WO2021057677A1 - 一种冷凝锅炉 - Google Patents

一种冷凝锅炉 Download PDF

Info

Publication number
WO2021057677A1
WO2021057677A1 PCT/CN2020/116607 CN2020116607W WO2021057677A1 WO 2021057677 A1 WO2021057677 A1 WO 2021057677A1 CN 2020116607 W CN2020116607 W CN 2020116607W WO 2021057677 A1 WO2021057677 A1 WO 2021057677A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
tubes
tube
exchange tube
condensing boiler
Prior art date
Application number
PCT/CN2020/116607
Other languages
English (en)
French (fr)
Inventor
崔树庆
叶昕
殷海鹏
刘靖旻
Original Assignee
苏州威博特能源环保科技有限公司
苏州成强能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910897167.5A external-priority patent/CN110926026A/zh
Application filed by 苏州威博特能源环保科技有限公司, 苏州成强能源科技有限公司 filed Critical 苏州威博特能源环保科技有限公司
Publication of WO2021057677A1 publication Critical patent/WO2021057677A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of boilers, in particular to a condensing boiler.
  • Condensing boilers have the characteristics of high efficiency, energy saving and environmental protection, which is the development direction of the boiler industry. At present, the technology of small condensing boilers or gas condensing water heaters has gradually matured. However, due to difficulties in the design, processing, and mass production of heat exchangers, condensing technology The conversion process of large commercial boilers is progressing slowly.
  • Existing condensing boilers can generally be divided into stainless steel and cast aluminum boilers according to their materials. Because condensing boilers require a larger heat exchange area, stainless steel condensing boilers generally use finned tubes as heat exchange elements as much as possible, and at the same time, in order to improve The heat exchange effect will also bend the finned tube to enhance heat exchange.
  • the above two schemes increase the material use cost and processing cost, and at the same time affect the production efficiency. Furthermore, when a fin tube is damaged and needs to be replaced, material costs and processing costs will also increase.
  • Burners need a lot of air to burn, and the air contains a lot of impurities.
  • Existing condensing boilers mostly use surface-type metal fiber mesh structure burners with a net-like surface.
  • the existing surface-type burners use metal meshes wound on the surface. It can filter the air entering the combustor to make the mixed gas evenly distributed and have a certain anti-backfire function.
  • the existing combustor is prone to block the surface of the combustor, which requires frequent replacement and cleaning, which is time-consuming and labor-intensive, and once it is blocked After that, the output of the boiler will be greatly reduced, and it is easy to cause damage to the burner, and even lead to safety hazards such as deflagration under severe conditions.
  • the present invention discloses a condensing boiler.
  • the specific technical solutions are as follows:
  • the present invention provides a condensing boiler, which includes a heat exchanger and a water-cooled burner.
  • the heat exchanger includes an inner heat exchange tube and an outer heat exchange tube located on the outer ring of the inner heat exchange tube.
  • the tube is formed with an accommodating cavity, and the inner heat exchange tube and the outer heat exchange tube are both smooth tubes;
  • the water-cooled combustor is contained in the containing cavity, and the water-cooled combustor includes a tubular body and fluid tanks connected to both ends of the tubular body.
  • One fluid tank is hermetically connected to one end of the containing cavity, and the other fluid
  • the box is in sealed connection with the other end of the accommodating cavity
  • the tubular body includes an inner tube and a plurality of outer tubes, and the plurality of outer tubes are arranged in parallel around the outer side of the inner tube, and both ends of the plurality of outer tubes Connect with the fluid tank respectively.
  • the heat exchanger of the heat exchanger increases the heat exchange area of the heat exchanger through two circles of light pipes, improves the heat exchange effect, and is conducive to achieving large scale without greatly increasing the shape of the condensing boiler module.
  • Power boilers such as 1000kw boilers.
  • the condensing boiler provided by the present invention makes the flue gas from the burner go along the circumference of the heat exchanger smooth tube, so that the flue gas can fully flush the water pipe, and the flue gas flow in the gap between the fin tubes is changed. Way to enhance the turbulence effect of smoke.
  • the heat exchanger can effectively control the furnace volume by adding two circles of light pipes, lower the flue gas temperature, and reduce the probability of nitrogen oxide production.
  • the condensing boiler provided by the present invention has a water-cooled burner with a tubular structure. Taking the 1050kw water-cooled burner of the present invention as an example, the flame area in the mixing chamber of the burner can reach 1.035m 2 , which can effectively radiate The heat exchange area reduces the burning intensity per unit area and improves the operating conditions of the burner.
  • the water-cooled burner emits uniform heat, and a circulating water pipe is arranged at the flame root, which effectively reduces the flame temperature and the generation probability of nitrogen oxides, and the content of nitrogen oxides produced by combustion is low.
  • the water-cooled burner has an inner tube and an outer tube.
  • the inner tube serves as an air distribution tube.
  • the inner tube has a certain number of openings.
  • the diameter of a single opening in the inner tube is 2-4mm.
  • the total area is reasonable, and the airflow distribution in the cylinder is reasonably distributed to ensure the uniform flame distribution on the burner surface and improve the combustion efficiency.
  • the outer pipe acts as a water pipe to reduce the temperature of the flame, thereby reducing the nitrogen oxide content in the flue gas.
  • the inner diameter of the water pipe of the water-cooled burner can reach 15-40mm, the inside of the water pipe is not easy to be blocked, and there is no need for regular replacement and cleaning, which improves the stability of the boiler operation. It is clogged and has high safety performance, so there is no need to replace the burner regularly, which ensures the stability of the boiler output.
  • the water pipe of the water-cooled burner is made of stainless steel, which can prevent the corrosion of acidic condensate water.
  • the stainless steel has high strength and can meet the harsh working environment in the furnace.
  • Figure 1 is a schematic structural diagram of a condensing boiler provided by an embodiment of the present invention (water-cooled burner is not installed);
  • FIG. 2 is a schematic diagram of the installation structure of the burner of the condensing boiler provided by the embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a condensing boiler provided by an embodiment of the present invention from a viewing angle;
  • Figure 4 is a schematic right side view of Figure 3;
  • Fig. 5 is a schematic left view of Fig. 3;
  • Fig. 6 is a schematic cross-sectional view taken along the line A in Fig. 5;
  • Fig. 7 is a schematic cross-sectional view taken along the line B of Fig. 3;
  • Fig. 8(a) is an enlarged schematic diagram of part D in Fig. 7;
  • Figure 8(b) is a schematic diagram of the cross-sectional structure of the outer heat exchange tube in an embodiment of the present invention.
  • Figure 8(c) is a schematic cross-sectional structure diagram of the inner heat exchange tube of the present invention in an embodiment
  • Fig. 9 is an enlarged schematic diagram of part C of the second baffle plate in Fig. 2;
  • Figure 10 is a schematic structural diagram of a water-cooled burner provided by an embodiment of the present invention from a first perspective;
  • FIG. 11 is a schematic structural diagram of a water-cooled combustor provided by an embodiment of the present invention from a second perspective;
  • FIG. 12 is a schematic structural diagram of a water-cooled combustor provided by an embodiment of the present invention from a third perspective;
  • Fig. 13 is a schematic cross-sectional view taken along line A in Fig. 12;
  • Fig. 14 is a schematic cross-sectional view taken along the line B of Fig. 12;
  • Fig. 15 is a schematic cross-sectional view taken along the line D in Fig. 12;
  • Fig. 16 is a schematic cross-sectional view taken along the line E of Fig. 12;
  • Fig. 17 is an enlarged schematic diagram of part F of Fig. 16;
  • Fig. 18 is an enlarged schematic diagram of part C of Fig. 10;
  • Fig. 19 is an enlarged schematic diagram of part G of Fig. 15;
  • 20 is a schematic structural diagram of a water-cooled burner provided by another embodiment of the present invention.
  • Figure 21 is a cross-sectional view taken along the line H of Figure 20;
  • Fig. 22 is an enlarged view of part II of Fig. 21.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense. For example, they can be fixedly connected or detachably connected. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be fixedly connected or detachably connected. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • Figure 1 is a schematic structural diagram of a condensing boiler provided by an embodiment of the present invention (water-cooled burners are not installed);
  • Figure 2 is a schematic diagram of a burner installation structure of a condensing boiler provided by an embodiment of the present invention;
  • 3 is a schematic structural diagram of a condensing boiler provided by an embodiment of the present invention from a viewing angle;
  • FIG. 4 is a right-side schematic diagram of FIG. 3;
  • FIG. 5 is a left-side schematic diagram of FIG. 3;
  • FIG. 6 is a schematic cross-sectional view along the line A in FIG. 5;
  • 7 is a schematic cross-sectional view taken along the line B of FIG. 3;
  • FIG. 8(a) is an enlarged schematic view of part D in FIG.
  • FIG. 8(b) is a schematic cross-sectional structure diagram of the outer heat exchange tube in an embodiment of the present invention
  • 8(c) is a schematic diagram of the cross-sectional structure of the inner heat exchange tube in an embodiment of the present invention
  • FIG. 9 is an enlarged schematic diagram of part C of the second baffle plate in FIG. 2.
  • the condensing boiler of the present invention includes a heat exchanger 20 and a water-cooled burner.
  • the heat exchanger 20 includes an inner heat exchange tube 202 and an outer heat exchange tube 201 located on the outer ring of the inner heat exchange tube, and there is a gap between the inner heat exchange tube 202 and the outer heat exchange tube 201.
  • the inner heat exchange tube is formed with a accommodating cavity 206, and the direction of the central axis of the accommodating cavity is respectively consistent with the central axis directions of the inner heat exchange tube and the outer heat exchange tube.
  • the inner heat exchange tubes 202 There are a plurality of the inner heat exchange tubes 202, the plurality of inner heat exchange tubes 202 are parallel, and the plurality of inner heat exchange tubes 202 are arranged radially adjacent to each other, and the plurality of adjacently arranged inner heat exchange tubes 202 form a containing cavity 206
  • the extending direction of the central axis of the accommodating cavity 206 is consistent with the central axis of the inner heat exchange tube 201.
