WO2014043985A1 - 一种裸眼3d液晶显示装置及其制造方法 - Google Patents

一种裸眼3d液晶显示装置及其制造方法 Download PDF

Info

Publication number
WO2014043985A1
WO2014043985A1 PCT/CN2012/084268 CN2012084268W WO2014043985A1 WO 2014043985 A1 WO2014043985 A1 WO 2014043985A1 CN 2012084268 W CN2012084268 W CN 2012084268W WO 2014043985 A1 WO2014043985 A1 WO 2014043985A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
data line
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2012/084268
Other languages
English (en)
French (fr)
Inventor
吴章奔
马骏
牛磊
汪星辰
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12879157.1A priority Critical patent/EP2824508B1/en
Priority to US14/098,950 priority patent/US9897816B2/en
Publication of WO2014043985A1 publication Critical patent/WO2014043985A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Definitions

  • Eye-eye 3D liquid crystal display device and manufacturing method thereof are Eye-eye 3D liquid crystal display device and manufacturing method thereof
  • the invention relates to a flat panel display technology, in particular to a tree eye 3D liquid crystal display device and a manufacturer thereof
  • 3D (three-dimensional) display technology with its dazzling picture, immersive perception is increasingly sought after by people.
  • the usual 3D display technology the book requires people to wear a very poor sensitivity 3D eyepiece mirror, 3D eyepiece mirror wear to make its application range and use comfort are greatly discounted, so people began to study the tree Eye 3D display technology.
  • Eye 3D technology mainly includes parallax barrier technology and lenticular lens technology.
  • the biggest advantage of lenticular lens technology over parallax barrier technology is that its brightness is unaffected.
  • Fig. 1 is an optical model diagram of an image display method of a lenticular lens eye 3D.
  • the eye 3D liquid crystal display device 100 includes: a cylindrical lens array 110, a display panel 120, and a light source 130.
  • the lenticular lens array 110, the display panel 120, and the light source 130 are sequentially disposed from a viewer, and the pixel unit 121 of the display panel 120 is located on a focal plane of the lenticular lens array 110.
  • each pixel unit 121 has a first sub-pixel 123 for displaying a right-eye image and a second sub-pixel 124 for displaying a left-eye image, and the first sub-pixel 123 and the second sub-pixel 124 are alternated.
  • the first sub-pixel 123 and the second sub-pixel 124 constitute a pixel unit 121.
  • the adjacent first sub-pixel 123 and second sub-pixel 124 correspond to one convex portion 111 of the lenticular lens array 110.
  • the light emitted from the light source 130 passes through the first sub-pixel 123, the second sub-pixel 124, and the convex portion 111 of the lenticular lens array 110, and is split into light toward the left and right eyes, which allows the left and right eyes to Seeing different images, viewers can see stereo images.
  • each sub-pixel region includes a thin film transistor (TFT) 125 therein.
  • TFT thin film transistor
  • data lines 126 and gate lines 127 are disposed on the display panel 120, and each TFT 125 is connected to one piece of data.
  • the lenticular lens array 110 is arranged along the direction in which the first sub-pixel 123 and the second sub-pixel 124 are arranged, and the width of each lens in the lens array 110 is approximately equal to
  • the cross-sectional width of the pixel unit 121 that is, for each lens, has three data lines 126 located at two boundary and center positions of the lens, respectively. Since the data line 126 and the gate line 127 are usually made of opaque metal, after the light is emitted from the light source 130, after passing through the data line 126, the light in the area of the data line 126 is blocked by the light, and the display gradation is lowered.
  • the grayscale reduction area seen by the human eye is enlarged, so that in the entire display area, a plurality of black uneven stripes, that is, moire bars, are seen.
  • 3 is a moire fringe generated by the lenticular lens eye 3D liquid crystal display device of FIG. 2, and the presence of the moire fringes greatly reduces the display effect of the eye 3D.
  • the present invention provides a tree-eye 3D liquid crystal display device to reduce the degree of unevenness of moiré fringes. Another object of the invention is to reduce the number of moiré fringes.
  • the present invention provides a tree-eye 3D liquid crystal display device, including: an array substrate;
  • each of the pixel units includes laterally adjacent first and second sub-pixels
  • the data line is a periodically varying fold line extending in a lateral direction and/or the gate line is a periodically varying fold line extending in a longitudinal direction.
  • the first sub-pixel and the second sub-pixel respectively have one TFT, and the gate of the TFT of the first sub-pixel of the pixel unit and its longitudinally adjacent pixel
  • the gate of the TFT of the first sub-pixel of the cell is connected to the same gate line
  • Two TFTs connected to the same gate line; and two TFTs connected to the same gate line are electrically connected to different data lines.
  • the data line in each period includes a first partial data line inclined in a lateral direction and connected to the first partial data line and obliquely inclined in a lateral direction The second part of the data line.
  • the first partial data line and the second partial data line are both straight lines.
  • the first partial data line is a straight line
  • the second partial data line is a broken line
  • a first partial data line of a corresponding one of the data lines is a straight line
  • a second partial data line of the one data line is a broken line
  • the first partial data line of the corresponding other data line in the unit is a broken line
  • the second partial data line of the other data line is a straight line.
  • the first sub-pixel and the second sub-pixel are substantially trapezoidal.
  • the first sub-pixel and the second sub-pixel are arranged in a reverse tilt.
  • the TFT further includes:
  • a gate insulating layer formed on the gate and gate lines
  • drain and source integrated with the data line, the drain and source portions being overlapped on the semiconductor active layer.
  • the eye 3D liquid crystal display device further includes:
  • a pixel electrode connected to the drain formed on the drain and the partial array substrate; a dielectric layer formed on the pixel electrode;
  • a common electrode is formed on the dielectric layer.
  • the first sub-pixel and the second sub-pixel each have one pixel electrode.
  • the common electrode is a comb-shaped electrode.
  • the eye 3D liquid crystal display device further includes:
  • a lens array arranged on one side of the color filter substrate; a color filter and a black matrix arranged on the other side of the color filter substrate;
  • each lens in the lens array is equal to the cross-sectional width of the pixel
  • the arrangement direction of the first sub-pixel and the second sub-pixel of each pixel is the same as the arrangement direction of the lens in the lens array.
  • the color filter has the same shape as a corresponding pixel.
  • the lens of the lens array is a lenticular lens.
  • a method for manufacturing a tree-eye 3D liquid crystal display including:
  • the data line is a periodically varying fold line extending in a lateral direction and/or the gate line is a fold line that periodically changes along a longitudinal extension.
  • the first sub-pixel and the second sub-pixel respectively have one TFT, and a gate of the TFT of the first sub-pixel of the pixel unit has a longitudinal direction thereof
  • the gate of the TFT of the first sub-pixel of the adjacent pixel unit is connected to the same gate line
