WO2014040775A1 - Zylinderlaufbuchse mit verschleissbeständiger innenschicht - Google Patents

Zylinderlaufbuchse mit verschleissbeständiger innenschicht Download PDF

Info

Publication number
WO2014040775A1
WO2014040775A1 PCT/EP2013/064875 EP2013064875W WO2014040775A1 WO 2014040775 A1 WO2014040775 A1 WO 2014040775A1 EP 2013064875 W EP2013064875 W EP 2013064875W WO 2014040775 A1 WO2014040775 A1 WO 2014040775A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder liner
wear
inner layer
layer
resistant inner
Prior art date
Application number
PCT/EP2013/064875
Other languages
English (en)
French (fr)
Inventor
Volker Scherer
Jürgen Gillen
Nigel Gray
Original Assignee
Federal-Mogul Burscheid Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal-Mogul Burscheid Gmbh filed Critical Federal-Mogul Burscheid Gmbh
Priority to PL13739644T priority Critical patent/PL2895725T3/pl
Priority to US14/428,867 priority patent/US10006399B2/en
Priority to MX2015002081A priority patent/MX361322B/es
Priority to CN201380038187.8A priority patent/CN104619976B/zh
Priority to EP13739644.6A priority patent/EP2895725B1/de
Publication of WO2014040775A1 publication Critical patent/WO2014040775A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F2001/008Stress problems, especially related to thermal stress

Definitions

  • Cylinder liner with wear-resistant inner layer The present invention relates to a multi-layer cylinder liner, which is distortion and stress optimized. Furthermore, the present invention relates to a method for producing such a cylinder liner with wear-resistant inner layer.
  • a cylinder liner comprising a cover layer and a wear resistant one Inner layer comprises, wherein the latter is arranged inside in the cylinder liner.
  • the thickness of the wear-resistant inner layer decreases at least at one axial end of the cylinder liner or is reduced in one area. Since the stresses occur mainly in the region of the ends of the cylinder liner, the thickness of the wear-resistant inner layer is reduced according to the invention to the end of the cylinder liner.
  • the wear-resistant inner layer may also terminate in a range of 1 to 20 mm, preferably 1 to 5 mm in front of at least one axial end of the cylinder liner.
  • the thickness of the wear-resistant inner layer may be performed on at least one axial end of the cylinder liner in the direction of the end of the cylinder liner decreasing.
  • the thickness of the wear-resistant inner layer may be reduced at at least one axial end of the cylinder liner only in a region of the end of the cylinder liner.
  • the problem of tension is caused by a bimetal structure between the cover layer and the wear-resistant inner layer.
  • the present invention aims to minimize bimetallic effects at the ends of a multilayer cylinder liner by altering the bimetal to mitigate the bimetallic effect. In the context of the present invention, this is achieved in that one of the layers of the bimetal is reduced in thickness or wall thickness, so that this layer can exert only lower forces with a temperature change and thus can build up only lower voltages.
  • the thickness of the wear-resistant inner layer decreases at both axial ends of the cylinder liner.
  • the thickness of the wear-resistant at or in front of at least one axial end of the cylinder liner is reduced to zero.
  • the thickness of the wear-resistant layer at or to the end of the cylinder liner decreases to zero, resulting in a stage or by thinning the wear-resistant inner layer can be achieved.
  • the end surface or surfaces of the cylinder liner are formed only of the material of the cover layer.
  • the wear resistant inner layer terminates before at least one of the axial ends of the cylinder liner.
  • the end pieces of the cylinder liner are formed only of the material of the cover layer, whereby no bimetal effect occurs in this area, or the bimetal effect between the cover layer and wear-resistant inner layer is reduced.
  • the wear-resistant inner layer ends in front of both axial ends of the cylinder liner.
  • the wear-resistant inner layer ends in a range of 1 to 20 mm, preferably 1 to 5 mm, before at least one and / or both axial end of the cylinder liner.
  • the thickness of the wear-resistant inner layer is reduced in a range of 1 to 20 mm, preferably 1 to 5 mm, in front of at least one and / or both axial end of the cylinder liner.
  • the cylinder liner comprises at least one circumferential groove disposed on the outside and / or inside of the cylinder liner. Through a groove, the bimetal can be interrupted, or a thickness of one of the layers can be reduced so far that the bimetallic effect is significantly reduced. With a greatly reduced bimetallic effect occur in the cylinder liner also less severe stresses that can lead to distortion and / or deformation.
  • the at least one peripheral groove extends to a depth of 1/3 to 2/3 of the radial wall thickness of the cover layer or the wear-resistant inner layer. More preferably, at least one circumferential groove extends to a depth of about 2/3 of the radial wall thickness of the cover layer or the wear-resistant inner layer. Due to the thickness reduction resulting from the groove, the bimetallic effect between the Cover layer and the wear-resistant inner layer reduced.
  • the at least one groove (8) is arranged at a distance of between 1 mm and 20 mm, preferably between 1 mm and 5 mm, from one end of the cylinder liner (2).
  • This arrangement enables the bimetallic effect in the critical region to be drastically reduced.
  • In a region near the top or cylinder head end of the cylinder liner often no compression / ⁇ labstreif-piston rings are arranged. As a result, no negative interactions between the groove or the grooves and any piston rings are to be expected.
  • the at least one groove has a rounding in the cross section with a radius of at most 1 mm.
  • the groove extends in a curved path inside the cylinder liner.
  • the curvature of the web in this case relates to a course of the groove in the axial direction, which deviates from an ideal circular path.
  • the groove may be in the form of a sine wave inside the cylinder liner. If the amplitude of a sine wave or a curved path is greater than the width of the groove, it can be prevented that a piston ring or a part of an oil control ring can engage in the groove.
  • the wear-resistant inner layer terminates in a curved line in front of the axial end of the cylinder liner.
  • the curvature of the line relates to a course of the line in the axial direction, which deviates from an ideal circular path.
  • the line may be adapted to the shape of a piston skirt.
  • This embodiment can be combined with the grooves.
  • This embodiment can also be combined with longitudinal grooves which extend in the axial direction and extend substantially only in the region of the amplitude of the curved line.
  • an outer layer is further applied, which counteracts stresses between the cover layer and the wear-resistant inner layer.
  • the bimetal effect between the wear-resistant inner layer and the cover layer by lifted an opposing bimetallic effect between the cover layer and the outer layer.
  • an engine block having at least one cast-in cylinder liner as described above is provided. In such an engine block, the known problems such as warping of the cylinder liners occur neither during manufacture nor during operation of the engine.
  • Figure 1 illustrates a two-layered or two-layer cylinder liner according to the prior art in a perspective partial sectional view.
  • Figure 2 illustrates a two-layer cylinder liner according to the invention, the wear-resistant inner layer ends before the axial ends of the cylinder liner.
  • Figure 3 illustrates a two-layer cylinder liner according to the invention in which the thickness of a wear-resistant inner layer at the axial ends of the cylinder liner is reduced to zero.
  • FIG. 4 shows a two-layer cylinder liner according to the invention, in which the thickness of a wear-resistant inner layer in the region of an axial end of the cylinder liner is reduced by a groove.
  • FIG. 5 shows a two-layer cylinder liner according to the invention with a plurality of grooves.
  • FIG. 6 shows a three-layer cylinder liner according to the invention, with the inner and outer layers ending before the lower end of the cylinder liner in the drawing.
  • Figure 1 illustrates a prior art two-layer cylinder liner in a partial perspective sectional view.
  • the prior art cylinder liner 1 comprises a wear-resistant inner layer 6 and a cover layer 4 of another material. From the figure it follows that the cylinder liner is equivalent to a bimetallic strip which is bent into a tube and welded. As a result, stresses occur in the cylinder liner when temperature changes. These stresses have a particularly strong effect on the upper end (also on the cylinder head side) and the lower end (also on the crankshaft side) of the cylinder liner. In the middle range, these forces do not affect as much as they can be balanced with the respective forces in adjacent areas.
  • Figure 2 illustrates a two-layer cylinder liner 2 according to the invention, the wear-resistant inner layer 6 end in the axial direction in front of the axial ends of the cylinder liner 2.
  • the cover layer 4 projects on both sides over the wear-resistant inner layer 6 the distance x.
  • the upper supernatant is made larger, since it is subject to a higher thermal load and thus shows a stronger bimetal effect.
  • the ends of the cylinder liner are not formed by a bimetal, but consist of only one material.
  • FIG. 3 shows a further two-layer cylinder liner 2 according to the invention, in which the thickness of a wear-resistant inner layer 6 at the axial ends of the cylinder liner 2 is reduced to zero.
  • the bimetal effect not at a corner or step, but gradually reduced to zero in a transition region x and y, respectively.
  • This design requires a higher degree of manufacturing accuracy.
  • the type and the width x or y of the transition can be adapted to the conditions prevailing in a particular engine.
  • the type and width y of the upper transition region may differ from the type and width x of the lower transition region.
  • FIG. 4 shows a two-layer cylinder liner according to the invention, in which the thickness of a wear-resistant inner layer in the region of an axial end of the cylinder liner is reduced by a groove.
  • the cylinder liner is provided with an inner groove 8 'and an outer groove 8. Both grooves 8, 8 'reduce the material thickness of the respective material layer with respect to the material thickness of the respective other layer. Due to the grooves, the cross section of the respective layer is weakened, depending on the depth of the groove 8, 8 ', which in turn reduces the bimetallic effect.
  • the inner groove 8 ' is attached to the lower side of the cylinder liner, whereby the groove 8' can not conflict with piston rings.
  • the upper groove 8 is arranged on the outside of the cylinder liner.
  • FIG. 5 shows a two-layer cylinder liner according to the invention with a plurality of grooves.
  • FIG. 5 shows a two-layer cylinder liner according to the invention, in which the thickness of a wear-resistant inner layer in the region of one axial end of the cylinder liner is reduced by grooves 8 '8 "In this embodiment, the cylinder liner is provided with two lower internal grooves 8' two outer grooves 8, one upper and one lower outer groove.
  • the cylinder liner 2 is also provided with an upper inner groove 8 "running in a wavy line or running on a curved path on the inner surface of the cylinder liner, thus preventing a piston ring passing the groove when the pistons are inserted into the cylinder It is also possible to arrange a broken groove at the lower or upper end of the cylinder liner to avoid any problems with piston rings
  • the compression rings are not seated at the top of a piston, which causes the piston to rupture Groove, if it is placed at a sufficiently short distance from the top of the cylinder liner, does not come into contact with the compression rings.
  • the grooves can also be used at one or both ends of a cylinder liner, as shown in Figures 2 and 3.
  • FIG. 6 shows a three-layer cylinder liner 3 according to the invention, the inner and outer layers ending in front of the lower end of the cylinder liner 3 in the drawing.
  • the wear-resistant inner layer 6 is executed only partially in the circumferential direction. Modern pistons with a partially executed piston skirt require a wear-resistant inner layer 6 only in the sections shown.
  • an outer layer 10 is additionally applied to the cover layer 6. The outer layer 10 is dimensioned in this case (material thickness, strength, thermal expansion coefficient) so that the thermal stresses cancel each other out. This voltage compensation can only work if the wear-resistant inner layer 4 and the outer layer 10 each extend in the same areas.
  • a cylinder liner having at least one inner diameter wear resistant layer (6) and outer diameter cover layer (4) is made such that the thickness of the wear resistant layer (6) approaches zero at the axial end of the cylinder liner (see FIGS. 2 and 3).
  • All of the cylinder liners illustrated in the drawings can be produced, for example, by means of thermal spraying according to a known method, in that the axial extent of the wear protection layer (6) is less than the axial extent of the cover layer (2). This can be achieved by varying the travel path of the spray gun or the use suitable covers or stencils can be achieved.
  • the axial length of the part of the cylinder liner produced without wear protection layer at one end or at both ends is 1 to 20 mm, ideally 1 to 5 mm. It is also envisaged to use a combination method in which a wear-resistant inner layer processed by means of mechanical or thermal processing methods is provided with an outer layer by thermal spraying. It is also possible to encase a wear-resistant inner layer 6 with a cover layer. Depending on the design, a bushing produced in this way can be used for thermal joining, for pressing in or for pouring into the engine block.
  • one or more circumferential grooves (8, 8 ', 8 ") can be introduced into the outer or inner lateral surface of the bushing (see Figures 4 and 5) for stress relief
  • the internal groove with a depth of about 2/3 of the radial wall thickness and up to 1 mm radius with an axial distance of 1 to 20 mm from the end face is currently for motor vehicle
  • other dimensions, depths and groove shapes can be used, and the grooves can be introduced into the surfaces both excitingly and by means of thermal processing methods.
  • interrupted grooves or dot patterns to reduce d he wall thickness of the wear-resistant inner layer 4 can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Zylinderlaufbuchse (2) mit einer Deckschicht (6) und eine verschleißbeständigen Innenschicht (4), die innen in der Zylinderlaufbuchse angeordnet ist, wobei eine Dicke der verschleißbeständigen Innenschicht (4) an mindestens einem axialen Ende der Zylinderlaufbuchse (2) abnimmt.

Description

Zylinderlaufbuchse mit verschleißbeständiger Innenschicht Die vorliegende Erfindung betrifft eine mehrlagige Zylinderlaufbuchse, die Verzugs- und spannungsoptimiert ist. Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer derartigen Zylinderlaufbuchse mit verschleißbeständiger Innenschicht.
Bisher sind aus der DE 19605946 Cl Zylinderlaufbuchsen mit einem mehrlagigen Aufbau bekannt.
Es sind ebenfalls zweischichtige Zylinderlaufbuchsen bekannt, bei denen zwei Rohre aus unterschiedlichem Material einer eisenbasierten Verschleißschutzschicht und einer leichtmetallbasierten Deckschicht ineinander gesteckt und miteinander thermisch gefügt sind.
Bei den bekannten Zylinderlaufbuchsen tritt ein Problem auf, wenn die unterschiedlichen Schichten der Zylinderlaufbuchse eine unterschiedliche Festigkeit und einen unterschiedlichen Wärmeausdehnungskoeffizienten aufweisen. Bei einer thermischen Belastung können Biegespannungen auftreten, welche zu einem Verzug der Zylinderlaufbuchse oder einer teilweisen oder vollständigen Ablösung der Lagen voneinander führen können. Insbesondere können die Spannungen zu elastisch-plastischen Verformungen und im ungünstigsten Falle zu einem mechanischen Versagen der Schicht führen. Die größten Spannungen treten dabei an den axialen Enden einer Zylinderlaufbuchse auf. Weiterhin ist bekannt, dass dieser Effekt beim thermischen Fügen sogar noch verstärkt auftritt, bedingt dadurch, dass der Wärmeübergang vom Brennraum zu einem Kühlblech des Motors durch die Einschnürung behindert ist und eine noch höhere Temperatur eine noch höhere Spannung hervorrufen kann.
Es ist daher wünschenswert, eine Zylinderlaufbuchse zur Verfügung zu haben, bei der die Spannungen zwischen einer verschleißbeständigen Innenschicht und einer Deckschicht nicht oder verringert auftreten.
Gemäß einer ersten Ausführungsform der vorliegenden Erfindung wird eine Zylinderlaufbuchse bereitgestellt, die eine Deckschicht und eine verschleißbeständige Innenschicht umfasst, wobei letztere innen in der Zylinderlaufbuchse angeordnet ist. Die Dicke der verschleißbeständigen Innenschicht nimmt dabei an mindestens einem axialen Ende der Zylinderlaufbuchse ab oder ist in einem Bereich verringert. Da die Spannungen hauptsächlich im Bereich der Enden der Zylinderlaufbuchse auftreten, wird erfindungsgemäß die Dicke der verschleißbeständigen Innenschicht zum Ende der Zylinderlaufbuchse verringert. Durch eine Verringerung der Dicke der verschleißbeständigen Innenschicht verringert sich ein Bimetalleffekt an diesem Ende der Zylinderlaufbuche, da eine dünnere verschleißbeständige Innenschicht bei einer Temperaturänderung nur geringere Kräfte ausüben kann. Die verschleißbeständige Innenschicht kann ebenfalls, in einem Bereich von 1 bis 20 mm, bevorzugt 1 bis 5 mm vor mindestens einem axialen Ende der Zylinderlaufbuchse enden.
Die Dicke der verschleißbeständigen Innenschicht kann an mindestens einem axialen Ende der Zylinderlaufbuchse in Richtung des Endes der Zylinderlaufbuchse abnehmend ausgeführt sein. Die Dicke der verschleißbeständigen Innenschicht kann an mindestens einem axialen Ende der Zylinderlaufbuchse nur in einem Bereich des Endes der Zylinderlaufbuchse verringert sein.
Die Problematik der Spannung wird durch einen Bimetallaufbau zwischen der Deckschicht und der verschleißbeständigen Innenschicht hervorgerufen. Insgesamt zielt die vorliegende Erfindung darauf ab, die Bimetalleffekte an den Enden einer mehrschichtigen Zylinderlaufbuchse zu minimieren, indem das Bimetall so verändert wird, dass der Bimetalleffekt abgeschwächt wird. Im Rahmen der vorliegenden Erfindung wird das dadurch erreicht, dass eine der Schichten des Bimetalls in der Dicke bzw. Wandstärke verringert wird, sodass diese Schicht bei einer Temperaturänderung nur geringere Kräfte ausüben kann und somit nur geringere Spannungen aufbauen kann.
In einer beispielhaften Ausführungsform nimmt die Dicke der verschleißbeständigen Innenschicht an beiden axialen Enden der Zylinderlaufbuchse ab. Durch diese Ausführungsform kann erreicht werden, dass sich die Zylinderlaufbuchse weder am Zylinderkopfende noch am Kurbelwellen-Ende einschnürt.
In einer weiteren beispielhaften Ausführungsform wird die Dicke der verschleißbeständigen an oder vor mindestens einem axialen Enden der Zylinderlaufbuchse auf Null reduziert.
Damit nimmt die Dicke der verschleißbeständigen Schicht am oder zum Ende der Zylinderlaufbuchse bis auf Null ab, was in einer Stufe oder durch ein Ausdünnen der verschleißbeständigen Innenschicht erreicht werden kann. Somit sind in diesen Ausführungsformen die Endfläche bzw. -flächen der Zylinderlaufbuchse nur aus dem Material der Deckschicht gebildet. In einer anderen beispielhaften Ausführungsform endet die verschleißbeständige Innenschicht vor mindestens einem der axialen Enden der Zylinderlaufbuchse. In dieser Ausführungsform sind die Endstücke der Zylinderlaufbuchse (beispielsweise im Bereich einiger Millimeter) nur aus dem Material der Deckschicht gebildet, wodurch in diesem Bereich kein Bimetalleffekt auftritt, oder der Bimetalleffekt zwischen der Deckschicht und verschleißbeständigen Innenschicht verringert wird.
In einer zusätzlichen beispielhaften Ausführungsform endet die verschleißbeständige Innenschicht jeweils vor beiden axialen Enden der Zylinderlaufbuchse. Durch diese Ausführungsform kann erreicht werden, dass sich die Zylinderlaufbuchse weder am Zylinderkopf-Ende noch am Kurbelwellen-Ende verziehen kann.
In einer weiteren beispielhaften Ausführungsform endet die verschleißbeständige Innenschicht in einem Bereich von 1 bis 20mm, bevorzugt 1 bis 5 mm, vor mindestens einem und/oder beiden axialen Ende der Zylinderlaufbuchse.
In einer weiteren zusätzlichen beispielhaften Ausführungsform verringert sich die Dicke der verschleißbeständigen Innenschicht in einem Bereich von 1 bis 20mm, bevorzugt 1 bis 5 mm, vor mindestens einem und/oder beiden axialen Ende der Zylinderlaufbuchse. In einer anderen beispielhaften Ausführungsform umfasst die Zylinderlaufbuchse mindestens eine umlaufende Nut, die außen an und/oder innen in der Zylinderlaufbuchse angeordnet ist. Durch eine Nut kann das Bimetall unterbrochen werden, oder eine Dicke einer der Lagen soweit verringert werden, dass der Bimetalleffekt deutlich herabgesetzt ist. Mit einem stark verringerten Bimetalleffekt treten in der Zylinderlaufbuchse auch weniger starke Spannungen auf, die zu Verzügen und/oder Verformungen führen können.
In einer weiteren beispielhaften Ausführungsform erstreckt sich die mindestens eine umlaufende Nut bis in eine Tiefe von 1/3 bis 2/3 der radialen Wandstärke der Deckschicht bzw. der verschleißbeständigen Innenschicht. Weiter bevorzugt erstreckt sich mindestens eine umlaufende Nut bis in eine Tiefe von etwa 2/3 der radialen Wandstärke der Deckschicht bzw. der verschleißbeständigen Innenschicht. Durch die aus der Nut resultierende Dickenverringerung wird in diesem Bereich auch der Bimetalleffekt zwischen der Deckschicht und der verschleißbeständigen Innenschicht verringert.
In einer anderen, weiteren beispielhaften Ausführungsform ist die mindestens eine Nut (8) in einem Abstand zwischen 1 mm und 20 mm, bevorzugt zwischen 1 mm und 5 mm, von einem Ende der Zylinderlaufbuchse (2) angeordnet. Diese Anordnung ermöglicht es, dass der Bimetalleffekt in dem kritischen Bereich drastisch verringert werden kann. In einem Bereich nahe dem oberen bzw. zylinderkopfseitigen Ende der Zylinderlaufbuchse sind oft keine Kompressions/Ölabstreif-Kolbenringe mehr angeordnet. Dadurch sind auch keine negativen Wechselwirkungen zwischen der Nut bzw. den Nuten und eventuellen Kolbenringen zu erwarten.
In einer anderen, weiteren beispielhaften Ausführungsform weist die mindestens eine Nut im Querschnitt eine Rundung mit einem Radius vom maximal 1 mm auf. Durch die Verwendung einer gerundeten Nut können Spannungsspitzen und eine Kerbwirkung am Grund der Nute vermieden werden.
In einer weiteren, zusätzlichen beispielhaften Ausführungsform verläuft die Nut in einer gekrümmten Bahn innen in der Zylinderlaufbuchse. Die Krümmung der Bahn betrifft dabei einen Verlauf der Nut in Axialrichtung, der von einer idealen Kreisbahn abweicht. In einer Ausführungsform kann die Nut in Form einer Sinuswelle innen an der Zylinderlaufbuchse verlaufen. Wenn die Amplitude einer Sinuswelle oder einer gekrümmten Bahn größer ist als die Breite der Nut, kann verhindert werden, dass ein Kolbenring oder ein Teil eines Ölabstreifrings in der Nut einrasten kann. In einer zusätzlichen beispielhaften Ausführungsform endet die verschleißbeständige Innenschicht in einer gekrümmten Linie vor dem axialen Ende der Zylinderlaufbuchse. Die Krümmung der Linie betrifft dabei einen Verlauf der Linie in Axialrichtung, der von einer idealen Kreisbahn abweicht. In einer Ausführungsform kann die Linie der Form eines Kolbenhemds angepasst sein. Diese Ausführungsform kann mit den Nuten kombiniert werden. Diese Ausführungsform kann zudem mit Längs-Nuten kombiniert werden, die in Axialrichtung verlaufen und sich im Wesentlichen nur im Bereich der Amplitude der gekrümmten Linie erstrecken.
In einer weiteren beispielhaften Ausführungsform der Zylinderlaufbuchse ist weiterhin eine Außenschicht aufgebracht, die Spannungen zwischen der Deckschicht und der verschleißbeständigen Innenschicht entgegenwirkt. In dieser Ausführungsform wird der Bimetalleffekt zwischen der verschleißbeständigen Innenschicht und der Deckschicht durch einen entgegen gerichtetem Bimetalleffekt zwischen der Deckschicht und der Außenschicht aufgehoben. Dadurch wird ist es auch möglich, die Innenschicht in Umfangsrichtung nur teilweise aufzutragen. Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Motorblock mit mindestens einer eingegossenen Zylinderlaufbuchse wie sie vorstehend beschrieben wurde, bereitgestellt. Bei einem solchen Motorblock treten die bekannten Probleme wie ein Verziehen der Zylinderlaufbuchsen weder bei der Herstellung noch im Betrieb des Motors auf.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Motor mit einem vorstehend beschriebenen Motorblock bereitgestellt.
Im Folgenden wird die vorliegende Erfindung anhand von schematischen Figuren beschrieben.
Figur 1 stellt eine zweilagige bzw. zweischichtige Zylinderlaufbuchse gemäß dem Stand der Technik in einer perspektivischen Teil-Schnittansicht dar. Figur 2 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse dar, dessen verschleißbeständige Innenschicht vor den axialen Enden der Zylinderlaufbuchse endet.
Figur 3 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse dar, bei der sich die Dicke einer verschleißbeständigen Innenschicht an den axialen Enden der Zylinderlaufbuchse auf null reduziert.
Figur 4 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse dar, bei der die Dicke einer verschleißbeständigen Innenschicht im Bereich eines axialen Endes der Zylinderlaufbuchse durch eine Nut verringert ist.
Figur 5 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse mit mehreren Nuten dar.
Figur 6 stellt eine erfindungsgemäße dreischichtige Zylinderlaufbuchse dar, wobei die innere und die äußere Lage vor dem in der Zeichnung unteren Ende der Zylinderlaufbuchse enden.
Sowohl in den Figuren als auch in den Zeichnungen werden gleiche Bezugszeichen für gleiche oder ähnlichen Komponenten oder Merkmale verwendet.
Figur 1 stellt eine zweischichtige Zylinderlaufbuchse gemäß dem Stand der Technik in einer perspektivischen Teil-Schnittansicht dar. Die Zylinderlaufbuchse 1 des Stands der Technik umfasst eine verschleißfeste Innenschicht 6 sowie eine Deckschicht 4 aus einem anderen Material. Aus der Figur ergibt sich, dass die Zylinderlaufbuchse zu einem Bimetallstreifen äquivalent ist, der zu einem Rohr gebogen und verschweißt ist. Daraus ergibt sich, dass bei Temperaturänderungen Spannungen in der Zylinderlaufbuchse auftreten. Diese Spannungen wirken besonders stark an dem oberen (auch zylinderkopfseitigen) Ende und dem unteren (auch kurbelwell enseitigen) Ende der Zylinderlaufbuchse. Im mittleren Bereich wirken sich diese Kräfte nicht so stark aus, da sie mit den jeweiligen Kräften in angrenzenden Bereichen ausgeglichen werden können.
Unter starker Erwärmung würden sich die Enden der Zylinderlaufbuchse tonnenförmig verformen, da das innere, verschleißfestere Material eine höhere Festigkeit und damit vermutlich einen geringeren Wärmeausdehnungs-Koeffizienten aufweist. Somit können an dieser Laufbuchse die in der Einleitung beschriebenen Probleme auftreten, die zu einem Versagen der Zylinderlaufbuchse, des Zylinders und damit eines ganzen Motors führen können.
Figur 2 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse 2 dar, deren verschleißbeständige Innenschicht 6 in axialer Richtung vor den axialen Enden der Zylinderlaufbuchse 2 enden. Dabei steht die Deckschicht 4 auf beiden Seiten über die verschleißbeständige Innenschicht 6 die Strecke x vor. Es ist in der Zeichnung nur der untere Überstand dargestellt, da klar ist, dass der nicht mit einem Bezugszeichen versehene Überstand größer, kleiner oder gleich groß ausgeführt werden kann. Bevorzugt wird der obere Überstand größer ausgeführt, da er einer höheren thermischen Belastung unterliegt und damit einen stärkeren Bimetalleffekt zeigt. In dieser Ausführungsform werden die Enden der Zylinderlaufbuchse nicht durch ein Bimetall gebildet, sondern bestehen nur aus einem Material. Damit liegt an den axialen Enden der Zylinderlaufbuchse kein Bimetall vor und es tritt auch kein Bimetalleffekt an den Enden auf. Eventuelle Verformungen der Zylinderlaufbuchse werden hier durch den überstehenden Rand der Deckschicht 4 aufgefangen. Figur 3 stellt eine weitere erfindungsgemäße zweischichtige Zylinderlaufbuchse 2 dar, bei der sich die Dicke einer verschleißbeständigen Innenschicht 6 an den axialen Enden der Zylinderlaufbuchse 2 auf null reduziert. Durch diese Konstruktion wird der Bimetalleffekt nicht an einer Ecke oder Stufe, sondern allmählich in einem Übergangsbereich x bzw. y bis auf null verringert. Diese Bauform erfordert ein höheres Maß an Fertigungsgenauigkeit. Die Art und die Breite x bzw. y des Übergangs kann dabei an die in einem jeweiligen Motor vorliegenden Bedingungen angepasst werden. Art und Breite y des oberen Übergangsbereichs kann sich von der Art und Breite x des unteren Übergangsbereichs unterscheiden.
Figur 4 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse dar, bei der die Dicke einer verschleißbeständigen Innenschicht im Bereich eines axialen Endes der Zylinderlaufbuchse durch eine Nut verringert ist. In dieser Ausführungsform ist die Zylinderlaufbuchse mit einer Innennut 8' und eine Außennut 8 versehen. Beide Nuten 8, 8' verringern die Materialstärke der jeweiligen Materialschicht gegenüber der Materialstärke der jeweils anderen Schicht. Durch die Nuten wird der Querschnitt der jeweiligen Schicht je nach Tiefe der Nut 8, 8' geschwächt, was wiederum den Bimetalleffekt verringert. In Figur 4 ist die innere Nut 8' an der unteren Seite der Zylinderlaufbuchse angebracht, wodurch die Nut 8' nicht mit Kolbenringen in Konflikt geraten kann. Um einen Konflikt mit Kolbenringen zu vermeiden, die in der Nut einrasten können, ist die obere Nut 8 an der Außenseite der Zylinderlaufbuche angeordnet.
Figur 5 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse mit mehreren Nuten dar.
Figur 5 stellt eine erfindungsgemäße zweischichtige Zylinderlaufbuchse dar, bei der die Dicke einer verschleißbeständigen Innenschicht im Bereich eines axialen Endes der Zylinderlaufbuchse durch Nuten 8' 8" verringert ist. In dieser Ausführungsform ist die Zylinderlaufbuchse mit zwei unteren Innennuten 8' versehen. Weiterhin umfasst die Zylinderlaufbuchse zwei Außennuten 8, jeweils eine obere und eine untere Außennut.
Die Zylinderlaufbuchse 2 ist zudem mit einer oberen Innennut 8" versehen, die in einer Wellenlinie verläuft bzw. auf der Innenfläche der Zylinderlaufbuchse auf einer gekrümmten Bahn verläuft. Dadurch kann sich ein Kolbenring, der beim Einsetzen der Kolben in den Zylinder die Nut passiert, nicht mehr in der Nut einrasten, und stellt somit kein Einbauhindernis dar. Es ist ebenfalls möglich, eine unterbrochene Nut am unteren oder oberen Ende der Zylinderlaufbuchse anzuordnen, um jegliche Problemen mit Kolbenringen zu vermeiden. Die Kompressionsringe sitzen nicht ganz oben an einem Kolben, wodurch die Nut, falls sie in einem ausreichend geringen Abstand zu der Oberseite der Zylinderlaufbuchse angeordnet wird, nicht mit den Kompressionsringen in Kontakt tritt. Es ist hervorzuheben, dass die Nuten auch an einer oder beiden Enden einer Zylinderlaufbuchse eingesetzt werden können, wie in den Figuren 2 und 3 dargestellt.
Die unteren inneren und äußeren Nuten 8, 8' können den Bimetalleffekt und somit die Spannungen an dem unteren Ende der Zylinderlaufbuchse erheblich verringern.
Figur 6 stellt eine erfindungsgemäße dreischichtige Zylinderlaufbuchse 3 dar, wobei die innere und die äußere Lage vor dem in der Zeichnung unteren Ende der Zylinderlaufbuchse 3 enden. In Figur 6 ist die verschleißbeständige Innenschicht 6 in Umfangsrichtung nur teilweise ausgeführt. Moderne Kolben mit einem nur teilweise ausgeführten Kolbenhemd benötigen nur in den dargestellten Abschnitten eine verschleißbeständige Innenschicht 6. In einer zweischichtigen Zylinderlaufbuchse würde nun am unteren Ende nicht nur eine rotationssymmetrische Verformung durch thermische Spannungen des Bimetalleffekts auftreten. Zusätzlich wird bei Wärmeeinwirkung durch die nicht rotationssymmetrischen Spannungen das untere Oval verformt. In der dargestellten Ausführungsform ist zusätzlich eine Außenschicht 10 auf der Deckschicht 6 aufgebracht. Die Außenschicht 10 ist dabei so bemessen (Materialdicke; Festigkeit, Wärmeausdehnungskoeffizient), dass sich die thermischen Spannungen aufheben. Diese Spannungskompensation kann nur funktionieren, wenn sich die verschleißbeständige Innenschicht 4 und die Außenschicht 10 jeweils in den gleichen Bereichen erstrecken.
Es sollte klar sein, dass sich auch alle Kombinationen von Schichtverläufen in Axialrichtung und Umfangsrichtung kombinieren lassen sowie eine weitere Kombination mit Nuten 8, 8' und 8" ebenfalls möglich ist. Diese sind nur aus Gründen der Klarheit nicht dargestellt.
Weiterhin wird ein Verfahren zur Herstellung einer mehrschichtigen Verzugs- und spannungsoptimierten Zylinderlaufbuchse zum Einfügen oder Eingießen in ein Zylinderkurbelgehäuse aus Eisen oder Leichtmetall bereitgestellt. Eine Zylinderlaufbuchse mit mindestens einer verschleißbeständigen Schicht (6) am Innendurchmesser und einer Deckschicht (4) am Außendurchmesser wird derart hergestellt, dass die Dicke der verschleißbeständigen Schicht (6) zum axialen Ende der Zylinderlaufbuchse gegen Null geht (siehe Figuren 2 und 3). Alle in den Zeichnungen dargestellten Zylinderlaufbuchsen können beispielsweise mittels thermischen Spritzens gemäß einem bekannten Verfahren hergestellt werden, indem die axiale Ausdehnung der Verschleißschutz-Schicht (6) geringer ist als die axiale Ausdehnung der Deckschicht (2). Dies kann etwa durch Variation des Verfahrweges der Spritzpistole oder die Verwendung geeigneter Abdeckungen bzw. Schablonen erzielt werden. Die axiale Länge des ohne Verschleißschutzschicht erzeugten Teils der Zylinderlaufbuchse an einem Ende oder an beiden Enden (Abmessungen x und y) beträgt 1 bis 20mm, idealerweise 1 bis 5mm. Es ist ebenfalls vorgesehen, ein Kombinationsverfahren einzusetzen, bei dem eine, mittels mechanischen oder thermischen Bearbeitungsverfahren bearbeitete verschleißbeständige Innenschicht durch thermisches Spritzen mit einer Außenschicht versehen wird. Ebenfalls ist es möglich, eine verschleißbeständige Innenschicht 6 mit einer Deckschicht zu umgießen. Je nach Ausführung kann eine derart hergestellte Buchse zum thermischen Fügen, zum Einpressen oder zum Eingießen in den Motorblock verwendet werden. Alternativ oder ergänzend zur gegen Dicke Null strebenden Verschleißschutzschicht können zum Spannungsabbau eine oder mehrere umlaufende Nuten (8, 8', 8") in die Außen- oder Innenmantelfläche der Buchse eingebracht werden (siehe Figuren 4 und 5). Die Lage, Ausführung und Tiefe der Nut richtet sich nach den erwarteten Spannungszuständen in der Zylinderlaufbuchse. Eine Innen-Nut mit einer Tiefe von ca. 2/3 der radialen Wandstärke und bis zu 1 mm Radius mit einem axialen Abstand von 1 bis 20 mm von der Stirnfläche wird momentan für Kfz-Motore als ideal angesehen. Es können jedoch auch andere Abmessungen, Tiefen und Nutenformen verwendet werden. Die Nuten können sowohl spannend als auch mittels thermischer Bearbeitungsverfahren in die Oberflächen eingebracht werden. Gerade bei Verwendung von Lasergraviertechniken bieten sich auch geschwungene bzw. wellenförmige Nuten an. Weiterhin können mittels Lasergraviertechnik auch unterbrochene Nuten oder Punktmuster zur Verringerung der Wandstärke der verschleißbeständigen Innenschicht 4 verwendet werden.

Claims

Ansprüche
1. Zylinderlaufbuchse (2), umfassend:
eine Deckschicht (6) und
eine verschleißbeständige Innenschicht (4), die innen in der Zylinderlaufbuchse angeordnet ist,
wobei eine Dicke der verschleißbeständigen Innenschicht (4), an mindestens einem axialen Ende der Zylinderlaufbuchse (2) abnimmt, oder die verschleißbeständige Innenschicht (4), in einem Bereich von 1 bis 20 mm, bevorzugt 1 bis 5 mm vor mindestens einem axialen Ende der Zylinderlaufbuchse endet.
2. Zylinderlaufbuchse (2) gemäß Anspruch 1,
wobei eine Dicke der verschleißbeständigen Innenschicht (4), an beiden axialen Enden der Zylinderlaufbuchse abnimmt.
3. Zylinderlaufbuchse (2) gemäß Anspruch 1 oder 2,
wobei die Dicke der verschleißbeständigen Innenschicht (4), an oder vor mindestens einem axialen Ende der Zylinderlaufbuchse auf Null reduziert wird.
4. Zylinderlaufbuchse (2) gemäß einem der vorstehenden Ansprüche,
wobei die verschleißbeständige Innenschicht (4), vor beiden axialen Enden der Zylinderlaufbuchse endet.
5. Zylinderlaufbuchse (2) gemäß einem der vorstehenden Ansprüche,
wobei die Zylinderlaufbuchse (2) mindestens eine umlaufende Nut (8, 8', 8") umfasst, die außen an und/oder innen in der Zylinderlaufbuchse (2) angeordnet ist.
6. Zylinderlaufbuchse (2), gemäß Anspruch 5,
wobei sich die mindestens eine Nut (8, 8', 8") bis in einen Tiefe von 1/3 bis 2/3 der radialen Wandstärke der Deckschicht (6) bzw. der verschleißbeständigen Innenschicht (4) erstreckt, und/oder
wobei die mindestens eine Nut (8, 8', 8") in einem Abstand zwischen 1 mm und 20 mm, bevorzugt zwischen 1 mm und 5 mm, von einem Ende der Zylinderlaufbuchse (2) angeordnet ist und/oder
wobei die mindestens eine Nut (8, 8', 8") im Querschnitt eine Rundung mit einem Radius vom maximal 1 mm aufweist.
7. Zylmderlaufbuchse (2), gemäß Anspruch 5 oder 6,
wobei die Nut (8") in einer gekrümmten Bahn innen in der Zylinderlaufbuchse (2) verläuft.
8. Zylinderlaufbuchse (2), gemäß einem der vorstehenden Ansprüche,
wobei die verschleißbeständige Innenschicht (4), in einer zweidimensional gekrümmten Linie (12) vor dem axialen Ende der Zylinderlaufbuchse (2) endet.
9. Zylinderlaufbuchse (2), gemäß einem der vorstehenden Ansprüche,
weiter umfassend eine Außenschicht (10), die Spannungen zwischen der Deckschicht (6) und der verschleißbeständigen Innenschicht (4) entgegenwirkt.
10. Motorblock mit mindestens einer eingegossenen Zylinderlaufbuchse (2), gemäß einem der vorstehenden Ansprüche.
11. Motor umfassend einen Motorblock, gemäß Anspruch 10.
PCT/EP2013/064875 2012-09-17 2013-07-15 Zylinderlaufbuchse mit verschleissbeständiger innenschicht WO2014040775A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL13739644T PL2895725T3 (pl) 2012-09-17 2013-07-15 Tuleja cylindrowa z warstwą wewnętrzną odporną na zużycie
US14/428,867 US10006399B2 (en) 2012-09-17 2013-07-15 Cylinder sleeve with wear-resistant inner layer
MX2015002081A MX361322B (es) 2012-09-17 2013-07-15 Camisa de cilindro con capa interior resistente al desgaste.
CN201380038187.8A CN104619976B (zh) 2012-09-17 2013-07-15 具有耐磨内层的汽缸套
EP13739644.6A EP2895725B1 (de) 2012-09-17 2013-07-15 Zylinderlaufbuchse mit verschleissbeständiger innenschicht

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012216518.5 2012-09-17
DE102012216518.5A DE102012216518A1 (de) 2012-09-17 2012-09-17 Zylinderlaufbuchse mit verschleißbeständiger Innenschicht

Publications (1)

Publication Number Publication Date
WO2014040775A1 true WO2014040775A1 (de) 2014-03-20

Family

ID=48832889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/064875 WO2014040775A1 (de) 2012-09-17 2013-07-15 Zylinderlaufbuchse mit verschleissbeständiger innenschicht

Country Status (7)

Country Link
US (1) US10006399B2 (de)
EP (1) EP2895725B1 (de)
CN (1) CN104619976B (de)
DE (1) DE102012216518A1 (de)
MX (1) MX361322B (de)
PL (1) PL2895725T3 (de)
WO (1) WO2014040775A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041012A (zh) * 2016-06-30 2016-10-26 中原内配集团安徽有限责任公司 一种耐磨气缸套的生产方法
WO2018011362A1 (de) * 2016-07-13 2018-01-18 Oerlikon Metco Ag, Wohlen Zylinderbohrungen beschichten ohne vorgängige aktivierung der oberfläche
EP3577329A1 (de) * 2017-03-22 2019-12-11 Achates Power, Inc. Zylinderbohrflächenstrukturen für einen gegenkolbenmotor
CN109826717A (zh) * 2019-04-03 2019-05-31 天津大学 基于鳞型结构的缸套
USD996184S1 (en) * 2020-08-24 2023-08-22 Gallery Specialty Hardware Ltd. Antimicrobial cover for shopping cart handle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996457A (ja) * 1982-11-24 1984-06-02 Honda Motor Co Ltd 内燃機関用エンジンのシリンダブロツク
JPH0828705A (ja) * 1994-07-21 1996-02-02 Teikoku Piston Ring Co Ltd シリンダライナ
DE19605946C1 (de) 1996-02-17 1997-07-24 Ae Goetze Gmbh Zylinderlaufbuchse für Verbrennungskraftmaschinen und ihr Herstellungsverfahren
DE19845347C1 (de) * 1998-10-02 2000-03-30 Federal Mogul Burscheid Gmbh Zylinderlaufbuchse
DE10338386B3 (de) * 2003-08-21 2004-12-09 Daimlerchrysler Ag Vorgefertigter Rohling eines ringförmigen oder hohlzylindrischen Bauteils zum Eingießen in ein gehäuseförmiges Bauteil einer Hubkolbenmaschine

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB524036A (en) * 1939-01-20 1940-07-29 Thomas Charles Winfield Improvements in or relating to cylinders of internal combustion engines
DE1916168A1 (de) * 1969-03-28 1970-10-08 Daimler Benz Ag Zylindergehaeuse mit trockenen Zylinderlaufbuechsen
US3792518A (en) * 1972-05-26 1974-02-19 Cross Mfg Co Cylinders for internal combustion engines, pumps or the like
US4202310A (en) * 1977-10-12 1980-05-13 Alonso Agustin M Anti-corrosive polymeric coating
JPS5951668B2 (ja) * 1981-01-28 1984-12-15 日本ピストンリング株式会社 シリンダライナ
US4495907A (en) * 1983-01-18 1985-01-29 Cummins Engine Company, Inc. Combustion chamber components for internal combustion engines
GB2183785B (en) * 1985-09-14 1988-11-02 Honda Motor Co Ltd Slide support member
JPH086636B2 (ja) * 1987-12-11 1996-01-29 三井造船株式会社 シリンダライナ
JP2911003B2 (ja) * 1989-07-03 1999-06-23 三信工業株式会社 エンジン用スリーブ
JP2514097B2 (ja) * 1990-03-15 1996-07-10 帝国ピストンリング株式会社 シリンダライナ
SE508983C2 (sv) * 1992-12-30 1998-11-23 Scania Cv Ab Vått cylinderfoder
JP3483965B2 (ja) * 1994-12-26 2004-01-06 ヤマハ発動機株式会社 内燃機関の摺接部構造とその成形方法
JP3502689B2 (ja) * 1995-03-23 2004-03-02 ヤマハ発動機株式会社 メッキシリンダブロック及びそのメッキ方法
US6463843B2 (en) * 1999-06-11 2002-10-15 Fredrick B. Pippert Pump liner
CN2471969Y (zh) * 2001-03-16 2002-01-16 西北稀有金属材料研究院 陶瓷金属复合缸套
US6508240B1 (en) * 2001-09-18 2003-01-21 Federal-Mogul World Wide, Inc. Cylinder liner having EGR coating
JP4135634B2 (ja) * 2003-12-25 2008-08-20 三菱自動車工業株式会社 エンジンのシリンダライナ構造
JP4241627B2 (ja) * 2005-01-14 2009-03-18 富士重工業株式会社 シリンダライナ及びシリンダブロック
WO2008124464A1 (en) * 2007-04-04 2008-10-16 Gkn Sinter Metals, Llc. Multi-piece thin walled powder metal cylinder liners
JP5107837B2 (ja) * 2008-09-05 2012-12-26 富士重工業株式会社 シリンダライナ、シリンダブロック及びシリンダライナの製造方法
CN201554563U (zh) * 2009-09-18 2010-08-18 石家庄金刚内燃机零部件集团有限公司 一种点状松孔镀铬缸套
EP2721196B1 (de) * 2011-06-15 2019-10-30 Tenneco Inc. Germaniumhaltige beschichtung für innenflächen von zylinderlaufbüchsen
US9534559B2 (en) * 2012-06-20 2017-01-03 General Electric Company Variable thickness coatings for cylinder liners

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996457A (ja) * 1982-11-24 1984-06-02 Honda Motor Co Ltd 内燃機関用エンジンのシリンダブロツク
JPH0828705A (ja) * 1994-07-21 1996-02-02 Teikoku Piston Ring Co Ltd シリンダライナ
DE19605946C1 (de) 1996-02-17 1997-07-24 Ae Goetze Gmbh Zylinderlaufbuchse für Verbrennungskraftmaschinen und ihr Herstellungsverfahren
DE19845347C1 (de) * 1998-10-02 2000-03-30 Federal Mogul Burscheid Gmbh Zylinderlaufbuchse
DE10338386B3 (de) * 2003-08-21 2004-12-09 Daimlerchrysler Ag Vorgefertigter Rohling eines ringförmigen oder hohlzylindrischen Bauteils zum Eingießen in ein gehäuseförmiges Bauteil einer Hubkolbenmaschine

Also Published As

Publication number Publication date
CN104619976A (zh) 2015-05-13
US20150240741A1 (en) 2015-08-27
DE102012216518A1 (de) 2014-03-20
PL2895725T3 (pl) 2018-06-29
MX2015002081A (es) 2015-05-11
CN104619976B (zh) 2017-03-15
MX361322B (es) 2018-11-20
EP2895725A1 (de) 2015-07-22
US10006399B2 (en) 2018-06-26
EP2895725B1 (de) 2018-01-03

Similar Documents

Publication Publication Date Title
EP2895725B1 (de) Zylinderlaufbuchse mit verschleissbeständiger innenschicht
EP0265663A1 (de) Verfahren zur Herstellung einer gebauten Nockenwelle sowie gebaute Nockenwelle aus einem Wellenrohr und aufgeschobenen Elementen
DE10117178B4 (de) Zylinderkopfdichtung
EP2715194B1 (de) Kolbenring mit verbundbeschichtung
DE102017123197A1 (de) Kolben
WO2017025608A1 (de) Kolben für eine brennkraftmaschine
DE102016001311A1 (de) Trägerplatte für einen Bremsbelag und mit solchen Trägerplatten mitsamt Reibbelägen ausgerüstete Bremse
EP2491278A1 (de) Mehrteiliger kolbenring
EP2943703B1 (de) Kolbenring für brennkraftmaschinen mit erhöhter ermüdungsfestigkeit und verfahren zu dessen herstellung
EP3582910B1 (de) Verfahren zum querkeilwalzen von tellerventilen
EP2396574B1 (de) Flachdichtung mit wellenstopper
DE102015201633A1 (de) Kolben für einen Verbrennungsmotor sowie Verfahren zur Herstellung des Kolbens für einen Verbrennungsmotor
EP2814636A1 (de) Verfahren und werkzeug zum erhöhen der festigkeit von wellen, insbesondere von kurbelwellen
WO2007036447A1 (de) Hebel einer schaltbaren schlepphebelvorrichtung und verfahren zur herstellung desselben
DE10235910B4 (de) Verbund von Zylinderlaufbuchsen aus Leichtmetall-Legierung, Verfahren zum Herstellen eines Verbundes und Verfahren zum Eingießen eines Verbundes
DE102015221293B4 (de) Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor und Kolben für einen Verbrennungsmotor
AT11501U1 (de) Pleuel
DE102010038868B4 (de) Kolbenring mit Innenbeschichtung
DE102021203241A1 (de) Kolben für eine Brennkraftmaschine und Verfahren zur Herstellung des Kolbens
DE102017116338A1 (de) Kolbenring und fertigungsverfahren
DE102012221858B4 (de) Kolben und Kolbenring-Anordnung
EP2055426B1 (de) Funktionsoptimierte Gestaltung von Kolben-Ringfeldbereichen
DE102004042706B3 (de) Werkzeug zum Thixoschmieden
DE102017207431A1 (de) Verfahren zur Herstellung eines Kolbenoberteils und/oder eines Kolbenunterteils für einen Kolben einer Brennkraftmaschine
DE102012025333B4 (de) Kurbelgehäuse einer Brennkraftmaschine sowie Verfahren zum Herstellen eines Kurbelgehäuses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013739644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002081

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14428867

Country of ref document: US