  • the length direction of the heat pipe is consistent with the direction of the central axis of the plurality of inner heat exchange tubes.
  • each outer heat exchange tube 201 and each inner heat exchange tube 202 are arranged at equal intervals.
  • the length of the inner heat exchange tube 202 is consistent with the length of the outer heat exchange tube.
  • the high-temperature flue gas generated by the combustion of the burner in the containing cavity diffuses into the inner heat exchange tube and the outer heat exchange tube, thereby performing heat exchange with the liquid such as water in the inner heat exchange tube 202 and the outer heat exchange tube 201 , Thereby heating the liquid in the inner heat exchange tube and the outer heat exchange tube.
  • the inner heat exchange tube and the outer heat exchange tube are both smooth tubes.
  • the inner heat exchange tube and the outer heat exchange tube are both carbon steel smooth tubes.
  • the two circles of light pipe make the flue gas from the burner follow the circumferential direction of the light pipe, so that the flue gas can fully flush the water pipe (light pipe), thereby changing the turbulence effect of the flue gas; on the other hand, by adding two circles
  • the light pipe increases the heat exchange area of the heat exchanger, improves the heat exchange effect, and is beneficial to realize high-power heat exchange or condensation without greatly increasing the shape of the heat exchanger module.
  • the invention effectively controls the volume of the heat exchanger by adding two circles of light pipes, reduces the flue gas temperature, and reduces the probability of nitrogen oxide production.
  • the inner heat exchange tube and the outer heat exchange tube are made of carbon steel, which can not only reduce the material cost, but also because the water flowing through the inner heat exchange tube and the outer heat exchange tube is preheated by the secondary heat exchange tube first, so that it enters The temperature of the water flow in the outer heat exchange tube and the inner heat exchange tube is increased, thereby preventing condensation on the outer surface of the outer heat exchange tube and the inner heat exchange tube, and avoiding corrosion of the outer heat exchange tube and the inner heat exchange tube.
  • the capacity of the boiler can be increased by increasing the wall thickness and length of the heat exchange tube, which is beneficial to the development of large-capacity boilers.
  • the water flow may preferentially pass through the inner heat exchange tube and then through the outer heat exchange tube to further reduce the possibility of condensation.
  • the cross section of the outer ring formed by the plurality of adjacently arranged outer heat exchange tubes 201 is circular
  • the cross section of the outer ring formed by the plurality of adjacently arranged inner heat exchange tubes 202 is circular.
  • the cross section of a plurality of adjacently arranged outer heat exchange tubes is not limited to a circular ring shape, and may also have other shapes.
  • the cross section of the plurality of adjacently arranged inner heat exchange tubes is not limited to a circular ring shape, and may also have other shapes.
  • the inner heat exchange tube is one or more combinations of flat tubes, round tubes and oval tubes; the outer heat exchange tube is one or more of flat tubes, round tubes and oval tubes combination.
  • the inner heat exchange tube 202 is a flat tube (as shown in Figure 8(c)), and the outer heat exchange tube 201 is a flat tube (as shown in Figure 8(b)), which can greatly improve the external heat exchange.
  • the heat transfer efficiency of the heat pipe is a flat tube (as shown in Figure 8(c))
  • the outer heat exchange tube 201 is a flat tube (as shown in Figure 8(b))
  • each outer heat exchange tube includes, but is not limited to, a flat tube, a circular tube, and an oval tube.
  • the cross-sectional shape of each inner heat exchange tube includes, but is not limited to, a flat tube, a circular tube, and an oval tube.
  • the length of the inner heat exchange tube 202 is consistent with the length of the outer heat exchange tube 201.
  • each inner heat exchange tube 202 is close to the immediate position of the two outer heat exchange tubes 201, that is, each inner heat exchange tube 202 and each outer heat exchange tube 201 are arranged in a staggered arrangement and adjacent to each other The two inner exchange tubes 202 are arranged at equal intervals.
  • the heat exchanger also includes secondary heat exchange tubes 203, the secondary heat exchange tubes are in multiple rows, each row of secondary heat exchange tubes includes a plurality of parallel arranged secondary heat exchange tubes 203, and the plurality of secondary heat exchange tubes 203 in diameter Arrange up next to each other.
  • the secondary heat exchange tube is a stainless steel tube.
  • the outer heat exchange tube 201, the inner heat exchange tube 202, and the secondary heat exchange tube 203 are all stainless steel smooth tubes, which can prevent condensation on the outer surface of the outer heat exchange tube and the inner heat exchange tube, and avoid Corrosion of the outer heat exchange tube and the inner heat exchange tube.
  • the outer heat exchange tube 201 and the inner heat exchange tube 202 are both carbon steel smooth tubes
  • the secondary heat exchange tube 203 is a finned tube.
  • the heat exchanger of the present invention also includes a baffle, the baffle includes a first baffle 204 and a second baffle 205, the first baffle A baffle 204 is located outside the plurality of outer heat exchange tubes 201.
  • the first baffle 204 is V-shaped, and the two V-shaped wings 2041 are connected with a bracket 2042, and the bracket 2042 is carried on two adjacent outer heat exchange tubes, and the two V-shaped wings outward
  • the extension is a planar structure 2043, and a plurality of V-shaped two-wing planar structures 2043 are arranged adjacent to each other at equal intervals.
  • the second deflector 205 has a tile-shaped structure.
  • the second deflector 205 is also provided with openings.
  • the openings include a plurality of elongated holes 2051 and a plurality of circular holes 2052.
  • the circular holes 2052 is located on both sides of the elongated hole 2051.
  • FIGS. 8(b) to 8(c) are schematic diagrams of the cross-sectional structure of the outer heat exchange tube in another embodiment of the present invention.
  • both the outer heat exchange tube and the inner heat exchange tube are flat tubes.
  • the difference between this embodiment and the embodiment shown in Figs. 7, 8(a) and 9 is that the heat exchange of this embodiment
  • the device does not include the first baffle 204, and the others are the same as the embodiment shown in FIG. 7, FIG. 8(a) and FIG. 9.
  • the heat exchanger provided by the present invention increases the heat exchange area of the heat exchanger through two circles of light pipes and improves the heat exchange effect.
  • the heat exchanger provided by the present invention makes the flue gas from the burner travel along the circumferential direction of the smooth tube, so that the flue gas can fully wash the water pipe, thereby enhancing the turbulence effect of the flue gas.
  • the furnace volume is effectively controlled, the flue gas temperature is reduced, and the probability of nitrogen oxide production is reduced.
  • FIG. 10 is a schematic structural diagram of a water-cooled combustor provided by an embodiment of the present invention from a first perspective
  • Fig. 11 is a schematic structural diagram of a water-cooled combustor provided by an embodiment of the present invention from a second perspective
  • Fig. 12 is an implementation of the present invention
  • Example provides a schematic view of the structure of the water-cooled combustor from a third perspective
  • Figure 13 is a schematic cross-sectional view along the line A of Figure 12
  • Figure 14 is a schematic cross-sectional view along the line B of Figure 12
  • Figure 15 is a cross-sectional view along the line D of Figure 12 Schematic diagram
  • FIG. 16 is a schematic cross-sectional view taken along the line E of FIG.
  • the burner of the present invention is a water-cooled burner, and the water-cooled burner is accommodated in the accommodating cavity 206.
  • the combustor 100 includes a tubular body 1 and fluid tanks 2 connected to both ends of the tubular body 1.
  • One fluid tank is hermetically connected to one end of the accommodating cavity 206, and the other fluid tank is hermetically connected to the other end of the accommodating cavity 206.
  • the tubular body 1 includes an inner tube 11 and a plurality of outer tubes 12 located outside the inner tube.
  • the inner cylinder 11 extends along the central axis and has an inner surface and an outer surface.
  • the inner surface is formed with a mixing cavity 112, and the inner cylinder is provided with a plurality of rows of openings 111.
  • each row of openings 111 includes a plurality of openings 1111, two adjacent rows of openings 111 are arranged at equal intervals, and two adjacent rows are open
  • the openings 1111 in one row of the holes 111 are staggered with the openings 1111 in the other row, and a plurality of openings 1111 can also be arranged at equal intervals.
  • the shape of the plurality of openings 111 includes, but is not limited to, a round hole and/or a round hole.
  • the waist circular holes and the circular holes are arranged alternately at equal intervals, and the opening direction of the waist circular holes is consistent with the direction of the central axis of the inner cylinder 11.
  • the opening direction of the waist circular hole is consistent with the axial direction of the inner cylinder 11.
  • the inner cylinder is used as an air distribution cylinder, the inner cylinder has a certain number of openings, the diameter of a single opening in the inner cylinder is 2-4mm, the opening area is reasonable, and the air distribution in the cylinder is reasonably distributed. Ensure the uniform flame distribution on the surface of the burner and improve the combustion efficiency.
  • the plurality of outer tubes are arranged in parallel around the outer side of the inner tube 11, and the length direction of the plurality of outer tubes 12 is consistent with the direction of the central axis of the inner tube 11.
  • two adjacent outer tubes 12 are arranged at equal intervals. Specifically, the separation distance between two adjacent outer tubes 12 may be determined according to actual conditions.
  • the plurality of outer tubes 12 corresponds to the plurality of rows of openings 111
  • the number of rows of openings in the inner cylinder 11 is the same as the number of outer tubes 12
  • each row of openings 111 corresponds to each outer tube 12
  • the central axis of each opening 1111 is perpendicular to the central axis of each corresponding outer tube 12 and the central axis of the inner cylinder.
  • the interval between each row of openings 111 and each corresponding outer tube 12 is 3-5mm, and preferably, the interval between each row of openings 111 and each corresponding outer tube 12 is 5mm, so that the passage The mixed gas in the opening 111 can be evenly distributed to the outside or side of the outer tube 12, which can make the outer tube 12 heat exchange more uniform and efficient.
  • the outer pipe 12 is used as a water pipe, and the water pipe is arranged at the root of the flame, which can effectively reduce the temperature of the flame, thereby reducing the content of nitrogen oxides in the flue gas.