  • the gate of the TFT of the second sub-pixel of the pixel unit and the TFT of the second sub-pixel of the pixel unit adjacent to the longitudinal direction thereof The gates are connected to the same gate line; and the two TFTs connected to the same gate line are electrically connected to different data lines, respectively.
  • the data line in each period includes a first partial data line inclined in a lateral direction and connected to the first partial data line and obliquely inclined to The second part of the data line in the lateral direction.
  • the first partial data line and the second partial data line are both straight lines.
  • the first partial data line is a straight line
  • the second partial data line is a broken line
  • the first part of the data line of the corresponding one of the pixel units is a straight line
  • the second part of the data line of the one data line is a broken line
  • the first part of the data line of the corresponding other data line in the pixel unit is a broken line
  • the other data line is a straight line.
  • the first sub-pixel and the second sub-pixel are substantially trapezoidal.
  • the data line, the gate line, and the pixel unit are formed by using the following steps:
  • the manufacturing method of the eye 3D liquid crystal display further includes:
  • a common electrode is formed on the dielectric layer.
  • the first sub-pixel and the second sub-pixel each have one pixel electrode.
  • the common electrode is a comb-shaped electrode.
  • the manufacturing method of the eye 3D liquid crystal display further includes:
  • a width of each lens in the lens array is less than or equal to a cross-sectional width of the pixel unit in a horizontal direction, and the lens arrays are arranged in a lateral direction.
  • the color filter has the same shape as the corresponding sub-pixel.
  • the lens of the lens array is a lenticular lens.
  • the data lines and the gate lines in the prior art are straight lines, and the lens The periods of the data lines or gate lines arranged in the same direction are similar to the period of the lens, so that two sets of periodically similar structures are superimposed to form distinct moiré stripes.
  • the data line and/or the gate line used in the present invention are periodically varying fold lines, because the periodic structure of the data line or the gate line is arranged at an angle with the lens period, so the moiré observed by the human eye The unevenness of the grain becomes lighter.
  • the gate of the TFT of the first sub-pixel of the pixel unit is connected to the gate of the TFT of the first sub-pixel of its longitudinally adjacent pixel unit, and the second sub-pixel of the pixel unit
  • the gate of the TFT of the pixel is connected to the same gate line as the gate of the TFT of the second sub-pixel of the vertically adjacent pixel unit; and the two TFTs connected to the same gate line are electrically connected to different data lines, respectively.
  • 1 is an optical model diagram of an image display method of a column eye 3D
  • FIG. 2 is a perspective view of a conventional eye 3D liquid crystal display device
  • FIG. 3 is a schematic view of a moire fringe generated by the eye 3D liquid crystal display device of FIG. 2;
  • FIG. 4 is a plan view of the array substrate after the gate line is completed according to the first embodiment of the present invention;
  • FIG. 5 is a top plan view of the array substrate after the gate insulating layer and the active layer are formed according to the first embodiment of the present invention
  • Figure 6 is a cross-sectional view taken along line AA' of Figure 5;
  • FIG. 7 is a plan view of the array substrate after the data line and the TFT are fabricated according to the first embodiment of the present invention
  • FIG. 8 is a plan view of the array substrate after the pixel electrode is fabricated according to the first embodiment of the present invention
  • FIG. 8 is a plan view of the array substrate after the pixel electrode is fabricated according to the first embodiment of the present invention
  • FIG. 10 is a plan view of a color filter substrate according to Embodiment 1 of the present invention.
  • Figure 11 is a schematic view showing moiré generated by a 3D liquid crystal display device of a human eye according to Embodiment 1 of the present invention.
  • FIG. 12 is a plan view of the array substrate after the pixel electrode is fabricated according to the second embodiment of the present invention
  • FIG. 13 is a partial enlarged view of FIG.
  • FIG. 14 is a schematic diagram of moiré generated by a 3D liquid crystal display device of a second embodiment of the present invention. detailed description
  • the core idea of the invention is that the data lines are periodically varying fold lines extending in the lateral direction and/or the gate lines are periodically varying fold lines extending in the longitudinal direction. Since the periodic structure of the data line or the gate line is arranged at an angle to the lens period, the degree of unevenness of the moire fringes observed by the human eye becomes light.
  • the gate of the TFT of the first sub-pixel of the pixel unit is connected to the gate of the TFT of the first sub-pixel of its longitudinally adjacent pixel unit, and the second sub-pixel of the pixel unit
  • the gate of the TFT of the pixel is connected to the same gate line as the gate of the TFT of the second sub-pixel of the vertically adjacent pixel unit; and the two TFTs connected to the same gate line are electrically connected to different data lines, respectively.
  • an array substrate 200 is provided, on which a plurality of gate lines 201 arranged in the longitudinal direction and gate electrodes 202 integrated with the gate lines are formed.
  • the gate line 202 is a broken line that periodically changes in a longitudinal direction.
  • the X direction of Fig. 4 is defined as the lateral direction
  • the y direction is defined as the longitudinal direction.
  • a gate insulating layer 203 and a semiconductor active layer 204 are sequentially formed on the gate electrode 202 and the gate line 201.
  • a data line 205, a drain 206, and a source 207 of the body of the data line 202 are formed on the array substrate 200, and the drain 206 and the source 207 are partially overlapped with the On the semiconductor active layer 204.
  • the data line 205 is a periodically varying fold line extending in the lateral direction.
  • a pixel electrode 208 connected to the drain 206 is formed on the array substrate 200.
  • FIG. 9 is a partial enlarged view of FIG. 8, a plurality of pixel units 208 defined by the data lines 205 and the gate lines 201, and each pixel unit 208 includes a first sub-laterally adjacent sub-pixel.
  • Pixel 209 And the second sub-pixel 210 The first sub-pixel 209 and the second sub-pixel 210 are substantially trapezoidal, and the first sub-pixel 209 and the second sub-pixel 210 are in a reversely inclined layout.
  • the first sub-pixel 209 and the second sub-pixel 210 each have one pixel electrode.
  • the data line 205 in each cycle includes a first partial data line 2051 oblique to the lateral direction and a second partial data line 2052 connected to the first partial data line 2051 and obliquely oblique to the lateral direction.
  • the first partial data line 2051 is a straight line
  • the second partial data line 2052 is a broken line.
  • the first partial data line 2051 is thickened in FIG. 9 and the second partial data line 2052 is thinned to be distinguished from other data lines, but those skilled in the art should be aware of
  • the data line 205 can be as thick.
  • the first partial data line 2051 of the corresponding one of the data lines is a straight line
  • the second partial data line 2052 of the one data line is a broken line
  • the first partial data line of the corresponding other data line of the pixel unit 208 2051 is a broken line
  • the second partial data line 2052 of the other data line is a straight line.
  • the first partial data line 2051 can also be set as a broken line
  • the second partial data line 2052 can be set as a straight line.
  • the pixel electrode 208 area is the effective display area, and other areas are blocked by the shading means when displayed, which is an invalid display area, and sufficiently increasing the area of the effective display area is the main method for increasing the aperture ratio.
  • the thin film transistors of the first sub-pixel 209 between the longitudinally adjacent pixel cells 208 are reversed or relatively staggered, and the thin film transistors of the second sub-pixel 210 are disposed oppositely or in opposite directions.
  • the area of the pixel electrode 208 can be sufficiently enlarged, so that the aperture ratio of the array substrate 200 can be effectively improved.
  • each of the sub-pixels may be arranged in order, and the first partial data line 2051 and the second partial data line 2052 may be arranged in a straight line.
  • a dielectric layer (not shown) is formed on the pixel electrode 208; and a common electrode is formed on the dielectric layer.
  • the common electrode is a comb-shaped electrode.
  • a color filter substrate 300 is provided, a lens array 301 is formed on one surface of the color filter substrate 300, and a color filter 302 and a black matrix are formed on the other surface of the color filter substrate 300.
  • the color filter 302 includes a red color filter (R), a green color filter (G), and a blue color filter (B).
  • the color filter 302 further includes a color filter unit 304 corresponding to the pixel unit 208 on the array substrate 200, and the color filter unit 304 further includes a corresponding one on the array substrate 200.
  • the first sub-color filter pixel 305 of the first sub-pixel 209 and the second sub-color filter pixel 306 corresponding to the second sub-pixel 210.
  • the first sub-color filter pixels 305 of the second sub-pixel 210 are the same color filter.
  • the width L1 of each lens in the lens array 301 is less than or equal to the cross-sectional width L2 of the pixel unit in the horizontal direction, and the lens arrays are arranged in the lateral direction.
  • the array substrate 200 and the color filter substrate 300 are bonded to each other, and a space formed by the array substrate 200 and the color filter substrate 300 is filled with liquid crystal to form a tree-eye 3D liquid crystal display device.
  • the gate line 202 is disposed as a periodically varying polygonal line extending in the longitudinal direction, the light is blocked by the gate line 202.
  • the gate line 202 is a broken line, in the entire gate line 202 area, The gate line shape of the broken line shape forms a plurality of different periodic structures having a certain angle with the periodic structure of the lens, and thus the moiré fringes can be weakened. As shown in Fig. 11, the degree of unevenness of the moire fringes observed by the human eye becomes light.
  • the moiré fringes are generated because the period of the data lines or the gate lines arranged in the same direction as the lens array is the same as or close to the period of the lens array.
  • the resulting moire fringes are weakened. It should be understood that the effect of weakening the moire fringes can be achieved by setting the data lines or the gate lines arranged along the direction of the arrangement of the lens arrays with the fold lines, but in order to increase the aperture ratio of the array substrate, the data lines can also be used. Both the gate lines and the gate lines are arranged as periodically varying polylines.
  • the difference between this embodiment and the first embodiment is that the gate of the TFT of the first sub-pixel of the pixel unit is connected to the gate of the TFT of the first sub-pixel of the longitudinally adjacent pixel unit to the same gate line.
  • a dual source is formed such that the gate line at the center of the lens disappears, and a moiré corresponding to the moire fringe generated by the gate line is greatly weakened or disappeared.
  • the manufacturing method of this embodiment is the same as the steps of the manufacturing method of the first embodiment, and the manufacturing method will not be described in detail herein.
  • an array substrate 400 is provided, on which a plurality of gate lines 401 arranged in the longitudinal direction and a gate electrode 402 integrated with the gate lines are formed.
  • a data line 403, a drain 404, and a source 405 of the body of the data line 403 are formed on the array substrate 400, and the drain 404 and the source 405 are partially overlapped with the half.
  • the data line 403 is a periodically varying polygonal line extending in the lateral direction.
  • a pixel electrode 406 connected to the drain 404 is formed on the array substrate 400.
  • a plurality of pixel units 407 defined by the data lines 403 and the gate lines 401 each of the pixel units 407 includes first sub-pixels 408 and second sub-pixels 409 that are laterally adjacent.
  • the first sub-pixel 408 and the second sub-pixel 409 each have one pixel electrode.
  • the first sub-pixel 408 and the second sub-pixel 409 respectively have one TFT, and the gate of the TFT of the first sub-pixel 408 of the pixel unit 407 and the gate of the TFT of the first sub-pixel 408 of the longitudinally adjacent pixel unit thereof a gate line is connected to the same gate line, and a gate of the TFT of the second sub-pixel 409 of the pixel unit is connected to a gate line of a TFT of a second sub-pixel 409 of a longitudinally adjacent pixel unit thereof; and Two TFTs connected to the same gate line are electrically connected to different data lines 403, respectively.
  • the dual source structure is used, that is, the gate of the TFT of the first sub-pixel of the pixel unit is connected to the gate of the TFT of the first sub-pixel of the longitudinally adjacent pixel unit.
  • the gate of the TFT of the second sub-pixel of the pixel unit is connected to the gate of the TFT of the second sub-pixel of the longitudinally adjacent pixel unit; and the two TFTs connected to the same gate line They are electrically connected to different data lines.
  • the gate line at the center of the lens disappears, and a moiré corresponding to the moire fringe generated by the gate line is significantly weakened. Even disappeared.
  • the TFT of the second sub-pixel shares a gate line with the TFT of the second sub-pixel of the vertically adjacent pixel unit, the scanning power can be reduced.
  • the periodically varying data lines and/or periodically changing gate lines used in the present invention are because the periodic structure of the data lines or the gate lines are aligned with the lens period, so the human eye The degree of unevenness of the observed moire fringes becomes light.
  • the gate line at the center of the lens can be eliminated, and the corresponding moire fringe corresponding to the moire fringe generated by the gate line can be greatly weakened or even disappeared.
  • the purpose of reducing the unevenness of the moire fringes and reducing the number of moire fringes is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种裸眼3D液晶显示装置及其制造方法,包括:阵列基板(200,400);形成于阵列基板(200,400)上沿横向配置的多条数据线(205,403)和沿纵向配置的多条栅极线(201,401);由数据线(205,403)和栅极线(201,401)交叉限定的多个像素单元(208,407),其中,每个像素单元(208,407)包括横向相邻的第一子像素(209,408)和第二子像素(210,409);其中,数据线(205,403)为沿横向延伸的周期性变化的折线和/或栅极线(201,401)为沿纵向延伸的周期性变化的折线。采用裸眼3D液晶显示装置,可以有效减轻莫尔条纹的不均程度并减少莫尔条纹数量。

Description

一种棵眼 3D液晶显示装置及其制造方法 技术领域
本发明涉及平板显示技术,特别涉及一种棵眼 3D液晶显示装置及其制造方
法。 背景技术
3D ( three-dimensional )显示技术, 以其炫动的画面, 身临其境观感越来越 受到人们的追捧。 但是, 通常的 3D显示技术, 都书需要人们佩戴一幅感光度极差 的 3D目艮镜, 3D目艮镜的佩戴使其应用范围以及使用舒适度都大了折扣, 于是, 人们开始研究棵眼 3D的显示技术。
棵眼 3D技术主要包括视差障壁技术和柱状透镜技术。柱状透镜技术相对于 视差障壁技术最大的优点在于其亮度不受影响。图 1是一种柱状透镜棵眼 3D的 图像显示方法的光学模型图。 如图 1所示, 棵眼 3D液晶显示装置 100包括: 柱 状透镜阵列 110, 显示面板 120以及光源 130。 所述柱状透镜阵列 110、 显示面 板 120及光源 130自观看者依次设置, 并且显示面板 120的像素单元 121位于 所述柱状透镜阵列 110的焦平面上。
如图 1所示, 每个像素单元 121具有用于显示右眼图像的第一子像素 123 和用于显示左眼图像的第二子像素 124,第一子像素 123和第二子像素 124交替 布置在显示面板 120上, 所述第一子像素 123和第二子像素 124组成一像素单 元 121。相邻的第一子像素 123和第二子像素 124对应于柱状透镜阵列 110的一 个凸部 111。 自光源 130发出的光线经过第一子像素 123、 第二子像素 124和柱 状透镜阵列 110的凸部 111后,分裂成朝向左眼和右眼方向上的光,这使得左眼 和右眼可以看到不同的图像, 因此, 观看者可以看到立体图像。
如图 1和图 2所示, 多个像素单元 121在显示面板 120内被布置成阵列, 其中, 每个子像素区域内都包括一薄膜晶体管 (TFT ) 125。 同时, 在所述显示 面板 120上设置有多条数据线 126和栅极线 127 ,每个 TFT 125都连接一条数据 线 126和一条栅极线 127,所述柱状透镜阵列 110沿着所述第一子像素 123和第 二子像素 124的排列方向排列, 而且所述透镜阵列 110中每个透镜的宽度近似 等于所述像素单元 121的截面宽度, 即, 对于每个透镜来说, 都有三条数据线 126分别位于透镜的两个边界和中心位置。由于数据线 126和栅极线 127通常釆 用不透明的金属, 因此光线从光源 130射出后, 经过数据线 126后, 所述数据 线 126区域内的光线被其遮挡而使显示灰度降低, 经过透镜放大后人眼所看到 的灰度降低区域会放大, 从而在整个显示区域内, 则会看到多条黑色不均的条 紋, 即莫尔条紋( moire bars )。 图 3为图 2的柱状透镜棵眼 3D液晶显示装置所 产生的莫尔条紋, 莫尔条紋的存在使得棵眼 3D的显示效果大打折扣。 发明内容
本发明提供一种棵眼 3D液晶显示装置, 以减轻莫尔条紋的不均程度。 本发明的另一目的在于, 减少莫尔条紋数量。
为了解决上述技术问题, 本发明提供一种棵眼 3D液晶显示装置, 包括: 阵列基板;
形成于所述阵列基板上沿横向配置的多条数据线和沿纵向配置的多条栅极 线;
由所述数据线和栅极线交叉限定的多个像素单元, 其中, 每个所述像素单 元包括横向相邻的第一子像素和第二子像素;
其中, 所述数据线为沿横向延伸的周期性变化的折线和 /或所述栅极线为沿 纵向延伸的周期性变化的折线。
可选的, 在所述棵眼 3D液晶显示装置中, 所述第一子像素和第二子像素分 别具有一个 TFT, 所述像素单元的第一子像素的 TFT的栅极与其纵向相邻像素 单元的第一子像素的 TFT的栅极连接同一条栅极线, 并且, 所述像素单元的第 二子像素的 TFT的栅极与其纵向相邻像素单元的第二子像素的 TFT的栅极连接 同一条栅极线; 且与同一栅极线连接的两个 TFT分别与不同的数据线电连接。
可选的, 在所述棵眼 3D液晶显示装置中, 所述每个周期内的数据线包括倾 斜于横向方向的第一部分数据线和与所述第一部分数据线连接并反向倾斜于横 向方向的第二部分数据线。 可选的, 在所述棵眼 3D液晶显示装置中, 所述第一部分数据线和第二部分 数据线均为直线。
可选的, 在所述棵眼 3D液晶显示装置中, 所述第一部分数据线为直线, 第二部分数据线为折线。
可选的, 在所述棵眼 3D液晶显示装置中, 所述像素单元中对应的一数据线 的第一部分数据线为直线, 所述一数据线的第二部分数据线为折线, 所述像素 单元中对应的另一数据线的第一部分数据线为折线, 所述另一数据线的第二部 分数据线为直线。
可选的, 在所述棵眼 3D液晶显示装置中, 所述第一子像素和第二子像素大 致呈梯形。
可选的, 在所述棵眼 3D液晶显示装置中, 所述第一子像素和第二子像素呈 反向倾斜布局。
可选的, 在所述棵眼 3D液晶显示装置中, 所述 TFT还包括:
栅极绝缘层, 形成于所述栅极和栅极线上;
半导体有源层, 形成于所述栅极绝缘层上; 以及
漏极和与所述数据线一体的源极, 所述漏极和源极部分搭接到所述半导体 有源层上。
可选的, 在所述棵眼 3D液晶显示装置中, 所述棵眼 3D液晶显示装置还包 括:
与所述漏极连接的像素电极, 形成于所述漏极和部分阵列基板上; 介质层, 形成于所述像素电极上; 以及
公共电极, 形成于所述介质层上。
可选的, 在所述棵眼 3D液晶显示装置中, 所述第一子像素和第二子像素各 自具有一个像素电极。
可选的, 在所述棵眼 3D液晶显示装置中, 所述公共电极为梳齿状电极。 可选的, 在所述棵眼 3D液晶显示装置中, 所述棵眼 3D液晶显示装置还包 括:
彩膜基板;
排列在所述彩膜基板的一面上的透镜阵列; 以及 排列在所述彩膜基板的另一面上的彩色滤光片和黑矩阵;
其中, 所述透镜阵列中每个透镜的宽度等于所述像素的截面宽度, 每个像 素的第一子像素和第二子像素的排列方向与透镜阵列中透镜的排列方向相同。
可选的, 在所述棵眼 3D液晶显示装置中, 所述彩色滤光片与对应的像素的 形状相同。
可选的,在所述棵眼 3D液晶显示装置中,所述透镜阵列的透镜为柱状透镜。 相应的, 还提供一种棵眼 3D液晶显示器的制造方法, 包括:
提供一阵列基板
在所述阵列基板上形成沿横向配置的多条数据线和沿纵向配置的多条栅极 线, 由所述数据线和所述栅极线限定的多个像素单元, 每个像素单元包括横向 相邻的第一子像素和第二子像素;
其中, 所述数据线为沿横向延伸的周期性变化的折线和 /或所述栅极线为沿 纵向延伸周期性变化的折线。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述第一子像素和第二 子像素分别具有一个 TFT, 所述像素单元中第一子像素的 TFT的栅极与其纵向 相邻像素单元的第一子像素的 TFT的栅极连接同一条栅极线, 并且, 所述像素 单元的第二子像素的 TFT的栅极与其纵向相邻像素单元的第二子像素的 TFT的 栅极连接同一条栅极线; 且与同一栅极线连接的两个 TFT分别与不同的数据线 电连接。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述每个周期内的数据 线包括倾斜于横向方向的第一部分数据线和与所述第一部分数据线连接并反向 倾斜于横向方向的第二部分数据线。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述第一部分数据线和 第二部分数据线均为直线。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述第一部分数据线为 直线, 第二部分数据线为折线。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述像素单元中对应的 一数据线的第一部分数据线为直线, 所述一数据线的第二部分数据线为折线, 所述像素单元中对应的另一数据线的第一部分数据线为折线, 所述另一数据线 的第二部分数据线为直线。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述第一子像素和第二 子像素大致呈梯形。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述数据线、 栅极线以 及像素单元利用以下步骤形成:
在所述阵列基板上形成栅极线以及与所述栅极线一体的栅极;
在所述栅极和栅极线上依次形成栅极绝缘层和半导体有源层; 以及 在所述阵列基板上形成数据线、 漏极以及与数据线一体的源极, 所述漏极 和源极部分搭接到所述半导体有源层上。
可选的, 在所述棵眼 3D液晶显示器的制造方法还包括:
在所述阵列基板上形成与所述漏极连接的像素电极;
在所述像素电极上形成介质层; 以及
在所述介质层上形成公共电极。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述第一子像素和第二 子像素各自具有一个像素电极。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述公共电极为梳齿状 电极。
可选的, 在所述棵眼 3D液晶显示器的制造方法还包括:
提供一彩膜基板;
在所述彩膜基板的一面上形成透镜阵列;
在所述彩膜基板的另一面上形成彩色滤光片和黑矩阵;
其中, 所述透镜阵列中每个透镜的宽度小于或等于所述像素单元沿水平方 向的截面宽度, 所述透镜阵列沿横向排列。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述彩色滤光片与对应 的子像素的形状相同。
可选的, 在所述棵眼 3D液晶显示器的制造方法中, 所述透镜阵列的透镜为 柱状透镜。 伸的周期性变化的折线。 现有技术中的数据线和栅极线都是直线, 其中与透镜 相同方向排列的数据线或者栅极线的周期与透镜周期相近, 因此两套周期性相 近的结构叠加后, 会形成明显的摩尔条紋。 而本发明中釆用的数据线和 /或栅极 线为周期性变化的折线, 因为数据线或栅极线的周期性结构与透镜周期排列成 一定角度, 因此人眼观察到的莫尔条紋的不均程度变轻。 此外, 将所述像素单 元的第一子像素的 TFT的栅极与其纵向相邻像素单元的第一子像素的 TFT的栅 极连接同一条栅极线, 并且, 所述像素单元的第二子像素的 TFT的栅极与其纵 向相邻像素单元的第二子像素的 TFT的栅极连接同一条栅极线; 且与同一栅极 线连接的两个 TFT分别与不同的数据线电连接。 这样的设计, 会使位于透镜中 心位置的栅极线消失, 相应的因为该栅极线而产生的莫尔条紋对应的一条莫尔 条紋也会消失, 即, 减少了莫尔条紋数量。 附图说明
图 1为柱棵眼 3D的图像显示方法的光学模型图;
图 2为现有棵眼 3D液晶显示装置的透视图;
图 3为图 2的棵眼 3D液晶显示装置所产生的莫尔条紋的示意图; 图 4为本发明实施例一的阵列基板完成栅极线制作后的俯视图;
图 5 为本发明实施例一的阵列基板完成栅极绝缘层和有源层制作后的俯视 图;
图 6为图 5沿 AA'线的剖面图;
图 7为本发明实施例一的阵列基板完成数据线和 TFT制作后的俯视图; 图 8为本发明实施例一的阵列基板完成像素电极制作后的俯视图; 图 9为图 8的局部放大图;
图 10为本发明实施例一的彩膜基板的俯视图;
图 11为本发明实施例一的棵眼 3D液晶显示装置所产生的莫尔条紋的示意 图;
图 12为本发明实施例二的阵列基板完成像素电极制作后的俯视图; 图 13为图 12的局部放大图;
图 14为本发明实施例二的棵眼 3D液晶显示装置所产生的莫尔条紋的示意 图。 具体实施方式
本发明的核心思想在于, 数据线为沿横向延伸的周期性变化的折线和 /或栅 极线为沿纵向延伸的周期性变化的折线。 因为数据线或栅极线的周期性结构与 透镜周期排列成一定角度, 因此人眼观察到的莫尔条紋的不均程度变轻。
此外, 将所述像素单元的第一子像素的 TFT的栅极与其纵向相邻像素单元 的第一子像素的 TFT的栅极连接同一条栅极线, 并且, 所述像素单元的第二子 像素的 TFT的栅极与其纵向相邻像素单元的第二子像素的 TFT的栅极连接同一 条栅极线; 且与同一栅极线连接的两个 TFT分别与不同的数据线电连接。 这样 的设计, 会使位于透镜中心位置的栅极线大幅减弱甚至消失, 相应的因为该栅 极线而产生的莫尔条紋对应的一条莫尔条紋也会消失, 即, 减少了莫尔条紋数 量。
为了使本发明的目的, 技术方案和优点更加清楚, 下面结合附图来进一步 #丈详细说明。 实施例一
首先, 如图 4所示, 提供一阵列基板 200 , 在所述阵列基板 200上形成沿纵 向配置的多条栅极线 201以及与所述栅极线一体的栅极 202。所述栅极线 202为 沿纵向延伸周期性变化的折线。 在本说明书中, 图 4的 X方向定义为横向, y方 向定义为纵向。
接着, 如图 5和图 6所示, 在所述栅极 202和栅极线 201上依次形成栅极 绝缘层 203和半导体有源层 204。
接着, 如图 7所示, 在所述阵列基板上 200形成数据线 205、 漏极 206以及 与数据线 202—体的源极 207 ,所述漏极 206和源极 207部分搭接到所述半导体 有源层 204上。 所述数据线 205为沿横向延伸的周期性变化的折线。
接着, 如图 8所示, 在所述阵列基板 200上形成与所述漏极 206连接的像 素电极 208。
如图 9所示, 图 9为图 8的局部放大图, 由所述数据线 205和所述栅极线 201限定的多个像素单元 208 ,每个像素单元 208包括横向相邻的第一子像素 209 和第二子像素 210。 所述第一子像素 209和第二子像 210素大致呈梯形, 所述第 一子像素 209和第二子像素 210呈反向倾斜布局。 所述第一子像素 209和第二 子像素 210各自具有一个像素电极。
继续参考图 9,所述每个周期内的数据线 205包括倾斜于横向方向的第一部 分数据线 2051和与所述第一部分数据线 2051连接并反向倾斜于横向方向的第 二部分数据线 2052。 在本实施例中, 所述第一部分数据线 2051为直线, 所述第 二部分数据线 2052折线。 需要说明的是, 为便于说明, 图 9中将第一部分数据 线 2051加粗, 将第二部分数据线 2052变细, 以此与其它数据线相区别, 但是 本领域技术人员应是知晓的, 所述数据线 205是可以等粗的。 像素单元 208中 对应的一数据线的第一部分数据线 2051为直线, 所述一数据线的第二部分数据 线 2052为折线,所述像素单元 208中对应的另一数据线的第一部分数据线 2051 为折线, 所述另一数据线的第二部分数据线 2052为直线。 当然, 也可以将所述 第一部分数据线 2051设置为折线, 而将所述第二部分数据线 2052设置为直线。
在图 9中, 只有像素电极 208区域才是有效显示区域, 其他区域在显示时 都会釆用遮光手段被遮挡, 属于无效显示区域, 充分提高有效显示区域的面积 是提高开口率的主要方法。 在本实施例中, 纵向相邻像素单元 208之间的第一 子像素 209的薄膜晶体管反向或相对错开设置, 第二子像素 210的薄膜晶体管 相对或反向错开设置。 釆用所述第一部分数据线 2051和第二部分数据线 2052 的设置结构, 可以充分扩大像素电极 208的区域面积, 因此可以有效提高所述 阵列基板 200的开口率。 应当理解的是, 在不要求开口率的场合下, 也可以将 每个子像素按顺序整齐排列, 将所述第一部分数据线 2051和第二部分数据线 2052均设置为直线。
接着, 在所述像素电极 208上形成介质层(未图示) ; 并在在所述介质层 上形成公共电极, 优选的, 所述公共电极为梳齿状电极。
接着, 如图 10所示, 提供一彩膜基板 300, 在所述彩膜基板 300的一面上 形成透镜阵列 301 ;在所述彩膜基板 300的另一面上形成彩色滤光片 302和黑矩 阵 303。 所述彩色滤光片 302包括红色滤光片 (R )、 绿色滤光片 (G )和蓝色滤 光片(B )。所述彩色滤光片 302还包括对应于所述阵列基板 200上像素单元 208 的彩色滤光单元 304,所述彩色滤光单元 304还包括对应于所述阵列基板 200上 的第一子像素 209的第一子彩色滤光像素 305和对应于第二子像素 210的第二 子彩色滤光像素 306。所述第二子像素 210的第一子彩色滤光像素 305为同一种 彩色滤光片。 其中, 所述透镜阵列 301中每个透镜的宽度 L1小于或等于所述像 素单元沿水平方向的截面宽度 L2, 所述透镜阵列沿横向排列。
接着, 将所述阵列基板 200和彩膜基板 300相互贴合, 并在由阵列基板 200 和彩膜基板 300形成的空间填充液晶, 形成棵眼 3D液晶显示装置。 因为, 所述 栅极线 202设置为沿纵向延伸的周期性变化的折线, 光线经过所述栅极线 202 的遮挡, 因为所述栅极线 202为折线, 因此在整个栅极线 202区域, 折线形状 的栅极线与直线形状的栅极线相比, 形成了若干组不同的、 与透镜的周期性结 构有一定角度的周期性结构, 因而可以减弱摩尔条紋。 如图 11所示, 人眼观察 到的莫尔条紋的不均程度变轻。
摩尔条紋的产生是因为与透镜阵列同一方向排列的数据线或者栅极线的周 期与透镜阵列的周期相同或者相近。 对沿透镜阵列排列方向排列的数据线或者 栅极线釆用折线设置后, 因此而产生的摩尔条紋都会减弱。 应当理解的是, 只 要将沿透镜阵列排列方向排列的数据线或者栅极线釆用折线设置后, 就可以达 到减弱摩尔条紋的效果, 但是为了提高阵列基板的开口率, 也可以将数据线和 栅极线都设置为周期性变化的折线。 实施例二
本实施例与实施例一的不同之处在于,将所述像素单元的第一子像素的 TFT 的栅极与其纵向相邻像素单元的第一子像素的 TFT的栅极连接同一条栅极线, 形成双源极结构 ( dual source ), 使得位于透镜中心位置的栅极线消失, 相应的 因为该栅极线而产生的莫尔条紋对应的一条莫尔条紋会大幅减弱或者消失。
本实施例的制造方法与实施例一的制造方法的各步骤相同, 在此对于制造 方法不再详细说明。
首先, 如图 12所示, 提供一阵列基板 400, 在所述阵列基板 400上形成沿 纵向配置的多条栅极线 401以及与所述栅极线一体的栅极 402。
接着, 继续参考图 12 , 在所述阵列基板上 400形成数据线 403、 漏极 404 以及与数据线 403—体的源极 405 ,所述漏极 404和源极 405部分搭接到所述半 导体有源层上。 所述数据线 403为沿横向延伸的周期性变化的折线。 在所述阵 列基板 400上形成与所述漏极 404连接的像素电极 406。
如图 13所示,由所述数据线 403和所述栅极线 401限定的多个像素单元 407 , 每个像素单元 407包括横向相邻的第一子像素 408和第二子像素 409。所述第一 子像素 408和第二子像素 409各自具有一个像素电极。 所述第一子像素 408和 第二子像素 409分别具有一个 TFT,所述像素单元 407的第一子像素 408的 TFT 的栅极与其纵向相邻像素单元的第一子像素 408的 TFT的栅极连接同一条栅极 线, 并且, 所述像素单元的第二子像素 409的 TFT的栅极与其纵向相邻像素单 元的第二子像素 409的 TFT的栅极连接同一条栅极线; 且与同一栅极线连接的 两个 TFT分别与不同的数据线 403电连接。
在本实施例中釆用双源极结构, 即, 所述像素单元的第一子像素的 TFT的 栅极与其纵向相邻像素单元的第一子像素的 TFT的栅极连接同一条栅极线, 同 时所述像素单元的第二子像素的 TFT的栅极与其纵向相邻像素单元的第二子像 素的 TFT的栅极连接同一条栅极线; 且与同一栅极线连接的两个 TFT分别与不 同的数据线电连接。 如图 14所示, 因为双源极结构的釆用, 使位于透镜中心位 置的栅极线消失, 相应的因为该栅极线而产生的莫尔条紋对应的一条莫尔条紋 会明显减弱甚至消失。 同时, 因为第二子像素的 TFT与其纵向相邻像素单元的 第二子像素的 TFT共用一条栅极线, 可以降低扫描功率。
综上所述,本发明釆用的周期性变化的数据线和 /或周期性变化的栅极线为, 因为数据线或栅极线的周期性结构与透镜周期排列成一定角度, 因此人眼观察 到的莫尔条紋的不均程度变轻。 另外, 如果同时釆用双源极结构时, 可以使位 于透镜中心位置的栅极线消失, 相应的因为该栅极线而产生的莫尔条紋对应的 一条莫尔条紋会大幅减弱甚至消失, 从而达到减轻莫尔条紋的不均程度和减少 莫尔条紋数量的目的。
需要说明的是, 本说明书中各个实施例釆用递进的方式描述, 每个实施例 重点说明的都是与其他实施例的不同之处, 各个实施例之间相同相似部分互相 参见即可。
显然, 本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明 的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包括这些改动和变型在内。

Claims

权 利 要 求 书
1.一种棵眼 3D液晶显示装置, 包括:
阵列基板;
形成于所述阵列基板上沿横向配置的多条数据线和沿纵向配置的多条栅极 线;
由所述数据线和栅极线交叉限定的多个像素单元, 其中, 每个所述像素单 元包括横向相邻的第一子像素和第二子像素;
其中, 所述数据线为沿横向延伸的周期性变化的折线和 /或所述栅极线为沿 纵向延伸的周期性变化的折线。
2. 如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一子像素 和第二子像素分别具有一个 TFT, 所述像素单元的第一子像素的 TFT的栅极 与其纵向相邻像素单元的第一子像素的 TFT的栅极连接同一条栅极线 ,并且 , 所述像素单元的第二子像素的 TFT的栅极与其纵向相邻像素单元的第二子像 素的 TFT的栅极连接同一条栅极线;且与同一栅极线连接的两个 TFT分别与 不同的数据线电连接。
3.如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述每个周期 内的数据线包括倾斜于横向方向的第一部分数据线和与所述第一部分数据线连 接并反向倾斜于横向方向的第二部分数据线。
4.如权利要求 3所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一部分 数据线和第二部分数据线均为直线。
5.如权利要求 3所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一部 分数据线为直线, 第二部分数据线为折线。
6.如权利要求 5所述的棵眼 3D液晶显示装置, 其特征在于, 所述像素单元 中对应的一数据线的第一部分数据线为直线, 所述一数据线的第二部分数据线 为折线, 所述像素单元中对应的另一数据线的第一部分数据线为折线, 所述另 一数据线的第二部分数据线为直线。
7.如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一子像 素和第二子像素大致呈梯形。
8.如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一子像 素和第二子像素呈反向倾斜布局。
9.如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述 TFT还 包括:
栅极绝缘层, 形成于所述栅极和栅极线上;
半导体有源层, 形成于所述栅极绝缘层上; 以及
漏极和与所述数据线一体的源极, 所述漏极和源极部分搭接到所述半导体 有源层上。
10. 如权利要求 9所述的棵眼 3D液晶显示装置, 其特征在于, 所述棵眼 3D液晶显示装置还包括:
与所述漏极连接的像素电极, 形成于所述漏极和部分阵列基板上; 介质层, 形成于所述像素电极上; 以及
公共电极, 形成于所述介质层上。
11. 如权利要求 10所述的棵眼 3D液晶显示装置, 其特征在于, 所述第一 子像素和第二子像素各自具有一个像素电极。
12. 如权利要求 10所述的棵眼 3D液晶显示装置, 其特征在于, 所述公共 电极为梳齿状电极。
13. 如权利要求 1所述的棵眼 3D液晶显示装置, 其特征在于, 所述棵眼 3D液晶显示装置还包括:
彩膜基板;
排列在所述彩膜基板的一面上的透镜阵列; 以及
排列在所述彩膜基板的另一面上的彩色滤光片和黑矩阵;
其中, 所述透镜阵列中每个透镜的宽度等于所述像素的截面宽度, 每个像 素的第一子像素和第二子像素的排列方向与透镜阵列中透镜的排列方向相同。
14. 如权利要求 13所述的棵眼 3D液晶显示装置, 其特征在于, 所述彩色 滤光片与对应的像素的形状相同。
15. 如权利要求 13所述的棵眼 3D液晶显示装置, 其特征在于, 所述透镜 阵列的透镜为柱状透镜。
16. 一种棵眼 3D液晶显示器的制造方法, 包括:
提供一阵列基板 在所述阵列基板上形成沿横向配置的多条数据线和沿纵向配置的多条栅极 线, 由所述数据线和所述栅极线限定的多个像素单元, 每个像素单元包括横向 相邻的第一子像素和第二子像素;
其中, 所述数据线为沿横向延伸的周期性变化的折线和 /或所述栅极线为沿 纵向延伸周期性变化的折线。
17. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述第一子像素和第二子像素分别具有一个 TFT, 所述像素单元中第一子像素 的 TFT的栅极与其纵向相邻像素单元的第一子像素的 TFT的栅极连接同一条栅 极线, 并且, 所述像素单元的第二子像素的 TFT的栅极与其纵向相邻像素单元 的第二子像素的 TFT 的栅极连接同一条栅极线; 且与同一栅极线连接的两个 TFT分别与不同的数据线电连接。
18. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述每个周期内的数据线包括倾斜于横向方向的第一部分数据线和与所述第一 部分数据线连接并反向倾斜于横向方向的第二部分数据线。
19. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述第一部分数据线和第二部分数据线均为直线。
20. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述第一部分数据线为直线, 第二部分数据线为折线。
21. 如权利要求 20所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述像素单元中对应的一数据线的第一部分数据线为直线, 所述一数据线的第 二部分数据线为折线, 所述像素单元中对应的另一数据线的第一部分数据线为 折线, 所述另一数据线的第二部分数据线为直线。
22. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述第一子像素和第二子像素大致呈梯形。
23. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述数据线、 栅极线以及像素单元利用以下步骤形成:
在所述阵列基板上形成栅极线以及与所述栅极线一体的栅极;
在所述栅极和栅极线上依次形成栅极绝缘层和半导体有源层; 以及 在所述阵列基板上形成数据线、 漏极以及与数据线一体的源极, 所述漏极 和源极部分搭接到所述半导体有源层上。
24. 如权利要求 23所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 还包括:
在所述阵列基板上形成与所述漏极连接的像素电极;
在所述像素电极上形成介质层; 以及
在所述介质层上形成公共电极。
25. 如权利要求 24所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述第一子像素和第二子像素各自具有一个像素电极。
26. 如权利要求 24所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述公共电极为梳齿状电极。
27. 如权利要求 16所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 还包括:
提供一彩膜基板;
在所述彩膜基板的一面上形成透镜阵列;
在所述彩膜基板的另一面上形成彩色滤光片和黑矩阵;
其中, 所述透镜阵列中每个透镜的宽度小于或等于所述像素单元沿水平方 向的截面宽度, 所述透镜阵列沿横向排列。
28. 如权利要求 27所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述彩色滤光片与对应的子像素的形状相同。
29. 如权利要求 27所述的棵眼 3D液晶显示装置的制造方法,其特征在于, 所述透镜阵列的透镜为柱状透镜。
PCT/CN2012/084268 2012-09-19 2012-11-08 一种裸眼3d液晶显示装置及其制造方法 WO2014043985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12879157.1A EP2824508B1 (en) 2012-09-19 2012-11-08 Glasses-free 3d liquid crystal display device and manufacturing method therefor
US14/098,950 US9897816B2 (en) 2012-09-19 2013-12-06 Glasses-free 3D liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210350278.2A CN103268044B (zh) 2012-09-19 2012-09-19 一种裸眼3d液晶显示装置及其制造方法
CN201210350278.2 2012-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/098,950 Continuation US9897816B2 (en) 2012-09-19 2013-12-06 Glasses-free 3D liquid crystal display device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014043985A1 true WO2014043985A1 (zh) 2014-03-27

Family

ID=49011682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084268 WO2014043985A1 (zh) 2012-09-19 2012-11-08 一种裸眼3d液晶显示装置及其制造方法

Country Status (4)

Country Link
US (1) US9897816B2 (zh)
EP (1) EP2824508B1 (zh)
CN (1) CN103268044B (zh)
WO (1) WO2014043985A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838014B (zh) * 2014-02-25 2017-04-05 京东方科技集团股份有限公司 一种显示装置
US10606091B2 (en) 2014-12-22 2020-03-31 Tianma Microelectronics Co., Ltd. Stereoscopic display device
JP6693640B2 (ja) * 2014-12-22 2020-05-13 天馬微電子有限公司 立体表示装置
JP6693639B2 (ja) * 2014-12-22 2020-05-13 天馬微電子有限公司 立体表示装置
US11074876B2 (en) 2014-12-22 2021-07-27 Tianma Microelectronics Co., Ltd. Stereoscopic display device
CN105093655B (zh) * 2015-08-26 2017-12-19 中山大学 一种多色显示器滤色方法和装置
CN106959558B (zh) * 2016-01-11 2023-10-13 擎中科技(上海)有限公司 一种显示器件
FR3051053B1 (fr) * 2016-05-03 2018-05-25 Essilor International Matrice active transparente a reseau desordonne et composant optique integrant une telle matrice
KR102606673B1 (ko) * 2016-10-21 2023-11-28 삼성디스플레이 주식회사 표시 패널, 입체 영상 표시 패널 및 표시 장치
CN106371219B (zh) * 2016-11-14 2018-11-09 上海天马微电子有限公司 一种显示器以及显示装置
KR101880751B1 (ko) * 2017-03-21 2018-07-20 주식회사 모픽 무안경 입체영상시청을 위해 사용자 단말과 렌티큘러 렌즈 간 정렬 오차를 줄이기 위한 방법 및 이를 수행하는 사용자 단말
KR102555999B1 (ko) * 2018-07-23 2023-07-14 삼성디스플레이 주식회사 표시 장치
CN110767825B (zh) * 2018-08-06 2022-06-21 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
CN109324720B (zh) * 2018-09-28 2023-09-26 武汉华星光电技术有限公司 阵列基板、触摸显示屏及阵列基板的驱动方法
CN114072723A (zh) * 2019-07-05 2022-02-18 奇跃公司 用于减轻透视像素阵列中的伪影的几何形状
CN112415819A (zh) 2019-08-23 2021-02-26 合肥京东方显示技术有限公司 显示面板及显示装置
CN112415807B (zh) * 2019-08-23 2024-06-28 京东方科技集团股份有限公司 显示面板及显示装置
US11719979B2 (en) 2019-11-28 2023-08-08 Hefei Boe Display Technology Co., Ltd. Array substrate, dimming liquid crystal panel, and display panel
US11917119B2 (en) 2020-01-09 2024-02-27 Jerry Nims 2D image capture system and display of 3D digital image
CN113867059A (zh) 2020-06-30 2021-12-31 京东方科技集团股份有限公司 液晶显示面板及液晶显示装置
CN112327549B (zh) * 2020-11-05 2022-10-21 北海惠科光电技术有限公司 显示面板和显示装置
CN112327505B (zh) * 2020-11-17 2022-04-05 武汉华星光电技术有限公司 裸眼3d显示装置及其制作方法
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
JP2024075521A (ja) * 2021-03-30 2024-06-04 ソニーグループ株式会社 画像表示装置及び電子機器
CN113341610A (zh) * 2021-06-28 2021-09-03 业成科技(成都)有限公司 液晶显示模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102279494A (zh) * 2010-06-11 2011-12-14 Nlt科技股份有限公司 图像显示装置、图像显示装置的驱动方法和终端装置
CN102393585A (zh) * 2007-10-15 2012-03-28 Nlt科技股份有限公司 显示装置
CN102445760A (zh) * 2010-09-15 2012-05-09 Nlt科技股份有限公司 图像显示设备
CN102636930A (zh) * 2012-04-27 2012-08-15 深圳市华星光电技术有限公司 采用半源极驱动结构的3d显示装置
US20120229896A1 (en) * 2011-03-09 2012-09-13 Alioscopy Lenticular array intended for an autostereoscopic system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287702B1 (ko) * 2005-06-30 2013-07-24 엘지디스플레이 주식회사 반사투과형 액정 표시 장치 및 그 제조 방법
KR101189277B1 (ko) * 2005-12-06 2012-10-09 삼성디스플레이 주식회사 액정 표시 장치
KR20080003078A (ko) * 2006-06-30 2008-01-07 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
JP5376774B2 (ja) * 2006-07-21 2013-12-25 三星ディスプレイ株式會社 液晶表示装置
KR101320654B1 (ko) * 2006-12-26 2013-10-22 전북대학교산학협력단 액정표시패널 및 그 제조 방법
TWI375061B (en) * 2008-05-30 2012-10-21 Chimei Innolux Corp Liquid crystal display panel
CN101650500B (zh) * 2008-08-12 2012-01-18 上海天马微电子有限公司 液晶显示面板及其驱动方法
KR101518325B1 (ko) * 2008-12-18 2015-05-11 삼성디스플레이 주식회사 액정 표시 장치
TWI422862B (zh) * 2009-12-22 2014-01-11 Au Optronics Corp 立體顯示器
KR101274715B1 (ko) * 2009-12-22 2013-06-12 엘지디스플레이 주식회사 박막트랜지스터 기판 및 그 제조 방법
CN101726860B (zh) * 2009-12-30 2012-05-23 友达光电股份有限公司 立体显示器
KR101695025B1 (ko) * 2010-07-29 2017-01-10 엘지디스플레이 주식회사 액정표시장치와 그 리페어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393585A (zh) * 2007-10-15 2012-03-28 Nlt科技股份有限公司 显示装置
CN102279494A (zh) * 2010-06-11 2011-12-14 Nlt科技股份有限公司 图像显示装置、图像显示装置的驱动方法和终端装置
CN102445760A (zh) * 2010-09-15 2012-05-09 Nlt科技股份有限公司 图像显示设备
US20120229896A1 (en) * 2011-03-09 2012-09-13 Alioscopy Lenticular array intended for an autostereoscopic system
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102636930A (zh) * 2012-04-27 2012-08-15 深圳市华星光电技术有限公司 采用半源极驱动结构的3d显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2824508A4 *

Also Published As

Publication number Publication date
EP2824508A1 (en) 2015-01-14
EP2824508A4 (en) 2015-12-16
EP2824508B1 (en) 2018-02-14
US9897816B2 (en) 2018-02-20
CN103268044B (zh) 2016-04-20
CN103268044A (zh) 2013-08-28
US20140098308A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2014043985A1 (zh) 一种裸眼3d液晶显示装置及其制造方法
US9344708B2 (en) Non-glasses type stereoscopic image display device
US9733539B2 (en) Display panel and display device
JP6150787B2 (ja) 立体映像表示装置
US9213203B2 (en) Three-dimensional image display
WO2016123910A1 (zh) 一种立体显示装置及其制作方法
TW201421113A (zh) 顯示面板的陣列基板及其驅動方法
WO2015106507A1 (zh) 液晶透镜及三维显示装置
US8384834B2 (en) Electronic imaging device and driving method thereof
KR102171611B1 (ko) 입체 영상 디스플레이 장치
US20140293171A1 (en) Polarized glasses type stereoscopic image display device and method of fabricating the same
US9690109B2 (en) Stereopsis image display device
CN103454820A (zh) 液晶显示装置的阵列基板及包括基板的三维图像显示装置
CN103777415A (zh) 液晶显示装置
TWI431326B (zh) 二維及立體顯示器以及其驅動方法
CN106707532B (zh) 一种显示装置
US20140085719A1 (en) Dipslay panel and display apparatus having the same
WO2012169466A1 (ja) 表示装置
WO2013056611A1 (zh) 像素结构及其控制方法以及显示面板
TWI325975B (en) Image display device and stereoscopic image forming structure used for the same
US9658483B2 (en) Liquid crystal lens and display including the same
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板
WO2015143791A1 (zh) 双方向立体显示装置
CN104020597B (zh) 立体图像显示设备及其制造方法
KR101957148B1 (ko) 3차원 영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012879157

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE