある。
 足裏における感覚閾値の測定は、被験者が足載台2の上に起立して、被験者の体重が足裏に作用する状態で行うのが好ましいが、その必要はない。例えば、椅子に座った被験者の足を足載台2に載せて感覚閾値の測定を行なうことができる。その場合には、足載台2に設けたベルト、あるいは押え枠などで足を動かないように保持するとよい。入力スイッチ5は、押ボタンスイッチである必要はなく、タッチスイッチや倒伏スイッチなどの他のスイッチを使用することができる。また、入力スイッチ5は手摺9に組込むことができる。
 上記の実施例では、プラスチック製の棒状体の平滑な上端面を接触部44とする場合と、棒状体の上端にカーペットを貼付けて接触部44とする場合を例示したが、実施例で説明した接触部44には限定しない。たとえば、棒状体の上端に木片、金属片、畳表、皮革、生地、タイルなどを貼付けて接触部44とすることができる。さらに、プローブ4をプラスチック、金属、木材で棒状に形成し、その上端面に凹凸、溝、突起群などを形成し、あるいは上端面を粗面化して接触部44とすることができる。要は、接触部44の形状、構造、摩擦係数、硬度などの物理的な性質が異なる多数のプローブ4を用意しておいて、測定の目的に合致するプローブ4を使用して、足裏に異質の移動刺激を与えるとよい。
 第1駆動構造13および第2駆動構造14のモーター23・33はステップモーターである必要はなく、他の形式の同期モーターを使用することができる。防振ゴム28・38は、駆動ベース16と基台1との間にも配置することができる。
1 基台
2 足載台
3 プローブ駆動構造
4 プローブ
5 入力スイッチ
8 接触窓
11 第1テーブル
12 第2テーブル
13 第1駆動構造
14 第2駆動構造
40 プローブ固定部
44 接触部
51 駆動制御部
52 記憶部
A 測定装置
B 主制御部(コンピュータ)

Claims (9)