  • the outer tube 12 is a stainless steel light pipe, and a plurality of light pipes form a ring structure, and the specific size of the light pipe will be effectively matched and determined according to the size of the heat exchanger furnace.
  • the outer diameter of the light pipe is 15-40 mm, and the wall thickness of the light pipe is 1.0-3.0 mm.
  • the length of the light pipe is not more than 1500mm.
  • the inner diameter of the water pipe can reach 15-40mm, the inside of the water pipe is not easy to be blocked, does not need to be regularly replaced and cleaned, and the stability of the boiler operation is improved.
  • the water pipe spacing is large enough to not cause blockage and has high safety performance. Therefore, there is no need to replace the burner regularly, which ensures the stability of the boiler output; and the water pipe is made of stainless steel, which can prevent the corrosion of acid condensate.
  • the stainless steel has high strength and can meet the harsh working environment in the furnace.
  • the wall thickness of the inner tube 11 is 0.2-3mm. In the example, the tube wall thickness of the inner tube 11 is 0.8mm.
  • the inner diameter of the inner tube 11 will be determined reasonably according to the size of the furnace. In the example, the inner tube The inner diameter of 11 is 200mm.
  • the length of the light pipe in the example is 950mm, and the outer diameter is 20mm.
  • the inner diameter of the ring structure formed by multiple light pipes is 210mm.
  • the tubular body 1 further includes an annular rib 13, the rib 13 is sleeved on the outer side of the inner cylinder 11, the rib 13 is provided with a receiving groove 131, and the outer The tube 12 extends through the receiving groove 131 along the central axis.
  • the ribs of the present invention can fix and strengthen the inner tube 11 and the outer tube 12 and can control the distance between the inner tube 11 and the outer tube 12.
  • the fluid tank at one end of the tubular body 1 has a fluid inlet 22, a fluid outlet 23 and a partition 24, and the partition 24 is connected between the fluid inlet 22 and the fluid outlet 23.
  • the fluid tank 2 at the other end of the tubular body 1 has an air inlet 25 which communicates with the mixing chamber 112.
  • the fluid tank 2 includes a front water tank 20a and a rear water tank 20b.
  • the rear water tank 20b has a fluid inlet 22, a fluid outlet 23, and a partition 24.
  • the fluid inlet 22 and the fluid outlet 23 are connected to a plurality of outer pipes, respectively. 12 is connected, and the outer pipe 12 is divided into two processes of water inlet and water outlet through the partition 24.
  • a fluid, such as water enters the outer tube 12 from the fluid inlet 22, and the water flows between the outer tubes for at least two (two return passes), and then flows out from the fluid outlet 23.
  • the outer pipe 12 can be divided into multiple processes by arranging the partition 24 in the rear water tank 20b. Specifically, the water flow process can be flexibly adjusted according to actual conditions.
  • the front water tank 20 a has an air inlet 25 which communicates with the mixing chamber 112.
  • the gas (gas and air) delivered by the external fan or mixer enters the mixing chamber 112 through the air inlet 25, and after being distributed by the inner cylinder 11, it burns on the outside of the outer pipe 12 or on the side of the outer pipe 12, and passes through the outer pipe 12 at this time.
  • the middle water flow cools the combustion flame, thereby reducing the nitrogen oxide content produced by the combustion.
  • the external fan or mixer is connected to the fluid box by a screw.
  • the front water tank 20a also has a fire observation hole 21 and an electronic igniter for installing there. Through the fire observation hole 21, the outside of the outer tube 12 or the burning situation on the side of the outer tube 12 can be observed.
  • the fluid tank 2 at one end of the tubular body 1 has a fluid inlet 22, and the fluid tank 2 at the other end of the tubular body 1 has a fluid outlet 23, and fluid such as water flows from the fluid inlet 22 into all the outer tubes 12 , The water flows once (one-way) between the outer pipes 12, and then flows out from the fluid outlet 23.
  • the fluid box of the present invention and the tubular body are connected by welding.
  • FIG. 20 is a schematic structural diagram of a water-cooled combustor provided by another embodiment of the present invention
  • FIG. 21 is a cross-sectional view taken along the line H in FIG. 20
  • FIG. 22 is an enlarged view of part II of FIG. 21.
  • the outer tube 12 is a stainless steel fin tube
  • the outer diameter of the fin tube is 15-40 mm
  • the wall thickness of the fin tube is 1.0-3.0 mm
  • the fin width is 2-10 mm.
  • multiple fin tubes form a ring structure, and the inner diameter of the multiple fin tubes forming the ring structure will be determined according to the size of the heat exchanger furnace.
  • the fin tube The inner diameter of the formed tube ring is 300mm.
  • the length of the fin tube is 950mm, and the length and number of the fin tube and the inner diameter of the ring structure surrounded by multiple fin tubes will be determined according to the size of the heat exchanger furnace.
  • the outer diameter of the fin tube is 20 mm
  • the wall thickness of the fin tube is 1.2 mm
  • the length of the fin tube is 950 mm
  • the fin width is 8.5 mm.
  • the fin tube 121 includes an inner tube 1211 and a plurality of fins 1212 arranged on the outer side of the inner tube, and the plurality of fins are arranged adjacently at equal intervals.
  • Two adjacent fin tubes 121 are arranged at equal intervals, a spacer plate 14 is arranged between the two adjacent fin tubes 121, and the length of the spacer plate 14 is the same as the length of the fin tube 121, There are gaps between two adjacent spacers 14, and each gap corresponds to each row of openings 111 one to one.
  • the spacer plate 14 includes a U-shaped groove body 141.
  • the length of the U-shaped groove body 141 is the same as the length of the spacer plate 14.
  • a connecting plate 142 extends outward at the opening of 141, the U-shaped groove body 141 is inserted between two adjacent fin tubes 121, and the notch of the U-shaped groove body 141 faces the inner cylinder 11, and the connection The plate 142 is close to the inner cylinder 11.
  • the connecting plate 142 is vertically connected to the U-shaped groove body 141.
  • the arrow in Figure 22 points to the direction of the flue gas generated by the burner. Specifically, the flue gas generated by the combustion of the burner is distributed through the opening 111 of the inner cylinder 11. A part of the flue gas passes through the gap between the two spacer plates and enters the gap between the two adjacent fins, thereby performing heat exchange on the water flow in the inner tube of the fin tube, so that the temperature of the flue gas is reduced, and the smoke is reduced. The content of nitrogen oxides in the gas.
  • the present invention also provides a condensing boiler, which is characterized in that it comprises the above-mentioned water-cooled burner.
  • the water-cooled combustor provided by the present invention has a tubular structure. Taking the 1050kw water-cooled combustor of the present invention as an example, the flame area in the mixing chamber of the combustor can reach 1.035m 2 , which can effectively radiate heat exchange area , Reduce the intensity of combustion per unit area, improve the operating conditions of the burner.
  • the water-cooled burner provided by the present invention has uniform combustion heat release, and a circulating water pipe is arranged at the root of the flame, which effectively reduces the flame temperature and the generation probability of nitrogen oxides, and the content of nitrogen oxides produced by combustion is low.
  • the water-cooled combustor provided by the present invention has an inner tube and an outer tube.
  • the inner tube is used as an air distribution tube.
  • the inner tube has a certain number of openings.
  • the diameter of a single opening in the inner tube is 2-4mm.
  • the total opening area is Reasonable and reasonable distribution of airflow in the cylinder, ensuring uniform flame distribution on the surface of the burner, and improving combustion efficiency.
  • the outer tube is used as a water tube to reduce the temperature of the flame, thereby reducing the content of nitrogen oxides in the flue gas.
  • the inner diameter of the water pipe can reach 15-40mm, the inside of the water pipe is not easy to be blocked, and it does not need to be regularly replaced and cleaned, which improves the stability of the boiler operation.
  • the water pipe spacing is large enough to not cause blockage and is safe. High performance, so there is no need to replace the burner regularly, which ensures the stability of the boiler output.
  • the water-cooled combustor provided by the present invention can not only fix the reinforced inner tube and the outer tube, but also control the distance between the inner tube and the outer tube by sheathing the ribs on the outer side of the inner tube.
  • the water pipe is made of stainless steel, which can prevent the corrosion of acid condensate.
  • the stainless steel has high strength and can meet the harsh working environment in the furnace.
  • the present invention also provides another condensing boiler.
  • the condensing boiler includes a casing 10, a water-cooled burner in the above-mentioned embodiment, and a heat exchanger 20 in the above-mentioned embodiment.
  • the shell 10 is formed with a furnace cavity.
  • the oven cavity includes a first oven cavity 301 and a second oven cavity 302 located below the first oven cavity 301, the first oven cavity 301 is connected to the second oven cavity 302, and the external heat exchange
  • the tube 201 and the inner heat exchange tube 202 are both located in the first furnace cavity 301, the burner extends into the containing cavity, and the secondary heat exchange tube 203 is located in the second furnace cavity 302.
  • the housing 10 includes an upper housing 101 and a lower housing 102, the upper housing is formed with a first furnace cavity 301, and the lower housing is formed with a second furnace cavity 302.
  • the condensing boiler provided by the present invention increases the heat exchange area of the heat exchanger through two circles of light pipes, and is reasonably arranged to improve the heat exchange effect, and is beneficial to realization without greatly increasing the shape of the condensing boiler module High-power boilers such as 1000kw boilers.
  • the condensing boiler provided by the present invention makes the flue gas from the burner travel along the circumferential direction of the smooth tube, so that the flue gas can fully flush the water pipe, thereby enhancing the turbulence effect of the flue gas.
  • the heat exchanger and condensing boiler provided by the present invention can effectively control the volume of the furnace, reduce the flue gas temperature, and reduce the probability of nitrogen oxide production by increasing the two-circle light pipe of the heat exchanger.
  • the burner of the present invention can be used as a water-cooled burner, wherein the structure of the water-cooled burner will be described in the following embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明提供一种冷凝锅炉,其包括内换热管及位于所述内换热管外圈的外换热管,所述内换热管形成有容纳腔,所述内换热管和外换热管均为光管;水冷式燃烧器容纳于所述容纳腔内,所述水冷式燃烧器包括管状体及连接于所述管状体两端的流体箱,其中一个流体箱与容纳腔的一端密封连接,另一个流体箱与容纳腔的另一端密封连接,管状体包括内筒和多根外管,所述多根外管平行排列绕设于所述内筒的外侧,所述多根外管的两端分别与流体箱连通。本发明的冷凝锅炉,其换热效率高,有利于实现大功率锅炉。

Description

一种冷凝锅炉 技术领域
本发明涉及锅炉技术领域,具体涉及一种冷凝锅炉。
背景技术
冷凝锅炉具有高效节能环保的特点,是锅炉行业的发展方向,目前小型冷凝锅炉或燃气冷凝热水器的技术已经逐渐成熟,但是由于换热器的设计、加工、批量化生产存在困难,使得冷凝技术向大型商业锅炉转化过程进展缓慢。
现有的冷凝锅炉,按材料一般可分为不锈钢、铸铝锅炉,由于冷凝锅炉需要较大的换热面积,不锈钢冷凝锅炉一般会尽可能多的采用翅片管作为换热元件,同时为了提高换热效果,还会将翅片管弯折从而强化换热,上述两种方案增加了材料使用成本和加工成本,并同时影响生产效率。再者,当某个翅片管受损需要更换时,也会增加材料成本和加工成本。
燃烧器燃烧时需要大量空气,空气中含有大量杂质,现有的冷凝锅炉多采用表面式金属纤维网结构燃烧器,其表面呈网状,现有的表面式燃烧器通过表面缠绕的金属网,能够对进入燃烧器的空气进行过滤,能够使混合气体分布均匀,同时有一定防回火功能,但是现有的燃烧器易造成燃烧器表面堵塞,需要经常更换、清洗,费时费力,而且一旦堵塞后会大大降低锅炉出力,而且易造成燃烧器损坏,恶劣情况下甚至会导致爆燃等安全隐患。
因此,有必要提供一种新的技术方案。
实用新型内容
为解决现有技术中存在的技术问题,本发明公开了一种冷凝锅炉,具体技术方案如下所述:
本发明提供一种冷凝锅炉,其包括换热器和水冷式燃烧器,所述换热器包括内换热管及位于所述内换热管外圈的外换热管,所述内换热管形成有容纳腔,所述内换热管和外换热管均为光管;
所述水冷式燃烧器容纳于所述容纳腔内,所述水冷式燃烧器包括管状体及连接于所述管状体两端的流体箱,其中一个流体箱与容纳腔的一端密封连接,另一个流体箱与容纳腔的另一端密封连接,所述管状体包括内筒和多根外管,所述多根外管平行排列绕设于所述内筒的外侧,所述多根外管的两端分别与流体箱连通。
本发明具有以下有益效果:
1、本发明提供的冷凝锅炉,其换热器通过两圈光管来增加换热器的换热面积,提高换热效果,在不大幅度增加冷凝锅炉模块外形的前提下,有利于实现大功率锅炉如1000kw锅炉。
2、本发明提供的冷凝锅炉,使得燃烧器出来的烟气沿着换热器光管的圆周方向走,使烟气充分冲刷水管,改变烟气在翅片管间隙中直来直往的流动方式,从而加强烟气的扰流效果。
3、本发明提供的冷凝锅炉,其换热器通过增加两圈光管,有效的控制炉膛体积,降低烟气温度,减少氮氧化物生产的机率。
4、本发明提供的冷凝锅炉,其水冷式燃烧器为管状体结构,其中以本发明1050kw的水冷式燃烧器为例,该燃烧器的混合腔内火焰面积能够达到1.035m 2,能够有效辐射换热面积,降低单位面积燃烧强度,改善燃烧器运行工况。
5、本发明提供的冷凝锅炉,其水冷式燃烧器燃烧放热均匀,且火焰根部布置有循环水管,有效降低火焰温度,降低氮氧化物生成几率,燃烧产生的氮氧化物含量低。
6、本发明提供的冷凝锅炉,其水冷式燃烧器具有内筒和外管,内筒作为气流分配筒,内筒具有一定数量的开孔,内筒单个开孔直径为2-4mm,开孔总面积合理,合理分配了筒内气流分布,保证燃烧器表面火焰分布均匀,提高了燃烧效率,外管作为水管,能够降低火焰的温度,从而降低了烟气中氮氧化物的含量。
7、本发明提供的冷凝锅炉,其水冷式燃烧器的水管内径可达到15-40mm,水管内部不易堵塞,不需要定期更换清洗,提高锅炉运行的稳定性,其水管间距足够大,不会造成堵塞且安全性能高,因此不需要定期更换燃烧器,保证了锅炉出力的稳定性。
8、本发明提供的冷凝锅炉,通过在水冷式燃烧器的内筒外侧套上肋板,不仅能够固定加强内筒和外管,而且能够控制内筒和外管之间的距离。
9、本发明提供的冷凝锅炉,其水冷式燃烧器的水管为不锈钢材料,可以防止酸性冷凝水的腐蚀,不锈钢材料强度大,可满足炉膛内恶劣的工作环境。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1是本发明实施例提供的冷凝锅炉的结构示意图(未安装水冷式燃烧器);
图2是本发明实施例提供的冷凝锅炉的燃烧器安装结构示意图;
图3是本发明实施例提供的冷凝锅炉在一个视角下的结构示意图示意图;
图4是图3右视示意图;
图5是图3的左视示意图;
图6是图5的A向剖视示意图;
图7是图3的B向剖视示意图;
图8(a)为图7中D部放大示意图;
图8(b)为本发明的外换热管在一个实施例中的横截面结构示意图;
图8(c)为本发明的内换热管在一个实施例中的横截面结构示意图;
图9是图2中第二导流板C部放大示意图;
图10是本发明实施例提供的水冷式燃烧器在第一视角下的结构示意图;
图11是本发明实施例提供的水冷式燃烧器在第二视角下的结构示意图;
图12是本发明实施例提供的水冷式燃烧器在第三视角下的结构示意图;
图13是图12的A向剖视示意图;
图14是图12的B向剖视示意图;
图15是图12的D向剖视示意图;
图16是图12的E向剖视示意图;
图17是图16的F部放大示意图;
图18是图10的C部放大示意图;
图19是图15的G部放大示意图;
图20是本发明另一实施例提供的水冷式燃烧器的结构示意图;
图21是图20的H向剖视图;
图22是图21的Ⅱ部放大图。
其中,10-外壳,101-上外壳,102-下外壳,20-换热器,201-外换热管,202-内换热管,203-次换热管,204第一导流板,2041-第一导流板的两翼,2042-支架,2043-第一导流板的平面结构,205-第二导流板,2051-长条孔,2052-圆孔,206-容纳腔,301-第一炉腔,302-第二炉腔,100-燃烧器,1-管状体,11-内管,111-每排开孔,1111-开孔,112-混合腔,12-外管,13-肋板,131-容纳槽,2-流体箱,20a-前水箱,20b-后水箱,21-观火孔,22-流体进口,23-流体出口,24-隔板,25-进气口,121-翅片管,1211-内管,1212-翅片,14-间隔板,141-U型槽体,142-连接板。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以使固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以使直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例
请参阅图1至图9,图1是本发明实施例提供的冷凝锅炉的结构示意图(未安装水冷式燃烧器);图2是本发明实施例提供的冷凝锅炉的燃烧器安装结构示意图;图3是本发明实施例提供的冷凝锅炉在一个视角下的结构示意图;图4是图3右视示意图;图5是图3的左视示意图;图6是图5的A向剖视示意图;图7是图3的B向剖视示意图;图8(a)为图7中D部放大示意图;图8(b)为本发明的外换热管在一个实施例中的横截面结构示意图;图8(c)为本发明的内换热管在一个实施例中的横截面结构示意图;图9是图2中第二导流板C部放大示意图。
如图1至图9所示,本发明的冷凝锅炉包括换热器20和水冷式燃烧器。所述换热器20包括内换热管202及位于所述内换热管外圈的外换热管201,所述内换热管202与所述外换热管201之间具有间隔。所述内换热管形成有容纳腔206,所述容纳腔的中心轴线方向分别与所述内换热管和外换热管的中心轴线方向一致。
所述内换热管202为多个,多个内换热管202相平行,且多个内换热 管202径向上相邻排列,多个相邻排列的内换热管202形成容纳腔206,所述容纳腔206的中心轴线延伸方向与内换热管201中心轴线方向一致。
所述外换热管201为多个,多个外换热管201平行排列绕设于多个内换热管的外侧,且多个外换热管201径向上相邻排列,多个外换热管的长度方向与多个内换热管的中心轴线方向一致。
进一步地,每个外换热管201和每个内换热管202等间隔排列。
进一步地,所述内换热管202的长度与所述外换热管的长度一致。
在使用的过程中,容纳腔内由燃烧器燃烧产生的高温烟气向内换热管和外换热管扩散,从而与内换热管202和外换热管201中的液体如水进行热交换,进而对内换热管和外换热管中的液体起到加热作用。
在该实施例中,所述内换热管和外换热管均为光管,优选地,所述内换热管和外换热管均为碳钢光管。该两圈光管一方面使得燃烧器出来的烟气沿着光管圆周方向走,使烟气充分冲刷水管(光管),从而改变烟气的扰流效果;另一方面,通过增加两圈光管来增加换热器的换热面积,提高换热效果,在不大幅度增加换热器模块外形的前提下,有利于实现大功率换热或冷凝。
本发明通过增加两圈光管,有效的控制换热器体积,降低烟气温度,减少氮氧化物生产的机率。而且内换热管和外换热管均采用碳钢,不仅能够降低材料成本,而且由于流经内换热管和外换热管中的水流是先经次换热管进行预热,使得进入外换热热管和内换热管中的水流温度提高,从而防止了外换热管和内换热管外表面发生冷凝现象,避免腐蚀外换热管和内换热管。同时可通过增加换热管的管壁厚和长度等来增加锅炉的容量,有利开发大容量锅炉。优选的,对于内外换热管,可将水流优先经过内换热管再通过外换热管,进一步降低冷凝的可能性。
进一步地,多个相邻排列的外换热管201形成的外圈的横截面呈圆环形,多个相邻排列的内换热管202形成的外圈的横截面呈圆环形。在其他实施例中,多个相邻排列的外换热管的横截面不限于圆环形,还可以为其他形状。多个相邻排列的内换热管的横截面不限于圆环形,还可以为其他形状。
所述内换热管为扁形管、圆形管和椭圆形管中的一种或多种组合;所述外换热管为扁形管、圆形管和椭圆形管中的一组或多种组合。
优选地,所述内换热管202为扁形管(如图8(c)所示),所述外换热管201为扁形管(如图8(b)所示),能够大大提高外换热管的换热效率。
需要说明的是,每个外换热管的形状包括但不限于扁形管、圆形管和椭圆形管。每个内换热管的横截面形状包括但不限于扁形管、圆形管和椭圆形管。
为了使得烟气充分与外换热管201和内换热管202进行热交换,所述内换热管202与所述外换热管201之间具有间隔。
进一步地,所述内换热管202的长度与所述外换热管201的长度一致。
请继续参阅图6和图7,每个内换热管202靠近两个外换热管201的紧邻位置,即每个内换热管202和每个外换热管201错位排列,且相邻的两个内换管202等间隔排列。
所述换热器还包括次换热管203,所述次换热管为多排,每排次换热管包括多个平行排列次换热管203,且多个次换热管203在径向上相邻排列。所述次换热管为不锈钢管。在一个实施例中,所述外换热管201、内换热管202和次换热管203均为不锈钢光管,可防止了外换热管和内换热管外表面发生冷凝现象,避免腐蚀外换热管和内换热管。在另一个实施例中,所述外换热管201和内换热管202均为碳钢光管,所述次换热管203为翅片管。
请继续参阅图7、图8(a)和图9,本发明的换热器还包括导流板,所述导流板包括第一导流板204和第二导流板205,所述第一导流板204位于多个外换热管201的外侧。
所述第一导流板204呈V字型,V字型的两翼2041连接有支架2042,所述支架2042承载于相邻的两个外换热管上,所述V字型的两翼向外延伸呈平面结构2043,多个V字型的两翼的平面结构2043等间隔相邻设置。
所述第二导流板205为瓦型结构,所述第二导流板205上还开设有开孔,所述开孔包括多个长条孔2051和多个圆孔2052,所述圆孔2052位于长条孔2051的两侧。
请继续参阅图8(b)至图8(c),图8(b)和图8(c)为本发明的外换热管在另一个实施例中的横截面结构示意图。该实施例中,所述外换热管和内换热管均为扁管,该实施例与图7、图8(a)和图9所示实施例不同的是,该实施例的换热器不包括第一导流板204,其他与图7、图8(a)和图9所示实施例相同。
本发明具有以下有益效果:
1、本发明提供的换热器,其通过两圈光管来增加换热器的换热面积,提高换热效果。
2、本发明提供的换热器,使得燃烧器出来的烟气沿着光管的圆周方向走,使烟气充分冲刷水管,从而加强烟气的扰流效果。
3、本发明提供的换热器,其通过增加两圈光管,有效的控制炉膛体积,降低烟气温度,减少氮氧化物生产的机率。
实施例
请参阅图10至图19。图10是本发明实施例提供的水冷式燃烧器在第一视角下的结构示意图;图11是本发明实施例提供的水冷式燃烧器在第二视角下的结构示意图;图12是本发明实施例提供的水冷式燃烧器在第三视角下的结构示意图;图13是图12的A向剖视示意图;图14是图12的B向剖视示意图;图15是图12的D向剖视示意图;图16是图12的E向剖视示意图;图17是图16的F部放大示意图;图18是图10的C部放大示意图;图19是图15的G部放大示意图。如图10至图19所示,本发明的燃烧器为水冷式燃烧器,所述水冷式燃烧器容纳于所述容纳腔206内。所述燃烧器100包括管状体1及连接于所述管状体1两端的流体箱2,其中一个流体箱与容纳腔206的一端密封连接,另一个流体箱与容纳腔206的另一端密封连接。所述管状体1包括内筒11及位于所述内筒外侧的多根外管12。
所述内筒11沿中心轴线延伸,且具有内表面和外表面,所述内表面形成有混合腔112,所述内筒上开设有多排开孔111。
所述多排开孔111的轴线方向与内筒11的轴线方向一致,每排开孔111包括多个开孔1111,相邻的两排开孔111等间隔排列,且相邻的两排开孔 111中的一排中的开孔1111与另一排中的开孔1111交错排列其中,多个开孔1111也可以等间隔排列。
在一个优选的实施例中,多个开孔111的形状包括但不限于腰圆形孔和/或圆孔。所述腰圆形孔和所述圆孔交替等间隔排列,所述腰圆形孔的开口方向与所述内筒11的中心轴线方向一致。
进一步地,腰圆形孔的开口方向与内筒11的轴线方向一致。
本发明提供的水冷式燃烧器,其内筒作为气流分配筒,内筒具有一定数量的开孔,内筒单个开孔直径为2-4mm,开孔面积合理,合理分配了筒内气流分布,保证燃烧器表面火焰分布均匀,提高了燃烧效率。
所述多根外管平行排列绕设于所述内筒11的外侧,且多根外管12的长度方向与所述内筒11的中心轴线方向一致。
进一步地,相邻的两根外管12等间隔设置,具体地,相邻的两根外管12之间的间隔距离可以根据实际情况而定。
所述多根外管12与所述多排开孔111一一对应,内筒11的开孔排数与外管12的数量一致,每排开孔111与对应的每根外管12之间具有间隔,每个开孔1111的中心轴线分别与对应的每根外管12的中心轴线和内筒的中心轴线垂直。其中,每排开孔111与对应的每根外管12之间的间隔为3-5mm,优选地,每排开孔111与对应的每根外管12之间的间隔为5mm,从而使得通过开孔111的混合气能够均匀的分配到外管12外侧或侧边,能够使得外管12换热更加均匀高效。
外管12作为水管,且水管布置在火焰根部,能够有效降低火焰的温度,从而降低了烟气中氮氧化物的含量。
在该实施例中,所述外管12为不锈钢光管,复数根光管组成一个环形结构,其具体尺寸将依据换热器炉膛的尺寸进行有效的匹配决定。所述光管的外径为15-40mm,所述光管的壁厚为1.0-3.0mm。所述光管的长度为不大于1500mm。
本发明提供的水冷式燃烧器,其水管内径可达到15-40mm,水管内部不易堵塞,不需要定期更换清洗,提高锅炉运行的稳定性,其水管间距足够大,不会造成堵塞且安全性能高,因此不需要定期更换燃烧器,保证了 锅炉出力的稳定性;且水管为不锈钢材料,可以防止酸性冷凝水的腐蚀,不锈钢材料强度大,可满足炉膛内恶劣的工作环境。
所述内筒11的管壁厚度为0.2-3mm,示例中,内筒11的管壁厚度为0.8mm,内筒11的内径将依据炉膛的大小进行合理的匹配决定,示例中所述内筒11的内径为200mm。
示例所述光管的长度为950mm,外径为20mm。多根光管形成环状结构的内径为210mm。
在一个实施例中,所述管状体1还包括环状肋板13,所述肋板13套设于所述内筒11的外侧,所述肋板13上开设有容纳槽131,所述外管12沿中心轴线延伸穿过所述容纳槽131。本发明的肋板可固定加强内筒11和外管12,且能够控制内筒11和外管12之间的距离。
在该实施例中,所述管状体1一端的流体箱具有流体进口22、流体出口23和隔板24,所述隔板24连接于所述流体进口22和流体出口23之间。所述管状体1另一端的流体箱2具有进气口25,所述进气口25与所述混合腔112连通。
具体地,所述流体箱2包括前水箱20a和后水箱20b,所述后水箱20b具有流体进口22、流体出口23和隔板24,所述流体进口22和流体出口23分别与多根外管12连通,通过该隔板24将外管12分成进水和出水两个流程。流体如水流从流体进口22进入外管12,水流在外管之间进行至少两次(两个回程)流通后,然后从流体出口23流出。
需要说明的是,通过在后水箱20b中设置隔板24,可将外管12分成多个流程,具体可根据实际情况灵活调整水路流程。
所述前水箱20a具有进气口25,所述进气口25与所述混合腔112连通。外部风机或混合器输送的气体(燃气和空气)通过进气口25进入混合腔112,经内筒11分配后,在外管12的外侧或者在外管12的侧边燃烧,此时通过外管12中水流对燃烧火焰进行冷却作用,从而可降低燃烧所产生的氮氧化物含量。在一个实施例中,外部风机或混合器通过螺杆连接于流体箱上。
所述前水箱20a还具有观火孔21及用于此处安装电子点火器,通过观火孔21可观察到外管12的外侧或者在外管12的侧边燃烧的情况。
在另一个实施例中,所述管状体1一端的流体箱2具有流体进口22,所述管状体1另一端的流体箱2具有流体出口23,流体如水流从流体进口22进入所有外管12,水流在外管12之间进行一次(单程)流通后,然后从流体出口23流出。
本发明的流体箱与管状体通过焊接连接。
请继续参阅图20至图22,图20是本发明另一实施例提供的水冷式燃烧器的结构示意图;图21是图20的H向剖视图;图22是图21的Ⅱ部放大图。
在该实施例中,所述外管12为不锈钢翅片管,所述翅片管外径为15-40mm,所述翅片管的壁厚为1.0-3.0mm,翅片宽度2-10mm。
沿所述管状体1的截面方向,多根翅片管形成环状结构,多根翅片管形成环状结构的内径将依据换热器炉膛尺寸进行匹配决定,示例中,所述翅片管形成的管圈内径为300mm。示例中所述翅片管的长度为950mm,翅片管长度、数量及多个翅片管围成的环状结构内径将依据换热器炉膛尺寸进行匹配决定。
示例中所述翅片管的外径为20mm,所述翅片管的壁厚为1.2mm,所述翅片管的长度为950mm,翅片宽度为8.5mm。
所述翅片管121包括内管1211及设置于内管外侧的多个翅片1212,多个翅片等间隔相邻设置。
相邻的两根翅片管121等间隔设置,相邻的两根翅片管121之间设置有间隔板14,所述间隔板14的长度与所述翅片管121翅片的长度一致,相邻的两个间隔板14之间具有间隙,每个间隙与每排开孔111一一对应。
所述间隔板14包括U型槽体141,所述U型槽体141的长度与所述间隔板14的长度一致,沿所述U型槽体141的长度方向,自所述U型槽体141开口处向外延伸有连接板142,所述U型槽体141插入相邻的两个翅片管121之间,且U型槽体141的槽口朝向所述内筒11,所述连接板142靠近所述内筒11。
优选地,所述连接板142与所述U型槽体141垂直连接。
请继续参阅图22,图22中的箭头指向为燃烧器产生的烟气的走向,具 体地,燃烧器燃烧产生的烟气通过内筒11的开孔111进行气流分配,通过内筒分配后的烟气一部分从两个间隔板之间的间隙中穿过进入相邻的两个翅片之间的间隙,从而对翅片管内管中的水流进行热交换,使得烟气温度降低,降低了烟气中氮氧化物的含量。
实施例
本发明还提供一种冷凝锅炉,其特征在于,其包括上述的水冷式燃烧器。
本发明具有以下有益效果:
1、本发明提供的水冷式燃烧器,其为管状结构,其中以本发明1050kw的水冷式燃烧器为例,该燃烧器的混合腔内火焰面积能够达到1.035m 2,能够有效辐射换热面积,降低单位面积燃烧强度,改善燃烧器运行工况。
2、本发明提供的水冷式燃烧器,其燃烧放热均匀,且火焰根部布置有循环水管,有效降低火焰温度,降低氮氧化物生成几率,燃烧产生的氮氧化物含量低。
3、本发明提供的水冷式燃烧器,其具有内筒和外管,内筒作为气流分配筒,内筒具有一定数量的开孔,内筒单个开孔直径为2-4mm,开孔总面积合理,合理分配了筒内气流分布,保证燃烧器表面火焰分布均匀,提高了燃烧效率,外管作为水管,能够降低火焰的温度,从而降低了烟气中氮氧化物的含量。
4、本发明提供的水冷式燃烧器,其水管内径可达到15-40mm,水管内部不易堵塞,不需要定期更换清洗,提高锅炉运行的稳定性,其水管间距足够大,不会造成堵塞且安全性能高,因此不需要定期更换燃烧器,保证了锅炉出力的稳定性。
5、本发明提供的水冷式燃烧器,通过在内筒外侧套上肋板,不仅能够固定加强内筒和外管,而且能够控制内筒和外管之间的距离。
6、本发明提供的水冷式燃烧器,其水管为不锈钢材料,可以防止酸性冷凝水的腐蚀,不锈钢材料强度大,可满足炉膛内恶劣的工作环境。
实施例
请继续参阅图1至图22,本发明还提供另外一种冷凝锅炉,所述冷凝锅炉包括外壳10、上述实施例中的水冷式燃烧器和上述实施例中的换热器20。
所述外壳10形成有炉腔。所述炉腔包括第一炉腔301及位于所述第一炉腔301下方的第二炉腔302,所述第一炉腔301与所述第二炉腔302相连通,所述外换热管201和内换热管202均位于所述第一炉腔301内,所述燃烧器伸入所述容纳腔内,所述次换热管203位于所述第二炉腔302内。
所述外壳10包括上外壳101和下外壳102,所述上外壳形成有第一炉腔301,所述下外壳形成有第二炉腔302。
本发明具有以下有益效果:
1、本发明提供的冷凝锅炉,其通过两圈光管来增加换热器的换热面积,并合理布置,提高换热效果,在不大幅度增加冷凝锅炉模块外形的前提下,有利于实现大功率锅炉如1000kw锅炉。
2、本发明提供的冷凝锅炉,使得燃烧器出来的烟气沿着光管的圆周方向走,使烟气充分冲刷水管,从而加强烟气的扰流效果。
3、本发明提供的换热器和冷凝锅炉,其通过增加换热器的两圈光管,有效的控制炉膛体积,降低烟气温度,减少氮氧化物生产的机率。
需要说明的是,本发明的燃烧器可水冷式燃烧器使用,其中,关于水冷式燃烧器的结构将在下属实施例中描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改和变型。

Claims (16)

  1. 一种冷凝锅炉,其特征在于,其包括换热器和水冷式燃烧器,所述换热器包括内换热管(202)及位于所述内换热管外圈的外换热管(201),所述内换热管形成有容纳腔(206),所述内换热管和外换热管均为光管;
    所述水冷式燃烧器容纳于所述容纳腔(206)内,所述水冷式燃烧器包括管状体(1)及连接于所述管状体(1)两端的流体箱(2),其中一个流体箱与容纳腔的一端密封连接,另一个流体箱与容纳腔的另一端密封连接,所述管状体(1)包括内筒(11)和多根外管(12),所述多根外管(12)平行排列绕设于所述内筒(11)的外侧,所述多根外管(12)的两端分别与流体箱连通。
  2. 根据权利要求1所述的冷凝锅炉,其特征在于,所述内换热管为多个,多个内换热管(202)相平行,且多个内换热管(202)径向上相邻排列,多个相邻排列的内换热管形成容纳腔;
    所述外换热管为多个,多个外换热管平行排列绕设于多个内换热管的外侧,且多个外换热管径向上相邻排列,
    所述内换热管(202)与所述外换热管(201)之间具有间隔,且每个外换热管(201)和每个内换热管(202)等间隔排列。
  3. 根据权利要求1所述的冷凝锅炉,其特征在于,多根外管(12)的长度方向与所述内筒(11)的中心轴线方向一致,
    所述容纳腔(206)的中心轴线方向分别与所述内换热管的中心轴线、外换热管的中心轴线及内筒的中心轴线方向一致。
  4. 根据权利要求1所述的冷凝锅炉,其特征在于,所述内换热管(201)包括扁形管、圆形管和椭圆形管中的一种或多种组合;所述外换热管(202)包括扁形管、圆形管和椭圆形管中的一组或多种组合。
  5. 根据权利要求4所述的冷凝锅炉,其特征在于,所述内换热管(201)为扁形管,所述外换热管(202)为扁形管。
  6. 根据权利要求1所述的冷凝锅炉,其特征在于,所述换热器还包括次换热管(203),所述次换热管为多排,每排次换热管包括多个平行排列次换热管(203),且每排次换热管中的多个次换热管(203)在径向上相邻排列。
  7. 根据权利要求6所述的冷凝锅炉,其特征在于,所述内换热管和外换热管均为碳钢光管或不锈钢光管,所述次换热管为不锈钢光管或翅片管。
  8. 根据权利要求1所述的冷凝锅炉,其特征在于,所述光管的外径为15-40mm,所述光管的壁厚为1.0-3.0mm。所述光管的长度为不大于1500mm;
    所述内筒(11)的管壁厚度为0.2-3mm,所述外管(12)为不锈钢翅片管,所述翅片管外径为15-40mm,所述翅片管的壁厚为1.0-3.0mm,翅片宽度2-10mm。
  9. 根据权利要求7所述的冷凝锅炉,其特征在于,所述换热器还包括第一导流板(204)和第二导流板(205),所述第一导流板(204)位于外换热管(201)的外侧,所述第一导流板(204)上开设有多个开孔;
    所述第二导流板(205)包覆于每排次换热管(203)的上下两侧,且与次换热管(203)的外表面贴合。
  10. 根据权利要求2所述的冷凝锅炉,其特征在于,所述内筒(11)具有混合腔(112),所述内筒(11)上开设有多排开孔(111),所述流体箱(2)具有流体进口(22)、流体出口(23)和进气口(25),所述流体进口(22)和流体出口(23)分别与多根外管(12)连通,所述进气口(25)与所述混合腔(112)连通。
  11. 根据权利要求10所述的冷凝锅炉,其特征在于,所述多排开孔(111)的中心轴线方向与内筒(11)的中心轴线方向一致,每排开孔(111)包括多个开孔(1111),相邻的两排开孔(111)等间隔排列,且相邻的两排开孔中的一排中的开孔与另一排中的开孔交错排列,
    相邻的两根外管(12)等间隔设置,所述多根外管(12)与所述多排开孔(111)一一对应,每排开孔(111)与对应的每根外管(12)之间具有间隔,每个开孔(1111)的中心轴线分别与对应的每根外管(12)的中心轴线和内筒的中心轴线垂直。
  12. 根据权利要求10所述的冷凝锅炉,其特征在于,所述管状体一端的流体箱具有流体进口(22)、流体出口(23)及用于隔开所述流体进口(22)和流体出口(23)的隔板(24),所述流体进口(22)和流体出口(23)分别与多根外管(12)连通,所述管状体(1)另一端的流体箱(2)具有进气口(25),所述进气口(25)与所述混合腔(112)连通。
  13. 根据权利要求1所述的冷凝锅炉,其特征在于,所述多根外管(12)均为不锈钢光管,沿所述管状体(1)的截面方向,多根外管形成环状结构。
  14. 根据权利要求1所述的冷凝锅炉,其特征在于,所述多根外管均为不锈钢翅片管(121),所述翅片管包括内管(1211)及设置于内管外侧的多个翅片(1212),沿所述管状体(1)的截面方向,多根翅片管形成环状结构,
    相邻的两根翅片管(121)等间隔设置,相邻的两根翅片管之间设置有间隔板(14),所述间隔板的长度与所述翅片管翅片(1212)的长度一致,相邻的两个间隔板之间具有间隙,每个间隙与内筒(11)每排开孔一一对应,所述间隔板(14)包括U型槽体(141),所述U型槽体(141)的长度与所述间隔板的长度一致,沿所述U型槽体的长度方向,自所述U型槽体开口处向外延伸有连接板(142),所述U型槽体(141)插入相邻的两 个翅片管之间,且U型槽体(141)的槽口朝向所述内筒(11),所述连接板(142)靠近所述内筒(11)。
  15. 根据权利要求1所述的冷凝锅炉,其特征在于,所述管状体(1)还包括环状肋板(13),所述肋板(13)套设于所述内筒(11)的外侧,所述肋板(13)上开设有容纳槽(131),所述多根外管(12)沿中心轴线延伸穿过所述容纳槽(131)。
  16. 根据权利要求6所述的冷凝锅炉,其特征在于,还包括外壳(10),所述外壳(10)形成有炉腔,所述炉腔包括第一炉腔(301)及位于所述第一炉腔(301)下方的第二炉腔(302),所述第一炉腔(301)与所述第二炉腔(302)相连通,所述外换热管(201)和内换热管(202)均位于所述第一炉腔(301)内,所述次换热管(203)位于所述第二炉腔(302)内。
PCT/CN2020/116607 2019-09-23 2020-09-21 一种冷凝锅炉 WO2021057677A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921579463.2 2019-09-23
CN201921579463 2019-09-23
CN201910897167.5 2019-09-23
CN201910897167.5A CN110926026A (zh) 2019-09-23 2019-09-23 一种换热器及冷凝锅炉

Publications (1)

Publication Number Publication Date
WO2021057677A1 true WO2021057677A1 (zh) 2021-04-01

Family

ID=75165615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116607 WO2021057677A1 (zh) 2019-09-23 2020-09-21 一种冷凝锅炉

Country Status (1)

Country Link
WO (1) WO2021057677A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109895B4 (de) * 2000-03-09 2004-07-01 Herzog, Elfriede, Prof. Dr.-Ing. Verfahren zum Verbrennen eines Gas-Luft-Gemisches das durch Wasser hindurch führt
EP1584868A2 (en) * 2004-04-09 2005-10-12 Rinnai Corporation Cylindrical burner
CN201014753Y (zh) * 2007-03-06 2008-01-30 成都前锋热交换器有限责任公司 冷凝式热交换器
CN102901221A (zh) * 2012-09-21 2013-01-30 苏州成强换热器有限公司 一种强制翅片直管冷凝供热换热器
CN206556255U (zh) * 2017-01-24 2017-10-13 苏州成强能源科技有限公司 一种翅片管冷凝锅炉换热器
CN207247567U (zh) * 2017-08-26 2018-04-17 佛山市顺德区迈吉科热能设备有限公司 一种高效安全节能的全预混冷凝热交换器
CN207501140U (zh) * 2017-08-16 2018-06-15 中山市思源电器有限公司 一种水冷式完全预混圆筒形燃烧器
CN208443047U (zh) * 2018-06-28 2019-01-29 杭州卡瓦顿热能科技有限公司 低氮冷凝不锈钢热水锅炉
CN208720215U (zh) * 2018-07-31 2019-04-09 浙江滨特热能科技股份有限公司 一种圆周型全预混水冷式低氮燃烧器
CN110926026A (zh) * 2019-09-23 2020-03-27 苏州威博特能源环保科技有限公司 一种换热器及冷凝锅炉

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10109895B4 (de) * 2000-03-09 2004-07-01 Herzog, Elfriede, Prof. Dr.-Ing. Verfahren zum Verbrennen eines Gas-Luft-Gemisches das durch Wasser hindurch führt
EP1584868A2 (en) * 2004-04-09 2005-10-12 Rinnai Corporation Cylindrical burner
CN201014753Y (zh) * 2007-03-06 2008-01-30 成都前锋热交换器有限责任公司 冷凝式热交换器
CN102901221A (zh) * 2012-09-21 2013-01-30 苏州成强换热器有限公司 一种强制翅片直管冷凝供热换热器
CN206556255U (zh) * 2017-01-24 2017-10-13 苏州成强能源科技有限公司 一种翅片管冷凝锅炉换热器
CN207501140U (zh) * 2017-08-16 2018-06-15 中山市思源电器有限公司 一种水冷式完全预混圆筒形燃烧器
CN207247567U (zh) * 2017-08-26 2018-04-17 佛山市顺德区迈吉科热能设备有限公司 一种高效安全节能的全预混冷凝热交换器
CN208443047U (zh) * 2018-06-28 2019-01-29 杭州卡瓦顿热能科技有限公司 低氮冷凝不锈钢热水锅炉
CN208720215U (zh) * 2018-07-31 2019-04-09 浙江滨特热能科技股份有限公司 一种圆周型全预混水冷式低氮燃烧器
CN110926026A (zh) * 2019-09-23 2020-03-27 苏州威博特能源环保科技有限公司 一种换热器及冷凝锅炉

Similar Documents

Publication Publication Date Title
US20090223655A1 (en) Heat exchanger particularly for thermal generators
US9372011B2 (en) Heat exchanger and gas-fired furnace comprising the same
CN102635945B (zh) 一种贯流型窄间隙整体冷凝式热水锅炉
WO2022012398A1 (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉
CN206036980U (zh) 一种低氮燃烧的蒸汽锅炉
CN207555992U (zh) 立式内管冷凝热水锅炉
WO2021057677A1 (zh) 一种冷凝锅炉
CN212537820U (zh) 一种水冷式燃烧器及冷凝锅炉
CN117028987A (zh) 一种立式水管内置预混膜式壁冷却燃烧器及燃气锅炉
CN110926026A (zh) 一种换热器及冷凝锅炉
KR20120108177A (ko) 완전 연소를 유도하는 화목보일러
CN112013702B (zh) 一种多壳程的管壳式烟气换热装置
CN211668032U (zh) 一种换热器及冷凝锅炉
CN211527196U (zh) 一种换热管道、换热装置以及燃油锅炉
CN113153536A (zh) 一种燃气涡轮用回热器
CN201032278Y (zh) 高效节能燃气热交换器
CN213578094U (zh) 一种管壁式强力锅炉
CN112268270A (zh) 一种撬装式水管式低氮燃气蒸汽锅炉
CN214501744U (zh) 壁挂炉用换热器
CN211695414U (zh) 一种换热装置及冷凝锅炉
CN214406486U (zh) 一种中大型无锅筒集箱式整装燃气热水锅炉
CN217684978U (zh) 一种水冷式燃烧器
CN217297738U (zh) 一种高效沥青罐加热火管
CN214581403U (zh) 一种暖风机换热器
CN212538288U (zh) 一种冷凝锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868879

Country of ref document: EP

Kind code of ref document: A1