WO2014041996A1 - 低温靭性に優れた高張力鋼板およびその製造方法 - Google Patents

低温靭性に優れた高張力鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014041996A1
WO2014041996A1 PCT/JP2013/072679 JP2013072679W WO2014041996A1 WO 2014041996 A1 WO2014041996 A1 WO 2014041996A1 JP 2013072679 W JP2013072679 W JP 2013072679W WO 2014041996 A1 WO2014041996 A1 WO 2014041996A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
toughness
ferrite
steel sheet
ceq
Prior art date
Application number
PCT/JP2013/072679
Other languages
English (en)
French (fr)
Inventor
愛 尾上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020157006091A priority Critical patent/KR101695113B1/ko
Priority to CN201380037119.XA priority patent/CN104487601B/zh
Publication of WO2014041996A1 publication Critical patent/WO2014041996A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-tensile steel sheet having excellent low-temperature toughness and a method for producing the same.
  • the present invention relates to a technique for improving low-temperature toughness of high-tensile steel sheets that are used in environments exposed to low temperatures, such as pressure vessels, ships, marine structures, and the like.
  • Steel sheets used to construct pressure vessels, ships, marine structures, etc. are required to have high strength and low temperature toughness (low temperature toughness) and weldability. It is done. Particularly in recent years, higher toughness at cryogenic temperatures is required from the viewpoint of safety.
  • One effective method for improving both the strength and toughness characteristics of a steel sheet is to contain Ni as an alloy element. Many steel sheets containing Ni have been proposed so far, but the effect is maximized unless a large amount of Ni is contained, as represented by 3.5% Ni steel and 9% Ni steel. The actual situation is not possible. On the other hand, a steel sheet containing a small amount of Ni of about 1 to 2% has been proposed in, for example, Patent Document 1, but it cannot satisfy toughness at low temperature even if it satisfies high strength. It is difficult to satisfy both strength and low temperature toughness.
  • the present invention has been made in view of such circumstances.
  • the purpose of the present invention is to provide a high-strength steel sheet having high strength and excellent low-temperature toughness even when the Ni content is 2.0% or less.
  • Another object of the present invention is to provide a useful method for producing a high-strength steel sheet.
  • the high-tensile steel sheet of the present invention that can achieve the above-mentioned object is C: 0.03 to 0.09% (meaning “mass%”, the same applies to chemical components), Si: 0.05 to 0.00%. 35%, Mn: 0.9 to 1.6%, P: 0.01% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.06%, Ni: 0.2-2.0%, Nb: 0.007-0.017%, Ti: 0.007-0.017%, Ca: 0.0005-0.003%, and N: 0.0025 to 0.0050% each contained, the balance being iron and inevitable impurities, CEQ (mass%) defined by the following formula (1) is 0.345 or more and 0.428 or less In addition, ⁇ defined by the following formula (2) is 2080 or more, and the microstructure at the position of t / 4 (t: plate thickness) is Ferri.
  • the average equivalent circular diameter of the ferrite grains is equal to or less than 7.0 .mu.m.
  • the “average equivalent circle diameter” is an average value of diameters (equivalent circle diameters) when ferrite grains are converted into circles having the same area.
  • the high-strength steel sheet of the present invention it is also effective to further contain one or more of the following (a) to (c) if necessary, and the characteristics of the high-tensile steel sheet depend on the components to be contained. Improved.
  • the steel sheet having the chemical composition as described above has a reduction ratio of 30 when the t / 4 (t: plate thickness) position is in the temperature range of 950 to 875 ° C. %, T / 4 (t: thickness) is 820 ° C. or lower, and the temperature is equal to or higher than the Ar 3 transformation point. )
  • T / 4 (t: thickness) is 820 ° C. or lower, and the temperature is equal to or higher than the Ar 3 transformation point.
  • the average cooling rate is 2.0 ° C./second or less
  • the microstructure is ferrite and pearlite.
  • the mixed tissue may be used.
  • the ferrite component in the steel sheet can be obtained by setting the chemical composition so that the effect of adding Ni can be maximized in a component system having a Ni content of 2.0% or less, and setting appropriate rolling conditions.
  • High-strength steel sheets with high strength and excellent low-temperature toughness can be realized by grain refinement.
  • Such a high-tensile steel plate is extremely useful as a steel plate used to construct a pressure vessel, a ship, an offshore structure, or the like.
  • the toughness decreases. This is because the addition of alloy elements makes ductile fracture at low temperatures difficult. Conversely, the addition of Ni tends to cause ductile fracture at low temperatures.
  • the present inventor studied from various angles to realize a high-strength steel sheet having high strength and excellent low-temperature toughness. As a result, if the effect of promoting ductile fracture by reducing alloy elements and the effect of promoting ductile fracture by Ni are quantified and the chemical composition is controlled so as to satisfy the relationship of the above formulas (1) and (2), The present invention was completed by finding that high strength and low temperature toughness can be achieved at the same time.
  • the stress (cleavage fracture stress) ⁇ 0 required for the generated cracks to propagate to adjacent ferrite grains to cause cleavage fracture can be calculated by the following equation (3) [for example, “low carbon steel Micromechanical Study on Fracture Toughness of Tetsuya Tagawa, May 1994, p. 17 (Doctoral Dissertation, Nagoya University)]. As this stress ⁇ 0 is larger, cleavage fracture is less likely to occur and the toughness is improved.
  • the first term [(C / d) ⁇ 0 2 ] is a term relating to the size ratio between the crystal grain size in the structure given as the initial condition and the minor axis of the carbide
  • the second term [ ⁇ e 2 ⁇ 1 + 4 / ⁇ (C / d) 1/2 ⁇ ( ⁇ i / ⁇ e) ⁇ 2 ] is a term relating to dislocations accumulated at grain boundaries.
  • the right side [4E ⁇ f / ⁇ (1- ⁇ 2 ) d ⁇ ] is a term relating to the unstable propagation condition of the crack known as the Griffith equation.
  • the inventor further experimentally examined a parameter equation governing low temperature toughness.
  • a parameter equation governing low temperature toughness As a result, when a certain manufacturing condition is adopted, it can be considered that the obtained structure, that is, the grain size of the ferrite and the minor axis of the second phase are almost constant, and the CEQ defined by the formula (1) above. It was found that good low temperature toughness can be secured if the value ( ⁇ value) of the formula (2) defined by (carbon equivalent) and Ni content is 2080 or more.
  • the value of ⁇ ( ⁇ value) represented by the above formula (2) is a value determined by the content of each element.
  • it is possible to clarify the chemical composition that can satisfy both strength and low temperature toughness. Specifically, when the value of ⁇ is smaller than 2080, the balance between Ni and other additive elements is deteriorated, the effect of Ni cannot be maximized, and even if high strength is satisfied, low temperature toughness is achieved. to degrade.
  • the value of ⁇ is preferably 2150 or more, more preferably 2200 or more.
  • the upper limit with preferable value of (sigma) is 2600 or less.
  • the value of ⁇ satisfies 2080 or more, if the CEQ value (% by mass) defined by the above formula (1) is smaller than 0.345, the content of the strength improving element is insufficient, and the strength Will drop. Even if the value of ⁇ is 2080 or more, if the Ni content is less than 0.2%, the effect of adding Ni is insufficient, and good low temperature toughness in the steel sheet cannot be ensured. In addition, when the Ni content is excessive, the balance between the effects of Ni on the strength and toughness is lost, the effect of increasing strength is superior to the effect of suppressing ductile fracture at low temperatures, and the low temperature toughness deteriorates. For these reasons, the Ni content needs to be 2.0% as an upper limit. In addition, the minimum with preferable Ni content is 0.5% or more (more preferably 0.7% or more), and a preferable upper limit is 1.8% or less (more preferably 1.5% or less).
  • the CEQ value (mass%) defined by the above formula (1) is larger than 0.428, the balance between strength and toughness is lost, and the low temperature toughness is lowered. Therefore, in order to ensure the required toughness, the CEQ value (mass%) is set to 0.428 or less.
  • the preferable lower limit of the CEQ value (CEQ value) is 0.350 or more (more preferably 0.355 or more), and the preferable upper limit is 0.425 or less (more preferably 0.420 or less).
  • the microstructure at the t / 4 position is a mixed structure of ferrite and pearlite, and is intended to be 100 area% in total.
  • a small amount of other structures (for example, bainite and martensite) other than the ferrite structure and the pearlite structure are mixed within a range that does not affect the intended effect of the present invention.
  • other tissues are included up to about 10 area%.
  • the mixing ratio of ferrite and pearlite is not particularly limited, but is about 70 to 90 area% ferrite: about 10 to 30 area% pearlite.
  • ferrite grains in a microstructure that is a mixed structure of ferrite and pearlite (sometimes referred to as “ferrite / pearlite”) (not including ferrite grains in pearlite)
  • ferrite / pearlite ferrite / pearlite
  • the upper limit of the ferrite particle size is preferably 6.7 ⁇ m or less (more preferably 6.5 ⁇ m or less).
  • the minimum with a preferable ferrite particle size is 0.5 micrometer or more (preferably 1.0 micrometer or more).
  • components other than Ni are also appropriately used in order to satisfy the basic characteristics of the steel plate. Although it is necessary to adjust, the reasons for limiting these ranges are as follows.
  • C (C: 0.03-0.09%) C is an important element in securing the strength of the steel sheet. In order to exert such an effect, C needs to be contained by 0.03% or more. However, if the C content becomes excessive, the toughness decreases, so the upper limit was made 0.09%.
  • the C content is preferably 0.05% or more and 0.08% or less.
  • Si acts as a deoxidizer when melting steel, and exhibits the effect of increasing the strength of the steel. In order to exert such effects, it is necessary to contain Si by 0.05% or more. However, if the Si content becomes excessive, the toughness decreases, so the upper limit was made 0.35%.
  • the Si content is preferably 0.07% or more (more preferably 0.1% or more) and 0.30% or less.
  • Mn 0.9 to 1.6%)
  • Mn is useful as an element for increasing the strength of a steel sheet. In order to exhibit such an action effectively, it is necessary to contain Mn in an amount of 0.9% or more. Preferably it is 1.1% or more. However, if the Mn content is excessive, the toughness deteriorates instead, so it is suppressed to 1.6% or less. Preferably, it is 1.5% or less.
  • P 0.01% or less (excluding 0%) Since P is an element that deteriorates toughness, it is necessary to reduce it as much as possible. In the present invention, it is necessary to suppress it to 0.01% or less.
  • S (S: 0.01% or less (excluding 0%)) S is an element that deteriorates toughness. Therefore, it is necessary to reduce it as much as possible.
  • Al 0.01-0.06%)
  • Al is an element that acts as a deoxidizer. In order to exert such effects, the Al content is set to 0.01% or more. However, if the Al content is excessive, cleanliness in the steel sheet is hindered, so the upper limit was made 0.06%.
  • the Al content is preferably 0.02% or more and 0.05% or less.
  • Nb is an element having an effect of refining ferrite grains through an effect of suppressing recrystallization of austenite grains. In order to exhibit such an effect, Nb needs to be contained by 0.007% or more. However, if the Nb content becomes excessive, the toughness decreases, so the upper limit was made 0.017%. In addition, the preferable minimum of Nb content is 0.010% or more, and a preferable upper limit is 0.015% or less.
  • Ti 0.007 to 0.017%
  • Ti is a strong nitride-forming element and exhibits a crystal grain refining effect due to the fine precipitation of TiN in a small amount.
  • it is necessary to contain Ti by 0.007% or more.
  • it is 0.01% or more.
  • the toughness is decreased, so that it is necessary to be 0.017% or less, preferably 0.015% or less.
  • Ca 0.0005 to 0.003%
  • Ca is an element effective for improving the toughness of the steel sheet by controlling inclusions. In order to exhibit such an effect, Ca needs to be contained by 0.0005% or more. However, when Ca is excessively contained, toughness is lowered, so it is necessary to make it 0.003% or less. In addition, the preferable minimum of Ca content is 0.001% or more, and a preferable upper limit is 0.002% or less.
  • N is an element that is effective in forming TiN together with Ti and improving the toughness of the steel sheet when contained in an appropriate amount. In order to exhibit such an effect effectively, N needs to be contained by 0.0025% or more. However, if the N content is excessive, the solute N increases and the toughness of the steel sheet is reduced, so the upper limit needs to be 0.0050%. In addition, the preferable minimum of N content is 0.003% or more, and a preferable upper limit is 0.0045% or less.
  • the contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities.
  • the inevitable impurities mixing of elements brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. can be allowed. If necessary, it is also effective to contain one or more of the following (a) to (c), and the characteristics of the high-tensile steel sheet are improved depending on the components to be contained.
  • the reason for setting a preferable range when these elements are contained is as follows.
  • B (B: 0.002% or less (excluding 0%)) B has the effect of reducing solute N which adversely affects toughness by producing BN.
  • the preferable lower limit of the B content is 0.0001% or more. If it is less than 0.0001%, the effect of reducing the solid solution N is not sufficient. A more preferable upper limit is 0.001% or less.
  • Cu 0.35% or less (excluding 0%)
  • Cu is an element effective for improving the strength. If the Cu content is too large, cracks are likely to occur during hot working, so the upper limit is preferably made 0.35% or less. In addition, the minimum with preferable Cu content is 0.001% or more, and the effect is not enough if it is less than 0.001%. A more preferable upper limit is 0.30% or less.
  • Cr 0.3% or less (not including 0%), Mo: 0.2% or less (not including 0%) and V: 0.06% or less (not including 0%)
  • Cr, Mo, and V are all elements that precipitate carbonitride and contribute to an increase in strength.
  • Cr 0.3% or less
  • Mo 0.2% or less
  • V 0.06% or less
  • One or more) Cr, Mo, and V are all elements that precipitate carbonitride and contribute to an increase in strength.
  • Cr Cr to 0.3% or less, Mo to 0.2% or less, and V to 0.06% or less.
  • the reduction ratio of the steel sheet having the above chemical composition is reduced when the t / 4 (t: plate thickness) position is in the temperature range of 950 to 875 ° C. 30% or more, t / 4 (t: plate thickness) position is 820 ° C. or less, and the temperature is the Ar 3 transformation point or more, the reduction ratio is 30% or more (basically controlled rolling).
  • the temperature at the t / 4 (t: plate thickness) position can be obtained by differential calculation of the unsteady primary heat transfer equation.
  • the thermal conductivity of roll and air is known [for example, (a) “Junichi Komon,“ Fundamental study on prediction method of temperature change of material in hot rolling ”, plasticity and processing, 1970, Vol. 11, No. 118, p. 816-824 ", (b)” Katsu Okado, Ichiro Nakauchi, Fumio Fujita, Hiroshi Kamio, "Coarse rolling model for hot strip mill", Iron and Steel, 1977, Vol.
  • a steel sheet having the chemical composition as described above is used as a base steel sheet.
  • This base steel sheet basically has a ferrite structure (for example, And a ferrite phase of 50 area% or more).
  • the reduction ratio at the recrystallization temperature and the non-recrystallization temperature was defined.
  • the temperature shown below is managed by the temperature of the position of t / 4 (t: board thickness) as a position which exhibits the average performance of a steel plate.
  • recrystallization occurs basically by applying a reduction in a high temperature range (recrystallization temperature range) of 875 ° C. or higher. However, if the temperature at which the reduction is applied is too high, the recrystallization that occurs is likely to grow, and becomes coarser than the austenite grains before the reduction.
  • the reduction temperature range (recrystallization effective temperature range) effective for refining austenite grains is set to 950 to 875 ° C.
  • the reduction in this temperature range needs to be 30% or more (preferably 35% or more), but is usually 60% or less.
  • the temperature range to which the reduction is applied is 820 ° C. or less and the low temperature side above the Ar 3 transformation point (low temperature side of the non-recrystallization temperature range), and the temperature range below 875 ° C.
  • the reduction on the low temperature side of the non-recrystallization temperature range requires the reduction rate to be 30% or more (preferably 35% or more) in order to effectively exhibit the above effect, but is usually 80% or less. is there.
  • the reduction on the low temperature side of the non-recrystallization temperature range does not mean the reduction over the entire temperature range, and if a reduction rate of 30% or more can be secured, the temperature within the temperature range (for example, in the examples) The reduction may be stopped at the indicated “rolling end temperature”).
  • the average cooling rate from the rolling finish temperature to room temperature is cooled to 2.0 ° C./second or less, and the microstructure becomes a ferrite / pearlite structure. There is a need. If the average cooling rate at this time is higher than 2.0 ° C./second, a bainite structure having generally low toughness is generated, and the microstructure cannot be made “ferrite / pearlite structure”.
  • the average cooling rate is preferably 1.0 ° C./second or less, more preferably 0.5 ° C./second or less.
  • the high-tensile steel plate of the present invention can be advantageously applied as a so-called thick steel plate.
  • the plate thickness at this time is about 7 mm or more, and the upper limit is not particularly limited, but is usually about 40 mm or less.
  • microstructure ferrite particle size, ferrite + pearlite fraction and bainite fraction
  • steel plate properties tensile strength TS and low temperature toughness (fracture surface transition temperature vTrs)
  • the ferrite + pearlite fraction and the bainite fraction are measured by observing a region of 1 field of view: 600 ⁇ m ⁇ 800 ⁇ m at a magnification of 100 using an optical microscope for the position of t / 4 (t: plate thickness) of each steel plate, Measurement was performed using image analysis software, and an average value of 5 fields of view was obtained.
  • the ferrite grain size is 5 times at 100 times at the position of t / 4 (t: plate thickness) of each steel plate, and the diameter when the ferrite grain size is assumed to be a circle is the equivalent circle diameter. Obtained and averaged (average equivalent circle diameter).
  • ASTM A370-05 (0.500-in. Round Specimen) test specimens were taken in the direction perpendicular to the rolling direction at t / 4 (t: thickness) of each steel plate and conformed to ASTM A 370-05. Then, a Charpy impact test was performed to measure the fracture surface transition temperature vTrs. Then, the one having a fracture surface transition temperature vTrs of ⁇ 80 ° C. or lower was evaluated as having excellent low-temperature toughness.
  • the steel plates 11 to 21 lack any of the requirements defined in the present invention, and any of the characteristics is deteriorated.
  • no. 11 and 16 could not satisfy good toughness because the Ni content was less than the range defined in the present invention. Further, the CEQ value was also small, and a predetermined strength could not be ensured.
  • the chemical composition is within the range specified in the present invention, but at least one of the CEQ value and the ⁇ value does not satisfy the specified value, so that the low temperature toughness can be satisfied even if the strength is satisfied. There wasn't.
  • No. 17 and 18 are the temperature range of 950 to 875 ° C. (recrystallization temperature range) defined in the present invention, and the temperature range of 820 ° C. or less and the Ar 3 transformation point or higher (the lower temperature side of the non-recrystallization temperature range). Since at least one of the rolling reductions was insufficient, the ferrite grain size increased and the low temperature toughness was not satisfactory. No. Although the CEQ value of 19 is insufficient, the strength can be satisfied by the work strengthening by applying the reduction in the two-phase temperature range. However, the stress concentration accompanying the work strengthening became remarkable and the low temperature toughness was not satisfactory.
  • FIG. 2 shows the relationship between the ⁇ value and the fracture surface transition temperature vTrs.
  • a filled diamond mark “ ⁇ ” indicates an invention example
  • a triangle mark “ ⁇ ” indicates a comparative example.
  • the present invention satisfies a predetermined chemical composition, has a CEQ (mass%) defined by the following formula (1) of 0.345 or more and 0.428 or less, and is defined by the following formula (2).
  • is 2080 or more and the microstructure at the position of t / 4 (t: plate thickness) is a mixed structure of ferrite and pearlite, the average equivalent circle diameter of the ferrite grains is 7.0 ⁇ m or less.
  • a high-tensile steel sheet that is strong and has excellent low-temperature toughness can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 所定の化学成分組成を満足し、下記(1)式で規定されるCEQ(質量%)が0.345以上、0.428以下であると共に、下記(2)式で規定されるσが2080以上であり、且つt/4(t:板厚)位置のミクロ組織がフェライトとパーライトの混合組織であり、前記フェライト粒の平均円相当径が7.0μm以下とすることによって、高強度でしかも低温靭性にも優れた高張力鋼板を提供する。 CEQ=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 …(1) σ=2.90×{602781.57-(1154×CEQ-3.25)21/2/0.963+400×[Ni] …(2)

Description

低温靭性に優れた高張力鋼板およびその製造方法
 本発明は、低温靭性に優れた高張力鋼板およびその製造方法に関する。殊に、低温に曝される環境で使用される用途、例えば圧力容器や船舶、海洋構造物等に適用されるような高張力鋼板の低温靭性を改善するための技術に関する。
 圧力容器や船舶、海洋構造物等を建設するのに使用される鋼板(高張力鋼板)は、高強度でありながら低温での靭性(低温靭性)、および溶接性にも優れていることが求められる。特に近年では、安全性の観点から、極低温におけるより高い靭性が求められる。
 鋼板の靭性を向上させるためには、合金元素の添加量は極力控えた方が良いが、それでは強度の確保が困難になる。反対に、強度を確保するために合金元素を添加すると、靭性が却って低下する。このように、強度と靭性は相反する特性であり、これらの特性を両立させることは極めて難しい。
 鋼板の強度と靭性の両特性を向上させるための有効な手法の一つとして、合金元素であるNiを含有させることが挙げられる。これまでにもNiを含有した鋼板は多く提案されているが、3.5%Ni鋼や9%Ni鋼に代表されるように、Niを多量に含有させなければその効果を最大限に発揮できないのが実状である。これに対し、1~2%程度の少量のNiを含有した鋼板については、例えば特許文献1に提案されているが、高強度を満足しても低温での靭性を満足させることができず、強度と低温靭性を共に満足することは難しい。
特許第3741078号公報
 本発明はこの様な事情に鑑みてなされたものであって、その目的は、Ni含有量が2.0%以下においても、高強度でしかも低温靭性にも優れた高張力鋼板、およびこのような高張力鋼板を製造するための有用な方法を提供することにある。
 上記目的を達成し得た本発明の高張力鋼板とは、C:0.03~0.09%(「質量%」の意味、化学成分については以下同じ)、Si:0.05~0.35%、Mn:0.9~1.6%、P:0.01%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01~0.06%、Ni:0.2~2.0%、Nb:0.007~0.017%、Ti:0.007~0.017%、Ca:0.0005~0.003%、およびN:0.0025~0.0050%を夫々含有し、残部が鉄および不可避不純物からなり、下記(1)式で規定されるCEQ(質量%)が0.345以上、0.428以下であると共に、下記(2)式で規定されるσが2080以上であり、且つt/4(t:板厚)位置のミクロ組織がフェライトとパーライトの混合組織であり、前記フェライト粒の平均円相当径が7.0μm以下であることを特徴とする。尚、前記「平均円相当径」とは、フェライト粒を同一の面積の円に換算したときの直径(円相当直径)の平均値である。
 CEQ=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15               …(1)
 σ=2.90×{602781.57-(1154×CEQ-3.25)21/2/0.963+400×[Ni]            …(2)
 但し、[C],[Mn],[Cr],[Mo],[V],[Cu]および[Ni]は、夫々C,Mn,Cr,Mo,V,CuおよびNiの含有量(質量%)を示す。
 上記(1)式には、本発明鋼板の基本成分(C,Mn,Ni)以外にも、必要によって含有される元素も含まれるが(Cr,Mo,V,Cu等)、これらの元素を含まないときには、その項目がないものとしてCEQの値を計算し、これらの元素を含むときには、上記(1)式からCEQの値を計算すればよい。
 本発明の高張力鋼板においては、必要によって、更に下記(a)~(c)のいずれかに属する1種以上を含有させることも有効であり、含有させる成分に応じて高張力鋼板の特性が改善される。
 (a)B:0.002%以下(0%を含まない)
 (b)Cu:0.35%以下(0%を含まない)
 (c)Cr:0.3%以下(0%を含まない)、Mo:0.2%以下(0%を含まない)およびV:0.06%以下(0%を含まない)よりなる群から選ばれる1種以上
 本発明の高張力鋼板を製造するに当たっては、上記のような化学成分組成を有する鋼板を、t/4(t:板厚)位置が950~875℃の温度域であるときに圧下率を30%以上、t/4(t:板厚)位置が820℃以下、Ar3変態点以上の温度域であるときに圧下率を30%以上として圧下を行うと共に、t/4(t:板厚)位置が875℃未満、820℃超の温度域、および二相温度域であるときには圧下を行わず、圧下後に平均冷却速度を2.0℃/秒以下として冷却し、ミクロ組織をフェライトとパーライトの混合組織にすればよい。
 本発明によれば、Ni含有量が2.0%以下の成分系においてNiの添加効果が最大限に発揮できる化学成分組成とすると共に、適切な圧下条件を設定することによって、鋼板中のフェライト粒の微細化を図り、高強度でしかも低温靭性にも優れた高張力鋼板が実現できる。このような高張力鋼板は、圧力容器や船舶、海洋構造物等を建設するのに使用される鋼板として極めて有用である。
CEQ値と引張強さTSとの関係を示すグラフである。 σ値と破面遷移温度vTrsとの関係を示すグラフである。
 高張力鋼板の強度を確保するために合金元素を添加すると、靭性が低下する。これは合金元素の添加が低温における延性破壊を困難にしているためである。反対に、Niの添加は低温における延性破壊を生じやすくしている。
 このような状況の下、本発明者は高強度でしかも低温靭性に優れる高張力鋼板を実現するべく様々な角度から検討した。その結果、合金元素の削減による延性破壊の促進と、Niによる延性破壊の促進の効果を定量化し、上記(1)式および(2)式の関係を満足するように化学成分組成を制御すれば、高強度と低温靭性が両立できることを見出し、本発明を完成した。
 上記(2)式を導くに至った経緯は次の通りである。鋼板の低温での靭性を改善するには、脆性破壊、特に劈開破壊を抑える必要がある。そこで劈開破壊のメカニズムについて着目した。まず一部のフェライト粒において塑性変形が生じ、フェライト粒内の転位が移動する。移動した転位は粒界で留まり、集積する。このときセメンタイトに代表される第2相が粒界に存在すると、転位の集積による応力集中で第2相が割れ、微視亀裂が発生する。発生した微視亀裂は隣接するフェライト粒に進展し、劈開破壊を発生させる。
 発生した亀裂が隣接するフェライト粒へ伝播し、劈開破壊を生じるために必要な応力(劈開破壊応力)σ0は、下記(3)式で算出できることが知られている[例えば、「低炭素鋼の破壊靭性に関する微視力学的研究」 田川哲也 1994年5月発行 第17頁(名古屋大学博士学位論文)]。この応力σ0が大きいほど劈開破壊は生じにくくなり、靭性が改善される。
 (C/d)σ0 2+τe2{1+4/π(C/d)1/2×(τi/τe)}2
         =4Eγf/{(1-ν2)d}   …(3)
 但し、C:第2相の短径、d:フェライトの粒径、σ0:劈開破壊応力、τe:有効剪断応力、τi:転位の摩擦力、E:ヤング率、γf:表面エネルギー、ν:ポアソン比、を夫々示す。
 上記(3)式において、第1項[(C/d)σ0 2]は、初期条件として与えられる組織中の結晶粒径と炭化物の短径のサイズ比に関する項、第2項[τe2{1+4/π(C/d)1/2×(τi/τe)}2]は、粒界に集積する転位に関する項である。また右辺[4Eγf/{(1-ν2)d}]は、グリフィス(Griffith)の式として知られている亀裂の不安定伝播条件に関する項である。
 ここでヤング率E、表面エネルギーγf、およびポアソン比νは定数である。τi≪τeであるから、τi/τe=0と表される。また有効剪断応力τeは、降伏応力τで表現でき、τe≒τ(降伏応力)となる。
 以上の結果を踏まえると、上記(3)式は、下記(4)式のように書き換えることができる。またヤング率E=206000(MPa)、表面エネルギーγf=14(Jm-2)、およびポアソン比ν=0.3となる。
 σ0=(d/C)1/2×(4Eγf/{π(1-ν2)d}-τ21/2…(4)
 但し、τ:降伏応力
 上記(4)式に基づき、本発明者は低温靭性を支配するパラメータ式を、実験的に更に検討した。その結果、一定の製造条件を採用する場合では、得られる組織、すなわちフェライトの粒径・第2相の短径がほぼ一定であるとみなすことができ、前記(1)式で規定されるCEQ(炭素当量)とNi含有量によって規定される前記(2)式の値(σの値)が、2080以上となれば、良好な低温靭性が確保できることが判明した。
 上記(2)式で表されるσの値(σ値)は、各元素の含有量によって決定される値である。このσの値を規定することによって、強度と低温靭性を共に満足できる化学成分組成を明確化できる。具体的には、σの値が2080よりも小さくなると、Niとそれ以外の添加元素のバランスが悪くなり、Niの効果を最大限に発揮できず、高強度を満足できたとしても低温靭性が劣化する。σの値は好ましくは2150以上であり、より好ましくは2200以上である。また、σの値の好ましい上限は、2600以下である。
 しかしながら、σの値が2080以上を満足しても、前記(1)式で規定されるCEQの値(質量%)が0.345よりも小さくなると、強度向上元素の含有量が不足し、強度が低下することになる。またσの値が2080以上であっても、Ni含有量が0.2%未満では、Niの添加効果が不足し、鋼板における良好な低温靭性が確保できない。加えて、Niの含有量が過剰になると、Niによる強度と靭性におよぼす効果のバランスが崩れ、低温での延性破壊の抑制効果よりも強度上昇効果が勝り、低温靭性が劣化する。こうしたことから、Ni含有量は2.0%を上限とする必要がある。尚、Ni含有量の好ましい下限は0.5%以上(より好ましくは0.7%以上)であり、好ましい上限は1.8%以下(より好ましくは1.5%以下)である。
 一方、前記(1)式で規定されるCEQの値(質量%)が0.428よりも大きくなると、強度と靭性のバランスが崩れ、低温靭性が低下することになる。そのため、必要とする靭性を確保するべく、CEQの値(質量%)は0.428以下とする。尚、CEQの値(CEQ値)の好ましい下限は0.350以上(より好ましくは0.355以上)であり、好ましい上限は0.425以下(より好ましくは0.420以下)である。
 本発明では、t/4位置のミクロ組織をフェライトとパーライトの混合組織とし、合計で100面積%とすることを意図している。しかし、本発明が目的とする効果に影響を与えない範囲内で、フェライト組織とパーライト組織以外の、その他の組織(例えばベイナイトやマルテンサイト)が微少量混入することを排除するものではない。場合によっては、その他の組織が10面積%程度まで含まれることは許容できる。また、フェライトとパーライトの混合比率については、特に限定されないが、フェライト70~90面積%:パーライト10~30面積%程度である。
 鋼板における良好な低温靭性を確保するためには、フェライトとパーライトの混合組織(「フェライト・パーライト」と表示することがある)となるミクロ組織中のフェライト粒(パーライト中のフェライト粒は含まない)の平均円相当径を7.0μm以下となるように制御することも重要な要件である。フェライト粒の平均円相当径を7.0μm以下とすることによって、高張力鋼板における良好な低温靭性(破面遷移温度vTrsで-80℃以下)が確保できる。このフェライト粒径の好ましい上限は、6.7μm以下(より好ましくは6.5μm以下)である。またフェライト粒径の好ましい下限は、0.5μm以上(より好ましくは1.0μm以上)である。
 本発明の高張力鋼板では、その鋼板としての基本的特性を満足させるために、上記Ni以外の成分(C,Si,Mn,P,S,Al,Nb,Ti,CaおよびN)も適切に調整する必要があるが、これらの範囲限定理由は次の通りである。
 (C:0.03~0.09%)
 Cは、鋼板の強度を確保する上で重要な元素である。こうした効果を発揮させるためには、Cは0.03%以上含有させる必要がある。しかしながら、Cの含有量が過剰になると靭性が低下するので、上限を0.09%とした。尚、C含有量は好ましくは0.05%以上、0.08%以下とするのがよい。
 (Si:0.05~0.35%)
 Siは、鋼を溶製する際に脱酸剤として作用し、鋼の強度を上昇させる効果を発揮する。こうした効果を発揮させるためには、Siは0.05%以上含有させる必要がある。しかしながら、Siの含有量が過剰になると靭性が低下するので、上限を0.35%とした。尚、Si含有量は好ましくは0.07%以上(より好ましくは0.1%以上)、0.30%以下とするのがよい。
 (Mn:0.9~1.6%)
 Mnは、鋼板の強度上昇元素として有用である。こうした作用を有効に発揮させるには、Mnは0.9%以上含有させる必要がある。好ましくは1.1%以上である。しかしながら、Mnの含有量が過剰になると靭性が却って劣化するため、1.6%以下に抑える。
好ましくは、1.5%以下である。
 (P:0.01%以下(0%を含まない))
 Pは、靭性を劣化させる元素であるため極力低減する必要がある。本発明では0.01%以下に抑える必要がある。
 (S:0.01%以下(0%を含まない))
 Sは、靭性を劣化させる元素である。よって極力低減する必要があり、本発明では0.01%以下に抑える。
 (Al:0.01~0.06%)
 Alは、脱酸剤として作用する元素である。こうした効果を発揮させるためには、Al含有量は0.01%以上とする。しかしながら、Al含有量が過剰になると、鋼板における清浄性が阻害されるため、その上限を0.06%とした。尚、Al含有量は好ましくは0.02%以上、0.05%以下とするのがよい。
 (Nb:0.007~0.017%)
 Nbは、オーステナイト粒の再結晶抑制効果を通じてフェライト粒の微細化効果を有する元素である。こうした効果を発揮させるためには、Nbは0.007%以上含有させる必要がある。しかしながら、Nbの含有量が過剰になると靭性が低下するため、その上限を0.017%とした。尚、Nb含有量の好ましい下限は0.010%以上、好ましい上限は0.015%以下である。
 (Ti:0.007~0.017%)
 Tiは、強い窒化物形成元素であり、微量でTiNの微細析出による結晶粒の微細化効果を発揮する。こうした作用を有効に発揮させるには、Tiは0.007%以上含有させる必要がある。好ましくは0.01%以上である。しかしながら、Tiを過剰に含有させると、却って靭性の低下を招くため0.017%以下とする必要があり、好ましくは0.015%以下とするのがよい。
 (Ca:0.0005~0.003%)
 Caは、介在物の制御により鋼板の靭性を向上させるのに有効な元素である。こうした効果を発揮させるためには、Caは0.0005%以上含有させる必要がある。しかしながら、Caを過剰に含有させると靭性が低下するため、0.003%以下とする必要がある。尚、Ca含有量の好ましい下限は0.001%以上、好ましい上限は0.002%以下である。
 (N:0.0025~0.0050%)
 Nは、適量含有させることでTiとともにTiNを形成して、鋼板の靭性を向上させるのに有効な元素である。こうした効果を有効に発揮させるためには、Nは0.0025%以上含有させる必要がある。しかしながら、N含有量が過剰になると固溶Nが増加し、鋼板の靭性を低下させるため、その上限を0.0050%とする必要がある。尚、N含有量の好ましい下限は0.003%以上、好ましい上限は0.0045%以下である。
 本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物である。該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。また必要によって、下記(a)~(c)のいずれかに属する1種以上含有させることも有効であり、含有させる成分に応じて高張力鋼板の特性が改善される。これらの元素を含有させるときの好ましい範囲設定理由は、下記の通りである。
 (a)B:0.002%以下(0%を含まない)
 (b)Cu:0.35%以下(0%を含まない)
 (c)Cr:0.3%以下(0%を含まない)、Mo:0.2%以下(0%を含まない)およびV:0.06%以下(0%を含まない)よりなる群から選ばれる1種以上
 (B:0.002%以下(0%を含まない))
 Bは、BNを生成することで靭性に悪影響を及ぼす固溶Nを低下させる作用を有する。しかしながら、B含有量が多過ぎると、Bの析出物を増加させて靭性が却って劣化するので、0.002%以下に抑えることが好ましい。尚、B含有量の好ましい下限は0.0001%以上であり、0.0001%未満では固溶N低下作用が十分でない。より好ましい上限は0.001%以下である。
 (Cu:0.35%以下(0%を含まない))
 Cuは、強度向上に有効な元素である。Cuの含有量が多過ぎると、熱間加工の際に割れが発生しやすくなるので、その上限を0.35%以下とすることが好ましい。尚、Cu含有量の好ましい下限は0.001%以上であり、0.001%未満ではその効果が十分でない。より好ましい上限は0.30%以下である。
 (Cr:0.3%以下(0%を含まない)、Mo:0.2%以下(0%を含まない)およびV:0.06%以下(0%を含まない)よりなる群から選ばれる1種以上)
 Cr、MoおよびVは、いずれも炭窒化物を析出させ、強度上昇に寄与する元素である。しかしながら、過剰に含有させると靭性を低下させるため、Crで0.3%以下、Moで0.2%以下、Vで0.06%以下に抑えることが好ましい。尚、これらの効果を有効に発揮させるには、Crで0.01%以上、Moで0.01%以上、Vで0.001%以上含有させることが好ましい。
 上記のような組織にして本発明の鋼板を製造するには、その製造条件を厳密に規定する必要がある。即ち、本発明の高張力鋼板を製造するに当たっては、上記のような化学成分組成を有する鋼板を、t/4(t:板厚)位置が950~875℃の温度域であるときに圧下率を30%以上、t/4(t:板厚)位置が820℃以下、Ar3変態点以上の温度域であるときに圧下率を30%以上として圧下(基本的には制御圧延)を行うと共に、t/4(t:板厚)位置が875℃未満、820℃超の温度域、および二相温度域であるときには圧下を行わず、圧下後に平均冷却速度を2.0℃/秒以下として冷却し、ミクロ組織をフェライト・パーライト組織にする必要がある。この方法における各条件の範囲設定理由は次の通りである。
 t/4(t:板厚)位置の温度は、非定常一次伝熱伝導方程式を差分計算することにより求めることが可能であり、スラブ温度、室温、水温、圧延前後のスラブ厚の他、スラブ、ロールおよび空気の熱伝導率が分かれば計算することができる[例えば、(a)「小門純一、「熱間圧延における材料の温度変化の予想計算法に関する基礎的研究」、塑性と加工、1970年、第11巻、第118号、p.816-824」、(b)「岡戸 克,中内一郎,藤田文夫,神尾 寛、「ホットストリップミルの粗圧延モデル式」、鉄と鋼、1977年、第63巻、A29-A32」、(c)「西岡 潔ら、「厚板ペアクロスミルにおける高精度高効率圧延技術」、圧延技術・圧延理論の発展と将来への潮流、日本鉄鋼協会共同研究会 圧延理論部会編、1994年、p.69-78」等]。
 上記のような製造条件によって、本発明の高張力鋼板を製造するには、上記のような化学成分組成を有する鋼板を素地鋼板として用いるが、この素地鋼板は基本的にフェライト組織を主体(例えば、フェライト相が50面積%以上のもの)としたものを用いる。こうした素地鋼板におけるフェライト粒を微細化するために、再結晶温度・未再結晶温度での圧下率を規定した。尚、下記で示した温度は、鋼板の平均的な性能を発揮する位置として、t/4(t:板厚)の位置の温度で管理したものである。
 まず、オーステナイト粒を微細化するためには、再結晶温度域での十分な圧下(加熱後の圧下)が必要である。再結晶温度域において圧下率で30%以上の圧下を加えることによって、オーステナイト粒内に転位を蓄積させ、この転位を駆動力として新たな結晶粒を生成できる。上記のような化学成分組成を有する鋼板では、基本的に875℃以上の高温域(再結晶温度域)で圧下を加えることによって再結晶が生じることになる。しかしながら、圧下を加える温度が高すぎると生じる再結晶も成長しやすくなり、圧下前のオーステナイト粒よりも粗大化することになる。そのため、オーステナイト粒の微細化に有効な圧下温度域(再結晶有効温度域)として、950~875℃に設定した。この温度域での圧下は、上記の効果を有効に発揮させるためには、圧下率を30%以上(好ましくは35%以上)とする必要があるが、通常60%以下である。
 次に、フェライト粒の生成核となりうる変形帯を増やすために、未再結晶温度域においても十分な圧下を行うことにした。再結晶温度域よりも低温で圧下を加えると、オーステナイ粒は新たな結晶粒を生成できなくなり、扁平した組織となり、粒内に変形帯が導入される。しかしながら、未再結晶温度域の高温側での圧下は混粒組織を生じやすく、粗大なフェライト粒が生成されやすい。そのため、圧下を加える温度域を820℃以下、Ar3変態点以上の低温側(未再結晶温度域の低温側)とし、875℃未満、820℃超の温度域(未再結晶温度域の高温側)では、圧下を行わないこととした。未再結晶温度域の低温側での圧下は、上記の効果を有効に発揮させるためには、圧下率を30%以上(好ましくは35%以上)とする必要があるが、通常80%以下である。また未再結晶温度域の低温側での圧下は、その温度域の全範囲に亘って圧下する意味ではなく、30%以上の圧下率が確保できれば、その温度域内の温度(例えば、実施例に示した「圧延終了温度」)で圧下を停止してもよい。
 尚、未再結晶温度域よりも低温となる二相温度域や、それよりもさらに低い温度域、すなわちAr3変態点未満の温度域では、圧下を行うと鋼板の強度は向上するものの、加工強化に伴う応力集中が顕著になって、鋼板の靭性が劣化するので、圧下は行わない。
 上記のような圧下(基本的には制御圧延)を行った後は、圧延終了温度から室温までの平均冷却速度を2.0℃/秒以下として冷却し、ミクロ組織をフェライト・パーライト組織にする必要がある。このときの平均冷却速度が2.0℃/秒よりも速くなると、靭性が一般的に低いベイナイト組織が生成し、ミクロ組織を「フェライト・パーライト組織」とできなくなる。平均冷却速度は好ましくは1.0℃/秒以下であり、より好ましくは0.5℃/秒以下である。
 本発明の高張力鋼板は、いわゆる厚鋼板として有利に適用できるものである。このときの板厚は、約7mm以上であり上限は特に限定されないが、通常40mm以下程度である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 本願は、2012年9月11日に出願された日本国特許出願第2012-199798号に基づく優先権の利益を主張するものである。2012年9月11日に出願された日本国特許出願第2012-199798号の明細書の全内容が、本願に参考のために援用される。
 下記表1に示す各種化学成分組成の鋼塊に対し、下記表2に示す製造条件で制御圧延を実施し、板厚40mmのTMCP(thermo-mechanical control process)鋼板を製造した。尚、表1には、各鋼塊のAr3変態点も示したが、この値は下記(5)式に基づいて求めたものである。
 Ar3変態点=868-369×[C]+24.6×[Si]-68.1×[Mn]-36.1×[Ni]-20.7×[Cu]-24.8×[Cr]+29.6×[Mo] 
                      …(5)
 但し、[C],[Si],[Mn],[Ni],[Cu],[Cr]および[Mo]は、夫々C,Si,Mn,Ni,Cu,CrおよびMoの含有量(質量%)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の様にして得られた各鋼板について、ミクロ組織(フェライト粒径、フェライト+パーライト分率およびベイナイト分率)、鋼板特性(引張強さTSおよび低温靭性(破面遷移温度vTrs))の評価を、それぞれ下記の要領で実施した。
 (フェライト粒径、フェライト+パーライト分率およびベイナイト分率の測定)
 フェライト+パーライト分率およびベイナイト分率の測定は、各鋼板のt/4(t:板厚)の位置について、光学顕微鏡を用いて倍率100倍で1視野:600μm×800μmの領域を観察し、画像解析ソフトを用いて測定し、5視野の平均値を求めた。また、フェライト粒径は、各鋼板のt/4(t:板厚)の位置において、100倍で5視野を観察し、フェライト粒の大きさを円と仮定したときの直径を円相当径として求め、平均化(平均円相当径)した。
 (引張試験)
 各鋼板の全厚から、圧延方向に対して直角の方向に、JIS Z 2201の1B号試験片を採取して、JIS Z 2241の要領で引張試験を行ない、引張強さTSを測定した。そして引張強さが485MPa以上のものを合格とした。
 (低温靭性の評価)
 各鋼板のt/4(t:板厚)の位置において、圧延方向と直角の方向にASTM A370-05(0.500-in.Round Specimen)試験片を採取し、ASTM A 370-05に準拠して、シャルピー衝撃試験を行い、破面遷移温度vTrsを測定した。そして、破面遷移温度vTrsが-80℃以下のものを低温靭性に優れていると評価した。
 これらの結果を、CEQ値およびσ値と共に、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、次の様に考察することができる(尚、下記No.は、表中の試験No.を示す)。本発明で規定する要件を満たすNo.1~10の鋼板は、低温靭性に優れていると共に、高い引張強さTSを確保していることが分かる。
 これに対して、No.11~21の鋼板では、本発明で規定するいずれかの要件を欠くものであり、いずれかの特性が劣化している。まず、No.11、16は、Ni含有量が本発明で規定する範囲よりも少ないため、良好な靭性を満足できなかった。また、CEQ値も小さくなっており、所定の強度を確保することができなかった。
 No.12は、Ni含有量は本発明で規定する範囲内であるが、CEQ値が小さくなっているため、低温靭性は満足していても、所定の強度を確保することができなかった。No.13は、Ni含有量が本発明で規定する範囲よりも過剰になっており、またCEQ値も大きくなっているため、強度は満足しても低温靭性が満足できなかった。
 No.14、15は、化学成分組成は本発明で規定する範囲内であるが、CEQ値およびσ値の少なくともいずれかが規定値を満足していないため、強度は満足しても低温靭性が満足できなかった。
 No.17、18は、本発明で規定している950~875℃の温度域(再結晶温度域)、および820℃以下、Ar3変態点以上の温度域(未再結晶温度域の低温側)での圧下率の少なくともいずれかが不足していることから、フェライト粒径が大きくなり、低温靭性が満足できなかった。No.19は、CEQ値が不足しているものの、二相温度域での圧下を加えることで加工強化によって強度は満足できている。しかしながら、加工強化に伴う応力集中が顕著になり、低温靭性が満足できなかった。
 No.20は、圧延後の平均冷却速度が高かったために、靭性が一般的に低いベイナイト組織が生成し、低温靭性が満足できなかった。No.21は、Ni含有量は本発明で規定する範囲内であるが、875℃未満、820℃超の温度域(未再結晶温度域の高温側)において圧下を加えたことで、粗大な混粒組織が生じたため、良好な低温靭性を確保できなかった。また、フェライト粒径が大きくなっており、CEQ値も小さくなっているため、強度も満足できなかった。
 これらのデータに基づき、CEQ値と引張強さTSとの関係を図1に示す。またσ値と破面遷移温度vTrsとの関係を図2に示す。図1、2において、塗りつぶし菱形印“◆”は発明例を、三角印“△”は比較例を示す。この結果から明らかなように、CEQ値やσ値を適切な範囲に制御することは、高張力鋼板の強度および低温靭性を改善する上で有効であることが分かる。
 本発明は、所定の化学成分組成を満足し、下記(1)式で規定されるCEQ(質量%)が0.345以上、0.428以下であると共に、下記(2)式で規定されるσが2080以上であり、且つt/4(t:板厚)位置のミクロ組織がフェライトとパーライトの混合組織であり、前記フェライト粒の平均円相当径が7.0μm以下とすることによって、高強度でしかも低温靭性にも優れた高張力鋼板が実現できる。
 CEQ=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15                 …(1)
 σ=2.90×{602781.57-(1154×CEQ-3.25)21/2/0.963+400×[Ni]           …(2)
 但し、[C],[Mn],[Cr],[Mo],[V],[Cu]および[Ni]は、夫々C,Mn,Cr,Mo,V,CuおよびNiの含有量(質量%)を示す。

Claims (3)

  1.  C :0.03~0.09%(「質量%」の意味、化学成分については以下同じ)、
     Si:0.05~0.35%、
     Mn:0.9~1.6%、
     P :0.01%以下(0%を含まない)、
     S :0.01%以下(0%を含まない)、
     Al:0.01~0.06%、
     Ni:0.2~2.0%、
     Nb:0.007~0.017%、
     Ti:0.007~0.017%、
     Ca:0.0005~0.003%、および
     N :0.0025~0.0050%を夫々含有し、残部が鉄および不可避不純物からなり、下記(1)式で規定されるCEQ(質量%)が0.345以上、0.428以下であると共に、下記(2)式で規定されるσが2080以上であり、且つt/4(t:板厚)位置のミクロ組織がフェライトとパーライトの混合組織であり、前記フェライト粒の平均円相当径が7.0μm以下であることを特徴とする低温靭性に優れた高張力鋼板。
     CEQ=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15                 …(1)
     σ=2.90×{602781.57-(1154×CEQ-3.25)21/2/0.963+400×[Ni]            …(2)
     但し、[C],[Mn],[Cr],[Mo],[V],[Cu]および[Ni]は、夫々C,Mn,Cr,Mo,V,CuおよびNiの含有量(質量%)を示す。
  2.  更に、下記(a)~(c)のいずれかに属する1種以上を含有するものである請求項1に記載の高張力鋼板。
     (a)B:0.002%以下(0%を含まない)
     (b)Cu:0.35%以下(0%を含まない)
     (c)Cr:0.3%以下(0%を含まない)、Mo:0.2%以下(0%を含まない)およびV:0.06%以下(0%を含まない)よりなる群から選ばれる1種以上
  3.  請求項1または2に記載の化学成分組成を有する鋼板を、t/4(t:板厚)位置が950~875℃の温度域であるときに圧下率を30%以上、t/4(t:板厚)位置が820℃以下、Ar3変態点以上の温度域であるときに圧下率を30%以上として圧下を行うと共に、t/4(t:板厚)位置が875℃未満、820℃超の温度域、および二相温度域であるときには圧下を行わず、圧下後に平均冷却速度を2.0℃/秒以下として冷却し、ミクロ組織をフェライトとパーライトの混合組織にすることを特徴とする低温靭性に優れた高張力鋼板の製造方法。
PCT/JP2013/072679 2012-09-11 2013-08-26 低温靭性に優れた高張力鋼板およびその製造方法 WO2014041996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157006091A KR101695113B1 (ko) 2012-09-11 2013-08-26 저온 인성이 우수한 고장력 강판 및 그의 제조 방법
CN201380037119.XA CN104487601B (zh) 2012-09-11 2013-08-26 低温韧性优异的高张力钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199798A JP5981813B2 (ja) 2012-09-11 2012-09-11 低温靭性に優れた高張力鋼板およびその製造方法
JP2012-199798 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041996A1 true WO2014041996A1 (ja) 2014-03-20

Family

ID=50278118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072679 WO2014041996A1 (ja) 2012-09-11 2013-08-26 低温靭性に優れた高張力鋼板およびその製造方法

Country Status (4)

Country Link
JP (1) JP5981813B2 (ja)
KR (1) KR101695113B1 (ja)
CN (1) CN104487601B (ja)
WO (1) WO2014041996A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624553B (zh) * 2015-12-31 2017-05-03 江西理工大学 一种改善低温冲击韧性的高强度钢板及其制造方法
WO2018043067A1 (ja) * 2016-08-29 2018-03-08 株式会社神戸製鋼所 厚鋼板およびその製造方法
JP6771429B2 (ja) * 2016-08-29 2020-10-21 株式会社神戸製鋼所 厚鋼板およびその製造方法
JP6866791B2 (ja) * 2016-12-20 2021-04-28 日本製鉄株式会社 靱性予測装置、靱性予測方法、およびプログラム
JP7330862B2 (ja) * 2019-11-01 2023-08-22 株式会社神戸製鋼所 母材と継手の低温靭性に優れた高張力鋼板およびその製造方法
CN114269709B (zh) * 2020-07-14 2023-03-24 杰富意化学株式会社 MnCoZn类铁素体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002934A (ja) * 2002-05-31 2004-01-08 Kobe Steel Ltd 低温靭性に優れた厚鋼板およびその製造方法
JP2011208222A (ja) * 2010-03-30 2011-10-20 Sumitomo Metal Ind Ltd Lpg・アンモニア混載用鋼材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3741078B2 (ja) 2002-05-30 2006-02-01 住友金属工業株式会社 疲労亀裂進展抵抗性に優れた高強度鋼材およびその製造法
BRPI0924925B1 (pt) * 2009-10-28 2017-11-21 Nippon Steel & Sumitomo Metal Corporation Steel sheet for drive pipes and production methods of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002934A (ja) * 2002-05-31 2004-01-08 Kobe Steel Ltd 低温靭性に優れた厚鋼板およびその製造方法
JP2011208222A (ja) * 2010-03-30 2011-10-20 Sumitomo Metal Ind Ltd Lpg・アンモニア混載用鋼材の製造方法

Also Published As

Publication number Publication date
JP2014055317A (ja) 2014-03-27
CN104487601A (zh) 2015-04-01
KR101695113B1 (ko) 2017-01-11
KR20150038631A (ko) 2015-04-08
CN104487601B (zh) 2016-09-21
JP5981813B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5618036B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
JP5733484B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
JP2012188731A (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
WO2016119500A1 (zh) 一种具有高止裂性能的钢板及其制造方法
WO2014041996A1 (ja) 低温靭性に優れた高張力鋼板およびその製造方法
EP3395986B1 (en) Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
JP5618037B1 (ja) 多層溶接継手ctod特性に優れた厚鋼板およびその製造方法
JP2011001607A (ja) 耐水素誘起割れ性および脆性亀裂伝播停止特性に優れた厚鋼板
WO2013099179A1 (ja) 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法
JP2017057449A (ja) 耐サワー性に優れた鋼板及びその製造方法
JP7262288B2 (ja) 母材と溶接熱影響部の靭性に優れかつ音響異方性の小さい高強度低降伏比厚鋼板およびその製造方法
JP2004300567A (ja) 高張力鋼板およびその製造方法
JP2007138271A (ja) 溶接熱影響部の靭性に優れた高降伏比高張力鋼板
WO2017094593A1 (ja) 溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板
CN109943771B (zh) 一种高韧性可焊接细晶粒结构钢板及其生产方法
US10837089B2 (en) Thick steel plate for high heat input welding and having great heat-affected area toughness and manufacturing method therefor
JP6112265B2 (ja) 高強度極厚鋼板およびその製造方法
JP5515954B2 (ja) 耐溶接割れ性と溶接熱影響部靭性に優れた低降伏比高張力厚鋼板
EP3889305A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
JP6477743B2 (ja) 脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法
JP5326827B2 (ja) 低降伏比鋼材およびその製造方法
JP6338022B2 (ja) 脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法
EP4265795A1 (en) Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same
JP5687946B2 (ja) 靭性に優れた高強度厚鋼板
JP4959401B2 (ja) 耐表面割れ特性に優れた高強度溶接構造用鋼とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006091

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836812

Country of ref document: EP

Kind code of ref document: A1