  1.  足裏の感覚閾値を測定する測定装置(A)と、測定装置(A)の測定結果から感覚閾値を特定し、さらに、特定された感覚閾値から神経障害の有無、あるいは神経障害の進行状況などを評価する主制御部(B)とを備えており、
     測定装置(A)は、基台(1)に設けられて座位ないし立位の被験者の足裏を支持する足載台(2)と、足裏に移動刺激を与えるプローブ(4)と、プローブ(4)を移動操作するプローブ駆動構造(3)と、移動刺激を認識した被験者によって操作される入力スイッチ(5)と、プローブ駆動構造(3)の駆動状態を制御する駆動制御部(51)とを備えており、
     主制御部(B)には、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶させてあり、
     駆動制御部(51)は、前記基準データと年齢補正係数とを用いてプローブ駆動構造(3)の駆動状態を制御して、1次刺激付与状態と、2次刺激付与状態と、3次刺激付与状態とを順次行って感覚閾値を測定するように構成されており、
     1次刺激付与状態においては、プローブ(4)による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定しており、
     2次刺激付与状態においては、仮設定された大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定しており、
     3次刺激付与状態においては、2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して感覚閾値を測定しており、
     主制御部(B)が、測定された感覚閾値と前記既知の基準データとを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定することを特徴とする糖尿病性末梢神経障害の評価装置。
  2.  プローブ駆動構造(3)が、前後および左右へ往復スライド自在に案内支持される第1テーブル(11)および第2テーブル(12)と、基台(1)に設けられて第1テーブル(11)を往復操作する第1駆動構造(13)と、第1テーブル(11)に設けられて第2テーブル(12)を往復操作する第2駆動構造(14)と、第2テーブル(12)に設けたプローブ固定部(40)とで構成されており、
     プローブ固定部(40)に装着したプローブ(4)を第1テーブル(11)の移動方向と、第2テーブル(12)の移動方向に個別に移動させて、プローブ(4)の移動距離と、移動速度を独立した変数として測定し、
     測定された感覚閾値と前記基準データとを主制御部(B)で評価する請求項1に記載の糖尿病性末梢神経障害の評価装置。
  3.  プローブ駆動構造(3)が、往復スライド自在に案内支持される移動テーブル(11)と、基台(1)に設けられて移動テーブル(11)を往復操作する駆動構造(13)と、移動テーブル(11)に設けたプローブ固定部(40)とで構成されており、
     プローブ固定部(40)に装着したプローブ(4)の移動方向に沿う姿勢と、プローブ(4)の移動方向と直交する姿勢とに被験者の姿勢を変更して、前後方向の移動刺激と左右方向の移動刺激を足裏に付与する請求項1に記載の糖尿病性末梢神経障害の評価装置。
  4.  足裏の神経障害の有無と神経障害の程度に関する主制御部(B)の判定結果を表示する表示手段(55)を備えている請求項1から3のいずれかひとつに記載の糖尿病性末梢神経障害の評価装置。
  5.  第1駆動構造(13)を構成するモーター(23)と、第2駆動構造(14)を構成するモーター(33)のそれぞれが、振動を遮断する防振構造(28・38)を介してブラケット(27・37)に固定されており、
     前記各モーター(23・33)の回転動力を、ボールねじ軸(21・31)と、第1テーブル(11)および第2テーブル(12)に固定した雌ねじ体(22・32)とで往復動作に変換して、第1テーブル(11)および第2テーブル(12)を前後および左右へ往復スライド操作する請求項2または4に記載の糖尿病性末梢神経障害の評価装置。
  6.  足載台(2)の所定位置に開口した接触窓(8)に足裏を載せる検査準備過程と、
     駆動制御部(51)の制御手順に従って作動するプローブ駆動構造(3)でプローブ(4)を移動操作し、被験者が足裏に移動刺激を感じたときに入力スイッチ(5)を操作して感覚閾値を測定する刺激測定過程と、
     測定された感覚閾値を主制御部(B)で評価する評価過程とを含み、
     主制御部(B)には、患者群の足裏に移動刺激を与えたときの既知の感覚閾値の基準データと、患者の年代の違いに基づく感覚閾値の標準値から算出された年齢補正係数とが予め記憶されており、
     刺激測定過程における駆動制御部(51)は、前記基準データと年齢補正係数とを用いてプローブ駆動構造(3)の駆動状態を制御して、プローブ(4)による移動刺激の変化幅を大きくして大まかな感覚閾値を仮設定する1次刺激付与状態と、
     1次刺激付与状態で得られた大まかな感覚閾値を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する2次刺激付与状態と、
     2次刺激付与状態において被験者の刺激反応がなかった場合に、1次刺激付与状態で仮設定した感覚閾値に対応する移動刺激より大きな移動刺激を付与して、感覚閾値を測定する3次刺激付与状態とを記載順に行っており、
     評価過程において、主制御部(B)が、測定された感覚閾値と前記既知の基準データとを比較評価して、足裏の神経障害の有無と、神経障害の程度を自動的に判定することを特徴とする糖尿病性末梢神経障害の評価方法。
  7.  刺激測定過程において、1次刺激付与状態において被験者の刺激反応がなかった場合に、4次刺激付与状態に移行して最大の強度の移動刺激を付与して感覚閾値を測定し、
     4次刺激付与状態において被験者の刺激反応があった場合に、最大移動刺激を基準値にして、変化幅が小さな移動刺激を付与して感覚閾値を測定する3次刺激付与状態を行う請求項6に記載の糖尿病性末梢神経障害の評価方法。
  8.  刺激測定過程において、プローブ(4)をプローブ駆動構造(3)で前後方向と左右方向とに個別に移動させて、足裏に前後の移動刺激と左右の移動刺激を与え、プローブ(4)の移動距離と、移動速度を独立した変数として測定できる請求項6または7に記載の糖尿病性末梢神経障害の評価方法。
  9.  刺激測定過程において足裏の母趾面(E1)と、母趾球面(E2)と、踵面(E3)のそれぞれに、移動刺激を個別に与えて感覚閾値を測定する請求項6から8のいずれかひとつに記載の糖尿病性末梢神経障害の評価方法。
PCT/JP2012/073835 2012-09-18 2012-09-18 糖尿病性末梢神経障害の評価装置、およびその方法 WO2014045339A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014536431A JP5909748B2 (ja) 2012-09-18 2012-09-18 糖尿病性末梢神経障害の評価装置、およびその方法
PCT/JP2012/073835 WO2014045339A1 (ja) 2012-09-18 2012-09-18 糖尿病性末梢神経障害の評価装置、およびその方法
US14/411,470 US20150182158A1 (en) 2012-09-18 2012-09-18 Apparatus and method for evaluating diabetic peripheral neuropathy
IN10754DEN2014 IN2014DN10754A (ja) 2012-09-18 2012-09-18
EP12884846.2A EP2898834B1 (en) 2012-09-18 2012-09-18 Device for evaluating diabetic peripheral neuropathy
RU2015100003/14A RU2589543C1 (ru) 2012-09-18 2012-09-18 Устройство и способ для оценки диабетической периферической нейропатии
CN201280073547.3A CN104540454B (zh) 2012-09-18 2012-09-18 糖尿病性末梢神经障碍的评价装置
HK15110397.1A HK1209608A1 (en) 2012-09-18 2015-10-27 Device for evaluating diabetic peripheral neuropathy and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073835 WO2014045339A1 (ja) 2012-09-18 2012-09-18 糖尿病性末梢神経障害の評価装置、およびその方法

Publications (1)

Publication Number Publication Date
WO2014045339A1 true WO2014045339A1 (ja) 2014-03-27

Family

ID=50340699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073835 WO2014045339A1 (ja) 2012-09-18 2012-09-18 糖尿病性末梢神経障害の評価装置、およびその方法

Country Status (8)

Country Link
US (1) US20150182158A1 (ja)
EP (1) EP2898834B1 (ja)
JP (1) JP5909748B2 (ja)
CN (1) CN104540454B (ja)
HK (1) HK1209608A1 (ja)
IN (1) IN2014DN10754A (ja)
RU (1) RU2589543C1 (ja)
WO (1) WO2014045339A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172648B1 (ja) * 2017-03-21 2017-08-02 株式会社エスシーエー 情報伝達装置及びそれを用いた神経障害検査装置
JP2017182137A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 デマンド型運行管理システムの制御方法及びデマンド型運行管理システム
JPWO2018134996A1 (ja) * 2017-01-23 2019-11-07 株式会社飛鳥電機製作所 皮膚感覚閾値の測定装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898199B2 (ja) * 2011-07-15 2016-04-06 パナソニック株式会社 姿勢推定装置、姿勢推定方法、および姿勢推定プログラム
GB201507099D0 (en) * 2015-04-27 2015-06-10 Univ Staffordshire Improvements related to ultrasound imaging
CA2980068A1 (en) * 2016-09-23 2018-03-23 Seattle Genetics, Inc. Sensory apparatus for detection of peripheral neuropathy
US20200305774A1 (en) 2017-01-16 2020-10-01 Neubourg Skin Care Gmbh & Co. Kg Apparatus for diagnosis of diabetic foot
CN106880342A (zh) * 2017-03-21 2017-06-23 中山大学附属第医院 一种糖尿病触觉和痛觉病变检测装置
RU2687019C1 (ru) * 2018-05-03 2019-05-06 Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт травматологии и ортопедии им. Я.Л. Цивьяна" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИТО им. Я.Л. Цивьяна" Минздрава России) Способ диагностики диабетической дистальной нейропатии
US11426121B1 (en) * 2019-09-20 2022-08-30 Auburn University Semi-automated plantar surface sensation detection device
KR20210078898A (ko) * 2019-12-19 2021-06-29 삼성전자주식회사 신발형 장치를 위한 감각 역치 정보 결정 방법 및 장치, 신발형 장치와 신발형 장치의 제어 방법
KR102442647B1 (ko) * 2020-07-02 2022-09-13 박기완 족부 궤양 검사 방법 및 장치
CN112562830B (zh) * 2020-12-03 2021-11-02 南通市第一人民医院 一种糖尿病足的预防系统及方法
CN113180597B (zh) * 2021-04-16 2022-09-02 梁兆娟 一种辅助糖尿病周围神经病变检查的工具
CN117562510B (zh) * 2024-01-10 2024-04-09 北京神州龙芯科技有限公司 一种便携式的糖尿病足筛查装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503022A (ja) 1989-11-21 1993-05-27 エヌ・ケイ・バイオテクニカル・エンジニアリング・カンパニー 感覚識別装置
JPH0630904A (ja) 1992-07-16 1994-02-08 Kao Corp 荷重測定装置
JP2005533543A (ja) 2002-06-12 2005-11-10 メダヴィンチ デベロップメント ビー.ブイ. 糖尿病足(diabeticfoot)の検査機器及び方法
JP2007512900A (ja) * 2003-12-03 2007-05-24 グプタ アジャイ 神経障害を感知/モニタするための方法並びに電子通信及び医療診断装置
JP2008517648A (ja) * 2004-10-25 2008-05-29 ヴィブロセンス ダイナミクス エービー 振動触覚感知器
JP2009529963A (ja) * 2006-03-13 2009-08-27 アルカディア・グループ・エルエルシー 足撮像装置
JP2010011984A (ja) * 2008-07-02 2010-01-21 Aska Corp 人体用の二点識別覚自動測定装置およびその測定方法
JP2010022585A (ja) * 2008-07-18 2010-02-04 Rion Co Ltd 振動感覚測定装置の加振ユニット
JP4611453B1 (ja) 2010-08-03 2011-01-12 リオン株式会社 振動感覚閾値測定方法及びその装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381805A (en) * 1990-01-24 1995-01-17 Topical Testing, Inc. Cutaneous testing device for determining nervous system function
US5806522A (en) * 1995-08-15 1998-09-15 Katims; Jefferson Jacob Digital automated current perception threshold (CPT) determination device and method
RU2116046C1 (ru) * 1996-12-04 1998-07-27 Смирнова Людмила Михайловна Система диагностики опорно-двигательной функции человека
US20060004302A1 (en) * 2003-06-12 2006-01-05 University Of Utah Research Foundation Apparatus, systems and methods for diagnosing carpal tunnel syndrome
US20060178596A1 (en) * 2005-01-25 2006-08-10 University Of Massachusetts Cutaneous indentation sensory testing device
CN102309817A (zh) * 2010-07-07 2012-01-11 郑云峰 磁刺激装置及其控制方法
US20120220892A1 (en) * 2011-02-25 2012-08-30 The University Of Utah Vibrometers, vibrometric systems, and methods for measuring sensory threshold

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503022A (ja) 1989-11-21 1993-05-27 エヌ・ケイ・バイオテクニカル・エンジニアリング・カンパニー 感覚識別装置
JPH0630904A (ja) 1992-07-16 1994-02-08 Kao Corp 荷重測定装置
JP2005533543A (ja) 2002-06-12 2005-11-10 メダヴィンチ デベロップメント ビー.ブイ. 糖尿病足(diabeticfoot)の検査機器及び方法
JP2007512900A (ja) * 2003-12-03 2007-05-24 グプタ アジャイ 神経障害を感知/モニタするための方法並びに電子通信及び医療診断装置
JP2008517648A (ja) * 2004-10-25 2008-05-29 ヴィブロセンス ダイナミクス エービー 振動触覚感知器
JP2009529963A (ja) * 2006-03-13 2009-08-27 アルカディア・グループ・エルエルシー 足撮像装置
JP2010011984A (ja) * 2008-07-02 2010-01-21 Aska Corp 人体用の二点識別覚自動測定装置およびその測定方法
JP2010022585A (ja) * 2008-07-18 2010-02-04 Rion Co Ltd 振動感覚測定装置の加振ユニット
JP4611453B1 (ja) 2010-08-03 2011-01-12 リオン株式会社 振動感覚閾値測定方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2898834A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017182137A (ja) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 デマンド型運行管理システムの制御方法及びデマンド型運行管理システム
US10847035B2 (en) 2016-03-28 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Demand responsive operation system
JPWO2018134996A1 (ja) * 2017-01-23 2019-11-07 株式会社飛鳥電機製作所 皮膚感覚閾値の測定装置
JP6172648B1 (ja) * 2017-03-21 2017-08-02 株式会社エスシーエー 情報伝達装置及びそれを用いた神経障害検査装置
JP2018153544A (ja) * 2017-03-21 2018-10-04 株式会社エスシーエー 情報伝達装置及びそれを用いた神経障害検査装置

Also Published As

Publication number Publication date
HK1209608A1 (en) 2016-04-08
EP2898834A4 (en) 2016-07-06
CN104540454A (zh) 2015-04-22
JP5909748B2 (ja) 2016-04-27
RU2589543C1 (ru) 2016-07-10
CN104540454B (zh) 2016-10-26
JPWO2014045339A1 (ja) 2016-08-18
US20150182158A1 (en) 2015-07-02
EP2898834B1 (en) 2018-11-07
IN2014DN10754A (ja) 2015-09-04
EP2898834A1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5909748B2 (ja) 糖尿病性末梢神経障害の評価装置、およびその方法
JP6049224B2 (ja) 皮膚感覚の評価装置、および皮膚感覚の評価方法
KR101004001B1 (ko) 신경기능 검사장치
Bonnet et al. Diabetes and postural stability: review and hypotheses
US6063044A (en) Apparatus for measuring muscle tone
O'Neill et al. Posturography changes do not predict functional performance changes
Gandhi et al. Progress in vibrotactile threshold evaluation techniques: a review
Wong et al. The clinical value of assessing lumbar posteroanterior segmental stiffness: a narrative review of manual and instrumented methods
US10952660B2 (en) Berg balance testing apparatus and method for the same
EP2749216A1 (en) Method and apparatus for assessing proprioceptive status for at least one joint of a person
KR102011749B1 (ko) 복부 경직도 측정 장치 및 방법
JP6930763B2 (ja) ストレス状態の検出方法、及び、ストレス検出装置
KR101116204B1 (ko) 피부 탄성과 점성 측정장치 및 그 측정장치를 이용한 측정방법
Tremblay et al. Postural stabilization from fingertip contact: II. Relationships between age, tactile sensibility and magnitude of contact forces
Gilliaux et al. Age effects on upper limb kinematics assessed by the REAplan robot in healthy subjects aged 3 to 93 years
KR101928237B1 (ko) 신경학적검사의 정량화를 위한 근육분절검사장치
JP2002177282A (ja) 人体に作用する外的刺激の評価方法
JP5419048B2 (ja) 足裏における感覚閾値の測定装置、および測定方法
Wiggermann et al. The effect of prolonged standing on touch sensitivity threshold of the foot: A pilot study
US20220183617A1 (en) Method and device for measuring or determining at least one biomechanical parameter of soft biological tissues
Foster et al. Cutaneous two-point discrimination thresholds and palpatory sensibility in chiropractic students and field chiropractors
SATO et al. A new device for foot sensory examination employing auto-presentation of shear force stimuli against the skin
Deepashini et al. Reliability study of plantar pressure measurement among low back pain patients carrying different loads
WO2019159195A1 (en) A device for screening of a diabetic foot
Xiong Pressure perception on the foot and the mechanical properties of foot tissue during constrained standing among Chinese

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536431

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14411470

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015100003

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE