WO2014040408A1 - 一种低成本高强度钛合金及热处理工艺 - Google Patents

一种低成本高强度钛合金及热处理工艺 Download PDF

Info

Publication number
WO2014040408A1
WO2014040408A1 PCT/CN2013/073322 CN2013073322W WO2014040408A1 WO 2014040408 A1 WO2014040408 A1 WO 2014040408A1 CN 2013073322 W CN2013073322 W CN 2013073322W WO 2014040408 A1 WO2014040408 A1 WO 2014040408A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
strength
low
cost high
cost
Prior art date
Application number
PCT/CN2013/073322
Other languages
English (en)
French (fr)
Inventor
李伯龙
刘桐
王为
黄晖
李红梅
荣莉
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US13/979,713 priority Critical patent/US9828662B2/en
Publication of WO2014040408A1 publication Critical patent/WO2014040408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to the field of metal alloy technology, and particularly relates to a low-cost high-strength titanium alloy mainly composed of iron and aluminum alloying elements and a heat treatment process. Background technique
  • titanium and titanium alloys are widely used in aerospace and other fields.
  • the high cost limits the wider application of titanium alloys, especially in the civil field, in order to promote titanium alloys.
  • vacuum melting and processing account for 60% of the total cost
  • raw materials account for 40%.
  • the use of inexpensive alloy elements for titanium alloy design can effectively reduce the cost of titanium alloys.
  • iron is one of the most common and widely used elements, and iron is a good ⁇ -phase stabilizing element in titanium alloys. Adding a certain amount of iron to the titanium alloy can reduce the phase transition point, stabilize the ⁇ phase, and improve the hot and cold processing ability of the material, and has been applied in many titanium alloys. For example, adding 2% (mass fraction) of iron to the ⁇ 6 alloy for aviation can improve the hot forming ability, and is very suitable for isothermal forging and superplastic forming processes.
  • the object of the present invention is to provide a low-cost titanium alloy and alloy heat treatment process using iron and aluminum as alloying elements, that is, the temperature and time at which the alloy obtains the best overall performance.
  • the A1 content is 3 to 5%
  • the C content is 0.01 to 0.02%
  • the balance is Ti and unavoidable impurities.
  • the heat treatment process provided by the present invention is characterized in that the heat treatment comprises solution treatment and aging treatment, the temperature of solution treatment is 820 ° C ⁇ 950 ° C, the time is 60 minutes, water cooling; the temperature of the aging treatment is 450 ° C ⁇ 550 ° C, The time is 4 hours, air-cooled.
  • the invention has the advantages that the alloy does not contain expensive alloying elements such as molybdenum and vanadium, and the raw material cost of the alloy is reduced, and the low-cost high-strength alloy solution heat treatment process is recommended as In the future, the effective basis of the heat treatment design of the component will make the alloy have excellent comprehensive mechanical properties and have broad application prospects in the engineering field.
  • a low-cost high-strength titanium alloy is characterized in that: the weight percentage composition of the alloy is: Fe content is 3 to 7%, A1 content is 3 to 5%, and C content is 0.01 to 0.02%, The amount is Ti and unavoidable impurities.
  • Preparation of low-cost Ti-Fe-Al-C titanium alloy Mix 0 grade sponge titanium, 99.3% industrial pure iron, 99.5% industrial pure Al, industrial 45 carbon steel intermediate alloy, and meet the composition requirements, after mixing Pressed into a block on a 200-ton hydraulic press.
  • the briquetting block is smelted twice in a 5KG vacuum suspension induction furnace, and the melting temperature is 1700 ° C to 1850 ° C to obtain a titanium alloy ingot, and the titanium alloy is peeled, tail-tailed, and treated with a suede, and a glass protective lubricant is applied.
  • the billet heating temperature is between 950 ° C and 1050 ° C
  • the final precision forging temperature is between 800 ° C and 900 ° C.
  • the alloy raw material was prepared according to the nominal composition Ti-5Fe-3Al-0.02C (% by weight, %), and the raw material used was grade 0 sponge titanium, 99.3% industrial pure iron, 99.5% industrial pure Al, and industrial 45 carbon steel intermediate alloy.
  • the block is pressed into a block on a 200-ton hydraulic press, and the alloy ingot is obtained by smelting twice in a 5KG vacuum suspension induction furnace.
  • a glass protective lubricant is applied to prevent high-temperature oxidation of the alloy.
  • the alloy raw material was prepared according to the nominal composition Ti-3Fe-5Al-0.01C (% by weight, %), and the raw material used was grade 0 sponge titanium, 99.3% industrial pure iron, and 99.5% industrial pure Al.
  • a 200-ton hydraulic press was pressed into a block, and the alloy ingot was obtained by melting twice in a 5KG vacuum suspension induction furnace. After the ingot is treated with suede, a glass protective lubricant is applied to prevent high temperature oxidation of the alloy.
  • the blank was forged at 980 ° C, and then the multi-fire pier was pulled at 850 ° C to refine the structure, and finally forged into a bar of ⁇ 25 mm.
  • Fe 2 to 7%; A1: 3 to 5%; C: 0.01 to 0.02%; balance is Ti and inevitable impurities.
  • the alloy preparation process of the above embodiment is similar to that of the embodiment 1 and the embodiment 2.
  • the alloys of the examples 3 to 6 are forged into a bar of ⁇ 15 mm, and the mechanical properties obtained after heat treatment at 500 ° C to 650 ° C / lh / AC are obtained. Typical values are: The tensile strength is 900 ⁇ 113 ⁇ 4, the yield strength is 830 ⁇ 113 ⁇ 4, and the elongation is 9%.

Abstract

本发明涉及一种低成本高强度钛合金,该合金成份的重量百分比组成为:Fe:3〜7%,Al:3〜5%,C:0.01〜0.02%,余量为Ti和不可避免杂质。该合金采用工业纯铁、碳钢、工业纯铝等为原材料按设计成份混合压制成块,用真空悬浮熔炼炉二次熔炼成合金铸锭,采用常规钛合金锻造工艺进行锻造加工,随后进行(820°C〜950°C)/1h+水淬固溶处理和(450°C〜550°C)/4h+空冷时效处理,其力学性能为σb=1000〜1250MPa,δ=5〜12%。本发明低成本高强度钛合金,减少了钛合金原材料成本,且合金热加工性能良好,易于生产,可拓宽钛合金更为广泛的应用领域。

Description

一种低成本高强度钛合金及热处理工艺
技术领域 本发明属于金属合金技术领域, 具体涉及以铁、铝为主合金化元素的低成本高强 度钛合金及热处理工艺。 背景技术
钛及钛合金的优异综合性能, 在航空航天等领域得到广泛应用, 然而与铝合金、 钢铁材料相比, 高的成本限制了钛合金的更广泛应用, 尤其是民用领域, 为推广钛合 金的应用,有必要开展低成本钛合金及其制备技术研究。 在造成钛合金相对较高的成 本因素当中, 真空熔炼及加工占总成本的 60%, 原材料占 40%, 使用廉价的合金元 素进行钛合金成分设计可以有效的降低钛合金的成本。
在廉价的合金元素中, 铁元素是最常见、应用最为广泛元素之一, 并且铁元素在 钛合金中是一种很好的 β相稳定元素。在钛合金中加入一定量的铁,能够降低相变点, 稳定 β相, 提高材料的冷热加工能力, 在很多钛合金中得到了应用。 比如航空用 ΤΒ6 合金中加入 2% (质量分数)的铁, 能够提高热成形能力, 非常适合等温锻造和超塑成 型工艺。
可用工业纯铁、碳钢、铸铁作为中间合金实现钛合金中铁元素以及微量碳元素的 添加, 并加入一定量铝元素进一步提高钛合金的强度。我们前期实验也表明一定量的 铁元素在钛合金中具有非常好的强化作用。 发明内容
本发明的目的在于提供一种以铁、铝为主合金化元素的低成本钛合金及合金热处 理工艺, 即合金获得最佳综合性能的温度及时间。
技术方案: 低成本高强度钛合金中各合金组分及其重量百分比为: Fe含量为 3〜
7%, A1含量为 3〜5%, C含量为 0.01〜0.02%, 余量为 Ti和不可避免的杂质。
本发明所提供的热处理工艺, 其特征在于热处理包括固溶处理和时效处理, 固溶 处理的温度为 820°C〜950°C,时间为 60分钟,水冷;时效处理的温度为 450°C〜550°C, 时间为 4小时, 空冷。
本发明的优点是:与常用的钛合金相比,合金中不含有昂贵的钼、钒等合金元素, 降低了合金的原材料成本, 并推荐该低成本高强度合金固溶时效热处理工艺,可作为 今后该成分热处理设计的有效依据, 使合金具有优异的综合力学性能,在工程领域具 有广阔的应用前景。 附图说明
图 1是 Ti-5Fe-3Al-0.02C合金棒材经过 560°C/lh/AC热处理后室温拉伸曲线, 抗 拉强度 ob=1100MPa,延伸率 δ=13%;
图 2是 Ti-5Fe-3Al-0.02C合金棒材经过 840°C/40min/WQ+475 °C/4h/AC热处理后 室温拉伸曲线, 抗拉强度 ob=1290MPa, 延伸率 δ=10%;
图 3是 Ti-3Fe-5Al-0.01C合金棒材经过 600°C/lh/AC热处理后室温拉伸曲线, Gb=1100Mpa, 延伸率 δ=16%。;
图 4是 Ti-3Fe-5Al-0.01C合金棒材经过 940°C/40min/WQ+500°C/4h/AC热处理后 室温拉伸曲线, Gb=1180Mpa, 延伸率 δ=8%。 具体实施方式 下面作进一步详细说明, 低成本高强度钛合金特征在于: 该合金重量百分比组成 为: Fe含量为 3〜7%, A1含量为 3〜5%, C含量为 0.01〜0.02%, 余量为 Ti和不可 避免的杂质。
低成本 Ti-Fe-Al-C钛合金的制备: 将 0级海绵钛、 99.3%的工业纯铁、 99.5%的 工业纯 Al、 工业 45碳钢中间合金混合, 并满足成分要求, 混料后在 200吨液压机上 压制成块。 压块在 5KG真空悬浮感应炉上熔炼两次, 熔炼温度为 1700°C〜1850°C, 获得钛合金铸锭, 将钛合金去皮、 去头尾、 扒皮处理后, 涂抹玻璃防护润滑剂, 经开 坯锻造、 最终锻造成棒材、 板材。 开坯加热温度在 950°C〜1050°C之间, 最终精锻温 度在 800°C〜900°C之间。
实施例 1
按名义成分 Ti-5Fe-3Al-0.02C (重量百分比,%)配制合金原料, 原材料使用 0级海 绵钛、 99.3%的工业纯铁、 99.5%的工业纯 Al、 工业 45碳钢中间合金。 混料后在 200 吨液压机上压制成块, 用 5KG真空悬浮感应炉熔炼两次获得合金铸锭, 铸锭经扒皮 处理后,涂抹玻璃防护润滑剂, 防止合金高温氧化。在 980°C开坯锻造, 随后在 850°C 下进行多火次墩拔以细化组织, 最后锻成 Φ 25ιηιη的棒材。 棒材经过 560°C/lh/AC热 处理后,室温拉伸性能:抗拉强度 ob=1100MPa,屈服强度 σ 2=950,延伸率 δ=13%。(如 附图 1说明) 效处理后,获得的力学性能典型值为:抗拉强度 ob=1290MPa,屈服强度 σ 2=1180ΜΡ^ 延伸率 δ=10%。 (如附图 2说明)
实施例 2
按名义成分 Ti-3Fe-5Al-0.01C (重量百分比, %)配制合金原料, 原材料使用 0级 海绵钛、 99.3%的工业纯铁、 99.5%的工业纯 Al。 混料后 200吨液压机上压制成块, 用 5KG真空悬浮感应炉熔炼两次获得合金铸锭。 铸锭经扒皮处理后, 涂抹玻璃防护 润滑剂, 防止合金高温氧化。 在 980°C开坯锻造, 随后在 850°C下进行多火次墩拔以 细化组织, 最后锻成 Φ 25mm的棒材。 棒材经过 600°C/lh/AC热处理后, 室温拉伸性 能:抗拉强度 ob=1100Mpa, 屈服强度 o。.2=950MPa, 延伸率 δ=16%。 (如附图 3说明) 效处理后,获得的力学性能典型值为:抗拉强度 ob=1180Mpa,屈服强度 σ 2=980ΜΡ^ 延伸率 δ=8%。 (如附图 4说明)
实施例 3〜实施例 6的合金名义成分参见表 1。
表 1实施例 3〜实施例 6的合金名义成分
Fe: 2〜7%; A1: 3〜5%; C: 0.01〜0.02%; 余量为 Ti及不可避免杂质。
Figure imgf000005_0001
上述实施例合金制备过程与实施例 1和实施例 2类似, 实施例 3〜6合金被锻造 成 Φ 15mm的棒材, 经过 500°C〜650°C/lh/AC的热处理后获得的力学性能典型值为: 抗拉强度 900^11¾, 屈服强度 830^11¾,延伸率 9%。
实施例 3〜6合金经 (820°C〜950°Cyih/WQ+(450°C〜550°Cy4h/AC热处理后获得 力学性能典型值为: 抗拉强度 1000^&, 屈服强度 900^&,延伸率 6%。

Claims

权 利 要 求
1. 一种低成本高强度钛合金, 其特征在于, 合金中各合金组分及其重量百 分比为: Fe含量为 3〜7%, A1含量为 3〜5%, C含量为 0.01〜0.02%, 余量为 Ti和不可避免杂质。
2. 根据权利要求 1 所述合金的固溶时效热处理工艺, 其特征在于, 将权利 要求 1合金进行 (820°C〜950°C ) /lh+水淬固溶处理, 再进行 (450°C〜550°C ) /4h+空冷时效处理。
PCT/CN2013/073322 2012-09-14 2013-03-28 一种低成本高强度钛合金及热处理工艺 WO2014040408A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/979,713 US9828662B2 (en) 2012-09-14 2013-03-28 Low cost and high strength titanium alloy and heat treatment process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210343128.9A CN103667788B (zh) 2012-09-14 2012-09-14 一种钛合金及热处理工艺
CN201210343128.9 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014040408A1 true WO2014040408A1 (zh) 2014-03-20

Family

ID=50277565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073322 WO2014040408A1 (zh) 2012-09-14 2013-03-28 一种低成本高强度钛合金及热处理工艺

Country Status (3)

Country Link
US (1) US9828662B2 (zh)
CN (1) CN103667788B (zh)
WO (1) WO2014040408A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115821112A (zh) * 2022-12-26 2023-03-21 西部金属材料股份有限公司 一种适于冷加工的钛合金及其制备方法以及钛合金构件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112723A (zh) * 2015-08-21 2015-12-02 燕山大学 一种低成本高强度钛铁碳合金
CN105018791A (zh) * 2015-08-21 2015-11-04 燕山大学 一种钛铁铝碳合金
CN105088014B (zh) * 2015-09-15 2017-04-05 北京工业大学 一种低成本高强度Ti‑Fe合金坯料及其制备工艺
CN105755312B (zh) * 2016-03-30 2017-10-31 山东正诺集团有限公司 一种钛基合金汽车刹车盘材料的制备方法
CN106363021B (zh) * 2016-08-30 2018-08-10 西部超导材料科技股份有限公司 一种1500MPa级钛合金棒材的轧制方法
CN112342437A (zh) * 2020-11-20 2021-02-09 宁波北理汽车科技股份有限公司 一种曲轴连杆制备工艺
CN113278849B (zh) * 2021-05-20 2022-12-06 西部超导材料科技股份有限公司 一种增强增韧亚稳β钛合金及其制备方法
CN113462927A (zh) * 2021-05-24 2021-10-01 宝鸡市烨盛钛业有限公司 一种适用于绝缘子卡具用钛合金制备方法
CN113399608B (zh) * 2021-05-28 2022-09-20 中国航发北京航空材料研究院 一种tb6钛合金异型连接件锻造成形方法
CN113481407B (zh) * 2021-07-08 2022-04-29 西安赛福斯材料防护有限责任公司 一种低成本防爆轰钛合金板的制备方法
CN114672694B (zh) * 2022-03-30 2022-08-16 北京工业大学 一种近α型高温钛合金的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115221A (ja) * 1999-10-19 2001-04-24 Daido Steel Co Ltd 高強度Ti合金及びその製造方法
CN101463436A (zh) * 2007-12-21 2009-06-24 北京有色金属研究总院 Ti5Mo5V3Al-XCr钛合金及其加工工艺
CN101899590A (zh) * 2010-07-29 2010-12-01 江苏佳哲钛合金材料科技有限公司 一种钛铝铁合金

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575962A (en) * 1950-09-30 1951-11-20 Remington Arms Co Inc Titanium alloy
US2754204A (en) * 1954-12-31 1956-07-10 Rem Cru Titanium Inc Titanium base alloys
US2804409A (en) * 1956-02-06 1957-08-27 Titanium Metals Corp Heat treating titanium-base alloy products
US2867534A (en) * 1957-01-23 1959-01-06 Crucible Steel Co America Titanium base alpha dispersoid alloys
US3147115A (en) * 1958-09-09 1964-09-01 Crucible Steel Co America Heat treatable beta titanium-base alloys and processing thereof
CN1081245C (zh) * 1999-04-15 2002-03-20 大连理工大学 一种高导电率含硼铝合金的制造技术
CN1216164C (zh) * 2002-12-17 2005-08-24 中国乐凯胶片集团公司 一种照相行业应用钛合金涂布模具材料及制造方法
WO2008033603A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Medical devices having alloy compositions
CN100503856C (zh) * 2006-11-14 2009-06-24 永康市民泰钛业科技有限公司 一种低成本钛合金
JP2009270163A (ja) * 2008-05-08 2009-11-19 Daido Steel Co Ltd チタン合金
CN101456102B (zh) * 2009-01-05 2011-05-04 西安理工大学 α型钛合金手工钨极氩弧焊细化晶粒型焊丝及制备方法
FR2946363B1 (fr) * 2009-06-08 2011-05-27 Messier Dowty Sa Composition d'alliage de titane a caracteristiques mecaniques elevees pour la fabrication de pieces a hautes performances notamment pour l'industrie aeronautique
GB2474706B (en) * 2009-10-23 2012-03-14 Norsk Titanium Components As Method for production of titanium welding wire
CN102400013A (zh) * 2010-09-09 2012-04-04 北京正安广泰新材料科技有限公司 一种低成本的β钛合金

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115221A (ja) * 1999-10-19 2001-04-24 Daido Steel Co Ltd 高強度Ti合金及びその製造方法
CN101463436A (zh) * 2007-12-21 2009-06-24 北京有色金属研究总院 Ti5Mo5V3Al-XCr钛合金及其加工工艺
CN101899590A (zh) * 2010-07-29 2010-12-01 江苏佳哲钛合金材料科技有限公司 一种钛铝铁合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115821112A (zh) * 2022-12-26 2023-03-21 西部金属材料股份有限公司 一种适于冷加工的钛合金及其制备方法以及钛合金构件
CN115821112B (zh) * 2022-12-26 2024-03-15 西部金属材料股份有限公司 一种适于冷加工的钛合金及其制备方法以及钛合金构件

Also Published As

Publication number Publication date
CN103667788B (zh) 2016-12-21
CN103667788A (zh) 2014-03-26
US20150184272A1 (en) 2015-07-02
US9828662B2 (en) 2017-11-28

Similar Documents

Publication Publication Date Title
WO2014040408A1 (zh) 一种低成本高强度钛合金及热处理工艺
CN107217173A (zh) 具有高强高塑和良好断裂韧性的钛合金及其制备工艺
CN108441658B (zh) 一种与介质快速反应的高强度镁合金及其制备方法
CN101509091A (zh) 一种高强高韧Al-Zn-Mg-Cu-Sr合金及制备方法
CN107460370A (zh) 一种低成本高强度高塑性亚稳β钛合金及其制备方法
CN101928859B (zh) 一种高冲击韧性的钛合金及其制备方法
CN103114224B (zh) 一种多元合金复合强化高强钛合金的制备方法
CN105506379A (zh) 一种损伤容限中强钛合金
CN108048716A (zh) 高强抗蠕变含钪Al-Cu系铝合金及铸造和热处理工艺
CN109536803B (zh) 一种高延展性低稀土镁合金板材及其制备方法
CN105088014B (zh) 一种低成本高强度Ti‑Fe合金坯料及其制备工艺
CN101935776A (zh) 一种β钛合金材料及其制备方法
WO2015135253A1 (zh) 铝硅系合金及其生产方法
CN110343919A (zh) 一种质量轻硬度大强度高的铝合金及其制备方法
CN104561657A (zh) 一种钛铝合金材料及其制备工艺
CN102828133B (zh) 一种超高强高韧镁合金制备方法
CN103243235B (zh) 一种高强度钛合金
CN103160721A (zh) 一种高硬度耐热镁合金
CN108411156A (zh) 一种近β型高强度钛合金及其制备方法
CN102965543A (zh) 一种性能可调范围宽的高强钛合金
CN102978440B (zh) 一种短时高温高强钛合金
CN113151711A (zh) 一种新型低成本高强高塑性钛合金
CN101633990A (zh) 一种Al-Mo-W-Ti四元合金
CN105568173A (zh) 一种高强韧性低合金耐热钢及其制造方法
CN103725923A (zh) 一种铝强化的镍基合金及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13979713

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836970

Country of ref document: EP

Kind code of ref document: A1