WO2014044203A1 - 一种强制翅片直管冷凝供热换热器 - Google Patents

一种强制翅片直管冷凝供热换热器 Download PDF

Info

Publication number
WO2014044203A1
WO2014044203A1 PCT/CN2013/083871 CN2013083871W WO2014044203A1 WO 2014044203 A1 WO2014044203 A1 WO 2014044203A1 CN 2013083871 W CN2013083871 W CN 2013083871W WO 2014044203 A1 WO2014044203 A1 WO 2014044203A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
finned
fin
straight
straight tube
Prior art date
Application number
PCT/CN2013/083871
Other languages
English (en)
French (fr)
Inventor
崔树庆
Original Assignee
苏州成强换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47573599&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014044203(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 苏州成强换热器有限公司 filed Critical 苏州成强换热器有限公司
Priority to US14/356,533 priority Critical patent/US20150300687A1/en
Publication of WO2014044203A1 publication Critical patent/WO2014044203A1/zh
Priority to US15/787,060 priority patent/US10288315B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/403Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes the water tubes being arranged in one or more circles around the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/406Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes the tubes forming a membrane wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/44Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40
    • F24H1/445Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40 with integrated flue gas condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/087Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0084Combustion air preheating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention belongs to the field of thermal equipment, and in particular relates to a forced fin straight tube condensation heat supply heat exchanger.
  • the heat available for gas combustion includes the sensible heat of the flue gas and the latent heat of the water vapor in the flue gas.
  • the ordinary heat exchanger is limited by its structure, and the exhaust gas temperature is high, and only the low calorific value of the gas can be utilized; the condensing heat exchanger can not only fully absorb the sensible heat of the flue gas but also absorb the latent heat due to the low exhaust gas temperature. , using the high calorific value of the flue gas. Therefore, the heat utilization efficiency of the condensing heat exchanger can be greatly improved. In order to fully absorb the heat of the high-temperature flue gas and collect the condensed water, it generally adopts the secondary heat exchange mode.
  • the high-temperature flue gas enters the sensible heat exchanger and the condensing section heat exchanger from bottom to top in turn, and the water flow direction is opposite.
  • the heat exchanger of the condensation section is passed through, and the cold water absorbs the residual heat of the high-temperature flue gas in the heat exchanger of the condensation section, and then enters the main heat exchanger to absorb the sensible heat of the flame.
  • the flue gas temperature will drop to normal temperature and be discharged from the upper flue.
  • the condensing heat exchanger uses forced exhaust to exhaust the flue gas, so that the flue gas is in the flue gas.
  • the water vapor condenses as much as possible, which increases the amount of latent heat and sensible heat absorbed by the heated water, and the better the energy saving effect. Therefore, the condensing heat exchanger utilizes the heat lost as a smoke exhaust, and the heat loss of the exhaust gas becomes useful heat. The degree of effective utilization of this part of heat determines the energy saving effect of the condensing heat exchanger.
  • the flue gas entering the condensing heat exchanger is generally in a superheated state. As the flue gas temperature decreases and the water vapor condenses, the flue gas gradually transitions to a saturated state and finally reaches a saturated state.
  • the flue gas outlet state of the condensing heat exchanger is close to saturation state, and the degree of proximity is related to the composition of the flue gas, the heat exchanger structure and the heat and mass transfer process.
  • Experimental data shows that in the prior art, there are still many "dead zone” phenomena or "short circuit” states in the flow path of the flue gas, which reduces the heat exchange efficiency. 1.
  • the heating heat exchanger of the traditional non-condensing boiler is made of carbon steel or cast iron.
  • the exhaust temperature of the design is generally higher than 150 °C, and the large amount of sensible heat released by the condensation of water vapor in the absorption flue gas is not considered. Latent heat, no condensation produced.
  • Condensing boilers are characterized by high efficiency, energy saving and environmental protection. They are the development direction of the boiler industry and have been widely promoted. Condensing boilers generate a large amount of weakly acidic condensate. If the condensing boiler heating heat exchanger is made of materials such as steel or cast iron, the life of the condensing boiler will be seriously shortened. Therefore, the condensing boiler heating heat exchanger must use stainless steel or cast aluminum. Processed. At present, it is mostly made of stainless steel light pipe or cast aluminum.
  • the technology for processing heat exchangers with cast aluminum molds is basically mature, but only 500 kW heating heat exchangers can be produced.
  • the large-scale cast aluminum parts have the problems of high mold cost, complicated processing technology and high product scrap rate, which makes it impossible to directly process large-scale heat supply heat exchangers with cast aluminum molds.
  • Air preheaters are generally used in large boilers such as power stations. Not used in heating boilers.
  • the present invention has been made in view of the problems of the prior art described above.
  • the technical problem to be solved by the present invention is how to overcome the problem that the heat exchanger structure in the prior art is insufficient to cause insufficient heat exchange of the flue gas flow path, and how to improve the heat transfer surface structure to increase the heat exchange area and increase the heat exchange area.
  • the purpose of thermal efficiency allows the boiler to be made smaller at the same power, taking up less volume, and how to intimately combine the air preheater into the heat exchanger for secondary heat transfer and air intake.
  • the initial temperature is further reduced by the exhaust gas temperature.
  • a forced fin straight tube condensing heat supply heat exchanger comprising a casing, a burner disposed in the casing and a plurality of finned straight pipes, on the casing
  • the water inlet, the water outlet and the smoke exhaust port are arranged, and the burner is connected with the air and gas air inlet device: the burner is located at the upper part of the casing, and a set of straight fins are arranged coaxially around the burner.
  • a straight tube bundle of fins a smoke exhaust pipe composed of a casing and a plurality of closely arranged fin straight tubes is arranged under the burner, and the exhaust pipe is evacuated through the exhaust port; the two ends of the fin straight pipe are respectively front jellyfish Tube and post jellyfish a pipe is provided in the rear jellyfish pipe, and the partition divides the rear jellyfish pipe into a water inlet zone and a water outlet zone; the water flow enters a part of the finned straight pipe through the water inlet zone, reaches the front jellyfish pipe, and then the water flows through another part of the wing The straight tube enters the water outlet area of the rear jellyfish tube.
  • the rear jellyfish tube is provided with a partition plate, and the partition plate divides the rear jellyfish tube into a water inlet area and a water outlet area.
  • the water flows through the influent area into a small portion of the finned straight tube of the finned straight tube bundle and the finned straight tube of the exhaust duct, reaches the front jellyfish tube, and then the water flows through the other portion of the finned straight tube bundle
  • the finned straight tube enters the water outlet area of the rear jellyfish tube.
  • the rear jellyfish tube is provided with a partition plate, and the partition plate divides the rear jellyfish tube into a water inlet area and a water outlet area.
  • the circumferentially uniform finned straight tube has the same diameter as the finned straight tube constituting the exhaust duct, and the number of the fin straight tubes in the water inlet region is equal to the number of the fin straight tubes in the water exit region;
  • the circumferentially uniform finned straight tube is different in diameter from the finned straight tube constituting the exhaust duct, the sum of the cross-sectional areas of the fin straight tubes in the water inlet region and the fin straight tube in the water discharge region The sum of the areas is equal.
  • the fins adjacent to the closely arranged fin straight tubes are bent or pressed to make the wings
  • the fins on both sides of the tube are folded at an angle, and the two inner folds formed by the fin tube are parallel or at a certain angle.
  • the outer side of the straight tube bundle of the fins consisting of a plurality of fins and straight tubes arranged closely is disposed outside the burner Deflector.
  • the outer deflector is a "V" type long strip deflector having a section with a degree of separation, Adjacent to the outer side of the finned straight tube, the adjacent portions of the closely arranged finned straight tubes are offset from the flow guiding ports of the outer deflector.
  • a preferred embodiment of the forced fin straight tube condensing heat supply heat exchanger wherein: an inner deflector is disposed inside the fin straight pipe constituting the exhaust pipe below the burner,
  • the inner baffle is a "V"-shaped strip-shaped baffle with a singularity in cross section, which is fitted with a straight finned tube, and the adjacent portions of the tightly-fitting straight tube and the inner deflector are diverted. The mouths are staggered.
  • the exhaust pipe is provided with an air preheater; the air preheater passes through the exhaust pipe and The air intake device is connected; the exhaust port is a four-type exhaust port, the upper end is a smoke exhaust port, and the lower end is a condensed water outlet The middle part is the air inlet of the air preheater.
  • the air preheater in the exhaust pipe is one or more rectangular parallelepiped or cylindrical air intake pipes.
  • the burner is located at a lower portion of the casing, and a plurality of fins are directly coaxially mounted around the burner.
  • the finned straight tube bundle of the cloth is provided with a smoke exhaust pipe composed of a shell and a plurality of closely arranged fin straight tubes, and the exhaust pipe is evacuated through the exhaust port;
  • the two ends of the fin straight pipe are respectively a front water main pipe and a rear water main pipe, and a rear watermain pipe is provided with a partition plate, the partition partitions the rear water mother pipe into a water inlet region and a water outlet region; the water flows through the water inlet region into a small portion of the fin straight bundle
  • the tube and the finned straight pipe of the exhaust pipe reach the front jellyfish pipe, and then the water flow passes through another finned straight pipe of the fin straight pipe bundle to enter the water outlet area of the rear jellyfish pipe.
  • the overall structural arrangement of the present invention can increase heat exchange efficiency.
  • the invention adopts a two-stage counterflow heat exchange arrangement structure in which a burner is arranged above and a smoke exhaust port is arranged below, and the flue gas after combustion of the burner flows downward from above the heat exchanger, first passing through the fin tube around the burner. And the outer deflector, then pass through the finned tube and the inner deflector of the exhaust pipe, along the exhaust pipe, and flow back to the exhaust port.
  • the water inlet is arranged at the lower exhaust port, the water outlet is arranged at the upper part of the heat exchanger, the water passes through the water inlet and the fin tube, and the two ends of the heat exchanger are connected to the cavity of the upper and lower finned tube bundle, for example, the front jellyfish tube and The rear mother pipe is finally discharged through the water outlet.
  • the water outlet temperature is more likely to be higher than the exhaust gas temperature, which can greatly improve the heat exchange efficiency and increase the heat exchange amount.
  • the invention provides a suitable partition in the inlet water main pipe, and a plurality of fin straight tubes which have undergone secondary condensation heat exchange through the partition plate and a straight tube bundle which is uniformly distributed by a small portion of the circumference, and then pass through the first stage display The heat exchange heats out the water from the circumference of the remaining fins.
  • Set the partition "reasonable borrowing" a part of the straight pipe with a uniform circular finned tube as the inlet pipe, you can use a uniform standard finned straight pipe to reduce the types of parts.
  • the fin tube after the secondary processing of the present invention can significantly improve the heat exchange efficiency.
  • the invention adopts a finned tube as a basic component of a forced fin straight tube condensation heat supply heat exchanger, and increases the heat exchange efficiency by increasing the outer surface area of the heat exchange tube by adding fins on the surface of the heat exchange tube. Enhanced heat transfer on the flue gas side, The volume of the entire heat exchanger is further reduced.
  • secondary processing such as bending, squeezing or cutting
  • the spacing between the light pipes of the finned tubes is significantly reduced, so that the flue gas stream and the light pipe are more fully contacted and flushed, thereby enhancing heat exchange.
  • Increasing the turbulent pulsation degree increasing the convective heat transfer coefficient, effectively achieving the purpose of enhancing heat transfer, improving the heat exchange efficiency, and further reducing the volume of the entire heat exchanger.
  • the invention is provided with an outer and inner deflector, which is beneficial for reducing the "dead zone" of the flue gas flow and further improving the shell flow velocity distribution.
  • the flow path of the flue gas is closely attached to the fins and the light pipe by adding a plurality of outer baffles located outside the outer circumference of the circumferential finned tube bundle and the inner baffle located inside the exhaust pipe fin bundle. It can further enhance heat transfer, significantly improve the shell flow velocity distribution, and reduce the "dead zone" or "short circuit" of the flue gas stream.
  • the present invention is further provided with an air preheater to improve efficiency.
  • the air preheater is skillfully combined in the exhaust duct of the heat exchanger.
  • the outdoor air reaches below -20 °C in winter, the residual heat of the flue gas is used to increase the temperature of the air entering the furnace, thereby further reducing the exhaust temperature. , the efficiency is above 98%, with obvious effect.
  • Figure 1 is a right side elevational view of a forced fin straight tube condensing heat supply heat exchanger according to an embodiment of the present invention.
  • Fig. 2 is a schematic view showing the main body of a forced fin straight tube condensing heat supply heat exchanger according to an embodiment of the present invention.
  • Fig. 3 is a perspective view showing a forced fin straight tube condensation heat supply heat exchanger according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing the structure of a forced fin straight tube condensing heat supply heat exchanger in one embodiment of the present invention.
  • Fig. 5 is a schematic view showing the operation principle of a forced-finned straight tube condensing heat supply heat exchanger according to an embodiment of the present invention.
  • Figure 6 is a right side elevational view showing the operation of a forced fin straight tube condensing heat supply heat exchanger with an air preheater in one embodiment of the present invention.
  • Fig. 7 is an enlarged schematic view showing the direction A of the present invention.
  • Fig. 8 is an enlarged schematic view showing the B direction of the present invention.
  • Figure 9 is a cross-sectional view showing the structure of a forced fin straight tube condensing heat supply heat exchanger when the burner is located at the lower portion in another embodiment of the present invention.
  • Figure 10 is a schematic view showing the operation principle of a forced fin straight tube condensing heat supply heat exchanger when the burner is located at the lower portion in another embodiment of the present invention.
  • Figure 1 is a front elevational view of the processed finned straight tube of the finned tube bundle of the present invention.
  • Figure 12 is a left side elevational view of the processed finned straight tube of the finned tube bundle of the present invention.
  • Figure 13 is a front elevational view of the processed finned straight tube of the plurality of closely packed finned straight tubes of the present invention.
  • Figure 14 is a left side elevational view of the processed finned straight tube of the plurality of closely packed finned straight tubes of the present invention.
  • Figure 15 is a schematic right side elevational view of a forced fin straight tube condensing heat supply heat exchanger with two air preheaters in accordance with still another embodiment of the present invention.
  • Figure 16 is a schematic right side elevational view of a forced fin straight tube condensing heat supply heat exchanger with three air preheaters in accordance with yet another embodiment of the present invention.
  • FIG. 1 to FIG. 16 which includes: a front jellyfish tube 1, a front baffle 2, a casing 3, a finned straight tube bundle 4, an outer baffle 5, a burner 6, an inner baffle 7, and a plurality of Tightly arranged finned straight tube 8, rear jellyfish tube 9, tailgate 10, air preheater 1 1 , exhaust port 12, water outlet 13, water inlet 14, exhaust pipe 15, condensate outlet 16, air inlet 17.
  • Separator 18 which includes: a front jellyfish tube 1, a front baffle 2, a casing 3, a finned straight tube bundle 4, an outer baffle 5, a burner 6, an inner baffle 7, and a plurality of Tightly arranged finned straight tube 8, rear jellyfish tube 9, tailgate 10, air preheater 1 1 , exhaust port 12, water outlet 13, water inlet 14, exhaust pipe 15, condensate outlet 16, air inlet 17.
  • Separator 18 which includes: a front jellyfish tube 1, a front baffle 2, a casing 3, a finned straight tube bundle 4,
  • a forced fin straight tube condensing heat supply heat exchanger comprises a casing 3, a burner 6 and a finned straight tube bundle 4 and a plurality of closely arranged finned straight tubes 8
  • the side outer casings of the casing 3 are respectively welded by two "U" shaped plates into an elliptical side outer casing, and the inner side of the elliptical side outer casing is mounted with a front baffle 2 and a rear baffle 10, and an ellipse
  • the circular side outer casing is welded and fixed to the front baffle 2 and the tailgate 10.
  • the front baffle 2 and the tailgate 10 are all made of an insulating material.
  • the front water main pipe 1 is attached to the outer side of the front baffle 2; the rear water main pipe 9 is attached to the outer side of the rear baffle 10, and the water outlet 13 and the water inlet 14 are attached to the heat exchanger casing 3.
  • the casing 3 is further provided with a smoke exhaust port 12, wherein the smoke exhaust port 12 is a four-type exhaust port, the upper end of which is a smoke exhaust port 12, and the lower end thereof is cold.
  • the condensate outlet 16 has a central air inlet 17 for the air preheater 1 1 .
  • Fig. 4 is a cross-sectional view showing the structure of a forced fin straight tube condensing heat supply heat exchanger according to an embodiment of the present invention.
  • the forced fin straight tube condensing heat supply heat exchanger comprises a casing 3, a burner 6 disposed in the casing 3 and a plurality of finned straight tubes, and the casing 3 is provided with a feed The water outlet 14, the water outlet 13 and the smoke exhaust port 12, the burner 6 is connected to the air and gas inlet device, the burner 6 is located at the upper part of the casing 3, and a plurality of fins are coaxially mounted around the burner 6.
  • Straight tube uniformly distributed finned straight tube bundle 4 finned straight tube bundle 4 and a plurality of closely arranged fin straight tubes 8 are fixed at both ends between the front baffle 2 and the tailgate 10, and the same as the front jellyfish tube 1 and the rear jellyfish tube 9 are welded and fixed.
  • An outer baffle 5 is disposed on the outer side of the finned tube bundle 4 which is composed of a plurality of finned straight tubes closely arranged around the burner 6.
  • a smoke exhaust pipe 15 composed of a casing 3 and a plurality of closely arranged fin straight pipes 8, and the exhaust pipe 15 is evacuated through the exhaust port 12; the burner 6 constitutes a smoke exhaust pipe 15
  • the inner side of the finned straight tube is provided with an inner deflector 7.
  • the two ends of the fin straight pipe are a front jellyfish pipe 1 and a rear jellyfish pipe 9, and a rear watermain pipe 9 is provided with a partition plate 18, and the partition plate 18 divides the rear jellyfish pipe 9 into a water inlet region and a water outlet region.
  • the circumferentially uniform fin straight pipe has the same diameter as the fin straight pipe constituting the exhaust pipe 15, the number of fin straight pipes in the water inlet region and the fin straight pipe in the water discharge region The number is equal.
  • the circumferentially uniform finned straight tube is different from the diameter of the finned straight tube constituting the exhaust duct 15, the sum of the cross-sectional areas of the finned straight tubes of the water inlet region and the fins of the water discharge region The sum of the cross-sectional areas of the straight tubes is equal.
  • One or more rectangular or cylindrical air preheaters 1 1 are disposed in the exhaust duct 15; the air preheater 1 1 is connected to the air intake device through the exhaust duct 15;
  • the mouthpiece 12 is a four-type exhaust port, the upper end of which is a smoke exhaust port 12, the lower end of which is a condensate outlet 16 and the middle part is an air inlet 17 of the air preheater 1 1 .
  • FIG. 5 is a schematic view showing the working principle of a forced fin straight tube condensation heat supply heat exchanger according to an embodiment of the present invention. From this working principle diagram, it can be clearly understood that the finned straight tube bundle 4 is located above a plurality of closely arranged fin straight tubes 8, and the fin straight tube bundle 4 and the plurality of closely arranged fin straight tubes 8 are parallel.
  • the burner 6 is coaxially mounted in a finned straight tube bundle 4, and the burner 6 is connected to an air and gas inlet device. Below the burner 6, there is disposed a smoke exhaust duct 15 composed of a casing 3 and a plurality of closely arranged fin straight tubes 8.
  • the invention adopts the secondary heat exchange mode, adopts the reverse flow arrangement heat exchange, the high temperature flue gas passes through the fin straight tube bundle 4 from the top to the bottom, and the plurality of tightly arranged fin straight tubes 8; and the water flow direction is opposite, first through a plurality of close
  • the fin straight tube 8 is arranged and passed through the finned straight tube bundle 4.
  • the air preheater 1 1 is disposed in the exhaust duct 15 to exchange heat with the flue gas, thereby increasing the temperature of the air entering the furnace while further reducing the exhaust temperature.
  • the water inlet 14, the front jellyfish tube 1, the finned straight tube, the rear jellyfish tube 9, and the water outlet 13, constitute a circuit for the water heating process.
  • the water flows through the influent area into a small portion of the finned straight tube of the finned straight tube bundle 4 and the finned straight tube of the exhaust duct 15, reaches the front jellyfish tube 1, and then the water flows through the finned straight tube bundle 4
  • the other part of the fin straight tube enters the water outlet area of the rear jellyfish tube 9.
  • Fig. 6 is a right side view showing the working principle of a forced fin straight tube condensing heat supply heat exchanger with an air preheater according to an embodiment of the present invention.
  • the exhaust duct 15 is composed of a lower portion of the casing 3 and a plurality of closely arranged fin straight tubes 8 in which a rectangular parallelepiped air preheater 1 1 is disposed;
  • the finned straight tube of the water inlet region comprises a small portion of the finned straight tube constituting the finned straight tube bundle 4 and all of the finned straight tubes constituting the plurality of closely arranged fin straight tubes 8; and the effluent area includes Forming a majority of the remaining finned straight tubes of the finned straight tube bundle 4, at this time, if the circumferentially uniform finned straight tubes are the same diameter as the finned straight tubes constituting the exhaust duct 15, the water inlet region
  • the number of finned straight tubes are the same diameter as the finn
  • Fig. 7 and Fig. 8 are enlarged views of the A direction and the B direction, respectively.
  • the outer baffle 5 is attached to the periphery of the finned straight tube bundle 4, and the outer baffle 5 is spot welded to the finned straight tube bundle 4.
  • the outer baffle 5 is a "V"-shaped strip-shaped baffle with a singularity in cross section, which is attached to the outer side of the fin straight tube, and the adjacent and outer baffles 5 of the closely arranged fin straight tube The diversion ports are staggered from each other.
  • the inner side of the finned straight pipe constituting the exhaust duct 15 is provided with an inner baffle 7, which is a "V"-shaped strip-shaped diversion having a section with a degree of separation.
  • the plate is fitted with a straight finned tube, and the adjacent portions of the closely arranged finned straight tubes are offset from the flow guiding ports of the inner deflector 7.
  • FIG. 9 and FIG. 10 are schematic cross-sectional views showing a forced fin straight tube condensation heat supply heat exchanger when the burner is located at the lower portion according to another embodiment of the present invention.
  • the burner 6 is located at the lower portion of the casing 3, and a set of finned straight tube bundles 4 uniformly surrounded by a plurality of finned straight tubes is coaxially mounted around the burner 6, and the burner 6 is provided with a shell
  • the exhaust pipe 15 composed of the body 3 and a plurality of closely arranged fin straight tubes 8 is exhausted through the exhaust port 12; the two ends of the fin straight pipe are the front jellyfish pipe 1 and the rear jellyfish pipe 9 respectively.
  • a partition 18 is disposed in the rear jellyfish tube 9 , and the partition 18 divides the rear jellyfish tube 9 into an inflow area and a water outlet area; the water flows through the inflow area into a small portion of the finned straight tube of the finned straight tube bundle 4 and The finned straight pipe of the exhaust pipe 15 reaches the front jellyfish pipe 1, and then the water flow passes through another finned straight pipe of the fin straight pipe bundle 4 to enter the water discharge region of the rear jellyfish pipe 9.
  • the high-temperature flue gas passes through the finned straight tube bundle from bottom to top. 4, a plurality of closely arranged fin straight tubes, and the air preheater 1 1 is disposed in the exhaust duct 15 to exchange heat with the flue gas.
  • FIG. 11 is a front view showing the processed straight fin tube in the straight fin bundle of the present invention
  • FIG. 12 is a schematic view of the finned straight tube bundle of the present invention.
  • the left side view of the treated straight fin tube, the present invention bends or extrudes the adjacent fins of the closely arranged fin straight tubes so that the fins are within a certain angle along the axial direction of the straight tube fold.
  • the direction and angle of the fin inward folding can be appropriately adjusted according to the need of the fin straight tube circumference. Referring to Fig. 1 1 and Fig.
  • the fins on both sides of the fin tube are folded at an angle, and the two inner fold surfaces formed may be parallel or at a certain angle, at a certain angle for the convenience of a plurality of wings.
  • the sheet tubes may be arranged in a circumferential shape or other shapes.
  • the processed finned straight tubes are arranged in a tightly circumferentially uniform finned tube bundle 4 .
  • cutting or extrusion processing can also be used to reduce the distance between the tubes of the straight fins.
  • FIG. 13 is a front elevational view showing the processed finned straight tube in the plurality of closely arranged fin straight tubes according to the present invention
  • FIG. 14 is a plurality of closely related components of the present invention.
  • the left side view of the processed straight fin tube in the straight fin tube is arranged.
  • the present invention bends or extrudes the closely arranged fin straight tube to make the fin along the straight tube.
  • the axial direction is folded at an angle, and in this embodiment, the inner angle of the fin is perpendicular to the axial direction of the fin straight tube, that is, the inner folding direction of the fin is perpendicular to the axial direction of the fin straight tube. Referring to Fig.
  • Fig. 15 is a schematic right side view showing a forced fin straight tube condensing heat supply heat exchanger with two air preheaters according to still another embodiment of the present invention.
  • the burner 6 is located at the upper portion of the casing 3, and a set of finned straight tube bundles 4 uniformly surrounded by a plurality of finned straight tubes is coaxially mounted around the burner 6, and a burner is disposed below the burner 6.
  • the exhaust pipe 15 composed of the body 3 and a plurality of tightly arranged finned straight tubes 8 is exhausted through the exhaust port 12; two air-cooled air preheaters 1 are disposed in the exhaust duct 15 1; the air preheater 1 1 is connected to the air intake device through the exhaust pipe 15; the two ends of the fin straight pipe are the front jellyfish pipe 1 and the rear jellyfish pipe 9, respectively, and the rear jellyfish pipe 9 is provided with a partition 18, the partition 18 partitions the rear jellyfish tube 9 into an inlet region and a water outlet region; the water flows through the inlet region into a small portion of the finned straight tube of the finned straight tube bundle 4 and the fin of the exhaust duct 15 The straight tube reaches the front jellyfish tube 1, and then the water flows through the other portion of the fin straight tube bundle 4 into the water outlet region of the rear jellyfish tube 9.
  • FIG 16 is a schematic right side elevational view of a forced fin straight tube condensing heat supply heat exchanger with three air preheaters in accordance with yet another embodiment of the present invention.
  • the burner 6 is located at the upper portion of the casing 3, and a set of finned straight tube bundles 4 uniformly distributed by a plurality of fin straight tubes is coaxially mounted around the burner 6, and the burner 6 is disposed below the burner 6.
  • the air preheater 1 1 is connected to the air intake device through the exhaust duct 15.
  • the present invention starts from the study of how to improve the structure of the heat transfer surface, and increases the heat exchange area to improve the heat exchange efficiency. It adopts the inner folded fin straight pipe as the basic component of the forced fin straight pipe condensing heat supply heat exchanger, which enhances the heat exchange on the flue gas side and further reduces the volume of the entire heat exchanger.
  • the flow path of the flue gas is closely attached to the finned tube, further enhancing heat exchange, significantly improving the flow velocity distribution of the shell-side fluid, and reducing the "dead zone" of the flue gas flow. " or "short circuit” phenomenon.
  • the utility model cleverly combines the air preheater 1 1 in the heat exchanger, and experiments show that when the outdoor air reaches below -20 ° C in winter, the residual heat of the flue gas is used to increase the temperature of the air entering the furnace while further reducing the smoke exhaust. The temperature makes the efficiency reach 98% or more.
  • the invention has a modular design of key components, is easy to mass-produce, reduces the production difficulty of the heat exchanger, and saves production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

一种强制翅片直管冷凝供热换热器,包括壳体、燃烧器与复数个翅片直管,燃烧器位于壳体上部,燃烧器周围安装有一组由复数个翅片直管紧密圆周均布的翅片直管束,燃烧器下方设置有由壳体与复数个紧密排列翅片直管组成的排烟管道,排烟管道通过排烟口排空;所述翅片直管两端分别为前水母管与后水母管,后水母管中设置有隔板,隔板将后水母管分隔为进水区域与出水区域;水流通过进水区域进入一部分翅片直管,到达前水母管,然后水流再通过另一部分翅片直管进入后水母管的出水区域。采用内折翅片直管做为强制翅片直管冷凝供热换热器的基本元件,显著提高了换热效率。

Description

一种强制翅片直管冷凝供热换热器 技术领域
本发明属于热工设备领域, 具体是涉及一种强制翅片直管冷凝供热换热 器。
背景技术
早在 20世纪中东石油危机之后, 为节约能源, 在欧洲便研制出了高热效 率的冷凝式锅炉, 其显著特点是热效率比常规设计锅炉提高 1 0%以上。 由于使 锅炉的排烟温度降低到露点以上, 烟气中大量水蒸汽冷凝并释放出汽化潜热, 具有明显的节能效果, 运用到冷凝式锅炉中的冷凝式换热器就是根据其原理研 制而成。
燃气燃烧可供利用的热量包括烟气的显热和烟气中水蒸汽的潜热两部分。 普通型换热器受其结构的限制, 排烟温度高, 只能利用燃气的低热值部分; 冷 凝式换热器由于排烟温度很低, 不仅能够充分吸收烟气的显热还能吸收潜热, 利用的是烟气的高热值。 因此, 冷凝式换热器的热能利用效率可以大大提高。 为了充分吸收高温烟气的热量及收集凝结水, 其一般采用二次换热方式, 工作 时, 高温烟气依次由下至上进入显热换热器和冷凝段换热器, 而水流方向正好 相反, 先经过冷凝段换热器, 冷水在冷凝段换热器吸收高温烟气余热后, 再进 入主换热器吸收火焰显热。换热器吸收显热和潜热后烟气温度将降至常温, 由 上部烟道排出, 为了安全可靠的排出烟气, 冷凝式换热器采用强制排烟的方式 排出烟气, 使得烟气中的水蒸汽尽可能多的凝结, 这就使被加热的水吸收的潜 热量和显热量就越多, 其节能效果就越好。故冷凝式换热器利用了作为排烟损 失掉的热量, 把排烟热损失变为了有用的热, 这部分热量有效利用的程度决定 了冷凝式换热器的节能效果。
然而, 进入冷凝换热器的烟气一般呈过热状态, 随着烟气温度的降低和水 蒸气的冷凝, 烟气逐渐向饱和状态过渡, 最后达到饱和状态。 根据实验测定, 当排烟温度在 50 ° C左右, 冷凝换热器烟气出口状态是接近于饱和状态, 接近 的程度与烟气的组分、 换热器结构和传热传质过程有关。 实验数据显示, 现有 技术中, 烟气的流动路径仍存在不少 "死区 "现象或 "短路"状态, 降低了换 热效率。 1. 传统非冷凝锅炉的供热换热器由碳钢或铸铁制成, 在设计时的排烟温 度一般都高于 150°C, 不考虑吸收烟气中水蒸气冷凝所释放大量显热和潜热, 没有冷凝水产生。
2. 冷凝锅炉具有高效节能环保的特点, 是锅炉行业的发展方向并得到广 泛的推广。 冷凝锅炉由于产生了大量弱酸性冷凝水, 如果使用常用的钢板或铸 铁等材料制造冷凝锅炉供热换热器将严重缩短冷凝锅炉的寿命, 所以冷凝锅炉 供热换热器必须使用不锈钢或铸铝加工制成。 目前, 多采用不锈钢光管或铸铝 制成。
3. 用铸铝模具加工换热器的技术已基本成熟, 但只能制作 500KW 多的供 热换热器。 大型铸铝件存在模具成本高, 加工工艺复杂, 产品报废率高的问题, 使得无法用铸铝模具直接加工大型供热换热器。
4. 这两种换热器在通常的情况下, 热效率最多可达 96%左右。
5. 当锅炉的回水温度高于 60°C, 锅炉将不产生冷凝水。 这时换热器只能 回收烟气中的显热, 热效率也只有 87%左右。
6. 空气预热器一般在电站等大型锅炉中采用。在供热锅炉中还没有采用。
7. 传统的供热换热器根据客户不同的需求来设计制造大小不同的供热换 热器, 换热器大小不同, 所需零部件也不同, 不利于工业化批量生产。
发明内容
鉴于上述现有技术存在的问题, 提出了本发明。
因此, 本发明要解决的技术问题是, 如何克服现有技术中换热器结构设计 不足导致烟气流动路径换热不充分的问题,如何改进传热面结构以达到增大换 热面积提高换热效率的目的, 同时使得锅炉在同等功率下可以做得更小, 占用 更小的体积,以及如何将空气预热器巧妙的结合到换热器中, 从而进行二次换 热, 提高空气进入的初始温度的同时进一步降低排烟温度。
为解决上述技术问题, 本发明提供了如下技术方案: 一种强制翅片直管冷 凝供热换热器, 包括壳体, 设置于壳体内的燃烧器与复数个翅片直管, 壳体上 设置有进水口、 出水口及排烟口, 燃烧器与空气及燃气进气装置连接: 燃烧器 位于壳体上部, 燃烧器周围同轴安装有一组由复数个翅片直管紧密圆周均布的 翅片直管束, 燃烧器下方设置有由壳体与复数个紧密排列翅片直管组成的排烟 管道, 排烟管道通过排烟口排空; 所述翅片直管两端分別为前水母管与后水母 管, 后水母管中设置有隔板, 隔板将后水母管分隔为进水区域与出水区域; 水 流通过进水区域进入一部分翅片直管, 到达前水母管, 然后水流再通过另一部 分翅片直管进入后水母管的出水区域。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述后水母管中设置有隔板, 隔板将后水母管分隔为进水区域与出水区域; 水 流通过进水区域进入所述翅片直管束的小部分翅片直管以及所述排烟管道的 翅片直管, 到达前水母管, 然后水流再通过所述翅片直管束的另一部分翅片直 管进入后水母管的出水区域。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述后水母管中设置有隔板, 隔板将后水母管分隔为进水区域与出水区域; 所 述圆周均布的翅片直管与构成排烟管道的翅片直管的直径相同, 所述进水区域 的翅片直管的数量与出水区域的翅片直管的数量相等;或者所述圆周均布的翅 片直管与构成排烟管道的翅片直管的直径不相同, 所述进水区域的翅片直管的 截面积之和与出水区域的翅片直管的截面积之和相等。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 对所述紧密排列的翅片直管相邻的翅片进行折弯或挤压处理, 使得翅片管两侧 翅片呈一定角度内折, 翅片管所形成的两个内折面是平行的或呈现一定角度。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述燃烧器周围由复数个翅片直管紧密排列组成的翅片直管束的外侧设置有 外导流板。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述外导流板为截面为带有孤度的 "V" 型长条状导流板, 与翅片直管外侧贴 合, 紧密排列的翅片直管的相邻处与外导流板的导流口相互错开。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述燃烧器下方组成排烟管道的翅片直管的内侧设置有内导流板, 所述内导流 板为截面为带有孤度的 " V" 型长条状导流板, 与翅片直管贴合, 紧密排列的 翅片直管的相邻处与内导流板的导流口相互错开。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述排烟管道内设置有空气预热器;所述空气预热器穿过排烟管道与空气进气 装置连接; 所述排烟口为四通式排烟口, 其上端为排烟口, 其下端为冷凝水出 口, 中部为空气预热器的空气进口。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 所述排烟管道内的空气预热器为一根或多根长方体或圆柱形空气进气管。
作为本发明所述的强制翅片直管冷凝供热换热器的一种优选方案, 其中: 燃烧器位于壳体下部, 燃烧器周围同轴安装有一组由复数个翅片直管紧密圆周 均布的翅片直管束, 燃烧器上方设置有由壳体与复数个紧密排列翅片直管组成 的排烟管道, 排烟管道通过排烟口排空; 所述翅片直管两端分別为前水母管与 后水母管, 后水母管中设置有隔板, 隔板将后水母管分隔为进水区域与出水区 域; 水流通过进水区域进入所述翅片直管束的小部分翅片直管以及所述排烟管 道的翅片直管, 到达前水母管, 然后水流再通过所述翅片直管束的另一部分翅 片直管进入后水母管的出水区域。
采用本发明所述技术方案, 具有如下有益技术效果:
本发明的整体结构布置能够提高换热效率。本发明采用了燃烧器设置在上 方, 排烟口设置在下方的二级逆流换热布置结构, 燃烧器燃烧后的烟气从换热 器上方向下流动, 先穿过燃烧器周围翅片管以及外导流板, 然后穿过排烟管道 的翅片管与内导流板, 沿着排烟管道, 逆流至排烟口排空。 而进水口设置在下 部排烟口处, 出水口设置在换热器上部, 水通过进水口、 翅片管, 换热器两端 连接上下翅片管束的腔体, 例如可以是前水母管和后母水管, 最终通过出水口 排出。 采取逆流的换热方式,水的出口温度才更有可能高于排烟温度, 可以大 大提高换热效率, 增大换热量。
本发明在进水母管内设置合适的隔板, 通过隔板分隔水流先经过了二级冷 凝换热的一行复数个翅片直管和由小部分圆周均布翅片直管束, 再经过一级显 热换热从圆周均布剩余翅片直管束出水。 设置隔板, "合理借用" 圆周均布翅 片直管束的部分直管作为进水管, 就可以采用统一规格的翅片直管, 减少零部 件种类。 关键零部件模块化设计, 易于批量化生产, 降低换热器的生产难度, 节约生产成本, 同时, 控制火焰与换热器表面之间的距离来降低火焰温度, 进 而使 ΝΟχ的排放降低到 30ΡΡΜ以下。
本发明二次加工后的翅片管能够显著提高换热效率。本发明采用翅片管作 为强制翅片直管冷凝供热换热器的基本元件, 在换热管的表面通过加翅片, 增 大换热管的外表面积从而达到提高换热效率的目的, 强化了烟气侧的换热, 可 使整个换热器体积进一步减少。 通过对翅片进行二次加工, 例如折弯、 挤压或 切割, 使得翅片管的光管之间间距明显减少, 从而使得烟气流与光管进行更充 分地接触冲刷, 增强换热, 提高紊流脉动程度, 增大对流换热系数, 有效地达 到增强传热的目的, 提高了换热效率, 同时使整个换热器体积进一步减少。
本发明设置有外、 内导流板, 有利于减小烟气流的 "死区", 进一步改善 壳程流体流速分布。 本发明中, 通过增加若干位于圆周翅片管束外侧和外壳之 间的外导流板和位于排烟管道翅片管束内侧的内导流板, 使得烟气的流动路径 紧贴翅片及光管, 能够进一步加强换热, 明显改善壳程流体流速分布, 减小烟 气流的 "死区" 或 "短路"。
本发明进一步的设置有空气预热器, 可以提高效率。 本发明中, 空气预热 器巧妙地结合设置在换热器的排气管道中, 当在冬天室外空气达到 -20°C以下, 利用烟气余热提高进入炉膛的空气温度, 进一步降低排烟温度, 使得效率达到 98%以上, 具有明显效果。
附图说明
图 1 是本发明一个实施例所述强制翅片直管冷凝供热换热器的右视示意 图。
图 2 是本发明一个实施例所述强制翅片直管冷凝供热换热器的主体示意 图。
图 3 是本发明一个实施例所述强制翅片直管冷凝供热换热器的立体示意 图。
图 4是本发明一个实施例中强制翅片直管冷凝供热换热器的结构剖视示意 图。
图 5是本发明一个实施例中强制翅片直管冷凝供热换热器的工作原理示意 图。
图 6是本发明一个实施例中带有一个空气预热器的强制翅片直管冷凝供热 换热器的工作原理右视示意图。
图 7是本发明 A向放大示意图。
图 8是本发明 B向放大示意图。
图 9是本发明另一个实施例燃烧器位于下部时的强制翅片直管冷凝供热换 热器的结构剖视示意图。 图 10是本发明另一个实施例燃烧器位于下部时的强制翅片直管冷凝供热 换热器的工作原理示意图。
图 1 1 是本发明组成所述翅片直管束中经过处理后的翅片直管的主视示意 图。
图 12是本发明组成所述翅片直管束中经过处理后的翅片直管的左视示意 图。
图 13是本发明组成所述复数个紧密排列翅片直管中经过处理后的翅片直 管的主视示意图。
图 14是本发明组成所述复数个紧密排列翅片直管中经过处理后的翅片直 管的左视示意图。
图 15是本发明再一个实施例中带有两个空气预热器的强制翅片直管冷凝 供热换热器的右视结构示意图。
图 16是本发明还一个实施例中带有三个空气预热器的强制翅片直管冷凝 供热换热器的右视结构示意图。
具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其仅用 于解释本发明, 而不能理解为对本发明的限制。
如图 1〜图 16所示, 其中包括: 前水母管 1、 前挡板 2、 壳体 3、 翅片直管 束 4、 外导流板 5、 燃烧器 6、 内导流板 7、 复数个紧密排列翅片直管 8、 后水 母管 9、 后挡板 10、 空气预热器 1 1、 排烟口 12、 出水口 13、 进水口 14、 排烟 管道 15、 冷凝水出口 16、 空气进口 17、 隔板 18。
参考图 1〜图 3描述本发明一个实施例的强制翅片直管冷凝供热换热器。 如图 1、 图 2及图 3所示, 一种强制翅片直管冷凝供热换热器, 包括壳体 3、 燃烧器 6以及翅片直管束 4和复数个紧密排列翅片直管 8, 所述壳体 3的侧外 壳分別由两个 " U " 形板焊接成椭圓形侧外壳, 所述椭圓形侧外壳两端内侧安 装有前挡板 2和后挡板 10,且椭圓形侧外壳与前挡板 2和后挡板 10焊接固定。 在一种实施方式中, 所述前挡板 2和后挡板 10皆采用保温材料制成。
如图中所示, 前挡板 2的外侧安装有前水母管 1;后挡板 10的外侧安装有 后水母管 9, 换热器壳体 3上附有出水口 13和进水口 14。 壳体 3上还设置有 排烟口 12, 所述排烟口 12为四通式排烟口, 其上端为排烟口 12, 其下端为冷 凝水出口 16, 中部为空气预热器 1 1 的空气进口 17。
如图 4所示, 图 4为本发明一个实施例中强制翅片直管冷凝供热换热器的 结构剖视示意图。 在该实施例中, 该强制翅片直管冷凝供热换热器, 其包括壳 体 3, 设置于壳体 3内的燃烧器 6与复数个翅片直管, 壳体 3上设置有进水口 14、 出水口 13及排烟口 12, 燃烧器 6与空气及燃气进气装置连接, 所述的燃 烧器 6位于壳体 3上部, 燃烧器 6周围同轴安装有一组由复数个翅片直管紧密 圆周均布的翅片直管束 4, 翅片直管束 4和复数个紧密排列翅片直管 8两端都 固定于前挡板 2和后挡板 10之间, 且同前水母管 1 及后水母管 9焊接固定。 所述燃烧器 6周围由复数个翅片直管紧密排列组成的翅片直管束 4的外侧设置 有外导流板 5。 燃烧器 6下方设置有由壳体 3与复数个紧密排列翅片直管 8组 成的排烟管道 15,排烟管道 15通过排烟口 12排空;所述燃烧器 6下方组成排 烟管道 15的翅片直管的内侧设置有内导流板 7。
所述翅片直管两端分別为前水母管 1 与后水母管 9, 后水母管 9中设置有 隔板 18, 隔板 18将后水母管 9分隔为进水区域与出水区域。
此时, 如果所述圆周均布的翅片直管与构成排烟管道 15 的翅片直管的直 径相同, 那么, 该进水区域的翅片直管的数量与出水区域的翅片直管的数量相 等。
若所述圆周均布的翅片直管与构成排烟管道 15的翅片直管的直径不相同, 则, 所述进水区域的翅片直管的截面积之和与出水区域的翅片直管的截面积之 和相等。
在所述排烟管道 15 内设置有一根或多根长方体或圆柱形的空气预热器 1 1 ;所述空气预热器 1 1 穿过排烟管道 15与空气进气装置连接;所述排烟口 12 为四通式排烟口, 其上端为排烟口 12, 其下端为冷凝水出口 16, 中部为空气 预热器 1 1 的空气进口 17。
如图 5所示, 图 5为本发明一个实施例中强制翅片直管冷凝供热换热器的 工作原理示意图。 由此工作原理图可以清晰的了解到, 翅片直管束 4位于复数 个紧密排列翅片直管 8的上方, 翅片直管束 4和复数个紧密排列翅片直管 8相 平行。 所述燃烧器 6同轴安装于翅片直管束 4内, 燃烧器 6与空气及燃气进气 装置连接。燃烧器 6下方设置有由壳体 3与复数个紧密排列翅片直管 8组成的 排烟管道 15。 本发明采用二次换热方式, 采用逆流布置换热, 高温烟气由上至下经过翅 片直管束 4、 复数个紧密排列翅片直管 8 ; 而水流方向正好相反, 先经过复数 个紧密排列翅片直管 8, 再经过翅片直管束 4。 空气预热器 1 1设置在排烟管道 15内, 可以与烟气进行换热, 由此提高进入炉膛的空气温度而同时进一步降低 排烟温度。
在该实施例中, 进水口 14、 前水母管 1、 翅片直管、 后水母管 9、 出水口 13, 构成水加热过程的回路。
水流通过进水区域进入所述翅片直管束 4的小部分翅片直管以及所述排烟 管道 15的翅片直管, 到达前水母管 1, 然后水流再通过所述翅片直管束 4的另 一部分翅片直管进入后水母管 9 的出水区域。 设置隔板, "合理借用" 圆周均 布翅片直管束的部分直管作为进水管, 就可以采用统一规格的翅片直管, 减少 零部件种类。 当然, 也可以不借用圆周均布翅片直管束的部分水管, 但此时可 能对整个设备的体积、 翅片直管的直径、 布置等, 热效率等, 都产生不利影响。
如图 6所示, 图 6为本发明一个实施例中带有一个空气预热器的强制翅片 直管冷凝供热换热器的工作原理右视示意图。在该实施例中, 所述排烟管道 15 由壳体 3的下部分与复数个紧密排列翅片直管 8组成, 其内设置有一根长方体 形状的空气预热器 1 1 ;在这一个实施例中,进水区域的翅片直管包括有组成翅 片直管束 4的小部分翅片直管以及组成所述复数个紧密排列翅片直管 8的所有 翅片直管;而出水区域包括组成翅片直管束 4的余下的大部分翅片直管,此时, 若所述圆周均布的翅片直管与构成排烟管道 15 的翅片直管的直径相同, 该进 水区域的翅片直管的数量与出水区域的翅片直管的数量相等。
如图 7、 图 8所示, 图 7、 图 8分別为本发明 A向和 B向放大示意图。 由 图 7中所知, 外导流板 5安装于翅片直管束 4的外围, 外导流板 5点焊于所述 的翅片直管束 4上。 外导流板 5为截面为带有孤度的 "V" 型长条状导流板, 与翅片直管外侧贴合, 紧密排列的翅片直管的相邻处与外导流板 5的导流口相 互错开。
由图 8所示, 组成排烟管道 15的翅片直管的内侧设置有内导流板 7, 所述 内导流板 7 为截面为带有孤度的 "V" 型长条状导流板, 与翅片直管贴合, 紧 密排列的翅片直管的相邻处与内导流板 7的导流口相互错开。
所述的外导流板 5以及内导流板 7都对烟气起到了导流导向的作用。 如图 9、 图 10所示, 图 9、 图 10皆为本发明另一个实施例燃烧器位于下 部时的强制翅片直管冷凝供热换热器的剖视示意图。 在此实施例中, 燃烧器 6 位于壳体 3下部, 燃烧器 6周围同轴安装有一组由复数个翅片直管紧密圆周均 布的翅片直管束 4, 燃烧器 6上方设置有由壳体 3与复数个紧密排列翅片直管 8组成的排烟管道 15, 排烟管道 15通过排烟口 12排空; 所述翅片直管两端分 別为前水母管 1 与后水母管 9, 后水母管 9中设置有隔板 18, 隔板 18将后水 母管 9分隔为进水区域与出水区域; 水流通过进水区域进入所述翅片直管束 4 的小部分翅片直管以及所述排烟管道 15的翅片直管, 到达前水母管 1, 然后水 流再通过所述翅片直管束 4的另一部分翅片直管进入后水母管 9的出水区域。
高温烟气则由下至上经过翅片直管束 4、 复数个紧密排列翅片直管 8, 空 气预热器 1 1设置在排烟管道 15内, 可以与烟气进行换热。
如图 1 1 和图 12所示, 图 1 1 为本发明组成所述翅片直管束中经过处理后 的翅片直管的主视示意图, 图 12 为本发明组成所述翅片直管束中经过处理后 的翅片直管的左视示意图, 本发明将所述紧密排列的翅片直管相邻的翅片进行 折弯或挤压处理, 使得翅片沿直管轴向呈一定角度内折。 且在该实施例中, 该 翅片内折的方向与角度可以根据翅片直管圆周排列的需要, 进行适当调整角 度。 参见图 1 1 及图 13, 翅片管两侧的翅片呈一定角度内折, 所形成的两个内 折面可以是平行的, 也可以呈现一定角度, 呈一定角度是为了便于复数个翅片 管可以排列成圆周形状或其他形状。
参见图 6, 经过加工的翅片直管排列成紧密圆周均布的翅片直管束 4。 当 然, 根据具体实际生产的情况, 也可以采取切割或挤压等加工方式, 来减小相 邻翅片直管的光管之间的距离。
如图 13和图 14所示, 图 13为本发明组成所述复数个紧密排列翅片直管 中经过处理后的翅片直管的主视示意图, 图 14为本发明组成所述复数个紧密 排列翅片直管中经过处理后的翅片直管的左视示意图, 本发明将所述紧密排列 的翅片直管相邻的翅片进行折弯或挤压处理, 使得翅片沿直管轴向呈一定角度 内折, 且在该实施例中, 该翅片内折与翅片直管轴线方向相交角度为直角, 即 翅片的内折方向与翅片直管轴线方向相垂直。 参见图 6, 经过加工的翅片直管 排列成复数个紧密排列翅片直管 8, 所述复数个紧密排列翅片直管 8为一直排 形状。 如图 15所示, 图 15为本发明再一个实施例中带有两个空气预热器的强制 翅片直管冷凝供热换热器的右视结构示意图。 在该实施例中, 燃烧器 6位于壳 体 3上部, 燃烧器 6周围同轴安装有一组由复数个翅片直管紧密圆周均布的翅 片直管束 4, 燃烧器 6下方设置有由壳体 3与复数个紧密排列翅片直管 8组成 的排烟管道 15, 排烟管道 15通过排烟口 12排空; 在所述排烟管道 15内设置 有两根长方体的空气预热器 1 1 ;所述空气预热器 1 1 穿过排烟管道 15与空气进 气装置连接; 所述翅片直管两端分別为前水母管 1 与后水母管 9, 后水母管 9 中设置有隔板 18, 隔板 18将后水母管 9分隔为进水区域与出水区域; 水流通 过进水区域进入所述翅片直管束 4的小部分翅片直管以及所述排烟管道 15的 翅片直管, 到达前水母管 1, 然后水流再通过所述翅片直管束 4的另一部分翅 片直管进入后水母管 9的出水区域。
图 16是本发明还一个实施例中带有三个空气预热器的强制翅片直管冷凝 供热换热器的右视结构示意图。 在这一实施例中, 燃烧器 6位于壳体 3上部, 燃烧器 6 周围同轴安装有一组由复数个翅片直管紧密圆周均布的翅片直管束 4, 燃烧器 6下方设置有由壳体 3与复数个紧密排列翅片直管 8组成的排烟管 道 15, 排烟管道 15通过排烟口 12排空; 在所述排烟管道 15内设置有三根长 方体的空气预热器 1 1 ;所述空气预热器 1 1 穿过排烟管道 15与空气进气装置连 接。
综上, 本发明从研究如何改进传热面结构出发, 增大换热面积以提高换热 效率。 其采用内折翅片直管做为强制翅片直管冷凝供热换热器的基本元件, 强 化了烟气侧的换热, 同时也使整个换热器体积进一步减少。
通过外导流板 5和内导流板 7的导向设计, 使得烟气的流动路径紧贴翅片 管, 进一步加强换热, 明显改善壳程流体流速分布, 减小烟气流的 "死区 " 或 "短路" 现象。 并且实用新型将空气预热器 1 1 巧妙地结合在换热器中, 通过 实验显示, 当在冬天室外空气达到 -20°C以下, 利用烟气余热提高进入炉膛的 空气温度同时进一步降低排烟温度, 使得效率达到 98%以上。
同时, 本发明对关键零部件模块化设计, 易于批量化生产, 降低换热器的 生产难度, 节约生产成本。
应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参 照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 可 以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精 神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求
1、 一种强制翅片直管冷凝供热换热器, 包括壳体 (3), 设置于壳体 (3) 内的燃烧器 (6) 与复数个翅片直管, 壳体 (3) 上设置有进水口 (14)、 出水口
(13) 及排烟口 (12), 燃烧器 (6) 与空气及燃气进气装置连接, 其特征在于: 燃烧器 (6) 位于壳体 (3) 上部, 燃烧器 (6) 周围同轴安装有一组由复数个翅 片直管紧密圆周均布的翅片直管束 (4), 燃烧器 (6) 下方设置有由壳体 (3) 与复数个紧密排列翅片直管 (8) 组成的排烟管道 (15), 排烟管道 (15) 通过 排烟口 (12) 排空; 所述翅片直管两端分別为前水母管 (1 ) 与后水母管 (9), 后水母管 (9) 中设置有隔板 (18), 隔板 (18) 将后水母管 (9) 分隔为进水区 域与出水区域; 水流通过进水区域进入一部分翅片直管, 到达前水母管 (1 ), 然后水流再通过另一部分翅片直管进入后水母管 (9) 的出水区域。
2、 根据权利要求 1所述的强制翅片直管冷凝供热换热器, 其特征在于: 所 述后水母管 (9) 中设置有隔板 (18), 隔板 (18) 将后水母管 (9) 分隔为进水 区域与出水区域; 水流通过进水区域进入所述翅片直管束 (4) 的小部分翅片直 管以及所述排烟管道 (15) 的翅片直管, 到达前水母管 (1 ), 然后水流再通过 所述翅片直管束 (4) 的另一部分翅片直管进入后水母管 (9) 的出水区域。
3、 根据权利要求 1所述的强制翅片直管冷凝供热换热器, 其特征在于: 所 述后水母管 (9) 中设置有隔板 (18), 隔板 (18) 将后水母管 (9) 分隔为进水 区域与出水区域; 所述圆周均布的翅片直管与构成排烟管道 (15) 的翅片直管 的直径相同, 所述进水区域的翅片直管的数量与出水区域的翅片直管的数量相 等; 或者所述圆周均布的翅片直管与构成排烟管道 (15) 的翅片直管的直径不 相同, 所述进水区域的翅片直管的截面积之和与出水区域的翅片直管的截面积 之和相等。
4、 根据权利要求 1权利要求所述的强制翅片直管冷凝供热换热器, 其特征 在于: 对所述紧密排列的翅片直管相邻的翅片进行折弯或挤压处理, 翅片管两 侧翅片呈一定角度内折, 翅片管所形成的两个内折面是平行的或呈现一定角度。
5、 根据权利要求 1权利要求所述的强制翅片直管冷凝供热换热器, 其特征 在于: 所述燃烧器 (6) 周围由复数个翅片直管紧密排列组成的翅片直管束 (4) 的外侧设置有外导流板 (5)。
6、 根据权利要求 5所述的强制翅片直管冷凝供热换热器, 其特征在于: 所 述外导流板 (5) 为截面为带有孤度的 "V" 型长条状导流板, 与翅片直管外侧 贴合, 紧密排列的翅片直管的相邻处与外导流板 (5) 的导流口相互错开。
7、 根据权利要求 1权利要求所述的强制翅片直管冷凝供热换热器, 其特征 在于: 所述燃烧器 (6) 下方组成排烟管道 (15) 的翅片直管的内侧设置有内导 流板 (7), 所述内导流板 (7) 为截面为带有孤度的 "V" 型长条状导流板, 与 翅片直管贴合, 紧密排列的翅片直管的相邻处与内导流板 (7) 的导流口相互错 开。
8、 根据权利要求 1权利要求所述的强制翅片直管冷凝供热换热器, 其特征 在于: 所述排烟管道 (15) 内设置有空气预热器 (1 1 ) ; 所述空气预热器 (1 1 ) 穿过排烟管道 (15) 与空气进气装置连接; 所述排烟口 (12) 为四通式排烟口
(12), 其上端为排烟口 (12), 其下端为冷凝水出口 (16), 中部为空气预热器 (1 1 ) 的空气进口 (17)。
9、 根据权利要求 8所述的强制翅片直管冷凝供热换热器, 其特征在于: 所 述排烟管道 (15) 内的空气预热器 (1 1 ) 为一根或多根长方体或圆柱形空气进
10、 根据权利要求 1 所述的强制翅片直管冷凝供热换热器, 其特征在于: 燃烧器 (6) 位于壳体 (3) 下部, 燃烧器 (6) 周围同轴安装有一组由复数个翅 片直管紧密圆周均布的翅片直管束 (4), 燃烧器 (6) 上方设置有由壳体 (3) 与复数个紧密排列翅片直管 (8) 组成的排烟管道 (15), 排烟管道 (15) 通过 排烟口 (12) 排空; 所述翅片直管两端分別为前水母管 (1 ) 与后水母管 (9), 后水母管 (9) 中设置有隔板 (18), 隔板 (18) 将后水母管 (9) 分隔为进水区 域与出水区域; 水流通过进水区域进入所述翅片直管束 (4) 的小部分翅片直管 以及所述排烟管道 (15) 的翅片直管, 到达前水母管 (1 ), 然后水流再通过所 述翅片直管束 (4) 的另一部分翅片直管进入后水母管 (9) 的出水区域。
PCT/CN2013/083871 2012-09-21 2013-09-21 一种强制翅片直管冷凝供热换热器 WO2014044203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/356,533 US20150300687A1 (en) 2012-09-21 2013-09-21 A Straight Fin Tube with Bended Fins Condensing Heat Exchanger
US15/787,060 US10288315B2 (en) 2012-09-21 2017-10-18 Straight fin tube with bended fins condensing heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210353552.1 2012-09-21
CN201210353552.1A CN102901221B (zh) 2012-09-21 2012-09-21 一种强制翅片直管冷凝供热换热器

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/356,533 A-371-Of-International US20150300687A1 (en) 2012-09-21 2013-09-21 A Straight Fin Tube with Bended Fins Condensing Heat Exchanger
US15/787,060 Continuation-In-Part US10288315B2 (en) 2012-09-21 2017-10-18 Straight fin tube with bended fins condensing heat exchanger

Publications (1)

Publication Number Publication Date
WO2014044203A1 true WO2014044203A1 (zh) 2014-03-27

Family

ID=47573599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083871 WO2014044203A1 (zh) 2012-09-21 2013-09-21 一种强制翅片直管冷凝供热换热器

Country Status (3)

Country Link
US (1) US20150300687A1 (zh)
CN (1) CN102901221B (zh)
WO (1) WO2014044203A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940979A (zh) * 2017-12-21 2018-04-20 吉林大学 一种干燥热风炉设备及其控制方法
CN109631610A (zh) * 2019-02-22 2019-04-16 隆华科技集团(洛阳)股份有限公司 一种顺逆流复合型换热管束

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901222B (zh) 2012-09-21 2016-04-20 苏州成强能源科技有限公司 一种强制翅片直管双环状冷凝供热换热器
CN102901221B (zh) * 2012-09-21 2015-12-23 苏州成强能源科技有限公司 一种强制翅片直管冷凝供热换热器
WO2017087829A1 (en) * 2015-11-20 2017-05-26 Laars Heating Systems Company Heat exchanger for heating water
US10458677B2 (en) * 2015-12-11 2019-10-29 Lochinvar, Llc Heat exchanger with dual concentric tube rings
FR3047063B1 (fr) * 2016-01-22 2018-11-30 Sermeta Dispositif d'echanges thermiques pour echangeur de chaleur a condensation
KR101863161B1 (ko) * 2016-08-10 2018-06-04 한국에너지기술연구원 공기난방 및 온수 겸용 히터
CN108413614A (zh) * 2018-05-10 2018-08-17 宁波市哈雷换热设备有限公司 全预混冷凝式换热装置
CN115143631B (zh) 2018-06-05 2023-12-05 庆东纳碧安株式会社 热交换器单元和使用该热交换器单元的冷凝锅炉
CN109667672A (zh) * 2018-12-06 2019-04-23 芜湖市努尔航空信息科技有限公司 一种航空发动机降温冷却管理系统
CN109631037B (zh) * 2019-01-17 2023-11-24 扬州斯大锅炉有限公司 风冷全预混平面超低氮燃烧器
CN109974303B (zh) * 2019-04-16 2024-04-26 廊坊一萍锅炉保养工程有限公司 一种燃气热水锅炉用节能器
CN110017599B (zh) * 2019-05-10 2024-01-23 四川省机械研究设计院(集团)有限公司 一种可快速供热的双能源热水器
WO2021057677A1 (zh) * 2019-09-23 2021-04-01 苏州威博特能源环保科技有限公司 一种冷凝锅炉
CN110631261B (zh) * 2019-10-14 2024-05-31 西安交通大学 一种管式燃气冷凝锅炉及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003840A (ja) * 2002-05-23 2004-01-08 Kyungdong Boiler Co Ltd ガスボイラー用熱交換器の伝熱フィン構造
CN201277712Y (zh) * 2008-07-28 2009-07-22 成都前锋热交换器有限责任公司 壁挂炉用二次冷凝式热交换器
CN102226512A (zh) * 2011-06-07 2011-10-26 无锡中阳新能源科技有限公司 冷凝式表面燃烧锅炉
CN202254302U (zh) * 2011-10-10 2012-05-30 朱杰 带空气预热的逆流换热冷凝式燃气(油)热水锅炉
CN102901221A (zh) * 2012-09-21 2013-01-30 苏州成强换热器有限公司 一种强制翅片直管冷凝供热换热器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366778A (en) * 1980-03-27 1983-01-04 Paquet Thermique, S.A. Gas boiler able to operate in a sealed combustion circuit
US4658762A (en) * 1986-02-10 1987-04-21 Gas Research Institute Advanced heater
FR2636125B1 (fr) * 1988-09-06 1990-11-16 Equip Thermique Automatique Generateur de fluide chaud, notamment d'eau chaude
US5687678A (en) * 1995-01-26 1997-11-18 Weben-Jarco, Inc. High efficiency commercial water heater
FR2854229A1 (fr) * 2003-04-25 2004-10-29 Realisation Mecaniques Engenee Echangeur de chaleur a condensation
CN100449220C (zh) * 2007-03-06 2009-01-07 成都前锋热交换器有限责任公司 冷凝式热交换器
US8261445B2 (en) * 2009-11-23 2012-09-11 International Controls And Measurements Corp. Aluminum tube-aluminum fin baseboard radiator
CN202928096U (zh) * 2012-09-21 2013-05-08 苏州成强换热器有限公司 一种强制翅片直管冷凝供热换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003840A (ja) * 2002-05-23 2004-01-08 Kyungdong Boiler Co Ltd ガスボイラー用熱交換器の伝熱フィン構造
CN201277712Y (zh) * 2008-07-28 2009-07-22 成都前锋热交换器有限责任公司 壁挂炉用二次冷凝式热交换器
CN102226512A (zh) * 2011-06-07 2011-10-26 无锡中阳新能源科技有限公司 冷凝式表面燃烧锅炉
CN202254302U (zh) * 2011-10-10 2012-05-30 朱杰 带空气预热的逆流换热冷凝式燃气(油)热水锅炉
CN102901221A (zh) * 2012-09-21 2013-01-30 苏州成强换热器有限公司 一种强制翅片直管冷凝供热换热器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940979A (zh) * 2017-12-21 2018-04-20 吉林大学 一种干燥热风炉设备及其控制方法
CN107940979B (zh) * 2017-12-21 2023-05-19 吉林大学 一种干燥热风炉设备及其控制方法
CN109631610A (zh) * 2019-02-22 2019-04-16 隆华科技集团(洛阳)股份有限公司 一种顺逆流复合型换热管束

Also Published As

Publication number Publication date
CN102901221B (zh) 2015-12-23
CN102901221A (zh) 2013-01-30
US20150300687A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2014044203A1 (zh) 一种强制翅片直管冷凝供热换热器
WO2014044208A1 (zh) 一种强制螺旋翅片盘管冷凝供热换热器
WO2014044205A1 (zh) 一种强制螺旋翅片盘管及翅片蛇形管冷凝供热换热器
WO2014044204A1 (zh) 一种强制翅片直管双环状冷凝供热换热器
US10288315B2 (en) Straight fin tube with bended fins condensing heat exchanger
CN104251629B (zh) 热交换器及具有其的燃气热水器
CN102384588A (zh) 一种用于燃气热水器的倒v形结构冷凝换热器
CN102635945A (zh) 一种贯流型窄间隙整体冷凝式热水锅炉
CN102589128B (zh) 冷凝式燃气热水器双进风换热装置
CN206556255U (zh) 一种翅片管冷凝锅炉换热器
CN202521859U (zh) 一种贯流式冷凝锅炉
CN202813773U (zh) 一种带有导流板的换热结构
CN208671739U (zh) 一种带翅片的组合节能换热管
CN202928095U (zh) 一种带有空气预热器的换热结构
CN201129867Y (zh) 烟气冷凝式燃气热水器
CN202928096U (zh) 一种强制翅片直管冷凝供热换热器
CN203024623U (zh) 一种锅炉冷凝器
CN203928848U (zh) 一种冷凝式换热板片及其应用的冷凝换热器
CN209147794U (zh) 一种二段式热管旋流换热器
CN102278818B (zh) 燃气热水器之冷凝热交换器
CN202813774U (zh) 一种强制螺旋翅片盘管冷凝供热换热器
CN202813775U (zh) 一种强制翅片直管双环状冷凝供热换热器
CN202813772U (zh) 一种强制螺旋翅片盘管及翅片蛇形管冷凝供热换热器
CN108120026A (zh) 一种烟气余热回收装置
CN202216406U (zh) 燃气热水器之冷凝热交换器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14356533

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.07.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13838250

Country of ref document: EP

Kind code of ref document: A1